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Abstract. Two versions of the concept “meaningful” are distinguished, “strictly” and “power”
meaningful. By establishing the converse of a theorem of Bennett, a full characterisation of
strictly meaningful sequences is given. A dual concept “co-meaningful” is introduced (again in
two versions), and an analogous characterisation is obtained.

1. Introduction

This study supplements the pioneering articles [2], [3] by Grahame Bennett. The
starting point is the following result from [4].

THEOREM BJ. For a function f on [0,1] , define, for n≥ 1 ,

αn( f ) =
1
n

n

∑
r=1

f
(

r
n+1

)
,

βn( f ) =
1

n+1

n

∑
r=0

f
( r

n

)
.

If f is convex, then αn( f ) increases with n, and βn( f ) decreases.

One way to generalise these expressions is as follows. Given a strictly positive
sequence a = (an)n≥1 , write An = ∑

n
r=1 ar and Cn = An/n , and define

αn( f ,a) =
1
n

n

∑
r=1

f
(

ar

Cn

)
(1)

for n ≥ 1. When an = n , αn( f ,a) reproduces αn( f ) (more exactly, it equates to
αn( f1) , where f1(x) = f (2x)). For natural applications, an will be either increasing or
decreasing.

For βn( f ) , we consider sequences starting with a term a0 , with an > 0 for all
n≥ 1. We now write An = ∑

n
r=0 ar and Dn = An/(n+1) , and define

βn( f ,a) =
1

n+1

n

∑
r=0

f
(

ar

Dn

)
(2)
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for n ≥ 1. When an = n , βn( f ,a) equates to βn( f1) , where f1(x) = f (2x) . As this
shows, we certainly do not exclude the possibility that a0 = 0 (hence the exclusion of
β0( f ,a)).

In fact, βn( f ,a) = αn+1( f ,b) , where bn = an−1 for n ≥ 1. However, analogous
statements and proofs for the two cases are better reflected by the notation of (2). We
shall see that the term a0 plays a special role.

In the papers cited, some profound results for αn( f ,a) are presented, but βn( f ,a)
is not considered.

Slightly adapting Bennett’s terminology, we will say that the sequence (an)n≥1
is strictly meaningful if αn( f ,a) increases with n for all convex functions f defined
on the relevant interval. Actually, Bennett did not introduce a term for this property.
He used the term meaningful for the case where f (x) is restricted to the functions xp

for all real p (of course, with αn( f ,a) decreasing when 0 < p < 1). To highlight the
distinction, I will use the term power meaningful for this case: this is consistent with
the concept of power majorisation versus majorisation, a topic that is also discussed in
the papers mentioned. (I would really prefer to omit the word “strictly”, but this would
clash with Bennett’s terminology.)

The “relevant interval” is, of course, the least interval containing all the points
ar/Cn for r ≤ n . This will vary according to the sequence (an) . In all examples of
interest, f will in fact be convex on (0,∞) .

In these terms, Theorem BJ says that the sequence an = n is strictly meaningful.
A sequence that is power meaningful but not strictly meaningful is an = 2n− 1 ([2,
Theorem 4] and [4]).

We introduce corresponding terminology for βn( f ,a) . We will say that (an)n≥0
is strictly co-meaningful if βn( f ,a) decreases with n for all convex f , and power co-
meaningful if βn( f ,a) decreases with n for f (x) = xp with p ≥ 1 and increases with
n when 0 < p < 1 (we exclude p < 0, to accommodate the possibility that a0 = 0).

The main theorem in [2] establishes sufficient conditions for the property “power
meaningful”. In [3] it is shown that the same conditions actually imply “strictly mean-
ingful” (though the theorem is not explicitly stated in these terms). A partial converse
is given in [2] for “power meaningful”, but not for “strictly meaningful”. Here we
will prove such a converse result, showing in fact that for monotonic sequences, the
stated sufficient conditions are also necessary, so in fact give a full characterisation of
monotonic strictly meaningful sequences.

We then explore the extent to which analagous results apply for βn( f ,a) .
There is a very satisfactory companion to the main theorem for increasing se-

quences, but there are also differences: for example, there are no non-trivial decreasing
co-meaningful sequences (in either sense).

The article [1] presents a different generalisation of Theorem BJ, applying to sums
of the form (1/cn+1)∑

n
r=0 f (ar/an) . These results do not imply, or follow from, the

ones considered here. Another generalisation, to weighted averages ∑
n
r=0 wn,r f (r/n) ,

is discussed in [5].
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2. Strictly meaningful sequences: Bennett’s theorem and the converse

Case (i) of [3, Theorem 1] establishes the following:

THEOREM B1. If an and an+1/Cn both increase with n, or both decrease, then
(an) is strictly meaningful.

This is not how the theorem is actually stated in [3]. However, a scrutiny of the
proof, together with formula (37), reveals that it is what is really proved. The statement
is combined with a “case (ii)”, which asserts, in different notation, that (n−c) is power
meaningful for 0≤ c≤ 1

2 .
The most obvious particular case is an = nα . For this sequence, we have

an+1

Cn
=

n(n+1)α

Sn(α)
,

where Sn(α) = ∑
n
r=1 rα . By Theorem BJ, with f (x) = xα , we see that Sn(α)/[n(n+

1)α ] increases with n when α ≥ 1 or α < 0, and decreases when 0 ≤ α ≤ 1. Hence
(nα) is strictly meaningful both for 0≤ α ≤ 1 and for α < 0.

Other examples satisfying the condition are an = n+ c , where c > 0, and an =
n(n+1) .

Bennett also shows that if an and an+1/Cn both increase (or both decrease), then
so does an/Cn [2, Lemma 3]. Further, the following converse is established [2, The-
orem 6]: if (an) is power meaningful and increasing, then an/Cn is increasing (and
similarly if decreasing). However, an+1/Cn may fail to be increasing; the sequence
an = 2n−1 is a counter-example.

The focus in Bennett’s papers is firmly on “power meaningful”; no converse result
is stated for “strictly meaningful”. Here we supply such a converse: we show that
for a monotonic sequence to be strictly meaningful, the sufficient condition stated in
Theorem B1 is also necessary.

THEOREM 1. Suppose that (an) is strictly meaningful. If an is increasing (or
decreasing), then so is an+1/Cn .

Proof. Fix n≥ 2. Write xr = ar/Cn and yr = ar/Cn+1 . The statement αn( f ,a)≤
αn+1( f ,a) equates to

(n+1)
n

∑
r=1

f (xr)≤ n
n+1

∑
r=1

f (yr). (3)

Assume first that an is increasing; then Cn is increasing, so xn ≥ yn . We show that

(n+1)xn ≤ nyn+1 + yn. (4)

Let f (t) = (t− yn)
+ . By (3), we have (n+1)(xn− yn)≤ n(yn+1− yn) , which equates

to (4). Now suppose that an is decreasing. Then xn ≤ yn , and taking f (t) = (yn− t)+ ,
we find (n+1)(yn− xn)≤ n(yn− yn+1) , so (4) is reversed.

In terms of An , (4) says

(n+1)
nan

An
≤ n

(n+1)an+1

An+1
+

(n+1)an

An+1
,
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hence
nanAn+1 ≤ (nan+1 +an)An.

Since An+1 = An +an+1 , this equates to

(n−1)anAn ≤ nan+1(An−an) = nan+1An−1,

so
an

Cn−1
=

(n−1)an

An−1
≤ nan+1

An
=

an+1

Cn
.

It is stated as an unsolved problem in [2, p. 575] whether (nα) is power meaningful
for all α > 1. This is proved for the special case α = 3 and stated without proof for
α = 2. Our Theorem disposes very easily of the corresponding question for “strictly
meaningful”.

COROLLARY 1. If α > 1 , then (nα) is not strictly meaningful.

Proof. Note that a2/C1 = 2α and

a3

C2
=

2.3α

1+2α
.

By (strict) convexity of the function xα , we have 2.3α < 2α + 4α , hence a3/C2 <
a2/C1 .

Another application of Theorem 1 is that (n− c) is not strictly meaningful for
0 < c < 1.

3. Co-meaningful sequences

We now investigate analagous results for co-meaningful sequences (in both senses).
Recall that we are considering non-negative sequences (an)n≥0 with an > 0 for n≥ 1,
and that An = ∑

n
r=0 ar and Dn = An/(n+1) . We start with some simple observations.

If an = 1 for all n , then Dn = 1 and βn( f ,a) = f (1) for all n and any function
f . So this sequence is strictly co-meaningful, in a trivial way. By Theorem BJ, the
sequence an = n is strictly co-meaningful.

If f (x) = x , then for any (an) as above,

βn( f ,a) =
An

(n+1)Dn
= 1

for all n . By Jensen’s inequality, together with this identity, we have βn( f ,a) ≥ f (1)
for all n and all convex functions f .

We start with necessary conditions, because these are established quite easily.
There are some immediate contrasts with the meaningful case.
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PROPOSITION 1. If (an) is strictly co-meaningful, increasing and not constant,
then a0 = 0 .

Proof. Suppose that a0 > 0. Since (an) is not constant, there exists n≥ 2 such that
Dn >Dn−1 , so that a0/Dn < a0/Dn−1 . Let f (x)= (a0/Dn−1−x)+ . Then f (ar/Dn−1)=
0 for each r , so βn−1( f ,a) = 0, while βn( f ,a)≥ 1

n+1 f (a0/Dn)> 0.

For p > 0, write

ρp,n(a) =

(
1

n+1

n

∑
r=0

ap
r

)1/p

.

It is elementary that for fixed n , ρp,n(a)→max0≤r≤n ar as p→∞ . We deduce at once:

PROPOSITION 2. (i) If (an) is increasing and power co-meaningful, then an/Dn
decreases with n for n≥ 1 .

(ii) There are no non-constant, decreasing power co-meaningful sequences.

Proof. (i) By the definition, for p > 1,

1
(n+1)Dp

n

n

∑
r=0

ap
r

decreases with n , so ρp,n(a)/Dn decreases. Since (an) is increasing, ρp,n(a)→ an as
p→ ∞ . Hence an/Dn decreases.

(ii) Now suppose that (an) is decreasing and a0 > 0. Then ρp,n(a)→ a0 as p→
∞ , so a0/Dn decreases. Therefore Dn increases, so (Dn) , hence also (an) , is constant.

Note. For “strictly co-meaningful, the method of Proposition 1 adapts easily to
give a quick direct proof of both statements.

COROLLARY 2. If (an) is increasing and power co-meaningful, with a0 = 0 ,
then an ≤ na1 for all n≥ 1 .

Proof. Then a1/D1 = 2, so an/Dn ≤ 2 for n≥ 1. In other words, (n+1)an ≤ 2An ,
hence (n− 1)an ≤ 2An−1 . Now take n ≥ 2 and assume that ar ≤ ra1 for r ≤ n− 1.
Then An−1 ≤ 1

2 (n−1)na1 . Hence an ≤ na1 .

With more care, one can show that an−a0 ≤ n(a1−a0) for n≥ 1.
These results enable us to dismiss a number of sequences very easily. Firstly, no

non-constant increasing sequence with a0 > 0 is strictly co-meaningful. Further:

EXAMPLE 1. By Corollary 2, (nα) is not power co-meaningful for any α > 1.
(For this, we only need a2 ≤ 2a1 , which is even easier.)

EXAMPLE 2. Let an = n+ c , where c > 0. Then Dn =
1
2 n+ c , so

an

Dn
=

2(n+ c)
n+2c

= 2− 2c
n+2c

,

which increases with n . Hence (an) is not power co-meaningful.
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EXAMPLE 3. Let a0 = 0 and an = n+1 for n≥ 1. Then A3 = 9, A4 = 14, so
a3/D3 =

16
9 , while a4/D4 =

25
14 > 16

9 , hence (an) is not power co-meaningful.

We now establish a companion result to Theorem B1, by essentially similar steps.
The conclusion is that for non-constant, increasing sequences, the necessary conditions
in Propositions 1 and 2 are also sufficient.

As in the meaningful case, the basis of the proof is the following Lemma on convex
functions [2, Lemma 2].

LEMMA 1. Let a, b, c , d be real numbers with a < d and b, c in [a,d] . Also,
let α , β , γ , δ be non-negative numbers such that

β + γ = α +δ ,

βb+ γc = αa+δd.

Then for all convex functions f ,

β f (b)+ γ f (c)≤ α f (a)+δ f (d).

An instant proof (shorter than the one given in [2]) is as follows:

Proof. The hypotheses are equivalent to the statement that for any affine function
g(x) = mx+n , we have βg(b)+ γg(c) = αg(a)+δg(d). Take g to be the affine func-
tion agreeing with f at a and d : then f (b) ≤ g(b) and f (c) ≤ g(c) . The statement
follows.

We also require the following Lemma, corresponding to [2, Lemma 3] in the mean-
ingful case. In most applications the conclusion is easily verified, so the reader may
choose to defer the proof for now and move on to the main theorem.

LEMMA 2. If an is increasing and an/Dn is decreasing for n≥ 1 , then an+1/Dn
is decreasing.

Proof. Note that

1− An−1

An
=

an

An
and

An+1

An
−1 =

an+1

An
,

so that

an+1

(
1− An−1

An

)
= an

(
An+1

An
−1
)
. (5)

Let

Un =
An−1

n+1

(
an

Dn−1
− an+1

Dn

)
=

n
n+1

an−
An−1

An
an+1,

Vn = Dn+1

(
an

Dn
− an+1

Dn+1

)
=

n+1
n+2

An+1

An
an−an+1.
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By hypothesis, Vn ≥ 0. By (5),

Un−Vn =

(
n

n+1
− n+1

n+2
An+1

An
+

An+1

An
−1
)

an

=

(
1

n+2
An+1

An
− 1

n+1

)
an

=
an

An
(Dn+1−Dn)

≥ 0,

since Dn+1 ≥ Dn . Hence Un ≥ 0.

THEOREM 2. Let (an) be non-negative, increasing, not constant, with a1 > 0 .
Then (an) is strictly co-meaningful if and only if a0 = 0 and an/Dn decreases with n
for n≥ 1 .

Proof. We have already shown that the conditions are necessary. Assume that they
are satisfied, and let f be convex. We have to show that βn( f ,a) ≤ βn−1( f ,a) for
n≥ 2. This equates to

n
n

∑
r=0

f
(

ar

Dn

)
≤ (n+1)

n−1

∑
r=0

f
(

ar

Dn−1

)
. (6)

The master stroke in [3] is the introduction of extra terms that cancel. Copying this
idea, we will prove an inequality of the form

n f
(

ar

Dn

)
+ Jr+1 ≤ (n+1) f

(
ar

Dn−1

)
+ Jr (7)

for 0 ≤ r ≤ n− 1, for certain terms Jr to be chosen (with J0 = 0). Adding these
inequalities, we then obtain

n
n−1

∑
r=0

f
(

ar

Dn

)
+ Jn ≤ (n+1)

n−1

∑
r=0

f
(

ar

Dn−1

)
.

To recapture (6), we require Jn = n f (an/Dn) . This is ensured by taking Jr = r f (Dr−1En)
for 1 ≤ r ≤ n , where En = an/(Dn−1Dn) (also J0 = 0). So we will prove (7), with Jr
defined in this way.

When r = 0, since a0 =D0 = 0, both sides of (7) equate to (n+1) f (0) . (Remark:
if we had a0 > 0, then convexity of f would force the opposite inequality to (7) at this
point!)

For 1≤ r ≤ n−1, we apply Lemma 1, with

α = r, β = n, γ = r+1, δ = n+1,

a = Dr−1En, b =
ar

Dn
, c = DrEn, d =

ar

Dn−1
.
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We verify that the conditions are satisfied: then (7) follows. Clearly, β + γ = α + δ .
Since (r+1)Dr = Ar , we have

γc−αa = (Ar−Ar−1)En = arEn,

while

δd−βb = ar

(
n+1
Dn−1

− n
Dn

)
= ar

An−An−1

Dn−1Dn
=

aran

Dn−1Dn
= arEn.

Since Dn increases with n , we have a ≤ c and b ≤ d . The inequality c ≤ d equates
to (anDr)/Dn ≤ ar , hence to (an/Dn) ≤ (ar/Dr) , which is true, by hypothesis. The
inequality a≤ b equates to (anDr−1)/Dn−1 ≤ ar . For r = 1, this just says a1 ≥ 0. For
r > 1, it equates to (an/Dn−1)≤ (ar/Dr−1) , which is true by Lemma 2.

COROLLARY 3. The sequence (nα)n≥0 is strictly co-meaningful if 0 ≤ α ≤ 1 .
Hence if Sn(α) = ∑

n
r=0 rα , then the expression

(n+1)p−1 Sn(α p)
Sn(α)p

decreases with n if p≥ 1 , and increases if 0≤ p≤ 1 .

Proof. We have
an

Dn
=

nα(n+1)
Sn(α)

.

By Theorem BJ, applied to f (x) = xα , this decreases with n when 0≤α ≤ 1. The sec-
ond statement simply records what it means to say that (nα) is power co-meaningful.
(We remark that the statement that (nα) is power meaningful says that the opposite
monotonicities hold when (n+1)p−1 is replaced by np−1 .)

EXAMPLE 4. Let a=(0,1,1, . . .) . Then An = n , so Dn = n/(n+1) and an/Dn =
1+ 1

n . This is decreasing, so a is strictly co-meaningful. For convex f , this says that

βn( f ,a) =
1

n+1
f (0)+

n
n+1

f
(

n+1
n

)
decreases with n . Not surprisingly, this follows directly from the definition of convexity
applied to the points 0, (n+1)/n and n/(n−1) .

The following generalisation of Corollary 3 corresponds to [2, Theorem 7]:

THEOREM 3. Suppose that (an) is increasing, with a0 = 0 and an > 0 for n≥ 1 ,
and that an/Dn decreases with n for n ≥ 1 . Then (aα

n ) is strictly co-meaningful for
0 < α ≤ 1 .
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Proof. Write Sn = ∑
n
r=0 aα

r . By Theorem 2, (an) is strictly co-meaningful. For the
concave function f (x) = xα , this says that

1
n+1

(
n+1

An

)α

Sn

increases with n , so Aα
n (n+ 1)1−α/Sn decreases. By hypothesis, (n+ 1)α aα

n /Aα
n de-

creases. Hence (n+ 1)aα
n /Sn decreases: this is the condition for (aα

n ) to be strictly
co-meaningful.

By Theorem 2 and Proposition 2, all increasing, power co-meaningful sequences
with a0 = 0 are strictly co-meaningful. We now give an example of a power co-
meaningful sequence with a0 > 0: by Proposition 1, it is not strictly co-meaningful.

EXAMPLE 5. The sequence (1,2,2, . . .) is power co-meaningful.
(Note: the repetition of 2 has the effect that βn( f ,a) is a combination of only two

values of f . However, this does not mean that the result is trivial, as the following
shows.) We will actually work with βn−1( f ,a) : we have to show that it decreases (or
increases) for n≥ 2. Now Dn−1 = (2n−1)/n , so

βn−1( f ,a) =
1
n

f
(

n
2n−1

)
+

n−1
n

f
(

2n
2n−1

)
.

For f (t) = t p , we have βn−1( f ,a) = h( 1
n ) , where

h(x) =
x+2p(1− x)

(2− x)p =
c−dx
(2− x)p ,

where c = 2p , d = 2p− 1. We will show that h(x) increases on [0, 1
2 ] if p ≥ 1 and

decreases if 0 < p≤ 1. Now

(2− x)p+1h′(x) =−d(2− x)+ p(c−dx) = (pc−2d)− (p−1)dx.

So our result will follow if we can show that pc−2d ≥ 1
2 (p−1)d , equivalently 2pc≥

(p+3)d , for p≥ 1, and the reverse for 0 < p≤ 1. Now

2pc− (p+3)d = 2p.2p− (p+3)(2p−1) = (3+ p)− (3− p)2p.

This is clearly non-negative if p≥ 3. To finish, we show that

2p ≤ 3+ p
3− p

(8)

for 1≤ p < 3, together with the reverse for 0≤ p≤ 1. Note that equality holds when
p = 0 and p = 1. Let φ(p) = p log2 and ψ(p) = log(3+ p)− log(3− p) . Then φ is
linear, while

ψ
′(p) =

1
3+ p

+
1

3− p
=

6
9− p2 ,

9



which increases with p on [0,3) , so ψ is convex on this interval. Since φ coincides
with ψ at 0 and 1, it follows that ψ(p) ≤ φ(p) on [0,1] and ψ(p) ≥ φ(p) on [1,3) ,
hence (8).

(In the same way, one can show that βn( f ,a) decreases with n when −1≤ p < 0,
but we did not include this case in our definition of power co-meaningfulness.)

Similar reasoning establishes that (1,r,r, . . .) is power co-meaningful for any r >
1. In the inequality corresponding to (8), 2 is replaced by r and 3 by (r+1)/(r−1) .

Finally, we give an example to show that when a0 > 0, the condition that an/Dn
is decreasing does not ensure that (an) is power co-meaningful.

EXAMPLE 6. Consider the sequence (2,3, 10
3 , 10

3 , . . .) . The number 10
3 is chosen

to ensure that a2/D2 = a1/D1 =
6
5 : it is the largest choice of a2 compatible with the

condition a2/D2 ≤ a1/D1 . Since Dn is increasing, it follows that an/Dn decreases for
all n≥ 1. Since D1 =

5
2 and D2 =

25
9 , we have

β1( f ,a) = 1
2 f ( 4

5 )+
1
2 f ( 6

5 ), β2( f ,a) = 1
3 f ( 18

25 )+
1
3 f ( 27

25 )+
1
3 f ( 6

5 ).

With f (x) = x2 , we find

252[β2( f ,a)−β1( f ,a)] = 1
3 ×182 + 1

3 ×272− (8+6)×25 = 108+243−350 = 1.
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