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Abstract. Motivated by the work of Lovász and Szegedy on the con-
vergence and limits of dense graph sequences [10], we investigate the con-
vergence and limits of finite trees with respect to sampling in normalized
distance. We introduce dendrons (a notion based on separable real trees)
and show that the sampling limits of finite trees are exactly the dendrons.
We also prove that the limit dendron is unique.
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1. Introduction

The main motivation of our paper is the (sampling) limit theory of dense
graphs introduced by Lovász and Szegedy [10]. Let us recall very briefly the
most important definitions. Let G be a finite simple graph and r ≥ 1 be an
integer. Let us pick r distinct vertices v1, v2, . . . vr of G uniformly at random
and consider the graph H induced by the chosen vertices. (Here we assume
that the graph has at least r vertices. Alternatively, one can use sampling with
repetition and define H as the r vertex graph obtained by possible duplication
of the vertices in the induced subgraph.) Then, H will be isomorphic to one of

the 2(r
2) graphs on r labeled vertices. Thus, the random choice of the vertices

vi defines a probability distribution pGr on the finite set Ar of these labeled
graphs. We say that the sequence of finite graphs (Gn)n∈N is convergent if
limn→∞ p

Gn
r (K) exists for all r ∈ N and K ∈ Ar. (Throughout this paper

N stands for the set of positive integers.) Lovász and Szegedy constructed a
universal limit object for such convergent graph sequences, the graphons. A
graphon is a measurable symmetric function W : [0, 1]2 → [0, 1]. For K ∈ Ar

(with the vertices of K denoted by the integers 1 through r), pWr (K) is defined
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Convergence and limits of finite trees

as

pWr (K) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∏
i<j,(i,j)∈E(K)

W (xi, xj)
∏

i<j,(i,j)/∈E(K)

(1−W (xi, xj))dx1dx2 . . . dxr .

The graphon W is the limit of the sequence (Gn)n∈N if for all r ≥ 1 and
K ∈ Ar, limn→∞ p

Gn
r (K) = pWr (K). It has been proved in [10] that for any

convergent sequence (Gn)n∈N there exists a limit graphon and all graphons are
limits of convergent sequences of finite graphs. The uniqueness problem was
considered in [2]. The goal of our paper is to introduce and study the sampling
limit theory of finite trees. This aim seems to be rather contradictory since
the sampling limit theory of Lovász and Szegedy gives non-trivial limit objects
only if the graphs are dense, and the trees are very sparse graphs. We solve
this problem by regarding trees as dense objects using their natural metric
structure.

We identify each finite tree with its vertex set. We call a finite tree non-
trivial if it has at least two vertices. Let T be a nontrivial finite tree. In
order to have more sequences of finite trees that are convergent we need to
normalize the shortest path metric dT on T . Here we choose to normalize it
by its diameter diamdT

(T ). We consider the following metric space structure
on T .

dT (x, y) =
dT (x, y)

diamdT
(T )

.

Throughout the paper we use this normalization making every non-trivial
finite tree into a metric space of diameter exactly 1. This is for convenience
only; see Remark 2 on the possibility for other normalizations. We consider
the uniform probability measure µT on T as well. So, we obtain a metric
measure space structure on our tree. The notion of sampling convergence for
metric measure spaces has been introduced by Gromov in the famous Section
31
2

of his treatise “Metric structures for Riemannian and Non-Riemannian
Spaces” [6]. Let us recall the formal definitions.

Definition 1.1. For r ≥ 1, let Mr be the space of real matrices (dij)1≤i,j≤r.
We identify Mr with the product space

∏
1≤i,j≤r R.

For a set X and a function d : X2 → R we define the map ρr = ρX,d
r : Xr →

Mr with ρr(x1, x2, . . . , xr) = (dij)1≤i,j≤r, where dij = d(xi, xj) for i 6= j and
dii = 0. Treating dii separately is needed because we will later use ρr (and
the sampling measure τr below) not only for distance functions d but also for
functions not satisfying d(x, x) = 0 for all x ∈ X.

A metric measure space is a triple (X, d, µ), where (X, d) is a complete
separable metric space and µ is a probability Borel measure on X.

For a metric measure space, or more generally for a triple (X, d, µ), where µ
is a probability measure on X and d : X2 → R is µ2-measurable we define the
sampling measure τr(X, d, µ) ∈ Prob(Mr) as the push-forward of the product
measure µr along ρr, that is, for a Borel set H in Mr we set τr(X, d, µ)(H) =
µr(ρ−1r (H)).
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Convergence and limits of finite trees

For a nontrivial finite tree T and r ≥ 1 we write τr(T ) as a shorthand
for τr(T, dT , µT ), where dT is the normalized distance and µT is the uniform
measure. Our normalization makes the diameter 1, so the image of ρT,dTr is
contained in M1

r =
∏

1≤i,j≤r[0, 1] and thus τr(T ) is concentrated on M1
r .

Definition 1.2. The sequence of finite trees (Tn)n∈N is convergent in metric
sampling if for any r ≥ 1 the sequence of measures (τr(Tn))n∈N converges
weakly in the space Prob(Mr) of the Borel probability measures on Mr.

Since τr(T ) is concentrated on the compact space M1
r for any nontrivial

finite tree T , one can pick a convergent subsequence from any sequence of
finite trees. The main goal of our paper is to identify the limit objects of such
convergent sequences of finite trees. First, we need to recall the notion of a
real tree, our key topological notion (see [1] for a survey).

Definition 1.3. We say that the non-empty complete metric space (T, d) is
a real tree or R-tree if for any pair of distinct points p, q ∈ T one has an
isometric embedding of an interval α : [a, b]→ X such that α(a) = p, α(b) = q
and α(c) separates p from q for any a < c < b, that is, p and q are in distinct
connected components of T \ {α(c)}.

We write [x, y] to denote α([a, b]), which is uniquely determined in a real
tree. We let [x, x] = {x} and call [x, y] a segment in the real tree (T, d). If
x 6= y we call [x, y] a proper segment. All the points of [x, y] other than its
end points x and y are called the intermediate points of the segment [x, y].
An intermediate point of a real tree is an intermediate point of a proper
segment in the tree.

For p ∈ T we call the connected components of T \ {p} the p-branches.
Note that p is an intermediate point if and only if there are at least two
p-branches. A branch of T is a p-branch for some p ∈ T .

A natural limit object would be a measured real tree, that is a separable
real tree equipped with a probability measure making it a metric measure
space. In fact, there are several known metrics for metric measure spaces, like
the Gromov-Prohorov metric [5] and Gromov’s �1 metric [6]. Both of these
define Gromov’s weak topology (given by the sampling) [9], see also Section
10 of [7]. This means that a sequence of measured real trees tend to another
metric measure space (necessarily a measured real tree) in one of these metrics
if and only if they tend to it in metric sampling. Nevertheless, these metrics
are substantively different from the metric obtained from sampling that we
consider in this paper. In particular, Gromov-Prohorov metric and the �1

metric is complete as opposed to the metric obtained from metric samplings,
which is pre-compact.

We will introduce dendrons as limit objects for sequences of finite trees that
are convergent in metric sampling. If a sequence of finite trees (considered as
metric measure spaces after normalization) tend to another metric measure
space in Gromov’s weak topology, then the finite trees form a convergent se-
quence also in metric sampling and the limit dendron can be easily obtained
from the limit in the Gromov’s weak topology, see Example 1 below. But
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there are many sequences of finite trees that are convergent in metric sam-
pling, but the corresponding measured real trees are not convergent in the
Gromov’s weak topology, see examples 2–6 below. Hence, our dendrons can
be considered to be the compactification of the space of measured real trees
of maximum diameter 1.

It is natural to construct the limit objects as some generalization of mea-
sured real trees. One way to do it is to drop the requirement of a measured
real tree to be separable (and at the same time allow some Borel sets not to
be measurable). See the definition of quasi measured real trees in the next
section and Remarks 5 and 6. Here we take another route.

Definition 1.4. A long dendron D = (T, d, ν) is a real tree (T, d) to-
gether with a probability Borel measure ν on AD = T × [0,∞) satisfying
ν(B × [0,∞)) > 0 for all branches B of T . We define dD : A2

D → R by
dD((u, a), (v, b)) = d(u, v)+a+b. We say that D is a dendron if dD is almost
surely bounded by 1, that is, if ν2({(x, y) ∈ A2

D | dD(x, y) > 1}) = 0.
For a long dendron D = (T, d, ν) and r ≥ 1, we write τr(D) as the shorthand

for the sampling measure τr(AD, dD, ν).
We will use the notation AD and dD for (long) dendrons D in the above

sense. We say that two long dendrons D = (T, d, ν) and D′ = (T ′, d′, ν ′)
are isomorphic if there exists an isometry f from (T, d) to (T ′, d′) such that
f ′ : AD → AD′ defined as f ′(p, a) = (f(p), a) is measure preserving.

Remark 1. In the definition of a (long) dendron we did not explicitly require
the real tree (T, d) to be separable, but this is implicit in the definition. We
will state this explicitly in Corollary 2.1.

Note that dD defined above for a (long) dendron D = (T, d, ν) is not a
distance on AD as dD(x, x) = 2a > 0 for all x = (u, a) ∈ AD with a > 0.

Long dendrons can formally be considered marked metric measure spaces
as introduced by Depperschmidt, Greven and Pfaffelhuber, see [3], where the
infinite interval [0,∞) is the space of possible marks. This connection is
superficial though, as the topology is rather different. We will see that finite
trees correspond to dendrons where the mark is 0 with probability one, but
their limit points include all dendrons, among them those where the mark is
separated from 0 with probability one. See Examples 2, 3 and 6 below.

Our main results are the following three theorems that are analogues of the
main results of Lovász and Szegedy in [10] and Borgs, Chayes and Lovász in
[2].

Theorem 1. For any convergent sequence of finite trees (Tn)n∈N there exists
a dendron D (the sampling limit of (Tn)n∈N) such that the sampling measures
τr(Tn) weakly converge to τr(D) for all positive integers r.

Theorem 2. Any dendron is the sampling limit of a convergent sequence of
finite trees.

Theorem 3. The sampling limit is unique up to isomorphism. More gener-
ally, if two long dendrons D and D′ satisfy τr(D) = τr(D

′) for all r, then D
and D′ are isomorphic.
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Remark 2. These theorems establish dendrons as the sampling limits of finite
trees with respect to distance normalized by the diameter. Long dendrons can
be considered an extension suitable for other normalizations. It is possible to
consider finite trees with explicitly given normalization factors. In this case
they correspond to metric measure spaces with an arbitrary diameter. We
formulate Theorem 3 for long dendrons to be more general and capture those
limits with an unbounded diameter too. The single main difference between
this more general limit theory of finite trees and the theory discussed in this
paper is that with no bound on the diameter we lose compactness: we will
not be able to find convergent subsequences of any sequence of arbitrarily
normalized finite trees. Janson in a recent paper, [7] found other normalization
factors more suitable in various (often probabilistic) scenarios.

For the purposes of this paper we encourage the reader to concentrate on
the case of dendrons. For this case it is instructive to note that one could
define the domain AD of a dendron D = (T, d, ν) as AD = T × [0, 1/2] instead
of the definition AD = T × [0,∞) above. Indeed, for the complementary set
B = T × (1/2,∞) we have dD(x, y) > 1 for all x, y ∈ B, hence if D is a
dendron, we have ν(B) = 0.

1.1. Examples. A wealth of interesting examples are also presented in the
recent paper of Janson [7]. Here we include a very short list of examples to
serve as illustration. Some of these examples are taken from Janson’s paper.
All these examples are easy to work out, we leave the simple calculations to
the reader. For more examples of limits of random finite trees using metric
sampling see Section 9-14 of [7].

Example 1 (Example 7.1 [7]). Let Pn be the path on n vertices. These paths
converge in metric sampling to the measured real tree (I, d, µ), where I = [0, 1]
is the unit interval with the Euclidean metric d and Lebesgue measure µ on
the Borel sets of I. This can be realized as a dendron (I, d, ν), where ν is the
push forward of the measure µ along the inclusion ι : I → I × [0,∞) defined
by f(x) = (x, 0).

Example 2 (Example 7.2 [7]). For the simplest example where the limit is
not a measured real tree, consider the sequence of stars, consisting of the
n-vertex star K1,n−1 for all n. These stars converge in metric sampling to the
dendron (Υ, d, ν), where (Υ, d) is the one point metric space with point p and
ν is concentrated on the single point (p, 1/2).

Example 3 (Example 7.3 [7]). Let Bn be the binary tree of height n − 1
with 2n − 1 vertices. These binary trees also converge in metric sampling to
the same dendron (Υ, d, ν) we saw in the previous example.

Example 4. We obtain a more complicated limit dendron if we replace the
edges of the binary tree with paths of variable lengths. Let us obtain B′n
by replacing each edge e of the binary tree Bn from the preceding example
with a path of length bn2/k2c, where e connects a vertex of distance k from
the root with one at distance k − 1. These finite trees form a convergent
sequence in metric sampling. The limit dendron is (B, d, ν), where (B, d) is a
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real tree obtained from the infinite binary tree by making each edge e of the
combinatorial tree in distance k − 1 from the root into an interval of length
C/k2 where C = 1/(2

∑∞
i=1 1/i2). The distribution ν is concentrated on the

set H × {0} for the Cantor set H formed by the points of B at distance 1/2
from the root (the “limit points” of the infinite branches) and it is uniform
there.

Example 5. A limit dendron with a “more uniform” distribution can be
obtained from combs. Let Cn be the n2-vertex tree obtained from the n-vertex
path Pn by attaching pairwise disjoint n-vertex paths at every vertex. These
combs form a convergent sequence in metric sampling. The limit dendron is
(I, d, ν), where (I, d) is the interval of length 1/3 and ν is concentrated on the
rectangle I × [0, 1/3] and is uniform there.

Example 6. The underlying real trees in the limit dendrons of the previous
examples are all compact. Here is a simple way to get a non-compact under-
lying tree. Let Dn be the depth two finite tree where the root has n children:
P1, . . . Pn and Pi has 2i children for i = 1, . . . , n. The trees Dn also form a
convergent sequence in metric sampling with the limit dendron being (S, d, ν),
where the real tree (S, d) is a star consisting of the infinitely many intervals
(r, pi), each of length 1/4. The distribution ν is concentrated on the points
(pi, 1/4) with ν((pi, 1/4)) = 2−i for i = 1, 2 . . . .

In Section 2 we introduce semi-measured real trees, a technical relaxation
of measured real trees. In Sections 3 and 4 we recall the metric ultraproduct
and the ultraproduct of measure spaces, respectively, especially as they apply
to semi-measured real trees. We prove Theorems 1, 2 and 3 in Sections 5, 7
and 6, respectively.

2. Semi-measured real trees

Definition 2.1. We denote the open ball of radius r around a point x in a
metric space by Bx(r).

We call the triple (T, d, µ) a semi-measured metric space if (T, d) is a
metric space, (T, µ) is a probability measure space and all the balls in (T, d)
are µ-measurable. A semi-measured metric space (T, d, µ) is a quasi metric
measure space (or quasi mms for short) if d is µ2-measurable.

Remark 3. Note that both semi-measured metric spaces and a quasi metric
measure spaces are relaxations of the well established notion of metric measure
spaces. For metric measure spaces one first requires that the underlying metric
space is separable and complete, second that the distribution is a probability
Borel measure on this metric space. Here we dropped the first requirement
and relaxed the second, allowing some Borel sets to be non-measurable. The
requirement for the balls to be measurable in a semi-measured metric space
is equivalent to requiring that the single variable distance function dx(y) =
d(x, y) is µ-measurable for all points x ∈ T and as such, it is weaker even than
requiring that the bivariate distance function d is µ2-measurable as needed for
a quasi mms.
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Note also, that the sampling measures τr are defined for a quasi mms but
not (in general) for semi-metric measure spaces.

Definition 2.2. A semi-measured real tree is a semi-measured metric
space (T, d, µ), where (T, d) is an R-tree. Similarly, a quasi measured real
tree is a quasi mms (T, d, µ), where (T, d) is a real tree.

If Y is non-empty, closed, connected subset of T in a real tree (T, d) we

define the retraction πY = πT,d
Y : T → Y by setting πY (t) be the unique

closest point to t in Y (the existence of which is stated in part (2) of the
following lemma).

Lemma 2.1. Let (T, d) be a real tree and Y be a non-empty, closed, connected
subset of T .

(1) Y with the restriction of d is a real tree.
(2) The retraction πY is well defined and we have πY (t) ∈ [t, y] for all

t ∈ T and y ∈ Y .
(3) If B is a connected component of T \ Y and x ∈ B, then B is a

πY (x)-branch of T .
(4) We have d(x, y) = d(x, πY (x)) + d(πY (x), πY (y)) + d(πY (y), y) for all

x, y ∈ T unless x and y are in the same connected component of T \
Y . In particular, we have d(πY (x), πY (y)) ≤ d(x, y) for all x, y ∈ T
making πY continuous.

(5) Any branch B of T is in the σ-algebra generated by the balls of T , so
it is µ-measurable for any semi-measured real tree (T, d, µ).

Proof. A closed subspace Y of T is a complete metric space. If [x, y] ⊆ Y for
all x, y ∈ Y then Y is a real tree, otherwise Y is not connected. This proves
part (1).

Let us fix t ∈ T and for a point y ∈ Y define py to be the unique closest
point to t in Y ∩ [y, t]. As the segment [y, t] is isometric to an interval and
Y is closed, this exists. If py1 6= py2 for y1, y2 ∈ Y , then py1 and py2 can
be connected inside Y (as Y is connected) and also outside (through t), a
contradiction. Thus, all the points py coincide defining πY (t) and proving
part (2).

For part (3) consider the πY (x)-branch containing x. By part (2) it is
disjoint from Y , hence it is B.

For x, y ∈ T , the union of the segments [x, πY (x)], [πY (x), πY (y)] and
[πY (y), y] connect x to y. If some two of these three segments intersect in
more than their end points, then it must be the first and last ones (as the
middle segment is contained in Y ), and then x and y are in the same connected
component of T \Y . If no such non-trivial intersection occurs, then the union
of the three segments is homeomorphic to an interval, so the union must be
[x, y] itself, proving the formula for d(x, y) in part (4). If the formula applies,
it implies the bound d(πY (x), πY (y)) ≤ d(x, y). Otherwise πY (x) = πY (y) by
part (3) and the bound holds again.

Let B be a p-branch of the real tree (T, d) and x ∈ B. Consider a sequence
of intermediate points pn of [x, p] tending to p. It is easy to see that B = {y ∈
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T | ∃n : d(y, pn) < d(y, p)}. This makes B =
⋃

n,r(Bpn(r) \ Bp(r)), where the
union is taken for all n and all rational numbers r > 0. The formula proves
part (5). �

The goal of this section is to study semi-measured real trees (T, d, µ) and to
define the associated long dendrons for them. Note that the associated long
dendron is, in fact, a dendron whenever the essential diameter of (T, d, µ) is
at most one, that is, when µ({x ∈ T | µ({y ∈ T | d(x, y) > 1}) > 0}) = 0.

Definition 2.3. Let (T, d, µ) be a semi-measured real tree. The point p ∈ T
is an inner point of T if there is no p-branch B of T such that µ(B) = 1.
The core of T , Core(T ) is the closure of the set of inner points of T . We write
πT as a shorthand for the retraction πCore(T ).

For a semi-measured real tree we define the associated long dendron
D and associated projection α : T → AD as follows. For p ∈ T we set
α(p) = (πT (p), d(p, πT (p))). We set D = (Core(T ), d, ν). Here we slightly
abuse notation by denoting the restriction of d to the Core(T ) by d again. We
define the Borel probability measure ν as the push-forward of the measure µ
along the map α.

The definition of inner point makes sense because the branches are measur-
able by Lemma 2.1(5).

In order to show that the definition of the associated long dendron makes
sense we need to prove a series of lemmas. In Lemmas 2.2 and 2.3 we will
show that Core(T ) is non-empty and connected, respectively. As the core is
closed by definition it is a real tree by Lemma 2.1(1) and so the retraction
πT exists and the associated projection α is also defined. For the definition of
the measure ν in the associated long dendron to make sense we further need
that the associated projection α is measurable if considered as a map from
(T, µ) to the Borel space on AD. This is stated in Lemma 2.5 below. Finally,
we show that the associated long dendron is indeed a long dendron (that is,
it satisfies the positivity condition) in Lemma 2.6 below.

Lemma 2.2. The set Core(T ) is non-empty. Furthermore, a branch B of T
intersects Core(T ) if and only if µ(B) > 0.

Proof. It is enough to prove the second statement as if there are no positive
measure branches, then all points of T must be inner points. (This scenario is
only possible if T has a single point only and thus it has no branches at all.)

Let p ∈ T and let B be a p-branch. For any q ∈ B the q-branch B′

containing p satisfies B′ ⊇ T \ B. Thus, if µ(B) = 0, then µ(B′) = 1 and no
point in B is an inner point. As B is open, this implies that Core(T ) is disjoint
from B as claimed. Now, let us assume that µ(B) > 0. We will proceed by
contradiction. Suppose that B contains no inner points. For t ∈ B let Bt

be the unique t-branch of measure 1, and let Ct be the t-branch containing
p. Let S = {t ∈ B | Bt 6= Ct}. Note that µ(Ct) = 1 if t ∈ B \ S and
µ(Ct) = 0 if t ∈ S. Let z = sup{d(p, t) | t ∈ S ∪ {p}}. We claim that z
is a maximum, that is, there exists c ∈ S ∪ {p} with d(p, c) = z. Otherwise
we would have ci ∈ S such that d(p, ci) tend to z > 0 as i tends to infinity.
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We have µ(
⋂∞

i=1Bci) = 1. Let t ∈
⋂∞

i=1Bci . All the points ci are in the
segment [p, t], so they must tend to a point c ∈ [p, t] with d(p, c) = z. We
have Cc =

⋃∞
i=1Cci so we must have µ(Cc) = 0 and c ∈ S as claimed. Now,

let B′ = B if c = p (that is S = ∅) and B′ = Bc otherwise. Take an arbitrary
point y ∈ B′ and a sequence of intermediate points yi of the segment [c, y]
tending to c. Since d(p, yi) > d(p, c) = z, we have that µ(Cyi) = 1. Notice
that

⋂∞
i=1Cyi is disjoint from the positive measure set B′, therefore we cannot

have µ(Cyi) = 1 for all i, leading to a contradiction �

Lemma 2.3. The set Core(T ) is connected. Moreover, all intermediate points
of the segment [p, q] are inner points if p, q ∈ Core(T ).

Proof. Suppose now that x is an intermediate point in [p, q] for some p, q ∈
Core(T ). The points p and q lie in distinct x-branches and these x-branches
have positive measure by Lemma 2.2. Thus, x must be an inner point as
stated. �

Let us fix a point p0 ∈ Core(T ) and let Q be the set of inner points q such
that d(p0, q) is a rational number.

Lemma 2.4. The real tree Core(T ) is separable. In particular, Q is a count-
able dense set in Core(T ) and furthermore Q is dense in any proper segment
in Core(T ).

Proof. For p0 6= q ∈ Q, let Bq be the q-branch containing p0 and Cq = T \Bq.
As q is inner we have µ(Cq) > 0. Notice that for p, q ∈ Q distinct with
d(p0, p) = d(p0, q) the sets Cp and Cq are disjoint. Therefore, Q contains
a countable number of points in any fixed distance from p0 and must itself
be a countable set. Consider a pair of distinct points p, q ∈ Core(T ) and let
t = π[p,q](p0). All intermediate points s ∈ [p, q] are inner points by Lemma 2.3.
By Lemma 2.1 we have d(p0, s) = d(p0, t) + d(t, s), and thus Q∩ [p, q] is dense
in [p, q] as claimed.

The fact that Q is dense in any proper segment in Core(T ) implies that Q
is dense in Core(T ) itself unless Core(T ) is a singleton set. In this latter case
Q = Core(T ). �

Remark 4. The same argument (with “inner” replaced with “intermediate”)
shows that every separable real tree has a countable subset that is dense in
every proper segment.

Corollary 2.1. If D = (T, d, ν) is a long dendron, then the real tree (T, d) is
separable.

Proof. Let µ be push forward of the measure ν along the projection from AD

to T . This makes (T, d, µ) a semi-measured real tree. By the definition of
the long dendron, every branch of this real tree has positive measure. By
Lemma 2.2, this implies that every branch intersects the core. But as the core
is non-empty (by Lemma 2.2 again) and closed (by definition), this implies
that the core is T itself. Now Lemma 2.4 proves the claim of the corollary. �

Lemma 2.5. The associated projection α : T → AD is measurable.
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Proof. Recall that for p ∈ T we have α(p) = (πT (p), d(πT (p), p)). We prove
that both coordinate functions are measurable. Here d(πT (p), p) = minq∈Core(T ) d(p, q) =
infq∈Q d(p, q) by Lemma 2.4. The function fq(p) = d(p, q) is measurable by
definition, therefore so is d(πT (p), p).

We further need that the map πT considered from (T, µ) to the Borel space
on Core(T ) is measurable. As Core(T ) is separable (Lemma 2.4) it is enough
to check that the inverse image of the complement of a closed ball, namely
the set H = {x ∈ T | d(πT (x), p) > r} is measurable for each p ∈ Core(T )
and r > 0. For x ∈ H there exists q ∈ Q ∩ [p, πT (x)] with d(q, p) > r by
Lemma 2.4. This makes d(x, p) > d(x, q) + r. Clearly, for points x outside
H and q ∈ Q we have d(x, p) ≤ d(x, πT (x)) + d(πT (x), p) ≤ d(x, q) + r. This
proves H =

⋃
q∈Q{x ∈ T | d(x, p) > d(x, q) + r} =

⋃
q∈Q,s(Bq(s) \ Bp(r + s)),

where s ranges over the positive rational numbers in the last expression. As
the balls are µ-measurable by definition, so is H. �

Lemma 2.6. The associated long dendron D = (Core(T ), d, ν) is indeed a
long dendron.

Proof. We have already seen that (Core(T ), d) is a real tree and ν is a Borel
probability measure on AD. It remains to show that for any branch B of
Core(T ) we have ν(B × [0,∞)) > 0. By the definitions of ν and α we have
ν(B × [0,∞)) = µ({x ∈ T | πT (x) ∈ B}). Let B be a p-branch of Core(T ),
then {x ∈ T | πT (x) ∈ B}) is the p-branch B′ of T containing B. B′ intersects
Core(T ), so by Lemma 2.2 we have µ(B′) > 0. �

We call the connected components of T \ Core(T ) the feathers of T .

Lemma 2.7. Let (T, d, µ) be a semi-measured real tree with associated long
dendron D = (Core(T ), d, ν) and associated projection α. The feathers of T
are exactly the measure zero p-branches for points p ∈ Core(T ). We have
d(x, y) = dD(α(x), α(y)) for x, y ∈ T unless x and y are in the same feather
of T .

Proof. Both statements follow directly from Lemmas 2.1 and 2.2. �
A measured real tree is a metric measure space (T, d, µ) where (T, d) is

a real tree. As we saw, a measured real tree is also a semi-measured real tree,
so the associated long dendron and the associated projection are defined.

For a function α : A → B and r ∈ N we write αr for the function
that acts coordinate-wise on Ar, that is αr : Ar → Br, αr(x1, . . . , xr) =
(α(x1), . . . , α(xr)).

Lemma 2.8. For a quasi mms (T, d, µ) and associated long dendron D we
have τr(T, d, µ) = τr(D) for all r ≥ 1.

Proof. Let D = (Core(T ), d, ν) and let α : T → AD be the associated projec-
tion. By Lemma 2.7 we have d(x, y) = dD(α(x), α(y)) for x, y ∈ T unless x and
y are in the same feather of T . Also by the same lemma the feathers have zero
measure, so we have µ({y ∈ T | d(x, y) 6= dD(α(x), α(y))}) = 0 for all x ∈ T
and hence µ2({(x, y) ∈ T 2 | d(x, y) 6= dD(α(x), α(y))}) = 0. As a consequence,
we have µr(X) = 0 for the set X = {x ∈ T r | ρT,dr (x) 6= ρAD,dD

r (αr(x))}.
10
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For a Borel set H ⊆ Mr we have τr(T, d, µ)(H) = µr({x ∈ T r | ρT,dr (x) ∈
H}) and τr(D)(H) = νr({x ∈ Ar

D | ρAD,dD
r (x) ∈ H}) = µr({x ∈ T r |

ρAD,dD
r (αr(x)) ∈ H}). As the symmetric difference of the sets {x ∈ T r |
ρT,dr (x) ∈ H} and {x ∈ T r | ρAD,dD

r (αr(x)) ∈ H} is contained in the zero
measure set X, their µr measures agree, so τr(T, d, µ)(H) = τr(D)(H) as
needed. �

Remark 5. Given a (long) dendron D it is natural to look for a quasi mea-
sured real tree TD with D as its associated long dendron. By Lemma 2.8 we
could use TD in place of D for the sampling limit in Theorems 1 and 2. If the
construction of TD is canonical we can also ensure the limit is unique as in
Theorem 3.

Let D = (T, d, ν) be a long dendron. Recall that dD : A2
D → R is not a

metric as dD(x, x) is often positive. As a first attempt to fix this one could
consider the distance function d′ as defined in Equation (10) in Section 6.
This is indeed a distance and (AD, d

′) is a real tree. It is not separable (unless
T is trivial), so (AD, d

′, ν) is typically not a metric measure space, but it is
a quasi measured real tree so both τr(D) and τr(AD, d

′, ν) are well defined.
If ν({u} × (0,∞)) = 0 for all u ∈ T , then d′ and dD differ in a measure
zero subset of A2

D. In this case we have τr(D) = τr(AD, d
′, ν) and further the

associated long dendron for the measured real tree (AD, d
′, ν) is D and the

associated projection is the identity on AD. Note however, that ν is a Borel
measure on AD with its product structure, but unless |T | = 1 it is not a Borel
measure on the real tree (AD, d

′) as the latter space is non-separable with
many not ν-measurable open sets.

The simple approach above does not work if ν({u} × (0,∞)) > 0 for some
points u ∈ T . The following, slightly more involved method always works.
We define the quasi measured real tree TD = (T ∗, d∗, µ) as follows.

T ∗ = {(x, y, z) | x ∈ T, (y, z) ∈ {(0, 0)} ∪ ((0, 1)× (0,∞))}

d∗((x1, y1, z1), (x2, y2, z2)) =

{
|z1 − z2| if (x1, y1) = (x2, y2)
d(x1, x2) + z1 + z2 otherwise.

We define µ as a Borel probability measure on T ∗ considered as subset of the
product T × [0, 1) × [0,∞). As above, this is not a Borel measure on the
real tree (T ∗, d∗) because many open sets in the real tree are not measurable.
For H ⊆ T ∗ which is Borel in the former sense we define µ(H) through the
function fH : AD → [0, 1] as follows. We denote the Lebesgue measure on the
reals by λ.

fH(x, z) =

 0 if z = 0 and (x, 0, 0) /∈ H
1 if z = 0 and (x, 0, 0) ∈ H
λ({y ∈ (0, 1) | (x, y, z) ∈ H}) if z > 0

µ(H) =

∫
AD

fH dν

Now TD is a quasi measured real tree which has D as its associated long
dendron and α : T ∗ → AD given by α(x, y, z) = (x, z) as its associated
projection. In particular, we have τr(TD) = τr(D) for all r.

11
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3. The ultraproduct and the metric ultraproduct

Let us recall the definitions of the ultralimit and the ultraproduct. We will
use both the set theoretical and metric ultraproducts as well as the ultraprod-
uct of probability measures (see next section). When referring to ultralimits
or ultraproducts we will always use the same fixed nontrivial ultrafilter ω on
the set N of positive integers. We use ω-few to refer to any subset of N that
is not in ω. We allow sequences (xn)n∈N to be undefined for ω-few indices n.

For any Hausdorff space H and points xn ∈ H for n ∈ N we define the
ultralimit limωxn to be x ∈ H such that xn is outside any fixed neighborhood
of x for only ω-few indices n. If the ultralimit exists it is clearly unique, and
in case H is compact, it does exist for every sequence xn. Also, if limn→∞ xn
exists, then so does limωxn and they agree. Further, if limωxn exists and
g : H → H ′ is a continuous function to another Hausdorff space H ′, then
limωg(xn) = g(limωxn).

The set-theoretical ultraproduct T =
∏

ωTn of the sequence of sets
(Tn)n∈N consists of the equivalence classes of sequences (xn)n∈N, xn ∈ Tn,
where (xn)n∈N and (yn)n∈N are equivalent if xn 6= yn for ω-few indices n. We
denote the class of the sequence (xn)n∈N by [(xn)n∈N].

Let An ⊆ Tn for each n. Clearly, each element x of A =
∏

ω An (as
an equivalence class) is contained in a distinct element of T =

∏
ωTn. We

identify x with the element of T containing it making A ⊆ T.
For sets Sn, Tn we identify the ultraproduct of their direct products

∏
ω(Sn×

Tn) with the direct product
∏

ωSn ×
∏

ωTn by identifying [(xn, yn)n∈N] in the
former space with ([(xn)n∈N], [(yn)n∈N]) in the latter. We make the same iden-
tification in ultraproducts of products of finitely many factors. In particular,
we identify

∏
ω(Sk

n) with (
∏

ωSn)k for k ≥ 2.
Let H be a Hausdorff space and fn : Tn → H be arbitrary functions. We

write limωfn for the function f defined by f([(xn)n∈N]) = limωfn(xn). The
ultralimit does not depend on the choice of the sequence (xn)n∈N representing
the class [(xn)n∈N], but it may be undefined for some classes if H is not
compact. In this case f is only defined on a subset of

∏
ωTn.

The metric ultraproduct of metric spaces (Tn, dn) was introduced by van den
Dries and Wilkie in [11]. First we define d = limωdn. For this we consider the
distance functions dn with values in the compact space R∞ = R ∪ {−∞,∞}.
This makes d :

∏
ω(T 2

n) → R∞. We identified
∏

ω(T 2
n) with T2, where

T =
∏

ω Tn, so d : T2 → R∞. Clearly, d is symmetric, non-negative and sat-
isfies the triangle inequality, that is, d is a pseudometric possibly containing

zero and infinite distances. The metric ultraproduct T̂ =
∏̂

ωTn is obtained
from T by factoring out the equivalence relation of having zero distance. Let
π̂ : T→ T̂ be the natural projection mapping a point in T to its equivalence

class in T̂. We write ̂[(pn)n∈N] to denote π̂([(pn)n∈N]). Clearly, the pseudodis-

tance d defines a pseudodistance d̂ on T̂ by setting d̂(π̂(x), π̂(y)) = d(x,y).

Here d̂ is a pseudometric in which distinct points have a positive distance but
infinite distances may still appear. Clearly, diam(T̂, d̂) = limωdiam(Tn, dn).
If this value is finite, we call the sequence (Tn, dn)n∈N uniformly bounded.

12
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In this case (T̂, d̂) is a metric space (no infinite distances). In general, “having

finite distance” is an equivalence relation on T̂ and each equivalence class X̂ is
made into a metric space by the restriction of d̂. We call these metric spaces
the clusters of the metric ultraproduct T̂.

Let An ⊆ Tn for each n. As we identified
∏

ωAn with a subset of T we

similarly identify
∏̂

ωAn with the corresponding subset of T̂.
Note that the ultraproduct objects will always be typeset in bold and we

will put the metric ultraproduct objects under theˆsign. Recall that we use
normalized distance on finite trees and all those distances are bounded by 1.
Therefore, sequences of finite trees are uniformly bounded. We could have
restricted attention to uniformly bounded sequences of metric spaces in this
paper to avoid dealing with several clusters. We allow unbounded diameter
for more generality and because having several clusters does not significantly
increase complexity.

Lemma 3.1. Any cluster X̂ of the metric ultraproduct (T̂, d̂) of real trees

(Tn, dn) is a real tree. For two points x̂ = ̂[(xn)n∈N] and ŷ = ̂[(yn)n∈N] in X̂

we have [x̂, ŷ] =
∏̂

ω[xn, yn].

Proof. As X̂ is obtained as a metric ultraproduct, it is complete, see [11]. For

x̂, ŷ ∈ X̂ the segments [xn, yn] in Tn are isometric to a real interval of length

dn(xn, yn) and we have limωdn(xn, yn) = d̂(x̂, ŷ) < ∞. Therefore, the metric

ultraproduct l̂ =
∏̂

ω[xn, yn] of these segments is isometric to a real interval of

length d̂(x̂, ŷ). It is contained in X̂ and contains x̂ and ŷ, so all we need to

establish to prove the lemma is that all the intermediate points of l̂ separate
x̂ from ŷ.

So let p̂ = ̂[(pn)n∈N] ∈ l̂ \ {x̂, ŷ} with pn ∈ [xn, yn]. Let An be the pn-
branch in Tn containing xn and Bn = Tn \ An. (For the ω-few indices n

where pn = xn the sets An and Bn are not defined.) Let Â =
∏̂

ωAn and

B̂ =
∏̂

ωBn. We have Â∪ B̂ = T̂ as for any ẑ = ̂[(zn)n∈N] ∈ T̂ we have either

zn /∈ An for ω-few indices making ẑ ∈ Â or zn /∈ Bn for ω-few indices making
ẑ ∈ B̂. Take any â ∈ Â and b̂ ∈ B̂. From the similar equations in Tn we
have d̂(â, b̂) = d̂(â, p̂) + d̂(p̂, b̂). This means that any point â ∈ Â \ {p̂} is

separated from B̂ by the positive distance of d̂(â, p̂) and similarly any point

b̂ ∈ B̂\{p̂} is separated from Â by the positive distance of d̂(p̂, b̂). Therefore

the sets (Â ∩ X̂) \ {p̂} and (B̂ ∩ X̂) \ {p̂} are disjoint and open and form a

partition of X̂ \ {p̂}. The point x̂ is in the former set, while ŷ is in the latter,

so p̂ separates them in X̂ as claimed. �

4. The ultraproduct of probability spaces

Let us recall the ultraproduct of probability measures. Let µn be a probabil-
ity measure on a σ-algebra An over a set Tn for each n ∈ N. The ultraproduct
sets

∏
ωAn with An ∈ An form a Boolean algebra P on T =

∏
ωTn. Addi-

tionally, we have a finitely additive measure µP on P given by µP(
∏

ωAn) =
13
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limωµn(An). This finitely additive measure can be extended to a σ-algebra
containing P (see [4]) as follows. We call N ⊂ T a nullset if for any ε > 0
there exists an element A ∈ P such that N ⊆ A and µP(A) < ε. A set M ⊂ T
is called measurable if there exists P ∈ P such that the symmetric differ-
ence P4M is a nullset. The family of measurable sets MT form a σ-algebra
with a probability measure µ =

∏
ωµn (the ultraproduct of the measures µn),

where we define µ(M) = µP(P). Hence, we made the ultraproduct space T
into a probability measure space (T, µ). Note that the paper [4] only dealt
with ultraproducts of finite spaces with uniform probability measures, so the
following lemma is only stated there for this special case. However, the proof
of the lemma does not use this restriction on the factors of the ultraproduct
and the same proof applies verbatim for the more general case stated here.

Lemma 4.1 (Lemma 5.1 [4]). Let (Tn, µn) be probability measure space and
fn : Tn → R∞ be a µn-measurable function for n ∈ N. Let T =

∏
ωTn,

µ =
∏

ωµn. In this case the function f = limωfn : T → R∞ is µ-measurable.
If (fn)n∈N is uniformly bounded (that is supn,x |fn(x)| <∞), then we also have

lim
ω

∫
Tn

fn dµn =

∫
T

f dµ .

Let (Sn, µn) and (Tn, νn) be probability measure spaces for each n ∈ N.
Let S =

∏
ωSn, T =

∏
ωTn. Recall that we have identified S × T with∏

ω(Sn × Tn). We have two probability measures on this set. First we have
µS × µT, where µS =

∏
ωµn and µT =

∏
ωνn. But we also have µS×T =∏

ω(µn × νn). It is easy to see that the letter measure extends the former,
that is, any µS × µT-measurable set H is also µS×T-measurable and we have
µS×T(H) = (µS × µT)(H).

In general, a µS×T-measurable set is not necessarily µS × µT-measurable,
but we still have the following form of Fubini’s theorem (see [8] and also [12])

Lemma 4.2. In the setting above for any µS×T-measurable set H the sections
Hx = {y | (x,y) ∈ H} are µT-measurable unless x ∈ Z for some Z ⊆ S with
µS(Z) = 0 and we have

µS×T(H) =

∫
S\Z

µT(Hx) dµS(x).

Let (Tn, dn, µn) be semi-measured metric spaces. Let T =
∏

ωTn be the

set theoretic ultraproduct, let (T̂, d̂) be the metric ultraproduct of the metric

spaces (Tn, dn) with π̂ : T→ T̂ being the natural projection.

Let µ be the ultraproduct of the measures µn. We call the sets H ⊆ T̂
proper if π̂−1(H) is µ-measurable and define µ̂(H) = µ(π̂−1(H)) in this case.

Clearly, the proper sets form a σ-algebra on T̂ and µ̂ is a probability measure
on it, the push-forward of µ along π̂.

Note that if Sn ⊆ Tn is µn-measurable for n ∈ N and Ŝ =
∏̂

ωSn ⊆ T̂

is proper, then we have µ̂(Ŝ) ≥ limωµn(Sn). Indeed, limωµn(Sn) = µ(S),

where S =
∏

ωSn while µ̂(Ŝ) = µ({p ∈ T | π̂(p) ∈ π̂(S)}) and the set
{p ∈ T | π̂(p) ∈ π̂(S)} clearly contains S.

14
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Let x = [(xn)n∈N] ∈ T. By definition, all the single variable distance
functions fn : Tn → R given by fn(y) = dn(xn, y) are µn-measurable. By
Lemma 4.1 the function f = limωfn is µ-measurable. Here f : T → R∞ is
the function f(y) = d(x,y). Hence its factor f̂ : T̂ → R∞ given by f̂(ŷ) =

d̂(π̂(x), ŷ) is µ̂-measurable.

This, in particular, means that each cluster of T̂ is proper. We call a
cluster dominant if its measure is 1. If a dominant cluster exists, then we
say that the sequence (Tn, dn, µn) is essentially bounded. In this case we

simply disregard the rest of the metric ultraproduct and consider (X̂, d̂X̂, µ̂X̂)
as the ultraproduct of the semi-measurable metric spaces (Tn, dn, µn), where

X̂ is the dominant cluster and d̂X̂ and µ̂X̂ are the restrictions of d̂ and µ̂,
respectively. By the above observation the ultraproduct of essentially bounded
semi-measured metric spaces is a semi-measured metric space. Note that if
(Tn, dn) is uniformly bounded, then (Tn, dn, µn) is essentially bounded, but
the converse often fails.

Remark 6. The ultraproduct of an essentially bounded sequence of metric
measure spaces (or even of a uniformly bounded sequence of metric measure
spaces) is typically not a metric measure space, not even a quasi mms. A
simple example of this phenomenon is obtained from random graphs. Let us
associate with the n vertex graph Gn the metric measure space Xn on the
n vertices of Gn with the uniform distribution, where the distance between
adjacent vertices is 1 and between non-adjacent vertices it is 2. The diame-
ter of these spaces is bounded by 2, so the metric measure spaces Xn form
a uniformly bounded sequence. Their ultraproduct is clearly non-separable.
Furthermore, with probability 1 for uniform random graphs Gn, the ultra-
product is not even a quasi mms.

We introduced semi-measured metric spaces because the ultraproduct of an
essentially bounded sequence of semi-measured metric spaces is always a semi-
measured metric space. However, this detour is not necessary. It is not hard
to see that the ultraproduct of an essentially bounded sequence of measured
real trees (or even quasi measured real trees) is always a quasi measured real
tree. We could simply use this ultraproduct as the sampling limit (as opposed
to the associated long dendron) by Lemma 2.8. But this approach does not
give a unique sampling limit and the non-separability also complicates things.
If one still finds a quasi measured real tree as a more esthetically pleasing
sampling limit, this can be achieved without losing uniqueness through the
process explained in Remark 5.

5. The proof of Theorem 1

Let T be a nontrivial finite tree. Consider the real tree (T ′, d) obtained from
T by turning its edges into equal length real segments and letting d be the
normalized distance such that diam(T ′, d) = 1. Let µ be the Borel probability
measure on T ′ that is concentrated on the vertices of T and is uniform there.
Now (T ′, d, µ) is a measured real tree and we clearly have τr(T

′, d, µ) = τr(T )
for each r ≥ 1.
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Theorem 1 is a consequence of Theorem 4 below. Indeed, if (Tn)n∈N is a con-
vergent sequence of finite trees, then the corresponding sequence (T ′n, dn, µn) of
measured real trees is uniformly bounded, so Theorem 4 finds their limit long
dendron. This long dendron D is, in fact, a dendron, since diam(T ′n, dn, µn) =
1 for all n ∈ N, so τ2(D) is concentrated on matrices with no entry exceeding
1.

Theorem 4. Let (Tn, dn, µn)n∈N be an essentially bounded sequence of mea-
sured real trees. For any r ∈ N we have

lim
ω
τr(Tn, dn, µn) = τr(D) ,

where D is the long dendron associated with the semi-measured real tree (X̂, d̂, µ̂)
obtained as the ultraproduct of the measured real trees (Tn, dn, µn) and the ul-
tralimit is understood in the space Prob(Mr) with the weak topology.

Proof. Let π̂ : T → T̂ be the natural projection from the set theoretic ultra-

product T =
∏

ωTn to the metric ultraproduct T̂ =
∏̂

ωTn. Note that X̂ is

the dominant cluster of T̂. Let D = (X∗, d̂, ν), and let the associated projec-

tion be α : X̂ → AD. For the proof we need to show that for any bounded
continuous function g : Mr → R we have

(1)

∫
Mr

g dτr(D) = lim
ω

∫
Mr

g dτr(Tn, dn, µn) .

Let us set µ =
∏

ωµn and X = π̂−1(X̂). For the left hand side of Equa-
tion (1) we use the fact that we defined several of our measures as push-
forwards of other measures.∫

Mr

g(z) dτr(D)(z) =

∫
Ar

D

g(ρAD,dD
r (x)) dνr(x)(2)

=

∫
X̂r

g(ρAD,dD
r (α(x̂))) dµ̂r(x̂)(3)

=

∫
Xr

g(ρAD,dD
r (α(π̂(x)))) dµr(x) .(4)

Namely, the equation in line (2) holds as τr(D) is defined as the push-forward
of νr along ρAD,dD

r . Line (3) follows as ν is defined as a push-forward of µ̂
along α. Finally, line (4) follows as µ̂ was itself defined as the push-forward

of µ along π̂. Here x is an r-tuple from AD, x̂ is an r-tuple from X̂ and x is
an r-tuple from X. The functions α and π̂ act on r-tuples coordinate-wise.

For the right hand side of Equation (1) we have a longer sequence of equa-
tions. We use some of the same notations as above and will explain each line

16



Convergence and limits of finite trees

separately together with any additional notation introduced there.

lim
ω

∫
Mr

g(z)dτr(Tn, dn, µn)(z) = lim
ω

∫
T r
n

g(ρTn,dn
r (xn)) dµr

n(xn)(5)

=

∫
Tr

lim
ω
g(ρTn,dn

r (xn)) dµ(r)([(xn)n∈N])(6)

=

∫
Xr

lim
ω
g(ρTn,dn

r (xn)) dµ(r)([(xn)n∈N])(7)

=

∫
Xr

g(ρX,d
r (x)) dµ(r)(x)(8)

=

∫
Xr

g(ρAD,dD
r (α(π̂(x)))) dµ(r)(x)(9)

Line (5) follows again from the definition of τr(Tn, dn, µn) as push-forward
measure.

To obtain line (6) we apply Lemma 4.1 to the measure spaces (T r
n , µ

r
n). We

have
∏

ωT
r
n = Tr. We wrote µ(r) to denote

∏
ωµ

r
n. Recall that this measure

is an extension of µr.
We have µ(X) = µ̂(X̂) = 1 and therefore Xr is a full measure subset of Tr,

so restricting the domain to it, as done in line (7), does not affect the integral.
Let d be the restriction of limωdn to X2. Note that d does not take infinite

values. Let x = (x1, . . . ,xr) ∈ Xr with xi = [(xin)n∈N] and xin ∈ Tn. Let us
write xn = (x1n, . . . , x

r
n). We have

lim
ω
ρTn,dn
r (xn) = lim

ω
(dn((xn)i, (xn)j))1≤i,j≤r

= (lim
ω
dn((xn)i, (xn)j))1≤i,j,≤r

= (d(xi,xj))1≤i,j≤r

= ρX,d
r (x) .

As g is continuous, this implies

g(ρX,d
r (x)) = g(lim

ω
ρTn,dn
r (xn)) = lim

ω
g(ρTn,dn

r (xn)) ,

so we have the exact same integral in line (8) as we had in line (7).
Consider a point x ∈ Xr where the integrands of lines (8) and (9) differ.

Let x̂ = π̂(x) ∈ X̂r. We must have ρX,d
r (x) 6= ρAD,dD

r (αr(x̂)). Both sides
are matrices in Mr with zero entries in the diagonal. The off-diagonal entry
in position (i, j) is d(xi,xj) and dD(α(x̂i), α(x̂j)), respectively. Consider the
set Hi,j ⊆ Xr consisting of points where these values differ and project it to
coordinates i and j. This projection from (Tr, µ(r)) to (T2, µ(2)) is clearly
measure preserving and the image is the zero measure set H described in
Lemma 5.1 below. Thus, µ(r)(Hi,j) = 0.

We saw that the integrands in lines (8) and (9) agree outside the zero
measure set

⋃
i 6=j Hi,j, so the two integrals agree.

Finally, notice that we integrate the exact same function on the same do-
main in lines (4) and (9). We use different measures but one of them is an
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extension of the other. As both integrals are defined, they must agree. This
shows that Equation (1) holds and finishes the proof of the theorem assuming
Lemma 5.1 below. �

Lemma 5.1. Using the notation of Theorem 4 and its proof we have µ(2)(H) =
0 for the set H = {(x,y) ∈ X2 | d(x,y) 6= dD(α(π̂(x)), α(π̂(y)))}.

Proof. The right hand side of the inequality defining H is µ2-measurable.
The left hand side is d = limωdn, so it is µ(2)-measurable by Lemma 4.1. This
makes H also µ(2)-measurable. Its slices are Hx = {y ∈ T | (x,y) ∈ H}. By

Lemma 2.7 and since d(x,y) = d̂(π̂(x), π̂(y)), we have (x,y) ∈ H if and only

if π̂(x) and π̂(y) are in the same feather of (X̂, d̂, µ̂). This makes the slice

Hx either empty (if x ∈ T \ X or π̂(x) ∈ Core(X̂)) or π̂−1(F̂) for a feather

F̂. We have µ̂(F̂) = 0 by Lemma 2.7, so µ(Hx) = 0 in both cases. We have
µ(2)(H) =

∫
T
µ(Hx) dµ(x) =

∫
T

0 dµ = 0 by Lemma 4.2. �

6. The proof of Theorem 3

We will use the following simple observations of compact subtrees exhaust-
ing some real trees.

Lemma 6.1. Let (T, d, µ) be a semi-measured real tree with µ(B) > 0 for all
branches B of T . Then there exists a countable set Q ⊆ T that is dense in
any proper segment of T . For all ε > 0 there exists a compact subtree Y of T
with µ(Y ) > 1− ε.

Proof. Any intermediate point p has more than one p-branches, each of pos-
itive measure, making p an inner point. The intermediate points are dense
in T unless |T | = 1, so we have Core(T ) = T . This trivially holds even if
|T | = 1. The separability comes from Lemma 2.4.

Let us fix p0 ∈ T and for a rational number r > 0 let Qr be the set of
inner points in T of distance r from p0. Recall that the set Q =

⋃
rQr is a

countable set that is dense in every proper segment of T by Lemma 2.4.
To find the compact subtree with large measure let us fix constants εr > 0

for the positive rational numbers r and ε′ > 0 with ε′ +
∑

r εr < ε. Let us
find a closed ball A around p0 with µ(A) > 1− ε′. Let us define Bp for p ∈ Q
to be the p-branch of T containing p0 and Cp = T \ (Bp ∪ {p}). Clearly, the
open sets Cp for p ∈ Qr are pairwise disjoint, so we have

∑
p∈Qr

µ(Cp) ≤ 1.

We find finite subsets Q′r ⊆ Qr with
∑

p∈Qr\Q′r
µ(Cp) < εr.

Consider the sets C =
⋃
Cp, where the union is taken for p ∈

⋃
r(Qr \Q′r)

and let Y = A \C. We have µ(C) <
∑

r εr and µ(Y ) ≥ µ(A)− µ(C) > 1− ε.
As a closed and connected subset of T , Y is subtree. It remains to prove that
Y is compact.

As a subtree Y is a complete metric space, so it is enough to show that for
any ε∗ > 0 and for any infinite sequence of points yi ∈ Y we can find i 6= j with
d(yi, yj) < ε∗. As the sequence (d(p0, yi))i∈N is bounded we can find a short
interval containing infinitely many of these distances, namely for some a ≥ 0
the subsequence consisting of the points yi satisfying a ≤ d(p0, yi) ≤ a+ε∗/4 is
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infinite. If a = 0, then the distance of any two of the points in the subsequence
is at most ε∗/2 and we are done. Otherwise, we find a positive rational number
r with a− ε∗/4 < r < a. For a point yi in the subsequence the unique point
zi in [p0, yi] ∩Qr satisfies zi ∈ Q′r and d(zi, yi) < ε∗/2. As Q′r is finite we can
find two distinct elements of the subsequence yi and yj with zi = zj. But then
d(yi, yj) ≤ d(yi, zi) + d(yj, zj) < ε∗ as needed. �

The next lemma extends the concept of compact exhaustion to the domains
of long dendrons. The similar statement for dendrons is even more immediate
as we can always choose a = 1/2.

Lemma 6.2. For a long dendron D = (T, d, ν) the real tree (T, d) is separable,
moreover it has a countable subset that is dense in every proper segment.
For every ε > 0 we have a compact subtree Y of T and a > 0 such that
ν(Y × [0, a]) > 1− ε.
Proof. Recall that ν is a Borel probability measure on AD = T × [0,∞), and
consider its marginal νT on T . In other words, νT is the push-forward of ν
along the projection of AD to T . This (T, d, νT ) a measured real tree with
each branch having positive measure. We have a countable set in T that is
dense in every proper segment by Lemma 6.1. The lemma further implies
that there is a compact subtree Y of T such that νT (Y ) > 1− ε/2. We have
lima→∞ ν(Y × [0, a]) = ν(Y × [0,∞)) = νT (Y ) > 1 − ε/2. Therefore a > 0
can be chosen as required. �

Lemma 6.3. The unique minimal subtree of a real tree T containing the points
x1, . . . , xn ∈ T is

⋃n
i=1[x1, xi].

Proof. Any subset of T containing x1 and xi must also contain [x1, xi] to
be connected. But

⋃n
i=1[x1, xi] is connected, closed and non-empty, so by

Lemma 2.1(1) it is indeed a subtree. �

Definition 6.1. Let D = (T, d, ν) be a long dendron and r ≥ 1 integer. We
call x ∈ An

D an n-sample of D. For an n-sample x = ((p1, a1), . . . , (pn, an)),
we define the measured real tree TD

x = (T ′, d′, µ) as follows. Let T0 be the
minimal subtree of T containing the points p1, . . . , pn, whose existence is given
by Lemma 6.3. We obtain T ′ from T0 by appending the segments [pi, qi] of
length ai to T0 for i = 1, . . . , n such that T0 and all the sets [pi, qi] \ {pi} are
pairwise disjoint. We set d′ to be the shortest path metric. This makes (T ′, d′)
a real tree. The measure µ is defined by µ(H) = |{1 ≤ i ≤ n | qi ∈ H}|/n
for any Borel subset H ⊆ T ′. In other words, µ is the distribution of qi
with a uniform random i. We also define the map αD

x : T ′ → AD by setting
αD
x (p) = (p, 0) for p ∈ T0 and αD

x (p) = (pi, d
′(p, pi)) if p ∈ [pi, qi].

We call the sequence (xn)n∈N an infinite sample of D if xn is an n-sample
for all n. An infinite sample obtained by independently selecting an n-sample
xn for all n according the distribution νn is called an infinite random sample
of D. We say that the infinite sample (xn)n∈N obeys a Borel set H ⊆ AD if
ν(H) = limn→∞ |{1 ≤ i ≤ n | xni ∈ H}|/n, where xn = (xn1 , . . . , x

n
n).

Lemma 6.4. For a long dendron D and every single Borel subset H ⊆ AD

an infinite random sample of D almost surely obeys H.
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Proof. This is a form of the law of large numbers. �
Our main result in this section is the following theorem. Theorem 3 will be

a simple consequence.

Theorem 5. Let (xn)n∈N be an infinite random sample of the long dendron
D = (T, d, ν). The measured real trees TD

xn almost surely form an essentially
bounded sequence. Furthermore, the long dendron associated with their ultra-
product is almost surely isomorphic to D.

The proof is through a series of lemmas. For this proof we fix D = (T, d, ν),
and the infinite sample (xn)n∈N of D with xn = (xn1 , . . . , x

n
n). We say that

a Borel set in AD is obeyed if the sequence (xn)n∈N obeys it. Throughout
the proof we will assume that various Borel sets in AD are obeyed. We can
do that as long as we make the assumption for a countable family of sets by
Lemma 6.4.

We introduce some notation. Let TD
xn = (Tn, dn, µn) and let αn = αD

xn . Let

(T̂, d̂) be the metric ultraproduct of (Tn, dn) and let µ̂ be the push-forward

measure of
∏

ωµn along the natural projection π̂ : T → T̂ from the set

theoretic ultraproduct T =
∏

ωTn to the metric ultraproduct T̂.
Let α = limωαn. Here αn : Tn → AD and AD (considered always with the

product topology) is not compact, so α is defined on a subset of T, namely
for [(xn)n∈N] ∈ T, where limωαn(xn) exists.

Consider the distance function d′ on AD defined as

(10) d′((u, a), (v, b)) =

{
|a− b| if u = v
d(u, v) + a+ b otherwise.

Note that this is indeed a distance function making (AD, d
′) a real tree as

mentioned in Remark 5.
For any n and p, q ∈ Tn we have

d′(αn(p), αn(q)) ≤ dn(p, q) ≤ dD(αn(p), αn(q)) .

Note that dD is continuous on A2
D and d′ is lower semicontinuous there. Thus,

for points p and q in the domain of α we have

d′(α(p), α(q)) ≤ d(p,q) ≤ dD(α(p), α(q)) ,

where d = limωdn. This means, in particular, that α(p) = α(q) if d(p,q) = 0.
One can also see that if d(p,q) = 0 and one of α(p) and α(q) is defined then so
is the other. Therefore, we can define the function α̂ by setting α̂(π̂(x)) = α(x)
if α(x) is defined and keeping α̂(π̂(x)) undefined if α(x) is not defined. Let

D̂ stand for the domain of α̂. For p̂, q̂ ∈ D̂ we have

(11) d′(α̂(p̂), α̂(q̂)) ≤ d̂(p̂, q̂) ≤ dD(α̂(p̂), α̂(q̂)) .

We call a point p̂ ∈ D̂ a base point for p ∈ T if α̂(p̂) = (p, 0). The base

of T̂ is the set of base points in D̂.
Let us fix a countable set Q ⊆ T that is dense in every proper segment of

T . We can do this by Lemma 6.2. In the sequel we assume that B× [0,∞) is
obeyed if B is a q-branch of T for some q ∈ Q. Note that T is separable and
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Q is countable, therefore we are making this assumption about a countable
family of sets.

Lemma 6.5. There is a unique base point for every p ∈ T . The function
β : T → T̂ mapping p ∈ T to the base point for p is an isometry from T to
the base of T̂.

Proof. Notice that d′((p, 0), (q, 0)) = dD((p, 0), (q, 0)) = d(p, q) for p, q ∈ T , so
if p̂ is a base point for p ∈ T and q̂ is a base point for q ∈ T , then

d̂(p̂, q̂) = d(p, q)

by our bound (11). In particular, this means that the base point for p ∈ T
is unique if exists and if they exist for all p ∈ T , then β is an isometry as
claimed. It remains to show the existence.

Notice that T ∩ Tn is a subtree of T . Let p be an arbitrary point of T and

let p̂ = ̂[(pn)n∈N] ∈ T̂ with pn = πT,d
T∩Tn

(p). Assume p̂ is not a base point
for p. We have αn(pn) = (pn, 0), so this means that there is ε > 0 such that
d(p, pn) < ε for ω-few indices n. In this case we can take a segment [p, p′]
of length ε in T , an intermediate point q ∈ Q in that segment and notice
that q ∈ Tn for ω-few indices n. As q is an intermediate point, there are at
least two distinct q-branches B and B′. The sets B × [0,∞) and B′ × [0,∞)
are both obeyed and have positive ν-measure. Therefore either is avoided by
the sample xn for finitely many indices n. If neither is avoided, then q ∈ Tn.
So q ∈ Tn for ω-few indices n, but q /∈ Tn for finitely many indices n. The
contradiction shows that p̂ is a base point for p. �

Let us choose compact subtrees Ys of T and reals as > 0 for s ∈ N and form
the compact product spaces Zs = Ys× [0, as] ⊆ AD. We can do this such that
ν(Zs) > 1− 1/s by Lemma 6.2. From now on we assume that the sets Zs are
obeyed.

For s, n ≥ 1 let Ts,n = α−1n (Zs). This is a subtree of Tn whenever non-empty.

Let T̂s =
∏̂

ωTs,n ⊆ T̂.

Lemma 6.6. The sequence of metric measure spaces (TD
xn)n∈N is essentially

bounded with D̂ contained in the dominant cluster of T̂.
The sets T̂s are real trees with µ̂(T̂s) ≥ 1 − 1/s. We have T̂s ⊆ D̂ and

therefore µ̂(D̂) = 1.

Proof. We have diam(Ts,n) ≤ diam(Ys) + 2as. This makes the sequence of
measured real trees (Ts,n, dn)n∈N uniformly bounded and thus their metric

ultraproduct T̂s is a real tree or empty by Lemma 3.1. We have µ̂(T̂s) ≥
limωµn(Ts,n). Here µn(Ts,n) = |{1 ≤ i ≤ n | xni ∈ Zs}/n, so as Zs is obeyed,

we have limn→∞ µn(Ts,n) = ν(Zs) > 1 − 1/s. Therefore µ̂(T̂s) > 1 − 1/s. In

particular, T̂s is not empty, so it is a real tree.

We have T̂s ⊆ D̂ as for p̂ = ̂[(pn)n∈N] with pn ∈ Ts,n the ultralimit α̂(p̂) =

limωαn(pn) exists because αn(pn) ∈ Zs and Zs is compact. Thus, µ̂(D̂) = 1
as claimed.
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We have d̂(p̂, q̂) < ∞ for p̂, q̂ ∈ D̂ by the bound (11), therefore D̂ is

contained in a single cluster of T̂. As µ̂(D̂) = 1, this cluster must be dominant
and the sequence (TD

xn)n∈N is essentially bounded as claimed. �
We denote the dominant cluster of T̂ by X̂. We slightly abuse notation

by also writing X̂ when referring to the ultraproduct of the measured real
trees TD

xn , that is, to X̂ together with the restrictions of d̂ and µ̂ making it a
semi-measured real tree.

Lemma 6.7. The core of X̂ is the base of T̂.

Proof. First we claim that every inner point x̂ of X̂ belongs to D̂. Indeed, for
x̂ ∈ X̂ \ D̂ the real tree T̂s does not contain x̂, so it must be contained in a
single x̂-branch. This branch has measure over 1− 1/s. As such an x̂-branch
exists for each s, x̂ is not an inner point.

Consider a point x̂ = ̂[(xn)n∈N] ∈ D̂ with α̂(x̂) = (z, a). Let αn(xn) =
(zn, an). We define a subtree T ′n of Tn for n ∈ N as follows. Recall that Tn is
obtained from a subtree of T by appending n segments. If xn /∈ T we obtain
T ′n from Tn by removing the added segment that contains xn. If xn ∈ T (that
is, an = 0) we simply set T ′n = Tn. The distance between xn and T ′n is an. Let

T̂′ = X̂ ∩
∏̂

ωT
′
n. This is a subtree by Lemma 3.1. The distance between x̂

and T̂′ is limωan = a, so if a > 0, then x̂ /∈ T̂′ and T̂′ must lie inside a single
x̂-branch. As µn(T ′n) ≥ 1− 1/n, we have µ̂(T̂′) = 1, so this x̂-branch has full
measure and therefore x̂ is not an inner point if a > 0.

So far we proved that for an inner point x̂ of X̂, α̂(x̂) must be defined and

α̂(x̂) = (z, a) with a > 0 is not possible. Therefore, every inner point of X̂
must be in the base.

Let q ∈ Q be an intermediate point in T . Let B and B′ be two distinct
q-branches of T . Let C = B × [0,∞) and C ′ = B′ × [0,∞). These positive

measure subsets of AD are both obeyed. Therefore the sets Ĉ =
∏̂

ωCn

and Ĉ′ =
∏̂

ωC
′
n are also positive measure subsets, where Cn = α−1n (C) and

C ′n = α−1n (C ′). Consider points p̂ = ̂[(pn)n∈N] ∈ Ĉ ∩ X̂ with pn ∈ Cn and

p̂′ = ̂[(p′n)n∈N] ∈ Ĉ′ ∩ X̂ with p′n ∈ C ′n. We have q ∈ [pn, p
′
n]. Note that pn

or p′n might be undefined for ω-few indices n where Cn or C ′n is empty, but

otherwise q ∈ Tn, so we can set q̂ = ̂[(qn)n∈N] with qn = q if q ∈ Tn and qn
undefined otherwise. Clearly, q̂ is the base point for q. By Lemma 3.1 we have

[p̂, p̂′] =
∏̂

ω[pn, p
′
n], so q̂ ∈ [p̂, p̂′]. This implies that q̂ is an inner point in X̂.

Indeed, otherwise there would be a full measure q̂-branch B̂ and the positive
measure sets Ĉ and Ĉ′ would both intersect B̂, but the segment between any
two points of B̂ does not contain q̂.

Assume |T | > 1. Then the intermediate points in Q are dense in T , so by
the isometry, the base points for these, all inner points, are dense in the base.
This means that Core(X̂) contains the base. But we also saw that all inner
points are in the base, and the base is complete, therefore closed, so we must
have that Core(X̂) is the base as claimed.
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The same conclusion is even easier to obtain if |T | = 1. Indeed, we know
that the core is not empty (Lemma 2.2) and there is no inner point outside

singleton base, so the core of X̂ must again be the base. �
Let D∗ = (T ∗, d∗, ν∗) be the long dendron associated with X̂ and let α∗ :

X̂ → AD∗ be the associated projection. Recall that β is the function that
maps a point in T to the unique base point for it in T̂.

Lemma 6.8. Let x̂ ∈ D̂ be a point with α̂(x̂) = (p, a) ∈ AD. Then α∗(x̂) =
(β(p), a) ∈ AD∗.

Proof. Let q̂ ∈ Core(X̂), so by Lemma 6.7 q̂ is the base point for some q ∈ T .
We have

d′(α̂(x̂), α̂(q̂)) ≤ d̂(x̂, q̂) ≤ dD(α̂(x̂), α̂(q̂))

by bound (11). Here α̂(x̂) = (p, a), α̂(q̂) = (q, 0) and d′((p, a), (q, 0)) =

dD((p, a), (q, 0)) = d(p, q) + a. So we have d̂(x̂, q̂) = d(p, q) + a. This implies

that πX̂(x̂), the unique closest point to x̂ in Core(X̂) is β(p) with d̂(x̂, β(p)) =
a. This proves the lemma. �

Remark 7. This last lemma gives a nice description of α∗ on the domain D̂
of α̂. It is somewhat harder to describe α∗ on the zero measure set X̂ \ D̂.

For example for a point p̂ = ̂[(pn)n∈N] ∈ X̂ \ D̂ the second coordinate of
α∗(p̂) is strictly larger than the ultralimit of the second coordinates of αn(pn).

Fortunately, knowing α∗ almost everywhere in X̂ is enough to determine ν∗.

Proof of Theorem 5. Let (xn)n∈N be an infinite random sample of the long
dendron D. We will use the notation introduced above. By Lemma 6.4 our
assumption on various sets being obeyed holds almost surely, so we can use
Lemmas 6.5–6.8 above.

In particular, by Lemma 6.6 the sequence of measured real trees (TD
xn)n∈N

is essentially bounded, so its ultraproduct X̂ exists. For the long dendron
D∗ = (T ∗, d∗, ν∗) associated with X̂ we have T ∗ = Core(X̂), so by Lemmas 6.5
and 6.7 the function β : T → T ∗ is an isometry. It remains to prove that the
function β′ : AD → AD∗ defined by β′(p, a) = (β(p), a) is almost surely
measure preserving from (AD, ν) to (AD∗ , ν

∗). That is, we need to show that
almost surely

ν(β′−1(H)) = ν∗(H)

holds for all Borel sets H ⊆ AD∗ . Here ν∗ is defined as the push-forward
of µ̂ along α∗. By Lemmas 6.8 and 6.6 we have α∗(x̂) = β′(α̂(x̂)) almost

everywhere in X̂. So we have

ν∗(H) = µ̂((α∗)−1(H)) = µ̂(α̂−1(β′−1(H))) .

Therefore, it is enough to show that almost surely

(12) ν(H) = µ̂(α̂−1(H))

holds for all Borel sets H ⊆ AD. Both sides of Equation 12 are Borel prob-
ability measures on AD. It is therefore enough to check the equation for an
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intersection-closed family A of Borel sets that generate the entire Borel σ-
algebra on AD. We choose such a countable family A consisting of closed
sets. For example if T has more than a single point, then the finite intersec-
tions of sets of the form (T \B)× [0, a] will work if B runs through q-branches
for q ∈ Q and a ≥ 0 is a rational number. Recall, that Q is a countable set
in the separable real tree T , so this is a countable family. Therefore, it is
enough to check that Equation 12 holds almost surely for any single closed
set H ⊆ AD.

First we claim that the inequality

(13) ν(H) ≤ µ̂(α̂−1(H))

holds for any closed set H ⊆ AD that (xn)n∈N obeys. Let us fix such a set
H. Consider the sets Hn = α−1n (H) for n ∈ N. We have µn(Hn) = |{1 ≤
i ≤ n | xni ∈ H}|/n and limn→∞ µn(Hn) = ν(H) as H is obeyed. Consider

Ĥ =
∏̂

ωHn. We have µ̂(Ĥ) ≥ limωµn(Hn) = ν(H). Any point p̂ ∈ Ĥ∩D̂ can

be written as p̂ = ̂[(pn)n∈N] with αn(pn) ∈ H and we have α̂(p̂) = limωαn(pn).

An ultralimit of points in H is also in H as H is closed. So we have Ĥ∩ D̂ ⊆
α̂−1(H). Using Lemma 6.6, we have ν(H) ≤ µ̂(Ĥ) = µ̂(Ĥ ∩ D̂) ≤ µ̂(α̂−1(H))
as claimed.

Let us now fix a closed set H ⊆ AD. Our goal is to prove that Equation 12
holds almost surely. Let us choose an increasing sequence of closed sets H ′1 ⊆
H ′2 ⊆ · · · with

⋃∞
s=1H

′
s = AD \H. One can, for example, take H ′s to be the

complement of the open 1/s-neighborhood of H in some metrization of AD.
We have lims→∞ ν(H ′s) = ν(AD \ H) = 1 − ν(H) and similarly, using that
α̂ is defined almost everywhere (Lemma 6.6), we have lims→∞ µ̂(α̂−1(H ′s)) =
µ̂(α̂−1(AD \H)) = 1− µ̂(α̂−1(H)).

By lemma 6.4 H and all the sets H ′s are almost surely obeyed. If so, we
have ν(H) ≤ µ̂(α̂−1(H)) and also ν(H ′s) ≤ µ̂(α̂−1(H ′s)) for all s, all from
Inequality (13). Taking limit on both sides of the latter inequality we get
1− ν(H) ≤ 1− µ̂(α̂−1(H)). This makes Equation (12) hold almost surely and
finishes the proof of the theorem. �

Definition 6.2. Let n ≥ 1 and let A ∈ Mn a n by n real matrix. The
measured real tree (T, d, µ) is an A-tree if there exist q = (q1, . . . , qn) ∈ T n

such that (i) ρT,dn (q) = A, (ii) no subtree of T other than T itself contains all
of the points qi and (iii) µ is a Borel measure on T given by µ(H) = |{1 ≤
i ≤ n | qi ∈ H}|/n.

Lemma 6.9. Let n ≥ 1 and A ∈ Mn. If there exists an A-tree it is unique
up to measure preserving isometry. If n ≥ 2 and x is an n-sample of a long
dendron D, then TD

x is a ρAD,dD
n (x)-tree.

Proof. Assume both (T, d, µ) and (T ′, d′, µ′) are A-trees for A = (di,j)1≤i,j≤n.
Let q = (q1, . . . , qn) ∈ T n and q′ = (q′1, . . . , q

′
n) ∈ T ′n be the samples that

satisfy conditions (i-iii) in the definition. By condition (ii) and Lemma 6.3
we have T =

⋃n
i=1[q1, qi] and T ′ =

⋃n
i=1[q

′
1, q
′
n]. Both the segments [q1, qi] and

[q′1, q
′
i] have length d1,i by condition (i), so there is an isometry fi between
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them with fi(q1) = q′1, fi(qi) = q′i. The intersection of the segments [q1, qi]
and [q1, qj] is a segment starting at q1, and by condition (i) its length is
(d1,i + d1,j − di,j)/2. Similarly, [q′1, q

′
i]∩ [q′1, q

′
j] is a segment of the same length

starting at q′1. Therefore, the functions fi agree on the intersections of their
domains, so there is a global function f : T → T ′ extending all these functions.
It is easy to see that f is an isometry between T and T ′. By condition (iii)
and since f(qi) = q′i for all i, the map f is measure preserving.

Let us recall, that for a long dendron D = (T, d, ν) and a n-sample x =
((p1, a1), . . . , (pn, an)) of D we constructed the measured real tree TD

x by
adding segments [pi, qi] to the minimal subtree of T containing the points
pi. The measured real tree TD

x with q = (q1, . . . , qn) satisfy conditions (i) and
(iii) for a ρAD,dD

n (x)-tree. They also satisfy condition (ii) as we assumed n ≥ 2.
Note that condition (ii) might be violated for n = 1 as in that case TD

x is a
segment of length a1 and (if a1 > 0) not the trivial subtree {q1}. �.

Proof of Theorem 3. Using the observations in Lemma 6.9 we can restate The-
orem 5 as follows. For a long dendron D take independent samples An from
the distribution τn(D) and create the corresponding An-trees Tn. These exist
and are unique up to measure preserving isometry. Almost surely, the se-
quence (Tn)n∈N is essentially bounded and the long dendron associated with
its ultraproduct is isomorphic to D.

If the two long dendrons D and D′ satisfy τn(D) = τn(D′) for all n, then
the above process is the same for both of them. Almost surely, the process
results in an associated long dendron that is isomorphic to both D and D′.
Thus, D and D′ are isomorphic as claimed. �

7. The proof of Theorem 2

Definition 7.1. Let T be a finite (graph-theoretic) tree. We turn it into
a real tree by keeping the vertices and replacing every edge by an arbitrary
length interval connecting the corresponding vertices. Finally, we make it
into a measured real tree by adding an arbitrary Borel measure concentrated
on the original set of vertices. We call the measured real trees obtained this
way finite real trees. Observe that a measured real tree (T, d, µ) is a finite
real tree if and only if (i) there is a finite set of points in T with no subtree
containing all of them other than T and (ii) µ is concentrated on a finite set
of points. In particular, if x is an n-sample of a long dendron D, then TD

x is
a finite real tree.

Theorem 2 easily follows from the following two lemmas as the weak topol-
ogy of Prob(Mr) is metrizable for every r ∈ N, by Prokhorov’s Theorem. Note
that Lemma 7.1 has a direct proof using the Azuma Inequality (see 5.3 [10]),
but at this point it is easier for us to use Theorems 4 and 5 instead.

Lemma 7.1. Any long dendron D is the sampling limit of finite real trees,
that is, one can find finite real trees (Tn, dn, µn) such that for every r ≥ 1 the
sampling measures τr(Tn, dn, µn) weakly converge to τr(D).
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If D is a dendron, then the finite real trees can be chosen such that the
diameter of each is at most one.

Proof. Let us choose an infinite random sample (xn)n∈N of D. By Theorem 5,
D can almost surely be obtained as the long dendron associated with the
ultraproduct of the essentially bounded sequence of finite real trees TD

xn . In this
case we have limωτr(T

D
xn

) = τr(D) for any r ∈ N by Theorem 4. The ultralimit
is always the (ordinary) limit of a subsequence in a metrizable space, so we
have a sequence of finite real trees (Tn, dn, µn) satisfying that τr(Tn, dn, µn)
weakly converges to τr(D). We can clearly find the same sequence for all r.

If D is a dendron, then diam(TD
xn) ≤ 1 holds almost surely, so the second

statement of the lemma also holds. �

Lemma 7.2. For a finite real tree (T, d, µ) of diameter at most 1 one has a
sequence of finite (graph-theoretic) trees Tn such that τr(Tn) weakly converges
to τr(T, d, µ) for every r ∈ N.

Proof. Let (T, d) be obtained from the finite tree (V,E) by replacing each edge
e ∈ E with a segment of length ae. Note here that we have ae ≤ 1. For n ∈ N
we build Tn in three steps. In the first step we replace each edge e of the tree
(V,E) with a path of length daene. Then for every vertex v ∈ V we form a set
Hv

n of dµ(v)n2e new vertices and add them to the tree as leaves whose only
neighbor is v. Finally, if the diameter of the tree constructed so far is below
n, we attach a path to it that brings the diameter to exactly n.

The diameter of the tree Tn so constructed is n+O(1). The distance between
any vertex x ∈ Hv

n and y ∈ Hw
n , is d(v, w)n+O(1), so the normalized distance

dn(x, y) is d(v, w)+O(1/n). Tn has n2 +O(n) vertices, so the probability that
a uniformly random vertex falls in Hv

n is µ(v)+O(1/n) with the probability of
choosing a vertex outside all the sets Hv

n being O(1/n). The hidden constants
in the order notation depends only on the size of the vertex set V .

This shows that a µ-random point v can be coupled with a uniform random
vertex of T such that a point v ∈ V is coupled with a vertex x ∈ Hv

n with
probability 1−O(1/n). Doing this in every coordinate one can couple a sample
(v1, . . . , vr) of µr with a uniform sample (x1, . . . , xr) of (V (Tn))r such that
xi ∈ Hvi

n for all 1 ≤ i ≤ r with probability 1− O(r/n). If this happens, then
the matrices ρT,dr (v1, . . . , vr) and ρTn,dn

r (x1, . . . , xn) differ by O(1/n) in every
coordinate. Therefore, their distributions τr(T, d, µ) and τr(Tn) are close. In
particular, this implies the weak convergence stated in the lemma. �
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