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Abstract 26 

Vegetation changes that are driven by soil conservation measures significantly affect 27 

subsurface water flow patterns and soil water status. Much research on water consumption 28 

and sustainability of newly introduced vegetation types at the plot scale has been done in the 29 

Loess Plateau of China (LPC), typically using local scale measurements of soil water content 30 

(SWC). However, information collected at the plot scale cannot readily be up-scaled. 31 

Geophysical methods such as electromagnetic induction (EMI) offer large spatial coverage 32 

and therefore could bridge between the scales. A non-invasive, multi-coil, frequency domain, 33 

EMI instrument was used to measure the apparent soil electrical conductivity (𝜎௔) from six 34 

effective depths under four typical land-covers; shrub, pasture, natural fallow and crop, in the 35 

north of the LPC. Concurrently, SWC was monitored to a depth of 4 m depth using an array 36 

of 44 neutron probes distributed along the plots. The measurements of 𝜎௔  for six effective 37 

depths and the integrated SWC over these depths, show consistent behavior.  High variability 38 

of 𝜎௔  under shrub cover, in particular, is consistent with long term variability of SWC, 39 

highlighting the potential unsustainability of this land cover. Linear relationships between 40 

SWC and 𝜎௔ were established using cumulative sensitivity forward models. The 41 

conductivity-SWC model parameters show clear variation with depth, despite lack of 42 

appreciable textural variation. This is likely related to the combined effect of elevated pore 43 

water conductivity as was illustrated by the simulations obtained with water flow and solute 44 

transport models. The results of the study highlight the potential for the implementation of 45 

the EMI method for investigations of water distribution in the vadose zone of the LPC, and in 46 

particular for qualitative mapping of the vulnerability to excessive vegetation demands, and 47 

hence unsustainable land cover.  48 
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1. Introduction  56 

Landscape alternation as conversion of natural ecosystems to agricultural lands, or 57 

application of soil conservation measures as revegetation for preventing land degradation, 58 

have a significant impact on soil water dynamics. The conversion of natural vegetation to 59 

croplands with shallow rooting systems can increase water levels in unconfined aquifers and 60 

mobilizes salts to groundwater (Hancock et al., 2008; Radford et al., 2009; Scanlon et al., 61 

2009; Kurtzman and Scanlon, 2011). Afforestation or revegetation, where trees, grass and 62 

shrubs are replanted, were related to depletion of soil water and reduction in groundwater 63 

recharge fluxes (Scott and Lesch, 1997; Allen and Chapman, 2001; Zhang et al., 2008; Gates 64 

et al., 2011; Huang et al., 2013; Adane et al., 2018; Bai et al., 2020; Ouyang et al., 2021). 65 

Various factors are attributed to the disturbance of the soil water status such as high water 66 

demand, larger water-holding capacity of forest soils, deep roots, climate variability and 67 

plantation of vegetation in an inadequate environment (Cramer et al., 1999; Rodriguez-Iturbe 68 

et al., 2001; Jia and Shao, 2014; Barbeta et al., 2015; Lazo et al., 2021). However, the effect 69 

on water yield by revegetated areas is debatable and depends on different conditions (van 70 

Dijk and Keenan, 2007). Therefore, there is a growing interest in development of monitoring 71 

methodologies to improve our knowledge of these processes (Robinson et al., 2008; Krause 72 

et al., 2015).     73 

The soil water content (SWC) comprises information regarding the interaction between 74 

climate, vegetation and soil (Rodriguez-Iturbe et al., 2001; Vereecken et al., 2014). 75 

Nevertheless, SWC is spatially and temporally highly variable (Western et al., 2002).  76 

Remote sensing of SWC can provide valuable spatial information of SWC but only on the top 77 

few centimeters of the soil; other methods, such as TDR and neutron probes, are limited in 78 

their support volume. In contrast, geophysical methods, such as ground penetrating radar, 79 

electromagnetic induction (EMI) and electrical resistivity, can be used for monitoring 80 

subsurface water and solute dynamics at a range of temporal and spatial scales (Binley et al., 81 

2015).       82 

The link between soil electrical conductivity (𝜎) and SWC has been the focus of attention for 83 

some time.  Gardner (1898) first proposed the use of electrical conductivity for inferring 84 

SWC. Although 𝜎 is strongly influenced by soil water content, it is also affected by other 85 

factors, such as soil texture, temperature and pore water electrical conductivity (e.g., 86 

Friedman, 2005), necessitating the development of local (site specific) relationships between 87 
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σ and SWC.  Binley and Slater (2020) provide a comprehensive analysis of the properties and 88 

states of soil that influence electrical conductivity.  In Section 2 we discuss the relationship 89 

between 𝜎 and SWC in detail, and in the context of the current study.  90 

The EMI method measures the apparent bulk electrical conductivity of the soil (𝜎௔), which is 91 

the depth weighted average value of the σ, with no requirement to establish any contact with 92 

the soil surface. The apparent conductivity is an integrated measurement of electrical 93 

conductivity that is governed by the depth-sensitivity pattern of the specific measurement. 94 

EMI is a relatively mobile technique allowing the measurement of 𝜎௔ over large scales (Abdu 95 

et al., 2008; Robinson et al., 2012).  Doolittle and Brevik (2014) review the use of EMI 96 

measurements for qualitative mapping of soil properties and soil water processes. A number 97 

of studies have illustrated the potential and challenges of the EMI method for estimation of 98 

SWC over large areas by establishing relationships between 𝜎௔  and SWC (Robinson et al., 99 

2012; Nagy et al., 2013; Calamita et al., 2015; Martini et al., 2017; Altdorff et al., 2018; 100 

Martínez et al., 2020). Although the 𝜎௔ - SWC relationship can indicate the integrated state of 101 

the soil water, a detailed description of the soil water state with depth is limited (Corwin and 102 

Rhoades 1982; Hendrickx et al., 2002). Modern EMI devices are manufactured with multiple 103 

coils and multiple frequencies, enabling the simultaneous measurement of 𝜎௔ from multiple 104 

effective depths. This permits the inversion of the measured 𝜎௔ values in order to obtain the 105 

‘real’ soil conductivity, σ. Previous studies suggested a number of approaches to establish the 106 

σ - SWC relationship under field conditions for different soil types (Huang et al., 2016, 107 

2017). They used 𝜎 values derived from inversion of the 𝜎௔ data and related these to 108 

observed SWC values. The major drawback of the inversion solution is non-uniqueness, i.e. 109 

multiple solutions for the same dataset. To encourage unique solutions and reduce some 110 

uncertainties, various approaches are suggested such as regularization or joint inversions of 111 

geophysical datasets (Constable, 1987; Linde et al., 2006). Recently, Robinet et al. (2018) 112 

reported on difficulties to invert 𝜎௔ for the establishment of in situ 𝜎 - SWC relationships. 113 

Instead, they utilized a 𝜎௔ forward modeling approach to develop field-based 𝜎 - SWC 114 

relationships.  115 

Given the potential value of EMI for mapping variation in soil water and the need to 116 

understand the impact of land management practices, we carried out EMI measurements over 117 

four typical land covers (Peashrub, Purple Alfalfa, millet/soybean and fallow) at a study site 118 

in the north of the Chinese Loess Plateau. Previous studies have documented long term SWC 119 
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observations up to 4 m depth under each of the four plots (Liu and Shao, 2016; Zhao et al., 120 

2017). Liu and Shao (2016) showed that the vegetation type significantly controls the vadose 121 

zone water dynamics. Furthermore, Zhao et al. (2017) analyzed a 10 year record of soil water 122 

variability under different land covers and revealed high temporal variability (coefficients of 123 

variation up to 40% to depths of 4 meters) under Purple Alfalfa and Peashrub covers, which 124 

reflect the significant water demands by these vegetation types. Earlier studies (e.g Li et al., 125 

2008) have shown that water uptake under these vegetation types can extend to several 126 

meters depth. From the investigation of Zhao et al. (2017), the millet and soybean (and 127 

fallow) land covers seem to be the most sustainable in this environment. Therefore, the first 128 

objective of this study was to explore the capability of using 𝜎௔, measured by EMI, to assess 129 

water sustainability of particular land covers. The second objective was to explore the 𝜎 - 130 

SWC relationships in the deep vadose zone under the different land covers. Most previous 131 

soil water – EMI studies have targeted relatively shallow variation in electrical conductivity; 132 

here we study variation in soil water and 𝜎 to depths of 4m. 133 

  134 

2. Method 135 

2.1 Study Site 136 

This study was conducted at the Shenmu Soil Erosion and Environment Experimental Station 137 

(38°47′46′′ N, 110°21′55′′ E) on the northern LPC. The mean annual air temperature is 8.4 138 

°C, the annual reference evapotranspiration (ET0) is 1020 mm and the average annual 139 

precipitation is 437 mm, 70% of which falls from July through October (climate records are 140 

presented in Supporting Information). Significant soil erosion driven by wind and rainfall in 141 

this region motivated the implementation of a large scale vegetation restoration, the ‘Grain to 142 

Green’ project, to improve soil stability (Jia and Shao, 2014; Feng et al., 2016). Since 1999, 143 

many farmlands were converted into forest and grassland, mainly in areas where slopes 144 

exceed 150 (Liang et al., 2015). Throughout the replantation project, nonindigenous and 145 

indigenous vegetation were introduced to the region (Feng et al., 2016). The study site was 146 

established to understand the impact of introducing different cover types in the Loess Plateau. 147 

Experimental data has indicated that the nonindigenous vegetation appear to have excessive 148 

demands on soil water, keeping the soil under dry conditions and limiting soil water 149 

replenishment, in addition to reducing aquifer recharge. Therefore, the sustainability of some 150 

introduced land cover types is in question (Liu and Shao, 2016; Zhao et al., 2017).   151 
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Four adjacent plots (61 m×5 m) were established in 2004 on slopes with a uniform gradient 152 

(12–14°) (Figure 1). To test the effect of different vegetation types on the dynamics of soil 153 

water, three vegetation covers were introduced: “shrub”  (Korshinsk Peashrub - Caragana 154 

korshinskii); “grass” (Purple Alfalfa - Medicago sativa); “crop” (two-year rotation of millet 155 

and soybean). A “fallow” plot was also created. This was cultivated until 2004, and 156 

subsequently abandoned with no further disturbance. Different vegetation types grow over 157 

this plot. For the crop plot, the soybeans/millet were sowed during May and harvested in 158 

October. After harvest, the crop plot remains clear of vegetation until following May. Both 159 

crops were fertilized with 120 kg ha−1 N and 60 kg ha−1 P2O5 annually, following the 160 

recommendation of the local agriculture service. The Caragana were planted at a planting 161 

spacing of 70 cm×70 cm, then left alone to grow naturally, and alfalfa were planted with a 162 

row spacing of 50 cm in 2004. The above-ground parts of the Alfalfa were cut in the 163 

beginning of July and October every year. Note that the plots are rainfed and no irrigation is 164 

applied. In order to maintain consistency with previous studies at the site, we adopt the same 165 

labelling here:  shrub (SL), grass (GL), fallow (FL) and crop (CL) (Figure 1).  166 

Neutron-probe access tubes to 4 m depth were installed along 11 points in the centerline of 167 

each plot, at 5 m intervals (Figure 1). A previous study (Liu and Shao, 2016) presented 168 

analyses of soil samples at the site, indicating similarity in soil physical properties between 169 

the plots. The soil is a Calcaric Regosol (FAO-UNESCO), developed from low fertility loess. 170 

The soil has weak cohesion, high infiltrability, low water retention, and is prone to erosion 171 

(Fu et al., 2010). The soil texture is composed of 11%-14% clay, 30%-45% silt and 45%-51% 172 

sand (Liu and Shao, 2016) and can be classified as loam.  Figure 2 shows example particle 173 

size distribution data from two 3m deep sampling points at the site.  The texture profiles 174 

show remarkable similarity over 3m depth; from these and other profiles measured at the site, 175 

the soil texture spatial variability is insignificant. As part of a regional deep vadose 176 

investigation, a borehole was drilled to bedrock at 60 m depth in Shenmu (Jia et al. 2018). 177 

Further, observations of bulk density from samples extracted from the deep vadose zone 178 

(Figure S2). These observations reveal an increase in bulk density over the top 4m of the 179 

profile. 180 

 181 

2.2 Data Collection 182 
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Soil water content and apparent soil electrical conductivity (𝜎௔) measurements were carried 183 

out during three days in August and September, 2017 (Figure3). All measurements of SWC 184 

and 𝜎௔, were conducted at each of the four plots, at the 11 locations in the centerline of each 185 

plot. SWC measurements were made using a CNC503DR Hydro probe neutron probe 186 

(Beijing Super Power Company, Beijing, China). Neutron counts were taken at an interval of 187 

0.1 m in the upper 1 m and at 0.2 m intervals over 1m to 4 m. Thus in total there are 3300 188 

SWC measurements. Apparent electrical conductivity measurements were made using the 189 

CMD Explorer (GF Instruments, Czech Republic) electromagnetic induction (EMI) device, 190 

positioned at 1m above ground level and orthogonal to the neutron probe tube. The 191 

instrument is 5 m long and has a 10-kHz transmitter coil and three receiver coils at different 192 

spacing from the transmitter (1.48m, 2.82m, and 4.49 m). The accuracy of measurement is 193 

±4% at 50 mS/m (GF Instruments, Czech Republic). The instrument is used in two types of 194 

coil orientation: horizontal coplanar (HCP) and vertical coplanar (VCP). Thus, the EMI 195 

device allows the collection of 𝜎௔ from six different effective depths. In total, there are 792 196 

measurements of 𝜎௔. Field tests were conducted to confirm negligible impact of the neutron 197 

probe access tube on the measurements when carried out 1m above ground level. 198 

If EMI measurements are made at ground level and assuming relatively uniform electrical 199 

conductivity, it is normal practice to assume that the cumulative sensitivity patterns can be 200 

expressed, for VCP and HCP orientation, as (McNeill, 1980): 201 

𝐶𝑆௏஼௉ሺ𝑧ሻ ൌ ൤4 ቀ௭
௦
ቁ
ଶ
൅ 1൨

଴.ହ

െ 2 ቀ௭
௦
ቁ      (1) 202 

and 203 

    𝐶𝑆ு஼௉ሺ𝑧ሻ ൌ ൤4 ቀ௭
௦
ቁ
ଶ
൅ 1൨

ି଴.ହ

               (2) 204 

where s is the transmitter receiver coil spacing (1.48m, 2.82m or 4.49 m).  205 

In equations (1) and (2) the cumulative sensitivity will be, by definition, unity at the ground 206 

surface. As discussed by Morris (2009), measurements made with the coils above ground 207 

level result in a modified cumulative sensitivity pattern, as shown in Figure 4 for 208 

measurements made 1m above ground level.  Adopting, as is common practice for EMI 209 

measurements, a definition of the depth of investigation (DOI) as the depth over which 70% 210 

of the signal is sensitive to, then for the VCP orientations we can compute a DOI of 2.7m, 211 
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3.4m and 4.5m for the three-coil spacing, and a DOI of 3.1m, 4.6m, 6.9m for the HCP 212 

orientation (see Figure 4). 213 

 214 

2.3 Establishment of a relationship between SWC and σ   215 

The development of a relationship between SWC and σ is required in order to convert the 216 

observed EMI data to SWC. Numerous models have been developed to relate σ to SWC.  217 

Many originate from early oil reservoir studies (e.g. the well-established approaches of 218 

Archie (1942) and Waxman and Smits (1968)); several approaches have targeted soils (most 219 

notably Rhoades et al. (1976)). Models range from purely empirical, semi-empirical to 220 

physics-based. Laloy et al. (2011) documents a valuable comparison of a range of models for 221 

soils, using the term “pedo-electrical” model to differentiate this from the classical 222 

petrophysics terminology.  223 

Despite the range of approaches, the general structure of a 𝜎 - SWC model is that there 224 

should be a conducting term for the pores and a parallel contribution from conduction along 225 

the particle surface (‘surface conduction’), which is intuitively linked to the proportion of fine 226 

particles, often based on clay content (see, for example, Revil and Glover (1998)). Laloy et 227 

al. (2011) show, from their comparison, that a volume averaging approach, used by Linde at 228 

al.(2006), was the most effective at fitting their experimental data. This model can be written 229 

as:  230 

                                               𝜎 ൌ ଵ

ி
ቂ𝜎௙ ቀ

ఏ

థ
ቁ
௡
൅ ሺ𝐹 െ 1ሻ𝜎௦ቃ ,                     (3) 231 

where F is the formation factor, 𝜎௙ is the fluid electrical conductivity, 𝜃 is the SWC, 𝜙 is 232 

porosity, n is a parameter that is controlled by the texture of the media, and 𝜎௦ is the surface 233 

electrical conductivity. The formation factor, F, is also a function of the soil texture and 234 

porosity, typically expressed as 𝜙ି௠, where m is the commonly named cementation 235 

exponent. 236 

A number of studies have shown that a simple linear relationship can be established between 237 

water content and electrical conductivity (e.g., Michot et al., 2003; Calamita et al., 2012; 238 

Robinet et al., 2018), which is clearly equivalent to assuming n = 1 in equation (3).  239 

Following this, we may write: 240 
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       𝜎 ൌ 𝑎 ∗ 𝜃 ൅ 𝑏                         (4) 241 

where, if adopting equation (3), the coefficients are: 242 

                                               𝑎 ൌ 𝜎௙𝜙௠ିଵ, 𝑏 ൌ ሺ1 െ 𝜙௠ሻ𝜎௦ .               (5) 243 

To convert the 𝜎 from equation 4 to 𝜎௔, the forward solution of the cumulative sensitivity 244 

model is utilized, following the approach of Robinet et al. (2018). The EMI instrument 245 

measures the bulk apparent electrical conductivity (σa), which, using the cumulative 246 

sensitivity functions in equations (1) and (2), is related to 𝜎(z).  Assuming a series of layers, 247 

where the middle of each layer is the SWC depth measurement, with conductivity 𝜎௜  248 

(i=1,2,3…M ), the apparent conductivity for a given coil spacing, s, and orientation, can be 249 

expressed as: 250 

             𝜎௔ ൌ 𝜎ଵሾ1 െ 𝐶𝑆ሺ𝑧ଵሻሿ ൅ ∑ 𝜎௜ሾ𝐶𝑆ሺ𝑧௜ሻ െ  𝐶𝑆ሺ𝑧௜ିଵሻሿ ൅ 𝜎ெ𝐶𝑆ሺ𝑧ெିଵሻ
ெିଵ
௜ୀଶ ,                (6) 251 

where M is the lowest layer.  In this study we have SWC observations to 4m depth and so the 252 

value of 𝜎ெis assumed to represent the electrical conductivity at greater depths. 253 

The approach adopted involved taking, for all land cover types, measurements of SWC at 25 254 

depths, and converting these to 6 apparent conductivities (3 coil spacings, 2 orientations) for 255 

the 11 locations on three dates using a given value of a and b in equation (4). The optimum 256 

values of a and b that minimize the root mean square error of a sample size N, given by 257 

   𝑅𝑀𝑆𝐸 ൌ ටଵ

ே
∑ቀ𝜎௔ሺ௢௕௦ሻ െ 𝜎௔ሺ௣௥௘ௗ௜௖௧௘ௗሻቁ

ଶ
        (7) 258 

where 𝜎௔ሺ௢௕௦ሻ are the observed apparent conductivities and 𝜎௔ሺ௣௥௘ௗ௜௖௧௘ௗሻare the predicted 259 

values for a given a and b. The optimization was carried out using the fminsearch function 260 

that is available on the Matlab optimization toolbox (MathWorks, 2015). This function uses 261 

the Nelder-Mead simplex algorithm (Lagarias et al., 1998).  262 

 263 

2.4 Unsaturated water flow and solutes transport modelling 264 

For the current study there are no measurements of pore water electrical conductivity.  To 265 

address this, the Richards equation and the advection – dispersion equation (ADE) were used 266 

to simulate the accumulation of chloride in the vadose zone of the four land covers. 267 
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We implemented a calibrated unsaturated water flow model that was calibrated to long term 268 

data measured at the study site (Bai et al., 2020). For detailed description of the model 269 

calibration and validation results, the reader is referred to Bai et al. (2020). The unsaturated 270 

water flow is described by the Richards equation: 271 

                                                       
డఏ

డ௧
ൌ డ

డ௭
ቂ𝐾ሺ𝜓ሻ ቀడట

డ௭
൅ 1ቁቃ െ 𝑆,                                    (8) 272 

where ψ is the matric potential head [L], θ is the volumetric water content [L3 L-3], t is time 273 

[T], z is the vertical coordinate [L], K(ψ) [L T-1] the unsaturated hydraulic conductivity 274 

function, is a function of the matric potential head and S is a root water-uptake sink term [L3 275 

L-3 T-1]. The Richards equation was solved numerically by using the Hydrus 1D code 276 

(Šimůnek et al., 2008). Simulation of the root water uptake rate (the sink term) was 277 

conducted according to the model suggested by Feddes et al. (1978); parameters used for the 278 

different plant type were obtained from the Hydrus 1D database (millet (crop), grass and 279 

alfalfa (shrub)). The Mualem - van Genuchten calibrated unsaturated hydraulic functions 280 

obtained by Bai et al. (2020) were implemented in the model.  281 

The ADE was applied to describe the unsaturated chloride transport in the unsaturated zone 282 

of the different land covers: 283 

డఏ஼಴೓೗೚ೝ೔೏೐
డ௧

ൌ డ

డ௭
ቂ𝜃𝐷 డఏ஼಴೓೗೚ೝ೔೏೐

డ௭
ቃ െ డ௤஼಴೓೗೚ೝ೔೏೐

డ௭
 ,     (9) 284 

where CChloride [M L−3] is chloride concentration in the pore-water solution, D [L2 T−1] is the 285 

hydrodynamic dispersion coefficient and q [L T−1] is the water flux. Turkeltaub et al. (2018) 286 

suggested a representative   value of 7.5 cm for the longitudinal dispersivity in the LPC. This 287 

value was calculated according to sampled chloride and nitrate vadose zone profiles across 288 

the LPC.  289 

Atmospheric boundary conditions with a surface layer (assuming zero for ponding depth at 290 

the soil surface) were prescribed at the upper boundary (land surface) as rain, leaf area index 291 

(LAI), potential evapotranspiration (ET0), rain chloride concentrations and the minimum 292 

allowed pressure head at the soil surface (hCritA) (Šimůnek et al., 2008) at a daily temporal 293 

resolution. To estimate the potential ET0 values, reference evapotranspiration (ETref) values 294 

were multiplied with the single crop coefficients (Kc). Kc values for millet (crop), grass, 295 

alfalfa (shrub) and bare soil were based on Allen et al. (1998). The chloride concentration in 296 

the rain was 1.7 mg/L (Huang et al., 2013). 297 
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The vertical root density distributions for the different covers were implemented according to 298 

the root profiles that were published by Bai et al. (2020). For the crop plot, a linear root 299 

distribution was assumed till approximately 50 cm depth (Bai et al., 2021). Under the grass 300 

and the shrub plots, the roots were distributed over 400 and 270 cm, respectively (Bai et al., 301 

2021). For the root distribution profiles, the reader is referred to Figure S2 in the supporting 302 

information provided by Bai et al. (2020). The increase in leaf area index (LAI) during the 303 

growing season for millet, grass and alfalfa was estimated with the model of Leenhardt et al. 304 

(1998), where the increase in LAI is assumed a function temperature according to:  305 

                                                          𝐿𝐴𝐼ሺ𝑇ሻ ൌ ௅஺ூ೘ೌೣ

ൣଵା௘ష್ሺ೅ష೅೔ሻ൧
 ,                        (10) 306 

where LAImax is the maximum LAI of the crop, Ti (0C) is the sum of temperature at the 307 

inflection point of the curve, and b is a curvature parameter. The LAImax and the b parameters 308 

were estimated using the temperature database and reported LAI curves (McVicar et al., 309 

2005, natural grass; Wu et al., 2003, millet; Zhao et al., 2004, alfalfa). For further information 310 

of the calculated LAI of the different plant types, the reader is referred to Figure S3 in 311 

Supporting Information. Daily climate data, covering the period 01-Jan-1961 to 31-Dec-312 

2017, were obtained in the vicinity of the study site (State Bureau of Meteorology, 2020; 313 

http://cdc.cma.gov.cn). The simulations started in 01-Jan-1961 and ceased on the 21-Aug-314 

2017 (20718 days). By running the models over a long period, the effect of the initial 315 

conditions was minimized. The models performance evaluation was conducted following the 316 

analysis suggested by Bai et al. (2020). Three types of statistical measures were used: (1) The 317 

Nash-Sutcliffe efficiency coefficient (NSE); (2) root mean square error (RMSE); (3) mean 318 

absolute percent error (MAPE). The closer NSE to 1, the better the model fit. Lower values 319 

of RMSE and MAPE indicate a better fit between model and data. 320 

 321 

3.  Results and Discussion 322 

3.1 Spatio-Temporal Variability of SWC 323 

In Figure 5, SWC profiles for all the survey dates are shown. The movement of a drying front 324 

can be seen between the first two survey dates, followed by subsequent wetting in the third 325 

survey (following the late August rainfall event).  The profiles show similarity for a given 326 

land cover type (limited horizontal variability was observed along the slope) and also the 327 
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reduced soil water content at depth for the grass and shrub cover type, due to the greater 328 

water demands of such cover and the deep root penetration, which is estimated to be greater 329 

than 4 m depth (Zhao et al. 2017).  These are consistent with the long term study at the site of 330 

Zhao et al. (2017) who also showed that water percolates to deeper parts of the vadose zone 331 

under the crop cover compared to the other land covers. The significant differences in SWC 332 

between the land covers, which are subjected to the same climatic conditions, and uniform 333 

soil texture (Figure 2), highlights the potential negative effect on SWC due to the plantation 334 

of vegetation that is unsustainable in the LPC region (Fang et al., 2016; Liu and Shao, 2016; 335 

Zhao et al., 2017). Figure 6 summarizes the SWC data for the three survey dates, adding 336 

further illustration of the effect of land cover type on soil water availability. 337 

 338 

3.2  σa Measurements 339 

The apparent conductivity measurements are summarized as box and whisker plots in Figure 340 

7.  The vertical coplanar and horizontal coplanar configurations with similar depths of 341 

investigation show consistency. The plots indicate an increasing conductivity with depth 342 

across all land cover types and a clear contrast in apparent conductivity for the four land 343 

covers, particularly for the measurements over greater depths. There is a clear similarity 344 

between land cover contrasts in SWC (Figure 6) and apparent conductivity (Figure 7), 345 

particularly when we compare the shrub and grass cover to the fallow and crop cover.  346 

Robinson et al. (2008) reported on similar variability in 𝜎௔ for different vegetation species. 347 

They related the ranking in 𝜎௔ values to the relationship between plant communities and soil 348 

types. The plots in the current study are, however, adjacent and major differences in soil 349 

texture are not observable (Figure 2). Therefore, it can be assumed that the ranking of 𝜎௔ is 350 

probably dominated by the water conditions in the vadose zone, influenced by the water 351 

demand of the vegetation cover. We note that some discrepancy between crop and fallow 352 

cover might be related to the fertilizer application for the crop (Zhao et al., 2017). Similar 353 

observations were reported elsewhere (Calamita et al., 2015). Nevertheless, the 𝜎௔ values 354 

obtained at the crop and fallow are generally higher to those obtained on the shrub and grass 355 

plots, which are known to experience bigger demands on soil water status.  356 

Further interpretation was suggested in previous studies regarding the statistics of the 𝜎௔ 357 

values (Robinson et al., 2008; Calamita et al., 2015). For the following interpretation, two 358 
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assumptions are made: 1) the 𝜎௔ measurements reflect the soil water conditions (as was 359 

shown above) and 2) vegetation under optimal conditions would show a low coefficient of 360 

variation (CV) of the SWC (Robinson et al., 2008; Zhao et al., 2017). Robinson et al. (2008) 361 

showed empirically that highly skewed 𝜎௔  distributions and high CVs values indicate that 362 

vegetation grows outside their optimal environment. The long-term investigation (over 10 363 

years) of SWC time series measurements at the study site by Zhao et al. (2017) revealed a 364 

decreasing trend in the coefficient of variation of SWC as follows: crop < fallow < grass < 365 

shrub. Similarly, a high coefficient of variation was calculated for the 𝜎௔ measurements under 366 

the shrub cover (Table 1). Thus, following the presented analysis, we observe the same 367 

ranking of variation in apparent conductivity for the deeper measurements (see Table 1). 368 

Based on their observations of SWC, Zhao et al. (2017) concluded that the Korshinsk 369 

Peashurb is not sustainable, in terms of SWC use, in the region. The EMI results presented 370 

here may offer a means of detecting areas that might be affected by revegetated plants under 371 

unsustainable conditions in the LPC.  372 

 373 

3.3 SWC - 𝝈 Relationship   374 

The measurements obtained in the current study enabled us to explore relationships between 375 

SWC and 𝜎 at the study site. As stated earlier, the approach involved compiling an aggregate 376 

dataset for the site, rather than applying the model search for different cover types, since 377 

there is likely to be a limited range of the data to perform the latter. Table 2 reports the linear 378 

coefficients a and b (equation 4) obtained using the optimization process adopted here. The 379 

fit for each model is similar, approximately 1mS/m, which is within the accuracy of the 380 

instrument. Power law models were also tested, however, these models did not provide any 381 

further improvement in performance, which is in line with previous studies (Michot et al., 382 

2003; Calamita et al., 2012). In addition, Robinet et al. (2018) noted that a better linear 383 

relationship between σa and soil moisture could be obtained by using σa observations from 384 

their deeper sensed EMI configuration.  385 

Figure 8 shows the model fit for the six coil orientations, plotted to differentiate the four 386 

cover types.  The grass and shrub cover data show the greatest departure from the 1:1 387 

apparent conductivity, particularly at greater depths.  This may be related to the relatively 388 

high salinity conditions that might prevail under these cover types due to elevated 389 

evapotranspiration.  390 



14 
 

Figure 9 shows the variation in 𝜎 - SWC relationship parameters with depth, using a nominal 391 

depth as that at which the cumulative sensitivity function CS(z) equals 0.5, i.e., the depth over 392 

which 50% of the EMI measurement is sensitive to.  Note that this ‘halfdepth’ is a nominal 393 

depth, used for illustration, although it is sometimes used to guide EMI survey design (see 394 

Morris, 2009). A consistent increase with depth in both a and b is seen for both coil 395 

orientations. From equation (5) an increase in a could be accounted for (i) increase in pore 396 

water conductivity, (ii) reduction in porosity, (iii) increase in cementation exponent, m.  An 397 

increase in b can also be attributed to a reduction in porosity and an increase in m, in addition 398 

to an increase in surface conductivity. The observations of bulk density reveal an increase in 399 

bulk density over the top 4m of the profile (Figure S2).  Assuming a particle density of 2.65 400 

g/cm3, this equates to a reduction in porosity from 0.50 at 0.5m depth to 0.44 at 4.5m depth, 401 

i.e. a reduction by 10%. Assuming a cementation exponent, m = 2 since most porous 402 

sediments have cementation exponents between 1.5 and 2.5 (Cai et al., 2017) such a 403 

reduction in porosity can only account for a 30% increase in a. It would appear, therefore, 404 

that pore water conductivity variation with depth is a primary driver of the change in model 405 

coefficients with depth.  406 

Developing relationships between soil water content and electrical conductivity is constrained 407 

by the influence of a range of properties, making the use of universal models somewhat 408 

limited without local calibration. GF Instruments report that the measurement accuracy for 409 

the CMD-Explorer is ± 4% and the measurement accuracy of the CNC503DR Hydro neutron 410 

probe is also reported to be about 4%. The RMSE values of all the models are 10% or lower 411 

than the mean of the measurements. Furthermore, the R2 and the RMSE values that were 412 

reported here are comparable to previously published calibrated models (Tromp-van 413 

Meerveld & McDonnell, 2009; Robinson et al., 2012; Calamita et al., 2015; Coppola et al., 414 

2016; Robinet et al., 2018). Therefore, for the dataset studied here a linear 𝜎 – SWC model 415 

was considered to be suitable. Although we recognize that given a wider range of soil water a 416 

more non-linear function may be suitable (as in, for example, Robinet et al., 2018). Despite 417 

this, our results show that, qualitative mapping of the impact of soil water reduction from 418 

excessive crop water uptake is potentially feasible in the Loess Plateau region of China.   419 

 420 

3.4 Accumulation of chloride in the vadose zone 421 
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Simulated and observed SWC are plotted in Figure S4 and Figure S5 in the Supporting 422 

Information. Note that the soil hydraulic functions and root vertical distributions were 423 

prescribed according to Bai et al. (2020) and no further adjustments were conducted. The 424 

RMSE and MAPE were similar and low for all the plots (Figure S5), while the NSE value 425 

was different for each plot and showed higher efficiency for the Crop and Grass plots (Figure 426 

S5). These results were comparable to the analysis presented by Bai et al. (2020). Thus, the 427 

model can be considered to adequately describe the SWC dynamic under the investigated 428 

plots (Bai et al., 2020). By including the longitudinal dispersivity in the model, the transport 429 

of chloride (of rainfall origin) in the vadose zone under the different covers is revealed.   430 

Figure 10 presents the calculated chloride concentrations at the end of the model runs (20th 431 

September 2017). The simulated chloride concentrations under the alfalfa are nearly two 432 

times higher compared with the fallow and six times that with the crop (millet, Figure 10). 433 

Previous studies in the LPC reported soil profile information that are comparable to the 434 

simulated chloride. Huang et al. (2013) showed an intensive accumulation of chloride under 435 

alfalfa (about 6.5 times higher than under rain-fed winter wheat crop). Additional studies 436 

(Gates et al., 2011; Huang et al., 2021) revealed an increase in chloride accumulation in the 437 

vadose zone under similar shrub covers as in this study and under orchards in the LPC.    438 

An earlier study by Hilhorst (2000) suggested that under dry conditions, the 𝜎௔ measured by 439 

EMI, is more affected by the increase of pore water conductivity and less closely associated 440 

to SWC. Furthermore, in semi-arid areas the climatic forcing has a major effect on deep 441 

drainage. The level of deep drainage intensity would define the build-up of salts and their 442 

distribution in vadose zone (Scanlon et al., 2010). Recently, several studies have indicated 443 

that the pore-water conductivity distribution in the vadose zone should be considered when 444 

establishing an in situ 𝜎 - SWC relationship in semi-arid areas (Moreno et al., 2015; Cassiani 445 

et al., 2016). However, currently there are no reported field studies of in situ simultaneous 446 

measurements of SWC, 𝜎௔ and pore water conductivity under semi-arid conditions. The 447 

build-up of salts and associated soil salinity in the LPC vadose zone has surprisingly received 448 

little attention.      449 

 450 

4.  Summary and Conclusions  451 
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The measurements of SWC in deeper parts of the vadose zone at large scales is challenging. 452 

Geophysical methods such as the EMI approach might facilitate a bridge between processes 453 

observed locally and at larger scales. Here, EMI was applied to measure apparent electrical 454 

conductivity over six effective depths in four plots covered by typical land cover types 455 

(shrub, grass, fallow and crop) in the north of the LPC. SWC were measured with neutron 456 

probes from the ground surface to a depth of 4 meters. The unique loess environment in the 457 

LPC, with its characteristic deep soils and relatively insignificant soil variability, reduces the 458 

effect of soil texture variation on EMI readings to minimum.  Moreover, for this particular 459 

study, soil textural variation is insignificant and can be neglected. The similarity of the soil 460 

texture between all plots enabled a focus of investigation on the potential influences of 461 

different cover types on the spatiotemporal variability of SWC and apparent electrical 462 

conductivity.  463 

An increasing trend in 𝜎௔ values: SL<GL<FL<CL, corresponds with the increase in average 464 

SWC in the plots. Moreover, 𝜎௔ values that were measured in the shrub covered plot show a 465 

relatively high variability, which is consistent with documented variability of SWC for soils 466 

under this vegetation, indicating unsustainable water conditions in the vadose zone.  467 

Linear relationships between soil water content and specific-depth soil electrical conductivity 468 

(𝜎) under the different land covers were established. The 𝜎 values were estimated using the 469 

SWC observations, assuming a linear relationship between these variables.  The analysis 470 

reveals a change in model parameters with depth.  Textural variation is apparently negligible 471 

(to 3m depth at least), however, such variation in model parameters may be attributed, in part, 472 

to changes in bulk density. Increases in pore water electrical conductivity are hypothesized as 473 

a primary cause of the depth dependency of the 𝜎- SWC model parameters. Simulations of 474 

chloride profiles support the hypothesis that contrasts in pore water electrical conductivity 475 

could exist under different crop types. Elevated pore water conductivity beneath shrub and 476 

grass covers would imply even greater significance of the soil water content since these two 477 

cover types exhibit lower apparent conductivity than the other two cover types. To improve 478 

SWC prediction from EMI observations pore-water conductivity should be measured. 479 

Nevertheless, the results presented here illustrate how excessive water demands of Korshinsk 480 

Peashrub and Purple Alfalfa at the study site are revealed by their lower apparent 481 

conductivity and (for the case of the shrub cover at least) their high variation in apparent 482 

conductivity. Our EMI dataset reveals an immense potential for mapping, qualitatively at 483 
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least, areas of the Loess Plateau that are vulnerable to excessive vegetation demands, and 484 

hence unsustainable land cover.  485 
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Figures 779 

Figure 1 Layout of the four plots in the Shenmu Research site. The lower part of the 780 

photograph is downslope. The black dots in the schematic show the locations of neutron 781 

probe and EMI measurements.  782 

Figure 2 Profiles of particle size distribution for two locations at the site, showing little 783 

spatial variability in textural properties. The locations of the shrub and fallow plots are 784 

shown in Figure 1. 785 

Figure 3 Daily rainfall between July 2017 and October 2017. The arrows indicate when the 786 

SWC and EMI surveys were conducted. 787 

Figure 4 Cumulative sensitivity functions for vertical coplanar (VCP) and horizontal 788 

coplanar (HCP) orientations with instrument located 1m above ground level. Arrows are 789 

positioned at the depth of investigation for a given coil spacing, s. 790 

Figure 5 Soil water content profiles in the four plots on the three survey dates. The solid line 791 

is the median profile; the shaded region shows the 1st and 3rd interquartile range. 792 

Figure 6 The average soil water contents under the different land covers. The horizontal line 793 

shows the median SWC, the box shows the 2nd and 3rd quartile range and the whiskers show 794 

the 1st and 4th quartiles. 795 

Figure 7 Box and whisker plots of the apparent electrical conductivity (𝜎௔) measurements 796 

from six effective depths, which were obtained over the different land covers. The horizontal 797 

line shows the median SWC, the box shows the 2nd and 3rd quartile range and the whiskers 798 

show the 1st and 4th quartiles. 799 

Figure 8 Estimated versus observed σa for all crop cover types using the relationships in 800 

Table 2. The black line in each plot is the 1:1 relationship.  801 

Figure 9 Variation in  - SWC relationship parameters with depth.   802 

Figure 10 Simulated chloride profiles in the vadose zone under the four land cover types. 803 
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Tables 806 

Table 1.  Coefficient of variation of apparent conductivity measurements 807 

Coil configuration and 

spacing 

Crop Fallow Grass Shrub 

VCP 1.48m 9.23 15.65 8.57 18.25 

VCP 2.82m 8.24 6.30 6.90 13.72 

VCP 4.49m 5.45 5.96 7.23 9.98 

HCP 1.48m 6.70 5.81 8.90 19.05 

HCP 2.82m 6.16 6.23 7.80 12.11 

HCP 4.49m 6.84 7.25 8.54 10.68 

 808 

Table 2. Estimated relationships between soil water contents and 𝜎 for all land covers.  809 

Configuration  Coil 

spacing, s 

(m) 

DOI (m) a (mS/m) b (mS/m) RMSE 

(mS/m) 

VCP 1.48 2.7 23.7 1.7 0.7 

VCP 2.82 3.4 32.3 4.1 0.8 

VCP 4.49 4.5 38.9 5.7 1.0 

HCP 1.48 3.1 19.6 5.2 0.8 

HCP 2.82 4.6 30.3 7.8 1.0 

HCP 4.49 6.9 37.5 9.2 1.3 
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Figure 2 816 
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Figure 3 823 
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Figure 4 828 
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Figure 5 832 
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Figure 6 838 
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Figure 7 843 
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Figure 8 848 
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