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Abstract. The first-order flex space of the bar-joint framework GP of a parallelogram
tiling P is determined in terms of an explicit free basis. Applications are given to braced
parallelogram frameworks and to quasicrystal frameworks associated with multigrids in
the sense of de Bruijn and Beenker. In particular we characterise rigid bracing patterns,
identify quasicrystal frameworks with finite dimensional flex spaces, and define a zero
mode spectrum.

1. Introduction

A characterisation is obtained for the infinitesimal flex space of the bar-joint framework
GP of a parallelogram tiling P of the plane. Of particular interest are the quasicrystal
frameworks arising from substitution systems or from tilings that are dual to multigrids.
The Penrose rhomb tilings and the Ammann-Beenker octagonal tilings given in Section
3.2 are perhaps the most well-known but there are many other striking tilings, with n-
fold symmetries, for arbitrary n ≥ 4. See, for example, Baake and Grimm [2] and the
online resource [12]. The determination of infinitesimal flexes is obtained in terms of a
countable free basis, in the sense of Badri, Kitson and Power [4], for the vector space of
all infinitesimal flexes, where the vector fields of the basis are explicit and are related to
the infinite ribbon structure of the tiling. Such an identification generally gives diverse
information on flexibility and rigidity and this is the case here.

In Theorem 2.3 we characterise the bracings of infinite parallelogram frameworks which
ensure first-order rigidity. The necessary and sufficient condition, that the braces graph
be connected and spanning, is the same requirement as the well-known Bolker-Crapo
condition [6], [20] for the rigidity of finite braced rectangular grids. Finite braced Penrose
frameworks and parallelogram frameworks have been considered by Wester [25] and Francis
and Duarte [10] who show the sufficiency of the condition. Other proofs of necessity and
sufficiency in the finite case are due to Nagy Kem [17], through a characterisation of
associated tensegrity frameworks, and to Graseggar and Legerský [14] who employ elegant
combinatorial colouring arguments. These methods are different from our direct approach
exploiting the geometry of parallelogram ribbons.

Bar-joint frameworks and their forms of flexibility provide mathematical models in ma-
terials science for the flexibility and rigidity of network materials. This can be seen in
the analysis of floppy modes (infinitesimal flexes) for Penrose rhomb quasicrystals and
zero modes (floppy modes with wave vectors) for crystals. For some recent examples see
Rocklin et al [21], Stenull and Lubensky [23], and Zhou et al [26]. In this direction we
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show that general parallelogram frameworks do not admit floppy modes that tend to zero
at infinity (Corollary 2.4). Also, in Section 3 we consider regular multigrid parallelogram
tilings and associated quasicrystal frameworks which are obtained by bracing patterns.
We define checkered quasicrystals in this way and determine the finite dimension of their
space of floppy modes (Theorem 3.10).

For multigrid parallelogram frameworks GP we also characterise linearly localised floppy
modes (Theorem 3.7). The set of lines through the origin for such flexes is shown to be
equal to the ribbon figure RF(P ) of P , a finite set of lines representing the directions of
the ribbons, and these directions are determined explicitly in Proposition 3.8.

For a crystallographic material the zero modes (rigid unit modes) and zero mode spec-
trum (RUM spectrum) are determined, in accordance with Bloch’s theorem, by a finite
geometric data set, for a repeating block of bars and joints, and by phase variations over
translated blocks [8], [9], [19], [24]. Despite this apparent limitation zero modes capture
many aspects of global first order motion. Indeed, the RUM spectrum can be viewed as a
generalised Bohr spectrum for which the associated modes have dense linear span in the
space of almost periodic first-order motions [3]. It is of interest then to formulate ana-
logues, in the case of quasicrystals. We discuss some aspects of this in the final section and
define zero modes and a zero mode spectrum for some quasicrystal bar-joint frameworks
associated with multigrid parallelogram tilings.

2. Parallelogram frameworks

We first discuss general parallelogram bar-joint frameworks G in R2 and the nature
of their first-order motions. In particular we determine the structure of linearly localised
motions and we characterise the bracing patterns for a parallelogram framework that make
it rigid.

A bar-joint framework G = (G, p) in Rd is a finite or countable simple graph G = (V,E)
together with a placement p : V → Rd of its vertices. A real infinitesimal flex of G is a
vector field, or velocity field, u : p(V ) → Rd, that satisfies the first-order flex condition for
every bar. That is,

〈u(p(v))− u(p(w)), p(v)− p(w)〉 = 0, for vw ∈ E.

The space F(G) of these fields is a subspace of the vector space V(G) of all velocity fields,
and G is said to be infinitesimally rigid, or first-order rigid, if it coincides with the space
of rigid motion infinitesimal flexes. For d = 2 this is the 3-dimensional space spanned by
a non-zero rotation infinitesimal flex and 2 linearly independent translation infinitesimal
flexes.

A parallelogram tiling P is an embedded graph in R2 associated with a tiling of R2

by contiguous nondegenerate parallelogram tiles. That is, nondisjoint tiles meet at a
common vertex or common edge, and tiles have positive area. We assume, moreover, to
avoid nonstandard tilings, that the set of tiles is connected in the sense that any pair of tiles
is connected by a path of contiguous tiles. A parallelogram bar-joint framework GP in R2

is a bar-joint framework whose embedded graph is a parallelogram tiling P . In particular
GP possesses evident shearing motions associated with so-called ribbons of parallelograms.
A ribbon of P is a 2-way infinite path of adjacent tiles for which the shared edges have
a common direction. We define a ribbon shear of GP to be an infinitesimal flex which is
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the zero vector on all joints on one side of the ribbon, including the ribbon boundary, and
assigns a common non-zero velocity vector to the other joints.

The following simple fact will be useful in the proof of Theorem 2.3. See also Frettlöh
and Harriss [11].

Figure 1. A pair of impossible ribbons.

Lemma 2.1. A pair of ribbons of a parallelogram tiling share at most one tile.

Proof. Suppose that distinct ribbons R1 and R2 cross twice, at tiles Ta, Tb. These tiles are
necessarily translationally equivalent. Consider the parts of these ribbons that exit tile
Ta and enter tile Tb. By the parallelogram structure of the ribbons these parts lie entirely
in the same closed region bounded by lines L1, L2 through two edges of Tb. Therefore,
as Figure 1 illustrates, these parts of the ribbons must cross at another tile. However we
could have chosen Tb to be the first tile encountered for a further crossing. This gives the
desired contradiction. �

2.1. The flex space of a parallelogram framework. Let G be a countable bar-joint
framework. A sequence u(n) of velocity fields in V(G) tends to zero strictly if for every
joint pi of G the velocities u(n)(pi) are nonzero for finitely many n. In this case any infinite
sum

∑
n αnu

(n), with real scalars αn, defines a velocity field. A free spanning set for the
space F(G) of infinitesimal flexes is a countable set in F(G) that tends to zero strictly, in
any enumeration, and is such that every infinitesimal flex in F(G) has such an infinite sum
representation. When those sums are unique then we have the following definition of a free
basis. Free spanning sets and bases, and their symmetric variants for crystal frameworks,
were examined in Badri, Kitson and Power [4].

Definition 2.2. A free basis for the infinitesimal flex space F(G) of a countable bar-joint
framework G in Rd is a countable set u(n) in F(G) which tends to zero strictly and is such
that each infinitesimal flex has a unique infinite sum representation

∑
n αnu

(n).

In the proof of the next theorem we use the following notation for a parallelogram
framework G with a distinguished base joint p1. For each ribbon ρ let uρ be a nonzero
ribbon shear for ρ which assigns the zero velocity vector to p1. Thus u

ρ has zero velocities
at all joints to one side of ρ, the side containing p1, and is a fixed velocity vector at all
other joints. Let S be the set of these ribbon shears. In particular S is countable and in
any enumeration the uρ tend to zero strictly. Let ux, uy be nonzero infinitesimal flexes for
translation in the direction of the x-axis and the y-axis respectively.

Theorem 2.3. Let G be a parallelogram bar-joint framework with base joint p1 and an
associated set S of ribbon shears. Then S ∪ {ux, uy} is a free basis for F(G).
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Proof. Let z be an infinitesimal flex. Subtract a unique linear combination of ux, uy, say
w1, to obtain the infinitesimal flex z1 = z − w1 with z1(p1) = 0. Let T0 be a tile that
contains p1 and let ρa and ρb be the ribbons through T0. We may add to w1 a unique
linear combination of the two corresponding ribbon shears to create w2 and z2 = z − w2

so that z2 is zero on the 4 joints for T0. We say that the linear combination w2 cancels z
on the tile T0, and that the ribbons ρa, ρb and the flexes ux, uy, uρa, uρb, have been used.

a
b

c

p1

Figure 2. Three ribbons for the patch T0 ∪ T1 ∪ T2. The lower tile, T0,
contains the vertex for the base joint p1.

Let T1 be a tile that is contiguous to T0, in the sense that it shares a tile edge with T0,
and lies on the unused ribbon ρc. Since uρc vanishes on the joints for T0 we may add an
appropriate unique scalar multiple of uρc to w2 to obtain w3, which cancels z on T0 ∪ T1.
In this case we add ρc to the set of used ribbons.

If there is a further tile T2 contiguous to the patch T0 ∪ T1 which lies on 2 used ribbons
then 3 of its joints lie at boundary vertices of this patch and so z is also cancelled by w3

on the larger connected patch P0 = T0 ∪ T1 ∪ T2. Figure 2 illustrates such a patch.
For the purposes of induction, assume that P is a simply connected patch of tiles,

containing T0, whose topological boundary is a simple closed curve. Also, suppose that
SP is a finite set of ribbon shears uρ which have been used to obtain a unique linear
combination wP that cancels z on P. In particular each such ribbon ρ includes at least
one tile of the patch. We also assume that, like P0, the patch is maximal in the sense that
there are no tiles outside P that have 3 or 4 vertices on the boundary of P.

Consider a tile T not in P which shares an edge e of P. There is a unique ribbon τ which
contains T with e lying in one of the two components of the boundary of τ . We claim first
that τ contains no tiles of P. Suppose that this were so. Then, by the maximal property
of P there is a nonempty patch Q of tiles between P and the boundary of τ containing e.
See Figure 3. Indeed, if Q is empty then there would have to be a final tile of τ outside
P with 3 vertices in the boundary of P. However, Q being nonempty is also not possible.
To see this assume that Q has the least number of tiles for such a patch and that T ′ is a
tile in Q contiguous to P. Then there is a ribbon though T ′ which, by Lemma 2.1, must
re-enters P, and this contradicts the minimality of Q.

Similarly, the set of tiles in τ that are contiguous to P must form a connected subset,
or finite subribbon, of τ . For otherwise there is a tile in Q which shares an edge f of the
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boundary of P, as in Figure 3. This tile lies on a ribbon τ ′ with f in one of its boundary
curves. By Lemma 2.1 τ ′ must re-enter P and this is not possible.

e
f

P

Q

Figure 3. An impossible patch Q when τ is contiguous to P.

Now let P+ be the union of the tiles of the subribbon with P. Then there is a unique
multiple of uτ which when added to wP cancels z on P+. Let P1 be the, necessarily finite,
patch obtained from P+ by successively adding tiles that share 3 vertices of the boundary.

In this way we complete an induction step. Moreover we may choose T arbitrarily and
so, since the tile-adjacency graph is connected, by our standing assumptions for P , it
follows that a sequence of such choices is possible so that the union of the tiles of the
resulting patch chain P1,P2, . . . is the tiling P .

Note that the patch chain construction is independent of the infinitesimal flex z, and so
we obtain a set S0 of ribbon shears which, together with ux, uy give a free basis for F(G).

Finally we show that S0 = S. Let uσ ∈ S\S0. Then, since uσ(p1) = 0 there is, by the
construction above, a unique representation of the form uσ =

∑
ρ∈S0

αρu
ρ (where we write

ρ ∈ S0 to denote uρ ∈ S0). Let τ ∈ S0 be a ribbon that crosses σ. Such ribbons exist
since by the inductive construction every parallelogram lies on some ribbon of S0. Let T
be the 4-bar framework for the tile T common to σ and τ . Since the restriction uσ′

|T is
an infinitesimal translation of T, for every σ′ 6= σ, τ , it follows that uσ|T and ατu

τ |T differ
by a translation. But uσ and uτ both have zero velocity vector on a joint of T and so we
obtain the contradiction uσ|T = ατu

τ |T, as desired. �

In view of our assumptions for a parallelogram tiling P there are only finitely many
vertices of P in any disc D(0, r) about the origin of finite radius r. We say that an
infinitesimal flex u of GP tends to zero at infinity if for each ǫ > 0 there is a radius R > 0
such that ‖u(pi)‖2 < ǫ for all joints pi located outside D(0, R). Equivalently, for any
enumeration of the joints, p1, p2, . . . , the sequence of velocities u(p1), u(p2), . . . tends to
zero.

Corollary 2.4. A parallelogram framework has no nonzero infinitesimal flex which tends
to zero at infinity. In particular there are no nonzero infinitesimal flexes which are finitely
supported or which are square-summable.
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Proof. Suppose that the infinitesimal flex u of a parallelogram framework G tends to zero
at infinity. Consider a free basis as in the previous theorem, normalised so that the non
zero velocity vector for each uρ has unit norm, and consider a representation

u = αxu
x + αyu

y +
∑

ρ∈S

αρu
ρ.

Consider a ribbon ρ for which the coefficient αρ is nonzero. Let T1, T2, . . . be a sequence
of tiles of ρ which lie on the distinct ribbons τ1, τ2, . . . . By our assumption, the restriction
of u to the associated subframeworks Tk tends to zero. It follows that there exists k such
that the restriction of αρu

ρ + ατku
τk to the 4 joints of Tk have magnitude less than 1.

Indeed the restriction of any other basis flex uσ is a translation flex of Tk and so, in view
of the series representation, the restriction of αρu

ρ + ατku
τk can be made arbitrarily close

to a translation. On the other hand these restrictions have a zero velocity at one of the 4
joints of Tk and so the conclusion follows. We now have a contradiction since each of the
ribbon shears uτk vanishes on a joint of Tk where uρ has unit norm. �

Remark 2.5. In Badri, Kitson and Power [4] it is shown by general infinite dimensional
linear algebra that the infinitesimal flex space of every countable bar-joint framework G

possesses free bases. However the proof is nonconstructive and for a specific framework
the utility of a free basis or free spanning set comes from its association with the geometry
of G.

2.2. When braced parallelogram frameworks are rigid. A braced parallelogram
framework, denoted G(B), or GP (B), is a bar-joint framework obtained from a parallelo-
gram bar-joint framework GP by the addition of bars, known as braces, to parallelogram
bar 4-cycles of GP . The set B denotes the set of these bars and it is assumed that at most
one bar is added to any parallelogram bar 4-cycle. The associated braces graph, denoted
G(B), has vertex set labelled by the ribbons and edge set labelled by B, or, equivalently,
by the set of tiles T whose bar 4-cycles are braced. Thus, the edge associated with T is
(ρ, σ) where ρ, σ are the ribbons through T .

Theorem 2.6. The braced parallelogram framework G(B) is infinitesimally rigid if and
only if G(B) is connected and spanning.

Proof. We first show sufficiency. Let u be an infinitesimal flex of G(B). Subtracting a rigid
motion infinitesimal flex we may assume that the restriction of u to the 4 joints of a braced
tile subframework T1, for the tile T1, is zero. We show that u = 0. Considering the previous
theorem, where p1 a joint of T1, we have a representation u =

∑
ρ∈S αρu

ρ. Moreover, from
the inductive specification of the coefficients in this sum we have ατ = ασ = 0 for the
ribbons τ, σ through T1. Let T2 be a braced tile subframework for a tile T2 which lies on
τ . Then, in view of the brace, the restriction u|T2 is a rigid motion infinitesimal flex. On
the other hand, if κ is the other ribbon through T2 then the restriction of

∑
ρ∈S αρu

ρ to T2

is equal to the restriction of ακu
κ plus an infinitesimal translation. It follows that ακ = 0.

Since the braces graph is connected and spanning it follows that ασ = 0 for every ribbon
σ, as required.

Note that if G(B) is not spanning then there is a ribbon ρ with no associated braces
and in this case uρ is a nontrivial (non rigid motion) infinitesimal flex of G(B).
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It remains to show that if G(B) is not connected then G(B) has a nontrivial infinitesimal
flex. Assume then that the braces graph is a disjoint union of 2 graphs, with an associated
proper partition of the ribbons, R = R1 ∪ R2, and the braces, B = B1 ∪B2. Let u be an
infinitesimal flex with u(p1) = 0. By Theorem 2.3 there exists a unique representation

u = u1 + u2, u1 =
∑

ρ∈R1

αρu
ρ, u2 =

∑

ρ∈R2

αρu
ρ.

We first show that in view of the partitioning the velocity field u1, and therefore u2 also,
is an infinitesimal flex of G(B). Let T be the bar 4-cycle for a tile T . If T ∈ B1 then every
shearing flex uρ for ρ ∈ R2 restricts to an infinitesimal translation of T. Thus u2 restricts
to an infinitesimal translation of T and so u1 = u − u2 restricted to T is an infinitesimal
flex of T. On the other hand if T ∈ B2 then, similarly, u1 restricts to a infinitesimal
translation of T. It follows that u1 is an infinitesimal flex of G(B).

To obtain the desired contradiction assume further that u is a nonzero infinitesimal
rotation with u(p1) = 0. Consider a pair ρ1 ∈ R1, ρ2 ∈ R2 with common tile T . Since
the restriction of u to the corresponding 4-joint framework T is an infinitesimal rotation it
follows that both αρ1 and αρ2 are nonzero. This is because the restriction of every uρ with
ρ 6= ρ1, ρ2 is an infinitesimal translation. Thus the restriction u1|T is not a rigid motion
infinitesimal flex of T and so neither is u1 itself. �

Remark 2.7. It should be clear from the proofs that Theorem 2.3 and Theorem 2.6 have
counterparts for a finite parallelogram framework which is a maximal patch with simply
connected boundary, where maximal means that there are no triple or quadruple of joints
on the boundary which are the joints of a tile not in the patch. Indeed in the inductive
step from patch P to patch P+ in Theorem 2.3 there is a free choice of contiguous tile T to
add to P. Moreover, for the same reason, the proof also applies to infinite patches which
are simply connected and have the maximal property.

In their combinatorial approach to the finite case Graseggar and Legerský [14] consider a
wider class of parallelogram frameworks, allowing crossing bars and nonplanar underlying
structure. Their requirement on the underlying graph is that every ribbon is an edge cut
in the sense that removing the edges of the ribbon makes the graph disconnected.

Recently we have obtained characterisations of rigidity for finite and infinite braced
grids in the plane with respect to some non-Euclidean norms [20]. It would be interesting
to determine corresponding characterisations for braced parallelogram frameworks and
general norms.

2.3. Linearly localised flexes. A subset of vertices (resp. joints) of an embedded graph
(resp. bar-joint framework) in R2 is said to be linearly localised, or H-localised, if every
vertex (resp. joint) of the subset is located within a fixed distance of a line H through the
origin. Also a velocity field for a bar-joint framework in the plane is said to be H-localised
if its support is H-localised.

Theorem 2.8. Let GP be a parallelogram bar-joint framework, with a choice of ribbon
shears uρ relative to a particular base joint, and let u be a velocity field. If u is a nonzero
H-localised infinitesimal flex then it is a finite sum u =

∑
ρ∈F αρu

ρ, over H-localised
ribbons.
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Proof. By Theorem 2.3 an infinitesimal flex u has an infinite sum representation
u = αxu

x + αyu
y +

∑
ρ αρu

ρ. Let T be any tile with ribbons σ, τ and associated 4-bar
framework T. The restriction of any infinitesimal flex to T is a sum of an infinitesimal
translation and a unique linear combination of the restrictions of uσ and uτ . Also the
restriction of other ribbon shears to T are translation flexes. Thus, if the restriction of u
to T is zero, then ασ = ατ = 0.

Suppose now that u is H-localised. If the ribbon ρ is not H-localised then it travels
outside the support of u and from the previous paragraph αρ = 0. It remains to show that
the number of ribbons contained in a band of finite width is finite. This follows from our
standing assumptions for P . These imply that there is a finite path of tiles which connects
a pair of tiles on opposite sides of the ribbon. �

For an H-localised ribbon ρ in a general parallelogram tiling P we may assign a unit
vector nρ normal to H , a unit vector mρ in the direction of the internal edges, and a unit
vector tρ orthogonal to mρ. These vectors are determined up to sign, and tρ or −tρ is the
flex direction for all the nonzero velocities of a ribbon shear uρ of GP . See Figure 4. We
refer to tρ and −tρ as tangential flex vectors for the ribbon ρ.

m
n

t

H

Figure 4. An H-localised ribbon ρ with associated unit vectors nρ, mρ and tρ.

The following notation is useful for the next definition. For a line H through the origin
and c > 0 let U(H, c), V (H, c) be the closed connected sets whose union is the set of points
whose distance to H is at least c.

Definition 2.9. Let G be a countable bar-joint framework in R2. A bulk shear, or H-
localised bulk shear, of G is an infinitesimal flex u with the following property. There
are distinct velocity vectors a, b in R2 and a pair H, c such that if pi ∈ U(H, c) (resp.
pi ∈ V (H, c)) then u(pi) = a (resp. u(pi) = b).

Theorem 2.10. Let GP be a parallelogram bar-joint framework with a choice of ribbon
shears uρ relative to a particular base joint. Then a velocity field u of GP is an H-localised
bulk shear if and only if it is a sum of a translational infinitesimal flex and a finite sum∑

ρ∈F αρu
ρ, over a set F of H-localised ribbons.

Proof. Let u be anH-localised bulk shear, with vector pair a, b for the sets U(H, c), V (H, c).
By Theorem 2.8 u has a representation utr+

∑
ρ αρu

ρ, where utr is an infinitesimal transla-

tion. Let T be a tile lying in U(H, c) or V (H, c). Then the restriction of u to the associated
bar 4-cycle T is a translation. As in the proof of Theorem 2.8, it follows that αρ = 0 if the
ribbon ρ passes through T . Thus the summation for u is the same as the summation over
H-localised ribbons. Once again, by our standing assumptions for P , the sum is finite. �
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Figure 5. Tilings with (a) no linearly localised ribbons, (b) two linearly
localised ribbons.

We now define two elementary geometric invariants for a general countable bar-joint
framework. These are particularly appropriate for parallelogram frameworks.

Definition 2.11. Let G be a countable bar-joint framework in Rd, for d ≥ 2.
(i) The linear flex figure, LFF(G), is the union of the set of lines H through the origin

for which there exists a nonzero H-localised infinitesimal flex.
(ii) The bulk shear figure, BSF(G), is the union of the set of lines H through the origin

for which there exists a nonzero H-localised bulk shear.

Note that if G has a locally supported infinitesimal flex then LFF(G) = R2. On the
other hand Figure 5 indicates parallelogram tilings with few linearly localised ribbons, the
first having none and the second with two, say ρ, σ. In fact the second tiling gives a bar-
joint framework GP with no linearly localised infinitesimal flexes, since the tangential flex
vectors tρ and tσ are different. Nevertheless GP has H-localised bulk shears and BSF(GP )
is equal to a vertical line through the origin.

3. Multigrid frameworks

We now define parallelogram tilings P that are associated in a dual way with sets of
lines. In the case of those determined by multigrids it is shown that the ribbons are linearly
localised and an explicit recipe is given for the ribbon figure RF(P ), which is defined as
the union of lines through the origin that record their directions. Also we identify various
quasicrystal frameworks whose infinitesimal flex spaces are finite dimensional.

3.1. Dual parallelogram tilings. Consider a tiling P∗ of the plane by convex polygons
that arises from a countable set of lines where no more than 2 lines intersect at a given
point. We assume moreover that the angles of intersection of the lines, and the distances
between parallel lines are bounded away from zero. We call such a tiling a regular line
tiling and it follows that the lines fall into finitely many equivalence classes of parallel
lines. From P∗ we may construct parallelogram tilings P by the following scheme, where
P∗ represents a plan for the construction of tiles of P from the vertices of P∗, and where
the ribbons of P correspond to the lines of P∗.

Start the construction with a choice of base face, f∗ say, of the regular line tiling P∗ and
a choice of positive length or weight, λ(H), for each line H through the origin representing
a class of parallel lines of P∗. If the face f∗ has n edges then associate with it a base vertex
v (in a another copy of R2) together with n incident edges where these edges are orthogonal



10 S. C. POWER

to the directions H of the edges of f∗ and have lengths λ(H). From this star graph, denoted
S(v), add pairs of edges to consecutive pairs of edges to create n parallelograms incident
to v. In this way we create n new vertices, v1, . . . , vn. These vertices correspond to the
faces of P∗ which are contiguous to f∗, say f ∗

1 , . . . , f
∗
n. Thus, the vertex v for the base

face f∗ defines a base patch P (v, 1) which is determined in 2 steps, namely, the addition
of edges to v, to create its star graph, followed by parallelogram completion.

This 2-step construction can be repeated for the new vertices; the base patch is enlarged
by completing the star graph S(v1) for v1 (some edges are already determined) together
with its parallelogram completion. The result can be viewed as the join of the patch
P (v, 1) with the patch P (v1, 1) over their common edges. It follows from this that the
process of star patch addition can be continued in a unique way for the vertices v2, . . . , vn
(in any order). In view of our assumptions for P∗ there is a lower bound for the areas of
constructed parallelograms and so the construction can be continued to create a unique
parallelogram tiling P . Specifically we may choose the order of star patch additions to
follow an exhaustive enumeration of the faces of P∗ where consecutive faces of the sequence
are adjacent. We denote the parallelogram tiling P , which is determined uniquely up to
translation, as P (P∗, λ).

Definition 3.1. A dual parallelogram tiling is a parallelogram tiling of the form P (P∗, λ)
for some regular line tiling P∗.

Not all parallelogram tilings have preduals which are regular line tilings. This is the
case for the tiling suggested by Figure 6, where a crossing pair of ribbons lies between
a noncrossing pair. On the other hand one can view general parallelogram tilings as
constructed in a similar dual way relative to a network of curves running through the
ribbons [5].

Figure 6. Part of a parallelogram tiling P that is not dual to a regular
line tiling.

3.2. Multigrid quasicrystals. A significant family of dual parallelogram tilings arises
from multigrids. The following definitions are convenient.

Definition 3.2. (i) A multigrid in R2 is a set of lines A1(L) ∪ · · · ∪ Ar(L) where L is
the set of lines parallel to the y-axis, with integer intercepts on the x-axis, and where
A1, . . . , Ar are affine automorphisms of R2. A multigrid is regular if the component grids
Ai(L) have distinct directions and every triple of lines has an empty intersection.

(ii) A multigrid parallelogram tiling is a parallelogram tiling that is dual to a multigrid.
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Define a regular de Bruijn pentagrid to be the regular multigrid given by A1, . . . , A5

where Ak(z) = Rkz + (γk, 0), z ∈ R2, where Rk is clockwise rotation by 2π(k − 1)/5, and
where γ1 + · · · + γ5 = 0. The associated multigrid parallelogram tilings, with rhombic
parallelograms, are examples of Penrose tilings. For these tilings P the ribbon figure
RF(P ) consists of 5 lines through the origin parallel to the 5 individual grid lines of the
pentagrid.

Figure 7. Two arrow-decorated rhombs, with interior angles 72◦, 36◦.

To be more precise about the nature of Penrose tilings, consider the thick and thin rhomb
tiles of Figure 7, with base edges parallel to the x-axis, each with an arrow decoration.
Two further decorations arise by rotation by π and a totality of 20 decorated rhomb tiles is
obtained by including the 16 further decorated tiles obtained by rotations by 2(k− 1)π/5,
for 2 ≤ k ≤ 5.

Definition 3.3. A decorated Penrose rhomb tiling, or arrowed rhomb tiling (AR tiling), is
a decoration-matched tiling of the plane by thick and thin decorated rhombs. A Penrose
rhomb tiling is a tiling obtained by undecorating an AR tiling.

In 1981 de Bruijn [7] defined Penrose rhomb tilings in this way and showed how they
are related to (possibly nonregular) pentagrid parallelogram tilings. Also he obtained
fundamental properties, such as aperiodicity, local isomorphism and substitution rules,
and showed the connection with the projection method construction via lattices in R5.
Penrose’s original inflation construction gives a particular subset of the AR tilings. An
overview of de Bruijn’s work and connections with physical quasicrystals and diffraction
is given by Au-Yang and Perk [1].

Beenker [5] extended de Bruijn’s algebraic methods to tetragrids, that is, to 4-fold
grids. These multigrids give rise in particular to the so-called Ammann-Beenker tilings, or
octagonal tilings, with 2 tile types up to congruency, namely a square and a π/4 rhombus.
Despite the simplicity of their construction there are 41 different types of vertex up to
translation. Socolar [22] subsequently gave a detailed geometric analysis including the
decagonal case, with tilings by hexagons, squares and π/12 rhombs. Moreover, Gahler and
Rhyner [13] have given the equivalence between a somewhat more general construction of
parallelogram tilings for multigrids and the projection method construction.

The following observations follow from Theorem 2.6.

Corollary 3.4. (i) Let P be a regular Penrose rhomb tiling and let B be the set of thick
tiles or the set of thin tiles. Then the braced framework GP (B), obtained from GP by
bracing the tiles of B, is infinitesimally rigid. (ii) Let P be an Ammann-Beenker tiling
and let B be the set of square tiles. Then the braced framework G(B) is infinitesimally
flexible.
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Proof. (i) Suppose B is the set of thin tiles. The ribbons of P correspond to the grid lines
of the regular multigrid P∗, and a pair of ribbons meet at a thin tile if and only if their
grid lines meet at angle π/5. These ribbons represent vertices in the braces graph G(B)
that are connected by an edge. Since any 2 grid lines either meet at angle π/5 or have an
intermediate grid line at angle π/5 to each of them, it follows that G(B) is connected and
spanning. A similar argument holds when B is the set of thick tiles.

(ii) The square tiles correspond to the edges of the braces graph. However, there are
2 types of square up to translation and each ribbon only contains squares of one type.
It follows that G(B) is not connected and so, by Theorem 2.6, G(B) is infinitesimally
flexible. �

In the next lemma we show that ribbons are necessarily linearly localised. The proof
gives a formula for the directions of the ribbons and this is summarised in Proposition 3.8.

Lemma 3.5. Every ribbon of a regular multigrid parallelogram tiling is linearly localised.

Proof. Let ρ be a ribbon, of a regular multigrid parallelogram tiling P , which corresponds
to a line L of the component grid A1(L) of the predual multigrid P∗. Assume that L is
not a vertical line and and is parametrised by arclength by the real variable s measured
from a vertex of P∗, and let T1 be the tile of ρ corresponding to this intersection point.
Then the set X1,j of parameter values s for points of intersection of L with lines of a grid
Aj(L), with j 6= 1, has the form

X1,j = {β1,jn + γ1,j : n ∈ Z},

where, without loss of generality, β1,j > 0 and γ1,j ≥ 0.
Note that the points of the parameter setX1,j correspond to the appearance of congruent

tiles in the ribbon ρ and we say that these tiles are of type (1, j). Here 2 ≤ j ≤ r where r is
the number of grids for P∗. Viewing these sets as containing points of the same colour, the
multi-coloured set X1, formed by the union of the distinctly coloured sets X1,j , encodes
the sequential appearance of the tile types of ρ.

To show that ρ is linearly localised, introduce a copy L′ of L in the separate ambient
space for P , with its origin, for parameter value s = 0, located at a vertex v1 of T1. Let
T1, T2, . . . be the tiles of ρ in sequential order corresponding to the positive s-direction of
L′ and, rechoosing v1 if necessary, arrange that v1 is not a vertex of T2. Also let M ′ be
a line through this vertex which is orthogonal to L′, with arclength parametrised by t.
The vertex v1 has (s, t)-coordinates (0, 0) and lies on a two-way infinite piecewise linear
boundary curve C of the ribbon ρ. We show that C is linearly localised and this will
complete the proof.

Let v1, v2, . . . be the vertices on C in their sequential order with (s, t)-coordinates
(sk, tk), k = 1, 2, . . . . Let T be a tile of ρ of type (1, j). It has an edge e which is not
parallel to M ′ and we define the s-increment (resp. t-increment) of T , for ρ, to be the
length s1,j (resp. t1,j) of the projection of e onto L′ (resp. M ′). See Figure 8.

Let s∗ be a parameter value for the line L. Then, for s∗ > 0 the finite coloured set
X1 ∩ [0, s∗] encodes a finite stretch of the ribbon ρ. For each j, we define the subset
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T

L′

M ′

t1,j

s1,j

Figure 8. Increments s1,j > 0 and t1,j ∈ R associated with a tile T of type
(1, j) in a ribbon associated with a grid line of the grid A1(L).

cardinalities

n1,j(s∗) = |X1,j ∩ [0, s∗]| = |Z ∩ [
−γ1,j
β1,j

,
s∗ − γ1,j

β1,j
]|.

Then the coordinates (sk+1, tk+1) of the final vertex vk+1 for this stretch of C are

sk+1 =
r∑

j=2

n1,j(s∗)s1,j, tk+1 =
r∑

j=2

n1,j(s∗)t1,j .

For each j we have

n1,j(s∗) =
s∗
β1,j

+ o(s∗), as s∗ → ∞,

and so
tk
sk

→ m, as k → ∞, where m =

∑r

j=2 δ1,jt1,j∑r

j=2 δ1,js1,j
,

and where δ1,j is the relative frequency of the colour j, namely the ratio

δ1,j =
β−1
1,j∑r

j=2 β
−1
1,j

.

The same argument holds for s∗ < 0, and it follows that the ribbon ρ is H-localised for
the line H through the origin with gradient m. �

Definition 3.6. The ribbon figure, or ribbon line figure, RF(P ) of a parallelogram tiling
P is the set of lines H through the origin for which there exists an H-localised ribbon.

Theorem 3.7. Let GP be the bar-joint framework of a regular multigrid parallelogram
tiling P . Then the bulk shear figure BSF(GP ) and the linear flex figure LFF(GP ) are equal
to the ribbon figure RF(P ).

Proof. This follows from Theorem 2.10. �

For any set M of lines, not necessarily passing through the origin, let LF(M), the line
figure of M, be the set of lines through the origin which are parallel to some line of M.
For a parallelogram or rhombus tiling P , given by a multigrid P∗, the line figure LF(P∗)
need not agree with the ribbon figure RF(P ). The details for this, in terms of increments
of projections, are given in the proof of Lemma 3.5 and summarised in the following
proposition.
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Proposition 3.8. Let P = P (P∗, λ) where P∗ is a regular multigrid, with r nonparallel
component grids P i

∗ and line figure LF(P∗) = {L1, . . . , Lr}. For 1 ≤ i ≤ r, and for each
tile Ti,j, j 6= i, associated with the pair Li, Lj, let sij > 0 (resp. tij ∈ R) be the length
of the projection onto Li (resp. L⊥

i ) of the edge of the tile which is not orthogonal to Li.
Also, let δi,j, for j 6= i, be the relative frequencies in Li of the points of intersection with
P j
∗ , with

∑
j:j 6=i δi,j = 1. Then the ribbon for Li is H-localised, where the tangent of the

angle between H and Li is ∑
j:j 6=i δi,jti,j∑
j:j 6=i δi,jsi,j

The multigrid line figure and the ribbon figure may coincide for reasons of symmetry
and this is so for the Penrose rhomb tilings. Specifically, for a given ribbon direction
associated with a grid line L the 4 other intersecting grid line types can be paired (by
bilateral symmetry with respect to an orthogonal line to L), and their associated rhombs
at intersection points similarly paired. These pairs of rhombs, with bilateral symmetry,
have cancelling t-increments.

3.3. Finitely flexible quasicrystals. Let P be the dual parallelogram tiling P (P∗, λ)
defined by the regular multigrid P∗ with component grids Ai(L), for 1 ≤ i ≤ r, as in
Definition 3.2. For each pair of distinct indices i, j let W (i, j) be the lattice of vertices
of P∗, when viewed as an embedded graph, which is determined by the component grids
for i, j. Let W (i, j) = {w(i, j, k, l) : (k, l) ∈ Z2} where the labelling corresponds to the
lines of the grid Ai(L) (resp. Aj(L)) being ordered by indices k ∈ Z (resp. l ∈ Z). For
definiteness we assume that the linear part of each Ai has positive determinant and the
labelling is inherited from the x-coordinate labelling of the lines of L. The parallelogram
tiles of P have a corresponding labelling, T (i, j, k, l), for i 6= j, (k, l) ∈ Z2.

Definition 3.9. A checkered multigrid parallelogram tiling, with integer density index
p ≥ 2, is a pair (P,B) where P is a regular multigrid parallelogram tiling and B is the set
of tiles

B = {T (i, j, k, l) : 1 ≤ i, j ≤ r, i 6= j, (k, l) ∈ Z2, k = l mod p}.

A checkered quasicrystal framework is a bar-joint framework GP (B) for such a pair which
is obtained from the parallelogram framework GP by adding bracing bars for the tiles of
B.

If the tiles of B are considered as being coloured black, rather than the default colour
white, then for p = 2, the coloured tiling (P,B) is a quasicrystal counterpart of an infinite
checkerboard. Accordingly in this case we refer to GP (B) as a checkerboard quasicrystal.

It is straightforward to see that there exist p − 1 tiles which when added to the black
set B create a bracing set B+ whose braces graph G(B+) is connected and spanning. By
Theorem 2.6, G(B+) is infinitesimally rigid and dimF(G(B)) ≤ 3+(p−1). In fact we have
equality.

Theorem 3.10. Let GP (B) be a checkered quasicrystal framework determined by a pair
(P,B) with index p ≥ 2. Then the infinitesimal flex space F(GP (B)) has dimension p+ 2.

Proof. The braces graph G(B) is spanning since on every ribbon of type (i, k), determined
by the kth line of the grid Ai(L) of P∗, there is a tile T (i, j, k, l) in B for some j 6= i
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and l ∈ Z. The braces graph has p components, say Gt, 0 ≤ t ≤ p − 1, where the
vertices/ribbons of Gt are of type (i, k) with k = t mod p. Let p1 be a fixed joint and let
F(GP (B))0 be the subspace of infinitesimal flexes z ∈ F(GP (B)) with z(p1) = 0. Note that
every infinitesimal flex of GP (B) is an infinitesimal flex of the parallelogram framework
GP . By Theorem 2.3 it follows that each z ∈ F(GP (B))0 has a unique representation

z =

p−1∑

t=0

∞∑

n=1

αt,nut,n

where {ut,n : n ∈ N, 0 ≤ t ≤ p−1} is a set of ribbon shears, associated with p1 and the set
of ribbons {ρt,n : n ∈ N, 0 ≤ t ≤ p− 1} of GP . Here the index t indicates the component
Gt of G(B) for which the t-labelled ribbons are vertices.

Since the subgraphs Gt are the connected components of G(B) it follows, as in the proof
of Theorem 2.6, that the velocity fields

zt =

∞∑

n=1

αt,nut,n

are also infinitesimal flexes of GP (B). Moreover, since Gt is connected the coefficients
αt,n, n = 2, 3, . . . , are determined by αt,1 for each t, and so the subspace of infinitesimal
flexes zt is either 1-dimensional or the zero subspace. It remains to show that they are
1-dimensional. This follows since if z is an infinitesimal rotation flex about p1 then its
component flexes zt are nonzero. �

Remark 3.11. The alternatingly braced squares framework, for the usual infinite checker-
board, is perhaps the paradigm example of a crystallographic framework with a single non-
trivial zero mode (up to scalar multiples). See, for example, Figure 2 and Example (f) of
Power [19], and Figure 6 of Dove [9]. The framework also features as cross-sections of the
three dimensional perovskite framework of corner connected octahedra, and is responsible
for lines in the zero mode spectrum.

Remark 3.12. As we have noted in the introduction, bar-joint frameworks provide a
fundamental model for network materials and it seems to us that explicit free basis methods
can provide a useful new perspective. In particular this viewpoints avoids considerations
of periodic approximants, or periodic boundary conditions, which can be problematic [16].

4. Zero mode spectra for quasicrystals

The notion of a zero mode, as opposed to a floppy mode (infinitesimal flex), of an infinite
bar-joint framework in Rd is that of an excitation state (first-order simple harmonic motion
oscillatory state) with an associated wave vector k. For a crystallographic framework
C these wave vectors live in the reciprocal space, Rd

k
say, determined by a basis a =

{a1, . . . , ad} of periodicity vectors for C. The periodic reduction of the set of wave vectors is
the RUM spectrum (or reduced zero mode spectrum) for the pair C, a, denoted Ω(C, a), and
this can be defined more directly, as we do below, in terms of complex infinitesimal flexes
that are periodic up to a multiphase factor [18], [19]. In this section we give a definition
of a zero mode spectrum for some quasicrystal frameworks, and which are motivated by
results in the previous sections.
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4.1. Zero mode spectra for crystals. We first summarise the formulation of a zero
mode of a crystal framework in terms of phase fields for a cell partition of the ambient
space.

A cell partition for a basis a of Rd is a partition P = {Ck : k ∈ Zd} where Ck is the
semi-open parallelepiped

Ck = [k1a1, (k1 + 1)a1)× · · · × [kdad, (kd + 1)ad).

A wave vector k = (γ1, . . . , γd) corresponds to the phase field map φk : Rd → C given by

φk(x) = e2πiγ1k1 . . . e2πiγdkd , x ∈ Ck, k ∈ Zd.

This phase field, in physical space, is constant on each individual cell of the partition. Let
C be a crystallographic framework with a set of periodicity vectors a = {a1, . . . , ad} which
is a basis for Rd. Define an associated phase-periodic velocity field u, for the wave vector
k, to be a map from the set of joints of C to velocity vectors in Cd, with the property

u(Tk(pi)) = φk(Tk(pi))u(pi), pi ∈ C0,

where Tk(pi) is the joint in Ck which is the translate of the joint pi, in the cell C0, given
by

Tk(pi) = pi + k1a1 + · · ·+ kdad.

The d-tuple

ω = (ω1, . . . , ωd) = (e2πiγ1 , . . . , e2πiγd)

is the multiphase of u and, with the usual multinomial notation convention, we have

u(Tk(pi)) = ωku(pi), k ∈ Zd, pi ∈ C0.

Definition 4.1. The rigid unit mode spectrum, or RUM spectrum, Ω(C, a), of a crystal-
lographic bar-joint framework C and periodicity basis a, is the set of multiphases ω for
which there exists a nonzero phase-periodic complex infinitesimal flex. The unreduced
zero mode spectrum is the set of wave vectors k whose multiphase ω is a point of Ω(C, a).

Example 4.2. For a simple but relevant illustration let d = 2 and let CZ2 be the par-
allelogram bar-joint framework for the tiling by squares where the joints have integer
coordinates. The basis a = {(1, 0), (0, 1)} is a periodicity basis and each set Ck, k ∈ Z2,
contains a single joint, say pk. For each λ ∈ T the velocity fields

ux,λ(pk) = λk2(1, 0), uy,λ(pk) = λk1(0, 1), k = (k1, k2) ∈ Z2,

are infinitesimal flexes and so Ω(C, a) contains the set ({1}×T)∪(T×{1}). Note moreover,
that the complex infinitesimal flex vector space of CZ2 has a free basis of complex infinites-
imal flexes which are supported on horizontal and vertical lines of joints, and ux,λ (resp.
uy,λ) is an infinite linear combination of the horizontal (resp. vertical) line flexes. One can
use this free basis to show that there are no other points in the RUM spectrum. To see
this, consider the free basis of infinitesimal flexes ux,t, uy,t, for t ∈ Z, where ux,t(pk) = (1, 0)
if t = k2, and uy,t(pk) = (0, 1) if t = k1. Suppose that z is a zero mode for λ = (λ1, λ2).
Then z has a representation

z =
∑

t

αx,tux,t + αy,tuy,t.
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Thus
λi
1λ

j
2z(p0,0) = z(pi,j) = αx,j(1, 0) + αy,i(0, 1) = (αx,j, αy,i).

Since z is nonzero the velocity vector z(p0,0) is also nonzero. Now the equations above,
for 0 ≤ i, j ≤ 1, imply that at least one of λ1, λ2 is equal to 1.

For a direct general approach to the determination of Ω(C, a), one considers the infin-
itesimal flex equations for a representative set of bars, such as the bars in the building
block motif. For the pair C, a these equations are satisfied for a nonzero phase-periodic
velocity field u of the form

u(pk) = λk1
1 λk2

2 (a, b),

if the conjugate (λ1, λ2) is a point of rank degeneracy of a 2 × 2 matrix-valued function
Φ(z1, z2) on T2, with (a, b) in the null-space of Φ(λ1, λ2). This also leads to the identifica-
tion of Ω(C, a) as ({1} × T) ∪ (T× {1}).

It is also convenient, and common in applications, to record the RUM spectrum as a
reduced set of wave vectors. For this example the spectrum is represented as the subset
of the unit square [0, 1)× [0, 1) of points (γ1, γ2) with γ1 = 0 or γ2 = 0.

The matrix function is known as the symbol function of the crystal framework with
respect to the periodicity basis a. See [18], [19] and [15] for further details.

4.2. Zero mode spectra for quasicrystals. In the absence of an underlying periodic
structure for an aperiodic framework we consider some notions of zero mode spectra which
relate to generalised phase fields. In the case of multigrid parallelogram frameworks GP we
define zero modes in terms of multiparameter phase fields. As in the crystallographic case
these modes are in fact determined by the points ω of rank degeneracy of a multi-variable
matrix-valued function and the associated null space vectors. However, the independent
variables range in an r-torus, Tr ⊂ Cr, rather than a 2-torus, where r is the number of
component grids of the associated multigrid P∗.

Consider a regular multigrid P∗, in the ambient space R2
∗, with r component grids, no

two of which are parallel. Each grid defines a partition of R2
∗ by semi-open bands. If

A = {A1, . . . , Ar} is the set of affine transformations determining this multigrid then a
partition of R2 is given by the images under Ai of the partition by vertical left-closed
bands Bm, m ∈ Z, associated with the integer lattice L, where Bm = [m,m + 1) × R.
Taking the intersection of these r partitions gives a partition C(P∗) of R2

∗ by semi-open
polygonal regions. Each set of the partition has the form Cm = A1(Bm1

) ∩ · · · ∩ Ar(Bmr
)

for some r-tuple m = (m1, . . . , mr). Let M be the subset of Zr consisting of these r-tuples.
The interiors of the polygon sets give a partition of the complement of P∗ in R2

∗, and their
closures are the faces (or tiles) of P∗, when P∗ is viewed as a regular line tiling. Since
faces, f say, of P∗ correspond to vertices of P we may denote the set of joints of GP as
{pf : f ∈ F (P∗)}, or {pm : m ∈ M}.

Definition 4.3. Let GP be a parallelogram framework for the regular multigrid P∗. For
each r-tuple ω = (ω1, . . . , ωr) in Tr the phase field φω on the set of joints {pm : m ∈ M}
is given by φω(pm) = ωm = ωm1

1 . . . ωmr
r , for m ∈ M.

A regular multigrid framework GP has finite local complexity and indeed the joints are
of finitely many translation types according to the translation types of the star graphs of
vertices of P . Suppose that there are n translation types and let pf1 , . . . , pfn be a choice
of representatives. Also write pf ≡ pfi if pf is of the same translation type as pfi .
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Definition 4.4. Let GP be a parallelogram framework of a regular multigrid with r compo-
nent grids given by the set of affine transformations A = {A1, . . . , Ar}, and let pf1, . . . , pfn
be a set joints representing the n possible translation types of joints.

(i) A phase-periodic velocity field u for GP , with phase factor ω ∈ Tr, is a complex
velocity field such that

u(pf) = φω(pf)bi, if pf ≡ pfi ,

where b1, . . . , bn is a set of velocity vectors in C2.
(ii) A zero mode of GP , with phase factor ω, is a phase-periodic velocity field for ω that

is an infinitesimal flex.
(iii) The reduced zero mode spectrum of GP is the set Ω(GP ,A) of phase factors ω ∈ Tr

for the zero modes of GP .

In this definition the phase fields φω are defined only on the set of joints. However, these
fields may be viewed as restrictions of phase fields on R2 that are constant on the sets of
a partition of R2 induced by the partition C(P∗), as we now indicate. In particular the
spectrum Ω(G,A) may be defined in the same way if G is obtained from GP in a systematic
way by local moves with bars and joints.

The regular multigrid P∗ defines an R2
∗-embedded graph G(P∗) = (V (P∗), E(P∗)) where

V (P∗) is the set of intersection points of the grids of P∗, and E(P∗) is the set of line
segments joining consecutive vertices on the lines of the grids. Also, in R2 the skeleton
sk(P ) of P is defined as the union of the piecewise linear curves formed by the line segments
joining the midpoints of opposite edges of the tiles of P . Using these curves define the
R2-embedded graph (the skeleton graph) Gsk(P ) = (Vsk, Esk) where Vsk is the set of centres
of the tiles and where Esk is the double line segment path in the skeleton joining these
vertices for adjacent tiles. The definition of P determines a bijection V (P∗) → Vsk and
this extends to a (nonunique) piecewise linear bijection β : G(P∗) → Gsk(P ). This in turn
induces a unique partition C(P ) = β(C(P∗)). The sets of this partition are the sets

β(Cm) = β(A1(Bm1
)) ∩ · · · ∩ β(Ar(Bmr

))

and these are intersections of semi-open irregular bands β(Ai(Bmi
)) that are located be-

tween the skeletal curves of adjacent ribbons.

Definition 4.5. Let P be the parallelogram tiling for a regular multigrid with ribbon
partition {Cm : m ∈ M ⊂ Zr} and let ω in Tr be a multiphase. Then the ribbon phase
field φω : R2 → C is given by

φω(x) = ωm, for x ∈ β(Cm).

The potential utility of ribbon phase fields is firstly that, in analogy with the crys-
tallographic case, phase-periodic velocity fields can be defined by their restrictions when
considering bar-joint frameworks G which are derived from GP in some systematic manner.
Secondly, taking a submultigrid, such as P ′

∗ = {A1(L
′), . . . , A′

r(L
′)} where L′ is the lattice

2L = 2Z × 2Z, leads to a courser partition and associated phase fields which may be
relevant to such derived frameworks. This is analogous to the crystallographic move of
replacing a primitive periodicity basis by some other periodicity basis which enlarges the
choice of building block.

Let ρi,k, k ∈ Z, be a consecutive enumeration of the ribbons of a regular multigrid
parallelogram tiling P which are associated with the ith component grid. Recall that a
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ribbon shear ui,k for ρi,k is an infinitesimal flex that has zero velocity vectors for the joints
on one side of the ribbon and which has a common velocity vector on the other side. The
latter vector tρ is orthogonal to the internal edges of the ribbon. We can therefore choose
ribbon shears wi,k, k ∈ Z, in a consistent way, with common velocity ti, and with the
support of wi,k contained in the support of wi,k−1. Thus the differences zi,k = wi,k −wi,k−1

are linearly localised infinitesimal flexes that are supported on the joints contained in the
bands β(Ai(Bk)), for k ∈ Z.

The infinitesimal flexes zi,k, for k ∈ Z, have disjoint supports and so for each λ ∈ T

the velocity vector zi,λ =
∑

k λ
kzi,k is an infinitesimal flex. It follows that zi,λ is a zero

mode with phase-factor ω where ωi = λ and ωj = 1, j 6= i. Thus, the zero mode spectrum
Ω(GP ,A) contains the r-fold union

(T× {1} × · · · × {1}) ∪ · · · ∪ ({1} × · · · × {1} × T).

It can be shown that each infinitesimal flex zi,k can be represented as a pointwise convergent
infinite linear combination of the zero modes zi,λ, with 1 ≤ i ≤ r, k ∈ Z, and λ = e2πiγ , γ ∈
Q. In the light of this, and in analogy with Example 4.2, we expect that Ω(GP ,A) is equal
to the r-fold union above.

Remark 4.6. Finally we remark that there are other forms of zero mode spectrum that
can be defined, for aperiodic bar-joint frameworks G, which are based in part on the
presence linearly localised flexes which can be phase-periodic in their localised directions.
We consider this in detail elsewhere. The main idea for plane frameworks is to consider
phase fields for band partitions in the ambient space of G, associated with unrestricted
parallelogram partitions, and to consider infinitesimal flexes with approximate forms of
phase-periodicity. This leads to an associated zero mode spectrum, consisting of lines of
wave vectors k in a reciprocal space R2

k
relative to an arbitrary reference basis for R2.

For a regular multigrid parallelogram framework GP this “essential linear spectrum” is
identified with the reciprocal figure of RF (GP ).
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