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Computer models of saliency alone fail to predict subjective visual 

attention to landmarks during observed navigation 

This study aimed to understand whether or not computer models of saliency 

could explain landmark saliency. An online survey was conducted and 

participants were asked to watch videos from a spatial navigation video game 

(Sea Hero Quest). Participants were asked to pay attention to the environments 

within which the boat was moving and to rate the perceived saliency of each 

landmark. In addition, state-of-the-art computer saliency models were used to 

objectively quantify landmark saliency. No significant relationship was found 

between objective and subjective saliency measures. This indicates that during 

passive observation of an environment while being navigated, current automated 

models of saliency fail to predict subjective reports of visual attention to 

landmarks. 

Keywords: landmarks; saliency; object recognition; spatial knowledge; virtual 

environments 

1. Introduction 

It has been shown that landmarks play an important role in spatial knowledge. Siegel 

and White (1975) defined route, survey and landmark knowledge and they argued that 

spatial knowledge starts with learning landmarks and the routes consecutively, and 

finally it is completed with the survey knowledge. In a recent study, Montello (1998) 

mentioned that there is no stage at which only pure landmark or route knowledge exists. 

He stated that as familiarity increases, the quantity and completeness of spatial 

knowledge also increase. Hence, he focused on the idea that most of the steps within 

spatial acquisition process occur in parallel, rather than sequentially. In another study, 

researchers found that people can acquire route or survey knowledge as soon as they 

explore an environment (Ishikawa & Montello, 2006). Therefore, landmarks are 

important components of spatial knowledge. Knowing the exact locations of landmarks 

help people orient themselves in an environment and understand whether the followed 



path is correct (Michon & Denis, 2001; Philbeck & O’Leary, 2005). Hence, landmarks 

are important for effective route learning (Taluka & Wilson, 1994) and decision making 

(Golledge, 1999).  

The location of landmarks has been discussed by various studies using 

landmarks at decision points, on route or off route(Cliburn, Winlock, Rilea, & Van 

Donsel, 2007; Klippel & Winter, 2005; Lovelace, Hegarty, & Montello, 1999; Miller & 

Carlson, 2011; Schwering, Li, & Anacta, 2013) whereas the visibility of landmarks has 

been discussed considering “global” and “local” landmarks (Castelli, Latini Corazzini, 

& Geminiani, 2008; Evans, Skorpanich, Bryant, & Bresolin, 1984; Kaplan, 1976; 

Meilinger, Schulte-Pelkum, Frankenstein, Berger, & Bülthoff, 2015; Ruddle, Volkova, 

Mohler, & Bülthoff, 2011; Steck & Mallot, 2000). Similarly, saliency of landmarks has 

also been investigated by various studies  (Caduff & Timpf, 2008; Klippel & Winter, 

2005; Richter & Winter, 2014; Sorrows & Hirtle, 1999). The current study aims to 

understand what makes a landmark visually salient for people and whether or not the 

predictions of saliency models correlate with people’s saliency evaluations.  

2. Background 

2.1. Landmark Saliency 

Winter et al. (2008) stated that salient features are defined as landmarks. This indicates 

that if an object is more salient than others, it is more likely to be remembered (Cenani, 

Arentze, & Timmermans, 2017) or used by people for navigation, orientation, and 

learning purposes. One of the most significant saliency categorization was developed by 

Sorrows and Hirtle (1999): they described three types of landmarks: visual, cognitive 

and structural landmarks. Visual landmarks can be distinguished based on their physical 

characteristics such as size, shape or colour. Cognitive landmarks are more personal; 



they have a cultural or historical meaning so that even if an object does not have any 

visual attractiveness it can still be used by an observer to define a destination or to way-

find. A structural landmark is about the location of objects in an environment. Various 

studies argue that if an object is highly accessible (for instance if an object is located at 

a decision point (Burnett, Smith, & May, 2001; Cenani et al., 2017; Evans, Smith, & 

Pezdek, 1982; Lynch, 1960; Miller & Carlson, 2011)), then the object is more likely to 

be used as a landmark. For instance, Burnett et al. (2001) defined characteristics of 

preferred landmarks for navigation and they mentioned that landmarks would be more 

useful if they are located close to decision points. In another study, researchers used en-

route landmarks, off-route landmarks, decision-point landmarks and street facades and 

they observed that landmarks located at a decision point are more likely to be 

recognised (Cenani et al., 2017).  The saliency definition was improved by Caduff & 

Timpf (2008) as they mentioned that Sorrows and Hirtle’s method was unable to 

characterise landmarks quantitatively. They defined perceptual, cognitive and 

contextual salience and offered measures to analyse them. Nothegger et al. (2004) 

added the concept of visibility to this definition and more recently Von Stülpnagel and 

Frankenstein (2015) referred to configurational salience, which is related to Space 

Syntax
1
 visibility graph analysis (VGA).  

                                                 

2. Space Syntax is a technique used to analyse environments quantitatively and to understand 

the human and space relations (Hillier & Hanson, 1984). By using Space Syntax line based and 

visibility based analysis, it is possible to measure the environments objectively and compare 

different results to understand the most accessible-visible points. By using visibility graph 

analysis, researchers defined all accessible places with grids and they measured landmark size –

number of grids/cells they occupy-, visibility of landmarks –number of grids/cells they are 

visible from- and integration –the average visual distance to all grids/cells.  



The effect of different saliency measures on wayfinding was also discussed in 

previous papers. Several studies discussed the visual characteristics of landmarks 

(Miller & Carlson, 2011; Quesnot & Roche, 2015; Winter, Raubal, & Nothegger, 2005). 

Miller and Carlson (2011), for example, focused on the perceptual and spatial 

characteristics of landmarks. They defined perceptually salient objects based on the size 

and colour of the landmarks. To understand structural characteristics of landmarks, they 

used objects at decision points (with or without a turn). To explore the impact of 

landmarks, they asked people to learn a route and memorise identities and locations of 

objects. Researchers concluded their study by arguing that perceptual salience as well as 

the demands of the task (contextual salience) is critical to landmark selection. In order 

to measure visual saliency, other researchers developed detailed measures including 

façade area, shape, colour and visibility (Nothegger et al., 2004; Winter et al., 2005). 

Winter et al. (2005) asked people to rank multiple façades with regard to prominence. 

They discovered that as well as other visual cues visibility and colour were significant 

characteristics of landmarks. On the other hand, the impact of structural salience on 

wayfinding was also considered through various studies. Stankiewicz and Kalia (2007) 

described structural landmarks, in a corridor environment, as specific hallway 

configurations and object landmarks as the pictures on the walls in the corridors.  They 

designed three experiments and found that people have a natural bias towards 

remembering structural landmarks over object landmarks. In another study, researchers 

wanted to understand the interaction between two types of saliency, visual and 

structural characteristics, since research on the combined effect of different saliency 

criteria is quite limited (Albrecht & Von Stülpnagel, 2018). The authors hypothesized 

that visually salient landmarks would get more attention if they were also structurally 

salient. Researchers discovered that if visually salient landmarks are located in the 



turning direction, then response accuracy increases in familiar environments. They 

could not find the same result for unfamiliar environments. Finally, Michon &Denis 

(2001) argued that visual landmarks are more effective when they are located at 

reorientation points and that landmarks help people both to construct a mental image of 

an unfamiliar environment and to react appropriately when a decision should be made.  

2.2. Saliency Models 

Different models were proposed to measure the saliency of landmarks automatically 

(Elias, 2003; Nothegger et al., 2004; Winter et al., 2008). Elias (2003), for example, 

concentrated on a building database and used multiple factors to automatically define 

landmarks, such as the geometry of buildings (with an attribute table that contains 

information about land use, building label, building use and special building parts), as 

well as location and visibility of buildings. Winter et al. (2008) evaluated the hierarchy 

of landmarks by using rankings (cognitive ranking –prominence, uniqueness and 

salience related) to automatically identify landmarks. These models focused on 

landmarks and their visual, structural or cognitive characteristics while explaining 

saliency.  

On the other side, general saliency models were also released to measure visual 

saliency in natural scenes (Harel, Koch, & Perona, 2007; L. Itti, Koch, & Niebur, 1998; 

Judd, Ehinger, Durand, & Torralba, 2009; Kümmerer, Wallis, & Bethge, 2016; 

Kümmerer, Wallis, Gatys, & Bethge, 2017). Previous research discovered that people 

tend to look more at salient objects (Itti, 2005; Zetzsche et al., 1998) as these objects 

draw attention to themselves (Land & Tatler, 2009). Zetzsche et al. (1998), for instance, 

found out that the eyes fixated on regions with multiple superimposed locations such as 

line endings or corner points. Moreover, Krukar mentioned that the more people process 

(or fixate on) an object, the better they remember it (Krukar, 2015). Hence, many 



automated saliency simulations have built up this relationship between eye-fixations 

and saliency.  One of the earliest computational models was developed by Itti, Koch and 

Niebur (1998). In this model, researchers developed a visual attention system based on 

the colour, intensity and orientation of objects. Since then, many other approaches have 

been proposed (Borji & Itti, 2013). Among them Graph Based Visual Saliency (Gbvs, 

Harel et al., 2007), which is a standardised version of Itti’s model,  was shown to be 

more predictive in explaining human fixations than the Itti et al model. Recently, 

saliency models based on deep learning have been shown to significantly outperform 

most previous shallow models. One of the most accurate ones is DeepGaze II 

(Kümmerer et al., 2016). VGG deep neural network features (VGG-19) were used  to 

train this model (Simonyan & Zisserman, 2014) to predict saliency, and the model was 

pretrained with SALICON dataset (Jiang, Huang, Duan, & Zhao, 2015). The great 

advantage of deep saliency models is that they do not only model low-level visual 

features such as orientation, contrast or luminosity, but also take into account higher 

level features such as whole objects, or even faces, which are known to strongly attract 

attention.  

Many models mentioned above aimed to predict where people look at by 

considering some visual characteristics of the scenes. Thus, the models are essential for 

studies on spatial knowledge and route learning (Grzeschik, Conroy Dalton, Innes, 

Shanker, & Wiener, 2019). Earlier studies focused on estimating the contribution of 

saliency models to eye-movements by using dynamic scenes and found no significant 

relationships between model-predicted saliency and duration-of-fixations (Itti, 2005). 

Even though the number of studies on navigation and saliency is high, the number of 

studies on the effect of salient objects on navigation is still limited. To the best of the 

authors' knowledge, there is one more study that aimed to compare navigational 



behaviour with different saliency models (Psarras, Fatah, Zarkali, & Hanna, 2019) in 

addition to the previously-mentioned study (Grzeschik et al., 2019). Grzeschik et al. 

(2019) designed a virtual environment and placed landmarks at intersections. At each 

intersection there was a unique landmark (that appears once along a route) and a non-

unique landmark (that appears at two of the intersections along a route). Saliency of 

landmarks also varied. Participants’ eye movements were captured and saliency was 

assessed using an online survey as well as saliency algorithms. Researchers discovered 

that the results of the survey and algorithms pointed to salient landmarks.  Psarras et al. 

(2019), on the other hand, followed a different approach and recorded pedestrians’ 

routes in a real environment. The paths people used were then converted to 3D models 

and virtual cameras were used to capture people’s fields of view. Saliency algorithms 

were implemented to these fields of view. Researchers stated that visual saliency was 

correlated with observed navigational behaviour. They concluded the study by 

mentioning that saliency can be used in predicting navigational behaviour.   

2.3. Problem Statement and Hypothesis 

Even though there are a great number of studies on landmarks, comparative studies on 

saliency of landmarks and saliency algorithms are still limited. As mentioned above, 

saliency models are typically trained with eye-tracking data. But is it possible to 

confirm that they really correlate with what people find salient? This study aims to 

understand whether or not saliency algorithms are sufficient in explaining people’s 

saliency evaluations. Saliency models and a survey are used to explore visual saliency 

and the association between these two approaches is investigated. Literature points to 

the impact of visual and structural landmarks or the combined effects of different 

saliency measures on landmark selection. However, this topic is still debateable. 

Therefore, this study also aims to understand the factors that make landmarks salient.  



It is hypothesized that landmarks, which are objectively salient according to the 

models, are also described as subjectively salient by participants. Therefore, it is 

expected that the results of the saliency models are highly correlated with the results of 

subjective ratings. Similar to the findings of recent literature (Miller & Carlson, 2011; 

Von Stülpnagel & Frankenstein, 2015; Winter et al., 2005), it is also hypothesized that 

saliency of landmarks are strongly related to the visual characteristics of objects such as 

their size or/and colour. In addition, structural salience is expected to have an effect on 

the results.  

3. Method and Analysis 

An online game, Sea Hero Quest (SHQ), was used in this study (Coutrot, Silva, et al., 

2018). SHQ was used to predict real-world navigation performance (Coutrot, Schmidt, 

et al., 2018) or to explore the genetic risk status for Alzheimer’s dementia (Coughlan et 

al., 2019). Hence, the game has an ecological validity, which makes it worthy to be used 

as a platform in this study. In a previous research, 30 participants were asked to 

complete specific levels of SHQ and then the same participants were tested on an 

analogous, real-world task in the Covent Garden neighbourhood of London. The 

findings of this research showed that there was a significant correlation between virtual 

and the real-world environment navigation performance (Coutrot, Schmidt, et al., 2018). 

This finding is promising, since it shows that the results highlighted in this study can 

potentially be adapted to real-world environments.  

SHQ consists of 75 levels with different spatial layouts. While the first levels are 

relatively simple and easy to navigate, later levels get progressively more complex and 

harder to way-find. During the design phase of the game it was hypothesised that 

landmarks play a role in navigational performances (subsequent work by the authors 

evidence this (Emo, Hölscher, Wiener, & Conroy Dalton, 2012; Grzeschik et al., 



2019)).  Therefore, the original game was designed using controlled landmark 

conditions in order to facilitate further exploration of the roles of landmarks in 

navigation. Hence, not only the spatial layouts of levels, but also landmarks were 

deliberately designed to understand how people find their way through complex 

environments. The landmarks were defined and created by the game company Glitchers 

Ltd. with input from the research team. Both global landmarks (those visible from larger 

distances and multiple viewpoints) and local landmarks (those only visible from close 

range) as well as salient and less salient landmarks were defined by the researchers. 

Therefore, the game is valid for use in this study. 

Two different levels of SHQ, which have different landmark conditions (as 

defined by the research team behind the game), were selected. ‘Easy landmarks’ are 

both visually and structurally salient landmarks. As Sorrows and Hirtle defined (1999), 

they differentiate from their surroundings with their visual characteristics, such as their 

colour, shape or size, and they are placed at integrated locations (at intersections, for 

instance). ‘Hard landmarks’ are visually salient or less salient landmarks at segregated 

places (e.g. dead-ends). The easy and hard landmark categories were defined by the 

designers (Ruth Conroy Dalton, Christoph Hölscher, Jan Wiener and Hugo Spiers) and 

the different landmarks were designed and placed according to these categories through 

the development process of the game -see the paper by Conroy Dalton for a fuller 

explanation of the design process (Conroy Dalton, 2016)-.  

3.1. Selection of Stimuli 

In the wayfinding levels of SHQ, players of the game (more than 4 million people) are 

asked to view a map that shows the environment where they will navigate in and the 

goal locations that they should reach. When they close the map, the game starts, and 

they navigate a boat in a river/canal environment. Since the survey asks participants to 



focus on environments and does not consider their spatial performance, one video was 

recorded for each level by the first author (DY) (video length was between 60 and 90 

seconds) in which all goal locations were found respectively with an optimal path taken. 

To compare objects’ saliency levels, levels with the same conditions (i.e. 

weather/map) were chosen and environmental measures were kept as similar as 

possible. As there were 75 levels in the game, clustering analysis was conducted based 

on spatial measures. Space Syntax measures included axial and segment based 

integration and choice (r: n, 3), axial based intelligibility, VGA (visual connectivity, 

visual integration, intelligibility),  and connectivity (directional reach based on 10° for 0 

and 2 direction changes, metric reach for 10 meters and 100 meters ). Complexity 

measures included number of decision points and destinations, total segment length, and 

shortest route. Based on the results of the clustering analysis, similar layouts were 

selected (for more information about the measures and the clustering see Yesiltepe et 

al., 2019). Therefore, levels with similar spatial values were grouped together to enable 

comparable environments to be selected. Additional conditions that might affect 

participants’ choices, such as the existence of global landmarks (some levels include 

global landmarks while others do not), map condition (in some levels maps are 

obscured while in others they are clear), weather condition (in some levels the weather 

is clear while in others it is foggy), theme (five different themes were used in the game 

and components of environments vary in different themes), were also kept the same (for 

more information see Coutrot et al., 2018).  Hence, levels 31 and 32 were selected in 

this study (Figure 1) as they have the same theme, same global landmark condition, 

weather and map conditions.  



 

Figure 1. Layout of levels 31 and 32 and position of landmarks: screenshots were taken 

from the start points of level 31 (above) and 32 (below) and the start points, 

checkpoints, and final checkpoints were shown on the maps. 

3.2.  Survey Design 

Visual saliency was first analysed with a survey study. Survey results could be closely 

related with cognitive salience as well; however, cognitive salience was beyond the 

scope of this study. Participants were asked questions to identify visual saliency only. 

Previous literature argued that people’s attention level is lower when they complete a 

passive wayfinding task (Afrooz, White, & Parolin, 2018). However, another research 

pointed that no differences were observed between active and passive navigators 

(Wilson, Foreman, Gillett, & Stanton, 1997). Based on the findings of the latter 



research, we also asked people to pay attention to the environment without completing 

any navigation task.  For the survey study, a video was recorded (750x1334-pixel 

resolution, screen size: 5.44” (138.3 mm) height and 2.64” (67.1 mm) width) for each 

level in which the boat was navigated through the environments. The video’s sound 

track was removed as it was assumed that the noise might distract attention. When the 

task was completed, the video stopped and participants were asked to view the images 

(image size= 550 x 680 pixel) that were extracted from the video (Figure 2).  

All previously designated landmarks in each level were used in this study since 

any of these could help people navigate themselves within the environment. Visual 

characteristics of landmarks included colour, size, shape, and material. Structural 

characteristics, on the other hand, included the location or visibility of landmarks (i.e. 

landmarks seen clearly from a shorter distance versus those that fail to be recognised 

clearly due to increased distance). Two images for each object were shown to the 

participants. In the first one, transparency of the background was increased so that the 

landmarks could be seen clearly, and in the second image, participants viewed the 

image exactly as it appeared in the video. All images belonging to the same level were 

positioned in one page (centre-aligned), and the order of images was randomized. For 

level 31, 9 landmarks and for level 32, 7 landmarks were shown. In order to create the 

online survey, Google Forms was chosen among other online survey pages, as it 

allowed us to randomize questions, upload videos and images for free.  



 

Figure 2. A landmark image is extracted from the video of level 31. While ranking for 

the landmarks, participants viewed objects both with a transparent background (on left) 

and as they were seen in the video (on right). 

3.2.1. Procedure 

Before the online survey was released, a laboratory survey was held with 25 

architecture students at Northumbria University
2
. The purpose of this study was to 

control the online survey and to better understand whether or not participants might be 

distracted during the online survey. Sample size was limited to 25 students (it represents 

10% of the total number of participants).  

                                                 

3. Previous studies showed that educational level has a significant impact on people’s 

navigation performances (Erkan, 2018). However, in this study, the laboratory study was 

conducted with architecture students, and results of the t-test showed that there was no 

significant change between online survey (unknown educational levels) and the laboratory 

survey (tertiary education). Therefore, it can be assumed that people who attended the online 

survey study included people with similar educational background (degree level). Alternatively, 

it might be considered that education level does not have a significant impact on landmark 

evaluations.  

 



Participants were invited to the lab-room one by one and were asked to sign in to 

their email accounts, through which they started the survey. Before starting the survey 

study, they were provided with project information and informed consent. The consent 

form and the procedure were approved by Northumbria University Ethics Committee 

(Submission ID: 7939). Participants were asked to answer questions about their 

demographics (age and gender). As participants answered the questions and moved to 

the next page, they were able to view the videos by using the “play” button. Information 

about the video, which mentioned that participants should view the video in order to 

answer the questions, was inserted on the top of the video. It read: “In this study, you 

will be asked to watch two videos that have been recorded in a virtual environment. In 

these environments, you will see a boat navigating through a canal/river. The boat will 

travel to a series of destinations. Please watch these videos and pay attention to the 

landscape through which the boat is moving”. During the video, all checkpoint 

destinations were found respectively and when the task was completed, the video 

stopped. When participants watched the video and moved to the next page, they saw all 

the landmarks related to the relevant level. The order of the pictures was randomized 

across participants, and participants were asked to rank the landmarks on a 5-Likert 

scale, from highly noticeable (5) to unnoticeable
3
 (1).  

As participants completed the questions for the first video (level 31), they 

followed the same procedure for the second video (level 32) and for the images related 

to it. The video order was not counter-balanced to match to the game experience. When 

participants completed the questions for the two levels, they viewed a page, which 

notified them that the survey was completed, and they submitted their results by using 

                                                 

4. Rather than using “saliency” term, authors preferred “noticeability” to make it easier for 

participants to understand and answer the questions.  



the “submit” button. None of the questions, except the ones about their agreement on 

data protection and the procedure, were mandatory.  

After completing the laboratory survey, participants were recruited online via a 

range of social media channels for the online survey. The procedures and format of the 

latter were the same as the former. A t-test was used to investigate the significance of 

the difference within the groups of both type of surveys. The average score of each 

participant was calculated for each level for both laboratory and online survey results, 

and a t-test was implemented to the average values (Table 1). Levene’s test showed a 

homogeneity of variance for level 31 (F=0.275, p=.601) and for level 32 it showed that 

homogeneity of variance cannot be assumed (F=7.891, p=.005). The p-value was >0.05 

in all cases. In other words, no significant changes were present between online and the 

laboratory surveys for two levels. Therefore, the results of both surveys were used in 

this study. 

Table 1. Mean ratings and results of the independent samples t-tests for levels 31 and 32 

(grey-highlighted values show the significance of the t-test based on Levene’s test). 

Level 
Survey 

Mode 
N Mean 

Std. 

Deviation 

Levene's test 

for Eqaulity of 

Variances Variance (t-

test) 

95% 

Confidence 

Interval t 

Sig. 

(2-

tailed) 
F Sig. Lower Upper 

Level 

31 

Online 25 3.329 0.507 0.275 0.601 Equal 

variances 
assumed 

-0.199 0.284 0.344 0.731 

Laboratory 224 3.287 0.590 Equal 

variances 
not assumed 

-0.179 0.264 0.388 0.700 

Level 

32 

Online 25 3.213 0.304 7.891 0.005 Equal 

variances 

assumed 

-0.212 0.265 0.221 0.825 

Laboratory 224 3.187 0.596 Equal 

variances 

not assumed 

-0.119 0.173 0.368 0.714 

3.2.2. Participants 

A total of 254 participants, 25 of which completed the lab-based survey, attended the 

survey. The results of 4 participants, who were older than 50 years old, were excluded 

based on the findings of an earlier research on the effects of age on attention levels 



(Lufi & Haimov, 2019). Additionally, one participant who answered only questions of 

the first level (level 31) was also excluded (N=249). Eventually 164 female, 83 male 

and 2 other (preferred not to say) participants aged between 18 and 50 took part in this 

study.  

3.3.Objective Saliency Analysis 

Both Harel et al.’s method (2007), namely Gbvs, and DeepGaze II (Kümmerer et al., 

2016) were used to measure the impact of saliency objectively. To compare saliency of 

objects, regions of interest (ROI)
4
 was used. In this study, boundaries of landmarks 

were used to define the regions (with rectangles). However, as the size of objects varied, 

size of the regions of interest also varied. Hence, the mean values inside the regions 

were calculated to compare the saliency values.  

                                                 

5. Region of interest means a selected area within a dataset that is identified for a purpose. So 

different rectangular areas were defined for each landmark, which is why the average values 

were calculated for each ROI. Where the ROI included large amount of background image, 

multiple, contiguous ROIs were used and the values produced were averaged. In most cases, the 

area included hardly any background information. 



 

Figure 3. Screenshots from level 31 show landmarks in context and consist of all 

landmarks that were used for the survey study. To make landmarks clearer, the 

transparency of the background is increased in the images. 

 

In order to test whether there is a correlation between survey analysis and 

objective saliency measures, the exact same images used in the survey study were used 

in models ( 

Figure 3). The objects were aimed to be kept in the same distance for the 

screenshots and all objects were included in each level similar to the survey study. 

Figure 4 shows (a) a screenshot with the boat from the game, (b) an image in which the 

boat is excluded, (c) Gbvs analysis, and (d) DeepGaze II analysis. The boat as well as 

the top part of the images, where participants’ navigation performance could be seen, 

was cropped so that these did not impact the saliency scores. For DeepGaze II analysis 

images were rotated 90 degrees clockwise to provide a landscape image as DeepGaze-II 



algorithm is trained with landscape images. However, Gbvs analysis was impervious to 

orientational effects. As DeepGaze II was trained with 1024 x 786 sized images 

(Kümmerer et al., 2016), images in this study were resized with the same ratio. In 

Figure 14-c, warm colours around the castle and toadstools indicate areas of high 

saliency, while in Figure 14-d, dark blue colours around the castle and trees indicate 

areas of high saliency.  

 

Figure 4. Objective measurement of saliency for level 31. (a) a screenshot with the boat 

from the game, (b) an image in which the boat is excluded, (c) Gbvs analysis, and (d) 

DeepGaze II analysis.  

4. Results 

4.1. Survey Results 

The survey suggests a number of distinctions (Table 2-Table 3). The first indicates that 

the castle was the most outstanding object among all others in both levels. This could be 

anticipated intuitively, because the castle was differentiated with respect to its size and 

colour. Moreover, in level 31 the castle was located at a decision point, where the boat 

made a turn. This can partly be the reason why the castle was rated as the most 

noticeable object. This was followed by trees, grass, and the arch for level 31, whereas 

it was followed by grass, trees and toadstools for level 32. Arch and trees were also 



notable objects as they were also different with respect to their height and colour.  

Table 2. Survey results of level 31 showing the number of survey ratings. 

 

Table 3. Survey results of level 32 showing the number of survey ratings (even though 

there were no arch and tree stump in level 32, these objects were added to have a 

comparable image). 

Arch Stone Trees Castle Grass
T.

stump

Toads

tool

Stone

(s)
Plant

unnoticeable 23 53 5 13 6 134 40 115 101

fairly unnoticeable 12 47 4 10 10 48 34 74 64

neither noticeable nor

unnoticeable
17 65 12 15 15 21 38 24 26

noticeable 60 60 88 67 75 24 68 23 35

highly noticeable 137 24 140 144 140 22 68 13 23
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Surprisingly, grass was ranked top with other objects for both levels.  This may 

be due to the fact that during the video the boat moved through the grass (Figure 5), so 

grass appeared quite close to the camera viewpoint at times. Thus, even though the 

object would not be easily noticeable in terms of its low contrast with the background or 

shape, it was still noticed by participants. The number of participants who found grass 

highly noticeable decreased from 140 to 124 in level 32 as compared to level 31. This 

decrease can be explained with the decrease in the amount of grass in level 32.  

Arch Stone Tree Castle Grass
T.stu

mp

Toads

tool

Stone

(s)
Plant

unnoticeable 153 4 3 1 11 176 130

fairly unnoticeable 48 4 4 10 19 37 45

neither noticeable nor

unnoticeable
15 29 13 22 18 17 21

noticeable 15 105 90 91 105 9 29

highly noticeable 17 105 139 124 94 8 23
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Figure 5. Screenshots are taken from the video of levels 31 and 32 showing how the 

grass is seen at different times.  

 

Toadstools were also considered as notable objects by participants despite their 

size and shape. This outcome likely relates to the red colour of toadstools, which was 

unique in the environment (which has a very uniform palette of browns, blues and 

greens) and contrasted with the background. This idea was also supported by 

participants in the discussions after the lab study. In level 32, the number of people who 

found the toadstools noticeable or highly noticeable increased from 68 to 105 and from 

68 to 94 respectively as compared to level 31. When the videos were played again, it 

was seen that the boat moved quite close to the toadstools. Hence, participants could 

have a chance to see this landmark closer, which can account for this increased rating. 

Plant was unremarkable for participants, which was again not surprising, as it did not 

have any strong visual characteristics. Moreover, people did not notice both types of 

stones as well, even though one type differentiated from the background with respect to 

its size.  



4.2.Objective Saliency Measurement 

The saliency map of the image of each landmark was computed with two saliency 

models. Maps for DeepGaze II were prepared by using a webpage 

(https://deepgaze.bethgelab.org/), and Gbvs model was computed in Matlab 

(Mathworks, Natick, USA). Having run the analysis and examined the results of Gbvs 

and DeepGaze II both sets of results seemed to intuitively capture some aspects of what 

constitutes a salient landmark. Once the saliency maps were conducted, the saliency 

scores could be computed for each object. The regions of interest were used to find an 

average saliency value for each landmark and each level. To normalize the results, a z-

score was applied to each saliency map. Accordingly, toadstool, castle and small stone 

were detected as the most salient objects in level 31 while tree, castle and toadstool 

were detected as the most salient objects in level 32 through Gbvs analysis. Results of 

DeepGaze II analysis showed that plant, tree stump and castle were the most salient 

objects in level 31, whereas stone, castle and toadstool were the most salient objects in 

level 32 (Table 4). 

Table 4. Results of the objective saliency measures (z-scored). 

Landmarks_level 31 Gbvs DG II 

Landmarks_ level 

32 Gbvs DG II 

Arch 0.133 0.189    

Stone 0.868 0.904 Stone 0.909 1.757 

Tree 0.661 0.634 Tree 1.499 0.922 

Castle 1.103 1.402 Castle 1.213 1.594 

Grass 0.029 0.009 Grass 0.055 0.016 

Treestump -0.206 1.438    

Toadstool 1.366 0.956 Toadstool 1.084 1.141 

Sstone 0.946 0.520 Sstone -1.213 0.326 

Plant -0.978 1.661 Plant 1.026 -1.324 

 

As a second step, the relationship between the survey and the models was 

explored in detail. The results of both the survey and the models were kept as 

continuous data. A regression analysis was calculated to predict the survey results based 

https://deepgaze.bethgelab.org/


on Gbvs and DeepGaze II. No significant relationship was found (p>.05, R²=0.268 and 

0.254 for levels 31 and 32 respectively) between the models and the survey results 

(Table 5).   

Table 5. Results of the regression analysis between model prediction and survey data. 

Levels R² Term Estimate Std Error t Ratio Prob>|t| 
Lower 

95% 

Upper 

95% 

Std 

Beta 

31 0.268 

Inter. 3.876 0.729 5.320 0.002 2.093 5.659 0.000 

Gbvs  0.260 0.500 0.520 0.622 -0.964 1.484 0.185 

DG II  -0.819 0.654 -1.250 0.257 -2.418 0.781 -0.447 

32 0.254 

Inter. 2.660 0.713 3.730 0.020 0.681 4.638 0.000 

Gbvs  0.624 0.636 0.980 0.382 -1.141 2.388 0.438 

DG II  0.204 0.558 0.370 0.733 -1.344 1.753 0.163 

 

5. Discussion and Conclusion 

One of the goals of this study was to assess what features of objects make them more 

likely to be selected as landmarks. Analysis of the subjective ratings support the view 

that landmark saliency is predicted by the size of the object and its visual 

distinctiveness, such as colour contrast to its background (Miller & Carlson, 2011; 

Quesnot & Roche, 2015; Winter et al., 2005). In this experiment, participants chose 

castle, trees, grass and arch as salient objects. All selected objects (except grass) 

differentiated from their surroundings with respect to their height (i.e. they are relatively 

taller than their surroundings). In addition, trees and arch are also distinguished from 

their surroundings with respect to their colour (i.e. they have contrasting colour with the 

surrounding objects). Hence, both height and colour can be considered as determinants 

of visual saliency.    

In addition, our data also provide support for the importance of spatial position 

of landmarks in determining landmark salience in navigation (Michon & Denis, 2001); 

objects encountered in close proximity to the navigator when travelling were judged 



highly salient despite their low visual saliency. For instance, grass was visible at 

different points and multiple times within the environment. Even though it was not 

particularly differentiated from its surrounding due to its shape and colour, grass was 

still selected as a salient object as it could be easily seen by participants from a 

relatively close distance. Similarly, changing the location of the toadstools in level 32 

had, presumably, an impact on people’s ratings since more people rated them as 

noticeable or highly noticeable when they were closer to the participants. This points to 

the idea that not only the visual characteristics of landmarks but also their structural 

characteristics are important for landmarks to become salient. These findings suggest 

that objects with a contrasting colour or size (compared to their surroundings) are 

recognised and remembered as salient landmarks; therefore they have higher potential 

to be used for wayfinding tasks such as route descriptions or orientation. If these 

landmarks are also located on route and close to the way-finder (so that they are visible 

from close up), then they would be highly preferred. This study supports the findings of 

previous research on the combined impact of visual and structural saliency, which 

suggest that visual landmarks can be more effective when they are also structurally 

salient (Albrecht & Von Stülpnagel, 2018; Michon & Denis, 2001).   

This study also examined the extent to which computational models of saliency 

(Gbvs and DeepGaze II) would predict the subjective ratings of landmark saliency when 

watching the navigation of cue-rich virtual environments. It was found that there was no 

significant relationship between the saliency model predictions and the subjective 

ratings. Hence, contrary to our hypothesis, saliency models alone were insufficient to 

predict subjective ratings.  

5.1.Model Based Limitations 

One of the model-based limitations is due to the relative position of individual objects. 



For instance, if an object is close to another salient landmark, this could affect the 

saliency scores of the first object and turn it into a salient landmark as well. However, 

contrarily, previous studies argued that the existence of a salient landmark may make 

another one less salient (so it decreases the possibility for other objects to be selected as 

a point-of-reference (Raubal & Winter, 2002; Sadeghian & Kantardzic, 2008)). 

Therefore, the saliency regions that are described through the use of models may be 

misleading, especially when the objects are quite close to each other or when one of 

them is on the top of another one (Figure 6c-d).  Similarly, the background of objects 

was also influential in our analysis as it affected the saliency of objects. For example, 

the trees located further away in the game, which merged into a group with a smooth 

colour that blended with the background, were detected as salient objects in some of the 

images and they had an impact on the results (Please see Figure 6a-b). Hence, future 

models can be more sensitive to objects that are overlapped or they can consider the 

locational relationships. As such, the relationship between saliency models and people’s 

evaluations can become significant.   

 

Figure 6. An example of the anomalous results from the saliency software (Images from 

left to right: (a) the image used to measure saliency of the plant that is shown within a 

white circle; (b) the impact of the background on Gbvs model. Due to the trees on the 

background, the plant is also detected as a salient object. (c) the image used to measure 



saliency of toadstools, and (d) the impact of the castle on DeepGaze II model. Objects 

around the castle, toadstools and stones, are also detected as salient). 

 

Second, saliency models were tested with only static images rather than 

moveable, dynamic scenes depending on the nature of the algorithms. Even though the 

models were sufficient in explaining an image and the saliency of objects in this image, 

they can be insufficient in explaining people’s choices in dynamic scenes. Hence, new 

models can be developed where people could upload a video rather than an image to 

better understand and measure saliency of objects. Recently video saliency detection 

attracted attention of researchers, since image based detection depends on the 

calculation of low-level features, which change dramatically in video scenes and as 

videos need more attention to extract of saliency information between consecutive 

frames (Bi, Lu, Li, Yang, & Guan, 2019).  Hence, video saliency detection (Bi et al., 

2019; Leifman, Rudoy, Swedish, Bayro-Corrochano, & Raskar, 2017; Li, Chen, Li, & 

Yu, 2019) as well as saliency in virtual reality (Sitzmann et al., 2018) was studied by 

different researchers . More research is needed to detect salient objects and as a next 

step, one of the video-based saliency detection models can be used to see if they suffice 

to explain people’s choices. 

5.2. Limitations of the Current Study 

There are numerous context-related limitations to this study. The first limitation is due 

to the fact that the number of landmarks was limited to 9 and 7 for levels 31 and 32 

respectively, which made it hard to find statistically significant relationships. Further 

research can be undertaken by using a higher number of landmarks to explore the 

relationship between saliency algorithmic models and the subjective evaluations. In 

addition, our participants were asked to watch the pre-recorded videos, instead of 



actively navigating themselves within the environments. We opted for this method to 

allow participants the opportunity to solely focus on the environment and observe 

landmarks more easily. Previous research on active and passive learning found no 

significant differences between active and passive learning (Gaunet, Vidal, Kemeny, & 

Berthoz, 2001; Wilson et al., 1997).  However, changes in the performance depending 

on a given task were also discussed and researchers claimed that people might have 

better wayfinding performance and produce detailed maps when they actively explore 

an environment (Carassa, Geminiani, Morganti, & Varotto, 2002). Future work might 

benefit from exploring whether results observed here extent to tasks in which the 

participants actively navigate themselves.  Moreover, we are aware that the conditions 

of the game environment are more limited compared to real environments. However, we 

used game environments that have been tested and compared with real environments 

(Coutrot, Schmidt, et al., 2018). The results of this comparison showed that there was a 

significant relationship between the navigational performances within the real-world 

and those within virtual environments. Hence, it was assumed that the results of this 

study could be predictive for real-world environments. Finally, while conducting 

objective saliency analysis, similar procedural steps were followed for different images: 

landmarks were aimed to be kept within the same distance for the screenshots, the 

analyses were run in landscape orientation since DeepGaze-II was trained with 

landscape images, regions of interest (ROI) was used and the mean values inside the 

regions were calculated to have comparable results. However, future research can be 

conducted by using the edges of actual landmarks, rather than using ROI. 

Nevertheless, this study contributed to the existing literature in different ways. 

First, we focused on visual and spatial characteristics of landmarks that make them 

salient. Second, saliency models were used and the results were compared with the 



survey results, which is quite limited in the literature. Alternatives that the model 

developers can consider in developing their models further to obtain better predictions 

were suggested. Accordingly, more sensitive models that can detect boundaries of each 

object are suggested so that the saliency score of each region can be calculated for 

different landmarks. This will allow high-scored objects not to affect low-scored 

objects, or vice-versa. In addition, models that can support video-based analysis are also 

suggested. Our results showed that DeepGaze II and Gbvs models are insufficient to 

explain people’s choices in static scenes. Hence, new models, in which people could 

upload a video rather than an image, to better understand and measure saliency of 

objects need to be developed. This can improve results of the models in explaining 

people’s saliency evaluations.  
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Appendix A. Saliency maps for level 31 and 32 

Next four figures (Figure A1- A2- A3-A4) show the results of the saliency models. 

Figures A1 and A2 show the saliency maps of level 31 and the original images that are 

used in the study as well as the results of Gbvs and DeepGaze II models. Figure A3 

shows the rest of the saliency maps from level 31 and the results of level 32 for three 

landmarks. It is followed by the fourth image, A4, which shows the rest of the 

landmarks in level 32. 



Figure A1. The maps that are produced from saliency models (Gbvs and DeepGaze II) 

for level 31. 



 

Figure A2. The maps that are produced from saliency models (Gbvs and DeepGaze II) 

for level 31.  



 

Figure A3. The maps that are produced from saliency models (Gbvs and DeepGaze II) 

for level 31 (plant) and level 32. 

 

 



 

Figure A4. The maps that are produced from saliency models (Gbvs and DeepGaze II) 

for level 32. 

 


