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Endogenous efficiency of the dynamic profit maximization in intertemporal production models 

on venture behavior 

 

Abstract 

How do ventures manage adjustment costs, input elasticities and productivity growth? We draw on the 

intertemporal production decisions of ventures that are quasi-fixed, costly to adjust, and endogenous. 

Using a modified version of the Bayesian Exponentially Tilted Empirical Likelihood (BETEL) adjusted 

for the presence of dynamic latent variables the proposed moment-based multiple-equation estimation 

system incorporates dynamic and static optimality conditions derived from a firm’s intertemporal 

expected profit maximization. Using reliable tax information data from a sample of 72,035 Portuguese 

ventures founded between 2010 and 2017, we find that the most important inputs are labor, equity, and 

inventories. However, the technical change is small, and so is productivity growth 1.1%. Adjustment 

costs for efficiency vary from 15 to 30%, however, adjustments to capital stocks are much higher 

(ranging from 24 to 30%). Ventures have a high degree of labor input elasticity (0.64) but much lower 

elasticities for equity (0.108), inventories (0.063), capital (0.044), and advertising (0.048). The findings 

provide an understanding of the intertemporal behavior of ventures in managing adjustment costs, input 

elasticities and productivity growth where adjustments to efficiency is ‘cheaper’ than adjustments to 

capital, only labor elasticity is much higher, and productivity growth remains small.  

 

1. Introduction 

Both practitioners and academics have widely documented the challenges faced by ventures (Voigt 

and Cambell 2017). According to the widely accepted estimates, about half the ventures fail within 

the first five years, and some figures are as high as 78% (Song et al. 2008). With a perennial interest 

in understanding the venture development process (Josefy et al. 2017), past works have highlighted 

the role of legitimacy (Zimmerman and Zeitz 2002), resource scarcity (Cooper et al. 1991), 

performance metrics (Cooper et al. 1994), environmental conditions (Ensley et al. 2006), and 

stakeholder relationships (Hiatt et al. 2018). The primary theoretical components that the research has 

proposed relate to the newness and smallness of liabilities and the limited legitimacy and challenges 

to developing and sustaining exchanges with stakeholders (Aldrich and Auster 1986; Aldrich 2008; 

Aldrich and Pfeffer 1976).  

In the studies on venture development, intertemporal changes in efficiency in production 

remains largely absent. Consideration of intertemporal changes to efficiency is essential to converging 

towards a stable operational core (Bourgeois III 1985). Efficiency represents stable operational 

routines undergirded by stable conversion processes and routines. In the broader operations literature, 

efficiency is measured using a production frontier or deviation of a firm from the efficient frontier. 

There are two main streams on modeling efficiency—data envelopment analysis (DEA) and 

stochastic frontier analysis (SFA). Data Envelopment Analysis (DEA), a non-parametric approach,  

was introduced by Charnes et al. (1984) and extended by Banker et al. (1984). The DEA approach is 

widely used in studies on multi-input and multi-output. Two other perspectives added to the DEA 

were the details on whether there is no noise in the data or whether all possible realizations are 

attributed to production possibility sets (Davtalab-Olyaie et al. 2019). Banker (1993) proposed a 

maximum likelihood approach to estimate production functions under certain conditions, with later 

works providing asymptotic distribution of DEA for single input and output (Gijbels et al. 1999), or 

with multiple inputs and outputs (Kneip et al. 1998). Thereafter, Simar and Wilson (1998) and Simar 

and Wilson (2000) proposed the bootstrap method, and future developments focused on double 

smooth bootstrap (Kneip et al. 2011), two-stage estimation method (Simar and Wilson 2007). Simar 

and Wilson (2015) provide a detailed review of these methods. Aigner et al. (1977) and Meeusen and 

van Den Broeck (1977) proposed a stochastic frontier approach for cross-sectional data followed by 

Battese and Coelli (1995) proposing stochastic frontier analysis for panel data, where non-negative 

technical inefficiency is driven by firm-level variables and time effects. Kumbhakar and Lovell 

(2003) review theoretical and practical concerns in applying the stochastic frontier approach.  

 However, time-varying inputs in a fledgling venture require two added considerations in 

modeling efficiency—intertemporal choices driving adjustment costs, input elasticities and 

productivity growth. First, The intertemporal choice to maximize profits requires transition from static 

formulations of efficiency that may be amenable to more stable and established firms facing fewer 
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operational challenges (for reviews refer to Kumbhakar, Parmeter, Zelenyuk, 2017, Parmeter, 

Kumbhakar, 2014). Ventures experiment with a variety of tools, tasks, processes and operational 

relationships. As its products are commercialized and scaled, relative to firms with established 

operations, input adjustments are required—calling for consideration of dynamic implications of 

production decision in ventures. Equally important is a consideration that due to liabilities of 

smallness and newness ventures may not be able to readily adjust their inputs. In adapting their 

intertemporal choices, ventures face adjustment costs, including attracting and retaining employees, 

installing and tuning production and supply chain lines—a set of quasi-fixed costs in the short run.  

Second, related to nature of efficiency conversion models, static models do not account for 

adjustments to dynamic inputs. Silva and Stefanou (2003) and Silva and Stefanou (2007) are among 

the early works proposing the dynamic optimization model based on intertemporal cost minimization 

with stickier inputs in the short-term. Building on Silva and Stefanou (2003) and Silva and Stefanou 

(2007), other researchers have focused on nonparametric dynamic (technical) efficiency (see Kapelko 

and Oude Lansink, 2017), dynamic duality model to manage intertemporal cost minimization 

framework (Rungsuriyawiboon and Stefanou (2007), primal directional-distance-function-based 

representation of production technology (Sengupta (1995) and Nemoto, Goto, 1999, Nemoto, Goto, 

2003),  decomposition of dynamic efficiency (Kapelko, Oude Lansink, & Stefanou, 2014) and 

measure “dynamic” productivity growth (Oude Lansink, Stefanou, & Serra, 2015). These methods 

inferred dynamic production functions from the implied distance functions but did not use information 

in intertemporal economic behavior, thereby limiting consideration of dynamic evolution of 

efficiency—a key consideration for ventures where efficiency is more likely to dynamically evolve 

over the course of venture life-cycle. Answering this call, Tsionas, Malikov, and Kumbhakar (2019) 

introduced explicitly and endogenously determined conceptualization of efficiency in firm’s 

intertemporal production decisions.  Tsionas et al. (2019) used a modified version of a Bayesian 

Exponentially Tilted Empirical Likelihood finding that modeling for potential intertemporal 

endogenous adjustments produces significantly higher estimates of technical efficiency.   

 Specific to the context of dynamic efficiency in ventures, we extend the approach in Tsionas 

et al. (2019). Although ventures are resource-constrained, have less developed routines, and have 

legitimacy concerns, the dynamic profit maximization models provide “nuts and bolts” understanding 

of early-stage profit maximization. We construct a profit maximization model by using the Bayesian 

Exponentially Tilted Empirical Likelihood (BETEL) that is adjusted for the presence of dynamic 

latent variables. The model is a moment-based multiple-equation estimation system that incorporates 

dynamic and static optimality conditions that are derived from the firm’s intertemporal expected profit 

maximization (Tsionas et al. 2019). This study extends the popular approach of using the dynamic 

directional distance function that assumes freely varying inputs (Silva and Lansink 2013). This 

function is based on a firm’s intertemporal cost-minimization problem under the Hamilton-Jacobi-

Bellman conditions (Kapelko et al. 2016; Minviel and Sipiläinen 2018). Based on Tsionas et al. 

(2019) the estimate is  

...restrictive because it (i) does not explicitly account for dynamics inefficiency itself as 

well as does not allow for the costly firm-controlled efficiency change, (ii) neglects the 

likely possibility that past dynamic efficiency is a part of the information set based upon 

which the firm optimizes, (iii) makes no use of information about economic behavior in 

the estimation beyond an indirect appeal to duality despite seeking a deeply structural 

‘dynamic’ interpretation of efficiency, and (iv) suffers from the endogeneity problem due 

to simultaneity of the variable input and investment decisions. (p. 314) 

 We test our model using a sample of 72,035 Portuguese ventures (formed between 2010 to 

2017, representing 164,538 venture-year observations) to estimate the proposed model that includes 

variable-input-oriented technical efficiency and quasi-fixed factor distortions with a second-order 

vector autoregression in which the choice of order is based on Euler’s equation. We provide the 

following contributions. First, we model for dynamic evolution of efficiency to account for 

endogenization of that efficiency and adjustment costs. For firms that engage in a variety of 

production activities and that lack the baseline routines to improve performance, such assumptions 

may be strong. We extend Tsionas, Malikov, and Kumbhakar’s (2019) cost minimization approach by 

using a profit maximization procedure. Specifically, we extend Tsionas et al. (2019) who develop a 

structural conceptualization of dynamic efficiency by proposing explicit and endogenously 
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determined intertemporal and dynamic production decisions. Allowing for these dynamic latent 

variables of variable-input-oriented inefficiency and factor-specific distortions in quasi-fixed inputs, 

we propose a moment-based multiple-equation estimation system to incorporate the variable cost 

function and intertemporal minimization of a discounted stream of future costs. This system addresses 

the endogeneity of the inputs to gain a meaningful interpretation of the endogenous dynamic technical 

efficiency that evolves along an optimal path that is consistent with the firm’s intertemporal cost-

minimizing objective. Our approach is unique in providing a full intertemporal optimization problem 

that endogenizes inefficiency. Compared with other approaches to technical efficiency, the proposed 

model takes into account the information about the intertemporal economic behavior and allows for 

the dynamic evolution of profit maximization efficiency as optimized by the entrepreneur.  

Second, entrepreneurship research has focused on the conditions (legitimacy or the 

environment) or the outcome (survival). Our study adds to this research by focusing on the 

intertemporal development of efficiency in the firm that allows us to assess the components of how. 

Though the dynamic evolution of profit maximization remains less understood, our approach is the 

first attempt to explore the elements that enhance firm profitability through the intertemporal lens of 

dynamic profit maximization. Focusing on intertemporal profit maximization efficiency is essential 

for practicing entrepreneurs facing resource scarcity (Cooper et al. 1991), and although cash flows are 

critical to firms, the primary step towards improving the internal availability of resources is to induce 

an intertemporal increase in the profitability of firms. Due to limited scale and scope along with less 

developed routines, an explicit focus on cost efficiency may not be desired, but profit maximization 

provides a more encompassing intertemporal choice for improving sales, or lowering costs, or both. 

Although we do not discount the value of the components of profit (including cost efficiency, 

inventory management, accounts receivables, and payables management), we aim to provide a 

preliminary comprehensive assessment of the intertemporal choices in managing profit maximization. 

We further do not discount the value of survival as an outcome, but survival as an event does not 

allow for a deeper understanding of the intertemporal choices. Considering the centrality of survival 

in entrepreneurship research we also test for the influence of profit maximization and efficiency on a 

firm’s exit.  

 Third, a focus on the efficiency of profit maximization is central to building it in early-stage 

firms. Although the romanticized view of gazelles (high-growth firms) is widely regarded among 

practitioners and academics, most of the firms start and stay small, and very few realize growth. We 

focus on the value of managing operational inputs and levers that explain the elemental factors that 

drive the profit maximization efforts of ventures.  

The paper is organized as follows: Section 2 provides the preliminaries, and Section 3 

presents the model of dynamic production decisions aimed at profit maximization under endogenous 

efficiency. Section 4 presents the data, and Section 5 presents the empirical results. Section 6 provides  

discussion, conclusion and limitations. 

 

2. Background and Model setup 

At inception and during the early years of its operations a venture faces liabilities of newness and 

smallness (Bruderl and Schussler 1990; Aldrich and Auster 1986). Liabilities of newness stems from 

limited availability of operational routines and processes. Development and crystallization of these 

baseline operational routines are further limited by the limited availability of resources to ventures. As 

such, a vast number of ventures face a greater threat to survival. Survival strategies include improving 

legitimacy, increasing the resource base, and pursuing performance growth (Josefy et al. 2017). 

However, the broader question on the actual “nuts and bolts” of how entrepreneurs make 

intertemporal decisions to dynamically improve efficiency that are informed by past performance is a 

critical consideration in developing a deeper understanding of the evolution of dynamic profit 

maximization in ventures.  

We propose an intertemporal profit maximization model that incorporates inefficiency, 

uncertainty, and quasi-fixed inputs as well as the endogeneity in profit maximization. The uncertainty 

arises from limited foresight on product design; resource availability; stakeholder cooperation; and 

evolving input costs, prices, and sales. We also presume that the entrepreneur is risk-neutral to allow 

for expectations for future outcomes and without requiring the need to consider the optimization of 

utility functions that are less reliable for early-stage ventures. Although risk-neutrality is a restrictive 
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assumption that allows for greater tractability in modeling intertemporal behavior because of the Euler 

expectation conditions that undergird the estimations of moment conditions. The set up allows for 

greater flexibility in estimating dynamic efficiency as compared to recent works that assume forward-

looking firms with perfect oversight (Serra et al. 2011; Silva and Stefanou 2003, 2007). As such, our 

criteria fits with the fundamental challenge for entrepreneurs—making ex-ante costly investments in 

dynamic factor inputs under uncertainty.  

Consider the standard cost minimization problem of the firm:  

 𝐶(𝒘, 𝑦) = min
𝒙∈ℜ+

𝐽
 𝒘′𝒙, 𝑦 = 𝑓(𝒙), (1) 

in which 𝒘 is the vector of factor prices, 𝒙 represents factor demands (inputs), y is the single output, 

and 𝑓(𝒙) represents the production function. We have 𝐽 factors of production so, 𝒘 ∈ ℜ++
𝐽

, and 𝒙 ∈

ℜ+
𝐽

. The cost function is well-known to completely characterize the technology of the firm. Defining 

the Lagrange function 𝔏 = 𝒘′𝒙 + 𝜆∗[𝑦 − 𝑓(𝒙)], the first-order conditions are:  

 
𝑤𝑗 = 𝜆

∗
𝜕𝑓(𝒙)

𝜕𝑥𝑗
 ∀𝑗 = 1,… , 𝐽,

𝑦 = 𝑓(𝒙).

 (2) 

To eliminate 𝜆∗ (whose interpretation is that it is the marginal cost), we have:  

 
𝜕𝑓(𝒙)/𝜕𝑥𝑗

𝜕𝑓(𝒙)/𝜕𝑥1
=
𝑤𝑗

𝑤1
∀𝑗 = 1,… , 𝐽, (3) 

and the production function in the second equation in (2). These conditions can be written as follows:  

 
𝜕 𝑙𝑜𝑔 𝑓 (𝒙)/𝜕𝑥𝑗

𝜕 𝑙𝑜𝑔 𝑓 (𝒙)/𝜕𝑥1
=
𝑤𝑗𝑥𝑗

𝑤1𝑥1
 ∀𝑗 = 1, … , 𝐽. (4) 

 

Define the elasticities 𝜀𝑗(𝒙) =
𝜕 𝑙𝑜𝑔 𝑓(𝒙)

𝜕 𝑙𝑜𝑔 𝑥𝑗
 that are positive by assumption. Then we can rewrite these 

equations as follows:  

 log 𝑥𝑗 − log 𝑥1 +𝜔𝑗 = log 𝜀𝑗 (𝒙) − log 𝜀𝑗 (𝒙) ∀𝑗 = 1,… , 𝐽, (5) 

in which 𝜔𝑗 = − log (𝑤𝑗/𝑤1). If data exists for the log relative factor prices (𝜔𝑗), factor demands (𝑥𝑗), 

and output (𝑦), then an estimation of the system of 𝐽 equations in (5) and the production function can 

be done. The endogenous variables are input demands, while the output is predetermined; a requirement 

that comes directly from the nature of the cost minimization problem. To make things more explicit, 

suppose we have panel data so that we can re-write (5) as follows:  

 
log 𝑥𝑗,𝑖𝑡 − log 𝑥1,𝑖𝑡 + 𝜔𝑗,𝑖𝑡 = log 𝜀𝑗 (𝒙𝑖𝑡) − log 𝜀𝑗 (𝒙𝑖𝑡) + 𝑣𝑗,𝑖𝑡 ∀𝑗

= 1, … , 𝐽, 𝑖 = 1, … , 𝑛, 𝑡 = 1,… , 𝑇, 
(6) 

that assumes we have 𝑛 firms and 𝑇 time periods. And 𝑣𝑗,𝑖𝑡 are error terms. We also need to rewrite the 

production function to include an error term:  

 log 𝑦𝑖𝑡 = 𝜑(log 𝒙𝑖𝑡 ; 𝛽) + 𝑣0,𝑖𝑡 , 𝑖 = 1,… , 𝑛, 𝑡 = 1, … , 𝑇, (7) 

in which 𝜑(𝒙𝑖𝑡; 𝛽) is a functional form (the translog being the most popular), 𝛽 is a vector of unknown 

parameters, and 𝑣0,𝑖𝑡 represents an error term. However, we do not estimate the cost function directly, 

because we instead rely on the so-called primal approach that estimates the first-order conditions in (6) 

and the production function in (7). The reason is that to estimate the cost function we need input prices 

that are lacking in our case. Seemingly, we do not solve this problem as the primal approach also 

depends on log relative prices. However, this is not so because we can still use the first-order conditions 

under reasonable assumptions regarding the relative prices. For example, in (6) we assume that:  

 𝜔𝑗,𝑖𝑡 = 𝛼𝑗,𝑖 + 𝛾𝑗,𝑡 ∀𝑗 = 1, … , 𝑇, (8) 

in which 𝛼𝑗,𝑖 , 𝛾𝑗,𝑡  represent, respectively, input-specific firm and time effects. Therefore, the primal 

approach can be used to estimate the technology even when relative prices are not available. In fact, the 

primal approach provides a solution to an old problem: How to estimate production functions when the 

inputs are endogenous. This estimation can be easily taken into account in our framework as long as 

the vector error term [𝑣0,𝑖𝑡 , 𝑣1,𝑖𝑡 , … , 𝑣𝐽,𝑖𝑡]
′ follows a zero-mean multivariate normal distribution with a 

certain covariance matrix. This problem dates back to (Marschak and Andrews 1944) and has gained 

considerable attention in the literature (see inter alia Blundell and Bond (2000), Olley and Pakes (1996), 

Levinsohn and Petrin (2003), and Wooldridge (2009)). We mention this point because it is important 
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in the next section where we consider a dynamic model in which, again, factor relative prices are not 

available.  

 

3. Model 

The dynamic stochastic profit maximization of a firm is as follows:  

max
𝒙𝑡∈ℜ+

𝐽
,𝑘𝑡≥0

 𝔼0∑𝛽𝑡
∞

𝑡=0

{𝑝𝑡𝑓(𝒙𝑡 , 𝑘𝑡) − 𝒘
′
𝑡𝒙𝑡 − 𝑟𝑡𝑘𝑡 − 𝑝𝑡𝐺 (𝑘𝑡 − (1 − 𝛿)𝑘𝑡−1⏟          

𝜄𝑡

)}, (9) 

in which 𝛽 ∈ (0,1) is the discount factor, 𝒙𝑡 ∈ ℜ+
𝐽

 is the vector of variable factors of production whose 

prices are 𝒘𝑡 ∈ ℜ+
𝐽

, 𝑘𝑡 is a capital stock whose user cost is 𝑟𝑡, 𝑓(𝒙𝑡 , 𝑘𝑡) is the production function that 

uses variable inputs and capital to produce a single product (𝑦𝑡) whose price is 𝑝𝑡, 𝜄𝑡 is an investment, 

𝛿 ∈ (0,1) denotes the capital depreciation rate, and 𝐺(𝜄𝑡) is the adjustment costs. We adopt the popular 

formulation 𝐺(𝜄) =
1

2
𝛾𝑘𝜄

2, where 𝛾𝑘 > 0 is an unknown parameter. Here, the adjustment costs are 

expressed in terms of the product price, 𝑝𝑡. As is customary, we assume that 𝑘0 > 0 is given.  

The first-order conditions are:  

 

𝜕𝑓(𝒙𝑡, 𝑘𝑡)

𝜕𝑥𝑡𝑗
=
𝑤𝑡𝑗

𝑝𝑡
 ∀𝑗 = 1, … , 𝐽,

𝑝𝑡
𝜕𝑓(𝒙𝑡 , 𝑘𝑡)

𝜕𝑘𝑡
− 𝑟𝑡 − 𝑝𝑡𝐺

′(𝜄𝑡) = 𝛽(1 − 𝛿)𝔼𝑡𝐺
′(𝜄𝑡+1)𝑝𝑡+1.

 (10) 

 

The first set of equations corresponds to cost minimization as we have:  

 
𝜕𝑓(𝒙𝑡 , 𝑘𝑡)/𝜕𝑥𝑡𝑗

𝜕𝑓(𝒙𝑡, 𝑘𝑡)/𝜕𝑥𝑡1
=
𝑤𝑡𝑗

𝑤𝑡1
 ∀𝑗 = 2, … , 𝐽, (11) 

from which it follows that:  

 
𝜕 𝑙𝑜𝑔 𝑓 (𝒙𝑡, 𝑘𝑡)/𝜕 𝑙𝑜𝑔 𝑥𝑡𝑗

𝜕 𝑙𝑜𝑔 𝑓 (𝒙𝑡 , 𝑘𝑡)/𝜕 𝑙𝑜𝑔 𝑥𝑡1
=
𝑤𝑡𝑗𝑥𝑡𝑗

𝑤𝑡1𝑥𝑡1
 ∀𝑗 = 2,… , 𝐽. (12) 

If we define 𝜀𝑗(𝒙𝑡 , 𝑘𝑡) =
𝜕 𝑙𝑜𝑔 𝑓(𝒙𝑡,𝑘𝑡)

𝑙𝑜𝑔 𝑥𝑡𝑗
 , then these equations, after taking logs, have the following form:  

 
𝜔𝑡𝑗 + log 𝑥𝑡𝑗 − log 𝑥𝑡1 = log 𝜀𝑗 (𝒙𝑡 , 𝑘𝑡) − log 𝜀1 (𝒙𝑡 , 𝑘𝑡), ∀𝑗

= 2,… , 𝐽, 
(13) 

in which 𝜔𝑡𝑗 = log 
𝑤𝑡𝑗

𝑤𝑡1
 (∀𝑗 = 2,… , 𝐽). From the second condition in (10) we have:  

 
𝜕𝑓(𝒙𝑡 , 𝑘𝑡)

𝜕𝑘𝑡
− 𝜚𝑡 − 𝐺

′(𝜄𝑡) = 𝛽(1 − 𝛿)𝔼𝑡𝐺
′(𝜄𝑡+1)𝜋𝑡+1, (14) 

in which 𝜚𝑡 =
𝑟𝑡

𝑝𝑡
, and 𝜋𝑡+1 =

𝑝𝑡+1

𝑝𝑡
. Using our functional form for 𝐺(𝜄) whose derivative is 𝐺′(𝜄) = 𝛾𝑘𝜄, 

we obtain:  

 
𝜕𝑓(𝒙𝑡, 𝑘𝑡)

𝜕𝑘𝑡
− 𝜚𝑡 − 𝛾𝑘𝜄𝑡 = 𝛽𝛾(1 − 𝛿)𝔼𝑡𝜄𝑡𝜋𝑡+1. (15) 

To use logs we find that the above expression is equivalent to:  

 𝜀𝑘(𝒙𝑡 , 𝑘𝑡)
𝑓(𝒙𝑡 , 𝑘𝑡)

𝑘𝑡
− 𝜚𝑡 − 𝛾𝑘𝜄𝑡 = 𝛽𝛾𝑘(1 − 𝛿)𝔼𝑡𝜄𝑡𝜋𝑡+1, (16) 

in which 
𝑓(𝒙𝑡,𝑘𝑡)

𝑘𝑡
=
𝑦𝑡

𝑘𝑡
 is the output per unit of capital or capital productivity, and 𝜀𝑘(𝒙𝑡 , 𝑘𝑡) =

𝜕 𝑙𝑜𝑔 𝑓(𝒙𝑡,𝑘𝑡)

𝜕 𝑙𝑜𝑔 𝑘𝑡
.  

The model with inefficiency and productivity is presented in detail in Appendix A where we 

also present an estimation in which we use Bayesian techniques as well as our benchmark prior. 

 

4. Data  

4.1. Sample  

We draw on the annual reports of Portuguese firms. All private firms in Portugal, irrespective 

of their size, are required to file their annual reports after being certified by a public accountant. As 

such, the data provide reliable information on the annual performance of these young firms. 
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Specifically, data for the analysis was obtained from INFORMA D&B by using the IES (Informação 

Empresarial Simplificada (IES)) Form that contains certified yearly financial and performance 

information. Our initial dataset comprised the entire population of new ventures from all industries 

established between 2010 and 2017. We excluded the ventures that reported zero sales in the first year 

of the activity or had reported a temporary suspension of activity or inactivity. Thereafter, we 

excluded the ventures that reported no advertising during the period (although we examine here an 

alternative scenario where more observations are obtained through omitting advertising). Finally, we 

excluded the acquired ventures during the period and those that had evidence of some errors, such as 

negative values for inventories or assets, or missing values. The final dataset comprises 164,538 

venture-year observations, representing a total of 72,035 ventures. 

Table 1a presents the sample description across industries and Table 1b shows the 

correlations among the variables. Among the 72,035 established venture, the largest share is in retail 

trade, except for motor vehicles, (industry code 47) at 22.1% of the sample (N=36,348). It is followed 

by food and beverage services (industry code 56) at 13.7% of the sample (N=22,491) and wholesale 

trade, except motor vehicles and motorcycles, (industry code 46) at 10.8% of the sample (N=17,836). 

The smallest share is in Insurance, reinsurance and pension funding, except compulsory social 

security, (industry code 65) (N=4), manufacture of coke and refined petroleum products (industry 

code 19) (N=12), air transport (industry code 51) (N=37), manufacture of basic pharmaceutical 

products and pharmaceutical preparations (industry code 21) (N=42), and programming and 

broadcasting activities (industry code 60) (N=63). All are at less than 0.1% of the sample. 

It is important to note that our estimates are adjusted for the industry effects, or for other time 

in-variant effects (e.g., firm age or region). Specifically, equations (15) and (16) contain such effects, 

see also part A1 of Technical Appendix A.   

 

4.2. Variables 

4.2.1. Output variables. The outcome variable is sales revenues defined as the total operating revenue 

that the venture obtains from the sale and/or services offered in its main business operations.  

4.2.2. Input variables. Equity represents the book value of the venture assets and is obtained from the 

difference between total assets and total liabilities of the firm. However, for small and young ventures 

the formal accounting-based measures may not be available and therefore the precise measures of 

book value may not be available. Although basic, the net asset measure of book value reflects the 

level of equity in the business. In the event where a firm sustains losses, the losses are deducted from 

the equity value of the business. As such, for these young firms with less formalized systems, the 

subtraction of assets from liabilities provides a viable measure of their value.  

Related to the remaining inputs, labor is defined as the total number of employees of the 

venture. Inventories are the goods and materials the venture holds to sell as the main object of its 

business. It represents the main source of revenue obtained from the normal activity of the venture 

and is expected to be translated into revenue within one year, hence it is classified as a current asset. 

Services represent the operating revenues obtained by the venture from the services rendered. 

Advertising is the operating expenses of activities such as media and marketing, and others such as 

business cards, brochures, or web pages that are incurred with the intent to promote the business. 

Capital is the fixed tangible assets held by the venture. It is represented by the total value of plant, 

property, and equipment that includes buildings, factories, machinery, vehicles, and office equipment. 

 

 

5. Empirical results 

Some results are shown in Figure 1. We find that 
𝜕 𝑙𝑜𝑔 𝑓(𝒙,𝑘)

𝜕𝜏
 (whose sample distribution is reported in 

panel (b)) is a measure of technical change. The returns to scale can be estimated as 𝑅𝑇𝑆 =
1

𝜕 𝑙𝑜𝑔 𝐶(𝑤,𝑡,𝑦)/𝜕 𝑙𝑜𝑔 𝑦
. We also present sample distributions of 𝑒𝑗(𝒙, 𝑘) =

𝜕 𝑙𝑜𝑔 𝑓(𝒙,𝑘)

𝜕 𝑙𝑜𝑔 𝑥𝑗
 in panel (c). These 

quantities should be positive to satisfy neoclassical properties. The sample density of technical 

efficiency is reported in panel (a). It ranges from about 82% to 93%. The returns to scale in panel (d) 

range from about 0.85 to slightly over 1.07, and for most ventures, they are less than one with decreasing 

results to scale.  
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In Figure 2 we report the marginal posterior densities of some important structural parameters 

of the model that include the discount factor 𝛽 in panel (a), depreciation rate 𝛿 in panel (b), and the 

adjustment cost parameters for capital and efficiency (𝛾𝑘 and 𝛾𝑢) in panel (c). Based on (Maccini 2016) 

adjustment costs refer to the costs incurred when decision variables are changed. The discount factors 

are fairly close to 0.90, and the depreciation rate ranges from 2% to slightly over 20% with an average 

value of 12.4 (posterior standard deviation of 0.027, see Table 3). The marginal posterior densities of 

adjustment cost parameters are non-normal (showing that asymptotically-based inferences would be 

misleading in this instance). The capital adjustment costs average 0.268 (posterior standard deviation 

0.012) and adjustment costs for efficiency average 0.223 (posterior standard deviation 0.022). From a 

visual inspection of their marginal posterior densities in panel (c) of Figure 2, it turns out that the costs 

for efficiency adjustments are much more heterogeneous compared to the costs for capital adjustments. 

Specifically, the costs for efficiency adjustments range from a low of 15% to nearly 30% that shows 

some ventures find it easier to adjust their efficiency levels rather than capital stock, which ranges from 

24% to slightly above 30% (this distribution is also bimodal with two distinct models near 26% and 

29% that ventures are heterogeneous in this aspect).  

In panel (a) of Figure 3, we present the sample distribution of productivity growth in a model 

that includes advertising. The inclusion of advertising is motivated by strong prior evidence (Hansen et 

al. 2019; Sadiku-Dushi et al. 2019) and is strongly favored by the data as shown by the Bayes factors 

that support this model. The results are reported in panel (f) and are obtained through randomly omitting 

𝐵 observations (where 𝐵 is randomly selected from 10, 20,… ,100) 10,000 times. Ignoring advertising 

produces a sample distribution of productivity growth that is much more dispersed, ranging from 

approximately -3% to nearly 6%. Including advertising produces estimates in the range of -3% to 2% 

(from Table 3 the average value is 1.1% with a standard deviation of 1.4%). The sample distribution of 

productivity growth has a considerable left tail with negative values that are understated by the sample 

distribution of productivity growth.  

In panels (b), (c), (d), and (e) of Figure 2 illustrate, respectively, the marginal posterior densities 

for 𝜌Ω, 𝜌𝜋 , 𝜌𝜚, and 𝜌𝑢. According to panel (d), inefficiency is highly persistent as 𝜌𝑢 averages 0.911 

(posterior s.d 0.015). The reason is that the costs for efficiency adjustments produce, in turn, inefficient 

behavior that is persistent over time. The dynamic coefficient of productivity growth averages 0.503 

(posterior s.d 0.055); its density in panel (b) is highly non-normal, bimodal, and skewed as are all other 

marginal posteriors shown in panels (b), (c), (d), and (e) of Figure 2. Therefore, productivity is 

somewhat persistent, and its coefficient ranges from about 0.3 to 0.65. Prices and 𝜚 are also persistent 

in their coefficients and average 0.904 and 0.905, respectively. Again, their distributions are non-normal 

that indicates the sampling theory-based inferences might be misleading in this instance.  

In panel (f), we report the sample distributions of the Bayes factors (BF) in favor of the model 

with advertising and against the model without advertising. To obtain these sample distributions we 

randomly omit all observations for 𝐵 firms (where 𝐵 is randomly selected in {10, 20, … ,100}), and we 

reestimate the two models. This is performed 10,000 times. The BF is defined as:  

 𝐵𝐹12 =
𝑝(𝒚|ℳ1)

𝑝(𝒚|ℳ2)
,  

in which 𝑝(𝒚|ℳ1) is the probability of observing the data under model ℳ1 (the model that includes 

advertising as a variable factor of production), and 𝑝(𝒚|ℳ2) is the probability of observing the data 

under model ℳ2 that ignores advertising. Apparently, the data strongly favor the model with 

advertising. Further, endogeneity of advertising is explicitly taken into account through the first-order 

conditions for profit maximization (Geweke 1991). The BFs are obtained using the procedure in 

(Perrakis et al. 2014). The reestimation of models is performed using Sampling-Importance-Resampling 

(SIR, (Rubin 1987, 1988)) to avoid computationally expensive MCMC1.  

Returns to scale refer to proportionality of changes in output after the amounts of all inputs in 

production have been changed by the same factor (Elsner et al. 2015). The returns to scale are 0.956 on 

average with a posterior standard deviation of 0.028. The input elasticity is the degree of substitutability 

of inputs given a change in the marginal productivity of an input (Miller et al. 2019). Input elasticities 

 

1For SIR we use a random subsample of length 10,000 from the original MCMC sample. 
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are all positive as they should be to satisfy the monotonicity conditions of the production function. The 

most important input is labor (elasticity 0.64) followed by equity (0.108), and inventories (0.063). The 

capital, service, and advertising elasticities are much lower. The sample distributions of all these 

quantities are reported in Figure 1. Efficiency is, on average, 0.875 and ranges from 0.82 to 0.93. 

Technical change (panel (b) of Figure 1) is rather small and averages -0.0004. Sample distributions of 

productivity growth reported in panel (a) of Figure 3 range from -4% to roughly 5.5% and averages 

1.1%. In the model without advertising, productivity growth ranges from -3% to 4%. Both models 

indicate a bimodal sample distribution of productivity growth. In the model with advertising one model 

is close to zero and the other is close to 2% that indicates heterogeneity in the firm for productivity 

growth.  

The marginal posterior densities of the parameters reported in the other panels of Figures 2 and 

3 are highly non-normal, which indicates that in this instance, the inferences from the asymptotic theory 

might be misleading. The discount factor (𝛽) is estimated to be 0.969 with a posterior standard deviation 

of 0.033. The adjustment costs of capital and inefficiency are, on average, 0.268 and 0.223, respectively 

(posterior standard deviations of 0.012 and 0.022). These are expressed as units of product price.  

Productivity growth is persistent (𝜌Ω has a posterior mean of 0.503 and posterior standard 

deviation of 0.033). The posterior mean of 𝜌𝑜 is fairly close to one (0.982 with posterior s.d. 0.012) that 

indicates that anchoring on economy-wide inflation is important. In other words, economy-wide 

inflation and product prices are significantly correlated. Other 𝜌s also show persistence.  

 

5.1. Firm exit 

Next, we examine ex-post the relation among efficiency, productivity, and failure. To appreciate the 

significance of our (posterior mean estimates of) efficiency and productivity, we report density 

estimates of the log sales per employee ratio in panel (a) of Figure 4 for failed and surviving firms. 

Surviving firms have a more inflated left tail that indicates they have smaller sales per employee ratio. 

In other words, failed firms are somewhat too large relative to surviving ventures.  

The marginal posterior densities of efficiency and productivity are reported in panels (b) and 

(c) of Figure 4. The interesting aspects of this analysis are two: successful ventures are more efficient 

and, ii) they are more productive. In panels (b) and (c), the densities of efficiency and productivity, 

respectively, are shifted to the right relative to failed ventures. The distribution of productivity growth 

for failed ventures is bimodal and certain ventures are productive (with posterior mean productivity 

growth that roughly ranges up to 2%): One model of the distribution (the dominant one) is near zero 

but the other model is, on average, close to -4% per year, which shows a lack of productivity in 

unsuccessful ventures. Moreover, for surviving ventures efficiency is higher and has a less pronounced 

mode around 89%. For unsuccessful ventures, average efficiency is close to 80% (compared to over 

86% for successful ventures).  

 

5.2. Summary of results. As a summary of results, we start with the adjustment costs. Adjustment costs 

are pivotal to ventures, especially during their formative years. We find that adjustment costs for 

efficiency vary from 15 to 30%, implying that some ventures incur relative lower costs. However, 

adjustments to capital stocks are much higher (ranging from 24 to 30%). These two estimates imply 

that ventures may be better off focusing on efficiciency adjustments instead of adjusting capital stocks. 

Input elasticities, or the degree of substitutability of inputs given a change in the marginal productivity 

or price of an input, show that ventures have a high degree of labor elasticity (0.64) with much lower 

elasticities for equity (0.108), inventories (0.063), capital (0.044) and advertising (0.048). Productivity 

growth range from -4% to roughly 5.5% and averages 1.1% (Figure 3, panel A). For firm exit related 

analysis, the productivity growth dominant distribution is close to zero with an average of -4% for 

unsuccessful ventures. Surviving ventures have a higher average efficiency by about 9%. Overall, 

adjustment costs to efficiency are lower than capital adjustment costs, and ventures maintain significant 

labor substitution elasticity, however, input elasticities for equity, inventories, capital and advertising 

are much lower. The productivity growth remains very small, however, surviving ventures have a higher 

productivity growth, but by a small amount in absolute terms.  

 

6. Discussion 
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 The results provide three main inferences. First, in the choice for adjusting efficiency or capital, 

the results indicate that efficiency related changes are less costlier than from capital adjustments. The 

potential reason for this finding could be two-fold. Ventures have less developed routines that could 

make adjsutments to newer capital more challenging, resulting in higher adjustment costs. Adjustments 

costs related to efficiency may be lower as ventures may intertemporally move down the learning curve 

to lower operational costs. As ventures build on operational routines, efficiency may be easier to adjust 

than the capital costs.   

 Second, labor input elasticity is higher, and equity, inventory, capital and advertising input 

elasticities are much smaller. Plausible reasons are that labor can be changed more easily as an input, 

however, equity is in short supply for newer ventures. Ventures are either funded by owners and 

investors and because additional equity inflows are contingent on performance, equity elasticity is 

limited. During their early years, ventures focus on a set of products  at the core of their value 

proposition () and due to the idiosyncratic nature of their products fulfilling unique value proposition 

the associated could only be liquidated at a significant discount. Alternatively, due to less developed 

supply chain relationships inventory may move slowly for ventures facing lower legitimacy from 

suppliers and buyers. Similarly, capital and advertisement elasticities could be lower due to lower 

flexilbity in adjusting costly capital and intangibles associated with advertisements. As such, labor 

elasticity is much higher than other modes of elasticity.       

 Third, technical change is small for ventures and the average productivity growth is only 1.1%, 

perhaps indicating the challenges faced by ventures with limited operational capabilities in pursuing 

productivity growth. The findings highlight an important point that productivity growth may not be the 

mainstay for ventures. Consistent with past work, maintaining liquidity and ensuring survival may not 

lead to focus on productivity growth improvements. In terms of difference in labor productivity, 

surviving firms had a slightly lower productivity perhaps indicating the need for slack necessary to 

adjust to variegated demands.  

  

6.1. Theoretical Implications 

We aim to provide important extensions to the entrepreneurship literature. From the perspective of 

operations research, we extend the dynamic efficiency model of cost minimization by Tsionas et al. 

(2019) to an intertemporal profit-maximization model. We go beyond the works that do not allow for 

the dynamic evolution of efficiency by making a strong assumption of the exogenous evolution of 

efficiency. Thus, our proposed method provides an important extension that focuses on a venture’s 

intertemporal costly and endogenously determined production decisions. The measure of efficiency is 

based on the evolution of two dynamically latent variables--variable-input-oriented inefficiency and 

factor-specific distortions in quasi-fixed inputs. The profit maximization methods based on moment-

based multiple-equation estimation system incorporates a variable cost function and both the dynamic 

and static optimality conditions that are derived from the firm’s decisions on intertemporal expected 

profit maximization. The proposed nonparametric BETEL is implemented in a sample of Portuguese 

firms.  

These results are relevant to resource allocation and underline the importance of efficiency and 

productivity growth for new ventures. Traditionally, efficiency and productivity growth are seldom 

considered in venturing context due to their “interrupted” development. Ventures face interrupted 

resource and sales flow with many closing during the early years. Such an uneven flow of resources 

could render the value of productivity and efficiency growth as less meaningful. As such, much research 

has focused on outcome and survival, while others focus on growth in performance. However, in 

parallel, the population ecology theory calls to improve relationships in the task environment, that is, 

sustained exchanges with stakeholders. Although survival is a distal outcome and growth a more 

aggregate outcome, continued growth in productivity and efficiency could be the undergirding metrics 

central to dynamic intertemporal decision-making in ventures. We expect the focus on productivity and 

efficiency growth could be the primer of the ensuing outcomes, including survival.   

 The second important extension is our contribution to the entrepreneurship literature. 

Knowledge of how ventures dynamically improve profit maximization is the first important step to 

understanding how ventures allocate resources. A critical element here is that we assume that inputs 

are quasi-fixed and endogenously adjusting over time. This approach provides a novel mechanism to 

understand the so-called “black box” of evolution in ventures. Although studies in operations 
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management have generally focused on statistical approaches, the proposed profit maximization-

based approach is critical to understanding the how of resource allocation in ventures that thus 

provides the necessary depth in dynamically interpreting the evolution of their profit maximization.  

 The third important extension is based on recent work in the operations research on using 

analytics as a dynamic capability (Conboy et al. 2020). Although studies remain qualitative or focus 

on a higher-order construct of dynamic capability (Côrte-Real et al. 2019; Mikalef et al. 2019) or 

theoretical development (Conboy et al. 2020), our work informs this growing line of research by 

providing the baseline analytics that entrepreneurs can focus on to improve performance. The study is 

among the first to disaggregate the profit maximization path on a census of firms to develop a deeper 

understanding of the micro-foundations of performance in firms, a type less explored in the broader 

operations research.  

Our paper draws on and improves upon recent works on intertemporal tradeoff framework by 

Tsionas et al. (). These advancements contribute to the ongoing need to move from static efficiency 

frameworks to intertemporal tradeoffs in efficiency considerations. The application of the proposed 

framework provides a nuanced and relevant approach to develop efficiency measures for ventures and 

firms that typically face significant intertemporal challenges in adjusting inputs and managing 

efficiency growth. The proposed methodology highlights the need to focus on the Bayesian modeling 

to develop efficiency related estimates, a necessity for firms as they update their efficiency through 

intertemporal decision making.    

 

6.2. Managerial implications 

Our empirical results provide an important set of guidelines for entrepreneurs. As entrepreneurs 

attempt to assemble and leverage resources for operational activities, the adjustment costs, elasticities, 

and productivity growth are essential elements to consider intertemporally. Our results based on 

Bayesian learning show that the decisions are not straightforward. Adjusting efficiency is cheaper 

than adjusting capital. Labor elasticity is much higher than capital, inventory or advertisement 

elasticity. Productivity growth is limited. The findings indicate that entrepreneurs may operate in 

survival mode as they tend to be more elasticity with labor, but cannot exercise greater adjustment 

flexibility with costlier capital, performance contingent equity, or intangilility based advertising 

expenditures.  

With entrepreneurs better off improving efficiency instead of adjusting capital, the 

implication is significant for entrepreneurs seeking to refresh their capital base. Focusing on 

improving efficiency from an existing capital base, instead of investing in newer capital, is an 

important take away from the current study. The relatively small productivity growth is not surprising 

in this context. Limited operational templates to draw on, demand volatility, and unstable stakeholder 

relationship may lead to limited productivity growth. Our findings show that surviving ventures differ 

systematically from non-surviving in terms of small productivity growth. Though productivity growth 

should be the focus on entreprneeurs its influence on survival is limited. Entrepreneurs must 

intertemporally manage adjustment costs, elasticities, and productivity growth in their operational 

decisions.       

 

6.3. Limitations and Future Research Directions 

This research is not without limitations. As mentioned, the constructed sample of firms is from 

Portugal, and as such the findings cannot be generalized beyond Portugal. More importantly, as 

expected detailed financial statements are not available, we are unable to include more micro-

financial or micro-operational dynamics. However, this is not a severe limitation as to the widely 

accepted and used financial items are available in the sample to draw inferences. We use secondary 

data. Though the nature of the data is amenable to the typical operations research related empirical 

studies, we acknowledge the limitations of such data. Secondary data do not provide the necessary 

contextual richness. The intertemporal decision making may be driven by a variety of factors 

associated with the entrepreneur and the context. The necessary richness from qualitative data could 

help further understand how entreprneeurs make such choices, but may also explain the relative 

variations in elasticities, adjustment costs, and productivity growth. Our analysis controls for both the 

endogeneity and quasi-fixed inputs in the intertemporal processes of a venture. As such, our study 

focuses on the structural aspects of the provided financial line items and therefore does not consider 
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the microdynamics of the decision process of the entrepreneur. Future studies could consider different 

decision-making heuristics and long-term survival outcomes of the venture.  

 As entrepreneurs consider supply chain relationships and intertemporal tradeoffs in 

operational activities, lower capital and inventory elasticity, greater ability to change efficiency 

instead of changing capital, or supply chain relationships may be difficult to develop and sustain. 

Limited productivity growth coupled with the limited ability to gain from capital investments, could 

lead to poorer supply chain relationships. Future research could focus on how ventures develop and 

sustain relationships with supply chain members under the intertemporal tradeoffs that hinder 

operational gains for ventures. 

 Though we focus on statistical modeling with Bayesian learning the internally fused nature 

venture activities may not fully separate operations from the non-operations functions. Though not 

observable directly in the data, the diffused roles and responsibilities in a venture may confound the 

identified relationships. Multiple optimization decisions made by entrepreneurs could be explored in 

future research. Research focused on allocations, elasticities, and inefficiencies in ventures could 

focus on relative tradeoffs in the cross-functional settings.  

 Despite the potential gains from intertemporal tradeoffs, future research could also focus on 

the nature of operational learning in ventures. Future research could focus on the nature of knowledge 

and learning processes that entrepreneurs leverage in making intertemporal tradeoffs. Greater 

intertemporality results in reinforcing operational routines and processes systems that may increase  

consideration of joint intertemporality in operational and supply chain activities. 

6.4. Conclusion 

This paper supports and helps inform the basic rule of management “what cannot be measured cannot 

be managed”. A significant body of work in entrepreneurship has focused on the general terms that 

afflict firms—legitimacy, resource scarcity, and liabilities of age and size—and others have focused 

on an aggregate outcome such as survival. The current paper is among the first that provides a 

relevant and direct dynamic of intertemporal efficiency to improve operational decisions for ventures. 

Informed by the dynamic optimization model in Bayesian thinking, the findings of the paper provide 

early impetus to start focusing on the intertemporal operational changes over time. The productivity 

growth is very low, adjustment costs to capital stocks are much higher than for costs for efficiency 

adjustments. The findings indicate that labor elasticity is higher than capital, inventory or 

advertisement elasticity. The findings paint a sobering picture—lower productivity growth, limited 

flexibility in leveraging input elasiticies, and higher adjustment costs—of the challenges that ventures 

face as they intertemporally manage adjustment costs, elasticities, and productivity growth.      
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Table 1 

Sample Descriptives 

Table 1(a): Sample description across industries 
   Revenues from Sales Equity Labor 

Industry code Number 

of firms 

Mean SD Mean SD Mean SD 

10 Manufacture of food products 2,801 638,305.8 2,776,898.0 118,702.1 755,684.0 9.8 33.3 

11 Manufacture of beverages 644 383,498.4 1,938,317.0 283,802.2 1,865,652.0 2.7 5.1 

13 Manufacture of textiles 601 1,368,047.0 4,451,759.0 313,108.2 972,490.4 16.6 36.6 

14 Manufacture of wearing apparel 1,319 737,325.5 2,815,545.0 73,540.0 447,668.3 15.9 32.8 

15 Manufacture of leather and related products 742 939,311.3 1,833,067.0 103,448.9 501,041.6 18.3 22.2 

16 Manufacture of wood and of products of wood and cork, except furniture; manufacture 
of articles of straw and plaiting materials 

713 1,636,620.0 10,000,000.0 655,585.7 4,679,760.0 12.4 42.7 

17 Manufacture of paper and paper products 153 7,200,161.0 39,700,000.0 3,383,672.0 23,300,000.0 11.5 21.0 

18 Printing and reproduction of recorded media 528 232,011.9 458,569.8 48,243.5 159,364.5 3.9 4.8 

19 Manufacture of coke and refined petroleum products 12 63,000,000.0 212,000,000.0 6,737,045.0 10,400,000.0 11.3 12.6 

20 Manufacture of chemicals and chemical products 314 894,076.2 3,059,947.0 552,652.7 2,654,832.0 5.8 8.3 

21 Manufacture of basic pharmaceutical products and pharmaceutical preparations 42 1,700,670.0 2,657,302.0 363,949.1 761,834.8 8.4 8.7 

22  Manufacture of rubber and plastic products 312 1,233,351.0 3,225,778.0 333,913.5 753,036.6 11.2 17.0 

23  Manufacture of other non-metallic mineral products 511 497,811.2 1,293,085.0 194,135.8 1,152,627.0 8.6 15.2 

24  Manufacture of basic metals 123 2,139,297.0 4,374,963.0 453,742.0 1,178,779.0 9.7 14.5 

25  Manufacture of fabricated metal products, except machinery and equipment 2,679 488,574.3 1,083,337.0 102,403.4 350,557.3 7.9 16.0 

26  Manufacture of computer, electronic and optical products 140 1,617,047.0 4,231,765.0 529,918.3 1,433,135.0 15.0 30.6 

27  Manufacture of electrical equipment 259 497,293.1 1,157,087.0 118,369.6 341,042.8 6.5 10.2 

28  Manufacture of machineryand equipment n.e.c. 470 697,116.0 1,199,257.0 148,184.3 394,529.5 7.1 8.5 

29  Manufacture of motor vehicles, trailers and semi-trailers 168 2,769,083.0 8,122,870.0 577,376.1 1,736,492.0 24.0 40.0 

30  Manufacture of other transport equipment 119 2,461,196.0 7,971,513.0 535,230.4 1,320,883.0 19.5 43.0 

31  Manufacture of furniture 972 607,989.4 1,582,818.0 138,227.4 542,471.0 10.1 15.5 

32  Other manufacturing 669 222,878.5 788,559.3 51,567.6 281,111.5 4.4 6.1 

33  Repair and installation of machinery and equipment 1,336 475,010.4 1,654,232.0 113,489.1 857,132.7 6.7 19.5 

41  Construction of buildings 6,314 446,385.6 1,298,779.0 76,346.5 383,464.6 9.0 21.7 

42  Civil engineering 649 4,820,669.0 43,000,000.0 2,297,535.0 24,900,000.0 42.7 379.3 

43  Specialised construction activities 6,409 284,919.3 768,704.4 47,526.8 312,280.7 5.8 18.2 

45  Wholesale and retail trade and repair of motor vehicles and motorcycles 10,609 454,804.7 1,945,607.0 32,748.8 206,704.9 3.2 4.9 

46  Wholesale trade, except of motor vehicles and motorcycles 17,836 901,908.7 4,275,310.0 116,715.7 1,560,502.0 3.7 7.0 

47  Retail trade, except of motor vehicles and motorcycles 36,348 445,849.9 1,323,635.0 44,865.4 438,537.9 4.3 10.7 

49  Land transport and transport via pipelines 2,778 519,134.8 1,794,067.0 103,545.2 293,940.8 6.5 19.3 

50  Water transport 160 2,588,992.0 8,421,588.0 170,045.9 2,125,096.0 7.5 12.3 
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51  Air transport 37 5,790,746.0 8,140,199.0 3,018,958.0 10,500,000.0 6.2 9.8 

52  Warehousing and support activities for transportation 754 2,403,578.0 15,900,000.0 - 382,018.5 11,100,000.0 9.2 22.3 

53  Postal and courier activities 150 368,024.2 976,867.1 44,218.1 95,664.4 7.0 11.9 

55  Accommodation 4,440 380,175.6 1,754,686.0 183,424.4 1,888,802.0 7.5 34.3 

56  Food and beverage service activities 22,491 208,944.7 420,770.1 - 1,773.6 133,880.6 6.2 10.9 

58  Publishing activities 944 310,695.1 994,573.4 6,251.0 1,704,594.0 4.7 12.6 

59  Motion picture, video and television programme production, sound recording 

and music publishing activities 

701 304,976.0 981,979.4 47,116.5 666,054.3 2.9 8.7 

60  Programming and broadcasting activities 63 376,219.8 966,708.5 161,391.2 349,081.2 2.9 3.0 

61  Telecommunications 337 738,324.7 4,189,422.0 422,923.9 4,994,171.0 5.1 5.7 

62  Computer programming, consultancy and related activities 4,279 380,175.3 2,462,886.0 98,536.8 832,046.0 6.1 18.7 

63  Information service activities 630 187,103.8 818,363.6 52,349.8 784,075.1 5.7 31.0 

64  Financial service activities, except insurance and pension funding 392 398,644.2 1,369,637.0 8,354,001.0 70,300,000.0 3.9 11.7 

65 Insurance, reinsurance and pension funding, except compulsory social security 4 21,536.8 25,366.0 - 18,004.1 60,981.1 2.3 1.0 

66  Activities auxiliary to financial services and insurance activities 2,917 167,698.9 1,869,785.0 57,165.9 523,957.5 2.3 2.6 

69  Legal and accounting activities 3,593 78,408.6 183,496.0 21,232.2 65,070.7 3.1 5.1 

70  Activities of head offices; management consultancy activities 5.870 281,951.0 1,621,208.0 - 3,359,513.0 102,000,000.0 4.2 19.6 

71  Architectural and engineering activities; technical testing and analysis 3,692 287,175.6 1,368,731.0 63,048.8 516,740.0 3.9 10.5 

72  Scientific research and development 348 160,301.2 566,546.5 373,062.4 1,407,893.0 5.8 25.6 

73  Advertising and market research 2,183 218,928.7 584,014.3 27,646.6 280,831.3 3.0 4.5 

74  Other professional, scientific and technical activities 3,593 211,523.6 1,006,148.0 51,484.2 577,799.3 2.6 6.2 

75  Veterinary activities 862 132,647.3 295,701.9 65,177.1 541,829.7 3.2 7.0 

77  Rental and leasing activities 1,219 352,539.8 1,146,283.0 111,973.8 419,295.0 3.3 6.3 

78  Employment activities 489 1,609,758.0 3,343,786.0 195,624.1 795,900.2 95.8 263.4 

79  Travel agency, tour operator reservation service and related activities 2,092 617,069.8 2,610,664.0 24,606.6 247,015.9 2.8 4.8 

80  Security and investigation activities 340 594,266.2 2,812,400.0 145,182.1 796,953.4 28.9 86.1 

81  Services to buildings and landscape activities 1,905 163,419.4 462,897.4 19,864.0 154,925.7 9.9 39.6 

82 Office administrative, office support and other business support activities 3,483 287,603.0 1,110,376.0 57,257.2 456,316.1 5.8 32.0 

 Total 164,538 485,393.9 4,233,883.0 - 22,596.4 19,700,000.0 5.8 32.8 

Notes: N = 164.538 firm-year observations, representing a total of  72,035 new firms established between 2010 and 2017 and followed until 2017
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  Inventories Services Advertising Capital 

Industry code Mean SD Mean SD Mean SD Mean SD 

10 Manufacture of food products 48,262.0 198,149.7 65,073.9 224,270.3 5,492.6 84,126.5 248,532.3    1,050,628.0 

11 Manufacture of beverages 110,291.4 257,832.1 15,672.2 59,977.2 6,250.1 22,185.9 279,344.7 1,442,684.0 

13 Manufacture of textiles 216,362.0 897,657.8 305,662.7 887,980.6 4,122.7 14,429.4 403,772.0 1,517,289.0 

14 Manufacture of wearing apparel 91,459.6 448,373.4 153,156.0 360,710.7 2,393.0 10,945.5 106,584.3 474,657.9 

15 Manufacture of leather and related products 113,003.9 295,773.0 138,918.2 272,975.1 5,389.2 25,374.0 168,183.6 418,822.2 

16 
Manufacture of wood and of products of wood and cork, except furniture; manufacture 

of articles of straw and plaiting materials 1,017,053.0 9,167,445.0 101,373.2 340,293.9 2,297.3 14,326.8 461,901.6 1,816,649.0 

17 Manufacture of paper and paper products 438,293.7 1,505,301.0 104,162.3 775,443.7 49,071.4 240,987.6 4,290,729.0 23,500,000.0 

18 Printing and reproduction of recorded media 10,906.5 30,195.3 75,685.8 191,778.9 1,466.7 10,203.0 59,427.4 139,655.7 

19 Manufacture of coke and refined petroleum products 1,377,494.0 4,587,916.0 1,044,351.0 1,612,611.0 2,378.1 4,044.6 12,900,000.0 9,959,354.0 

20 Manufacture of chemicals and chemical products 91,748.3 234,325.2 62,671.6 294,685.7 6,885.7 23,597.8 768,317.6 3,068,597.0 

21 Manufacture of basic pharmaceutical products and pharmaceutical preparations 258,104.9 649,817.3 24,681.9 56,482.4 12,745.8 25,890.2 366,528.3 673,703.3 

22  Manufacture of rubber and plastic products 180,749.2 591,334.0 52,490.4 172,848.3 5,404.6 28,780.2 710,201.8 1,915,200.0 

23  Manufacture of other non-metallic mineral products 98,414.7 425,126.6 83,041.0 325,101.7 3,814.4 17,671.0 327,692.8 1,745,495.0 

24  Manufacture of basic metals 357,953.5 1,141,649.0 83,411.3 252,158.6 49,071.4 240,987.6 4,290,729.0 23,500,000.0 

25  Manufacture of fabricated metal products, except machinery and equipment 49,301.6 206,111.6 176,537.1 573,452.5 1,466.7 10,203.0 59,427.4 139,655.7 

26  Manufacture of computer, electronic and optical products 191,436.8 568,034.9 272,644.1 492,564.9 2,378.1 4,044.6 12,900,000.0 9,959,354.0 

27  Manufacture of electrical equipment 71,881.2 155,402.9 108,481.1 255,500.2 6,885.7 23,597.8 768,317.6 3,068,597.0 

28  Manufacture of machineryand equipment n.e.c. 99,714.5 233,750.1 115,121.4 352,372.4 12,745.8 25,890.2 366,528.3 673,703.3 

29  Manufacture of motor vehicles, trailers and semi-trailers 252,537.9 531,376.9 135,489.4 282,869.9 5,404.6 28,780.2 710,201.8 1,915,200.0 

30  Manufacture of other transport equipment 250,408.7 884,606.3 1,170,985.0 4,105,846.0 3,814.4 17,671.0 327,692.8 1,745,495.0 

31  Manufacture of furniture 96,250.4 320,336.5 51,926.3 239,580.6 7,279.4 31,650.8 145,491.7 492,491.1 

32  Other manufacturing 38,881.8 107,023.4 35,401.9 148,614.6 2,268.7 7,663.6 167,369.0 1,500,651.0 

33  Repair and installation of machinery and equipment 29,424.7 79,027.2 288,722.4 1,209,051.0 1,292.8 5,203.9 56,093.2 198,963.6 

41  Construction of buildings 101,104.3 1,087,420.0 404,506.4 1,090,620.0 1,059.7 4,716.5 58,441.0 476,620.1 

42  Civil engineering 235,213.7 2,115,134.0 4,415,725.0 41,500,000.0 3,808.0 37,619.8 1,229,133.0 13,000,000.0 

43  Specialised construction activities 15,575.7 46,168.3 223,395.4 608,916.9 845.1 3,805.8 26,367.0 66,404.4 

45  Wholesale and retail trade and repair of motor vehicles and motorcycles 100,294.0 359,239.1 56,501.1 213,822.4 1,740.4 11,110.0 31,234.8 136,174.1 

46  Wholesale trade, except of motor vehicles and motorcycles 95,697.0 626,093.9 43,264.0 259,465.1 8,931.1 93,269.0 61,929.9 1,589,451.0 

47  Retail trade, except of motor vehicles and motorcycles 62,476.1 183,004.8 17,175.0 178,893.9 3,386.5 32,850.6 46,844.8 218,060.3 

49  Land transport and transport via pipelines 6,632.6 54,417.3 442,502.6 1,213,676.0 1,474.1 11,385.0 121,945.8 404,699.2 

50  Water transport 25,472.0 100,104.6 2,558,872.0 8,347,657.0 6,084.3 30,175.4 1,233,157.0 3,435,051.0 

51  Air transport 7,939.0 35,153.0 5,790,746.0 8,140,199.0 7,582.0 11,068.9 7,923,317.0 19,500,000.0 

52  Warehousing and support activities for transportation 9,778.3 86,844.0 2,372,739.0 15,900,000.0 3,235.0 13,860.4 189,264.3 1,116,700.0 

53  Postal and courier activities 4,341.0 22,378.3 360,156.4 975,612.0 1,959.9 7,165.6 30,561.1 63,277.5 
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55  Accommodation 24,628.1 392,394.8 360,163.0 1,729,594.0 4,195.9 23,503.9 536,275.2 2,378,444.0 

56  Food and beverage service activities 8,518.9 22,283.0 173,512.9 365,735.6 1,983.0 11,037.4 55,769.7 177,450.1 

58  Publishing activities 46,297.2 319,217.1 175,598.3 699,004.7 12,104.9 63,124.5 18,875.1 86,965.5 

59 
 Motion picture, video and television programme production, sound recording 

and music publishing activities 1,426.3 8,241.6 259,540.6 800,226.5 28,119.5 232,326.2 75,299.6 335,639.4 

60  Programming and broadcasting activities 971.6 3,588.5 371,098.5 961,688.5 5,810.2 13,655.9 46,416.1 110,496.1 

61  Telecommunications 4,146.7 11,856.9 717,714.2 4,191,302.0 1,729.2 7,577.5 56,232.6 634,578.5 

62  Computer programming, consultancy and related activities 7,227.8 79,839.1 284,135.4 1,061,515.0 6,070.2 38,964.2 31,371.0 336,292.1 

63  Information service activities 3,465.4 30,164.8 183,232.0 817,718.3 5,031.3 22,797.0 137,597.5 2,791,120.0 

64  Financial service activities, except insurance and pension funding 9,404.0 61,958.9 282,110.8 1,003,998.0 5,268.3 22,080.4 206,299.4 1,689,938.0 

65 Insurance, reinsurance and pension funding, except compulsory social security - - 21,536.8 25,366.0 699.5 748.1 3,685.6 5,313.0 

66  Activities auxiliary to financial services and insurance activities 426.7 6,949.9 166,866.9 1,869,817.0 1,075.9 5,099.9 12,730.5 31,262.8 

69  Legal and accounting activities 662.1 8,613.3 76,987.3 182,968.1 775.9 3,156.5 16,085.6 48,282.9 

70  Activities of head offices; management consultancy activities 79,586.0 1,926,238.0 226,152.0 1,157,326.0 6,783.6 83,588.6 40,633.7 370,530.6 

71  Architectural and engineering activities; technical testing and analysis 14,280.9 121,973.6 218,953.4 981,415.1 1,779.4 8,724.7 43,566.2 307,458.8 

72  Scientific research and development 19,590.0 63,842.5 128,802.9 560,433.8 2,117.6 5,621.2 179,075.5 1,020,869.0 

73  Advertising and market research 2,243.2 9,135.0 191,660.7 568,680.3 13,803.5 147,140.1 19,256.6 66,315.8 

74  Other professional, scientific and technical activities 12,001.1 77,693.0 134,225.3 747,135.6 2,334.9 14,304.9 19,501.3 70,650.2 

75  Veterinary activities 13,731.9 24,653.0 70,190.2 237,065.7 988.0 3,341.7 57,869.6 147,582.6 

77  Rental and leasing activities 26,603.0 144,159.1 264,753.2 990,158.5 5,429.7 35,767.5 281,838.8 1,342,657.0 

78  Employment activities 1,133.7 9,478.4 1,608,794.0 3,344,081.0 3,417.5 8,302.4 25,233.8 56,580.2 

79  Travel agency, tour operator reservation service and related activities 1,317.2 17,041.9 602,882.2 2,611,657.0 7,482.0 49,775.6 21,428.1 48,306.0 

80  Security and investigation activities 29,584.8 286,081.9 542,180.5 2,818,307.0 11,139.8 116,091.2 62,274.1 267,567.3 

81  Services to buildings and landscape activities 3,435.2 28,281.5 153,780.9 460,276.4 1,040.2 10,734.1 18,022.4 38,847.7 

82 Office administrative, office support and other business support activities 6,368.1 42,450.6 251,262.7 1,025,572.0 3,988.5 20,384.1 49,876.4 340,944.6 

 Total 54,778.3 802,381.5 181,446.1 2,966,975.0 3,973.8 48,607.9 92,890.7 1,410,789.0 

Notes: N = 164.538 firm-year observations, representing a total of  72,035 new firms established between 2010 and 2017 and followed until 2017 
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Table 1(b): Mean, SD, and pairwise correlations 
  Mean SD 1 2 3 4 5 6 7 

1 Sales Revenues 485,393.9 4,233,883.0 1       
2 Equity -22,596.4 19,700,000.0 0.057*** 1      
3 Labor 5.8 32.8 0.506*** 0.018*** 1     
4 Inventories 54,778.3 802,381.5 0.352*** -0.304*** 0.196*** 1    
5 Services 181,446.1 2,966,975.0 0.726*** 0.060*** 0.602*** 0.148*** 1   
6 Advertising 3,973.8 48,607.9 0.168*** 0.011*** 0.086*** 0.092*** 0.058*** 1  
7 Capital 92,890.7 1,410,789.0 0.587´*** 0.080*** 0.433*** 0.228*** 0.504*** 0.069*** 1 

Notes: N = 164.538 firm-year observations, representing a total of  72,035 new firms established between 2010 and 2017 and followed until 2017 

* p<0.10, ** p<0.05, ***p<0.01 
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Table 2. Empirical results for posterior moments 
    

 post. 

mean  

post. 

median  

post. 

s.d.  

efficiency  0.875  0.874  0.014  

technical change  -0.0004  0.0001  0.0016  

 

production function elasticities  

equity  0.108  0.109  0.012  

labor  0.640  0.642  0.022  

inventories  0.063  0.061  0.012  

services  0.051  0.050  0.016  

advertising  0.048  0.049  0.007  

capital  0.044  0.044  0.011  

returns to scale  0.956  0.957  0.028  

𝛽  0.969  0.979  0.033  

𝛿  0.124  0.126  0.027  

𝛾𝑘   0.268  0.263  0.012  

𝛾𝑢  0.223  0.214  0.022  

productivity growth  0.011  0.015  0.014  

𝜌Ω  0.503  0.518  0.055  

𝜌𝜋  0.904  0.901  0.023  

𝜌𝜚  0.705  0.691  0.044  

𝜌𝑢  0.911  0.908  0.015  

BF  1.60 

103  
1.65 

103  
0.17 

103  
    

    

 

Notes: Returns to scale are estimated as 𝑅𝑇𝑆 = ∑𝐽𝑗=1
𝜕 𝑙𝑜𝑔 𝑓(𝒙,𝑘)

𝜕 𝑙𝑜𝑔 𝑥𝑗
+
𝜕 𝑙𝑜𝑔 𝑓(𝒙,𝑘)

𝜕 𝑙𝑜𝑔 𝑘
. Productivity growth is estimated as 𝑃𝐺 =

log 
𝛺𝑖𝑡

𝛺𝑖,𝑡−1
. Technical change is 𝑇𝐶 =

𝜕 𝑙𝑜𝑔 𝑓(𝒙,𝑘)

𝜕𝜏
. BF is the Bayes factor in favor of the model with advertising and against the model 

without advertising.  
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Figure 1. Technical efficiency and other aspects of the model 
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Figure 2. Marginal posterior densities
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Notes: Productivity growth is estimated as firm-specific posterior mean of log 
𝛺𝑖𝑡

𝛺𝑖,𝑡−1
 . 
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Figure 3. Marginal posterior densities, II 
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Figure 4. Aspects of the model in terms of efficiency and productivity 
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Appendix A 
 

The model with inefficiency and productivity 
To introduce inefficiency, we modify the production function as  

 𝑦𝑡 = 𝑓(𝒙𝑡, 𝑘𝑡)𝑒
Ω𝑡−𝑢𝑡 , (A1) 

where 𝑢𝑡 ≥ 0 represents technical inefficiency, and Ω𝑡 ∈ ℜ is productivity (Olley and Pakes, 1996, 

Levinsohn and Petrin, 2003). We assume that Ω𝑡 is exogenously given to the firm but inefficiency is not. 

Efficiency can be improved and its cost of adjustment is 𝛾𝑢 > 0 per unit of the product price. The cost 

of efficiency adjustment is 
1

2
𝛾𝑢𝑝𝑡(𝑒

−𝑢𝑡 − 𝑒−𝑢𝑡−1)2. The problem of the firm becomes:  

 

max
𝒙𝑡∈ℜ+

𝐽
,𝑘𝑡≥0,𝑢𝑡≥0

 𝔼0∑𝛽𝑡
∞

𝑡=0

{𝑝𝑡𝑓(𝒙𝑡, 𝑘𝑡)𝑒
Ω𝑡−𝑢𝑡 −𝒘′𝑡𝒙𝑡 − 𝑟𝑡𝑘𝑡

− 𝑝𝑡𝐺 (𝑘𝑡 − (1 − 𝛿)𝑘𝑡−1⏟          
𝜄𝑡

)

− 𝑝𝑡
1

2
𝛾𝑢(𝑒

−𝑢𝑡 − 𝑒−𝑢𝑡−1)2}. 

(A2) 

 

Expectations are taken with respect to all future prices as well as the law of motion of productivity:  

 

Ω𝑡 = 𝜑Ω + 𝜌ΩΩ𝑡−1 + 𝜉𝑡 , 𝜉𝑡 ∼ i. i. d 𝒩(0, 𝜎𝜉
2), 𝑡 = 1,2,… ,

Ω0 ∼ 𝒩 (
𝜑𝛺

1 − 𝜌𝛺
,
𝜎𝜉
2

1 − 𝜌𝛺
2) , 𝜌Ω ∈ (0,1).

 (A3) 

 

All first-order conditions have to be modified in view of introducing productivity and costly efficiency. 

However, the cost-minimizing conditions remain the same as in (13). The Euler equation for capital in 

(16) becomes:  

 𝑒𝑘(𝒙𝑡, 𝑘𝑡)
𝑓(𝒙𝑡, 𝑘𝑡)

𝑘𝑡
𝑒Ω𝑡−𝑢𝑡 − 𝜚𝑡 − 𝛾𝑘𝜄𝑡 = 𝛽𝛾𝑘(1 − 𝛿)𝔼𝑡𝜄𝑡𝜋𝑡+1. (A4) 

 

The Euler equation for inefficiency becomes:  

 
𝑓(𝒙𝑡, 𝑘𝑡)𝑒

Ω𝑡 − 𝛾𝑢(𝑒
−𝑢𝑡 − 𝑒−𝑢𝑡−1) + 𝛽𝛾𝑢𝑒

−𝑢𝑡𝔼𝑡𝜋𝑡+1(𝑒
−𝑢𝑡+1 − 𝑒−𝑢𝑡)

= 0. 
(A5) 

 

Finally, Bellman’s equation for the problem is:  

 

𝑉(𝑘, 𝑢, Ω) = { max
𝒙∈ℜ+

𝐽
,𝑘≥0,𝑢≥0

 𝑝𝑓(𝒙, 𝑘) − 𝒘′𝒙 − 𝑟𝑘 − 𝑝𝐺(𝜄)}

+𝛽∫𝑉 (𝑘′, 𝑢′, Ω′) d𝐹(Ω′|Ω),

𝑘′ = (1 − 𝛿)𝑘 + 𝜄,

Ω′ = 𝜑Ω + 𝜌ΩΩ,

 (A6) 

where 𝐹(Ω′|Ω) denotes the distribution function of Ω′ conditional on Ω.  

 

Estimation and inference 

1. Assumptions 
 

Our system of equations consists of a set of conditional moments in (13), (A4), and (A5). Both (A4) and 

(A5) contain sector, firm, region, and age effects to capture time-invariant effects. In addition, log relative 

prices 𝜔𝑡𝑗 (𝑗 = 2, … , 𝐽), the relative user cost of capital (𝜚𝑡) and inflation (𝜋𝑡+1) are unknown. Using the 

formulation in section 2, we assume  

 𝜔𝑖𝑡,𝑗 = 𝛼𝑗,𝑖 + 𝛾𝑗,𝑡  ∀𝑗 = 2,… , 𝐽, (A7) 

where 𝑖 and 𝑡 denote the firm and time (𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇), 𝛼𝑗,𝑖 denotes factor-specific firm effects, 

and 𝛾𝑗,𝑡 denotes factor-specific time effects. For productivity we assume the standard specification 

(Levinsohn and Petrin 2003; Olley and Pakes 1996):  
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Ω𝑖𝑡 = 𝜑Ω + 𝜌ΩΩ𝑖,𝑡−1 + 𝜉𝑖𝑡 , 𝜉𝑖𝑡 ∼ i. i. d 𝒩(0, 𝜎𝜉

2), 𝑖 = 1,… , 𝑛, 𝑡

= 1,… , 𝑇. 
(A8) 

 

The initial condition is modeled as  

 Ω𝑖0 ∼ 𝒩 (
𝜑𝛺

1 − 𝜌𝛺
,
𝜎𝜉
2

1 − 𝜌𝛺
2) , 𝑖 = 1, … , 𝑛, 𝜌Ω ∈ (0,1). (A9 

 

It remains to specify processes for the relative user cost of capital and inflation. We assume:  

 

log 𝜋𝑡 = 𝜑𝜋 + 𝜌𝜋 log 𝜋𝑡−1 + 𝜌𝑜Π𝑡
∗ + 𝜉𝜋,𝑡, 𝜉𝜋,𝑡 ∼ i. i. d 𝒩(0, 𝜎𝜋

2), 𝜌𝜋 ∈ (0,1),

log 𝜋0 ∼ 𝒩 (
𝜑𝜋

1 − 𝜌𝜋
,
𝜎𝜋
2

1 − 𝜌𝜋2
) .

 (A10) 

 

Here, Π𝑡
∗ is the economy-wide inflation ratio (based on the consumer price index, CPI) which we take 

from the IMF data to help us anchor better inflation and relative prices.  

For the relative user cost of capital we can, in turn, assume that it is related to inflation as follows:  

 

log 𝜚𝑡 = 𝜑𝜚 + 𝜌𝜚 log 𝜚𝑡−1 + 𝜌𝜋𝜚 log 𝜋𝑡 + 𝜉𝜚,𝑡, 𝜉𝜚,𝑡 ∼ i. i. d 𝒩(0, 𝜎𝜚
2),

log 𝜚0 ∼ 𝒩 (
𝜑𝜚 + 𝜌𝜋 𝑙𝑜𝑔 𝜋𝑡

1 − 𝜌𝜚
,
𝜚𝜋𝜚
2 + 𝜎𝜋0

2 + 𝜎𝜚
2

1 − 𝜌𝜚2
) , 𝜌𝜚 ∈ (0,1),

 (A11) 

where 𝜎𝜋0
2 = 

𝜎𝜋
2

1−𝜌𝜋
2.  

 

2. Estimation 
In the interest of brevity let us define the vector of log relative prices 𝝎𝑡 = [𝜔2,𝑡 , … , 𝜔𝐽,𝑡]

′ , and the other 

(dynamic) latent variables in the model, viz.  

 𝝀𝑡 = [Ω𝑡, 𝜚𝑡 , 𝒖𝑡 , 𝜋𝑡], (A12) 

where Ω𝑡 = [Ω1𝑡, … , Ω𝑛𝑡]
′, 𝒖𝑡 = [𝑢1𝑡, … , 𝑢𝑛𝑡]

′. Although the firm optimizes with respect to inefficiency, 

this is unobserved by us. Therefore, we have to adopt a law of motion for this variable:  

 

log 𝑢𝑖𝑡 = 𝜑𝑢 + 𝜌𝑢 log 𝑢𝑖,𝑡−1 + 𝜉𝑢,𝑖𝑡, 𝜉𝑢,𝑖𝑡 ∼ i. i. d 𝒩(0, 𝜎𝑢
2), 𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇,

log 𝑢𝑖0 ∼ 𝒩(
𝜑𝑢

1 − 𝜌𝑢
,
𝜎𝑢
2

1 − 𝜌𝑢2
) , 𝑖 = 1,… , 𝑛, 𝜌𝑢 ∈ (0,1).

 (A13) 

 

In addition, we specify our production function as the translog functional form which enjoys widespread 

popularity:  

 

log 𝑦𝑖𝑡 = 𝛽𝑖0 + 𝜷1
′ log 𝒙𝑖𝑡 + 𝛽𝑘 log 𝑘𝑖𝑡 + 𝛽𝜏𝜏𝑖𝑡

+
1

2
log 𝒙𝑖𝑡

′𝑩1 log 𝒙𝑖𝑡 +
1

2
𝛽𝑘𝑘(log 𝑘)𝑖𝑡

2 +
1

2
𝛽𝜏𝜏𝜏𝑖𝑡

2 + 𝜷𝜏𝑥
′𝜏𝑖𝑡 log 𝑥𝑖𝑡 + 𝜷𝑘𝑥

′ log 𝑥𝑖𝑡 log 𝑘𝑖𝑡 ,
 
(A14

) 

where 𝜏𝑖𝑡 = 𝑡 (∀𝑖 = 1, … , 𝑛, 𝑡 = 1, … , 𝑇) denotes a time trend. Moreover, 𝛽𝑖0 denotes firm effects. The 

parameters of the translog production function are collectively denoted by 𝜷 ∈ ℜ𝑃, where 𝑃 denotes the 

dimensionality of 𝜷.  

To proceed with estimation, our estimating equations have a conditional moments structure and we can 

state them compactly as follows.  

 𝔼𝑡𝔉(𝝀𝑡−1, 𝝀𝑡, 𝝀𝑡+1, 𝝎𝑡, 𝒀𝑡, Θ) = 𝟎𝑀+𝐽+1, (A15) 

where 𝔉(⋅) is a vector function of observable data 𝒀𝑡 = [log 𝒘𝑡
′ , log 𝑦𝑡 , 𝑘𝑡, 𝒙𝑡]

′, 𝝎𝑡 = [𝜔𝑗𝑡, 𝑗 =

2,… , 𝐽]′ is the vector of log factor prices, unknown parameters Θ (which contains 𝛽 plus all 𝜌 and 𝜑 

parameters previously introduced) and dynamic latent variables and distortions 𝝀𝑡. The equations in 

(A15) could have been used in the context of estimation by the method of Generalized Method of 

Moments (GMM). In our case however, things are more complicated because the system contains 

unobserved dynamic latent variables (𝝀𝑡) and the unknown log relative prices (𝝎𝑡). For details on 

computation using state of the art Markov Chain Monte Carlo (MCMC) methods related to (Gallant et 

al. 2017) (see also Gallant et al. (2018)), we refer the reader to Appendix A. In Appendix C we provide 

evidence on prior sensitivity as well as numerical performance of our MCMC.  

3. Benchmark prior 
 

The parameter vector is Θ ∈ ℜ𝑃. Our benchmark prior distribution is  

 Θ ∼ 𝒩𝑃(Θ̄, ΣΘ), (A16) 
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where 𝒩𝑃(⋅) denotes the 𝑃-variate normal distribution, Θ̄ ∈ ℜ𝑃 is the prior mean, and ΣΘ ∈ ℜ
𝑃×𝑃 is the 

prior covariance matrix. To represent a state of knowledge of “knowing little” we set Θ̄ = 𝟎 (a 𝑃 × 1 

zero vector), and ΣΘ = ℎ̄
2𝑰𝑃, where 𝑰𝑃 is the 𝑃 × 𝑃 identity matrix, and ℎ̄ > 0 is a scalar parameter that 

measures prior uncertainty about the prior mean. For our benchmark prior we set ℎ̄ = 100.  
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Appendix B 
 

We estimate our model via a (nonparametric) Bayesian Exponentially Tilted Empirical Likelihood 

(BETEL) method proposed by Schennach (2005) as an alternative to fully parametric Bayesian methods 

which we modify to accommodate the presence of dynamic latent variables—namely, technical 

efficiency and the distortions in quasi-fixed factors—in the moment conditions.  

To fix ideas, first, suppose that no latent variables are involved in the model and we have the moment 

conditions of the following form: 𝔼𝑡𝒢(Ξ𝑡, 𝒂) = 𝟎dim (𝒢) ∀ 𝑡 = 1,… , 𝑛, where Ξ𝑡 and 𝒂 respectively 

represent data and unknown parameters. The Bayesian posterior corresponding to the BETEL is given 

by  

 𝑝(𝒂|Ξ) ∝ 𝑝(𝒂)∏𝜔𝑡
∗

𝑛

𝑡=1

(𝒂), (B1) 

where 𝑝(𝒂) is a prior and {𝜔𝑡
∗(𝒂), 𝑡 = 1,… , 𝑛} are solutions to the following problem:  

 max
{𝜔𝑡}𝑡=1

𝑛
 −∑𝜔𝑡

𝑛

𝑡=1

log 𝜔𝑡 (B2) 

 subject to ∑𝜔𝑡

𝑛

𝑡=1

= 1 (B3) 

       ∑𝜔𝑡

𝑛

𝑡=1

𝒢(Ξ𝑡, 𝒂) = 𝟎dim (𝒢), (B4) 

provided that the interior of the convex hull of ⋃ {𝑛
𝑡=1 𝒢(Ξ𝑡, 𝒂)} contains the origin.  

Now suppose that the model contains dynamic latent variables 𝝀𝑡 and we have the moment conditions in 

(31): 𝔼𝑡𝔉(𝝀𝑡+1, 𝒀𝑡, Θ) = 𝟎 ∀ 𝑡 = 1, … , 𝑛, where we have suppressed the dependence on 𝝀𝑡−1 and 𝝀𝑡 for 

notational simplicity. Also, assume that dynamic latent variables evolve according to some 

autoregressive process:  

 𝝀𝑡+1 = 𝐺(𝝀𝑡, 𝝅) + 𝜀𝑡 , (B5) 

where 𝐺(⋅) is a conditional mean function, 𝝅 is a vector of parameters (corresponding to 𝜑s and 𝜌s in 

main text), and 𝜀𝑡 is a random innovation.  

Our objective is to reduce the estimation problem, which contains latent variables, into the more 

conventional BETEL problem so that the posterior result from above may also be used in our case. Thus, 

our posterior has the following form:  

 𝑝(Θ,𝝅, 𝝀|𝒀) ∝ 𝑝(Θ)𝑝(𝝅)∏𝑝

𝑛

𝑡=1

(𝝀𝑡+1|𝝀𝑡, 𝝅)∏𝜔𝑡
∗

𝑛

𝑡=1

(Θ, 𝝀), (B6) 

where 𝝀 = {𝝀𝑡 , 𝑡 = 1, . . . , 𝑛}, and 𝜔𝑡
∗(Θ, 𝝀) solves  

 max
{𝜔𝑡}𝑡=1

𝑛
 −∑𝜔𝑡

𝑛

𝑡=1

log 𝜔𝑡 (B7) 

 subject to ∑𝜔𝑡

𝑛

𝑡=1

= 1 (B8) 

       ∑𝜔𝑡

𝑛

𝑡=1

ℱ(𝝀𝑡+1, 𝒀𝑡 , Θ) ⊗ 𝒛𝑡 = 𝟎, (B9) 

with 𝒛𝑡 being a vector of instruments. These instruments are subsumed in conditional expectations 𝔼𝑡(⋅) 
in main text and should, at least, include variables that are considered by the firm when making its 

decisions. Here, we assume that the instruments are lagged values of inputs, output, time, their squares 

and interactions and regional and firm dummies multiplied by all these variables.  

Posterior in (A.6) depends on parameters Θ and 𝝅 as well as the dynamic latent variables in 𝝀. While 

these latent variables are of fundamental interest in themselves, at the same time, they must also be 

integrated out of the posterior to perform statistical inference on the parameters:  

 𝑝(Θ,𝝅|𝒀) ∝ ∫𝑝 (Θ,𝝅, 𝝀|𝒀)𝑑𝝀, (B10) 

which, in general, is impossible to perform analytically.  

Before proceeding further, we first need to specify the process in (A.5). We opt for a second-order vector 

autoregressive (VAR) specification with Gaussian innovations, i.e.,  

 𝝀𝑡 = 𝝅0 +𝝅1𝝀𝑡−1 + 𝜺𝑡 with 𝜺𝑡 ∼ 𝒩(𝟎𝑀 , Σ𝜀), (B11) 
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where 𝑀 = dim(𝝀𝑡), 𝝅0, 𝝅1 are the 𝑀× 1 and 𝑀 ×𝑀 respectively, and 𝝅 = [𝝅0
′, vec(𝝅1)

′]′. The 

choice of a VAR model is motivated by the dynamics associated with our optimization problem.  

We use Markov Chain Monte Carlo (MCMC) methods to perform computations. Our MCMC involves 

two steps that are carried out for each MCMC iteration. In the first step, we use Sequential Monte Carlo 

(SMC), or Particle Filtering (PF), to provide draws for {𝝀𝑡
(𝑖)
, 𝑖 = 1,… ,𝑁}, where 𝑖 indexes the MCMC 

simulation, and 𝑁 is the total number of such simulations. In the second step, we draw parameters Θ(𝑖) 
and 𝝅(𝑖). Since standard Metropolis-Hastings algorithms may be quite computationally inefficient, we 

use the Girolami and Calderhead (2011) Langevin–Hamiltonian Monte Carlo method (hereafter, the GC 

algorithm). This technique is reliable, requires almost no tuning, and the MCMC draws that it provides 

have considerably less autocorrelation compared to other MCMC algorithms.  

In what follows, we briefly describe the employed methodologies using generic notation.  

1. Step 1. 
The SMC/PF methodology is applied to state-space models of the following generic form:  

 𝑦𝑇 ∼ 𝑝(𝑦𝑡|𝑥𝑡) and 𝑠𝑡 ∼ 𝑝(𝑠𝑡|𝑠𝑡−1), (B12) 

where 𝑠𝑡 is a state variable. Given the data 𝑌𝑡, the posterior distribution 𝑝(𝑠𝑡|𝑌𝑡) can be approximated by 

a set of (auxiliary) particles {𝑠𝑡
(𝑖)
, 𝑖 = 1,… , 𝑁} with probability weights {𝑤𝑡

(𝑖)
, 𝑖 = 1,… , 𝑁} such that 

∑ 𝑤𝑡
(𝑖)𝑁

𝑖=1 = 1. With this, we can approximate the predictive density by  

 𝑝(𝑠𝑡+1|𝑌𝑡) = ∫𝑝 (𝑠𝑡+1|𝑠𝑡)𝑝(𝑠𝑡|𝑌𝑡)𝑑𝑠𝑡 ≃∑𝑝

𝑁

𝑖=1

(𝑠𝑡+1|𝑠𝑡
(𝑖)
)𝑤𝑡

(𝑖)
, (B13) 

with the final approximation for the filtering density being given by  

 

𝑝(𝑠𝑡+1|𝑌𝑡) ∝ 𝑝(𝑦𝑡+1|𝑠𝑡+1)𝑝(𝑠𝑡+1|𝑌𝑡)

≃ 𝑝(𝑦𝑡+1|𝑠𝑡+1)∑𝑝

𝑁

𝑖=1

(𝑠𝑡+1|𝑠𝑡
(𝑖)
)𝑤𝑡

(𝑖)
. 

(B14) 

 

Then, the basic mechanism of particle filtering rests on propagating {𝑠𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
, 𝑖 = 1,… ,𝑁} to the next 

step, i.e., {𝑠𝑡+1
(𝑖)
, 𝑤𝑡+1

(𝑖)
, 𝑖 = 1,… ,𝑁}. Because parameters Θ ∈ ℜ𝑃 are often available, Andrieu and Roberts 

(2009), Flury and Shephard (2011) and Pitt et al. (2012) provide the Particle Metropolis-Hastings 

(PMCMC) technique which uses an unbiased estimator of the likelihood function 𝑝̂𝑁(𝑌|Θ) since 𝑝(𝑌|Θ) 
is often unavailable in a closed form.  

We use Sequential Monte Carlo / Particle Filtering (SMC/PF), where particles are simulated through the 

state density 𝑝(𝑠𝑡
(𝑖)
|𝑠𝑡−1
(𝑖)
) and then re-sampled with weights determined by the measurement density 

evaluated at the resulting particle, i.e., 𝑝(𝑦𝑡|𝑠𝑡
(𝑖)
). The latter is simple to construct and rests upon the 

following steps, for 𝑡 = 0,… , 𝑇 − 1 given samples 𝑠𝑡
𝑘 ∼ 𝑝(𝑠𝑡|𝑌1:𝑡) with mass 𝜋𝑡

𝑘 for 𝑘 = 1,… , 𝑁:  

1. For 𝑘 = 1,… , 𝑁, compute 𝜔𝑡|𝑡+1
(𝑘)

= 𝑔(𝑦𝑡+1|𝑠𝑡
(𝑘)
)𝜋𝑡

(𝑘)
, 𝜋𝑡|𝑡+1

(𝑘)
= 𝜔𝑡|𝑡+1

(𝑘)
/∑ 𝜔𝑡|𝑡+1

(𝑖)𝑁
𝑖=1 .  

2. For 𝑘 = 1,… , 𝑁, draw 𝑠̃𝑡
(𝑘)
∼ ∑ 𝜋𝑡|𝑡+1

(𝑖)𝑁
𝑖=1 𝛿𝑠𝑡

(𝑖)
(𝑑𝑠𝑡).  

3. For 𝑘 = 1,… , 𝑁, draw 𝑢𝑡+1
(𝑘)

∼ 𝑔(𝑢𝑡+1|𝑠̃𝑡
(𝑘)
, 𝑦𝑡+1) and set 𝑠𝑡+1

(𝑘)
= ℎ(𝑠𝑡

(𝑘)
; 𝑢𝑡+1
(𝑘)
).  

4. For 𝑘 = 1,… , 𝑁, compute  

𝜔𝑡+1
(𝑘)

=
𝑝(𝑦𝑡+1|𝑠𝑡+1

(𝑘)
)𝑝(𝑢𝑡+1

(𝑘)
)

𝑔(𝑦𝑡+1|𝑠𝑡
(𝑘)
)𝑔(𝑢𝑡+1

(𝑘)
|𝑠̃𝑡
(𝑘)
, 𝑦𝑡+1)

 and 𝜋𝑡+1
(𝑘)

=
𝜔𝑡+1
(𝑘)

∑ 𝜔𝑡+1
(𝑖)𝑁

𝑖=1

. 

5.  

Lastly, the estimate of likelihood from ADPF is 𝑝(𝑌1:𝑇) = ∏ (∑ 𝜔𝑡−1|𝑡
(𝑖)𝑁

𝑖=1 )𝑇
𝑡=1 (𝑁−1∑ 𝜔𝑡

(𝑖)𝑁
𝑖=1 ).  

2. Step 2. 
To update draws for the parameter vector of interest Θ, the GC algorithm uses local information about 

both the gradient and the Hessian of the log-posterior conditional on Θ at the existing draw. We use 

50,000 iterations. Then, we run another 100,000 MCMC iterations to obtain the final results for posterior 

moments and densities of parameters and functions of interest.  

Let 𝐿(Θ) = log 𝑝 (Θ|𝑌) denote the log posterior of Θ. Also, define 𝐺(Θ) = est. cov
𝜕

𝜕𝜃
log 𝑝 (𝑌|Θ) to 

be the empirical counterpart of 𝐺𝑜(Θ) = −𝔼𝑌|Θ
𝜕2

𝜕𝛩𝜕𝛩′
log 𝑝 (𝑌|Θ). The Langevin diffusion is provided 

by the stochastic differential equation below.  

 𝑑Θ(𝑡) =
1

2
𝛻̃𝜃𝐿{Θ(𝑡)}𝑑𝑡 + 𝑑𝐵(𝑡), (B5) 

where  
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 𝛻̃Θ𝐿{Θ(𝑡)} = −𝐺
−1{Θ(𝑡)} ⋅ 𝛻Θ𝐿{Θ(𝑡)} (B16) 

is the“natural gradient” of the Riemann manifold generated by the log posterior. The elements of the 

Brownian motion, in this instance, are given as:  

𝐺−1{Θ(𝑡)}𝑑𝐵𝑖(𝑡)

= |𝐺{Θ(𝑡)}|−1/2∑

𝑃

𝑗=1

𝜕

𝜕𝛩
[𝐺−1{Θ(𝑡𝑡)}𝑖𝑗|𝐺{Θ(𝑡)}|

1/2]𝑑𝑡 + [√𝐺{Θ(𝑡)}𝑑𝐵(𝑡)]
𝑖
. (B17) 

 

The discrete form of the stochastic differential equation provides a proposal as follows:  

Θ̃𝑖 =  Θ𝑖
𝑜 +

𝜖2

2
{𝐺−1(Θ𝑜)𝛻𝜃𝐿(Θ

𝑜)}𝑖 − 𝜖
2∑ {𝐺−1(Θ𝑜)

𝜕𝐺(𝛩𝑜)

𝜕𝛩𝑗
𝐺−1(Θ𝑜)}

𝑖𝑗

𝑃

𝑗=1
 + 

 
𝜖2

2
∑ {𝐺−1(Θ𝑜)}𝑖𝑗

𝑃

𝑗=1
tr {

𝐺−1(Θ𝑜)
𝜕𝐺(𝛩𝑜)

𝜕𝛩𝑗
𝑖̊𝑔ℎ𝑡} + {𝜖√𝐺−1(Θ𝑜)𝜉𝑜}

𝑖

≡  𝜇(Θ𝑜, 𝜖)𝑖 + {𝜖√𝐺−1(Θ𝑜)𝜉
𝑜}
𝑖
, (𝐴. 18)

 

where Θ𝑜 is the current draw, and the constant 𝜖 > 0 is calibrated during the burn-in phase to maintain 

an acceptance rate close to 20% (which is optimal for a multivariate normal proposal as its dimensionality 

becomes large). The proposal density is  

 𝑞(Θ̃|Θ𝑜) = 𝒩𝑃 (Θ̃, 𝜖
2𝐺−1(Θ𝑜)), (B19) 

and convergence to the invariant distribution is ensured by using the standard-form Metropolis-Hastings 

probability:  

 min {1,
𝑝(𝛩̃| ⋅, 𝑌)𝑞(𝛩𝑜|𝛩̃)

𝑝(𝛩𝑜| ⋅, 𝑌)𝑞(𝛩̃|𝑜𝑙𝛩𝑜)
}. (B20) 
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Appendix C 
 

In this Appendix, we examine the behavior of MCMC as well as sensitivity to prior assumptions. We 

consider 10,000 priors obtained by varying the parameters of the benchmark prior (32) as follows:  

 

Θ̄ ∼ 𝒩𝑃(0, 10
3),

ΣΘ = ℎ𝑨
′𝑨,

log ℎ ∼ 𝒩(0, 102),

 (C1) 

where 𝑨 is a 𝑃 × 𝑃 lower triangular matrix (so that the product 𝑨′𝑨 is positive definite). The different 

elements of 𝑨 are drawn from independent normal distributions 𝒩(0, 102). Finally, although the scale 

parameter ℎ is redundant is user here to increase prior uncertainty.  

The model is re-estimated via SIR and percentage differences relative to posterior means corresponding 

to the benchmark prior are reported in Figure B1. These differences are reported in the form of kernel 

densities, separately for the parameters Θ, the latent variables 𝝀𝑡, and log relative prices 𝝎𝑖𝑡 (recall that 

the dimensionality of this vector is (𝐽 − 1) × 1). In panel (a) we report percentage differences of posterior 

means, and in panel (b) reported are percentage differences of posterior standard deviations. From these 

results, it turns out that posterior moments of parameters and latent variables are fairly robust to prior 

assumptions.  

To assess numerical performance of MCMC we focus on relative numerical efficiency (RNE) 

and MCMC autocorrelation draws for Ω𝑖𝑡 as results were roughly the same for other latent variables and 

parameters. RNE is a measure of closeness to i.i.d drawings from the posterior (Geweke, 1992) and, 

ideally, it should be equal to one, i.i.d sampling has been possible. We report median RNE for all MCMC 

draws of Ω𝑖𝑡 (∀𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇) in panel (c) of Figure B.1. In panel (d) of the same Figure we 

report numerical standard errors (NSE, see Geweke, 1992). The conclusion is that all reported results are 

accurate to the decimal places reported.  

 

FIGURE C.1. PRIOR SENSITIVITY ANALYSIS 
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