Emergent Web Server: An Exemplar to Explore Online Learning
in Compositional Self-Adaptive Systems

Roberto Rodrigues Filho
Federal University of Goias
Brazil
robertovito@ufg.br

Barry Porter
Lancaster University
United Kingdom
b.f.porter@lancaster.ac.uk

ABSTRACT

Contemporary deployment environments are volatile, with condi-
tions that are often hard to predict in advance, demanding solutions
that are able to learn how best to design a system at runtime from
a set of available alternatives. While the self-adaptive systems com-
munity has devoted significant attention to online learning, there is
less research specifically directed towards learning for open-ended
architectural adaptation — where individual components represent
alternatives that can be added and removed dynamically. In this
paper we present the Emergent Web Server (EWS), an architecture-
based adaptive web server with 42 unique compositions of alter-
native components that present different utility when subjected to
different workload patterns. This artefact allows the exploration of
online learning techniques that are specifically able to consider the
composition of logic that comprises a given system, and how each
piece of logic contributes to overall utility. It also allows the user to
add new components at runtime (and so produce new composition
options), and to remove existing components; both are likely to
occur in systems where developers (or automated code generators)
deploy new code on a continuous basis and identify code which
has never performed well. Our exemplar bundles together a fully-
functional web server, a number of pre-packaged online learning
approaches, and utilities to integrate, evaluate, and compare new
online learning approaches.

ACM Reference Format:

Roberto Rodrigues Filho, Elvin Alberts, Ilias Gerostathopoulos, Barry Porter,
and Fabio M. Costa. 2022. Emergent Web Server: An Exemplar to Explore
Online Learning in Compositional Self-Adaptive Systems. In Proceedings of
The 17th Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2022). ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEAMS 2022, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/1122445.1122456

Elvin Alberts
Vrije Universiteit Amsterdam
The Netherlands
e.g.alberts@student.vu.nl

Ilias Gerostathopoulos
Vrije Universiteit Amsterdam
The Netherlands
i.g.gerostathopoulos@vu.nl

Fabio M. Costa
Federal University of Goias
Brazil
fmc@inf.ufg.br

1 INTRODUCTION

Self-adaptive systems need to monitor their environment and state
and change their behavior to improve their non-functional objec-
tives: prolong their lifespan, optimize resource usage, and minimize
cost of operation, to name a few. Such changes are typically en-
forced at runtime by suitable tactics developed by engineers at
design time. However, contemporary self-adaptive systems must
deal with conditions that are hard to predict in advance and devise
tactics for. A promising alternative to handle such conditions is to
have the systems themselves learn suitable tactics at runtime — a
research direction known as online learning.

According to a recent survey on the application of machine learn-
ing in adaptive systems [10], online (or interactive) learning [12]
has been targeted by a range of research that applies reinforcement
learning (RL) to determine the best tactic at runtime. The majority of
these approaches use Q-learning, a particular variant of model-free
RL (e.g. [2, 14, 28]), while other approaches such as State-Action-
Reward-State-Action (SARSA) [1, 27] and Multi-Armed Bandits
(MAB) [17, 22, 23] have also been employed. Online learning has
also been tackled from the perspective of online search and opti-
mization, with approaches using, e.g., genetic algorithms [8, 15] to
search the space of possible tactics at runtime by applying them
and measuring their utility.

Drawing from these works and from our own experience, we
have identified a number of distinct and overarching challenges for
online learning in self-adaptive systems, namely: (1) How to select
and tune a specific algorithm for a class of self-adaptive systems? (2)
How to deal with the combinatorial explosion of state-action space
in architecture-based self-adaptive systems? (3) How to deal with
non-stationary environments that make learning and convergence
hard? (4) How to evolve the knowledge built by an online learning
algorithm to consider the addition of new tactics or removal of
existing ones, as new components are added / removed?

To tackle the above challenges in the context of architecture-
based self-adaptive systems, researchers need a common platform
on which to apply, tune, evaluate and compare their approaches
for online learning. Such a platform should provide the basic abili-
ties of representing different self-adaptation tactics, applying them
at runtime, and measuring their utility or reward. Ideally, it also
should offer configuration options that help researchers focus their
research on particular settings, e.g. non-stationary environments
or runtime evolution of the available tactics.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SEAMS 2022, May 21-29, 2022, Pittsburgh, PA, USA

In response, in this paper, we describe the Emergent Web Server
(EWS), a self-adaptive web server that can play the role of such a
platform. In EWS, tactics take the form of alternative architectural
configurations — compositions of individual components that make
up the logic of the web server. Each composition provides a different
utility (measured as average response latency) when subjected to
different workload patterns. EWS provides a total of 42 unique
compositions, but this list can be extended by introducing new
components to the system that enhance its envelope of adaptability.

EWS is built on a powerful component-based language (Dana [21])
that allows for runtime component hot-swaps with low-overhead
and promotes the design of systems via individual components that
feature well-defined interfaces. At the same time, it comes with
both an HTTP and a Python API that allow for (1) obtaining and
changing the current composition, (2) obtaining a list of all available
compositions, (3) adding and removing components on the fly, (4)
adding and removing monitoring probes on the fly, (5) obtaining
the overall utility over a window of time.

In this paper, we present the architecture of EWS (Sec. 3), its
HTTP and Python APIs (Sec. 3.2 and Sec. 3.3), explain how it can
be used and extended by other self-* researchers (Section 4) and
our experience with using the exemplar (Section 5).

2 RELATED WORK

The self-adaptive systems community has already collected 27 exem-
plars that support research in self-adaptation!. Their domains span
from cloud, web and service-based systems [4, 20, 29, 30] to traffic
systems [9, 25], cyber-physical systems [16, 18, 19] and IoT [13, 24].
We specifically compare EWS to the SWIM exemplar [20] as the
most closely related one, since it (i) belongs to the same applica-
tion domain (web), and (ii) has also been used in evaluating online
learning in adaptive systems (e.g. in [15]).

SWIM is a simulation of a multi-tier web application such as
ZNN.com [7]. Its objectives are to (i) serve requests within a prede-
fined latency threshold, (ii) minimize the infrastructure cost (cost
of running servers), (iii) maximize the revenue by serving optional
content (advertisement) with each request. Clearly, these three
goals are in conflict: using more application servers may reduce the
response latency at the expense of extra infrastructure cost, while
serving more optional content increases revenue at the expense of
increased latency. To resolve this conflict at runtime, SWIM pro-
vides two actuators — actions that can be performed at runtime:
(i) increase/decrease the number of application servers, and (ii) in-
crease or decrease a dimmer value that controls how much optional
content is served. A configuration of SWIM (number of servers, dim-
mer value) can be evaluated at runtime, within an online learning
context, by retrieving a utility value which combines the experi-
enced latency, the perceived revenue and the infrastructure cost in
a single value.

Like SWIM, EWS also offers the possibility of evaluating config-
urations at runtime, and can be configured for different load levels
and load types. However, since in EWS individual components that
comprise a web server (such as stream processors, cache compo-
nents, or hash tables) can be combined together in different ways
and even added and removed on the fly, EWS offers the ability to

!https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

Rodrigues-Filho, et al.

evaluate learning approaches that are specifically directed towards
learning for open-ended architectural adaptation. This provides
an even richer landscape for the evaluation of online learning ap-
proaches, which for example may analyse the specific utility of
each component in a composition.

3 EMERGENT WEB SERVER

EWS is a fully functioning component-based web server able to
serve resources to clients issuing HTTP 1.0? requests. EWS has 42
unique compositions that can be (re)assembled at runtime to cope
with changes in the incoming workload pattern. When changing
from one composition to another, the EWS calculates a delta be-
tween the two compositions, then performs a series of individual
component hot-swaps to reach the new composition; each such hot-
swap is guaranteed not to miss or lose any client requests. Amongst
its compositions, there are different variants of stream processors
that use or don’t use compression or caching in their logic, and
different compression and cache replacement algorithms which
combine to form specific EWS compositions. Furthermore, EWS
provides a RESTful API that enables external systems to inspect
and change the current web server composition, add or remove
components at runtime and extract performance metrics from the
executing server. It also provides a baseline online learning algo-
rithm for comparison; researchers can use this exemplar to compare
accuracy and convergence time amongst different online learning
strategies. This section describes the EWS internal architecture, its
RESTful APL and a Python module named PyEWS developed to
facilitate the interaction with EWS in Python.

3.1 EWS Architecture

EWS was developed using a component-based model defined by
the Dana programming language® that supports the change (i.e.,
replacement, addition and removal) of components at runtime. The
Dana component-based model is somewhat similar to OSGi [11] and
Fractal [5], but supports provably sound component hot-swaps as a
result of how the language is designed [21]. Moreover, every part of
a Dana system is inherently a hot-swappable component, from TCP
sockets to graphical user interface widgets, providing ubiquity of
the component-based paradigm throughout a system and likewise
offering uniform reasoning for online learning about all parts of a
system. In general, component-based software is composed of a set
of small, reusable components executing in a single process. Each
component implements an interface, which specify a list of func-
tion prototypes (with parameter- and return-types). Many different
components are able to implement the same interface, providing
a set of component variants (such as different sorting algorithms,
or cache replacement algorithms). These variants are then used as
basis to provide software adaptation tactics at runtime by swapping
one component to one of its variants.

Fig. 1 shows all web server architectural compositions that are
included in the base EWS exemplar. The dotted outer boxes repre-
sents the main interfaces of the EWS, and inside those boxes the
solid-lined entities represent the components that implement the
interface. Most interfaces have many a range of implementation

2REC: https://datatracker.ietf.org/doc/html/rfc1945
3Dana: http://www.projectdana.com

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://datatracker.ietf.org/doc/html/rfc1945
http://www.projectdana.com

Emergent Web Server: An Exemplar to Explore Online Learning in Compositional Self-Adaptive Systems SEAMS 2022, May 21-29, 2022, Pittsburgh, PA, USA

App <inferface>

v

| RequestHandler ‘ ‘RequestHandlerPT‘
T

RequestHandler <interface>

HTTPHandler <interface>

HTTPHandler

HTTPHandlerCMP | |HTTPHandlercHcMP| |HTTPHandlerCH
|
¥ g v A
Compression <interface> CacheHandier <interface>

‘ LFU LRU ‘
‘ MRU ‘ ‘ RR ‘ Legend
; Il Composition options
E ‘ Cache ‘ ‘ CacheFS ‘ M Executing composition
i - Requires interface

Figure 1: EWS architecture. Dotted-lined boxes represents
interfaces. Solid-line boxes represents components. Arrows
represent dependencies. The set of blue boxes and arrows
represent a single composition.

variants, meaning that a change in the web server architecture can
be made by replacing one component to its variant. For instance,
when the Compression compression interface is part of the web
server composition, either component GZip or Zlib is selected for
use in the system. When Gzip is selected, a possible change in the
system architecture consists of swapping the Gzip component to
the Zlib alternative.

The web server has four main interfaces: RequestHandler,
HTTPHandler, Compression and CacheHandlder. These inter-
faces make up the core functionalities of EWS. Component variants
for these interfaces define the number of unique compositions EWS
presents. We next describe each one of these interfaces:

RequestHandler. describes how incoming requests are han-
dled. The components that implement this interface define different
concurrency models to handle incoming requests. The component
RequestHandler creates one thread for every new request, whereas
the RequestHandlerPT keeps a pool of threads and assigns incoming
requests to a queue on one thread in the pool.

HTTPHandler: is a stream processor which defines the main
HTTP serving functionality. Its components implement the basic
processing procedure of a HTTP GET request. The component
HTTPHandler is the default implementation of the interface; when
handling a client request, it searches for the requested resource
in the file system, loads the resource to memory and sends it to
the client. The rest of the components implement the same func-
tionality with additional steps. HTTPHandlerCH is an alternative
that checks if a requested resource is in a cache, responding with
the cached version if so; if not, it locates the resource and adds
it to the cache (potentially evicting other cached items when it

does so) then responds to the client. HTTPHandlerCMP, in turn,
compresses all the data before sending the response to the client.
Finally, HTTPHandlerCHCMP is a combination of both cache and
compression. Therefore, before sending the response to the client,
it compresses the data, and after sending the response to the client,
it caches the compressed response.

Compression: defines the functions used by HTTPHandlerCMP
and HTTPHandlerCHCMP. The two different components that im-
plement this interface provide different compression algorithms.
GZip implements the gzip compression algorithm, whereas Zlib
implements deflate.

CacheHandler: defines the functions used by HTTPHandlerCH
and HTTPHandlerCHCMP that require a cache. The components
that implement this interface provide caching with different cache
replacement algorithms which evict one or more cached items
when the cache is full and a new item is being added. Amongst
the different component variants, there are: Least-frequently-used
(LFU), Least-recently-used (LRU), Most-recently-used (MRU) and
Random Replacement (RR).

Fig. 1 shows every possible EWS composition. A valid composi-
tion consists of selecting one component out of the possible variants
for each of the interfaces that are part of the composition. For in-
stance, the WebServer component is the root component of EWS
and it requires the RequestHandler interface; that means that a
component with that interface needs to be selected; once it is, both
available components require the HT TPHandler interface. At that
interface, there are four unique options. Once the HTTPHandler
component is selected, the composition is finished since it has no
further dependency. However, in case the other components at that
interface are selected, then a component on the required interface
must be selected. This results in a total of 42 unique compositions.

Architectural Description. EWS identifies each of the unique com-
positions that are available using a specific architectural description
string. These description strings are used by the EWS when report-
ing the set of available compositions, the currently-in-use one, and
also in allowing the user (or self-adaptive system controller) to
select a composition to adapt to. The description string encodes
the complete graph of a composition, and has two parts divided by
the symbol “|”; the first part is a list of components that are part
of the composition, the second part defines how the components
are connected. While it is not necessary for a user to understand
the description string format, being able to reason about it allows
a learning algorithm to understand which components are in use
and how each one may be contributing to overall utility.

Fig. 1 highlights a specific example EWS composition. The com-
position description corresponding to this is:

WebServer.o, RequestHandler.o, HTTPHandlerCHCMP.o,
GZip.o, LFU.o|@:RequestHandler:1, 1:HTTPHandler:2,
2:Compression:3, 2:CacheHandler:4

The list of all components in the composition is: Web Server,
RequestHandler, HT TPHandlerCHCMP, GZip, LFU. The description
also denotes how the components are connected: component 0 is
connected to component 1 through interface RequestHandler.

SEAMS 2022, May 21-29, 2022, Pittsburgh, PA, USA

1. HTTP POST: meta/set_main
parameter: {"comp" : "<path to comp>"}

2. HTTP GET: meta/get_config
response: {"config" : "<architecture description>"}

3. HTTP GET: meta/get_all_config

response: {"configs" : ["<arch desc1>", "<arch desc2>"] }
4. HTTP POST: meta/set_config

parameter: {"config” : "<architecture description>"}
5. HTTP POST: meta/add_comp

parameter: {"comps" : ["<comp path>", "<comp path>"] }
6. HTTP POST: meta/remove_comp

parameter: {"comps" : ["<comp path>", "<comp path>"] }
7. HTTP POST: meta/add_proxy

parameter: {"config” : "<architecture description>"}

8. HTTP POST: meta/remove_proxy
parameter: {"config” : "<architecture description>"}

9. HTTP GET: meta/get_perception
response: {"config" : "<architecture description>"}

Figure 2: EWS REST APL

The numbers used in this part of the description are indices into
the list of components in the first part of the description (the first
component starts with 0, the second is 1 and so on). Hence, “0:Re-
questHandler:1” means: component at position 0, which is Web-
Server.o, is connected to the component at the position 1, which is
the component RequestHandler.o.

Throughout our examples here, we note that we have isolated
only the components that specifically relate to the EWS; in reality
composition strings are much longer as they include Dana standard
library components such as TCP, FileSystem, etc.

3.2 EWSREST API

EWS provides a RESTFul API to allow the development of external
learning algorithms. The API provides a set of functions that allow
external services to change EWS composition at runtime, fetch real-
time performance metrics, and add / remove components from the
web server architecture at runtime (where a newly added compo-
nent will cause EWS to derive a set of additional compositions that
are now available which involve that component). In this section
we describe each of these functions and provide some context on
how they are used.

Fig. 2 shows the complete list of functions on the EWS REST APL
The first is “set_main” (Fig. 2 (1)). This function is provided with
the file path of the root component of a system, and dynamically
discovers all possible architectural compositions starting from that
component. This is done by examining the interfaces that the root
component depends on, finding all available components which
implement those interfaces, and then examining the interfaces that
those components depend on, and so on. The “set_main” function
should only be called once when initiating EWS and expects one
parameter, the EWS WebServer root component.

Once EWS is running, all of the other REST API functions can
be used, and operate as follows.

The function “get_all_configs”(Fig. 2 (3)) returns a list of all
available EWS compositions as architecture description strings.
This function is often used by a machine learning algorithm to
determine the list of adaptation tactics that are available.

Rodrigues-Filho, et al.

The “get_config® function (Fig. 2 (2)) returns the architectural
description string of the currently executing EWS composition.

The “set_config” function (Fig. 2 (4)) changes the currently op-
erating composition to a different one. This function receives as
parameter an EWS architectural description string and changes its
composition at runtime (with no down time from the server). This
function is often used by learning algorithms to explore different
architectural compositions and learn their utility in each set of
deployment environment conditions that is detected.

Besides examining available compositions and changing the cur-
rently active one, EWS also allows the dynamic addition of new
components (and newly derived compositions which involve those
components). Additions are made by using the “add_comp” function
(Fig. 2 (5)). A file path to a component is provided as a parameter
(assuming that component has previously been uploaded to the
server via e.g. SFTP), and the system examines which interface this
new component provides, and which interfaces it depends on, and
derives a new set of additional compositions which are then avail-
able through “get_all_configs”. If, for example, a development team
(or automated code improvement system) determines that there
may exist a better cache replacing algorithm that fits the workload
pattern, a new cache component can be dynamically added at run-
time. A new set of compositions is then generated and their efficacy
can be learned by the ongoing online learning process.

The function “remove_comp” (Fig. 2 (6)) removes one or more
EWS components, resulting in some compositions being removed
in which those components were involved. For instance, if the Gzip
compression component is removed, all EWS compositions that use
Gzip are eliminated from the available set of possible compositions.
This can be a useful search space reduction strategy, which in turn
can speed up learning convergence in newly-detected operating
environment conditions, in cases where a learning algorithm has
identified a set of compositions that have poor performance across
a wide range of different operating environments.

In addition to being able to view the set of available compositions,
select a composition, and add/remove components/compositions, an
online learning algorithm must also be able to ascertain the current
reward (or utility) of the chosen composition. EWS provides three
functions through its REST API to support reward monitoring: the
ability to inject and remove monitoring probes at selected points in
a composition, and the ability to collect monitoring data acquired
by those probes.

Monitoring probes can be inserted into EWS using the function
“add_proxy” (Fig. 2 (7)). This function is provided with a file path
to a component which will act as the monitoring probe, and path
expression describing where that probe is to be inserted into any
composition (e.g., in front of which interface).

In case there is already a monitoring probe present, users can
remove it by using the function “remove_proxy” (Fig. 2 (8)). Once
the probe is removed, the user can insert a new probe to extract new
information from EWS. These two functions allow either a human
user or a machine learning algorithm to experiment with measuring
the self-adaptive from different locations to aid in understanding
how different sub-elements of its architecture behave.

Finally, the function “get_perception” (Fig. 2 (9)) returns all mon-
itoring data collected by monitoring probes, then clears the log of
monitoring data in EWS. This function is usually called periodically

o R I SR R

Y

Emergent Web Server: An Exemplar to Explore Online Learning in Compositional Self-Adaptive Systems

from pyews.server_interface import ewsRESTInterface as eRI

EWS startup
eRI.initialize_server(definitions["main_component"],
definitions["proxy_JSON"])

EWS available composition list,
returns a list of Component objects
configurations = eRI.get_all_configs()

EWS monitoring data - returns a Perception object
perception = eRI.get_perception()

Figure 3: EWS Python Interface.

by a learning algorithm in a fixed, predefined time interval to ob-
serve EWS performance. The monitoring probe we make available
in the base EWS artifact collects the average response time to a
request and also notes each request’s MIME type. Response time
is useful to determine the composition that has the highest util-
ity, whilst the MIME type is useful to help identify patterns in the
incoming workload and classify distinct operating environments
— where each newly-detected distinct environment may trigger a
new round of online learning for that environment, or a previously-
detected environment may allow a learning algorithm to recall its
prior learning state or best-choice for that environment.

Together, these functions facilitate the exploration of online
learning algorithms in situations where both the performance of
each architecture composition, and the set of possible operating en-
vironment characteristics, are unknown prior to deployment. They
also allow the creation and exploration of new learning algorithms
that can add or remove compositions that further optimise EWS or
reduce its composition search space. Because the API is presented
as REST server, this allows the exploration of learning algorithms
written in any programming language which reduces the learning
curve to use our exemplar.

3.3 EWS Python Interface

We also make available a Python Interface to facilitate interaction
with EWS for Python developers. Given the current popularity of
Python among machine learning practitioners, this is intended to
broaden the usability of our exemplar.

The provided Python Interface acts as a client to the RESTful
API provided by EWS and provides a set of native Python functions
equivalent to those in the REST API, thereby avoiding the need for
the user to manually parse JSON-formatted data when interacting
with the EWS. We also provide an implementation of the e-greedy
learning algorithm, as an example to demonstrate how the EWS
Python API can be used to implement online learning strategies.

Besides the methods defined by the EWS RESTful API in the pre-

vious section, the Python interface also provides the “initialize_server()”

and “change_configuration()” methods, which are abstractions
over “meta/set_main” and “meta/add_proxy” functions required to
initialise the server, and the “meta/set_config” function to change
EWS composition without using the architectural description and
using Component Python objects instead.

Fig. 3 shows an example of how to initialise EWS in Python, get
a list of all available compositions, and get monitoring data from
the executing EWS. To use the Python interface, the user needs

SEAMS 2022, May 21-29, 2022, Pittsburgh, PA, USA

only to import the appropriate modules (as shown in Fig. 3), then
initialise the EWS. In the example here we get a list of all available
compositions, then get monitoring data from the executing EWS.

4 EXEMPLAR IN ACTION

This section describes the necessary steps to download, setup, exe-
cute, and interact with EWS using a comment-program that enables
users to interact with the EWS APL

Step 1.: Download and execute EWS. The quickest way to get
EWS running is to execute its Docker image. We make available a
docker image on DockerHub that is ready to run. To execute the
container, the user is required to have Docker installed and running.
After ensuring that Docker itself is working, type the command:

docker run --name=ews -p 2011-2012:2011-2012 -d
robertovrf/ews:1.0

Step 2.: Get access to the container terminal. To interact with
EWS, we need to get access to the container terminal so that we can
type commands and view output. We do this using the command:

docker exec -it ews bash

Step 3.: Interacting with EWS. There are two ways to interact
with EWS. One way is to write your code using our Python inter-
face or EWS RESTful API, and the other is through a command
prompt. As we have already described the APIs, here we describe
how to use the command prompt. First, the user must start the
InteractiveEmergentSys.o component, which provides access to the
command prompt. In the container terminal, type the command:

dana -sp ../repository InteractiveEmergentSys.o

Once the InteractiveEmergentSys.o component is executing, the
user can interact with EWS using the terminal. To start, the user
can type “help” to get a list of the available commands. For a more
detailed description of how to execute EWS, please refer to EWS
GitHub repository*.

5 PUBLISHED RESULTS AND CHALLENGES

The EWS is intended to allow researchers to experiment with online
learning for open-ended architectural self-adaptation, where new
components can be dynamically added and removed. A wide range
of challenges are yet to be explored in this space; in this section we
briefly summarise existing results that have used the EWS, then
describe major open challenges.

Existing results using the EWS have explored different multi-
armed bandit reinforcement learning algorithms [26]. This type of
learning algorithm consider a set of actions (i.e., EWS compositions)
that when selected return a reward (or cost — i.e., response time),
where the reward that is observed obeys a probability distribution
function which captures natural variance in reward over time. The
goal of this learning strategy is to learn which action to select in
order to minimise cost (i.e., response time).

One of the first results published using EWS was at OSDI'16 [22].
This work explored the general idea of autonomously learning how
to compose systems at runtime and finding optimal compositions as
the system executes — and while its operating conditions experience

“https://github.com/robertovrf/emergent_web_server

https://github.com/robertovrf/emergent_web_server

SEAMS 2022, May 21-29, 2022, Pittsburgh, PA, USA

0.025
0.02 | .
]
0.015 -
® g
¥ s
o o
0.01 2
S
g
[
0.005
0

Test iteration

(@)

N W s U N W
o 8 8 88 88 8 8 8

Rodrigues-Filho, et al.

——Learning

JALLJL,WJL,LL TETPTR

Optimal

0 200 400 600 800 1000

Time (s)

(b)

1200 1400 1600 1800

Figure 4: Thompson sampling: (a) shows online learning reducing regret as it explores different web server composition. UCB1:
(b) shows response time decreasing as the algorithm converges towards the optimal solution for different environments.

regular change that may not have been predictable at design-time.
In this particular study we used the exemplar to explore an online
machine learning technique based around Thompson sampling [6],
combined with Bayesian regression to locate the optimal EWS com-
position for a variety of different workload patterns. The use of
continuous regression allowed the learning approach to understand
the marginal contribution of each individual component towards
the overall reward of a chosen composition (without directly mea-
suring each component), and to then make estimates on the likely
reward of untried compositions based on which components those
compositions used. The results showed that this approach was able
to very quickly narrow the search space to locate the ideal compo-
sition, needing to sample as few as 6 compositions or at most 20
compositions in order to have a high-confidence model of which
of the 42 available compositions was best suited to the current
deployment conditions. An example result is illustrated in Fig. 4 (a),
showing on the x-axis the selection of a composition at a given time
and its corresponding reward on the y-axis (expressed as ‘regret’
from a known ground truth); this example shows a particularly
challenging deployment environment which required around 20
compositions to be tried before a high-confidence choice is made.

A second study, published at SASO’19 [23], shows the applica-
tion of the UCB1 online learning algorithm [3] to locate the EWS
composition that has the lowest response time, with example results
shown in Fig. 4 (b) (y-axis). Each of the vertical bars separating the
graphs is an entire experiment where EWS was subjected to differ-
ent workload patterns; while the graph shows that the algorithm
converges towards the optimal composition, we also observe that
sub-optimal actions are sometimes chosen repeatedly to ensure
they continue sub-optimal. This demonstrates some of the diffi-
culty in properly tuning online learning algorithms for unknown
environments and reward ranges; this remains an open challenge.

Our existing results demonstrate that it is possible to learn an
ideal action, at runtime, with no prior knowledge about the possi-
ble EWS compositions nor the operating environment on which
EWS is executing. Despite these results, a range of further research

is needed to understand online learning in open-ended architec-
tural self-adaptation. Our studies to date have examined two differ-
ent learning approaches, which have very different characteristics;
further study is needed to understand which online learning ap-
proaches tend to work best in these scenarios, particularly where
the search space of permutations grows much larger. While it is
possible to infer information about individual component utility
across possible compositions, for example, it may also be viable to
transfer knowledge between deployment environment conditions
that have at least some shared features. Second, using online learn-
ing in non-stationary deployment environments has some very
difficult challenges; without prior knowledge, an online learning
system is likely to need to simultaneously learn both how to clas-
sify the deployment environment in a way that correlates usefully
to different reward levels, and how to learn which compositions
are best suited to each such environment. Doing this under envi-
ronment conditions that may change at any moment has received
relatively little study. Finally, there is very little research which
studies changes to the available set of tactics post-deployment, such
as the addition of a new component, or the ability to remove com-
ponents that have shown little promise in utility gain in order to
narrow a search space.

6 CONCLUSION

In this paper we have described the Emergent Web Server (EWS)
artefact. This artefact is an exemplar designed for researchers to
explore problems related to online learning for compositional self-
adaptive systems. It has 42 unique architectural compositions and,
at runtime, EWS can change from one composition to another seam-
lessly, with no downtime. EWS provides both a RESTful API and a
Python interface that enables users to interact with it. Through the
API, users can get monitoring data from the executing EWS, change
its composition at runtime, get a list of all available compositions,
and add or remove components. EWS is an easy to use exemplar
that can be used to study a set of open challenges; we hope the
community may find it a useful tool in future research.

Emergent Web Server: An Exemplar to Explore Online Learning in Compositional Self-Adaptive Systems

REFERENCES

[1] Mehdi Amoui, Mazeiar Salehie, Siavash Mirarab, and Ladan Tahvildari. 2008.

[9

[10

[11

[12

[13

[14

[16

[17

[18

=

=

]

]

]

]

]

]

Adaptive Action Selection in Autonomic Software Using Reinforcement Learn-
ing. In Fourth International Conference on Autonomic and Autonomous Systems
(ICAS°08). 175-181. https://doi.org/10.1109/ICAS.2008.35 ISSN: 2168-1872.
Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. 2017. A
Comparison of Reinforcement Learning Techniques for Fuzzy Cloud Auto-Scaling.
In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID). IEEE, Madrid, Spain, 64-73. https://doi.org/10.1109/CCGRID.
2017.15

Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3, Nov (2002), 397-422.

Cornel Barna, Hamoun Ghanbari, Marin Litoiu, and Mark Shtern. 2015. Hogna:
A Platform for Self-Adaptive Applications in Cloud Environments. In Proceedings
of the 2015 IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS ’15). IEEE Computer Society, USA,
83-87. https://doi.org/10.1109/SEAMS.2015.26

Gordon Blair, Thierry Coupaye, and Jean-Bernard Stefani. 2009. Component-
based architecture: the Fractal initiative. annals of telecommunications - annales
des télécommunications 64, 1 (2009), 1-4. https://doi.org/10.1007/s12243-009-
0086-1

Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. Advances in neural information processing systems 24 (2011), 2249—
2257.

Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2009. Evaluating the
effectiveness of the Rainbow self-adaptive system. In 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. IEEE, Vancouver,
BC, 132-141. https://doi.org/10.1109/SEAMS.2009.5069082

Erik M. Fredericks, Ilias Gerostathopoulos, Christian Krupitzer, and Thomas
Vogel. 2019. Planning as Optimization: Dynamically Discovering Optimal
Configurations for Runtime Situations. In 2019 IEEE 13th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO). 1-10. https:
//doi.org/10.1109/SAS0O.2019.00010 ISSN: 1949-3681.

Ilias Gerostathopoulos and Evangelos Pournaras. 2019. TRAPPed in Traffic?
A Self-Adaptive Framework for Decentralized Traffic Optimization. In 2019
IEEE/ACM 14th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS). IEEE, Montreal, QC, Canada, 32-38.
https://doi.org/10.1109/SEAMS.2019.00014

Omid Gheibi, Danny Weyns, and Federico Quin. 2021. Applying Machine
Learning in Self-adaptive Systems: A Systematic Literature Review. ACM
Transactions on Autonomous and Adaptive Systems 15, 3 (Sept. 2021), 1-37.
https://doi.org/10.1145/3469440

R.S. Hall and H. Cervantes. 2004. An OSGi implementation and experience report.
In First IEEE Consumer Communications and Networking Conference, 2004. CCNC
2004. 394-399. https://doi.org/10.1109/CCNC.2004.1286894

Steven C.H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. 2021. Online learning:
A comprehensive survey. Neurocomputing 459 (2021), 249-289. https://doi.org/
10.1016/j.neucom.2021.04.112

M. Usman Iftikhar, Gowri Sankar Ramachandran, Pablo Bollansée, Danny Weyns,
and Danny Hughes. 2017. DeltaloT: a self-adaptive internet of things exemplar.
In Proceedings of the 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS ’17). IEEE Press, Buenos Aires,
Argentina, 76-82. https://doi.org/10.1109/SEAMS.2017.21

Pooyan Jamshidi, Amir Sharifloo, Claus Pahl, Hamid Arabnejad, Andreas Met-
zger, and Giovani Estrada. 2016. Fuzzy Self-Learning Controllers for Elasticity
Management in Dynamic Cloud Architectures. In 2016 12th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA). IEEE, Venice,
Italy, 70-79. https://doi.org/10.1109/Q0SA.2016.13

Cody Kinneer, David Garlan, and Claire Le Goues. 2021. Information Reuse and
Stochastic Search: Managing Uncertainty in Self-* Systems. ACM Transactions
on Autonomous and Adaptive Systems 15, 1 (Feb. 2021), 1-36. https://doi.org/10.
1145/3440119

Michal Kit, Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, and Fran-
tisek Plasil. 2015. An Architecture Framework for Experimentations with
Self-Adaptive Cyber-physical Systems. In Proceedings of the 2015 IEEE/ACM
10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’15). IEEE Computer Society, USA, 93-96. https:
//doi.org/10.1109/SEAMS.2015.28

Peter R. Lewis, Lukas Esterle, Arjun Chandra, Bernhard Rinner, Jim Torresen, and
Xin Yao. 2015. Static, Dynamic, and Adaptive Heterogeneity in Distributed Smart
Camera Networks. ACM Transactions on Autonomous and Adaptive Systems 10, 2
(June 2015), 8:1-8:30. https://doi.org/10.1145/2764460

Paulo Henrique Maia, Lucas Vieira, Matheus Chagas, Yijun Yu, Andrea Zisman,
and Bashar Nuseibeh. 2019. Dragonfly: a Tool for Simulating Self-Adaptive
Drone Behaviours. In 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, Montreal,
QC, Canada, 107-113. https://doi.org/10.1109/SEAMS.2019.00022

SEAMS 2022, May 21-29, 2022, Pittsburgh, PA, USA

[19] Gabriel Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan. 2019. DART-

[20

[22

[23

[25

[26

[27

[29

[30

]

Sim: An Exemplar for Evaluation and Comparison of Self-Adaptation Approaches
for Smart Cyber-Physical Systems. In 2019 IEEE/ACM 14th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
IEEE, Montreal, QC, Canada, 181-187. https://doi.org/10.1109/SEAMS.2019.
00031

Gabriel A. Moreno, Bradley Schmerl, and David Garlan. 2018. SWIM: an exemplar
for evaluation and comparison of self-adaptation approaches for web applications.
In Proceedings of the 13th International Conference on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS ’18). Association for Computing
Machinery, Gothenburg, Sweden, 137-143. https://doi.org/10.1145/3194133.
3194163

Barry Porter and Roberto Rodrigues Filho. 2021. A Programming Language for
Sound Self-Adaptive Systems. In 2021 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS). 145-150. https://doi.org/10.
1109/ACS0S52086.2021.00036

Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie. 2016.
REX: a development platform and online learning approach for runtime emergent
software systems. In Proceedings of the 12th USENIX conference on Operating
Systems Design and Implementation (OSDI’16). USENIX Association, USA, 333~
348.

Barry Porter and Roberto Rodrigues Filho. 2019. Distributed Emergent Software:
Assembling, Perceiving and Learning Systems at Scale. In 2019 IEEE 13th Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems (SASO). 127-136.
https://doi.org/10.1109/SASO.2019.00024 ISSN: 1949-3681.

Michiel Provoost and Danny Weyns. 2019. DingNet: A Self-Adaptive Internet-of-
Things Exemplar. In 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, Montreal,
QC, Canada, 195-201. https://doi.org/10.1109/SEAMS.2019.00033

Sanny Schmid, Ilias Gerostathopoulos, Christian Prehofer, and Tomas Bures.
2017. Self-adaptation based on big data analytics: a model problem and tool.
In Proceedings of the 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS °17). IEEE Press, Buenos Aires,
Argentina, 102-108. https://doi.org/10.1109/SEAMS.2017.20

Steven L. Scott. 2010. A modern Bayesian look at the multi-armed bandit. Applied
Stochastic Models in Business and Industry 26, 6 (2010), 639-658. https://doi.org/10.
1002/asmb.874 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/asmb.874
G. Tesauro, N.K. Jong, R. Das, and M.N. Bennani. 2006. A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation. In 2006 IEEE International
Conference on Autonomic Computing. 65-73. https://doi.org/10.1109/ICAC.2006.
1662383

Karthik Vaidhyanathan. 2021. Data-Driven Self-Adaptive Architecting Using Ma-
chine Learning. Ph.D. Dissertation. GSSI Gran Sasso Science Institute.

Thomas Vogel. 2018. mRUBIS: an exemplar for model-based architectural self-
healing and self-optimization. In Proceedings of the 13th International Conference
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS ’18).
Association for Computing Machinery, Gothenburg, Sweden, 101-107. https:
//doi.org/10.1145/3194133.3194161

Danny Weyns and Radu Calinescu. 2015. Tele Assistance: A Self-Adaptive Service-
Based System Examplar. In Proc. of SEAMS ’15. IEEE. http://homepage.Inu.se/
staff/daweaa/papers/2015SEAMS.pdf

https://doi.org/10.1109/ICAS.2008.35
https://doi.org/10.1109/CCGRID.2017.15
https://doi.org/10.1109/CCGRID.2017.15
https://doi.org/10.1109/SEAMS.2015.26
https://doi.org/10.1007/s12243-009-0086-1
https://doi.org/10.1007/s12243-009-0086-1
https://doi.org/10.1109/SEAMS.2009.5069082
https://doi.org/10.1109/SASO.2019.00010
https://doi.org/10.1109/SASO.2019.00010
https://doi.org/10.1109/SEAMS.2019.00014
https://doi.org/10.1145/3469440
https://doi.org/10.1109/CCNC.2004.1286894
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1109/QoSA.2016.13
https://doi.org/10.1145/3440119
https://doi.org/10.1145/3440119
https://doi.org/10.1109/SEAMS.2015.28
https://doi.org/10.1109/SEAMS.2015.28
https://doi.org/10.1145/2764460
https://doi.org/10.1109/SEAMS.2019.00022
https://doi.org/10.1109/SEAMS.2019.00031
https://doi.org/10.1109/SEAMS.2019.00031
https://doi.org/10.1145/3194133.3194163
https://doi.org/10.1145/3194133.3194163
https://doi.org/10.1109/ACSOS52086.2021.00036
https://doi.org/10.1109/ACSOS52086.2021.00036
https://doi.org/10.1109/SASO.2019.00024
https://doi.org/10.1109/SEAMS.2019.00033
https://doi.org/10.1109/SEAMS.2017.20
https://doi.org/10.1002/asmb.874
https://doi.org/10.1002/asmb.874
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/asmb.874
https://doi.org/10.1109/ICAC.2006.1662383
https://doi.org/10.1109/ICAC.2006.1662383
https://doi.org/10.1145/3194133.3194161
https://doi.org/10.1145/3194133.3194161
http://homepage.lnu.se/staff/daweaa/papers/2015SEAMS.pdf
http://homepage.lnu.se/staff/daweaa/papers/2015SEAMS.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Emergent Web Server
	3.1 EWS Architecture
	3.2 EWS REST API
	3.3 EWS Python Interface

	4 Exemplar in Action
	5 Published Results and Challenges
	6 Conclusion
	References

