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Abstract 

During recent years, there is a widespread belief among researchers and academicians that the 

Bitcoin usage is imposing an additional burden on the environment inducing climate change. 

Although several studies have focused on issues related to the energy consumption of the basic 

cryptocurrencies, an open question remains regarding the environmental depiction of the Bitcoin.  

By resorting to Bayesian analysis and quantile cointegrated vector autoregression (CQVAR) 

model techniques, this study seeks to disentangle the driving forces that shape the carbon footprint 

of the Bitcoin. The sample used in the empirical analysis consists of a daily panel dataset covering 

51 developing and developed countries over the years 2016-2018. The empirical findings 

corroborate a causal effect between the use of the Bitcoin and its underlying carbon dioxide 

emissions generated by the increasing energy load. The Bayesian CQVAR is associated with 

positive marginal posterior means for most of the covariates of the model across all the estimated 

quantiles. In contrast, there is a negative and statistically significant relationship between Bitcoin 

miner’s revenue and carbon emissions, uncovering a multimodal distribution pattern of the 

marginal posterior densities which is stronger at higher than in lower quantiles. This finding, 

suggests that the lower (higher) miner’s Bitcoin revenues the more abrupt (gradual) the effect on 

environmental degradation. Therefore, a sustainable energy strategy focusing on the penetration 

of renewable energy sources along with the use of energy-efficient mining hardware will alleviate 

the carbon footprint of the Bitcoin.      
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1.  Introduction 

 Financial technology (FinTech) constitutes an important source of capital not only for start-

up companies but also for established institutions that seek to enhance their usage of financial 

services provided to other companies (B2B) or final consumers (B2C).   

 The use of cryptocurrency through decentralized blockchain technology, the mobile and web 

banking applications, the crowdfunding platforms, or certain artificial intelligence tools like 

robotic process automation, and big data are just a few examples of breakthrough technologies 

aiming to make financial services more accessible to the public. While the US still dominates, 

Europe and Asia now attract about half of the investment flows in the FinTech industry (Leong 

and Sung, 2018). Fintech investments are also becoming increasingly important in developing 

countries in the aftermath of the global financial crisis (India, Argentina, Singapore, and Hong-

Kong). Even though the invested amounts are small relative to the sizes of the economies (e.g. US, 

Europe), the upside potential and growth prospects of the successful start-ups are tremendous. For 

example, Google, FedEx, Amazon, and Intel have embraced many Fintech technologies in the US. 

In Europe, in the past five years, a growing number of companies (Maersk, Vodafone, AXA, BNP 

Paribas) have been engaged in Fintech activities, which helped them to reach new markets and 

create jobs.  

 Bitcoin (BTC) and its underlying blockchain validation process have attracted considerable 

attention from the FinTech industry, while regulatory authorities and policymakers are rather 

skeptical for its increasing use since its initial launch in 2009 (Böhme, et al, 2015). This can be 

justified because investing in Bitcoins or any other cryptocurrency creates a risk to the stakeholders 

since decentralized algorithm-trading blockchain platforms are not subject to organized financial 
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market regulations and this raises serious concerns of security, internal control, and market 

surveillance (Cheng et al, 2019).  

However, a large number of consumers (e.g. investors, traders, intermediaries) have a 

growing interest in this kind of financial transactions. Direct evidence of consumer awareness of 

BTC is hard to come by. But we can obtain some indirect evidence by comparing the search 

intensity for these terms as a news item from Google trends.2 The rationale behind using this proxy 

is straightforward. Attention is a scarce cognitive resource thus, the amount of attention paid to a 

commodity or a service should reveal changes in preferences or status. Moreover, a search is a 

revealed attention measure since if a term has been searched in Google, attention has been paid to 

it. Worldwide data for internet news searches for the number of Google searches on “bitcoin,” 

“blockchain,” and “cryptocurrency” terms are available for the post-2016 period, and the results 

are provided in Figure 1. As it is evident from the inspection of the relevant figure, the search 

intensity for the term “bitcoin” seems to be higher than that for “cryptocurrency” and 

“blockchain”, reaching its peak in December 2017 (see Panel A). Moreover, internet searches for 

the terms “bitcoin” and “cryptocurrency” are highest in western economies (USA, Canada, Latin 

America, Europe) than in developing countries such as Africa and South Asia (see Panel B and 

C), whereas the search for “blockchain” is relatively more prominent in developing economies 

(see Panel D). This geographic distribution further accentuates the difference in search intensities 

plotted in Panel A. Though indirectly, this evidence corroborates our perception that consumers 

have a growing interest in how BTC through a Blockchain validation process could enhance many 

business products and processes (Katsiampa et al, 2019; Cheng et al, 2019).   

 
2 Data were obtained by filtering “worldwide”, “news item” and “all categories” from the drop down menu of the 

website for the period 01/01/2016-11/04/2020.   
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<Insert Figure 1 about here>  

To give but an example of its tremendous penetration in financial transactions, it is 

noteworthy that its market capitalization reached the level of 133 billion USD in April 2020, while 

the number of circulated cryptocurrencies exceeded 16.8 million BTCs with its market value 

currently estimated to be around 45 billion USD (Cheng et al, 2019; Atsalakis et al, 2019; 

Katsiampa, 2017). Moreover, the computing capacity used in this process (mining) has increased 

rapidly in recent years, while energy requirements have shown an enormous increase (Das and 

Dutta, 2020; Symitsi and Chalvatzis, 2018). 

For a BTC transfer to be executed and validated, an algorithm based on computer 

programming must be solved through the global BTC network. Although BTC is a virtual 

currency, the electricity load associated with its use is vast in numbers. It is estimated that BTC’s 

annual electricity consumption adds up to 45.8 TWh (November 2018), while at the same time it 

causes around 23 megatons in CO2 emissions annually (Stoll et al, 2019). Moreover, it is estimated 

that BTC could produce enough carbon releases to increase the global temperature above 2°C 

within less than three decades jeopardizing the Paris Agreement (Mora et al, 2018).3 Figure 2 

displays Bitcoin’s carbon dioxide releases relative to several countries in 2018. As it is evident, 

countries such as the USA, Russia, Korea, Venezuela, Iran, and China constitute the most polluting 

ones based on BTC’s electricity load used for mining.  

<Insert Figure 2 about here>  

 
3 Paris Agreement on climate change mitigation or simply “Paris Accord” aims to strengthen the ability of countries 

to deal with the impacts of climate change by keeping a global temperature rise well below 2 degrees Celsius above 

pre-industrial levels. 
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Despite the profound interest of researchers and policymakers on the possible interactions 

between the use of BTC and environmental degradation, little progress has been made by the 

academic community to unravel possible causal effects. This study is based on Bayesian quantile 

regression and therefore provides inferences that are conditional on the data, without reliance on 

asymptotic approximation as its alternative classical quantile regression firstly developed in 

Koenker and Bassett, (1978). By employing a CQVAR model, this work attempts to define causal 

effects between the main financial characteristics of the BTC (return, miner’s revenues, 

transactions, efficiency, fees, and cost) and the probability density function (PDF) of Bitcoin’s 

carbon releases over the quantiles. The reason for relying on quantile analysis is that it provides a 

more accurate description of the response distribution than the mean, since the latter usually 

neglects important features of the distribution, especially when we might expect a different 

structural relationship for the higher/lower responses than the average ones (see Taddy and Kottas, 

2010).  

The findings reveal the existence of positive marginal posterior effects for most of the 

covariates across all the quantiles. On the contrary, there is a negative correlation between miner’s 

revenue and carbon dioxide emissions, mostly evident at higher quantiles. The empirical results 

remain robust when Markov Chain Monte Carlo (MCMC) techniques for numerical Bayesian 

inference are used organized around a Metropolis-Hastings algorithm. Moreover, we also 

document important differences between the CQVAR and the traditional Bayesian quantile 

analysis, in terms of several aspects of the data. 

This study offers new insights into the existing BTC technical issues while it contributes 

to the emerging literature in many ways. First, we utilize Bayesian analysis to extend a CQVAR 

model developed in Koenker and Xiao (2006). By applying the notion of cointegration to Bayesian 
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analysis, we can trace structural relationships between the sample variables of our model. In this 

way, we compare and contrast the estimates drawn from the new (cointegrated) model with a 

standard Bayesian quantile regression analysis. Specifically, this study is the first -to the best of 

our knowledge- that uses a Bayesian approach to the CQVAR to obtain the effect of covariates 

across different quantiles. Second, we contribute to the broader BTC literature by dissecting the 

drivers of BTC carbon footprint across the quantiles, an issue that has been missing from the extant 

literature. Third, we provide useful policy implications to regulators and government officials from 

the interpretation of the empirical findings.  

The rest of the paper proceeds as follows. Section 2 describes the literature in the field. In 

Section 3 the Bayesian CQVAR model is presented and discussed. Section 4 presents the data and 

the sample variables used in this study. In Section 5 the empirical findings analyzed along with 

the necessary sensitivity analysis to check for the robustness of the empirical findings. Finally, 

Section 6 concludes the paper, offering useful policy implications. 

2.  Literature review 

The existing literature on the possible spillover effects of the use of BTC to environmental 

degradation is still in its infancy. The majority of related studies focus solely on the energy-mining 

nexus, whereas scant attention has been paid to the environmental consequences of the 

cryptocurrency mining (see for example Das and Dutta, 2020; Li et al, 2019; De Vries, 2018; 

Krause and Tolaymat, 2018; O'Dwyer and Malone, 2014).   

Das and Dutta, (2020), which is the most related study to our work, investigate the 

relationship between Bitcoin’s energy consumption measured by electricity load for mining BTC 

and its revenue level. They rely on quantile and Markov regime-switching regression analysis on 

a daily dataset comprising of 774 observations (February 2017 to March 2019). The empirical 
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findings indicate that there is a negative relationship between energy load and miner’s revenue, 

which is highly significant up to the 30th quantile of the miner’s revenue PDF. In other words, 

Bitcoin’s higher energy consumption may decrease their profitability level suffering even losses 

since energy costs contribute substantially to total costs when the revenues are low and volatile. 

On the contrary, all other independent variables (transaction cost, transaction fees, total mining, 

number of unique BTC address used and BTC returns) are positively correlated with the miner’s 

revenue PDF across the quantiles.        

In a similar vein, Li et al, (2019) ran experiments on mining efficiency of nine kinds of 

cryptocurrencies and ten algorithms. The empirical results indicate a positive relationship between 

global electricity consumption and mining activity, while the hashing algorithm mainly determines 

the mining efficiency. In an earlier work De Vries (2018) assesses alternative methods in 

determining the current and future electricity consumption of the BTC network. This study argues, 

that the BTC network consumes at least 2.55 GW of electricity currently, and that it could reach a 

consumption of 7.67GW in the future. Krause and Tolaymat, (2018) demonstrate a methodology 

for calculating the minimum power requirements of four cryptocurrencies (Bitcoin, Ethereum, 

Litecoin, and Monero) and the subsequent energy consumed to generate one US dollar’s worth of 

digital assets. They claim that all four encrypted cryptocurrencies consume more energy than 

mineral mining to produce an equivalent market value.  

As it is evident from the above analysis, the BTC mining constitutes beyond any doubt a 

“power-hungry” process (see also Foteinis, 2018; De Vries, 2018). However, the direct link of 

BTC with the carbon emissions released by its mining is nearly overlooked by the existing 

literature. Recent works by Mora et al, (2018), Krause and Tolaymat (2018) and the most recent 

one by Stoll et al. (2019), attempt to shed light on this relationship. Mora et al. (2018) estimate the 
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carbon emissions of BTC by assuming the adoption trends of 40 different used technologies for 

which data were available. For each year, they calculate the average as well as lower and upper 

quantiles of percent population using all technologies and apply a logistic model to project these 

trends. The empirical findings of the model, concur that BTC mining might create an electricity 

demand capable of producing enough emissions to exceed 2 °C of global warming in less than the 

next three decades. The study also supports a BTC mining mobility from geographic regions where 

electricity is expensive to regions with low electricity costs (e.g. where the cost of electricity from 

renewables is cheaper than fossil fuels) due to its decentralized technological encrypted nature.  

In another study, Foteinis (2018), estimates that the annual carbon footprint for bitcoin and 

ethereum mining exceeds 43.9 million tonnes of carbon dioxide equivalent, while Krause and 

Tolaymat (2018) argue that during January 2016 to June 2018, mining for four cryptocurrencies 

(Bitcoin, Ethereum, Litecoin, and Monero) is responsible for 3–15 million tonnes of carbon 

dioxide emissions. Subsequent work by Stoll et al. (2019) develops a novel methodology for 

estimating the carbon dioxide releases associated with BTC mining. This technique uses data from 

various sources including inter alia IPO filings of major hardware manufacturers, mining facility 

operations, mining pool compositions, and localization of IP addresses. The empirical results 

postulate Bitcoin’s annual electricity consumption up to 45.8 TWh, unleashing approximately 23 

million tones of CO2. The study argues that this level can be compared to the annual carbon 

emissions of Jordan and Sri Lanka.   

Based on the above, it is evident that the underlying literature is still incomplete in at least 

two aspects. First, the majority of the existing studies focus on the measurement of electricity 

consumption generated by BTC mining. Even though some studies, employ quantile regression 

techniques, and in this sense are more flexible than least squares which focus exclusively on the 
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conditional mean (Tsionas, 2020a), they fail to unravel structural relationships between the sample 

variables. This study accounts for this limitation, by relying on cointegration. Second, a small 

number of emerging studies have stressed their attention to the measurement of the carbon 

footprint of BTC mining. Although many of them use advanced techniques, they miss a causal 

connection between BTC market characteristics and carbon emissions associated with its mining. 

This happens since they simply measure the amount of carbon dioxide emitted in the atmosphere, 

not its generating process.           

3.  Model 

For a regression model  

 𝑦𝑡 = 𝒙′
𝑡𝛽 + 𝑢𝑡 , 𝑄𝜏(𝑢𝑡|𝒙𝑡) = 0, 𝑡 = 1, … , 𝑇, (1) 

where 𝒙𝑡 ∈ ℝ𝑘 is a vector of covariates with coefficients 𝜷 ∈ ℝ𝑘, error term 𝑢𝑡, and 𝑄𝜏(𝑢𝑡|𝒙𝑡) 

representing the conditional 𝜏-quantile of 𝑢𝑡 given 𝒙𝑡, Koenker and Bassett (1978) showed that 

the 𝜏-regression quantile is any �̂� that solves  

 min 
𝛽

𝑇−1 ∑[𝜏 − 𝕀(𝑦𝑡 < 𝑥′
𝑡𝛽)]

𝑇

𝑡=1

[𝑦𝑡 − 𝑥′
𝑡𝛽], (2) 

where 𝕀(⋅) is the indicator function, see also Koenker and Basset (1982). Koenker and Xiao 

(2006) considered quantile autoregressive models (QAR) of the following form.  

 𝑦𝑡 = 𝜃0(𝑈𝑡) + 𝜃1(𝑈𝑡)𝑦𝑡−1 + ⋯ + 𝜃𝐿(𝑈𝑡)𝑦𝑡−𝑙 , (3) 

where {𝑈𝑡}  is a sequence of iid standard uniform random variables, and 𝜃𝑗: [0,1] → ℝ  are 

unknown functions (𝑗 = 0,1, … , 𝐿). The right-hand-side of (3) should be a monotonic function of 

𝑈𝑡 in the relevant domain of 𝑦𝑡. The model can also be expressed as follows.  

 𝑦𝑡 = 𝜇0 + 𝛼1,𝑡𝑦𝑡−1 + ⋯ + 𝛼𝐿,𝑡𝑦𝑡−𝑙 + 𝑢𝑡 , (4) 

where 𝜇0 = 𝔼𝜃0(𝑈𝑡), 𝑢𝑡 = 𝜃0(𝑈𝑡) − 𝜇0, 𝛼𝑙,𝑡 = 𝜃𝑙(𝑈𝑡) (𝑙 = 1, … , 𝐿). Therefore {𝑢𝑡} is an iid 
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sequence of random variables with distribution function 𝐹(⋅) = 𝜃0
−1(⋅ +𝜇0).  

Clearly, one can extend (3) as follows:  

 𝑦𝑡 = 𝜃0(𝑈𝑡) + 𝜃1(𝑈𝑡)𝑦𝑡−1 + ⋯ + 𝜃𝐿(𝑈𝑡)𝑦𝑡−𝑙 + 𝑣𝑡 , (5) 

where 𝑣𝑡 ∼ 𝒩𝑖𝑖𝑑 (0, 𝜎𝑣
2).  

In this paper, we are interested in Cointegrated Quantile Vector Autoregressive (CQVAR) 

Models to examine the possibility of cointegration across different quantiles. Therefore, suppose 

𝒚𝑡 = [𝑦𝑡,1, … , 𝑦𝑡,𝑛]′  represents an 𝑛 × 1  multivariate time series which has the Vector Error 

Correction Model (VECM) representation:  

 △ 𝒚𝑡 = 𝐵 △ 𝒚𝑡−1 + Λ𝒚𝑡−1 + 𝒖𝑡, 𝑡 = 1, … , 𝑇, (6) 

where △ 𝒚𝑡 represents the first differences (i.e. △ 𝒚𝑡 = 𝒚𝑡 − 𝒚𝑡−1), 𝐵 and Λ are 𝑛 × 𝑛 matrix 

of unknown coefficients, and 𝑢𝑡 ∼ 𝒩𝑖𝑖𝑑 (𝟎, Ω). This form is fully general as it can accommodate 

arbitrary short-run dynamics of the form: △ 𝒚𝑡 = ∑ 𝐵𝑙
𝐿
𝑙=1 △ 𝒚𝑡−1 + Λ𝒚𝑡−1 + 𝒖𝑡 , where 𝐵𝑙  is 

𝑛 × 𝑛. We use a triangular representation for the VECM.  

For our purposes, we have the following general form:  

 
△ 𝑦𝑡,𝑖 = 𝜇𝑖 + 𝛼𝑡 + ∑ 𝜷𝑖,𝑙

′

𝐿

𝑙=1

△ 𝒚′
𝑡−𝑙 + 𝜆𝑖(𝜸𝑖

′𝒚𝑡−1) + 𝑒𝑡,𝑖, 𝑖

∈ {1, … , 𝑛}, 𝑡 = 1, … , 𝑇, 

(7) 

where 𝜇𝑖, 𝛼𝑡 represent, respectively, country and time effects, 𝜸𝑖
′𝒚𝑡−1 represents errors from the 

long-run or steady-state cointegrating equation, 𝜆𝑖s are coefficients which should be between –1 

and 0 if there is, indeed, cointregration. Our prior assumptions are as follows:  

 𝜇𝑖 ∼ 𝒩
𝑖𝑖𝑑

(0, 𝜎𝜇
2), 𝑖 = 1, … , 𝑛, 𝛼𝑡 ∼ 𝒩

𝑖𝑖𝑑
(0, 𝜎𝛼

2), 𝑡 = 1, … , 𝑇, (8) 
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 𝜷𝑖 ≡ [𝜷𝑖,𝑙 , 𝑙 = 1, … , 𝐿] ∼ 𝒩𝑛𝐿(�̄�, Σ𝜷), 𝑖 = 1, … , 𝑛, (9) 

 

 𝜆 = [𝜆𝑖 , 𝑖 = 1, … , 𝑛]′ ∼ 𝒩𝑛(�̄�, 𝜎𝜆
2). (10) 

 

Let us define  

 �̄� = [�̄�′, �̄�′, �̄�]
′
. (11) 

The components in (8) - (10) define a local prior. In turn, the global prior (which is used to “borrow 

strength” from the availability of panel data) is as follows:  

 �̄� ∼ 𝒩𝑑(𝜽∗, Ω𝜽
∗ ), (12) 

where the dimensionality 𝑑 = 𝑛𝐿 + 2𝑛 , 𝜽∗ represents the global mean and Ω𝜽
∗  represents the 

global prior covariance matrix. To simplify prior selection we set 𝜽∗ = 𝑐𝟏𝑑, where 𝟏𝑑 is a vector 

of ones in ℝ𝑑, 𝑐 is a constant that we set to zero, Ω𝜽
∗ = ℎ𝑰𝑑 , where 𝑰𝑑  is the 𝑑 × 𝑑 identity 

matrix and ℎ > 0 is a scalar that we set to 100 so that the local-global prior is diffuse. For the 

scale parameters, we have the (standard) priors  

 𝑝(𝜎𝑗) ∝ 𝜎𝑗
−(�̄�+1)

𝑒−�̄�/(2𝜎𝑗
2), 𝑗 ∈ {𝜇, 𝛼, 𝛾, 𝜆}, (13) 

where �̄�, �̄� ≥ 0  are parameters of the prior. We set �̄� = 1  and �̄� = 0.001  to represent 

“knowing little”. For Σ𝜷 the prior is  

 𝑝(Σ𝜷) ∝ |Σ𝜷|−(�̄�+𝑛𝐿+1)/2𝑒−(1/2)𝑡𝑟�̄�Σ𝜷
−1

, (14) 

see Zellner (1971, p. 227, equation 8.15) where �̄� is a symmetric 𝑛𝐿 × 𝑛𝐿 matrix containing 

prior parameters, that we set to �̄� = 𝑐𝑨𝑰𝑛𝐿 , 𝑐𝑨  is a scalar that we set to 0.001, and 𝑡𝑟(⋅) 

represents the trace operator.  

We intend to perform extensive sensitivity analysis with respect to 𝑐, 𝑐𝑨,�̄�, �̄� and ℎ.  
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The only component of the prior that we intend to change at this stage is the following. When 𝜆𝑖 =

0 then 𝜸𝑖 is not identified as it does not appear in (7). Therefore, we assume  

 𝜸 = [𝜸𝑖 , 𝑖 = 1, … , 𝑛]′|𝝀 ∼ 𝒩𝑛(�̄�, Σ𝜸𝑑𝑖𝑎𝑔(𝝀)), 𝑖 = 1, … , 𝑛, (15) 

where we set �̄� = 𝑐𝜸𝟏𝑛  with 𝑐𝜸 = 0.1 , Σ𝜸 = ℎ𝜸𝑰𝑛 , and ℎ𝜸 = 0.1 . Moreover, 𝑑𝑖𝑎𝑔(𝝀) 

represents an 𝑛 × 𝑛 diagonal matrix containing the elements of 𝝀 along the main diagonal.  

We intend to perform extensive sensitivity analysis with respect to 𝑐, 𝑐𝑨, 𝑐𝜸, �̄�, �̄�, ℎ, ℎ𝜸.  

Using as point of departure the Koenker and Xiao (2006) formulation in (5), we reformulate (7) as 

follows.  

 

△ 𝑦𝑡,𝑖 = 𝜇𝑖(𝑈𝑡) + 𝛼𝑡(𝑈𝑡) + ∑ 𝜷𝑖,𝑙
′

𝐿

𝑙=1

(𝑈𝑡) △ 𝒚′
𝑡−𝑙

+ 𝜆𝑖(𝑈𝑡)(𝜸𝑖
′(𝑈𝑡)𝒚𝑡−1) + 𝑒𝑡,𝑖, 𝑖 ∈ {1, … , 𝑛}, 𝑡

= 1, 𝑜𝑡𝑠, 𝑇, 

(16) 

where {𝑈𝑡} is a sequence of iid standard uniform random variables, and 𝜇𝑖 , 𝛼𝑡, 𝜆𝑖: [0,1] → ℝ and 

𝛽𝑖,𝑙: [0,1] → ℝ𝐿 are unknown functions. In simplified notation we can express (16) as  

 𝑦𝑡 = 𝒙𝑡
′𝜷(𝑈𝑡) + 𝑒𝑡 , 𝑡 = 1, … , 𝑇, (17) 

where 𝒙𝑡 ∈ ℝ𝑛𝐿+2+𝑛 represents the vector containing the right-hand-side variables in (16), and 

𝑒𝑡 ∼ 𝒩𝑖𝑖𝑑 (0, 𝜎𝑣
2), where the prior of 𝜎𝑣 is the same as in (13). To specify the functions 𝜷(⋅) we 

assume that they also depend on 𝒙𝑡 and they are monotonic functions of the form  

 𝛽𝑗(𝑈, 𝒙𝑡) = ∑ 𝛿𝑗𝑔

𝐺

𝑔=1

Φ(𝒙′
𝑡𝜸𝑗𝑔 + 𝑈𝜂𝑗𝑔), 𝑗 = 1, … , 𝑑𝑖𝑚(𝜷), (18) 

where 𝜸𝑗𝑔 ∈ ℝ𝑑𝑖𝑚(𝒙𝑡) , 𝑑𝑖𝑚(𝒙𝑡) = 𝑑𝑖𝑚(𝜷) = 𝑛𝐿 + 2 + 𝑛 , 𝜂𝑗𝑔  are unknown parameters, 

parameters 𝛿𝑗𝑔 > 0  are ordered from low to high, and Φ(𝑧) =
1

1+𝑒−𝑧 , 𝑧 ∈ ℝ  is the sigmoid 

(logistic distribution) activation function. This formulation is a neural network (NN) whose 
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approximation properties as the number of nodes (𝐺) increases, are known to be excellent (Gallant 

and White, 1988, Stinchcombe and White, 1989,1990, White, 1989). In turn, the no-quantile-

crossing-property (NQCP) can be easily enforced using the procedure of Chernozhukov et al. 

(2010), see also footnote 5 in Koenker and Xiao (2006).  

We define our structural parameter vector as  

 

𝜽 = [{𝛿𝑗𝑔}, {𝛾𝑗𝑔}, {𝜂𝑗𝑔}, 𝑗 = 1, … , 𝑑𝑖𝑚(𝒙𝑡), 𝑔 = 1, … , 𝐺], 𝜃 ∈ Θ

⊂ ℝ𝑑 

(19) 

where 𝑑 = 𝑑𝑖𝑚(𝜽) = 𝐺 ⋅ 𝑑𝑖𝑚(𝒙𝑡). To select the number of nodes (𝐺) in the NN, we use the 

marginal likelihood or evidence defined as  

 𝔐𝐺(𝒚) = ∫ 𝐿𝐺
Θ

(𝜽; 𝒚)𝑝𝐺(𝜽) d𝜽, (20) 

where 𝐿(𝜽; 𝒚), 𝑝(𝜽) denote, respectively, the likelihood function and prior, and 𝒚 denotes the 

entire data set. All quantities are indexed by 𝐺 ∈ {1, … , �̄�} where �̄� is an upper bound that we 

set to �̄� = 10. In turn, we select the value of 𝐺 with the maximum value of 𝔐𝐺(𝒚). The marginal 

likelihood in our context is estimated using the procedure of Perrakis et al, (2014). Alternatively, 

but equivalently, we can select the value of G that maximizes the value of the Bayes factor in favor 

of 𝐺 nodes and against a single node:  

 𝔅𝐺(𝒚) =
𝔐𝐺(𝒚)

𝔐1(𝒚)
, 𝐺 = 2, … , �̄�. (21) 

The values of the Bayes factor are reported in panel (d) of Figure B.1 in Appendix B from which 

it turns out that the optimal value of 𝐺 is three. To provide statistical inferences we use a Gibbs 

sampler with data augmentation in (17) and (18) using 150,000 iterations the first 50,000 of which 

are discarded to mitigate possible start-up effects. MCMC behavior and sensitivity analysis of the 

benchmark results are undertaken in Appendix B. 
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4.  Data and variables    

  The sample consists of a data set of 51 countries (N = 51) over July 02, 2016 to November 

30, 2018 yielding a balanced panel of 44,982 observations. 4  The sample period was strictly 

dictated by data availability of energy consumption levels for the sample countries as appeared in 

Stoll et al, (2019). Though the time-span is relatively short, this period has witnessed significant 

volatility since a steep BTC price hike (December 2017) was followed by a declining (corrective) 

trend throughout 2018. The description of variables used in the analysis along with their derivation 

is exhibited in Table 1. Similarly to Das and Dutta (2020), the variables are logarithmically 

differenced.  

<Insert Table 1 about here>  

Table 2 presents the summary statistics and the correlation matrix of the sample variables. 

As it is evident, from the inspection of the relevant table, we observe that the daily BTC return 

(RET) is equal to 0.2% showing the lowest standard deviation among the sample variables (0.041). 

The relevant variable is negatively skewed (-0.332) and the excess kurtosis suggests a leptokurtic 

distribution (7.781>3). The same findings apply to the BTC transaction cost variable (COST), 

while we notice rejection of normality in all variables as in many other similar studies (Das and 

Dutta, 2020; Koutmos, 2018; Katsiampa, 2017). The rest of the variables accounting for BTC’s 

microstructure display the standard properties of daily asset returns as they are heavy-tailed though 

positively skewed (Gerlach, et Al., 2011), while the dependent variable (CO2) follows also a 

leptokurtic distribution. Finally, the correlations matrix presented in Panel B of Table 2, indicates 

that none of the independent variables are highly correlated avoiding possible problems of 

multicollinearity. 

 
4 The countries included in the analysis are provided in the Appendix A.    
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<Insert Table 2 about here> 

  To examine the relationship between Bitcoin’s market microstructure and its carbon 

dioxide releases, we estimate by using Bayesian quantile regression analysis the following model 

expressed in its algebraic form: 

( ) ( ) ( ) ( ) ( ) ( )( ), ,2 , , , , ,j t t t t t t t j tCO f RET REV FEES TRAN EFF COST e= +       (22) 

where 𝐶𝑂2𝑗,𝑡 is the carbon dioxide emissions of BTC in country j and period t, RET is the 

BTC daily returns (common for every country), REV is the miner's revenue (common for every 

country), FEES denotes the total BTC value of transaction fees miners earn per day (common for 

every country), TRAN shows the historical total number of BTCs which have been mined daily 

(common for every country), EFF stands for the mining efficiency (common for every country), 

COST denotes miners revenue (common for every country), 𝑎𝑗  is a set of country dummy 

variables, and 𝑎𝑠 is a set of seasonal dummy variables. Finally, ,j te is the i.i.d. error term.    

5.  Results and discussion  

Table 3, displays the posterior means and standard deviation of the distributions per 

quantile drawn from the two estimated models (standard Bayesian quantile vs Bayesian CQVAR). 

The means of the variables RET, REV, FEES, and EFF appear to be much lower in the classical 

Bayesian regression analysis for nearly all the quantiles, whereas the opposite holds for the rest of 

the variables.    

<Insert Table 3 about here>  

To draw sharp inferences, we proceed with the discussion of empirical findings drawn from 

the standard Bayesian quantile regression without cointegration. Figure 3, depicts the marginal 

posterior distributions at various quantiles (𝝉). From the careful inspection of the relevant figure, 
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some general results emerge. First, it is evident that in most of the quantiles, the distributions of 

the variables are bimodal and, in few cases, appear to be multimodal. Second, in many variables 

(RET, REV, TRAN and COST) the marginal posterior densities do not differ substantially by 

quantile. This outcome seems to contradict the subsequent results from the Bayesian CQVAR, 

where we trace significant heterogeneity between the quantiles of the posterior distributions. In 

terms of daily returns (RET), the standard Bayesian quantile model has a much larger 

concentration of posterior probability around 0.8 for nearly all of the quantiles, except for the 

extreme ones (τ = 0.05 and τ = 0.90), where BTC returns average near 0.71 and 1.2 respectively 

(see Table 3). Similar results apply by the careful consideration of posterior densities for the BTC 

miner’s revenues (REV). In this case, we observe that for most of the quantiles, there is a 

significant concentration of posterior probability around the value of -0.26, while the shape of the 

distributions is bimodal. However, for the 5% quantile, there is strong evidence of a multimodal 

PDF ranging from about -0.37 to -0.3, with a posterior mean equal to -0.29. For the rest of the 

variables, the standard Bayesian quantile regression analysis yields systematically positive values 

compared to REV. 

<Insert Figure 3 about here>  

Having reported the marginal posterior densities from the standard Bayesian quantile 

regression analysis, we proceed with the CQVAR analysis. As it is evident from Figure 4, the 

marginal posterior densities for most of the covariates show a positive effect with the carbon 

releases in nearly all the estimated quantiles. Specifically, the distributions of BTC’s daily returns 

(RET) are mostly multimodal (see upper left part of the figure) in nearly all of the quantiles, except 

for some countries in lower quantiles (5% and 10%). We also notice that the PDFs in all of the 
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variables, depart from normality, revealing that asymptotic-based inferences do not apply in this 

instance (Tsionas, 2020b).  

The marginal posterior distribution of the coefficient of RET in the lowest quantile (τ=0.05) 

seems to exhibit the highest spread, while the posterior mean ranges from 0.8 to 1.2 approximately. 

This means that when carbon dioxide releases are low a one-unit increase (decrease) in the BTC 

returns, increases (decreases) on average the carbon releases stemmed from BTC mining at the 

same rate. A different picture emerges when we examine the 50th quantile (median). A careful look 

shows a multimodal distribution characterized by a smaller standard deviation since its posterior 

mean fluctuates roughly from 0.9 to 1.05.  

On the contrary, the effect of REV seems to be negative in all of the examined quantiles, 

while for the 50%, 75%, 90%, and 95% quantile the marginal posteriors are multimodal. This 

effect is more pronounced for countries in the 75% quantile since the posterior mean ranges within 

the relatively broad interval [-0.45 to -0.1]. The negative effect of miner’s revenues on carbon 

footprint can be compared with the main finding of Das and Dutta (2020), where energy 

consumption is negatively correlated with miner’s revenues especially in low quantiles of the 

distribution. As it is obvious, from the upper right part of the figure, the range of the posterior 

mean is broader in higher than in lower quantiles of the PDF of the dependent variable, suggesting 

that the lower (higher) miner’s Bitcoin revenues the more abrupt (gradual) the effect on 

environmental degradation.  

The marginal posterior distributions of parameters of BTC transaction fees (FEES) are also 

multimodal, and there is evidence of a positive effect on the BTC carbon releases for all the sample 

countries across the quantiles. Similar findings apply to the parameters of the number of BTC 

transactions (TRAN), where the posterior mean at the lowest quantile (τ=0.05) of the distribution, 
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ranges from 0.25 to 0.4 and averages around 0.20. This finding indicates, that when environmental 

degradation is at low levels (e.g. earlier stages of the BTC market development), a 10% increase 

in the number of mined BTCs, results in an almost 2% increase of the emitted carbon releases. The 

level of mining efficiency (EFF) contributes positively to BTC carbon releases across all quantiles, 

though this effect is stronger at the 90% quantile since the posterior mean of the distributions, 

which is equal to 0.9741 is maximized (see also Table 3). We notice also, a positive impact of 

transaction cost (COST) to BTC carbon emissions since the posterior mean is positive, though less 

strong at higher quantiles (τ = 0.95).   

    From the above analysis, all measures drawn from the estimation of the Bayesian CQVAR 

differ substantially by quantile, revealing a significant degree of heterogeneity between the 

quantiles of the posterior distributions. This outcome is less pronounced for the marginal posterior 

densities of the standard Bayesian quantile regression model. In this sense, estimating a Bayesian 

cointegrated vector error correction model makes a significant difference as opposed to standard 

quantile regression. 

<Insert Figure 4 about here>  

Evidence on the existence of cointegration is provided by the marginal posterior densities 

of the estimated error correction terms (𝜆𝑖s) drawn from the Bayesian CQVAR. As can be observed 

from Figure 5, the posterior densities are concentrated around negative values as expected. From 

this evidence, it turns out that we have cointegration. Moreover, the PDFs are unimodal except for 

the 10th, 25th and 90th quantile where the distributions are bimodal. In these cases, the posterior 

mean ranges from -0.222 to -0.218, -0.222 to -0.220, and -0.222 to -0.217 respectively. The 

relevant densities express the speed of adjustment to the long-run equilibrium. For instance, for 

the 50% quantile (median), which averages around -0.22, we argue that in the case we are off the 
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long-run equilibrium, carbon releases from BTC mining, adjust towards their long-run level with 

about 22% of this adjustment taking place within the first day. It is noteworthy that the error-

correction term lies within a narrow interval ranging from 21.5% to 22.5%. This finding suggests 

a relatively slow adjustment process toward the steady-state equilibrium.   

<Insert Figure 5 about here>  

Given that we have cointegration, two questions arise i) Is there a single cointegrating 

vector or not? and ii) What is / are the (long-run or steady-state) cointegration vector(s)? Evidence 

on the number of cointegrating vectors is provided by the Bayes factor in favor of 𝑐 > 1 vectors 

relative to 𝑐 = 1. The posterior probability of 𝑐 > 1 vectors against 𝑐 = 1 can be computed 

easily using the Bayes factor:  

 𝑃𝑐(𝒚) =
𝔅𝑐(𝒚)/𝔅1(𝒚)

∑ 𝔅𝑐′
𝐶
𝑐′=1 (𝒚)/𝔅1(𝒚)

, 𝑐 = 1, … , 𝐶, (23) 

where, in our application, 𝐶 = 7. The posterior probabilities and the marginal posterior densities 

of the single cointegrating vector are reported in panels (a) and (b)–(g) of Figure 6.5 In the upper 

part of Figure 6, we present the posterior probability of cointegrating rank, while marginal 

posterior densities for the cointegrating coefficients (“long-run” estimates) by different quantile, 

are reported in the lower panel of the figure. As it is evident, there is a single cointegrating vector 

since the posterior probability exceeds 0.9 when the cointegrating rank equals unity (c=1) and 

(almost) zero in all of the other cases (c=2,3,4,5,6 and 7). Finally, the marginal posterior densities 

of the long-run coefficients thought different compared to their short-run counterparts, follow 

similar trends, indicating substantial heterogeneity across the quantiles.     

 
5 To compute the Bayes factors and, therefore, the posterior probabilities of cointegrating rank 𝑐 > 1 we use the same 

procedure as in the Bayesian panel cointegration study of Koop, Leon-Gonzalez and Strachan (2006) based on the 

Savage - Dickey density ratio (Verdinelli and Wasserman, 1995).  
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<Insert Figure 6 about here>  

6.  Concluding remarks   

Despite the strong interdependence between energy, carbon dioxide emissions, and blockchain 

technology, their dynamics, and economic interlinkages have been scarcely investigated by 

previous works. This study stresses the importance of using BTC microstructure variables to 

explain the carbon emissions associated with its mining. We develop a CQVAR model organized 

around MCMC techniques for numerical Bayesian inference extending Koenker and Xiao (2006).  

The empirical results portray some important differences between the traditional Bayesian 

quantile model and the Bayesian CQVAR, in terms of several aspects of the data. Specifically, we 

document considerable heterogeneity among different quantiles justifying the validity of Bayesian 

CQVAR. Moreover, by relying on cointegration analysis developed within a Bayesian quantile 

framework, we distinguish between short-run and long-run responses of the BTC financial 

variables across the different quantiles of the PDFs. We argue that most of the BTC microstructure 

variables exert a positive relationship across the quantiles with the level of carbon emitted in the 

atmosphere from the BTC mining. However, there is a negative relationship between miner’s 

revenues and BTC carbon footprint, which is more pronounced at higher quantiles. We also find 

that the error-correction term of the cointegrating vector does not exceed the value of 22.5% at the 

95% quantile, indicating a slow speed of adjustment toward the steady-state equilibrium.  

Our findings will be useful for cryptocurrency energy management, in terms of pursuing 

suitable environmental policies associated with its usage. This study, argues that a sustainable 

energy strategy focusing on the penetration of renewable energy sources along with the use of 

energy-efficient mining hardware will alleviate the carbon footprint of the Bitcoin.       
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Appendix A   

Table A.1. Countries included in the sample  
Abbreviation   Country  

US United States of America 

VE Venezuela 

RUS  Russia Federation  

KOR Korea Republic 

UA Ukraine 

CN China 

IR Iran 

RO Romania 

MY Malaysia 

ZA South Africa 

BG Bulgaria 

TH Thailand 

HU Hungary 

VN Vietnam 

TR Turkey 

KZ Kazakhstan 

ES Spain 

CZ Czech Republic 

DE Germany 

ID Indonesia 

SW Sweden 

IT Italy 

CA Canada 

UK United Kingdom 

AU Austria 

NL Netherlands 

PO Poland 

MN Mongolia 

LV Latvia 

BR Brazil 

MX Mexico 

PT Portugal 

FR France 

CS Serbia and Montenegro 

LT Lithuania 

CO Colombia 

NO Norway 

GR Greece 

PE Peru 

JP Japan 

HR Croatia 

MA Morocco 

IN India 

PK Pakistan 

SK Slovak Republic 

PH Philippines 

SD Sudan 

LY Libyan Arab Jamahiriya 

SI  Slovenia 

MD Moldova 

AR Argentina 
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Appendix B - MCMC performance and posterior sensitivity analysis 

 

Our MCMC procedure for (17) and (18) is based on the following observations:  

i) Given {𝜸𝑗𝑔, 𝜂𝑗𝑔} the model is linear in the remaining parameters so we can use a standard Gibbs 

sampling update.  

ii) For the nonlinear parameters {𝜸𝑗𝑔, 𝜂𝑗𝑔}  we use an Accept-Reject Metropolis-Hastings 

(ARMH, Chib and Jeliazkov, 2005) algorithm instead of a random-walk Metropolis-Hastings. This 

results in better mixing properties and better acceptance rates.  

iii) For the latent variables {𝑈𝑡}we use a Metropolis-Hastings update. Specifically, given the 

current MCMC draw, say 𝑈𝑡
(𝑠)

, we draw a candidate 𝑈𝑡
𝑐  uniformly distributed in (𝑈𝑡

(𝑠)
−

𝐻𝑡 , 𝑈𝑡
(𝑠)

+ 𝐻𝑡) where 𝐻𝑡 is adjusted during the burn-in phase so that the average acceptance rate 

ranges from 15 - 25%. Of course, 𝑈𝑡
𝑐 must be in the interval (0,1) as their prior is a standard 

uniform distribution. In turn, the candidate is accepted with the Metropolis-Hastings probability 

min {1,
𝑝(𝑈𝑡

𝑐|⋅,𝒚)

𝑝(𝑈𝑡
(𝑠)

|⋅,𝒚)
} where 𝑝(𝑈| ⋅, 𝒚) denotes the conditional posterior density of 𝑈𝑡  conditional 

on all other parameters and latent variables (and, of course, the data, 𝒚).  

To assess the performance of MCMC we rely on relative numerical efficiency (RNE, Geweke, 

1992) which should close to one if iid sampling from the posterior were possible. We present 

densities of median RNE for latent variables (𝑈𝑡) and structural parameters in (18) in Figure B.1, 

panel (a).  

<Insert Figure B.1 about here>  

To perform sensitivity analysis concerning prior assumptions about 𝑐, 𝑐𝑨, �̄�, �̄�, ℎ, we vary these 

parameters as follows:  
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i) 𝑐 and 𝑐𝑨 are drawn randomly from a Student-𝑡 distribution with zero location, 5 degrees of 

freedom and scale parameter 10.  

ii) The logs of �̄�, �̄�, ℎ are drawn randomly from a Student-𝑡 distribution with zero location, 5 

degrees of freedom and scale parameter 10.  

We generate 10,000 such priors and we repeat posterior analysis using the Sampling-

Importance-Resampling (SIR) algorithm, see Rubin (1987, 1988), and Smith and Gelfand (1992). 

The MCMC batch required for SIR is set to 20% of the final benchmark MCMC sample which is 

20,000 draws. We report percentage deviations in posterior means and percentage deviations in 

posterior standard deviations in panel (b) of Figure A.1. As these deviations are fairly trivial 

relative to benchmark posterior means and posterior standard deviations we can be relatively 

confident that our benchmark prior is fairly representative of what would happen had we adopted 

different priors in a family of (very) different priors.  
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Tables and Figures  

Table 1: Description of the sample variables  
Variable Definition Description Formulation Source 

CO2 Carbon dioxide 

emissions  

Estimated carbon dioxide emissions for 

mining BTC daily in kgCO2eq/kWh. This can 

be calculated if we multiply the electricity load 

(ELE) with the average emission factor 

(AVEF).   

𝐶𝑂2 = 𝐸𝐿𝐸 ∗ 𝐴𝑉𝐸𝐹  Own calculations 

based on Stoll et 

al, (2019) 

RET Daily returns Market daily returns expressed in USD per 

BTC. The returns are calculated by taking the 

natural logarithm of the ratio of two 

consecutive prices (Urquhart, 2016; 

Katsiampa, 2017)  

𝑅𝐸𝑇 = log (
𝑃𝑡

𝑃𝑡 − 1
) ∗ 100  

Stoll et al, (2019) 

REV Miners revenues Total miners revenue per day in USD. The 

revenue equals the number of BTCs mined per 

day plus transaction fees multiplied by the 

market price.  

𝑅𝐸𝑉 = (𝑇𝑅𝐴𝑁 + 𝐹𝐸𝐸𝑆) ∗ 𝑅𝐸𝑇 Stoll et al, (2019) 

FEES Transaction fees Total BTC value of transaction fees miners 

earn per day in USD. 
- Stoll et al, (2019) 

TRAN Transactions  Total number of BTC mined per day in 

physical units.   

- Stoll et al, (2019) 

EFF Mining efficiency Number of hashes in a second (HASH), 

divided by the consumed electricity load 

(ELE).   

𝐸𝐹𝐹 = 𝐻𝐴𝑆𝐻/𝐸𝐿𝐸 Li et al, (2019) 

COST Transaction cost Total transaction cost of BTC mined per day in 

USD. It is expressed as miners revenue (REV) 

divided by the number of transactions 

(TRAN).  

𝐶𝑂𝑆𝑇 = 𝑅𝐸𝑉/𝑇𝑅𝐴𝑁 Das and Dutta, 

(2020) 
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Table 2: Summary statistics and correlations (whole sample)  
Panel A: Descriptive statistics 

Variables Mean Standard 

Deviation  

Median  Minimum Maximum Skewness Kurtosis 

CO2 0.003 0.137 0.000 -3.203 3.342 0.103 36.591 

RET 0.002 0.041 0.002 -0.225 0.246 -0.332 7.781 

REV 0.0009 0.130 -0.002 -0.502 0.639 0.195 4.473 

FEES -0.0005 0.244 -0.012 -2.484 2.236 0.018 25.202 

TRAN 0.0002 0.136 -0.008 -0.561 0.509 0.429 3.834 

EFF 0.002 0.138 -0.001 -0.556 0.722 0.185 4.418 

COST 0.0007 0.207 0.018 -0.648 1.014 -0.108 3.927 

Panel B: Correlation matrix  

Variables CO2 RET REV FEES TRAN EFF COST 

CO2 1       

RET -0.0132 1      

REV -0.3934 0.0241 1     

FEES 0.0181 -0.0164 -0.0966 1    

TRAN 0.3370 0.0363 -0.2180 0.5336 1   

EFF 0.8835 -0.3129 -0.3717 -0.0817 0.2456 1  

COST -0.4671 -0.0086 0.4700 -0.4095 -0.2905 -0.3938 1 

Notes: The table reports summary statistics for the actual data. CO2 denotes the carbon dioxide releases emitted from 

BTC mining, RET is the BTC daily returns, REV is the miner's revenue, FEES denotes the total BTC value of 

transaction fees miners earn per day, TRAN shows the historical total number of BTCs which have been mined daily, 

EFF stands for the mining efficiency computed as the ratio of the number of hashes in a second, divided by the power 

is consumed (Li et al, 2019), COST denotes miners revenue divided by the number of transactions. The data are daily 

time series. The observations are equal to 44,982. The variables are logarithmically differenced following Das and 

Dutta (2020).  

 

 

  



27 

 

Table 3: Posterior means and standard deviations for the two models per quantile (τ)  
Quantile   Standard Bayesian quantile model  Bayesian CQVAR model 

RET 

τ = 0.05 0.7172  

(0.0132) 

0.9848 

(0.0552) 

τ = 0.10 0.7860 

(0.0059) 

0.9741 

(0.0430) 

τ = 0.25 0.7649 

(0.0030)    

0.9684 

(0.0245) 

τ = 0.50 0.7669   

(0.0085) 

0.9718 

(0.0235) 

τ = 0.75 0.7872 

(0.0155) 

0.9645 

(0.0268) 

τ = 0.90 1.2005    

(0.0202) 

0.9513 

(0.0381) 

τ = 0.95 1.3723    

(0.0434) 

0.9418 

(0.0495) 

 REV 

τ = 0.05 -0.2945  

(0.0072)       

-0.2370 

(0.0466) 

τ = 0.10 -0.3105   

(0.0021)   

-0.1848 

(0.0356) 

τ = 0.25 -0.3005    

(0.0037) 

-0.1243 

(0.0214) 

τ = 0.50 -0.2843 

(0.0030) 

-0.2160 

(0.0390) 

τ = 0.75 -0.2780 

(0.0028) 

-0.1976 

(0.0309) 

τ = 0.90 -0.3226    

(0.0079) 

-0.2026 

(0.0325) 

τ = 0.95 -0.3050    

(0.0064) 

-0.0733     

(0.0496) 

 FEES 

τ = 0.05 -0.0585   

(0.0118)      

0.0311 

(0.0075) 

τ = 0.10 0.0178 

(0.0059) 

0.0378 

(0.0063) 

τ = 0.25 -0.0030     

(0.0091) 

0.0352 

(0.0055) 

τ = 0.50 0.0328     

(0.0084) 

0.0410 

(0.0061) 

τ = 0.75 0.0097     

(0.0063) 

0.0423 

(0.0068) 

τ = 0.90 -0.0875     

(0.0167) 

0.0445 

(0.0079) 

τ = 0.95 -0.0397     

(0.0118) 

 0.0379     

 (0.0084) 

 TRAN 

τ = 0.05 0.5258 

(0.0130)    

0.1982 

(0.0466) 

τ = 0.10 0.4837 

(0.0039)     

0.1503 

(0.0318) 

τ = 0.25 0.5851 

(0.0030)     

0.0981 

(0.0210) 
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τ = 0.50 0.5619     

(0.0080) 

0.1784 

(0.0396) 

τ = 0.75 0.5673     

(0.0047) 

0.1613 

(0.0318) 

τ = 0.90 0.6319     

(0.0109) 

0.1587 

(0.0307) 

τ = 0.95 0.5436     

(0.0089) 

 0.0358     

 (0.0465) 

 EFF 

τ = 0.05 0.7894 

(0.0134) 

0.9603 

(0.0139) 

τ = 0.10 0.9266 

(0.0041)     

0.9657 

(0.0109) 

τ = 0.25 0.9034     

(0.0092) 

0.9727 

(0.0076) 

τ = 0.50 0.9602     

(0.0057) 

0.9719 

(0.0081) 

τ = 0.75 0.9299     

(0.0149) 

0.9715 

(0.0091) 

τ = 0.90 0.7787     

(0.0163) 

0.9741 

(0.0136) 

τ = 0.95 0.8547    

(0.0130) 

0.9641     

(0.0170) 

 COST 

τ = 0.05 0.5619 

(0.0191) 

0.1696 

(0.0463) 

τ = 0.10 0.5228 

(0.0063) 

0.1190 

(0.0354) 

τ = 0.25 0.5399        

(0.0102) 

0.0681 

(0.0205) 

τ = 0.50 0.5219 

(0.0096) 

0.1573 

(0.0384) 

τ = 0.75 0.5014 

(0.0144) 

0.1406 

(0.0301) 

τ = 0.90 0.1468 

(0.0261) 

0.1359 

(0.0318) 

τ = 0.95 -0.0196 

(0.0371) 

 0.0092  

(0.0510) 

Notes: RET is the BTC daily returns, REV is the miner's revenue, FEES denotes the total BTC value of transaction 

fees miners earn per day, TRAN shows the historical total number of BTCs which have been mined daily, EFF stands 

for the mining efficiency, COST denotes miners revenue divided by the number of transactions. The data are daily 

time series. The observations are equal to 44,982. The variables are logarithmically differenced following Das and 

Dutta (2020). Posterior standard errors of estimates are reported in parentheses. 
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Figure 1: Comparison of the relative search intensity from Google trends (2016-2020)    

Panel A. Search intensity for the terms “bitcoin” (in blue), “cryptocurrency” (in red) and “blockchain” (in yellow) 

as a News item. The maximum value of search activity is normalized to 100, accessed April 6, 2020. 

 
Panel B: Geographic distribution of search intensity for “bitcoin” as a News item. 

 

Panel C: Geographic distribution of search intensity for “cryptocurrency” as a News item. 

 

Panel D: Geographic distribution of search intensity for “blockchain” as a News item. 
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Figure 2: Ten most polluting countries   

 

Notes: This figure shows the average carbon dioxide releases from BTC usage in 2018. The carbon releases 

are measured in kg CO2 equivalent per kWh. Source: Own calculations      
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Figure 2: Marginal posterior densities from standard Bayesian quantile regression 

 

Notes: This figure displays the marginal posterior densities across several quantiles (τ) drawn from the 

standard Bayesian quantile regression analysis. RET denotes the BTC daily returns, REV is the miner's 

revenue, FEES denotes the total BTC value of transaction fees miners earn per day, TRAN shows the 

historical total number of BTCs which have been mined daily, EFF stands for the mining efficiency and 

COST denotes miners revenue divided by the number of transactions. The data are daily time series. The 

observations are equal to 44,982. The variables are logarithmically differenced following Das and Dutta 

(2020).  
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Figure 3: Marginal posterior densities from Bayesian CQVAR 

 

Notes: This figure displays the marginal posterior densities across several quantiles (τ) drawn from the 

Bayesian cointegrated quantile vector autoregression model. RET denotes the BTC daily returns, REV 

is the miner's revenue, FEES denotes the total BTC value of transaction fees miners earn per day, TRAN 

shows the historical total number of BTCs which have been mined daily, EFF stands for the mining 

efficiency and COST denotes miners revenue divided by the number of transactions. The data are daily 

time series. The observations are equal to 44,982. The variables are logarithmically differenced following 

Das and Dutta (2020).  
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Figure 4: Marginal posterior densities of λis from Bayesian CQVAR  

 
Notes: This figure displays the marginal posterior densities of the estimated quantile parameters drawn 

from the Bayesian cointegrated quantile vector autoregression model. The data are daily time series. The 

observations are equal to 44,982. The variables are logarithmically differenced following Das and Dutta 

(2020).  
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Figure 5: Marginal posterior densities of cointegrating rank and cointegrating 

coefficients 

 
Notes: This figure displays the marginal posterior densities of cointegrating rank and cointegrated 

coefficients across several quantiles (τ) drawn from the cointegrated quantile vector autoregression 

model. RET denotes the BTC daily returns, REV is the miner's revenue, FEES denotes the total BTC 

value of transaction fees miners earn per day, TRAN shows the historical total number of BTCs which 

have been mined daily, EFF stands for the mining efficiency and COST denotes miners revenue divided 

by the number of transactions. The data are daily time series. The observations are equal to 44,982. The 

variables are logarithmically differenced following Das and Dutta (2020).  
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Figure B.1: MCMC performance and posterior sensitivity analysis  

 

Notes: MCMC convergence diagnostics (viz. Geweke (1992) absolute values of z-statistics, distributed 

as standard normal as the number of MCMC draws grows to infinity) are reported in panel (c) of Figure 

A.1. 
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