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Abstract: A subalgebra B of a Lie algebra L is called a weak c-ideal of L if there is a subideal C' of L such that
L = B+C and BNC < By, where By, is the largest ideal of L contained in B. This is analogous to the concept of weakly
c-normal subgroups, which has been studied by a number of authors. We obtain some properties of weak c-ideals and
use them to give some characterisations of solvable and supersolvable Lie algebras. We also note that one-dimensional
weak c-ideals are c-ideals.
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1. Introduction

Throughout L will denote a finite-dimensional Lie algebra over a field F'. If B is a subalgebra of L we define
By, the core (with respect to L) of B to be the largest ideal of L contained in B. We say that a subalgebra
B of L is a weak c-ideal of L if there is a subideal C' of L such that L = B+ C and BN C < Byp. This is
a generalisation of the concept of a c-ideal which was studied in [9]. It is analogous to the concept of weakly
c-normal subgroup as introduced by Zhu, Guo and Shum in [15]; this concept has since been further studied by
a number of authors, including Zhong and Yang ([14]), Zhong, Yang, Ma and Lin ([13]), Tashtoush ([7]) and
Jehad ([4]) who called them c-subnormal subgroups.

The maximal subalgebras of a Lie algebra L and their relationship to the structure of L have been
studied extensively. It is well known that L is nilpotent if and only if every maximal subalgebra of L is an ideal
of L (see [1]). A further result is that if L is solvable then every maximal subalgebra of L has codimension
one in L if and only if L is supersolvable (see [2]). In [9] similar characterisations of solvable and supersolvable
Lie algebras were obtained in terms of c-ideals. The purpose here is to generalise these results to ones relating
to weak c-ideals.

In section two we give some basic properties of weak c-ideals; in particular, it is shown that weak c-ideals
inside the Frattini subalgebra of a Lie algebra L are necessarily ideals of L. In section three we first show that
all maximal subalgebras of L are weak c-ideals of L if and only if L is solvable and that L has a solvable
maximal subalgebra that is a weak c-ideal if and only if L is solvable. Unlike the corresponding results for
c-ideals, it is necessary to restrict the underlying field to characteristic zero, as is shown by an example. Finally

we have that if all maximal nilpotent subalgebras of L are weak c-ideals, or if all Cartan subalgebras of L are
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weak c-ideals and F' has characteristic zero, then L is solvable.

In section four we show that if L is a solvable Lie algebra over a general field and every maximal
subalgebra of each maximal nilpotent subalgebra of L is a weak c-ideal of L then L is supersolvable. If each
of the maximal nilpotent subalgebras of L has dimension at least two then the assumption of solvability can be
removed. Similarly if the field has characteristic zero and L is not three-dimensional simple then this restriction
can be removed. In the final section we see that every one-dimensional subalgebra is a weak c-ideal if and only
if it is a c-ideal.

If A and B are subalgebras of L for which L = A+ B and AN B =0 we will write L = A& B. The

ideals L(®) and L* are defined inductively by L) = L' = [, L+ = [L*) [(R)]  LF+1 = [L LF] for k> 1.
If A is a subalgebra of L, the centralizer of A in L is Cp(A) ={x € L: [z, A] = 0}.

2. Preliminary Results

Definition 2.1 Let I be a subalgebra of L. We call I a subideal of L if there is a chain of subalgebras
I=h<h< ..<I,=1L,

where I; is an ideal of I, for each 0 <j <n —1.

Definition 2.2 A subalgebra B of a Lie algebra L is a weak c-ideal of L if there exists a subideal C' of L

such that
L=B+Cand BNC < By,

where By, , the core of B, is the largest ideal of L contained in B.

Definition 2.3 A Lie algebra L is called weak c-simple if L does not contain any weak c-ideals except the

trivial subalgebra and L itself.

Lemma 2.4 Let L be a Lie algebra. Then the following statements hold:
(1) Let B be a subalgebra of L. If B is a c-ideal of L then B is a weak c-ideal of L.
(2) L is weak c-simple if and only if L is simple.
(3) If B is a weak c-ideal of L and K is a subalgebra with B < K < L, then B is a weak c-ideal of

K.
(4) If I is an ideal of L and I < B, then B is a weak c-ideal of L if and only if B/I is a weak c-ideal

of L/I.

Proof (1) By the definition every ideal is a c-ideal and every c-ideal is a weak c-ideal so the proof is obvious.

(2) Suppose first that L is simple and let B be a weak c-ideal with B # L. Then
L=B+Cand BNC < By,

where C' is a subideal of L. But, since L is simple, By, must be 0. Moreover, C' # 0 so C = L. Hence B=10
and L is weak c-simple.
Conversely, suppose L is weak c-simple. Then, since every ideal of L is a weak c-ideal, L must be simple.
(3) If B is a weak c-ideal of L then there exists a subideal C' of L such that

L=B+Cand BNC < By,
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Then K = KNL=KN(B+C)=B+(KNC). Since C is a subideal of L there exists a chain of subalgebras
C=C<Ci < ..<Cr=1L
where C; is an ideal of Cj4; for each 0 < j <n — 1. If we intersect this chain with K we get
CNK=C)NnK<CiNnK< ..<Cp,NK=LNK=K

and obviously C; N K is an ideal of Cj41 N K for each 0 < j <n —1. Hence C N K is a subideal of K. Also,
BN (C N K) < Bg

so that B is a weak c-ideal of L.
(4) Suppose first that B/I is a weak c-ideal of L/I. Then there exists a subideal C'/I of L/I such that

L/I=B/I+C/I and B/INC/I < (B/I),,; = Br/I

It follows that L = B+ C and BN C < By, where C is a subideal of L.
Suppose conversely that I is an ideal of L with I/ < B and B is a weak c-ideal of L. Then there exists

a C subideal of L such that
L=B+Cand BNC < By,.

Since I is an ideal and I < B the factor algebra
L/I=(B+C)/I=B/I+(C+1)/I
where (C' + 1) /I is a subideal of L/I and

(B/D)N(C+1)/I=(BN(C+I)/I=(I+BnC)/I<By/I=(B/I),,

so B/I is a weak c-ideal of L/I. O

The Frattini subalgebra of L, F (L), is the intersection of all of the maximal subalgebras of L. The
Frattini tdeal, ¢(L), of L is F (L), . The next result is a generalisation of [9, Proposition 2.2]. The same

proof works but we will include it for completeness.

Proposition 2.5 Let B,C be subalgebras of L with B < F(C). If B is a weak c-ideal of L then B is an
ideal of L and B < ¢(L).

Proof Suppose that L = B + K where K is a subideal of L and BN K < By,. Then C = CNL =
CN(B+K)=B+CNK=CNK since B< F(C). Hence B<C < K, giving B=BNK < By, and B is
an ideal of L. It then follows from [8, Lemma 4.1] that B < ¢(L). O

An ideal A is complemented in L if there is a subalgebra U of L such that L=A+U and ANU = 0.
We adapt this to define a complemented weak c-ideal as follows.

Definition 2.6 Let L be a Lie algebra and B is a weak c-ideal of L. A weak c-ideal B is complemented
in L if there is a subideal C of L such that L =B+ C and BNC = 0.

Then we can give the following lemma:
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Lemma 2.7 If B is a weak c-ideal of a Lie algebra L, then B/Bj, has a subideal complement in L/By, i.e., there
exists a subideal subalgebra C'/Byp of L/By such that L/Bpis semidirect sum of C/Br and B/Bj. Con-
versely, if B is a subalgebra of L such that B/Bj, has a subideal complement in L/By, then B is a weak c-ideal
of L.

Proof Let B be a weak c-ideal of L. Then there exists a subideal C' of L such that B+ C = L and
BNC < Bp. If B =0 then BNC =0 and so that C is a subideal complement of B in L. Assume that

By, # 0, then we can construct the factor algebras B/By, and (C + Br) /By. If we intersect these two factor

algebras we have

Eﬂc—l—BL _ Bn(C+By)
BL BL B BL
_ BL+(BﬁC)
= — 5
Br,
= 720
Br

Hence, (C + By)/By, is a subideal complement of B/By, in L/Bj. Conversely, if K is a subideal of L such
that K/By, is a subideal complement of B/By, in L/Bj, then we have that

L/By = (B/Br)+ (K/Br) and (B/Br) N (K/BL)=0

Then L = B+ K and BN K < By,. Therefore B is a weak c-ideal of L. O

3. Some characterisations of solvable algebras

We will use the following Lemma which is due to Stewart [6, Lemma 4.2.5]

Lemma 3.1 Let L be a Lie algebra over any field having two subideals H and K such that K is simple and
not abelian. Suppose that H N K = 0. Then [H,K] =0

Theorem 3.2 Let L be a Lie-algebra over a field F' of characteristic zero and let B be an ideal of L. Then

B is solvable if and only if every maximal subalgebra of L not containing B is a weak c-ideal of L.

Proof Suppose every maximal subalgebra of L not containing B is a weak c-ideal of L. Then we need to
show B is solvable. Assume that this is false and let L be a minimal counter-example. Let A be a minimal
ideal of L and assume that M /A is a maximal subalgebra of L/A such that (B+ A)/AZ M/A. Then M is a
maximal subalgebra of L with B Z M, so M is a weak c-ideal of L. It follows that M/A is a weak c-ideal of
L/A, and hence that (B+ A)/A is solvable. If BN A =0, then B~ B/BNA%(B+ A)/A is solvable. So we
can assume that every minimal ideal of L is contained in B. Moreover, B/A is solvable for each such minimal
ideal. If L has two distinct minimal ideals A; and As then B = B/A; N As is solvable, so L is monolithic
with monolith A, say.

If A is abelian then B is solvable, so we must have that A is simple. Clearly, B Z ¢(L), since (L) is
nilpotent, so there is a maximal subalgebra M of L such that B € M. Then M must be a weak c-ideal of L,
so there is a subideal C' of L such that L =M +C and M NC C M. Since B € My, we have that My = 0.
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It follows that L is primitive of type 2 and hence that Cp(A) = 0, by [10, Theorem 1.1]. But [C, A] = 0 by

Lemma 3.1, so C' = 0, a contradiction. Hence B is solvable. So suppose now that B is solvable and let M
be a maximal ideal of L not containing B. Then there exists k € N such that B*+Y C M, but B ¢ M.
Clearly L =M + B®) and B®) N M is an ideal of L, so B® N M C M7y, . Tt follows that M is a c-ideal and

hence a weak c-ideal of L. O

Corollary 3.3 Let L be a Lie algebra over a field F' of characteristic zero. Then L is solvable if and only if

every maximal subalgebra of L is a weak c-ideal of L.

Unlike the corresponding results for c-ideals, the above two results do not hold in characteristic p > 0,

as the following example shows.

Example 3.4 Let L = sl(2)® 01 +1® F(% + xa%), where Oy = Flz] with 2?7 = 0 is the truncated
polynomial algebra in 1 indeterminate and the ground field, F', is algebraically closed of characteristic p > 2.
Then A = sl1(2)®0; is the unique minimal ideal of L. Put S = si(2) = Fu_1+ Fuo+Fuy with [u_1,u] = u_1,
[u—1,u1] = uo, [ug,u1] = uy and let M = (Fug+ Fuy) ® Oy +1® F(& + z-Z). This is a maximal subalgebra
of L which doesn’t contain A. Suppose that it is a weak c-ideal of L. Then there is a subideal C of L such
that L=C+ M and CNM C My =0.

Let
C=Ci<Ci< ..<xC,=1L

where C; is an ideal of Cj4; foreach 0<j<n—-1. Then ACCp_1,50 A=Cpy0or Cpho1 =A+1® F%.
In the latter case it is straightforward to check that C,,_o C A. In either case, C' must be inside a proper ideal
of A, and hence inside S @ Of, where Of is spanned by z,22,...,2P~!. But now u_, ® 1 ¢ C + M. Hence

M 1is not a weak c-ideal of L.

Lemma 3.5 Let L = U + C be a Lie algebra, where U is a solvable subalgebra of L and C is a subideal of
L. Then there exists ng € N such that L) C (.

Proof Let C=Cy < Cy <...<Cy =L where C; is an ideal of Cj41 for 0 <i < k—1. Then L/Ci_; is
solvable and so there exists ny_; such that L("~1) C C}_;. Suppose that L) C C; for some 0<i<k—1.
Now C;/C;_1 is solvable, and so there is r; such that Ci(”) C C;_y. Hence L(nitri) — (L("i))(”) C Ci_q. Put

n;_1 = n; + r;. The result now follows by induction. O

Theorem 3.6 Let L be a Lie algebra over a field F' of characteristic zero. Then L has a solvable maximal

subalgebra that is a weak c-ideal of L if and only if L is solvable.

Proof Suppose first that L has a solvable maximal subalgebra M that is a weak c-ideal of L. We show that
L is solvable. Let L be a minimal counter-example. Then there is a subideal K of L such that L = M + K
and M NK < Mp. If My, # 0 then L/Mj, is solvable, by the minimality assumption, and My, is solvable,
whence L is solvable, a contradiction. It follows that M; = 0 and L = M+K. If R is the solvable radical
of L then R < M =0, so L is semisimple. But now, for all n > 1, L = L(") < K # L, by Lemma 3.5, a
contradiction. The result follows. The converse follows from Corollary 3.3. O
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Theorem 3.7 Let L be a Lie algebra over a field of characteristic zero such that all maximal nilpotent

subalgebras are weak c-ideals of L. Then L is solvable.

Proof Suppose that L is not solvable but that all maximal nilpotent subalgebras of L are weak c-ideals of
L. Let L =R® S be the Levi decomposition of L, where S # 0. Let B be a maximal nilpotent subalgebra
of S and U be a maximal nilpotent subalgebra of L containing it. Then there is a subideal C' of L such that
L=U+C and UNC C Uy. It follows from Lemma 3.5 that S = S§(0) C () C C,andso BCUNC CUyp,

whence SNUL # 0. But SNUY, is an ideal of S and so is semisimple. Since U is nilpotent this is a contradiction.
O

Theorem 3.8 Let L be a Lie algebra, over a field F' of characteristic zero, in which every Cartan subalgebra
of L is a weak c-ideal of L. Then L is solvable.

Proof Suppose that every Cartan subalgebra of L is a weak c-ideal of L, and that L has a non-zero Levi
factor S. Let H be a Cartan subalgebra of S and let B be a Cartan subalgebra of its centralizer in the solvable
radical of L. Then C = H + B is a Cartan subalgebra of L (see [3]) and there is a subideal K of L such that
L=C+K and CNK < Cp. Now there is an r > 2 such that L") < K, by Lemma 3.5. But § < L(") < K,
so CNS<CNK <y giving CNS<CLNS =0, acontradiction. It follows that S = 0 and hence that L

is solvable. O

4. Some characterisations of supersolvable algebras

The following is proved in [9, Lemma 4.1]

Lemma 4.1 Let L be a Lie algebra over any field F', let A be an ideal of L and let U/A be a maximal
nilpotent subalgebra of L/A. Then U = C + A, where C is a maximal nilpotent subalgebra of L.

We will also need the following result.

Lemma 4.2 Let L be a Lie algebra over any field F and suppose that L = B 4+ K, where B is a nilpotent
subalgebra and K is a subideal of L. Then there exists s € N such that L®* C K. Moreover, if A is a minimal
ideal of L then either A C K or [L, A] = 0.

Proof Since K is a subideal of L, there exists 7 € N such that L (ad K)" C K. As B is nilpotent, there
exists s € N such that L® = (B+ K)® C K. Now [L,A] = A or [L,A] = 0 and the former implies that
ACL*CK. O

Lemma 4.3 Let L be a Lie algebra, over any field F', in which every maximal subalgebra of each maximal
nilpotent subalgebra of L is a weak c-ideal of L, and let A be a minimal abelian ideal of L. Then every

maximal subalgebra of each maximal nilpotent subalgebra of L/A is a weak c-ideal of L/A.

Proof Suppose that U/A is a maximal nilpotent subalgebra of L/A. Then U = C + A where C is
a maximal nilpotent subalgebra of L by Lemma 4.1. Let B/A be a maximal subalgebra of U/A. Then
B=BN(C+A)=BNC+ A=D+ A where D is a maximal subalgebra of C with BNC < D. Now D is
a weak c-ideal of L so there is a subideal K of L with L=D+ K and DNK < Dy.
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If A< K we have
D

+K_D+A K
T A A A

L
A

and

EQE_BQK_(D+A)mK_DmK+A<DL+A< B
A A A A - A oA T \A) .

So suppose that A £ K. Then Lemma 4.2 shows that [L, A] = 0. It follows that A < C and B = D. We have
L=B+ K and BNK < Bp, so
K+ A

T

o |
| o

and

B K+A_BN(K+A) BNK+A _BitA_(B
A AT A A a4

O

Lemma 4.4 Let L be a Lie algebra over any field F', in which every maximal nilpotent subalgebra of L is a
weak c-ideal of L, and suppose that A is a minimal abelian ideal of L and M is a core-free maximal subalgebra

of L. Then A is one dimensional.

Proof We have that L = A+M and A is the unique minimal ideal of L, by [10, Theorem 1.1]. Let C be a
maximal nilpotent subalgebra of L with A < C. If A = C, choose B to be a maximal subalgebra of A, so that
A =B+ Fa and By, = 0. Then B is a weak c-ideal of L. So there is a subideal of K of L with L = B+ K
and BNK <Bp=0.Now L=B+K =B+ K=K since B< A< K. It follows that X = L, whence

B =0 and A = Fa is one dimensional.
So suppose that C #= A. Then C' = A+ M NC. Let B be a maximal subalgebra of C' containing M NC.

Then B is a weak c-ideal of L, so there is a subideal K of L with L = B+ K and BNK < By. If A< B < B,
we have C = A+ M NC < B, a contradiction. Hence By = 0 and L = B+K. Now C = B+ CNK and
BNCNK =BNK =0. As C is nilpotent this means that dim(CNK) = 1. If A C K we have that A < CNK,
so dim A = 1, as required. Otherwise, [L, A] =0, by Lemma 4.2 and again dim A = 1. O

We can now prove our main result.

Theorem 4.5 Let L be a solvable Lie algebra over any field F' in which every maximal subalgebra of each

maximal nilpotent subalgebra of L is a weak c-ideal of L. Then L is supersolvable.

Proof Let L be a minimal counter-example and let A be a minimal abelian ideal of L. Then L/A satisfies the
same hypothesis by Lemma 4.3 We thus have that L/A is supersolvable and it remains to show that dim A = 1.

If there is another minimal ideal I of L, then
A2 (A+1)/I<L/I

which is supersolvable and so dim A = 1. So we can assume that A is the unique minimal ideal of L. Also, if
A < (L), we have that L/yp(L) is supersolvable, whence L is supersolvable by [2, Theorem 7]. We therefore,
further assume that A < (L). It follows that L = A+M, where M is a core-free maximal subalgebra of L.

The result now follows from Lemma 4.4. O
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If L has no one-dimensional maximal nilpotent subalgebras, we can remove the solvability assumption

from the above result provided that F has characteristic zero.

Corollary 4.6 Let L be a Lie algebra over a field F' of characteristic zero in which every maximal nilpotent
subalgebra has dimension at least two. If every maximal subalgebra of each maximal nilpotent subalgebra of L

is a weak c-ideal of L, then L is supersolvable.

Proof Let N be the nilradical of L, and let ¢ N. Then 2z € C for some maximal nilpotent subalgebra C
of L. Since dimC' > 1, there is a maximal subalgebra B of C' with = € B. Then there is a subideal K of L
such that L = B4+ K and BNK C By, < Cp < N. Clearly, x ¢ K, since otherwise x € BN K < N. Moreover,
L™ C K for some r € N, by Lemma 4.2. We have shown that if © ¢ N there is a subideal K of L with = ¢ K
and L" C K.

Suppose that L is not solvable. Then there is a semisimple Levi factor S of L. Choose x € S. Then
r €S =_58"C K, acontradiction. Thus L is solvable and the result follows from Theorem 4.5. O

If L has a one-dimensional maximal nilpotent subalgebra, then we can also remove the solvability

assumption from Theorem 4.4, provided that underlying field F' has again characteristic zero and L is not

three-dimensional simple.

Corollary 4.7 Let L be a Lie algebra over a field F' of characteristic zero. If every maximal subalgebra of
each maximal nilpotent subalgebra of L is a weak c-ideal of L, then L is supersolvable or three dimensional

simple.

Proof If every maximal nilpotent subalgebra of L has dimension at least two, then L is supersolvable by
Corollary 4.6. So we need only consider the case where L has a one-dimensional maximal nilpotent subalgebra
say Fx. Suppose first that L is semisimple, so L = S1®...D S,,, where S; is a simple ideal of L for 1 <i < n.
Let n > 1. If © € S;, then choosing s € S; with j # ¢, we have that Flox + F's is a two dimensional abelian
subalgebra, which contradicts the maximality of Fz. If « ¢ S;, for every 1 < i < n, then z has nonzero
projections in at least two of the Sj’s, say s; € S; and s; € S;. But then Fz + F's; is a two-dimensional
abelian subalgebra, a contradiction again. It follows that L is simple. But then Fz is a Cartan subalgebra of
L, which yields that L has rank one and thus is three dimensional.

So now let L be a minimal-counter example. We have seen that L is not semisimple, so it has a minimal
abelian ideal A. By Lemma 4.3, L/A is supersolvable or three-dimensional simple. In the former case, L is
solvable and so is supersolvable, by Theorem 4.5.

In the latter case, L = A & S where S is three-dimensional simple, and so a core-free maximal
subalgebra of L. It follows from Lemma 4.4 that dim A = 1. But now Cp(A) = A or L. In the former
case S L/A=L/CL(A) = Inn(A), asubalgebra of Der (A), which is impossible. Hence L = A@® S, where

A and S are both ideals of L and again L has no one-dimensional maximal nilpotent subalgebras. O

5. One dimensional weak c-ideals
Lemma 5.1 Let L be a Lie algebra over any field F'. Then the one-dimensional subalgebra Fx of L is a weak

c-ideal of L if and only if it is a c-ideal of L.

Proof Let Fz be a weak c-ideal of L. Then there is a subideal K of L such that L = Fz + K and
Frn K < (Fz)r. Since either K = L or K has codimension one in L, it is an ideal of L and Fz is a c-ideal
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O
We say that L is almost abelian if L = L?® Fx, where L? is abelian and [z,y] =y for all y € L?. Then

the following result follows from Lemma 5.1 and [9, Theorem 5.2].

Theorem 5.2 Let L be a Lie algebra over any field F'. Then all one-dimensional subalgebras of L are weak

c-ideals of L if and only if:

(i) L®=0;or
(15) L =A@ B, where A is an abelian ideal of L and B is an almost abelian ideal of L.
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