
Novel Database Design for Extreme

Scale Corpus Analysis

A thesis submitted to Lancaster University

for the degree of Ph.D. in Computer Science

Matthew Parry Coole

January 2021

Abstract

This thesis presents the patterns and methods uncovered in the development of

a new scalable corpus database management system, LexiDB, which can han-

dle the ever-growing size of modern corpus datasets. Initially, an exploration

of existing corpus data systems is conducted which examines their usage in cor-

pus linguistics as well as their underlying architectures. From this survey, it is

identified that existing systems are designed primarily to be vertically scalable

(i.e. scalable through the usage of bigger, better and faster hardware). This

motivates a wider examination of modern distributable database management

systems and information retrieval techniques used for indexing and retrieval.

These techniques are modified and adapted into an architecture that can be

horizontally scaled to handle ever bigger corpora. Based on this architecture

several new methods for querying and retrieval that improve upon existing

techniques are proposed as modern approaches to query extremely large anno-

tated text collections for corpus analysis. The effectiveness of these techniques

and the scalability of the architecture is evaluated where it is demonstrated

that the architecture is comparably scalable to two modern No-SQL database

management systems and outperforms existing corpus data systems in token

level pattern querying whilst still supporting character level pattern matching.

i

ii

Declaration

I declare that the work presented in this thesis is my own work. The material

has not been submitted, in whole or in part, for a degree at any other university.

Matthew Parry Coole

iii

iv

List of Papers

The following papers have been published during the period of study. Extracts

from these papers make up elements (in part) of the thesis chapters noted

below.

• Coole, Matthew, Paul Rayson, and John Mariani. ”Scaling Out for

Extreme Scale Corpus Data.” 2015 IEEE International Conference on

Big Data (Big Data). IEEE, 2015. Chapter 5.

• Coole, Matthew, Paul Rayson, and John Mariani. ”LexiDB: A Scal-

able Corpus Database Management System.” 2016 IEEE International

Conference on Big Data (Big Data). IEEE, 2016. Chapters 3 and 5.

• Coole, Matthew, Paul Rayson, and John Mariani. ”LexiDB: Patterns

Methods for Corpus Linguistic Database Management.” Proceedings of

The 12th Language Resources and Evaluation Conference. 2020. Chap-

ters 4 and 5.

• Coole, Matthew, Paul Rayson, and John Mariani. ”Unfinished Busi-

ness: Construction and Maintenance of a Semantically Tagged Histori-

cal Parliamentary Corpus, UK Hansard From 1803 to the Present Day.”

Proceedings of the Second ParlaCLARIN Workshop. 2020. Chapter 5.

v

vi

Contents

List of Figures xi

1 Introduction 1

1.1 Overview . 1

1.2 Area of Study . 2

1.3 Motivation . 3

1.4 Research Questions . 4

1.5 Thesis Structure . 5

2 Literature Review 7

2.1 Background in Corpus Linguistics 7

2.1.1 Corpus Queries . 9

2.2 Existing Corpus Data Systems and their Query Languages . . . 13

2.2.1 Overview of Corpus Data Systems 13

2.2.2 Corpus Data Systems Architecture 18

2.3 Proposed Systems & Related Work 20

2.4 Database Management Systems and IR systems 23

2.4.1 Indexing . 23

2.4.2 Querying Corpora with Database Management Systems

and their Query Languages 27

2.4.3 Distribution Methodologies & No-SQL Architectures . . 37

2.5 Summary . 39

3 Architecture 41

vii

3.1 Architecture Overview . 42

3.2 Column Stores . 43

3.2.1 Numeric Data Representation 43

3.2.2 Zipfian Columns . 44

3.2.3 Continuous Columns . 51

3.3 Indexing . 53

3.4 Distribution . 54

3.4.1 Distributed Querying . 55

3.4.2 Redundancy . 56

3.5 Summary . 57

4 Querying 59

4.1 Introduction . 59

4.2 Linguistic Query Types . 61

4.3 Overview of Query Syntax and Capabilities 64

4.4 Resolving QBE objects . 65

4.4.1 Preamble . 66

4.4.2 Algorithm . 66

4.4.3 Example . 66

4.5 Token stream regex . 69

4.5.1 Preamble . 70

4.5.2 Algorithm . 70

4.5.3 Worked example . 70

4.5.4 Limitations . 71

4.6 Resolving Query Types . 72

4.7 Asynchronous Querying . 74

4.8 Sorting . 77

4.9 Summary . 79

5 Evaluation 81

5.1 Overview . 81

5.2 Quantitative Evaluation . 82

viii

5.2.1 Experiment 1: Scalability of existing DBMSs 82

5.2.2 Experiment 2: Scalability of LexiDB 91

5.2.3 Experiment 3: Comparative Evaluation 95

5.3 Hansard Case Study . 99

5.3.1 Building the Tool . 99

5.4 Summary . 117

6 Conclusions 119

6.1 Summary of Thesis . 119

6.2 Proposed Design . 121

6.3 Limitations and Future Work 122

6.4 Research Questions and Contributions 123

References 124

Appendices 135

A Experimental Results 1 137

B Experimental Results 2 145

C Experimental Results 3 149

D Sample Focus Group Questions 157

D.1 Using the web interface . 157

D.2 Comparisons to other systems 157

D.3 Future developments . 157

ix

x

List of Figures

2.1 Growth of corpora over time . 8

3.1 Architecture diagram . 42

3.2 Inserting Documents into Data Blocks 47

4.1 DFA representing ^[ab]a.*$ 68

4.2 Radix tree representing D . 68

5.1 MongoDB Query Times (High frequency words) 87

5.2 MongoDB Avg. Query Times (medium & low frequency words) 89

5.3 Cassandra Query Times (High frequency words) 89

5.4 Cassandra Avg. Query Times (medium & low frequency words) 90

5.5 Insertion and Indexing . 92

5.6 Concordance Lines . 92

5.7 Collocations . 93

5.8 N-grams . 94

5.9 Frequency List . 94

5.10 Simple querying for Part-of-Speech (c5 tagset) 96

5.11 Common POS bigram search . 97

5.12 Common POS bigram search . 98

5.13 Annotation Processing pipeline 101

5.14 Hansard UI search bar . 101

5.15 Hansard UI Concordance Results 102

5.16 Hansard UI Histogram Visualisation 103

5.17 Hansard UI Query Options . 104

xi

5.18 Hansard UI Collocation Word Cloud 106

xii

Chapter 1

Introduction

1.1 Overview

Corpora are samples of real-world text designed to act as a representation of

a wider body of language and they are growing rapidly. From samples of mil-

lions of words (Brown) to 100s millions (BNC) by the 90s. The magnitude of

modern corpora is now measured in the billions of words (Hansard, EEBO).

This trend is only accelerating with recent linguistic studies making more use

of online data streams from Twitter, Google Books and other data analytic

services. Compounding this is the increased use of multiple layers of anno-

tation through part-of-speech tagging, semantic analysis, sentiment marking,

dependency parsing, all increasing the dimensionality of ever-growing corpus

datasets. Traditional corpus tools (AntConc, CWB) were not built to han-

dle this scale and as such are often unable to fulfil specific use cases, leading

to many bespoke solutions being developed for individual linguistic research

projects. Many larger corpora are now hosted online in systems such as BYU,

CQPWeb and SketchEngine. However, if the system does not have the func-

tionality to perform the querying or analysis a linguist needs they are often

left with nowhere to go.

The areas of Database Systems and Information Retrieval Systems have also

1

Novel Database Design for Extreme Scale Corpus Analysis

faced the problems encountered in corpus linguistics in recent years - an ex-

plosion in data scale. In those areas, this has lead to the development of

scalable approaches and solutions for other “big data” problems. These tech-

niques apply to the problems in modern corpus linguistics. These database

techniques can handle but may not be well suited to Zipfian style language

data so adjustments to the techniques are investigated.

This thesis describes a set of approaches, methods and practises that apply

to database management systems (DBMSs) tailored to fulfil corpus linguistic

requirements. These approaches are realised in a corpus DBMS, LexiDB, that

is capable of fulfilling not only the traditional needs of corpus linguists but

also the modern needs for scalability and data management that have become

ever more prevalent in the field in recent years.

The remaining sections of this chapter outline the area of corpus linguistics,

expand on the motivations for this project, formalise the research question and

objectives and finally outline the thesis structure.

1.2 Area of Study

Corpora are built as representative samples to allow language analysis to be

performed reliably without the need to examine every text available in the

analysis domain. Corpora can sometimes be general-purpose, meant to repre-

sent a language as a whole (BNC) or can be built to examine a specific area

such as political discourse (Hansard).

Typically corpus linguists apply a standard set of approaches to analysing

corpora (concordances, collocation, frequency lists etc.). As such various soft-

ware tools have been developed over the years to allow linguists to do just

that. These tools are often used as a basis for what may build into a wider

analysis based linguistic research questions.

2 Chapter 1

Novel Database Design for Extreme Scale Corpus Analysis

1.3 Motivation

For some corpus analyses, the standard, widely available tools may not be able

to meet the functional or non-functional requirements of the project. There can

be many reasons for this; perhaps the corpus data cannot be easily converted

to a format for the tool, the type of analysis is different from those the tools

typically provide or the tool is not capable of supporting the size of the corpora

being studied. This can often lead (particularly in large well-funded projects)

to specialist tools to manage, query and analyse corpora being built solely for

use with a single corpus or a single research project.

Beyond this, often multiple tools are required for the creation and use of a

corpus. Typically query tools such as CQP or SketchEngine rely on the corpus

being static and once indexed unlikely to change or be extended. This can

lead to projects needing to utilise multiple tools for both the corpus creation

process and the querying and analysis routine. Dynamic corpora that change

as the project grows are harder to manage using the classical tools within a

corpus linguistic workflow. A secondary consequence of this is linguists have

less chance to explore the data as corpora are built, eliminating or curtail-

ing the ability to perform a more data-driven analysis of the corpora during

compilation. Being able to use and explore dynamic corpora, whilst they are

being built or compiled, would be a great advantage to both corpus builders

and regular linguists.

Many existing corpus tools are designed to only be used locally and have no

mechanisms by which they can scale to handle larger corpora, specifically the

ability to scale out across multiple machines is not explored. Whilst for small

specialist corpora this may be sufficient, linguists now regularly wish to analyse

corpora consisting of hundreds of millions or even billions of words.

The “big data” trend in recent years has led to many developments in data

systems. Distributed systems and techniques have become ubiquitous when

dealing with large datasets and have become accepted approaches for dealing

Chapter 1 3

Novel Database Design for Extreme Scale Corpus Analysis

with this issue of scale. Many big data analytics systems are built as Software

as a Service (SaaS) which has often led to individual researchers relying on clas-

sical DBMSs (which have become distributed themselves) for corpus research

databases. This can lead to researchers developing many bespoke corpus sys-

tems for individual projects based on existing classical DBMSs. Many of these

databases are not well suited to corpus requirements, both in the form they

handle and store data and the mechanisms they allow for querying of the data.

Clearly, a gap is present between highly specialised/bespoke tools and the less

functionally capable general-purpose databases that they are often built on.

1.4 Research Questions

The main research question investigated in this thesis is whether information

retrieval techniques and modern database approaches can be married to corpus

linguistics to handle the ever-changing array of corpus data requirements? This

research question can be broken down into three sub-questions;

1. How can modern database and IR techniques be used to build, store and

query corpus data?

(a) How can corpus techniques and requirements be fulfilled by existing

IR and database retrieval mechanisms?

(b) How effective are modern distribution methods at scaling to meet

the needs of extreme-scale corpora?

(c) Are there any un-tapped methods that can be developed into novel

solutions in this problem domain?

2. How can any system developed be evaluated quantitatively to existing

systems, both database management systems and corpus data manage-

ment systems?

3. What qualitatively evaluation can demonstrate the usage of the system

4 Chapter 1

Novel Database Design for Extreme Scale Corpus Analysis

and its usefulness in real-world applications?

1.5 Thesis Structure

The chapters in this thesis are as follows;

Chapter two provides a detailed look at the corpus linguistic data requirements.

It examines existing corpus tools and the techniques that they employ as well

as analysing their shortcomings. The chapter reviews the modern literature

around storage and indexing within information retrieval and DBMSs, with

particular focus on text retrieval methods and how they can be applied to the

problems faced in traditional corpus software.

Chapter three describes the architecture designed and implemented by LexiDB.

The approaches drawn from the literature review are highlighted as well as

where these approaches have been extended or modified to be applied to a

corpus database.

Chapter four outlines the mechanisms developed to fulfil corpus queries and

describes a novel corpus query language/technique that allows for corpus lin-

guists to express queries powerfully and intuitively.

Chapter five is an evaluation of the LexiDB software. It includes a quantitative

comparison to existing DBMSs for large scale corpora as well as evaluating the

scalability of the database. The qualitative evaluation takes the form of a case

study and a focus group where corpus linguists have used a custom-built user

interface for LexiDB on a modern corpus dataset.

Chapter six is a summary of the thesis and a conclusion. It provides an ex-

amination of the weaknesses of the work as well as looking at potential future

work to address this.

Chapter 1 5

Novel Database Design for Extreme Scale Corpus Analysis

6 Chapter 1

Chapter 2

Literature Review

This chapter discusses the background of corpus linguistics with particular

attention to how corpus data is typically queried, with definitions of the five

most common query types. This is followed by a survey of existing corpus

data systems, how they are used, what types of corpus queries they support

with an emphasis on how their query languages work. This is then contrasted

to modern DBMSs and IR systems, examining how these systems work, the

methods employed by typical indexing schemes and how such systems’ query

languages are not suited to corpus linguistic analysis approaches. Finally, we

analyse how modern DBMS, specifically No-SQL systems, utilise distribution

methodologies in order to be scalable for larger and larger datasets and what

these approaches can teach us with regards to making corpus data systems

scalable.

2.1 Background in Corpus Linguistics

Corpus linguistics concerns itself with the study of natural language via meth-

ods and techniques centred around corpora, described by McEnery[59] as “a

large body of linguistic evidence composed of attested language use”. The

study of these corpora is intended to provide a means of analysis that can be

7

Novel Database Design for Extreme Scale Corpus Analysis

1970 1980 1990 2000 2010 2020
106

107

108

109

1010

Year

C
or

p
u
s

S
iz

e
(w

or
d
s)

Figure 2.1: Growth of corpora over time

generalised to all language in the domain and should hold true for texts out-

side the corpus being studied. Historically, construction of corpora was a slow,

manual task; searching, gathering and curating hundreds if not thousands of

texts into a collection that would be representative of a wider body of lan-

guage as observed by Bauer[12]. Many modern corpora are often constructed

using the web[79]. Corpora can be constructed both to be general representa-

tions of language, an example of which would be the BNC (British National

Corpus)[55] which are intended to represent a language as a whole but cor-

pora can also be highly specialised such as the NOW (News on the Web)[23]

corpus which is built from online news articles. What can be inferred from the

analysis of the corpus is always bound to the domain from which the corpus

was derived.

Corpora are often (but not always) thought of as large collections of texts.

However, the exact meaning of “large” in this context has changed over the

years. A typical corpus in the 1960s such as the Brown corpus[38] may have

been only around one million words in total. Through the 80s and 90s cor-

pora grew by orders of magnitude, quickly approaching the 100 million word

mark with the aforementioned BNC. This trend continued into the new mil-

8 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

lennium (Figure 2.11) with corpora quickly accelerating through the hundreds

of millions of words (COHA[22], EEBO[4]) until now modern, popular corpora

regularly consisting of over one billion words (UK Hansard[88], Wikipedia

Corpus[30]). This trend cannot be ignored as live corpora creating an ever-

expanding plethora of what can be termed extreme-scale corpora, the need for

corpus data systems to be updated for the big data age has never been more

pertinent.

Beyond simple discovery, gathering and curation of texts into corpora, many

techniques to process and enhance the insight of corpora are applied. Almost

universally these processing techniques will begin with a form of tokenisation[89],

breaking down the text into its small constituent chunks, typically whole

words. As Palmer[70] observes, any form of tokenisation will likely involve

sentence segmentation as well. Traditionally achieved through classical Markov

models[52] and rule-based methods[64], modern tokenisation techniques have

moved towards machine learning[85] in recent years. After tokenisation, vari-

ous levels of linguistic annotation are commonly applied. The most prevalent

of these is tagging each word in a corpus with a part-of-speech (POS) tag to

explicitly mark its linguistic significance. POS tags are typically verbs, nouns

etc. but various tools such as CLAWS[39] that perform this task utilise ever

more finely grained tagsets to more and more precisely define the linguistic cat-

egory of words. While POS tagging is the most ubiquitous of techniques, many

modern systems for processing corpora go far beyond this, utilising methods

for tagging named entities[49], semantic categories[74], lemmatization[72] and

dependency marking[68] to name but a few.

2.1.1 Corpus Queries

Once a corpus is constructed, several methods of analysis are available to

corpus linguists. Although not limited to those presented here, what follows

1Corpora: NOW[23], EEBO[4], Hansard[3], USENET[83], YCCQA[28], COCA[21],
CLEMETEV[27], CEEC[69], BNC[55], LOB[56], Brown[38]

Chapter 2 9

Novel Database Design for Extreme Scale Corpus Analysis

is an overview of the five most pertinent based on what is usually available

in corpus analysis tools, discussed in section 2.2. Here we discuss them in

general terms although their usage, application and manifestations may vary

and is highly intrinsic to the software tool being utilised when performing each

analysis. This initial discussion is agnostic of such considerations.

2.1.1.1 Concordance Lines

Concordance analysis is a common technique used by corpus linguists. This

involves the analysis of words surrounding a particular search word or phrase

to derive the potential meaning of the word (in lexicography) or to explore

patterns of usage. Displaying the search word or phrase with the words im-

mediately adjacent and aligning them into a view with other occurrences of

the search word vertically is a typical means of displaying concordance lines

and allows linguists to see typical patterns of usage in context. In information

retrieval, this is sometimes known as keyword in context (KWIC). Conclu-

sions can be drawn from this analysis such as in a study conducted on the

portrayal of Muslims in the British Press [9]. How easily conclusions can be

drawn is tied to having sufficiently large corpora to find enough evidence in

the form of concordance lines. Common words can be examined in relatively

small corpora. When using a corpus that is representative of a larger body

of language, less frequent words or phrases require larger and larger corpora

to gather sufficient data for a meaningful concordance analysis. Concordance

analysis, when done at scale, can be thought of as combining aspects of both

qualitative and quantitative analysis[8]. This has motivated the need for larger

and larger corpora and entails a need for software tools capable of efficiently

handling them.

10 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

2.1.1.2 Frequency Lists

Another type of query supported by various corpus tools is the generation

of frequency lists. Frequency lists can be generated for entire corpora, this

can often be done to compare how frequent particular words occur between

two different corpora. The ability to filter and search these frequency lists

is powerful, it can allow for regular expressions to be utilised to search for

a particular pattern of word. Beyond this in the case of annotated corpora

which include lemmatisation, the lemma can be used and a frequency of the

different words that share the same lemma analysed. From such frequency

lists, dispersion across a whole corpus can also be analysed[41]. This looks not

only at the frequency of a word but also where in a corpus the word occurs,

words may occur highly frequently in one specific text in a corpus but scarcely

appear in the remainder of the corpus.

2.1.1.3 Collocations

Collocations of a particular lexical feature for example a word, are a statisti-

cal measure of how commonly that particular feature co-occurs with another

in a corpus. Typical examples of collocations might be the word “white”

and “house”. Various statistical measures exist for calculating collocations.

Usually such metrics require a contingency table be constructed by finding the

frequency which a feature occurs in the corpus with and without a particular

collocate. The resulting contingency table would be as such[54];

f(xy) f(xy)

f(xy) f(xy)

In a simple case this table represents when a word x occurs and does not occur

with a collocate y i.e. f(xy) means the frequency of x with y, f(xy) means

the frequency of x without y etc. Metrics such as mutual information(MI)[19]

can be calculated from this basis;

Chapter 2 11

Novel Database Design for Extreme Scale Corpus Analysis

MI = log
P (xy)

P (x)P (y)

where the probability is P (xy) = f(xy)
N

when N is the total size of the corpus.

Further metrics can be calculated from the simple calculation of a contingency

table between two corpora, such as log likelihood;

−2lnλ = 2
∑
i

Oiln
(
Oi

Ei

)

Here E represents the expected values and O the observed values[75][31].

Other calculations are of course possible such as chi-squared(χ2)[48] etc.[60]

From the perspective of a corpus data system, the choice of metric is trivial,

what is essential is that the data is structured in a way that collation of the

initial contingency table is fast and efficient.

2.1.1.4 N-Grams

N-Grams are sequences of n items in a sequence of data. Within a corpus n-

grams typically are handled at the token or word level but are often applied in

computational linguistics at the character level. Searching for n-grams (some-

times referred to as clusters) in corpus data systems will provide a means of

analysing common patterns that occur within a corpus. N-Grams are typi-

cally computed initially when a corpus dataset is first loaded into a system

and the most frequent unigrams, bigrams etc. can be viewed (it is common

to only generate up to 5-grams). As well as this it is often useful to be able

to search within n-grams for specific words so that commonly occurring words

with a word of interest can be viewed. N-Grams can be used for many statis-

tical analysis techniques, including but not limited to authorship analysis in

forensic linguistics[90] and for corpus-based machine translation[37].

12 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

2.1.1.5 Keywords

Some corpus tools allow for keyword analysis. In this context, a keyword is

a word that occurs more commonly than expected. Usually, such an analysis

will involve two corpora and calculating some metric (possibly log-likelihood

discussed above or similar) between a target corpus and a reference corpus.

Usually the target corpus will be a specialist corpus (e.g. a health care

corpus[2]) and the reference corpus will often be a general-purpose language

corpus. The metric is commonly known as keyness and the results of the

analysis can be sorted by keyness. Much like with the calculations for collo-

cations, efficient generation of frequency lists between corpora is essential for

calculating keyword lists. This approach can be extended out further within

annotated corpora to rather than simply look at keywords but keyness between

annotations[73].

2.2 Existing Corpus Data Systems and their

Query Languages

2.2.1 Overview of Corpus Data Systems

Corpus workbench (CWB) [18] is a set of corpus management tools for in-

dexing and querying static corpora. It has undergone many changes and

developments[34] since its inception and is often used as the backend for various

corpus interfaces including CQPWeb[45]. Corpus Query Processor (CQP) is

CWB’s means of providing meaningful linguistic query functionality through

means of a query language that is often referred to as CQL (Corpus Query

Language). CQP’s flavour of CQL can be used to express a pattern in run-

ning text by specifying not only words but also utilising word-level annotation

such as part-of-speech tags e.g. [word="in"][word="the"][pos="NN"] would

search for nouns preceded by the words “in the”. CQL can also support regular

Chapter 2 13

Novel Database Design for Extreme Scale Corpus Analysis

expressions at both the character level and the word level, with the word level

support for regular expression operators being implemented within CQP[33].

Regular expressions can be handled at the character level in CQL; [word="s.*"]

this query would find all words that begin with the letter s. On a word-level,

regular expression operators can be handled such as; [pos="JJ"]+. This query

would find one or more general adjectives (CLAWS7 POS tagset2). This form

of querying is powerful when searching a tokenised corpus. A tokenised cor-

pus, including an arbitrary number of annotation layers, can be described as a

token stream. Token streams allow for linguistically meaningful interrogation.

However more traditional methods for searching i.e. character-level regular

expressions across multiple words are less feasible in this approach as this may

require the original untokenised text, alternatively a mechanism by which the

text can be reconstructed from multiple tokens. Despite this limitation, this

style of querying over token streams has remained the de facto standard for

querying style in corpus data systems since the introduction of CWB in the

mid-1990s.

As a result of regular expression operators being used at both the character

(within tokens) and at the word level, CQL can allow for multiple methods of

expressing what is fundamentally the same query e.g. [word="(tall|long)"]

would be considered synonymous with ([word="tall"]|[word="long"]). De-

spite this, due to the way CQP attempts to resolve these queries, expressing

synonymous queries may result in more or less efficient query execution. This

illustrates that even with older systems, users are required to possess a level

of understanding of how the underlying architecture resolves queries. In some

respects, this could be considered a barrier for entry to using such systems

but it is also reasonable to postulate that such limitations would only occur

on the edges of a system’s capabilities, particularly in regard to its scalability

i.e. posing a query to CQP, expressed in CQL in a less than optimally efficient

manner, might have no noticeable effect if searching for something relatively

2http://ucrel.lancs.ac.uk/claws7tags.html

14 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

simple or infrequent in a small corpus.

The interface and functionality of CWB and CQP have been extended into a

web-based medium in CQPWeb. CQPWeb provides a more modern interface

to using many of CWB’s features (as opposed to a command-line interface).

CQPWeb allows for query types such as concordances to be visualised more

easily as well as allowing users to examine dispersion in a corpus. The primary

advantage to CQPWeb is the simplified admin methods that it allows for,

meaning subcorpora and parallel corpora can be easily created allowing for

more refined querying as well as enabling other query types such as keywords.

A final noteworthy feature of CQPWeb is a more simplified query language,

CEQL (Common Elementary Query Language), which allows for a simpler, but

more tightly coupled query syntax e.g. word_POSTAG. This allows for simple

queries to be performed more easily but is less expressive than the full CQL

syntax.

Sketch Engine3 is another corpus management tool which utilises it’s own

very similar flavour of CQL as its query language of choice. Sketch Engine is

a hosted service operating with a SaSS (software as a service) model. This

allows for various existing corpora to be pre-loaded and hosted. Sketch Engine

is capable of performing many of the typical linguistic searches; concordances,

frequency lists, collocation etc. and is built on top of Manatee and Bonito[77].

Manatee is a database management system to allow corpora to be indexed

using an inverted text index (described in section 2.4.1) and Bonito provides a

web interface in a client-server model paradigm. A free alternative to Sketch

Engine exists; NoSketch Engine allows users to access many of the features of

Sketch Engine without the need to pay for a hosted service.

Poliqarp[51] utilises a custom query language whose syntax appears very sim-

ilar to CQL but includes subtle variations and a certain amount of syntactic

sugar to allow for other forms of specialist queries regarding sentence ambi-

guity etc. Poliqarp is used as the search interface to the national corpus of

3https://www.sketchengine.eu/

Chapter 2 15

Novel Database Design for Extreme Scale Corpus Analysis

Polish4. This provides a web-based search interface that is becoming more

and more common means to perform corpus searches due to the ubiquity of

web technologies and HTML. The implementation of Poliqarp as described[50]

states that sequences of words from a corpus are stored as bytes corresponding

to offset positions within a dictionary of orthographic words. Details are also

given on how Poliqarp’s custom query language could not be mapped easily

onto an SQL or set of SQL statement, motivating the wider need for custom

data layers for corpus query systems.

Another platform to consider is COSMAS 25 (Corpus Search, Management

and Analysis System). This hosted service provides access to over 500 cor-

pora that can be queried using a custom query language. This query language

differs from CQL but provides similar functionality. This platform was de-

veloped at the Institute for the German Language Mannheim and succeeded

by KorAp[10]. As well as providing a hosted deployment6 containing several

sample corpora, KorAp is also open source and individual modules are freely

available7 (under BSD license).

The management tool Corpuscle[63] developed at the University of Bergen

provides a fully bespoke system for storing and querying annotated corpora.

Similar to other systems its query language, CorpusQueL, draws inspiration

from and shares similarities with CQL although as stated in the literature does

not share precisely the same functionality. Whilst a hosted version of this tool

exists8 which allows access to many different corpora, the code itself, is not

published anywhere and therefore cannot be used by linguists to store and

query their own corpora locally. Much like CWB, Corpuscle allows for regular

expressions to be resolved at both the character and word level, utilising fi-

nite state automata and minimising the number of corpus positions needed to

be checked within the corpus to resolve these[62], Corpuscle has been demon-

4http://nkjp.pl/poliqarp/
5https://www.ids-mannheim.de/cosmas2
6https://korap.ids-mannheim.de/
7https://github.com/KorAP
8http://clarino.uib.no/korpuskel/

16 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

strated to be faster than CWB for many specific query examples, particularly

phrases beginning or ending in relatively low-frequency terms.

More user-friendly corpus management tools exist that provide more flexibility

(allowing users to query their own corpora) and require less technical experi-

ence to setup. Tools such as AntConc[5] and WordSmith[78] are widely utilised

by corpus linguists for several reasons. AntConc provides means of handling

various corpus queries including KWIC, frequency lists, collocations & key-

words. Its interface takes the form of a desktop application as opposed to

many other tools that have moved to a web-based interface. AntConc allows

users to not only query but explore their corpora by looking at dispersion and

making it easy to compare multiple corpora. Whilst both widely adopted and

highly usable, AntConc struggles to provide the kind of support from extreme-

scale corpora that many other systems seek to provide (although many other

systems operate as hosted SaSS solutions).

BYU9 contains various English language corpora, including several in the or-

der of billions of words such as EEBO[4] (Early English Books Online) and

Hansard[3]. Although BYU has some disadvantages to other systems in terms

of functionality and expressiveness of linguistic queries, one key advantage to

its architecture (discussed in section 2.2.2) is the potential for corpora to be

dynamic. Most other corpus data systems require the corpora they use to

be static, pre-processing is required upon insertion to prepare the corpus for

querying. Davies 2019[24] demonstrates how utilising relational tables and

the architecture of iWeb, corpora can be added to dynamically. Work out-

lines how this can be done automatically, web scraping articles and passing

them through a pre-defined toolchain for annotation before insertion into the

database. It cannot be overstated the importance and potential advantages in

terms of research avenues this presents for corpus methods in the 21st century

and the big data age.

9https://corpus.byu.edu/

Chapter 2 17

Novel Database Design for Extreme Scale Corpus Analysis

2.2.2 Corpus Data Systems Architecture

Many of the underlying algorithms and techniques utilised by existing corpus

data systems are not richly conveyed in published materials, rather systems

that are described are done based on a high-level architecture that they em-

ploy. What follows is an assessment of the architecture of some of the systems

described in the above overview, where such information on their architecture

exists.

Corpus workbench’s architecture is split between the data model storing the

indexed corpora and a registry which describes them. On top of this sits a

set of library functions which access these low-level data structures. These

functions can be accessed through a set of utilities or using the Corpus Query

Processor which can handle queries in CQL. This modular like architecture

splits the various components of CWB down such that other functionality or

accessor patterns might be applied, for example, it allows the possibility to

replace CQP with a different query processor or for other tools to access the

lower level corpus library functions. This modular type approach can be seen

in other architectures for corpus data systems.

KorAp presents a very modular approach to a corpus data management plat-

form. KorAp utilises Neo4j (see section 2.4) as its database and uses Lucene

(see section 2.4.1) for indexing[81]. The access layer to these other tools is a

module called Koral. Similar to other tools that use custom query languages,

KorAp too has a custom query language, KoralQuery, but KorAp provides the

means of translating queries from other widely used corpus query languages

such as CQL, AnnisQL as well as COSMAS. This removes a barrier for entry

for users who may be familiar with other systems and thus do not need to learn

another query language to use KorAp. KorAp provides a web-based interface

called Kalamar but also provides an application programming interface (API)

which allows for different services to easily be built on top of it. Whilst the

modular nature of KorAp makes it flexible, it also means setup and configu-

ration is difficult without proficient technical knowledge and understanding.

18 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

Again the modular design of the components allows potential for replacing

things like the query processor or the underlying data access layer with other

alternatives.

The architecture of BYU’s system, sometimes referred to as iWeb, is based

on a relational database running on Microsoft SQL Server10. Limited infor-

mation on the design of this database shows that it primarily split into three

relations11; a lexicon table representing a dictionary for a particular corpus, a

corpus table containing the token stream for a given corpus and a sources table

containing information on individual texts in the corpora. The lexicon rela-

tion contains columns for the word and associated tags (lemma, POS). Within

the corpus table, each row represents an occurrence of a word and includes a

foreign key referencing the word in the lexicon table, as well as a foreign key

referencing a text to which the word instance pertains in the sources table.

Beyond the lexicon and corpus table, an additional table is required in order

to retrieve contextual information around hits. On insert a table containing

columns for each corpus position as well as the 5-10 words either side of a

word is computed (as described in Davies 2019[25]). This can effectively be

thought of as an ngram table, with at a maximum 10-gram. As described

the iWeb querying method is to find the lowest frequency term in a search

string and perform a lookup within this table, the middle column being the

indexed column which is the target of the lookup. Although this approach is

demonstrated to be efficient in certain circumstances, it remains prohibitively

expensive for searches containing only high-frequency terms due to the sheer

size of index entries that must be retrieved for each term. Beyond this, the

query syntax does not allow for more complex linguistic query expressions that

other corpus query languages such as CQL do.

BYU demonstrates a typical way in which corpora can be stored in a classi-

cal relational database. The speed of the architecture for performing simple

10http://www.microsoft.com/sqlserver/
11As described https://www.corpusdata.org/database.asp

Chapter 2 19

Novel Database Design for Extreme Scale Corpus Analysis

sequence queries12 has been compared favourably to Sketch Engine. Whilst

this data is compelling in demonstrating the potential speed advantages of the

approach over Sketch Engine, there is no discussion of the fact that both are

running (or assumed to be) as hosted services, therefore direct comparisons

without knowing anything about the underlying hardware, or potential load

on the system when the tests were performed, or even the fact that the tests

were not run on the same corpora (only two available corpora of comparative

size) all illustrate the need for such systems to have more uniform methodolo-

gies for evaluation and comparison which in part is what this work hopes to

address.

2.3 Proposed Systems & Related Work

An extension to the underlying data model of CWB has been proposed in a

new data model Ziggurat[35]. This proposes moving from a token level data

model towards a multi-layered approach that could handle the hierarchical

structure of corpora in XML format but also concurrent annotation layers.

Whilst the proposed model suggests great functional capability, methods and

algorithms to allow for greater scalability are not given, beyond simply switch-

ing from CWB’s usage of 32-bit integers, which limits corpus size to 2.3 billion

words (signed integers must be assumed here) to 64-bit integers. The proposed

solution to handle hierarchical structures, such as XML, is fundamentally the

same approach utilised by existing XML databases such as BaseX13.

Typically corpora are stored in the form of XML files. Various XML databases

exist that can query XML documents using XQuery, a subset of the function-

ality of XQuery is XPath. LPath[15] presents an alternative to XPath that

is based around resolving linguistic queries, specifically it adds new axes to

the XPath syntax. On top of the typical ancestor, descendant, sibling axes

already available in XPath, LPath proposes adding two new axes; “imme-

12https://www.english-corpora.org/speed.asp
13http://basex.org/

20 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

diately-following” and “preceding”. These axes allow for queries in this new

syntax to more precisely express contextual queries that are commonly utilised

in linguistic data systems. Algorithms are presented to translate such queries

from this custom XPath like syntax into SQL statements so linguistic data can

be stored in a traditional database but still queried in a more powerful way.

Storing XML in traditional database tables is discussed in section 2.4.2.2.

Banski[11] presents a strategy for classifying the capabilities of query lan-

guages; CQLF (Corpus Query Lingua Franca). The purpose of this work is

to label the specific capabilities of the various querying languages prevalent in

corpus data systems. The work briefly examines various querying languages

discussed previously such as the COSMAS query language and the Sketch En-

gine flavour of CQL. The three main strata for which the specification classifies

query languages are; simple, complex and concurrent. “Simple” applying the

query over plain text or token streams, “complex” over potentially hierarchical

annotations and “concurrent” requiring support for dependency annotations.

Whilst this work does not provide a basis for approaches to the scalability

aspect, it does provide a convenient means for classifying any query language

developed to support extreme-scale corpora.

The COW14[80] architecture describes a set of tools used to create, process,

store and query corpora up to 20 billion words. This toolchain’s search sys-

tem, known as Colibri, is based on CWB. It provides a web-based interface

that uses the data storage and lookup capabilities of CWB in a similar way to

CQPWeb. In a related vein, Colibri also offers a simplified query language as

an alternative to CQL, although full use of the CQL syntax is also supported.

Despite the fairly common methods employed by the search or querying com-

ponent of this architecture, the processing component presents a compelling

case for the benefits of distributed computing for extremely large corpora.

This demonstrated that corpora in the order of 10s billions of words can be

linguistically annotated across a large cluster consisting of dozens of nodes in

under 5 hours (as opposed to 3 days). Whilst corpus annotation is not a goal

Chapter 2 21

Novel Database Design for Extreme Scale Corpus Analysis

of this thesis, scalability is and this kind of distribution is not classically seen

in corpus systems but is starting to become prevalent.

This movement towards distributed approaches to handling corpora is also

demonstrated by Porta 2014[71]. The demonstration of Map-reduce algorithms

both for compiling n-grams from large text collection consisting of 800 million

words as well as the demonstration of collating inverted files (a key method

for indexing) across multiple workers. It is noted that time for building such

file inversions does not scale linearly as corpus size increases but is limited by

the bottleneck of disk access. Much like with other modern DBMSs dividing

data up into blocks (see section 2.4) the approach here also dumps data from

the file inversion process to disk every million documents that are indexed,

thus creating the disk bottleneck, without which the processing ability of Map

Reduce would likely scale more uniformly.

Vandeghinste[87] proposes the reuse of existing tools and techniques from in-

formation retrieval, specifically XQuery and XPath, making use of BaseX, to

create a query tool that can scale to support a treebank corpus of around 500

million words, SoNaR. The approach taken requires the data to be separated

into smaller databases so that complex XPath queries can be computed more

efficiently over what have effectively become sub-trees of the entire corpus.

The search engine design put forward, referred to as GrETEL, uses an amal-

gamation of a classical database query by example approach and combines

this with TIGER[47], a semantic web orientated corpus navigator. Within the

architecture, queries are translated into a base XPath form and evaluated in

BaseX against the many split parts of the whole corpus.

22 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

2.4 Database Management Systems and IR sys-

tems

2.4.1 Indexing

2.4.1.1 Postings Lists

Postings lists[53][6] are not only used in classical databases as a way to index

and search for specific values but they are also widely utilised by modern

information retrieval systems and search engines. Postings lists applied to

databases contain a list of records where a particular value occurs in a table.

In information retrieval systems a postings list may contain a list of documents

where a particular word occurs[58]. This is sometimes known as a record-level

inverted index. A full inverted index differs from this as it not only describes

the documents (or records) where the value or word occurs but also its position

within the document. Postings lists are used for text indexes frequently in all

manner of systems including DBMS and search engines[46].

Given a set of documents D = {d1, d2...dn} a dictionary of all words in D can

be compiled with each word’s postings list wn being expressed as a subset of

all documents wn ⊆ D. The set of all postings lists which expresses the index

is thought of as P = {w1, w2...wn}. In many cases (particularly for common

words or values) it may be the case that wn = D. If the documents are written

in a natural language Zipf’s Law[92] tells us that around 50% of the set P will

contain only one entry[91]. These factors would potentially allow for common

words to share a postings list D without the need to store each separately but

this is only the case when storing a record-level inverted index, a full inverted

index would require positional information within each document to be stored

as well.

A full inverted index can be conceptualised by extending the above interpre-

tation further to wn no longer being a subset of documents wnD but rather

Chapter 2 23

Novel Database Design for Extreme Scale Corpus Analysis

a set of tuples where each tuple contains a document and an integer that is

a word’s offset from the beginning of the document wn = {(di, n), ...} : di ∈

D, 0 <= n < length(di). In practice, for the sake of saving memory and or disk

space, the postings list may be stored as a tuple containing the document (or

document ID) and a set of positions where the word occurs in the document

wn = {(di, {n1, n2...nj}...)}. In many cases, where documents or records are

stored consecutively (perhaps in a single file on disk) the postings lists may

simply be stored as a set of offsets from the beginning of the database. The

offset may represent a byte length or indeed a multiple of a byte-length if the

document’s contents is converted to some fixed length set of values e.g. if all

words in the document were converted to 32-bit numbers the offset may be m

but the offset in bytes would be 4m (32 bits equals 4 bytes).

Whilst postings lists provide the basis for performing an efficient search within

any database or data store containing textual data, specifically in our case

corpus data, it is only the beginning of the process. Once a postings list is

established and its dictionary compiled its dictionary must be, itself, search-

able. Searching a small dictionary may seem trivial, a simple brute-force scan

may be sufficient given a dictionary of only a few thousand words, but dic-

tionaries of thousand of documents will be many orders of magnitude larger

than this. Beyond finding a specific postings list based on a lookup in the

dictionary, an individual postings list itself may become inordinately large at

the type of scale of data that modern data scientist and corpus linguists are

now commonly working. This means storing the entirety of the index in mem-

ory, including all postings lists, for the sake of efficiency is no longer practical

as would have been done classically in older far smaller relational databases.

Compression is therefore essential, not only to reduce the size of the index

in memory but to minimise the amount of data that must be read from the

disk in the ever more likely circumstance that an index cannot fit into memory

even with compression. Discussed below are the structures and approaches

that exist in the literature for solving these problems.

24 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

2.4.1.2 Searchable Dictionary Structures

Once such dictionaries are constructed they require a means by which to be

searched. Traditional data structures such as b-trees, b+ trees and hash ta-

bles are suitable candidates to provide such functionality, but they fall short

when dictionaries become vast and particularly when, as is often the case

with the scale of corpora we are discussing here, they cannot fit in memory.

Radix trees[26] or tries[57] have been demonstrated to be an efficient means

of searching dictionary data[13] particularly in the big data age. Tries can

be constructed from a dictionary where each node of the trie has a branch-

ing factor equal to the number of different letters that occur in that position

within the dictionary. Radix trees differ from conventional tries in that each

edge need not only be indicative of a single character but a string of char-

acters for improved compression. Variations on radix tries are also possible

to eliminate suffix redundancy in the form of deterministic acyclic finite state

automaton[20], but since these structures do not use a vertex for each word,

pointers to dictionary entries must be stored at each node as a list or array

leading to potential further searching within this set.

2.4.1.3 Index Compression

2.4.1.3.1 FOR PFOR-delta Frame of reference (FOR)[40] can be used

to minimise the number of bits needed to encode index positions in a postings

list across a large number of records in a database. Given an unsigned 32-

bit integer the maximum potential length or number of records in a database

starting with the first record 0 is approximately 4.3 billion. Every position

in the index would take up 4 bytes. By arbitrarily splitting a large group of

records down into smaller chunks and only storing the position information at

these splitting points as an integer, subsequent entries in the index between

these points can be stored simply as the offset from this point or frame of

reference. This means not all index entries need be stored as 32-bit integers

but can be stored as the minimum number of bits needed to represent the gap

Chapter 2 25

Novel Database Design for Extreme Scale Corpus Analysis

between the reference points e.g. if a reference point was created every million

records nf or = 1×106 then the intermediary index entries between these could

be guaranteed to be stored using 20 bits since 220 > nf or. This reduces the

size of any postings list in the index whilst still allowing the list to be read

sequentially.

Although FOR can reduce the number of bits required for almost all index en-

tries (besides the reference points for each frame), the total space required can

be reduced further by encoding the delta (based on Elias Fano encoding[32][36])

between each index entry as opposed to its offset from the starting frame of

reference. The FOR approach can still be utilised to traverse large lengths

of the postings list but between each frame of reference, the number of bits

needed is now the minimum number required to express the large gap be-

tween entries. As such, extremely common values in the index will have

huge postings lists with potentially millions of entries but on average their

deltas will be smaller and thus require fewer bits to express than lower fre-

quency, sparsely spaced values. If within a particular frame from a starting

reference point the list of deltas D = {δ0, δ1...δn} contains a largest delta

δmax = max(D) then the list itself can be expressed by dlog2(δmax)e. Con-

sider a postings list P = {12, 25, 33, 46, 57, 70}, the minimum number of bits

to express these would be dlog2(70)e = 7, so storing this relatively small list

would require 7bits × length(P) = 7bits × 6 = 42bits. Encoding the deltas

D = {12, 13, 8, 13, 11, 13} would be possibly using dlog2(13)ebits× 6 = 24bits

or 43% less bits in total.

Patched Frame of Reference (PFOR)[94] presents a method for increasing the

achievable compression from the previous methods even further. Beyond ap-

plying the approach in FOR, PFOR-delta indexing uses a frame of reference for

each block and when determining a minimum number of bits needed to store

the deltas, exceptions can be made where values are larger than typical, these

can then be stored separately (typically after the list of deltas) and a reference

pointer left in the original list. This method has been shown to achieve higher

26 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

levels of compression and throughput for storing inverted indexes. One disad-

vantage it has over previously described methods is the entire reference block

must be read to compute various offsets. FOR/FOR-delta can be read and

values from it computed on the fly with no need for the entire index block to be

loaded into memory at one time, although this would be typical, PFOR-delta

does not make this possible.

2.4.2 Querying Corpora with Database Management Sys-

tems and their Query Languages

2.4.2.1 Lucene

Lucene14 is an open-source search engine that has become ubiquitous in modern

internet applications as well as various No-SQL databases. Lucene constructs a

full-text index and provides a query interface in the flavour of the Lucene Query

Syntax. This does not allow for the same kind of expressiveness in linguistic

queries such as CQL but allows for more flexibility than traditional query

languages such as SQL. The syntax can support fuzzy queries as well as multi-

word queries, searching for a series of words within some arbitrary distance of

each other within a document. As Lucene was designed as a search engine, like

web search engines it computes metrics for ranking documents returned from

its search results, generally based on information retrieval principles specifically

term frequency, inverse document frequency. Lucene has many derivatives and

extensions as well as several internal algorithms and data structures that could

be utilised by a modern corpus data system or database.

ElasticSearch ElasticSearch15 is a distributed search engine that is built on

top of Lucene. Its design allows for sharding (splitting a single dataset) of

Lucene indexes across multiple nodes, this allows the system to scale out for

increased availability and throughput. ElasticSearch has a domain-specific

14https://lucene.apache.org/
15https://www.elastic.co/elasticsearch/

Chapter 2 27

Novel Database Design for Extreme Scale Corpus Analysis

language based on JSON which is used for querying but also includes extensions

that can allow it to handle SQL like queries, although unlike most classic SQL

based systems it does not support distributed transactions. Similar to Lucene,

ElasticSearch allows for multi-word queries and ranges between these words to

find documents that contain a particular phrase. Unfortunately, this approach

does not extend far enough to support the kind of token level regular expression

functionality that is available in corpus query languages such as CQL.

2.4.2.2 XML

Due to the commonality of XML as a storage and interchange medium or file

format for modern corpora, it is important to consider what XML database and

storage techniques can teach us about how these documents are searched, both

when used for corpora and in more general cases. Many of these techniques

may be adaptable or relevant to provide novel means by which extreme-scale

corpora can be handled. XQuery[16] is the general query language used for

querying XML documents. XQuery is based upon XPath but extends this out

with various functional forms and features. XSLT (XML Stylesheets) are a

means by which XML can be transformed into some meaningful presentable

form. Many systems utilise a combination of XQuery and XSLT; XQuery

firstly to produce a query result, typically one or more XML fragments, and

then an XSLT stylesheet transformation to return to the user and present the

results of the query in the desired manner.

eXist DB16 is an example of a native XML database. Similar to other XML

databases, eXist can be classified in the NoSQL flavour of databases as a docu-

ment store. The database makes use of Lucene for text indexing and searching

(section 2.4.2.1). Much like other NoSQL databases, eXist can operate in a

clustered configuration. The distributed architecture is a master/slave config-

uration with a single database instance acting as a front end and by use of

a message-passing system (publish-subscribe pattern) storing data on various

16http://exist-db.org/

28 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

slave nodes. This type of distribution is essential to scalability and is some-

thing that is clearly missing from typical bespoke approaches to corpus data

systems.

Using XQuery for searching corpus-based XML documents is something of a

two-edged sword. Whilst the expressive power of XQuery can make it possible

to interrogate structural aspects of XML corpora in a more meaningful way, the

syntax itself is perhaps more difficult to learn than CQL and other specialised

corpus query languages. Take for example the following snippet (In Parla

CLARIN XML format17) as the way a set of corpus documents are stored;

1 <?xml version="1.0" encoding="UTF -8"?>

2 <teiCorpus xmlns="http://www.tei -c.org/ns/1.0">

3 ...

4 <text xml:lang="en">

5 <body>

6 ...

7 <s>

8 <w lemma="the" pos="AT">The </w>

9 <w lemma="only" pos="JJ">only </w>

Listing 2.1: ParlaClarin XML format schema

To query for all verbs in the corpus an XQuery expression may look something

like this;

1 doc("*)//w[@pos="V.*"]

Listing 2.2: XQuery for all verbs

This syntax uses XPath to express a tree hierarchy of the desired query target,

i.e. any w element with a pos attribute that begins with a v. This syntax

is currently straightforward but only to those with a good grasp of XML or

familiarity with XPath. Taking this a stage further pushes the syntax into

territory only experts (or at least experienced users) on the syntax would

likely follow. We can extend the previous example to return the sentence to

17https://github.com/clarin-eric/parla-clarin

Chapter 2 29

Novel Database Design for Extreme Scale Corpus Analysis

which these verbs belong, rather than returning the verbs themselves. These

sentences can then be built into concordance lines;

1 for $x in doc("*)//s

2 where $x//w[@pos="V.*"]

Listing 2.3: XQuery for sentences containing verbs

Very quickly this syntax builds to a point that is not feasible for users of a

corpus data system to learn easily. In the above example, there is no easy way

in XQuery (at least within this XML structure) to retrieve the words at the

end of the previous sentence. This limitation is in no small part the motivation

for LPath, discussed in section 2.3.

Within eXist, additional functional capabilities make keyword in context searches

possible using Lucene. Through a combination with XSLT transformation a

method by which concordance lines can be retrieved is arrived at as follows;

1 xquery version "3.0";

2 import module namespace kwic="http:// exist-db.org/xquery/

kwic";

3 declare namespace ft = "http:// exist-db.org/xquery/lucene";

4 let $keyword := "time"

5 let $number_of_results := 50

6 let $context_size := 30

7 return

8 <html>

9 <head>

10 <style>

11 p {{

12 font-family: "Courier New", Courier ,

monospace;

13 }}

14 .hi {{

15 background-color: yellow;

16 }}

17 </style>

18 </head>

30 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

19 <body>

20 <h3>Results for search "{$ keyword}"</h3>

21 {

22 for $results in subsequence(collection("/db/bnc

")//s[ft:query (.//w, $keyword)], 1, $number_of_results)

23 return

24 kwic:summarize ($results , <config width="{$

context_size}"/>)

25 }

26 </body>

27 </html>

Whilst the above listing allows for much of what linguists might expect as a

concordance line set of results, its structure has grown ever more complex, in-

cluding mechanisms for transforming the results as HTML. The listing searches

for the keyword time and uses an eXist module to generate the context window

around the hits, found using a Lucene index. Whilst this does demonstrate the

utility of XQuery, it also illustrates the necessity of any corpus system built

on top of eXist, or any XML database which uses XQuery, to abstract away

the underlying query language from the user for the sake of ease of use. This

can lead to the corpus system becoming more bespoke than one might assume,

but the same could be said for any data query system.

BaseX18 implements a document store specifically for XML, similar to eXist.

BaseX is implemented as a tabular method of storing XML, with nodes rep-

resented like records within its internal structure. This allows BaseX to gain

some of the mechanisms developed for traditional relational databases, such as

accelerated joins, but allows these to be utilised in its XQuery implementation.

Unlike eXist, BaseX has its own implementation[42] of the XQuery Full Text

recommendation19. This implementation is realised with a bespoke indexing

system, as opposed to relying on Lucene as many modern DBMSs do. This

method is shown to be effective in no small part due to the customization

18http://basex.org/
19https://www.w3.org/TR/xpath-full-text-10/

Chapter 2 31

Novel Database Design for Extreme Scale Corpus Analysis

that can be applied to the index format that would not be possible using a

pre-packaged generalised indexing tool.

2.4.2.3 SQL

Structured Query Language (SQL) has been the basis for many relational

database management systems for nearly half a century. Since its development

at IBM in the 1970s, it has become the defacto query language for tabular data

and data stores. Beyond simply being a query language, SQL can also be used

to express the structure of relations with a database (schema) as being used

to insert data and provide meta information. In the context of linguistic data,

SQL based systems such as MySQL, SQLServer and SQLite have been used

by various linguistic tools such as iWeb. One of the primary advantages of

SQL systems is the ER (entity relational) model, which can be used to model

almost any structure of data imaginable. Modelling a simple annotated token

stream with tabular relations is fairly trivial.

A naive model for a corpus database in SQL might be;

1 CREATE TABLE Doc(DocID int ,

2 Title varchar (255),

3 PRIMARY KEY (DocID)

4);

5 CREATE TABLE Tokens(Word varchar (255),

6 POS varchar (5),

7 SEM varchar (6),

8 DocID int ,

9 Position int ,

10 FOREIGN KEY (DocID) REFERENCES Doc(DocID)

11);

Listing 2.4: Creating corpus tables in SQL

This would create a pair of tables capable of storing sequences of words and the

associated documents where the words occur along with two annotation layers;

part-of-speech and semantic tags. Whilst this structure seems usable it quickly

32 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

becomes problematic in most modern relational database systems as building

and maintaining a full index on the Word column as the number of words in the

corpus grows and grows is untenable, particularly when considering database

systems’ reliance on keeping indexes in memory to provide faster lookups.

Assuming the structure described above, the table itself can be easily queried

to find a specific search term or keyword $x;

1 SELECT *

2 FROM Tokens , Doc

3 WHERE Tokens.Word = "$x" AND Tokens.DocID = Doc.DocID;

Listing 2.5: Querying for keyword in SQL

This select statement would return all occurrences of the word x in the database

along with the document where the word occurs. Considering the most basic

of corpus linguistic queries concordance lines, we quickly see such a query in

SQL does not provide nearly enough information to create concordance lines

from. An additional query would need to be made for each record returned

from the first query to build a concordance line around the “hit”, taking the

value of Position from each record returned as n and the DocID as d;

1 SELECT *

2 FROM Tokens , Doc

3 WHERE Tokens.DocID = "d" AND

4 Tokens.Position < (x-10) AND

5 Tokens.Position > (x+10);

Listing 2.6: Naive concordance query in SQL

Having to perform such queries becomes inordinately expensive, particularly

with larger query sets. Although this approach is naive it demonstrates that

SQL cannot provide context-sensitive data returns en mass when querying,

although the iWeb architecture discussed in section 2.2.1 demonstrates a way

around this problem.

Chapter 2 33

Novel Database Design for Extreme Scale Corpus Analysis

2.4.2.4 NoSQL

NoSQL databases have emerged in the 21st century as a meaningful alternative

to classical relational models and the ACID[44] model. With the proliferation

of big data, modern NoSQL databases primarily concern themselves with dis-

tribution and scalability and are intrinsically tied into CAP theorem[17]. CAP

theorem suggests that there are three primary concerns of a distributed sys-

tem; consistency, availability and fault tolerance and theorises that no system

can have high levels of all three, to achieve one or two of these properties the

third must be sacrificed. Consistency ensures that all data between nodes in

a distributed system is the same and high consistency would ensure all nodes

can see and access the same data at the same time. Availability in this context

is how readily the data is accessible to users. Fault tolerance is how the sys-

tem deals with node failure; is there potential data loss or some redundancy in

play. Different NoSQL databases demonstrate this principle in practice, often

knowingly sacrificing one of these properties to achieve different functionality.

How these systems operate and the properties in terms of CAP that they ex-

hibit must be considered when contemplating the properties and requirements

a scalable and potentially distributed corpus database would posses. What

follows is an overview of the most popular NoSQL databases, an illustration

of how some might be used to store and query corpus data, and a summary

of the advantages and disadvantages of their storage paradigms[67] as well as

their distribution strategies.

2.4.2.5 MongoDB

MongoDB20 is a document orientated database. Documents are stored within

the database as JSON (javascript object notation) and are queried using a

set of javascript functions. One of the biggest advantages of MongoDB is

scalability. The database is designed around the ability to scale out, adding

additional nodes to increase both data capacity, and query throughput. Within

20https://www.mongodb.com/

34 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

MongoDB a corpus might be stored as a set of documents including a text field

that contains all text within the document;

1 {

2 docID: "ndh1m2h",

3 title: "Financial News report",

4 text: "Lorem epsom et il..."

5 }

Listing 2.7: MongoDB document

For storing corpus annotations however it may be more appropriate to treat

each JSON document as representing a single word in a token stream;

1 {

2 word: "bank",

3 docID: "$ndh1m2h",

4 position: 5

5 pos: "NN",

6 sem: "I1"

7 }

Listing 2.8: MongoDB token representation

Such a structure again lends itself to being queried as a corpus database but

suffers similar pitfalls as with SQL, requiring both the position information of

the word to be interrogated as well as requiring multiple queries to fulfil even

the most basic of linguistic queries.

A query can be performed in MongoDB by using a Query by Example type

form, searching for some token x in a collection “corpus” could be achieved

by;

1 db.corpus.find({word:"x"})

Listing 2.9: MongoDB simple query

Using the approach above for storing each word with its accompanying anno-

tations as a separate document would produce similar problems as would be

encountered storing all words of a corpus as a relation in a table as in the SQL

Chapter 2 35

Novel Database Design for Extreme Scale Corpus Analysis

example above. This would result in further queries being required to retrieve

contextual information from around the word to build various query results

such as concordances, ngrams, collocations etc. Therefore to retrieve a context

around some word at position n in document d would require;

1 db.corpus.find({

2 docID: "d",

3 $and[{ position: {$gt: n-10}}, {position: {$lt: n

+10}}]

4 })

Listing 2.10: MongoDB concordance retrieval

Evidently, the syntax of MongoDB is less intuitive than SQL and would likely

be even more challenging for linguists to learn, even those familiar with lan-

guages such as CQL.

2.4.2.6 CouchDB

An alternative to MongoDB is CouchDB21. Similar to Mongo, CouchDB is

a document store that saves data in the form of JSON documents (meaning

issues of word level querying remain). Unlike MongoDB, it provides a certain

level of ACID semantics on a document level, relying on eventual consistency

for collection across replicated nodes. To avoid issues with updates whilst

simultaneously accessing data on other nodes, CouchDB implements a version

control mechanism rather than locking the database during updates. Since

CouchDB’s distribution model is a replication-based system it can make use

of a map-reduce approach to resolving queries as all nodes will have access

locally to all data. This means complex or expensive queries can adopt the

map-reduce paradigm for resolution. Using map-reduce to help process and

parse corpus data has already been described in section 2.3, but has not been

adopted in corpus data systems as a means of resolving corpus queries.

21https://couchdb.apache.org/

36 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

2.4.2.7 Neo4j

Neo4j22 is a graph-based database system. Unlike other graph data systems

that typically use SPARQL as a query language, Neo4j uses a bespoke query

language, Cypher. The query language is written with the intent of being

familiar to SQL users but having the power and expressiveness to extract

relationships and meaningful links and information from tuples that make up

graph data stores. Within graph databases, everything is stored as either an

edge, node or attribute and internally these are all stored as tuples (triplets).

Language (and indeed any series data) can be expressed in a graph database

as a series of tokens expressed as nodes, each token having annotation layers

or tags associated with it as attributes and edges connecting the tokens to

provide sequences. More complex structures such as the sentence structure and

potentially syntax trees can also be expressed in this type of graph structure.

On a practical level, the XML structure of many corpora available could be

converted and stored in a graph structure that could be queried.

2.4.3 Distribution Methodologies & No-SQL Architec-

tures

Many No-SQL databases are designed for scalability and the modern big data

age. They follow various architectures to achieve this, but these primarily

involve scaling out across multiple nodes. The three primary categories utilised

by existing No-SQL databases are ring, master-slave and replication-based

architectures. What follows is a discussion of the benefits and drawbacks

fundamental to each of these architectures, where they are used in No-SQL

databases, how they are implemented and an analysis of how they might be

useful in allowing corpus data systems to be more scalable by adapting and or

utilising such approaches.

22https://neo4j.com/

Chapter 2 37

Novel Database Design for Extreme Scale Corpus Analysis

2.4.3.1 Master-slave architecture

Master-slave architecture is a common distribution approach and wide-spread

amongst No-SQL database technologies[86]. Database such MongoDB[1]23 and

HBase24 use the architecture successfully. In the design, each slave node in a

distribution is typically responsible for a single entry or record in the database

whilst a master maintains where all records are stored. The advantage of this

approach is nodes will only be accessed if the data they hold is contained within

the node. The disadvantage being that the master node becomes a single point

of failure, as well as the needing to serve all requests to the database, even if

only acting as a proxy. Approaches to minimise this downside have been taken;

MongoDB, for example, allows for several master nodes that can sit behind

a web server that acts as a load balancer. As well as this modern systems

that use this architecture often implement replication strategies to ensure the

failure of slave nodes does not result in lost data.

2.4.3.2 Replication systems

A replication model where nodes replicate from each is used in some databases

like CouchDB. Bi-directional replication strategies mean that systems using

this architecture work under the paradigm of eventual consistency. These

types of systems are ideally suited to high availability where many writes are

expected and consistency across all nodes is less important than the throughput

of reads. Replication based systems can be built into tree-like structures using

unidirectional replication. This flavour of design does result in a master node

at the head of the tree leading to a single point of failure which is typically

undesirable. Another disadvantage to replication architecture (particularly

bidirectional) is the redundancy of data, whilst a certain amount of redundancy

is desirable in distributed systems to allow elegant failover, having all data

replicated across all nodes may not be considered efficient, particularly for

23https://www.mongodb.com/
24https://hbase.apache.org/

38 Chapter 2

Novel Database Design for Extreme Scale Corpus Analysis

huge datasets.

2.4.3.3 Ring systems

Many No-SQL databases, as well as other distributed systems such as DHTs

(distributed hash tables), utilise a ring-based peer-to-peer style distribution

architecture[66][82]. In a ring distribution, the system is completely decentral-

ized, meaning there is no single point of failure. The nodes in such a system

can be thought of as linked to one another forming a ring. Databases such as

Apache Cassandra build and maintain their ring using a consistent hashing al-

gorithm. The Chord[84] algorithm describes how a ring system can implement

a distributed hash table. Chord describes methods via which efficient insertion,

lookup and redundancy can be achieved as well as how to handle node failures.

A widely used implementation of this approach is Amazon’s Dynamo[29] which

uses the ring based approach to achieve a highly scalable key-value store that

is used for many large scale web applications such as Netflix25 and Expedia26.

2.5 Summary

This chapter has reviewed the various approaches taken by existing corpus data

systems to allow corpus linguists to store and query corpora. It has identified

the lack of any consistent architecture and the absence of a clear means for

off-the-shelf, locally deployable corpus systems to scale out.

This observation motivated the review of alternative methods taken from other

database systems, particularly with NoSQL architectures and the indexing

compression techniques developed in recent years, both of which could help

support a more modern scalable corpus database design. Many of these sys-

tems support text data, but do not provide the support for corpus based queries

25https://www.netflix.com
26https://www.expedia.co.uk/

Chapter 2 39

Novel Database Design for Extreme Scale Corpus Analysis

linguists expect. This paired with the adaptability of paradigms such as doc-

ument and column stores in NoSQL databases and treating multi-layered an-

notated documents as a tabular format as demonstrated in iWeb serves as a

basis moving forward.

Chapter 3 will explore how these disparate techniques can be consolidated into

a coherent architecture for extreme-scale corpus data.

40 Chapter 2

Chapter 3

Architecture

LexiDB is built internally as a distributed column-store but externally exhibits

properties of a file store. Although the underlying architecture consists of col-

umn stores that are indexed and queried, the externally visible API behaves as

if the database were simply a collection of files. This is to allow the database to

function as would be expected by corpus linguists as described in the overview

of requirements in Chapter 2. As previously discussed, approaches such as

those used in iWeb (see section 2.2.1), making use of column stores has been

shown to be an effective and scalable approach to storing corpus data. To

maintain a familiarity for linguists to other existing corpus data systems al-

ready discussed, the interface or API must allow users to treat the database

as a file store. LexiDB’s design is also distributed allowing for it to be scaled

out across multiple nodes and meet the extreme-scale data needs described in

Chapter 1. This chapter begins with an overview of the design of LexiDB and

then describes in detail the fundamental design aspects of the column stores

it uses, the indexing scheme and the distribution methods. The following sec-

tions describe each aspect in detail and the key design consideration of each

area. How effectively the approach described in this chapter works and how it

compares to other systems and approaches is evaluated in chapter 5.

41

Novel Database Design for Extreme Scale Corpus Analysis

Figure 3.1: Architecture diagram

3.1 Architecture Overview

LexiDB uses a common database idea of splitting various regions of data up

and storing them separately. This concept is touched on in Chapter 2 and is

used by many modern DBMS such as MongoDB. For the remainder of this

chapter, these separate data regions will be referred to as data blocks. Each

data block within LexiDB can be treated as its own individual database and

so can be queried independently. As a result, these data blocks can be moved

between nodes within a distributed configuration easily. Furthermore, each

block maintains its own set of columns and indexes. Each block must be

queried by the query processor and the results of each collated to create a final

result set for any query (this is described in Chapter 4).

Section 3.4.1 describes how the distribution mechanism utilises the Chord[84]

algorithm to enable replication of data blocks across nodes. At a higher level,

each node can be seen as a query processor that interprets queries and performs

them by retrieving data from each block within that node and distributing the

query to other nodes in the cluster. A query processor for each node handles

42 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

querying of the blocks stored on that node, but does not access blocks on other

nodes in the cluster. Instead, the queries are relayed to the query processors of

each node and the original node that received the query replies with a response

to the query. While this adds a level of in-direction to how queries are handled

it does allow for individual nodes to be queried and managed separately if

so desired and allows for more intricate cluster setups to be managed by a

database administrator - this allows for more flexibility to move from single

node-setups to ever-larger distributions as needs arise.

3.2 Column Stores

3.2.1 Numeric Data Representation

For storing the values of words and tags within a corpus, a numeric data rep-

resentation is used. This can be thought of as equivalent to iWeb’s relational

model discussed in section 2.2.2. Expressed in classical relational terms any

sequence of words (or tokens) W can be expressed as a pair of relations. R1

containing all token types within the corpus and can be thought of as a dictio-

nary and R2 containing an ordered appearance of those token types within the

corpus D. Using this model R1 need only contain two columns, one to repre-

sent the value of the token type and the second a key. R2 can contain a single

column which contains a foreign key from R1. R2 can also contain additional

foreign keys to other tables/relations potentially containing metadata.

R1s keys can be compressed to the smallest number of bits possible e.g. in the

British National Corpus (BNC) W = 100, 000, 000 and D = 760, 000 (132 : 1

ratio). This means that rather than using a 32 or 64-bit integer for the key an

unsigned 20-bit integer is sufficient; 220 = 1, 048, 576. This allows for roughly

37.5% saving in space from a 32-bit integer key and 70% saving compared to

64-bit integers. Whilst at a conceptual level this may seem trivial, at larger

scales such space saving is significant both for saving on disk usage and for

Chapter 3 43

Novel Database Design for Extreme Scale Corpus Analysis

improving query performance by effectively reducing the amount of data that

needs to be read, reducing the dependency of performance on disk speed.

This basic structure allows for corpora to be expressed in terms of these two

simple relations however it does not take into account that the rate of growth

of R2 is far faster than R1 as the size of the corpus grows. Typically the

number of records in R1 will be several orders of magnitude smaller than R2.

In a classical SQL DBMS both relations might be treated like tables, but the

high usage of R1 means it is better suited to being held using some kind of

in-memory data structure rather than retrieved consistently from disk. The

rapid growth in size of R2 as corpora grow means it is not feasible to hold in

memory in the same way as R1.

This conceptual idea is realised in the design of two specific column store

types. Zipfian column stores and continuous column stores each of which is

specialised for storing a particular form of data, textual and corpus metadata

respectively. These column store types are novel in both name and function

to LexiDB.

3.2.2 Zipfian Columns

As the name suggests, Zipfian column stores take advantage of the Zipfian

nature of corpus data. The design of these column stores encapsulates the

conceptual relations R1 and R2 described above.

When creating a Zipfian column store, it is necessary to perform two parses

of input data. The first parse is intended to compute R1 or the dictionary

for the corpus. Once all token types have been found they are then sorted

lexically (alphabetically) and their keys assigned in order using the minimum

numbers of bits required. The data is then re-parsed and each token is stored

on disk (in R2) using the foreign key from R1. In practise this multi-parse

approach can be improved upon by creating an initial lookup trie for the

dictionary D and assigning an initial set of values for token types and storing

44 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

the token stream using these values on the first parse. Then subsequently

sorting D and assigning new key values and creating a mapping from the

original values to the final values. This eliminates the need to perform any trie

lookups on the second parse and simply use random access lookups in from

the key map to associate the tokens to the final token-type key. A sequence of

tokens {“one”, “and”, “only”, “one”} would initially be mapped to the numeric

sequence {0, 1, 2, 0} with a dictionary {0 → “one”, 1 → “and”, 2 → “only},

this dictionary sorted lexically would yield {0 → “and”, 1 → “one”, 2 →

“only”} with a mapping from the original dictionary to the final being {0 →

1, 1→ 0, 2→ 2} thus the final numeric values are computed as {1, 0, 2, 1}.

This multiple parse approach has several advantages and disadvantages. The

primary advantage is that the minimum number of bits can be precisely de-

termined and as a result, maximum compression can be achieved. The main

reason for using a single bit length and not variable bit length (which could

achieve greater compression) is to allow for the token stream to be treated as

fixed-length records, thus allowing for easier lookups by allowing easy random

access and the ability to skip bytes in the stored file without the need to read

what occurs previous to the desired location. For other languages with longer

words, this fixed-length approach will still work as the only thing that will

result in longer records will be bigger and bigger vocabularies.

The obvious disadvantage is the time taken to parse the data twice. This is

alleviated somewhat by the temporary conversion of the data to intermediary

numeric values as described above. However, this does not entirely compensate

for the cost of multiple parses. An alternative to multiple parses could be to

split the textual range into buckets and for each subsequent character in each

token assign a range of characters based on how likely the character is to occur,

similar to arithmetic encoding[76]. Using this approach would mean the bene-

fits of compression and random access, gained through fixed-length encoding,

would be lost.

Chapter 3 45

Novel Database Design for Extreme Scale Corpus Analysis

3.2.2.1 Annotation layers

In practice when looking at multi-layer annotated corpora, multiple Zipfian

column stores can be used. Each column store can contain a single annota-

tion layer e.g. part-of-speech tag (POS), semantic tags etc. However, in some

circumstances, this may lead to a level of redundancy. Across multiple anno-

tation layers, a certain level of “Zipfianess” is often maintained, for example,

if multiple POS tagsets are used one would expect many of these to align. A

perfect example of this would be between token-types and lemmas. Typically

the same token-type would always share a lemma. The design of the column

store means that R1 can be extended to include multiple columns. In this way

rather than storing an entirely separate column, two annotation layers can be

combined. Using the previous example of the BNC, which contains 605,000

lemmas, rather than storing these separately to the tokens, they can be com-

bined and a second column store can be eliminated. In a traditional relational

table, these would need to be stored in a separate column or incorporated

using a second table and a key pairing creating additional redundancy. In

many cases, various annotation layers can be combined but it is necessary to

understand the data being used and how the annotation layers relate to each

other. When combining columns in this way, individual values for lemmas and

tokens etc. can still be matched in the same way as before because they will

each have their own lookup tree.

When multiple annotation layers are stored in a single column store, the nu-

meric values that are assigned are based on sorting across the summation of

these layers. When storing tokens and part-of-speech tags in a single column

store, the numeric value w1 representing {token : bank, pos : noun} would be

less than w2 representing {token : bank, pos : verb}, w1 < w2. This means it is

important to consider how combining multiple annotations or columns into a

single column store will affect the database’s ability to sort lexically based on

numeric values. In the mentioned example, sorting on the first column token

will still work roughly as expected but sorting on the second column pos would

46 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

Figure 3.2: Inserting Documents into Data Blocks

not be possible using the numeric values - to sort on this column would require

the query processor to resolve the numeric values first and then manually sort

on the string values which would be far less efficient. This is a choice any user

of LexiDB would need to make when deciding whether to combine columns

into a single column store; will those columns need to be sorted separately?

An additional meta-annotation layer that is added to the dictionary for each

column store is frequency information. This frequency information is simply

a count of how often that value (or set of values) occurs within the particular

data block. This information is essential to compute ahead of time so that it

can be retrieved quickly when performing queries requiring word count or other

frequency information such as generating word lists or calculating collocation

metrics such log-likelihood or mutual information. The frequency information

is held in memory as an array so the numeric value can be used to look it up

quickly at query time when needed.

Chapter 3 47

Novel Database Design for Extreme Scale Corpus Analysis

3.2.2.2 Insertion and Deletion

Figure 3.2 illustrates how source documents are stored in data blocks when

inserted into LexiDB. Each data block within LexiDB will contain a set of

source documents in their entirety, no source document is split between two

blocks. When adding data to a column store it is necessary to finalize the block

(i.e. sort the dictionary and calculate final numeric values for the data) before

the block can then be queried. Typically if a data block has a size limit of

10,000,000 tokens (this limit can be set through configuration) and a single

large corpus is being added in a single insertion, as each block reaches its limit

it can be finalized and saved to disk. However, if the corpus is not static and

is slowly built up over time it may be necessary to finalize and serialize the

block to disk multiple times before this limit is reached. To allay this problem

the dictionary and data for the current block is cached in memory, this allows

for them to still be queried after each insertion without needing to wait for the

disk serialization to occur. This separates LexiDB from other existing corpus

management systems as it allows for live data to be inserted on the fly and

does not rely on the entire corpus being static or available. Corpora can be

built within LexiDB and added to over time, a key point for storing social

media streams, for example.

In support of this, it is also necessary for data blocks within LexiDB to be

combined. Particularly when the desired token limit for each block may be

changed at any given point during the database’s lifecycle. In addition to this,

the greater number of blocks introduces an overhead in storing separate dic-

tionaries. For example, when storing the BNC as a single block the dictionary

length for the tokens column was around 760,000 but storing the same cor-

pus as 12 separate blocks resulted in each dictionary being on average 180,000

(180,000 x 12 = 2,160,000) resulting in almost (2,160,000 - 760,000) 1,400,000

redundant dictionary entries when blocking the database in this way. Merging

blocks can eliminate this problem. Merging blocks can be done via a simple

scanning process, reading each record in turn and adding it to a new temporary

48 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

block before removal of the original blocks.

To support deletions and allow LexiDB to function as a fully-fledged DBMS

supporting both static and dynamic corpora, LexiDB maintains a delete list in

the form of a single bit length column store, effectively a bitmap, keeping track

of deletions. Although it might seem logical to keep track of each record or

token for deletions, this is not practical as for performance sake it is important

to maintain the deleted list in memory and serialize to disk when possible.

This would mean for a large corpus of say 1,000,000,000 tokens a bitmap of

125 MB (1 bit per token) would need to be maintained. When considering

that this bitmap will need to be persisted to disk after each deletion operation

it is not practical to keep it in memory. To avoid this problem, and to keep in

line with the facade of LexiDB acting as a file store, a bitmap of deletions is

kept based upon files inserted. Even if the files added to a corpus are relatively

small, say 100 words on average, this would still reduce the size of the bitmap

by two orders of magnitude making it relatively inexpensive to persist to disk

regularly.

In practise this delete list is held alongside a continuous column store (de-

scribed in section 3.2.3) containing the filenames. Filenames are the primary

piece of metadata that are stored regardless of whether specified in the schema

being used for the corpus. Whilst maintaining this list allows for deletions to

be quick (similar to file systems keeping a free list of disk blocks) it does mean

data can become fragmented within column stores and result in wasted disk

space. This is resolved when blocks are merged or split as described above.

During merging and splitting of blocks the deletion list is consulted and the

records of deleted files are not copied over to the new block. This can be

seen as a defragmentation1 process that occurs during merging and splitting

of blocks. In practise a block can be de-fragged by performing a merge task

but only including a single block.

1Typically this is a process whereby file systems reorganize the contents of a storage
device to contiguous regions.

Chapter 3 49

Novel Database Design for Extreme Scale Corpus Analysis

3.2.2.3 Implementation considerations

From an implementation perspective, the above design of a Zipfian column

store is stored as two separate files; a binary file (*.dat) which will contain the

token stream as a set of fixed bit length integer values and a tab-separated

values (TSV) file to store all of the entries in the dictionary (*.dict). The

TSV file can be used to store multiple columns if the column store contains

more than one column e.g. token and lemma (as described above). The bit

length used in the binary file is not necessary to store as this can be computed

by the number of entries in the dictionary file with the intention being that

the dictionary file will be stored in memory for ease of lookup and retrieval.

When loaded into memory the dictionary file is stored in two forms, firstly as

a radix trie to facilitate index lookups (described later in section 4.4) and in

the form of an array to allow for reverse lookup up of column values based on

their numeric representation within the binary *.dat file. It is essential to keep

the dictionary in memory as it is impossible to predict ahead of time which

values may be required or the ordering of such lookups. Whilst lookups of the

binary data may be retrieved and fulfilled in the order they occur in the corpus,

dictionary lookups, particularly when considering a contextual window around

a search term may require any values to be retrieved at any time. Whilst this

in-memory storage may be an expensive memory requirement, as described

above the dictionary file is typically several orders of magnitude smaller than

the whole corpus and it is therefore usually practical to store the dictionary in

memory.

When multiple annotation layers are contained within a single column store,

a radix trie for each annotation layer or column is built. This means each

column can be searched independently even if they are part of a column store

containing other columns. In this way, column stores or sets within the design

can be thought of as synonymous with column families in other DBMSs. The

radix trie will return the numeric value (or values) for the lookup key (typically

a word, linguistic tag or regular expression). Conversely, the values stored

50 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

within the array lookup for random access contain all column values so only a

single array is needed.

3.2.3 Continuous Columns

To store certain types of metadata continuous column stores are utilised. This

is specifically for metadata that remains consistent for many records e.g. the

speaker within a transcription document will remain the same for many tokens

at a time. In a conventional relational model, this type of data could be stored

using a separate relation Rm and then including a key from Rm as a foreign key

in records within R2 (the token stream). This creates the problem of having

many duplicate keys repeated record after record in R2 and an unnecessary join

to be performed between R2 and Rm during any data retrieval. An alternative,

to eliminate this join, would be to include the metadata directly in R2 but this

still leaves many duplicate data values in this column in R2 and in fact makes

the problem worse as the data may take up more space than the foreign key

of Rm and increase redundancy even further.

To resolve this, continuous column stores are used to store metadata that

does not frequently change in their own column alongside the token stream.

To achieve this, the design of a Zipfian column store is combined with run-

length encoding. Run-length encoding allows for data values to be stored in

a dictionary R1, similar to Zipfian stores, however now the token stream is

stored as the numeric value from the dictionary followed by a run-length for

the data value. One primary example where this will always be used is to store

the file name within a corpus, as well as things such as the author, title, date,

origin etc.

Whilst this approach saves significantly on space for such metadata, there are

some caveats to be considered. Firstly in this context, it is no longer feasi-

ble to provide a means of random access lookup within a continuous column

store. Much like with variable length encoding it is now essential to read all

Chapter 3 51

Novel Database Design for Extreme Scale Corpus Analysis

values prior to the desired lookup point. For example, looking up the value

at position 100 in a continuous column store may be the first data entry or

the 10th or the 100th, there is no way to know without reading all previous

values and summing the run-length of each until that value at position 100 is

found. Whilst this presents a limitation and would be harmful if this type of

column store was used extensively on inappropriate data, typically for long-

running metadata the total number of values is so small it would not present

a large performance impact to scan and sum previous entries. For example,

in the BNC although the token stream is 100,000,000 the total number of

files (filenames stored in a continuous column store) is only 4050 (25,000:1)

so scanning such a comparatively small list of values is reasonable, even for

larger corpora this is still reasonable (this is evaluated in section 5.3.1 using a

version of the Hansard corpus with nearly 9 million files). Obviously, metadata

may not always be at such a ratio compared to the length of the token stream

but typically is several orders of magnitude shorter in length such that the

space saving from storing in this fashion out-weighs the cost of scanning and

summing the run-length encoded values.

Similarly to Zipfian columns, continuous column stores can use variable-length

bits. After the first parse of the data is completed, the maximum bit length

for both the number of values in the dictionary and the maximum run-length

for any occurrence of those values can be computed. A minimum bit length

needed to store the largest value can then be used. This allows two integers

of this known bit length at a time to be read when scanning and summing to

find a value at a desired position. The bit length can then be unary encoded

at the beginning of the run-length encoded file or explicitly stored in a schema

file for the data block.

52 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

3.3 Indexing

To facilitate fast lookups, a postings list for all the values in each column

store is built upon insert. The principles of postings listings is described pre-

viously in Section 2.4.1.1. Within LexiDB the postings lists for column stores

are stored using PFOR delta indexing. Traditionally DBMSs would prefer to

store their indexes in memory to allow them to be accessed quickly when per-

forming queries and lookups. The scale of data that this design is built to cater

for means that the index fitting in memory cannot be assumed. The indexes

are as such kept on disk and only the posting lists required whilst executing a

query are loaded. PFOR delta is used as it offers one of the highest levels of

compression of the current state of the art indexing schemes. This compres-

sion is important not necessarily for saving disk space but to ensure that the

overhead of reading the index data from the disk is minimised.

Each posting list stores the locations of the value (or values) within the column

store for that data block. Each data block contains their own postings list.

All postings lists are stored in a single file. This file itself is then indexed and

stored in an index lookup file. When a postings list is required the value being

searched for is retrieved from the index lookup file and this gives the offset

within the main lookup file from which to load the postings list. All postings

lists are maintained within the same index file as a query may require several

postings lists e.g. when resolving a regex there could be hundreds of postings

lists required. Storing the postings lists in this manner means only a single

file need be open (two counting the index lookup file) to retrieve all the index

information required.

Much like with the bit packing applied to the main data storage within columns,

the index lookup file is compressed in a similar way. Similarly to the data files,

the index lookup file cannot be compressed using variable-length bit encoding

as when performing a lookup for a particular numeric value, the ability to

perform random access on the file must be maintained to ensure the entire file

Chapter 3 53

Novel Database Design for Extreme Scale Corpus Analysis

need not be read in order to find the location of a postings list in the main

index file. This limitation need not apply to the index file as it is assumed

that the entire postings list for any particular value being looked up would be

desired.

Simple lookups at the level required by individual data blocks, i.e. looking up

a value in a particular column, is handled by simply returning the position

information from the index. To perform a lookup using a data block’s index,

firstly the column store being queried for must be identified by its key. The

value being queried for is then looked up in the column store’s index which

will return a set of numeric values that represent the value being searched for.

The position of these values postings lists are then retrieved from the index

lookup file, subsequently the postings lists are returned to the query processor

(described in Chapter 4). It may seem logical to combine these postings lists

and sort them at this point. Instead the postings lists are returned including

the numeric values for which they represent for the query processor to allow

the query processor to handle cases such as regular expressions or multiple

column values from a single column store.

3.4 Distribution

To facilitate scalability, LexiDB is designed so it can be deployed in a cluster

configuration. This means the database can be scaled out, potentially allowing

for larger and larger corpus datasets. The architecture of this distribution

operates on two principles. The first is to ensure that queries can be sped

up as a result of the distribution, effectively turning the query processing into

something akin to map-reduce. The second is to ensure redundancy of the

data between nodes so if one node fails another will be able to take its place

without any loss of access to data stored on the failed node. This redundancy

is achieved through the use of a modified Chord algorithm applied to the

data blocks LexiDB uses for storage. The effectiveness and scalability of the

54 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

distribution methodology described here is evaluated in section 5.2.2.

3.4.1 Distributed Querying

When a query is received by a particular node, the API requires that it be

flagged as a local or distributed query. This allows the query process to handle

it in one of two ways. For local queries, the data blocks stored locally are

queried and the results returned to the caller. For distributed queries, the

same occurs but the query is also forwarded to all nodes in the cluster (but

flagged as local), this can conceptually be thought of as mapping in the map-

reduce paradigm. The original node that received the distributed query then

becomes responsible for aggregating the results from all other nodes in the

cluster and returning these results to the original caller, or reducing if keeping

to the previous equivalency. No one node within the cluster is treated as a

front-end or outward-facing node. All nodes are equal and any can be queried.

The ability to query nodes locally is enabled within the API to allow for

database users to better understand how and where their data is stored. In

practise, it may be desirable to place a clustered configuration of the database

behind a web server that can act as a load balancer. Although distributed

queries are forwarded to all nodes, the aggregation step always means the

node originally receiving the query has more work to do, particularly if the

query involves some kind of post-processing such as sorting or grouping. A

front-end load balancer could then be utilised to ensure that all nodes have an

equal share in this overhead.

To make better use of the design’s distributed nature, results are sorted using

an approach that has been termed a latent distributed merge sort. The general

principle of this is for a given query the results available on each node are

compiled and sorted locally and the final stage of the sort essentially becomes

the final step of a merge sort with all sub lists having already been sorted. The

advantage of this is that the final stage, drawing together the results from all

Chapter 3 55

Novel Database Design for Extreme Scale Corpus Analysis

nodes, can be completed lazily as results are paged. In practice, this means

that the top x results from each node can be skimmed and sorted in order to

create the first final results page of x items without the need to complete a full

final stage of the merge sort. The merge sort can be progressed by requesting

the next page of results through the API.

Query results across nodes are cached locally. The final aggregated results,

however, are always dynamically computed, this ensures that a single ma-

chine (serving an initial client query) is not memory starved by a query which

would return a huge result set, such as querying for a highly frequent term

within the corpus or potentially a regular expression matching numerous less

frequent terms. This does mean the latent sorting approach described above

overrides this behaviour, as otherwise it would be necessary to sort the result

set from the beginning whilst paging through results. Unsorted results can

maintain this behaviour, the server responding to the client query can simply

page through the results from each node in turn without having to concern

itself with ordering.

3.4.2 Redundancy

To enable a clustered configuration of LexiDB to be fault-tolerant to node

failures, a simplified version of the Chord algorithm approach is taken. While

Chord can handle storage, distribution, queries and redundancy only the re-

dundancy aspects and parts of the distribution approach (as it relates to re-

dundancy) apply to LexiDB. Upon insertion to a clustered configuration, as

each data block is inserted at a node, a hash is computed based on the file

names contained within the block using SHA-1. During insertion time the node

handling the insert operation will distribute the files that are being inserted

between all nodes in the cluster in order to maximise insertion speed and min-

imise the time taken to index and finalise all the blocks. When each block is

completed it is shared to the adjacent node in the outer ring (as specified by

the Chord algorithm). As such when the adjacent node detects that the node

56 Chapter 3

Novel Database Design for Extreme Scale Corpus Analysis

for which it holds the backup blocks has failed it can make them available

itself (this will also trigger a further backup to the next adjacent node). The

default number of hops to store a backup around is one (i.e. a single backup),

but this can be changed if the probability of node failure is particularly high,

of course this can lead to potential duplication of data if only a small cluster

is being used where the number of nodes n is proportional to the number of

hops to backup along h, nαh.

3.5 Summary

In this chapter, we have discussed the architectural paradigms that have been

applied to the approach utilised by LexiDB. This has been the first stage

towards answering research question 1 from section 1.4 - how can database

and IR techniques be used to build a corpus data store?

An architectural pattern based upon numeric representation similar to that

of existing relational models utilised in other systems was proposed but mod-

ernised to bring it in line with more modern No-SQL data management ap-

proaches such that it is not constrained as much by ACID but adheres more

towards CAP theorem as discussed in section 2.4.3. This allows for the ar-

chitecture to be distributed whilst utilising an existing approach (Chord) to

ensure redundancy. Unlike existing approaches of other systems such a design

can scale to handle corpus data by scaling out (across multiple nodes), not

merely scaling up (using more powerful hardware) which is the only feasible

solution to handle larger corpora in other, off-the-shelf, corpus data systems.

In chapter 4 how this architecture can be used to handle typical corpus queries

is examined and the effectiveness of the distribution methodology is evaluated

and compared to other existing distributed DBMSs in chapter 5.

Chapter 3 57

Novel Database Design for Extreme Scale Corpus Analysis

58 Chapter 3

Chapter 4

Querying

4.1 Introduction

Within existing systems, and considering corpus analysis techniques as a whole,

there is a particular distinction to be made between querying and results types.

The same linguistic query may be used e.g. searching for a word matching

a regular expression i.e. [token = run.*] (CQL syntax) but various result

types may be returned e.g. concordances, collocations etc. This creates a clear

separation in the tasks required to be performed by a database management

system capable of fulfilling these kinds of corpus queries between searching

the data to find the results and processing and formatting these results in a

way that is meaningful to corpus linguists, this separation also means future

techniques developed for corpus analysis can be easily adapted for. For the

remainder of this chapter, the distinction will be made between querying i.e.

looking up data values in the database and processing these results into a

linguistic result type. This will result in a minimisation of the number of

distinct query types there are compared to the number of result types (although

a database user may not be aware of this distinction).

Query by example is a typical form of querying classically in databases [93].

Traditionally such a querying technique would involve a user interface and

59

Novel Database Design for Extreme Scale Corpus Analysis

(typically) a graphical form to fill in. This form would include all the columns

or fields available in the database table being queried and allow an end-user

a simple way of finding what they are looking for. This method also allows

for complexities such as performing joins and having an understanding of the

underlying database schema to be abstracted away from the user and instead

relies on the interface possessing an understanding of the user’s workflow and

typical tasks. This is also the case when considering corpus data systems, the

structure of the underlying data is hidden from an end-user and the system is

tailored to a particular analysis. This can lead to disparate, bespoke systems

that can only be used for a single purpose, for a single data format or that

are only compatible with certain other tools in a corpus processing pipeline

(see Chapter 2). Most existing corpus data systems can be thought of or

related closely to query by example in the way that they allow users to perform

searches, whether this is in a graphical interface or employing a specialised

corpus query language.

Result types returned by corpus systems are often varied but can be reduced to

several primary types which will be discussed and considered in this chapter.

Whilst each of these linguistic result types may have many specialised variants,

one of the most crucial things for a DBMS designed to support them is the

flexibility to return as much data as is necessary. The intent being that any

highly specialised corpus result type (or indeed unknown or future types) can

still be supported with the need of nothing more than a thin application layer

on top of the data management layer to further process the data returned.

For example, calculating various collocation metrics can be done from a con-

tingency table and word frequency lists, therefore it is more essential that a

corpus DBMS supports these as a return type than supporting every known

collocation metric. These data consideration are discussed further in section

4.6.

While querying and result types will be the primary considerations within this

chapter and how these processes can be optimized for language data, it is

60 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

essential for corpus query systems to also return metadata regarding results.

This metadata typically will be in the form of data regarding a source file e.g.

filename, origin etc. but may also include data regarding the author or speaker

of the text that is a hit in the query. Whilst author or speaker may simply be

considered part of the file metadata it could be metadata within the file itself as

there may be several authors e.g. in transcription documents. Other metadata

may also include section information from within the file or potentially cross-

reference information. As corpus datasets get ever more complex some of

this data may even include URLs and semantic web links to external sources.

Whatever the form of metadata, it is necessary for a modern DBMS for corpus

linguistics to be able to handle these facets of corpora gracefully.

4.2 Linguistic Query Types

When considering the capabilities required of any query language designed to

meet the requirements of corpus linguists, the form in which results of such

queries will take is important. As opposed to typical lists of records or doc-

uments as would traditionally be returned by classic and modern DBMSs,

linguists expect results to be returned in 1 of 4 (or 5) primary forms; concor-

dance lines, n-grams, collocations and frequency lists. These are the four query

types supported by LexiDB. Keywords could be considered in this list as well

but can be considered an application-level concern (discussed below). Each

of these four return types has different consideration & implications for how

the linguistic query could and should be expressed as well as how the query

processor should execute and return the results of such a query.

Concordance lines are the most common and straightforward of return types for

linguistic queries. They are analogous to keyword-in-context (KWIC) searches

and in most cases can be treated as such. Typically such searches will have

a hit region beyond a single word and as described above the search criteria

will go beyond simply the text content of the word to include multiple levels

Chapter 4 61

Novel Database Design for Extreme Scale Corpus Analysis

of tagging and annotation, these tags and annotations must, of course, be

returned in the results.

It can be helpful to view a set of concordance lines as a list of lists of records,

where each record represents a single token, each list of tokens represents a

single concordance line and the list of concordance lines is the complete result

set. This allows for the consideration of sorts and joins within the result sets.

Whereby, for example, a join might be executed with some metadata table

against a concordance line as opposed to each individual record. Likewise,

for sorting, it would be improper to sort all records within the results sets

but simply to sort concordance lines within the result sets i.e. taking every

word from different concordance lines and combining them into a large set

of sorted words would be meaningless since the results would be jumbled.

Other systems such as AntConc[5] allow for concordance lines to be sorted

alphabetically using tokens to the left or right of the hit region (see section

4.8). LexiDB also supports this.

Frequency lists usually consist of frequency tables of tokens that can be queried,

potentially using regular expressions and return a list of several items from this

frequency table. Frequency tables are often computed at insertion time based

on a corpus’ dictionary, where each atomic value (word, tag annotation etc.)

has its frequency maintained. Beyond simply comparisons of term frequencies,

frequency lists can also be used to calculated keyword metrics, when comparing

two sets of frequencies, one from a target corpus and one from a reference

corpus. Although this is a fundamental feature of many corpus tools, it is

simply a metric that can be performed by comparing two sets of frequencies and

will be considered as such an application layer consideration, not a database

management system concern i.e. if the frequencies from two corpora can be

easily retrieved through the data layer; it is trivial for an application layer to

calculate a keyword metric.

N-grams within corpus linguistics are usually used up to 5-grams. Typically

n-grams are pre-built within systems and data sets. An example of which

62 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

would be Google Books n-gram corpus1 where pre-processed n-grams and their

frequencies can be viewed and searched. However, a limiting factor of pre-

building n-grams is the inability to view n-grams around a particular search

phrase or sequence as well as a limitation to the maximum size of n that

may have been arbitrarily decided beforehand. The ability to dynamically and

quickly compute n-grams based on a typical corpus query search i.e. for a

phrase or POS sequence would represent a significant capability beyond that

offered by existing systems and is supported by LexiDB.

Collocations are a more subtle query type to resolve. From the perspective

of a DBMS, calculating metrics such as log-likelihood and mutual information

scores appears to be more of an application-driven consideration and should

not be perceived as a data layer requirement much the same way as keyword

metrics. Unlike keyword metrics, though it is often a more involved process

in calculating metrics, another single return type from the database cannot

provide all the necessary information necessary to calculate many of the col-

location metric calculations discussed in Chapter 2. It can be assumed that

such calculations would be commonplace in any application built upon a cor-

pus database it is essential that such a database can provide a means to easily

retrieve the data necessary to make these calculations i.e. a contingency table.

Providing a query result type such as this the final stage of calculating a met-

ric is trivial and would always be expected thus two common metrics are built

into the databases query processor. An alternative to this would be to provide

a programmer like environment or API to allow for lambdas to be injected

into queries so that the required metrics can be calculated by the database.

This may or may not lead to improved performance when making calculations

on extremely large data sets, but it most definitely would lead to increased

technical understanding required by the database user.

1https://books.google.com/ngrams

Chapter 4 63

Novel Database Design for Extreme Scale Corpus Analysis

4.3 Overview of Query Syntax and Capabili-

ties

The query syntax utilized by LexiDB is based on JSON (consistent with many

modern systems discussed in 2.4.2). The use of JSON allows modern applica-

tions - particularly those based around web technologies to interface easily with

the API. An example of a typical query in LexiDB is illustrated in Listing 4.1.

This shows how a query is formulated specifying both a pattern to be queried

for query and stipulations for the return type result. Full specifications for the

JSON query format can be found online2. This section will discuss primarily

the query syntax and how it relates to the resolution and retrieval of query

results.

1 {

2 "query ": {" tokens ": "{‘pos ’:‘J.*’}.{‘pos ’:‘NN.*’}"},

3 "result ": {"type": "kwic"}

4 }

5

Listing 4.1: LexiDB query example

Within the query portion of the JSON, a particular syntax is used. This

syntax can be treated as a regular expression over a token stream or record

stream. The key specifies the table within the database to query and the value

is a pattern to be matched against. This pattern replaces how characters

are typically used in regular expressions with QBE (query by example) JSON

objects. These objects allow for a token or record to be searched for based on

values of given columns or fields, these values themselves can be specified by

regular expressions. This syntax allows for complex linguistic expressions to

be searched for within the database and expressed succinctly.

The example from Listing 2.4.2 can be interpreted as searching for;

{‘pos’:‘J.*’} Any token whose POS (part-of-speech) field begins with J (for

2https://github.com/matthewcoole/lexidb/wiki/Query-Syntax

64 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

the C7 tagset 3 an adjective).

. Any token.

{‘pos’:‘NN.*’} A token with a POS starting with NN (a noun).

This illustrates how typical regular expression special characters can be used

like . where instead of matching any character this matches any token or

record. Other special regex characters can be used as well such as token

quantifiers *+?{1}, unions | and character classes []. The effectiveness of this

query syntax in resolving linguistic queries is discussed in Chapter 5.

In this query syntax, values of Zipfian columns and continuous columns can be

queried for. So, as well as being able to search for particular tokens or part of

speech tags, you can also search on metadata such as date, author name etc.

4.4 Resolving QBE objects

The simplest of corpus queries may be the lookup of a particular token type

(i.e. a word or part-of-speech tag) which can be expressed in the syntax de-

scribed above as a QBE object. Any QBE object that can be expressed as a set

of key-value pairs Q = k1, k2...kn and can be resolved by taking each key-value

pair kn in turn and compiling a DFA based on the value (using an existing

regular expression library) and resolve against a radix trie T built from the

dictionary of the column indicated of the key of kn. This approach is described

in algorithm 1 and closely mirrors the approach taken by Baeza-Yates[7] util-

ising a more general radix trie as opposed to a patricia trie and applying it to

dictionary entries rather than sistrings derived from full documents.

3http://ucrel.lancs.ac.uk/claws7tags.html

Chapter 4 65

Novel Database Design for Extreme Scale Corpus Analysis

4.4.1 Preamble

Take any regular expression that can be converted to a non-deterministic finite

automata (NFA)[61] and subsequently an equivalent DFA[14], represented as

M = (Q,Σ, δ, q0, F). Take a dictionary of token types D and compile them

into a depth reduced radix tree T = (R,E,L) where R is the set of all nodes

in the tree numbered in a breadth-first traversal r0, r1...rn, E is a set of all

edges in the tree expressed as a tuple (ri, I, rj) where I is the input sequence

from node ri to rj and L represents a set of leaf nodes L ⊂ R and corresponds

to the set of token types in the dictionary D.

4.4.2 Algorithm

input : A DFA M = (Q,Σ, δ, q0, F)
Radix trie T = (r0, R,E, L)

output: A set of integer pairs h
1 h← ∅
2 k ← {(q0, r0)}
3 while k 6= ∅ do
4 (qi, ri)← k.pop()
5 for e in ri do
6 if δ(qi,e) ∈ F then
7 δ(qi,e) ∪ h
8 else if δ(qi,e) ∈ Q then
9 (δ(qi,e), R(ri, e)) ∪ k

10 end

11 end
Algorithm 1: Algorithm for resolving a DFA over a radix trie

4.4.3 Example

Take the regular expressing ^[ab]a.*$ represented as a DFA in Figure 4.1 and

the dictionary of token types D = {abb, aab, abba, aabb, baa} represented as a

radix tree in Figure 4.2.

1. Initialize k and h as empty. k = {}, h = {}

66 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

2. Add (q0, r0) to k. k = {(q0, r0)}

3. Pop (q0, r0) from k. k = {}

4. Take each edge leading from r0; (r0, a, r1) & (r0, baa$, r2).

(a) From (r0, a, r1) pass a into the DFA from state q0.

(b) State is valid - add (q1, r1) to k. k = {(q1, r1)}

(c) From (r0, baa$, r1) pass baa$ into the DFA from state q0.

(d) DFA in accept state - add r2 to h. h = {r2}

5. Pop (q1, r1) from k. k = {}

6. Take each edge leading from r1; (r1, ab, r3) & (r1, bb, r4).

(a) From (r1, ab, r3) pass ab into the DFA from state q1.

(b) State is valid - add (q2, r3) to k. k = {(q2, r3)}

(c) From (r1, bb, r4) pass bb into the DFA from state q1.

(d) DFA cannot progress - stop.

7. Pop (q2, r3) from k. k = {}

8. Take each edge leading from r3; (r3, b$, r5) & (r3, $, r6).

(a) From (r3, b$, r5) pass b$ into the DFA from state q2.

(b) DFA in accept state - add r5 to h. h = {r2, r5}

(c) From (r3, $, r6) pass bb into the DFA from state q2.

(d) DFA in accept state - add r6 to h. h = {r2, r5, r6}

9. k is empty. STOP. h = {r2, r5, r6}

Given the use of algorithm 1 as f() to resolve each key-value pair of a QBE

object Q = {k1, k2...kn} within a query to a set of sets of integers representing

index positions S = {s1, s2...sn} the intersection of these can produce the final

Chapter 4 67

Novel Database Design for Extreme Scale Corpus Analysis

q0 q1 q2 q3

a

b

a

!$

$

Figure 4.1: DFA representing ^[ab]a.*$

-

r0

r1 r2

r3 r4

r5 r6
r7

r8

a
baa$

ab

bb

b$

$

$

a$

Figure 4.2: Radix tree representing D

set of integer positions that represents the index positions of that QBE object;

n⋂
i=0

si : si = f(ki) (4.1)

This will produce the set of integer positions that can be used to resolve the

QBE object. The procedure for handling queries with multiple QBE object

and resolving regular expression operators at the token level is discussed in

section 4.5.

Whilst the approach described in Algorithm 1 efficiently resolves QBE ob-

jects to index positions given a dictionary trie of index positions there are

certain limitations inherent to it. Primary among these is its inability to sup-

port certain common regular expression functions such as look-aheads and

look-behinds. Although these functions are common in many styles of regu-

lar expression syntax and in various libraries, they are not supported by any

known libraries which compile regular expressions to DFAs and so are also not

68 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

supported in LexiDB. However this approach does allow for potential future

developments of new regular expression libraries which may support these op-

erations in the form of a DFA to be used as alternatives, thus this limitation is

more tied in nature to the capabilities of DFA based regular expressions rather

than a flaw in the approach itself.

4.5 Token stream regex

To resolve regular expression type queries over token streams it is necessary to

provide a method of resolving the operators i.e. Kleene star etc. Other systems

such as CWB have used CQL as a query language supporting similar regular

expression operators but have needed to implement their own query processor

specifically to resolve the queries. The approach presented here contrasts to

this as it can use any existing regular expression library to resolve regular

expression like queries over an indexed token stream. Beyond this it is also

capable of resolving such queries with no need to inspect the actual data, only

the indexes are used to resolve the expressions. This gives the approach an

advantage over that taken in existing systems as less data (and therefore less

disk access/memory caching) is needed to compute query results.

At the heart of this approach is converting a query made up of QBE objects (as

described above) and regular expression operators into a form that a regular

expression engine can resolve. This leads to a query language of types which is

not designed but formed through the merging of JSON syntax for describing

QBE objects and standard regular expression syntax. A simple example of

a query in this form will look familiar to those used to CQL {"pos":"JJ"}+

would search for a series of one or more adjectives (JJ = general adjective C7

POS tagset). To do this, it is necessary that the regular expression engine

creates a DFA that can be interrogated by the below algorithm and its state

transition table accessed. To allow a DFA to be built by any such engine,

each QBE object in the query is converted to a character representation, as

Chapter 4 69

Novel Database Design for Extreme Scale Corpus Analysis

described below. In the implementation of LexiDB, the regular expression li-

brary used for resolving token stream queries is dk.brics.Automaton[65] engine

because it is one of the faster4 libraries that compiles regular expressions into

DFAs. As with resolving QBE objects, support for other operations can be

added by swapping out the library for another library that includes the desired

operation (provided the library compiles regular expressions to DFAs).

4.5.1 Preamble

Take any query Q made up of a set of QBE objects a0...an and regular expres-

sion operators. Convert these QBE objects to pairs of character representations

(a0 → ’a’, a1 → ’b’ etc.) and resolved index lookup positions within a corpus

(’a’ = 0,12,15...). Map these characters onto their respective index positions

in a sparse 2D matrix C representing the entire corpus. Replace the QBE

object in the original expression with their character mapped representations

and construct a DFA; M = (Q,Σ, δ, q0, F).

4.5.2 Algorithm

4.5.3 Worked example

Consider the token stream regular expression q0*q1 where the index lookup

results of resolving the QBE objects are q0 = 0, 1, 5, 6 and q1 = 1, 4, 5 in

some corpus of length 7. The token stream regex can be converted to a typical

character regex a*b and the sparse 2D matrix representation of this corpus can

be built as such [[a],[a,b],[],[],[b],[a,b],[a]]. Passing this through

algorithm 2 would produce h = [(0,1),(1,1),(4,4),(5,5)].

4https://tusker.org/regex/regex benchmark.html

70 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

input : A DFA M = (Q,Σ, δ, q0, F)
Sparse 2D matrix C of length l

output: A set of integer pairs h
1 h← ∅
2 for i← 0 to l do
3 S ← [(q0, i)]
4 while S 6= ∅ do
5 (qn, k) ←S.pop()
6 for j ← 0 to C[k].length do
7 if δ(qn, C[k][j]) then
8 S.push(δ(qn, C[k][j]), k + 1)
9 end

10 if δ(qn, C[k][j]) in F then
11 h.add((i, k + 1))
12 end

13 end

14 end

15 end
Algorithm 2: Algorithm for resolving QBE based regular expressions over a
token stream

4.5.4 Limitations

The primary limitations of this approach are that the query language is lim-

ited by the capabilities of the regular expression engine employed, and more

specifically by the typical drawbacks of DFA based regular expression resolu-

tion. Using DFAs to resolve regular expressions is very efficient but certain

capabilities, as mentioned look-aheads and look-behinds are not supported by

engines that use DFAs. This means that LexiDB does not support these oper-

ations either. However the versatility of this approach means that if an engine

capable of supporting this wider range of operation using finite state machines

was developed in future, it could easily be used as the engine for LexiDB and

the approach described in Algorithm 2 would still work as intended, leading

to a wider range of operations being supported.

Another less obvious drawback to this approach is the expressiveness of QBE

syntax in this form. Each QBE expression must be an atomic object in its

definition, i.e. it cannot refer to other QBE objects e.g. looking for repeated

words. To achieve this form of processing, an additional resolution layer would

Chapter 4 71

Novel Database Design for Extreme Scale Corpus Analysis

need to be added to the query processor, most likely this would take the form

of a post-processor to resolve such operators after results sets have already

been returned which would make the query processor far closer to CQP in

its operation and as a result would potentially create a large performance dip

as all hits (or potential hits) in results sets would need to be retrieved before

complete query resolution could occur. This would go against the primary aim

of this approach which is to be efficient and scalable for extremely large corpus

datasets. To maintain this, some limitations to querying capabilities (at least

in comparison to CQL) are acceptable.

4.6 Resolving Query Types

Once query resolution has been performed by the above algorithms and a

set of hits h has been compiled, the results must then be processed into a

meaningful form and returned by LexiDB’s API. The result types described

above (concordances, n-gram) can be thought of purely as contextual. To

resolve them and compute a set of results, only proximal information around

the hits is needed i.e. a context window. For collocation and frequency lists

additional information regarding the dictionary of values and their frequency

is required or can be used to improve the efficiency at which result sets for

these query types can be computed.

Concordance lines can be easily computed by retrieving all numeric values

surrounding each hit and displaying the results to the user. Due to LexiDB’s

column storage architecture and random access ability, retrieving spans of to-

kens around hits is straightforward; however large results sets will still require

substantial disk reads. This can and is mitigated somewhat in the LexiDB

approach by automatic supporting of paging, meaning only a specific number

of concordances are returned to the user as it is unlikely users will want to view

thousands or indeed millions of concordance lines in one go. For example, the

previous sample expression {"pos":"JJ"}+ returns 100+ million concordance

72 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

lines in the Historical UK Hansard corpus of 1.6 billion words. More likely

such queries would be refined and/or sorted (see section 4.8).

Likewise, NGrams can be computed by first retrieving a set of all concordance

lines within a context window of n−1 such that all NGrams that are computed

will include at least a single token from the hit (whether the hit is a single

token or several). Unlike with other systems, NGrams can be computed on any

column or annotation layer e.g. a common phrase can be queried for and a set

of NGrams based on POS tags can be returned rather than NGrams based on

tokens. When retrieving trigrams for the word “colourful” a context window of

2(n− 1) will be used and once all concordances are retrieved and the trigrams

computed such that “colourful” will always be in the trigrams, whether as

the first, second or third word. Other systems may compute NGrams ahead

of times which can allow them to be retrieved more rapidly but this allows

searches on NGrams in LexiDB to be far more complex as typically other

systems do not store beyond 5-grams. Using this approach any value for n can

be used and the hit being searched for can be a mix of different annotation

layers, as well as the hit being as long as desired. A limitation to dynamically

building NGrams is that they cannot be paged to reduce disk reads; all spans

around the hit term must be retrieved for the list of NGrams to be computed.

Frequency lists can be retrieved by the query processor by two means. When

a single token is searched for the frequency lists can be accessed directly by

retrieving the frequency information stored in each column’s dictionary e.g.

searching for run.* can be resolved to a series of numeric values on the token

column and the frequency of each (which is held in memory) can be immedi-

ately returned. For frequency lists generate from a query with multiple tokens,

the frequency is computed in a similar way to NGrams, the entire set of con-

cordances is retrieved (with a context of 0) and then the frequency of each hit

based on a particular column is returned e.g. {"pos":"JJ"}{"token":"house"}

might return; [big house: 15, tall house: 7....].

Calculating collocation metrics is perhaps the most involved of the return types

Chapter 4 73

Novel Database Design for Extreme Scale Corpus Analysis

supported by LexiDB. The collocation metrics available in LexiDB are Log-

Likelihood and Mutual Information, how each of these metrics is calculated is

described in Chapter 2. To perform these calculations much like with NGrams

the proximal tokens to the search term must be retrieved and summed (similar

to calculating unigrams). To calculate Log-Likelihood for example, a contin-

gency table for each term must be created, which can be done easily once a

set of unigrams around the hit term has been found be accessing the frequency

information for each term. Like with NGrams, retrieval of the spans around

the hit terms cannot be paged; all results must be retrieved first to construct

the contingency table. Once this table is built for each term the collocation

metric desired can easily be calculated. Much like with other query return

types, LexiDB goes above and beyond the capabilities of other systems, as

any column can be used to calculate collocations i.e. rather than looking at

collocations of a particular search term based on words, LexiDB can compute

POS collocations. This can lead to further information extraction from a cor-

pus, for example, using metadata one might query for {"speaker":"Mary"}+

in a corpus with multiple speakers per file, collocations based on the speaker

column could then reveal who speaks before and after Mary more typically

based on a collocation metric.

4.7 Asynchronous Querying

In the previous sections, querying was discussed from a synchronous perspec-

tive, the database is queried and the results are retrieved and computed before

being returned to the user in whatever form they requested. However, this

poses an issue for distributed systems. As discussed in Chapter 2, CAP theo-

rem tells us that the availability of every node in a cluster cannot always be

guaranteed, beyond this there is also a huge advantage to be gained in poten-

tial responsiveness in leverage the potential higher availability of certain nodes

and more specifically the ease of compatibility of results on certain nodes as

74 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

a result of general data dispersion. Asynchronous querying allows for a set or

subset of intermediary results to be returned to the user to reduce perceived

latency of the database whilst allowing for any additional latency that might

be incurred from the compilation of full results sets across multiple nodes in a

distributed environment to be transparent (or at least close to transparent).

When querying for a simple set of concordance lines LexiDB will return the

results in a page of x results. If the first data block queried, n, contains

at least x results xn >= x then the first page of results can be computed

directly from this set prior to querying additional data blocks, assuming no

sorting is required (this is discussed in section 4.8). Synchronously this would

not be possible with potentially dozens or even hundreds of data blocks left

to be queried. Asynchronously querying allows for this first set of results

to be returned as soon as it becomes available which can massively reduce

query response time compared to synchronously querying particularly with

large result sets. The reduction in initial query response time is evaluated in

section 5.2.1. For other result types the initial results from a single block are

returned as estimates. For example, a collocation query will return the results

as if the contingency table was constructed from only the first block queried;

these results will subsequently change as the contingency table is updated with

results from additional blocks.

Along with the first page of results, the total number of results is returned

with an indication of the number of pages available. When querying asyn-

chronously the number of results and pages will not be known at this point,

but an estimate can be calculated based on the number of results found within

the data block. As each data block is queried the result set displayed to the

user can be asynchronously updated, if unsorted the initial page of results

will not change but the estimation of the number of results and pages will

be updated. This estimation assumes that the dispersion of the query term

between data blocks is fairly uniform. In practise, cases where dispersion is

far from uniform between data blocks results sets are typically smaller and as

Chapter 4 75

Novel Database Design for Extreme Scale Corpus Analysis

a result the full set of results will be retrieved fast enough as to not make a

poor estimate of the result set size on the initial asynchronous return of the

query to make a significant difference on corpora in the order of several billion

tokens. It should be stressed this estimate is not expected to be utilised; it is

to give users an indication of the result size whilst waiting for slower queries

to return their final results

Whilst this form of asynchronous querying is simple to process for unsorted

concordance lines, the processing overhead to perform searches in this way

increases when considering result types that go beyond the retrieval of data

to the compilation of information e.g. frequencies, computed metrics etc. For

simple frequency lists similar to unsorted concordances a simple estimation

can be used to extrapolate frequencies across the whole corpus. This method

again has the potential to give poor estimates, but is intended as nothing more

than an indicator to the user when awaiting final results.

Frequencies when calculating ngrams can also be retrieved asynchronously in

much the same way as frequency lists for individual terms or phrases. The

process of computing ngrams is more involved than for simple frequencies but

no more overhead is incurred than when performing a query for the frequency

of phrases rather than individual values i.e searching the phrase “far from *”

cannot simply be looked up in the frequency tables for the words themselves.

In the case of ngrams the results must be sorted by frequency after each data

blocks results are retrieved and added to the aggregate results as usually users

will want to view the most frequent ngrams first.

Collocation metrics can be returned asynchronously as well assuming that only

estimations are required initially and that the size of the data blocks is large

enough to be somewhat representative of the corpus as a whole such that

collocation metrics themselves may change between blocks but perhaps the

ordering will remain fairly consistent. As such collocation metrics are built

a block at a time, unlike with simply collating results (as with concordances

and frequencies) metrics must be recalculated as each block is queried and the

76 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

contingency table from the most recently queried block is collated with the

aggregate table. This process is straightforward for the collocation metrics

supported by LexiDB (log-likelihood and mutual information) and the calcu-

lations are trivial to handle. Greater cost is incurred in the constant re-sorting

that will be required as each block is queried (this is discussed in section 4.8).

4.8 Sorting

Part of resolving linguistic queries will inevitably involve some form of sorting

of results. Whilst sorting of small sets of results is trivial, it is more likely the

case that larger result sets will be those most desired to be sorted by linguistic

database users to make better sense of the results and to put them to better

use in further linguistic analysis. What follows is a discussion of the techniques

employed in LexiDB to handle sorting of various types of linguistic queries,

how they can be applied more effectively in a distributed environment and a

discussion of their strengths limitations.

Perhaps the most typical form of sorting used by many concordancers is a

lexical sort of concordance lines. This involves sorting concordance lines al-

phabetically based on a position relative to the hit term. This may simply be

sorting on the hit itself (if the search were a regular expression say, rather than

a single word) but other tools allow you to sort on several positions (given an

order of precedence) left or right of the search term. To facilitate this in a

database environment it is necessary to retrieve the linguistic data required

to perform this sort, this occurs on two levels; firstly within each data block

the numeric values at the positions specified by the sort can be retrieved and

sorted, second, the values in the sort positions across data blocks must be

combined and sorted - this cannot be done by a simple comparison of their

numeric value (since the values will differ between blocks) but by resolving the

values to text and sorting the result. Whilst other tools can sort on the word

level LexiDB can sort not only on this but on any level of annotation layer e.g.

Chapter 4 77

Novel Database Design for Extreme Scale Corpus Analysis

POS tags, semantic tags etc. as well as on any level of metadata e.g. author

name, text origin etc.

Whilst sorting on the final values of the text (which may be words, linguistic

annotation or metadata) will never be as fast as simply sorting numeric values,

this final step can be sped up by latent sorting of the results as and when they

wish to be viewed by the user. Since the results within each block will already

be sorted (by sorting the numeric values) the first page of x results can be

computed simply by skimming off the first page of x results from each blocks

result sets and performing a final sort on the textual values from this set. In

this way, the first page of results is guaranteed to be present and be computed

quickly and displayed to the user without the need to combine and sort the

entire result set. This can be thought of as a lazy merge sort. Whilst this

may be a less efficient method to sort the results, in a distributed environment

and particularly one that can make use of asynchronous querying (as described

above) this can mean a far a higher level of perceived responsiveness to the end-

user which would be expected in more modern IR systems, but less common

from classical databases.

Beyond a lexical sort of concordance lines, frequency sorting is also possible in

LexiDB. A frequency sort allows concordances to be sorted by how frequently

a term occurs e.g. a search for “habit” could be sorted by the most frequently

occurring term on position to the left i.e. the word before. Unlike lexical sorts

which can utilise a lazy merge sort mechanism, there are no short cuts that

can be taken to improve query response times for a frequency sort. Within

block results can be computed by summing the frequencies of numeric values

however between block results (including across nodes in a distributed setup)

must be computed in full as there is no guarantee that the top x results from

within each separate block will contain the top x results summed between all

blocks. Sorting concordances based on the frequency of nearby terms is not

something supported by any other known concordancer.

As described previously, frequency lists for particular words can be retrieved

78 Chapter 4

Novel Database Design for Extreme Scale Corpus Analysis

by accessing the in-memory dictionary of each data block and computing the

total sum between the blocks for each word. Generally, frequency lists may

be generated based on a regular expression looking for a particular word, but

LexiDB can also generate frequency lists based on a query pattern over several

tokens. To sort frequency lists generated in this way the same approach as

with frequency sort of concordances is utilised but the sort term is simply

the hit item i.e. the database is effectively performing a concordance search

with a context window of 0 and sorting the results. Once again generating a

frequency list across blocks, all results must be summed before being sorted.

The exception to this is when querying asynchronously where the frequency

lists are sorted as each blocks frequencies are added. Much like frequency lists,

ngrams, when dynamical computed in LexiDB, are sorted using a merge sort

based on their frequency.

Collocation results when being computed asynchronously have several methods

available for sorting. The default approach is for the results to be sorted using

a merge sort according to the specified collocation metric as each data blocks

results are computed. Whilst this results in multiple sorts (sometimes redun-

dant), the overhead is generally acceptable as this pales to insignificance when

compared to the overhead required in retrieving the necessary data to create

a contingency table and compute the collocation metrics as described above.

When not querying asynchronously, collocation results are simply sorted when

the collation of all contingency tables is complete and the final collocation

metrics have been calculated.

4.9 Summary

This chapter has explored various techniques and approaches that can be used

to query the data structures described in chapter 3 to satisfy corpus queries

and has presented two novel algorithms. The contributions of this chapter

are in fulfilment of sub-objective of research question one in chapter 1 - are

Chapter 4 79

Novel Database Design for Extreme Scale Corpus Analysis

there any un-tapped methods that can be developed into novel solutions in

this problem domain?

The first algorithm presented here is strongly based on existing work and allows

a character level regular expression that is built as a finite state machine to

be resolved over a dictionary of strings of a corpus that are expressed as a

radix tree. This is needed for resolving linguistic queries to identify patterns

within tokens, whether it be words themselves or some other annotation layer

within the data. The second algorithm presents a method for resolving regular

expressions at a token level, which has been demonstrated as a requirement of

corpus data systems in chapter 2, using purely the indexing data (described in

chapter 3) of the corpus. This allows the positions that match the expression

to be found without the needed to scan the underlying token stream itself,

whether in full or in part.

Chapter 5 will evaluate the effectiveness of the approaches described in the pre-

vious chapters. The methods presented in this chapter and how they compare

to existing systems is discussed in section 5.2.3.

80 Chapter 4

Chapter 5

Evaluation

5.1 Overview

In developing an evaluation methodology for the techniques and approaches

used in the design of LexiDB it was hoped inspiration could be drawn from

other work on the evaluation of similar corpus data systems. However, there

are scarce attempts at quantitatively evaluating many of the existing corpus

data systems, and particularly little using a comparative methodology. One

of the few such examples of this is the work by Meurer[63] quantitatively

comparing Corpuscle to CWB for a small sample of custom queries picked to

demonstrate the strengths and weaknesses of each system. In light of this, the

evaluation methodology presented here is split into two distinct approaches.

The first to explore research question 2 (1.4) of how corpus data systems and

databases can be evaluated quantitatively involves three experimental setups

that test the developed prototypes for LexiDB, examine the scalability of the

system, examine the scalability of other DBMSs and finally compare the query

performance to an existing corpus data system and a common indexing tool

used by other corpus data systems. The second phase of evaluation was to

perform a case study that involved constructing a new large scale corpus based

on parliamentary data, building a web interface around the LexiDB API, and

81

Novel Database Design for Extreme Scale Corpus Analysis

conducting a focus group to explore qualitatively how useful LexiDB is to

corpus linguists and how easily it can be utilised as a data platform on which

corpus tools can be built. This case study serves as a proof of concept, that

LexiDB can be used as a platform upon which to build corpus data systems,

as opposed to serving as a direct evaluation of the database itself.

5.2 Quantitative Evaluation

The quantitative portion of the evaluation is divided into three experimen-

tal setups. The first experimental setup tests the scalability of two existing

DBMSs on a cloud computing platform when utilising corpus data described

in section 5.2.1. The second experimental setup examines the scalability of

a prototype of the LexiDB system on the same cloud platform. Finally, the

final prototype of LexiDBs query processor is compared in experiment 3 to an

existing corpus data system (CWB) and a commonly used indexing system,

Lucene. Each experiment is described in turn beginning with an overview

of the experimental setup, followed by a brief discussion of the results along

with the implications of them concerning other systems and approaches. This

quantitative evaluation can be thought of one side of a coin of a methodology

evaluating corpus data systems that could be used as a basis to evaluate other

systems in the future (although the experimental setups may be refined or

changed based on requirements or based on deeper insights that may hereafter

be gained into the nature of such systems).

5.2.1 Experiment 1: Scalability of existing DBMSs

5.2.1.1 Setup

To test the capabilities of modern DBMSs, two such systems were deployed

into various clustered configurations and loaded with an extremely large corpus

dataset. The DBMSs tested were MongoDB and Cassandra. Each database

82 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

Low Frequency Medium Frequency High Frequency
gauntly weeny it
croquet kilometers I

patronym plebs is
ratpayers appraiser a
thugutt earldoms in

ogies candlemas and
fecias laudations that

gacious coachmakers to
unspared heinkel of
moyland conegate the

Table 5.1: Keyword frequencies

was deployed onto the Amazon Web Services (AWS) EC2 platform using

m4.xlarge instances (4 vCPUs, 16GB Memory, 100GB EBS Volume -500 provi-

sioned IOPS). Each database was deployed in 4, 8 and 16 node configuration so

that the scalability of each DBMS when storing corpus data could be examined.

The corpus dataset loaded into the databases was the Hansard corpus (1.6 bil-

lion words). Each database was then queried for particular keywords and all

hits of the word in the database were returned in the form they are stored, i.e.

as a document or record representing an instance of the queried word. The

keywords that made up the queries were derived from pre-generated word lists

(each keyword query was run 5 times and an average taken). To gather an

accurate reflection of each DBMSs capabilities queries were split into three

groups; High frequency — the top 10 most commonly occurring words in the

corpus. Medium frequency -– 10 randomly selected words from the 60% range

of words. Low frequency -– 10 randomly selected words from the bottom 50%

of words in the corpus.

5.2.1.1.1 MongoDB A minimal cluster configuration for MongoDB re-

quires 3 components; a central query processor front end server, 3 configuration

servers and a data node (shard). In practise many of these components can run

on the same server. For testing the central query processor (mongos instance)

plus the 3 configuration servers were deployed to a single AWS instance. Each

data node was then deployed to its own separate AWS instance. This was

Chapter 5 83

Novel Database Design for Extreme Scale Corpus Analysis

deemed acceptable as keeping the configuration servers separate would be the

best practice to ensure some redundancy in the cluster but this was only a

test environment. Having the mongos server on the same AWS instance was

also deemed acceptable as the tests are not designed to stress the database

in terms of a high number of queries per second but rather how the database

handles a large amount of corpus data. Three configurations were tested with

4, 8 and 16 data nodes.

The schema followed for MongoDB was for each word in the corpus to be in-

serted as a BSON (Binary Javascript Object Notation) document as described

in Listing 5.1. The JSON document below describes the BSON documents

inserted into MongoDB (note that the form of the word is not lemmatised in

these tests);

The “docid” field is utilised as the shard key to ensure not only that the data

is distributed evenly between the shards in the cluster but also to ensure when

querying to build a concordance line for an occurrence of a word, one data

node should be able to return all the BSON documents necessary to build the

concordance line. A text index is defined in MongoDB on the “searchableform”

field to search for word instances. A hashed index is automatically built on the

“docid” field to distribute the data but this index is also used when performing

a ranged query to build concordance lines.

In MongoDB, data distribution is handled by selecting a shard key from within

the data field. This key will be used to determine which data node the BSON

document should reside on. Initially the source document ID was selected as

the field for the shard key - this would ensure that all words from the same

original source document would be present on the same data node - thus mak-

ing it easier to build a concordance line as for each individual line all the word

BSON documents could be gathered from the same node. The incremental

nature of the source document IDs meant using this field as a shard key lead

to slower parse times because the MongoDB cluster was consistently shuffling

data around, between the nodes, to ensure that the data was distributed evenly.

84 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

To remedy this an artificial shard key was created. This shard key was a ran-

domly generated number between a group of pre-defined ranges. Key range

chunks were set up prior to parsing on the MongoDB cluster to define which

range of keys to handle. Each alternate BSON document was then assigned a

random value in this range when parsed to ensure during the initial insertion

of the data the writes were distributed evenly across the cluster.

1 {

2 // unique automatically generated id

3 _id: ObjectId ("5553324 ca7986c0c3d6b3a97 "),

4 //word as it originally appeared

5 originalform: The ,

6 //word trimmed of white space and forced to lower case

7 searchableform the ,

8 //id of the source document the word appeared in

9 docid: S6CV0196P0 -00481 ,

10 // position within the source document

11 pos: 103

12 }

Listing 5.1: JSON word entry in MongoDB

5.2.1.1.2 Cassandra Cassandra can be configured into a cluster almost

as easily as a standalone server can. Since it is designed with distribution

in mind and makes use of several p2p architecture principles such as seeding

and the equality of nodes each node need only be configured to point to a

single commonly known set of nodes (seed nodes) from which configuration

about the cluster is retrieved. As before Cassandra was deployed in 4, 8 and

16 node configuration onto AWS instances. During testing an additional seed

was added per 4 nodes. Meaning the 4 node configuration contained 1 seed,

the 8 node configuration 2 seeds etc. The seeds are of course nodes themselves

and behave in just the same way as the rest of the configuration except they

also provide management information to the rest of the cluster.

Although it is considered a No-SQL database Cassandra’s query language CQL

Chapter 5 85

Novel Database Design for Extreme Scale Corpus Analysis

(Cassandra Query Language) bears many similarities to SQL and simple com-

mands and queries will often look identical between the two query languages.

The schema used again followed a simple one word per record form and is

described in listing 5.2.

1 CREATE TABLE hansard.words (

2 doc text ,

3 pos int ,

4 s_f text ,

5 o_f text ,

6 PRIMARY KEY (doc , pos)

7);

Listing 5.2: Cassandra CQL Schema definition

Similar to MongoDB the schema stores 4 values per record. “doc” the original

source document, “pos” the words position in the source document, “s f” the

searchable form of the word (lower-case, removed punctuation), “o f” the word

as it originally appeared in the text. The primary key used is a composition

of the source document and the position of the word in the source document

- guaranteeing its uniqueness. A secondary index is then built on the “s f”

column to allow for keyword searches.

Cassandra allows for insertion to be performed and targeted at each node. This

allows multiple large batch insertions to take place on different nodes. Cas-

sandra uses its SSTable loader tool to import large quantities of data quickly.

Prior to insertion the Hansard corpus was converted from its original XML to

this SSTable format to allow for quicker insertion into the database.

5.2.1.2 Results and Discussion

5.2.1.2.1 MongoDB Fig. 5.1 shows the average query times retrieved

using MongoDB for the sample tokens listed in table 5.1 for 4, 8 & 16 node

cluster configurations. Here the results show the time to return all hits of a

word across all nodes in the cluster. As would be expected based on other

86 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

work around big data and the concept of scaling out the average query time

improves significantly as the number of nodes in the cluster doubles - further

parallelizing the index lookup and retrieval tasks. The graph also illustrates

how, despite the queries limiting the number of results returned to 20, the query

time actually increases with the frequency of the word in the corpus. This

implies that the text index used by MongoDB requires a significant amount

of time to read the inverted file entry when it has performed the lookup -

if the entry in the index is larger because the word being looked up contains

significantly more occurrences then the query response time will be significantly

impacted.

107.4 107.6 107.8 108

104

105

Word Frequency (log)

Q
u
er

y
T

im
e

(m
s)

(l
og

)

Initial (4 node) Average (4 nodes)
Initial (8 nodes) Average (8 node)
Initial (16 nodes) Average (16 nodes)

Figure 5.1: MongoDB Query Times (High frequency words)

Interestingly the raw numbers (see appendices) illustrated a pattern whereby

the first test run of each query for high frequency words would be significantly

slower (by an order of magnitude) than subsequent queries for the same word.

This served to push up the average query times reported in Fig. 5.1. This

pattern is likely the result of the text index being too large to contain wholly

in memory meaning that when the text index is first searched it is read from

disk and subsequently the entry for the word is then cached in memory. It is

Chapter 5 87

Novel Database Design for Extreme Scale Corpus Analysis

still however important to consider the figures whilst including this initial slow

query as when working with big data sets such as Hansard it is likely indexes

will not fit entirely into memory and will be read from disk.

A further anomaly observed in these results is the longer query time for the

most frequent word “the” when querying on an 8 node cluster. Whilst typically

this could be heralded simply as an outlier the method of gathering these

numbers through the average of several tests runs suggests this is not the

case. Furthermore the point raised above of the initial high query time for the

first query in the run could have contributed to push the average query time

higher than that of a 4 node cluster for the same word however the raw results

consistently showed longer query times across all test runs for the word “the”.

The results of the low and medium frequency words are difficult to see in the

form shown in Fig. 5.1 and are presented expanded in Fig. 5.2. For the case of

low frequency words that occur only once in the corpus it seems that increasing

the number of nodes in the distributed setup has no clear effect on the retrieval

time. This can also be seen looking at the retrieval times for medium frequency

words with no obvious performance improvements gained by increasing the

number of nodes in the cluster. Whilst for low frequency words occurring only

once this might not be too interesting as a corpus linguist would likely need an

even larger corpus to perform a meaningful concordance analysis with these

words - the medium frequency words do have enough results for some kind of

concordance analysis to be performed which shows that at this range of word

(i.e. a minimum level for a concordance analysis) on this scale of corpus there

is little to no benefit of large cluster setups with dozens of machines.

These results also further indicate the idea of a strong correlation between

query times and index entry size - clearly when the index entry size is small

enough very little variation can be seen in query time even if this index is

distributed and the lookup is taking place in parallel. This further supports the

need for better indexing techniques to be developed for large text indexes which

cannot fit into memory to allow for simple queries to be fulfilled more readily.

88 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

Low Freq Med Freq

101.3

101.4

A
ve

ra
ge

Q
u
er

y
T

im
e

(m
s)

(l
og

)

4 node
8 nodes
16 nodes

Figure 5.2: MongoDB Avg. Query Times (medium & low frequency words)

For simple queries such as those utilized in these experiments a strategy of

index entry paging and lazy loading could be utilized.

107.4 107.6 107.8 108

101.4

101.6

101.8

102

102.2

102.4

Word Frequency (log)

Q
u
er

y
T

im
e

(m
s)

(l
og

)

Initial (4 node) Average (4 nodes)
Initial (8 nodes) Average (8 node)
Initial (16 nodes) Average (16 nodes)

Figure 5.3: Cassandra Query Times (High frequency words)

5.2.1.2.2 Cassandra The results for Cassandra (Fig. 5.3) are immedi-

ately interesting as the raw figures seem to illustrate little to no correlation

between the word frequency and the query time for the simple query being

performed by our tests. Unlike with MongoDB where as the frequency of the

Chapter 5 89

Novel Database Design for Extreme Scale Corpus Analysis

word increased so to did the typical query time (suggesting increased time re-

quired to read the index as discussed above) Cassandra appears to demonstrate

minimal overhead to reading large index entries for highly frequent words. In

exploratory testing it appeared that Cassandra is far more influenced by the

total number of results which are returned, indicating that it is capable of

reading its index in a far more efficient way than MongoDB (possibly by only

reading the required initial part of the index). This means that for simple

queries such as those performed during testing which limits the results set to

just 20, Cassandra was able to return results with far more consistent times

across all frequency ranges than MongoDB.

Low Freq Med Freq
101.3

101.35

101.4

101.45

101.5

A
ve

ra
ge

Q
u
er

y
T

im
e

(m
s)

(l
og

)

4 node
8 nodes
16 nodes

Figure 5.4: Cassandra Avg. Query Times (medium & low frequency words)

Fig. 5.4 shows the average query times for each word group listed above

(low, medium & high frequency). From these results it is clear to see that

for the scale of the Hansard corpus on the AWS infrastructure used there was

a noticeable increase in performance between a 4 node and 8 node cluster

configuration. However there was a negligible difference seen between results

between the 8 and 16 node configurations suggesting that at this data scale

there would be little to no benefit of scaling out such a configuration any

further - albeit for these relatively simple corpus queries. It should be noted

that some queries were marginally faster on the 8 node configuration than the

16 node configuration, although the difference in many cases was less than 1

90 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

ms so may be explained by any cluster management information shared on the

network between the nodes at the time of the tests.

Examining the raw results for Cassandra it also becomes clear that there is

no initial index read period as noted in the discussion of MongoDB’s results

above. Perhaps due to Cassandra’s seemingly better handling of indexes for

these simple queries it is not burdened by the need to load the index entry

into memory from disk and therefore the significantly longer query response

time seen on the first query for each word in MongoDB is not seen at all when

querying Cassandra. This would mean that in any system put in place in the

real world for say a corpus search tool users would not experience significantly

slower response times for a search on a keyword that has not been searched

for before - or recently enough for its index entry to still remain in memory as

in the case of MongoDB.

5.2.2 Experiment 2: Scalability of LexiDB

To demonstrate the scalability of LexiDB, we conducted a series of test queries

on one, two and four node distributed configurations using two, billion token

scale corpora - Historical Hansard (1.68 billion tokens) and EEBO TCP phase

1 texts (0.91 billion tokens). Each of these corpora were tagged with lemma,

POS, HT (Historical Thesaurus) and USAS semantic tags and stored in the

form of *.tsv files. KWIC(concordances), NGram(bigram) and collocations(log-

likelihood) queries were all performed using the ten most common words in

the corpus. Each query was performed ten times and a mean query time was

found. The most common words were chosen as this represents a worst case

scenario for each query i.e. a query that has the most results to retrieve and

it will likely be the most computationally and hard disk intensive and mem-

ory consumptive. All LexiDB instances were run on AWS m3.2xlarge VMs (8

vCPUs, 30Gb RAM, 2 x 80Gb SSDs).

Figure 5.5 shows the time taken to insert and index each corpus on the three

Chapter 5 91

Novel Database Design for Extreme Scale Corpus Analysis

HansardEEBO

106

107

Corpus

In
se

rt
io

n
&

In
d
ex

T
im

e
(m

s)
(l

og
)

1 node
2 nodes
4 nodes

Figure 5.5: Insertion and Indexing

database configurations. The increase in speed is clearly evident as LexiDB

is scaled out to multiple nodes, allowing for ever faster insertion times. This

insertion operation is a one time process that a user of LexiDB would need to

perform just once to execute queries against a static corpus.

107 108

103

104

Word Frequency (log)

Q
u
er

y
T

im
e

(m
s)

(l
og

)

EEBO (1 node) EEBO (2 nodes)
EEBO (4 nodes) Hansard (1 node)

Hansard (2 nodes) Hansard (4 nodes)

Figure 5.6: Concordance Lines

The ten most common word types in each corpus used as search terms were

92 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

{the, of, and, to, in, that, a, is, it, his} for EEBO and {the, of, to, that, and,

in, a, I, is, not} for Hansard. Figures 5.6, 5.7 and 5.8 shows the result for

the respective context sensitive queries (Concordances, Collocations and N-

Grams) using these lists of words. Because each corpus varies in size and the

frequency of the words differs, the results are presented as the average query

time against the frequency of the word type within the corpus.

107 108

104

105

Word Frequency (log)

Q
u
er

y
T

im
e

(m
s)

(l
og

)

EEBO (1 node) EEBO (2 nodes)
EEBO (4 nodes) Hansard (1 node)

Hansard (2 nodes) Hansard (4 nodes)

Figure 5.7: Collocations

Figure 5.6 shows the increased performance and reduction in query time for

generating concordance lines, unsorted, with a span of five words. A con-

cordance query for the word type “the” in the Hansard corpus which took

77,554ms on a single node was reduced to 22,242ms on a two node configu-

ration and just 7,792ms on a four node cluster (this is the time to find and

retrieve all concordance lines). This significant increase in speed is likely down

to a reduction in the processing time that will be utilized by the Java garbage

collector while executing the query because retrieving the 108 million concor-

dance lines returned from this query carries a significant memory overhead in

LexiDB.

Collocation searches were run with a default context window of two words from

Chapter 5 93

Novel Database Design for Extreme Scale Corpus Analysis

107 108

103.5

104

104.5

Word Frequency (log)

Q
u
er

y
T

im
e

(m
s)

(l
og

)

EEBO (1 node) EEBO (2 nodes)
EEBO (4 nodes) Hansard (1 node)

Hansard (2 nodes) Hansard (4 nodes)

Figure 5.8: N-grams

the search term. Figure 5.7 shows the results of these. Again performance

increases substantially as the configuration is scaled out from one to two to

four nodes. The collocation queries themselves take far longer than the simple

concordance queries due to the additional task of computing a contingency

table and collocation metric for the search term.

HansardEEBO

103

104

Corpus

Q
u
er

y
T

im
e

(m
s)

(l
og

)

1 node
2 nodes
4 nodes

Figure 5.9: Frequency List

Figure 5.8 shows the results for ngram searches. The query used was for a

94 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

bigram of the specified search term. Similar to the results of the collocation

queries, we see far longer query times than with a concordance search, again

as a result of the computational expense of constructing n-grams from the

retrieved tokens. This method of building n-grams on the fly, while more time

consuming than pre-computing them at insertion time, saves significantly on

disk space.

The time taken to generate the frequency lists is shown in figure 5.9. This was

simply a list query for the regular expression .* which will return the frequency

of all word types in the database. Obviously for this general case improvements

could be made as the frequency lists for all words are pre-computed in Lex-

iDB’s dictionary and could be returned without the need to match a regular

expression against the entire dictionary.

5.2.3 Experiment 3: Comparative Evaluation

5.2.3.1 Setup

To evaluate the performance of LexiDB we compared the query response time

of searching for the most common uni, bi & trigrams on part-of-speech (C5)

tags in the British National Corpus. The BNC was chosen as it is a typical cor-

pus linguists may use locally on their own personal devices. The performance

was compared to the query response time of CWB - CQP. Further to this,

the indexing lookup times were compared to the index lookup times of Lucene

(since many other search systems and corpus tools use this as an indexer e.g.

Korap, ElasticSearch).

All benchmarks were conducted on the same workbench, specs: i7, 16GB

RAM, 256GB SSD (271 MB/s read speeds measured by bonni++1). The top

20 unigrams, bigrams and trigrams were queried on each of the supported

systems 10 times and the average response times are plotted below. In the

case of LexiDB, the query cache was disabled so each result would not be

1https://sourceforge.net/projects/bonnie/

Chapter 5 95

Novel Database Design for Extreme Scale Corpus Analysis

retrieved from the cache after each run, rather than performing the query

again. The corpus used in all tests was the BNC (British National Corpus)

with annotation layers; POS, lemma & C5 tags.

For each of the test systems, the original XML format of the BNC needed

to be converted to a format that was supported. LexiDB supports the use

of standard TSV files and can support any kind of text data not just typical

corpus data annotation layers. CWB requires files to be presented in a single

VRT (vertical) file format - this format looks similar to TSV but with no

headers and structural data about texts placed all within the same file. Lucene

can index various file formats but the simplest way to index is to use text files.

This creates a problem for linguistic data marked up with several levels of

annotation. To overcome this each of the annotation layers from the original

XML was used to generate a text file for that annotation (i.e. one for token,

POS, c5 etc.) and then each of these files were indexed as a field within Lucene.

This meant although all annotations could be queried on, only one could be

accessed in a single query.

5.2.3.2 Results

N
N
1

P
U
N

A
T
0

P
R
P

A
J
0

N
N
2

P
N
P

A
V
0

N
P
0

C
J
C

P
R
F

V
V
I

D
T
0

V
V
N

V
V
D

C
R
D

P
U
Q

T
O
0

V
M

0

D
P
S

102

103

c5 tag

Q
u
er

y
ti

m
e

(m
s)

cwb lexidb lucene

Figure 5.10: Simple querying for Part-of-Speech (c5 tagset)

96 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

As can be seen from figure 5.10, the LexiDB and CWB query times for search-

ing for single tags (c5) was proportional to the number of occurrences of the

tag within the corpus. This, for all systems, is likely due to the time taken

to read the index for that tag. In this case, ‘NN1’ being the most popular tag

searched for and ‘DPS’ the least. One would expect this trend to continue with

lower frequency items such as low-frequency words or more fine-grained tags

(obviously most POS tags will be fairly high frequency within any corpus).

LexiDBs query response times in this instance were on average 535% faster

than CWB/CQP.

Lucene demonstrated very constant query times for single-term queries (as well

as bi and trigrams), but this is due to how Lucene returns a set of hit documents

as opposed to retrieving sets of concordances lines. Although Lucene could be

used for such linguistic type queries it is necessary to build an additional

application layer on top of Lucene to achieve this. This would inevitably end

up resulting in greater overhead and slower query response times.

A
T
0

N
N
1

N
N
1

P
U
N

P
R
P

A
T
0

A
J
0

N
N
1

A
T
0

A
J
0

N
N
1

P
R
F

N
N
1

P
R
P

N
N
2

P
U
N

P
U
N

P
N
P

T
O
0

V
V
I

A
J
0

N
N
2

N
N
1

N
N
1

P
U
N

A
T
0

P
R
P

N
N
1

P
U
N

C
J
C

P
U
N

P
U
Q

P
R
F

A
T
0

N
P
0

P
U
N

V
V
N

P
R
P

N
N
1

C
J
C

103

103.5

c5 bigram

Q
u
er

y
ti

m
e

(m
s)

(l
og

)

cwb lexidb lucene

Figure 5.11: Common POS bigram search

Figure 5.11 shows the effect of searching for phrases. Here LexiDB and CWB

return concordance lines again, where as Lucene returns a set of documents.

Using the most popular POS bigrams within the BNC we can see that the

Chapter 5 97

Novel Database Design for Extreme Scale Corpus Analysis

results are no longer affected by the raw frequency of the results but rather

by the frequencies of the items involved in the lookup. This is likely due to

the link between the query time and the size of the index or postings list

that must be loaded for each query. An interesting observation here is that

CWB/CQP is slowed more when querying for a phrase where the first item

is higher frequency. By comparison, LexiDB is slowed more so when the sum

of the frequencies of the items in the phrase is high. We can see that as

with unigrams Lucene’s response times are fairly constant. This can also be

observed when looking at trigrams in figure 5.12.

P
R
P

A
T
0

N
N
1

A
T
0

A
J
0

N
N
1

A
T
0

N
N
1

P
R
F

A
T
0

N
N
1

P
U
N

A
J
0

N
N
1

P
U
N

N
N
1

P
R
P

A
T
0

P
R
P

A
T
0

A
J
0

N
N
1

P
R
F

A
T
0

P
U
N

A
T
0

N
N
1

A
T
0

N
N
1

P
R
P

P
R
F

A
T
0

N
N
1

A
J
0

N
N
1

P
R
P

N
N
1

P
U
N

P
N
P

N
N
1

P
U
N

A
T
0

N
N
1

P
R
F

N
N
1

A
T
0

N
N
1

N
N
1

A
J
0

N
N
2

P
U
N

N
N
1

N
N
1

P
U
N

A
J
0

N
N
1

P
R
F

103.4

103.6

103.8

c5 trigram

Q
u
er

y
ti

m
e

(m
s)

(l
og

)

cwb lexidb lucene

Figure 5.12: Common POS bigram search

Whilst it can be shown from these common POS bigram search results that

CWB/CQP is comfortably outperformed by LexiDB which is in turn com-

fortably outperformed by Lucene, it should be noted that as Lucene is only

presenting a set of documents and not a set of hits themselves. CQP and Lex-

iDB are both performing a full query evaluation and retrieval of concordance

lines and presenting them to the user. Lucene, by contrast, is only performing

a lookup of a phrase query and presenting the set of documents the phrase

occurs. Additional steps beyond this would need to be taken to present the

98 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

results to any end-user in a meaningful way. It should also be noted that in

this experimental setup Lucene is only capable of searching a single annota-

tion layer at a time. LexiDB would see similar query response times querying

across multiple annotation layers, as would likely CQP.

5.3 Hansard Case Study

To examine the usefulness of LexiDB to corpus linguists, a proof-of-concept

case study was devised that included the construction of a complete live corpus

based on the historic Hansard parliamentary corpus. This corpus was placed

into a LexiDB instance and a toolchain setup (described below) that would

update the database daily with the latest data published to the parliamentary

website. From this starting point, a web interface was constructed that made

use of LexiDB’s API and presented users with a graphical interface that allowed

usage of LexiDB’s query language to perform all the linguistic queries that

are supported (see Chapter 4) as well as providing visualisations that could be

used by none linguists such as social scientists and historians. Finally, this case

study was concluded by the holding of a focus group where several linguists

shared their thoughts on the interface and approach, how useful it is, how it

compares to other systems and ideas for its future development.

5.3.1 Building the Tool

5.3.1.1 Corpus construction

The Historical Hansard corpus covers transcriptions from 1803 - 2005 in both

the House of Lords and the House of Commons. This data is freely available

online2 to anyone who wishes to use it. Previously the historic portion of the

Hansard corpus was processed by Lancaster University’s linguistic toolchain

2https://hansard.parliament.uk/

Chapter 5 99

Novel Database Design for Extreme Scale Corpus Analysis

1 token pos sem

2 "<meta file =""/ commons /2005/01/10/0. tsv"" date =""2005 -01 -10""

member ="" Peter Luff ""/>"

3 <s>

4 If CS Z7

5 he PPHS1 Z8m

6 will VM T1.1.3

7 make VVI A1.1.1

8 a AT1 Z5

9 statement NN1 Q2.1

10 on II Z5

11 ...

Listing 5.3: Lancaster toolchain TSV output

(described below) as part of the SAMUELS3 project. This historic section of

the corpus consists of just under 1.7 billion words (when tokenised through

CLAWS) in around 7.5 million files. Data from post-2005 was retrieved via

means of TheyWorkForYou4 parser and scraping tools. The latest parliamen-

tary data, once the initial retrieval to the present day from 2005 was complete,

was then downloaded daily.

Newly downloaded data is parsed through the same toolchain as the historic

data, which performs tokenisation and POS tagging by way of CLAWS, and

semantic tagging utilising USAS. The output of this toolchain (Figure 5.13) is

a set of TSV files consisting of a single contribution text per file. These files

can then be added to the existing database in LexiDB on the fly, something

which is not possible with many other existing corpus data systems. Sample

output of the toolchain is shown in figure 5.3.

5.3.1.2 User Interface

With the data loaded into a LexiDB instance and accessible via an API, a

web-based user interface was constructed using widely adopted HTML and

CSS libraries (Bootstrap5, JQuery6, AmCharts7). This user interface provides

3https://www.gla.ac.uk/schools/critical/research/fundedresearchprojects/samuels/
4https://www.theyworkforyou.com/
5https://getbootstrap.com/
6https://jquery.com/
7https://www.amcharts.com/

100 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

Historic
Hansard

Hansard
2005-onwards

Hansard
1803-onwards

CLAWS POS C5 tagset

USAS

Tagged TSV
output

LexiDB

Figure 5.13: Annotation Processing pipeline

Figure 5.14: Hansard UI search bar

a method for corpus linguists to access all the data in the constructed Hansard

corpus using a search bar and provides a graphical way of specifying query

parameters. Beyond this, results are generated into HTML output that is dis-

played on the page along with various tooltips and visualizations that allow for

users other than linguists such as social scientists or historians to meaningfully

interpret the data.

The main interface page presents the user with a search bar (see Figure 5.14)

similar to that found on any modern search engine. Users can fill in this

search bar with a word or sequence of words to search for and the results for

the default query type (concordance lines) will be retrieved and displayed. For

a query the search string entered by the user is converted into a query string

used by LexiDB (see section 4.4), defaulting to searching the words or tokens

column. Alternatively to this, users once familiarised with the query syntax

can enter a LexiDB style query string directly to utilise the ability to perform

both character level and token level regular expression matching on the query

Chapter 5 101

Novel Database Design for Extreme Scale Corpus Analysis

Figure 5.15: Hansard UI Concordance Results

as well as allowing the ability to query across multiple other columns stored in

the database such as POS or semantic tags, or even query based on metadata

to further refine the results (see section 3.2.3).

For a simple initial search, the results are displayed to the user in the form of

concordance lines. Beyond the typical highlighting of the hit term and vertical

alignment of the prior and post text, the interface also provides colour-coded

highlighting for each word based on its POS tags (see Figure 5.15 for an ex-

ample of unsorted results), in this case, all nouns appear in green. This can

theoretically be changed to highlight based on any tag available, in this case

study the main options available to highlight on are POS tags and semantic

tags. Mousing over a particular word will open a tooltip showing all the tags

that a particular word contains. Concordance lines also provide metadata

alongside the text itself, from the Hansard corpus the metadata displayed is

the speaker name, the date of the contribution and the original file name.

102 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

Figure 5.16: Hansard UI Histogram Visualisation

Finally, this view generates a histogram of the occurrences of the query string

over time within the corpus, in the case of Hansard from 1803 up until the

present day. This visualisation can also retain previous searches so that two

searches can be compared over time (see Figure 5.16).

5.3.1.2.1 Query Options Options for the different query types available

in the user interface can be accessed from the side panel (see Figure 5.17).

When a search has already been performed the different query types can be

directly applied and the previous query will be automatically performed again

and the new query type displayed to the user. The query types available are

a concordance line view (discussed above) referred to as a KWIC type, an

N-Gram view, a frequency list and a collocation search. All of these query

types can be performed with any type of search string, both individual words

or phrases utilising a token level regular expression.

Concordance searches have the options to change the highlighting on words,

as previously mentioned but also the ability to specify the context range of the

concordance lines as well as the number of concordances displayed per page.

As LexiDB allows for asynchronous searching, this mechanism is utilised by

the Hansard user interface to immediately display the first available page of

results to the user without the need to wait for the entire query to complete.

This allows the system to remain highly responsive which is essential for the

end user experience. Concordance lines can also be sorted at several levels

Chapter 5 103

Novel Database Design for Extreme Scale Corpus Analysis

Figure 5.17: Hansard UI Query Options

based on both the word and tag level at various positions relative to the hit,

the sort can also be done both lexically and by the frequency of the term or tag

at that position within the results, a feature not typically available on other

concordancers. Filters can also be applied to metadata so users can refine

results by data or by speaker.

NGram searches can have limitless values for ‘n’ as they are computed based

on the context of the search not from a pre-constructed table of NGrams which

are typically only constructed up to 5-grams. NGrams can also be constructed

104 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

based on annotation layers as well as words themselves meaning patterns in

part-of-speech for particular searches can easily be examined. As the search can

be for a phrase or sequence as well as an individual word, the context around

which to build the NGrams can also be specified. Searching for a single word

and constructing trigrams around this would need a minimum context of an

additional token either side of the search hit for three tokens to be constructed.

For a longer phrase, that will consist of at least three tokens, no additional

context is required to construct a set of trigrams (although additional context

may be desirable).

Frequency lists can be created and groupings can be performed on any annota-

tion level i.e. a search for a particular word can be performed and a frequency

list of the POS tags that the word is tagged within the corpus generated.

Collocation search can be performed and the results displayed to the user in

the form of a word cloud (see Figure 5.18). The collocation metrics can be

calculated based on either log-likelihood or mutual information (see Chapter

2). From this the word cloud visualisation can be generated based on the

top x results as specified by the user in the query options. As calculating

collocations is sometimes a lengthy operation (particularly when searching

for a highly frequent term) the results of the collocation search are updated

asynchronously so that estimates of the final results can be displayed to the

user in a timely fashion even if the final results take several seconds or even

several minutes.

5.3.1.3 Focus Group

The focus group8 was conducted with two participants, both very experienced

corpus linguists who have worked as conference chairs and given numerous

plenary talks. Neither had any previous connection to this project. The par-

ticipants will be hereafter referred to as participant A and B. They were given

8This focus group was approved by the Lancaster University FST Research Ethics Com-
mittee

Chapter 5 105

Novel Database Design for Extreme Scale Corpus Analysis

Figure 5.18: Hansard UI Collocation Word Cloud

106 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

prior access to the tool before being invited to share their thoughts and opin-

ions on the usability and usefulness of the interface itself, the underlying tool

as well as more general views on the current state of corpus linguistics, the

tools utilised and how they can work with modern large scale corpora. A set

of sample questions asked within the focus group can be found in Appendix D,

this is not an exhaustive list as many of the discussion points evolved naturally

within the focus group. These questions were asked initially to set up areas of

discussion. Both participants were part of the same focus group so ideas could

be discussed between each of them and grow naturally into wider discussions.

What follows is a summarization of the interesting or important points raised

within the focus group. These points are categorized into three areas, the usage

of the Hansard user interface itself, issues of scalability as it relates to modern

corpora and the use of other tools and finally thoughts on where the Hansard

user interface as well as the underlying database might go next, what strategies

might be feasible to increase adoption by corpus linguists. Points raised by

the participants are quoted verbatim where possible from the transcription of

the focus group and the implications of the point as it relates to the project

are briefly discussed to put the issues more into context.

5.3.1.3.1 Using the tool The initial discussion within the focus group

centred around the participants first attempts at using the tool and their over-

all impressions. This discussion was largely positive with the participants hav-

ing no problems getting started with using the user interface. However certain

elements of the functionality of the tool were not immediately apparent and

queried by the participants.

“... but I wanted to know how do you search for the company,

something like “antisemitism” keeps which is why I was asking

you for the best way to look for adjectives for example with

antisemitism.”

Participant A

Chapter 5 107

Novel Database Design for Extreme Scale Corpus Analysis

This highlighted the lack of clear guidance on how to search for POS tags

within the tool which requires knowledge of the query language. Although a

query syntax guide is available other simpler ways of guiding users through

the usage of the tool are discussed later within the group in section 5.3.1.3.3.

Further observations of some more subtle usages were also discussed.

“... search for say an anger semantic field ... I don’t want all of

the words that co-occur with antisemitism I want anything to do

with E3 minus, which is anger.”

Participant A

Whilst such a search would be possible within the tool9, performing a search

for the semantic field desired around a specific keyword and subsequently lim-

iting the collocations to within the hit field, such a search requires a deeper

understanding of how the tool works and so how to do similar tasks was not

immediately apparent to the participants. This is a limitation LexiDB shares

with other corpus data systems discussed in Chapter 2.

Another item that was observed was the ability to select different forms of collo-

cation metrics within the UI. As described, LexiDB supports log-likelihood and

mutual information metrics for collocations but the participants commented

further measures would be desirable.

“... I think it’s really nice to have alternative measures

available.”

Participant B

Features within the UI, specifically options available when querying were then

discussed. Although many options exist to customise searching within the tool,

it was noted that to change the query type you need to access the options panel

displaying all options that are available to the user.

“... some people don’t like having too many options because they

9{"sem":"E3-"}.{0,5}{"token":"antisemitism"}|b.{0,5}a=

108 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

don’t know which one to choose so I guess it’s striking a balance

between those.”

Participant B

This may necessitate a more simple method of selecting the query type within

the UI without the need to be overwhelmed with options.

This difficulty with an awareness of options and methods was observed further

when regarding the histogram for searches available in the concordance view.

“Could you overlap them at all? ... search result for one thing

and then overlap it with a search result for another thing so that

you can see differences over time.”

Participant A

While this is an option that is available in the tool it is not readily appar-

ent and could be better utilised by being immediately available. This is also

discussed later in section 5.3.1.3.3. When highlighted, this ability was greatly

appreciated by the participants.

“I think that’s great, if you can do something like that and it

visually represents in something like this which is to do with

change over time, those possibilities are really useful.”

Participant A

The usefulness of this histogram was discussed at length with a great deal of

enthusiasm surrounding the potential ability to enhance the functionality of it

further to highlight specific time periods and filter your results and then save

this for later.

“... if you could then save that so you’re continually able to save

something and then do something with that specific part of the

dataset.”

Participant A

Chapter 5 109

Novel Database Design for Extreme Scale Corpus Analysis

5.3.1.3.2 Scalability of corpora and other tools After gathering some

feedback on the participants first thoughts on using the tool the discussion

then turned to how the participants use other tools with a specific focus on if

they found other tools easy to use for larger-scale corpora.

The consensus within the group seemed to be that tools such as CQPWeb were

widely used for larger corpora if the desired corpora was hosted and available.

“... it depends what corpus I’m working on, so if it’s just a case

of where people have put various things, but yeah it’s all

CQPWeb at the moment.”

Participant B

It was also noted that various hosted services are becoming more restrictive,

possibly if they are turning to more commercially driven models to provide

their services.

“...I’ve used SketchEngine a lot but liking it less at the moment

because they restricted things that you can do with it quite a lot,

but otherwise AntConc and Wordsmith.”

Participant B

The participants’ experience with using software and tools locally with large

scale corpora was probed with observations that many systems work well with

smaller scale corpora but are hard to use as the dataset grows.

“...I’ve definitely felt restrictions of not being able to get software

to work on very large corpora.”

Participant B

As well as the deficiencies noted in using larger corpora, the difficulties in

simply setting up software for personal usage was debated with examples found

of commonly used hosted tools being frustrating to set up to use yourself.

“... I do know people who’ve tried to install CQPWeb and just

110 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

given up with it, that it required a lot more setting up than they

expected.”

Participant B

Such difficulties may have hindered many corpus linguists in research projects

in recent years, having software available that may very well perform and do

the task you want but not being able to make proper use of it due to difficulties

in setup or inadequacies for handling large datasets.

Digging further into this discussion surrounding the scale of corpora that were

typically used by participants, the question turned to whether corpora seem-

ingly, in the participants’ views are growing more and more or if smaller more

specialised corpora were still a more pressing concern.

“It depends if it’s historic ... Hansard is quite big for a historical

corpus... it depends on period for some as to what’s an

acceptable size of corpus. ”

Participant A

“...it varies so much across different projects that its nice to have

software that has the flexibility that can use the bigger datasets

when you need to.”

Participant B

This brought things back around to reliance on software that is hosted else-

where, limiting linguists to corpora that are already available and not being

able to use their own.

“...I’ve been using historical corpora which have been quite big

but they’ve all been hosted elsewhere so I haven’t had to deal with

the problems of getting them to work on software. ”

Participant B

Looking more towards the process of corpus collection and particularly the

Chapter 5 111

Novel Database Design for Extreme Scale Corpus Analysis

growing need to have live as opposed to static corpora specifically for corpora

built from mediums such as social media and live news feeds, observations

were made that existing tools make this handling and management of live

data cumbersome.

“...we also looked at social media so some of it was tweets some

of it was manifestos and so you’re basically making a corpus up

of various types of dataset and then that becomes unwieldy if

you’ve then got to manage it all.”

Participant A

This led to a wider debate on the ability of LexiDB to handle live data so that

linguists could build up their corpora in stages without the need to keep the

entire dataset a static entity and then load the entire thing into a tool again

when it is updated.

“I think that would be excellent... but yeah if you can add to it

and you can look at collecting data over a period of time, that I

think would help a lot of different people do different projects. ”

Participant A

Various examples of projects that participants were involved in, again using

social media data, were highlighted as good examples of where such a facility

would have been helpful.

“... being able to continually update that over a period of time

instead of having to choose when to start and when to stop... it

would have been easier if we’d had the facility to be able to keep

adding.”

Participant A

Limitations of other corpus tools as they relate to the scale of data that they

can handle were discussed by the participants. Particularly visualization tools

and the problematic nature of handling big corpora, despite how useful many

112 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

other tools are these issues are a source of frustration for the participants

regularly.

“I guess the only thing to say on the scale is problems I’ve had

on other interfaces, especially GraphColl, is visualisations, that

they are brilliant and then you put them to work on large corpora

and it’s just extremely difficult to get anything out of it.”

Participant B

When questioned further the types of visualizations that tend to struggle in

these tools are network graphs that can be expanded and collapsed. These

types of networks would be possible to generate using LexiDB as a back end,

making use of the ngram querying to gather data on the fly as the network

graph visualisations are expanded. It is likely existing tools need all the infor-

mation gathered and loaded into memory initially in order to load the visuali-

sation - meaning larger corpora are not practical to this style of visualisation.

Beyond these, many of these visualisations themselves will need adapting for

larger corpora, e.g. network expansion of occurrences may work well as a vi-

sualisation with only a few dozen paths, but in extreme-scale corpora, there

could be hundreds or thousands of paths.

Beyond this, further functional limitations of other systems were debated.

Other tools such as Cone[43] allow for useful visualisations to be used but

only raw text corpora can be worked with as opposed to tagged and annotated

corpora that are available in the interface being considered here.

“With Cone, you can also delete some, so if you wanted to show

a particular pattern you could delete the ones that weren’t part of

the pattern. Because yours can work on semantic fields as well

there would be less need to do that, because this was working on

raw corpora that weren’t pos tagged or semantic tagged. So if you

want to show for instance adjectives around a particular term.”

Participant B

Chapter 5 113

Novel Database Design for Extreme Scale Corpus Analysis

It appears that problems consistently exist when using larger modern corpora

for corpus linguists. Problems seem to arise far more frequently when using

bigger corpora regardless of whether they are annotated or not. This suggests

that the ability of LexiDB to more readily handle this scale of corpora and

provide an API upon which it is possible to build simple web-based corpus

tools like the Hansard UI would be of great benefit to both corpus linguists

and the developers of corpus tools.

5.3.1.3.3 Thoughts for adoption and future development The final

topic considered within the focus group was potential for future developments

of the interface that had been examined by the participants. As a proof-of-con-

cept, these suggestions relate primarily to improvements to the user interface

design and how such a tool could be used in the future.

The primary suggestion that opened into a wider discussion is the usage of the

query language of LexiDB and the options available within the interface. As

was discussed earlier in the focus group a query syntax guide exists but this

may not be the best way to encourage adoption or get people started with

using the tool.

“...I think people would want to be able to have a file with lots of

examples probably to get them started.”

Participant B

“Yes same, same definitely.”

Participant A

Clearly, a strong idea for easing people into the usage of the interface and

the underlying database is a more example-based suggestion on how to use the

interface, perhaps through pop-ups and walk-throughs available directly in the

UI. This could direct users to different aspects of the interface they might not

otherwise be aware of and ensure that the query language is better understood

and utilised.

114 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

“Yeah I think it’s fine I just think people like to have lots of

examples and then they can work out how to do their own if

they’ve got questions.”

Participant B

Nested within this discussion was an observation on the type of users who

might utilise the system, whether it be experienced corpus linguists who are

familiar with similar tools and other corpus query languages or students who

might not be as familiar with such systems. Providing clear worked examples

or a related set of examples that could be seen and followed through within the

interface it was suggested might provide a strong platform for people getting

to grips with corpus methods and techniques.

“Yeah, I found with SketchEngine when I was using it with

students what I had to do was do quite a lot of “if I wanted to do

x, how would I do it?” type things with them, and then once they

worked their way through those they just sort of go off and be

creative with it but people sort of need that security at the

beginning to work out what they need to do.”

Participant B

“...I think it depends on who you’re aiming it at. If you’re

aiming it at people who use CL tools already, (you) probably don’t

have to provide as many examples... but if it’s for students and

thinking about making something that they can then use to put

their own datasets in, (then) I can imagine a lot of students who

would really want to do that, but again they would need a bit of

support to get them going.”

Participant A

Participants indicated a desire to be able to save many of the aspects of their

work using the tool. This included the wish to save both the visualisations

produced from their searches so that they could potentially use them in their

Chapter 5 115

Novel Database Design for Extreme Scale Corpus Analysis

research but also the ability to save complex searches as they do them to

provide a means of picking up where they left off when they return to the tool

later. It was communicated that many other tools used by the participants

could not save certain aspects of their work, particularly when performing

exploratory steps digging into the data within corpora that meant doing more

complex things became more difficult than necessary.

“And the other thing was you couldn’t save them at all...”

Participant B

“Save so you can search again within that particular space you’ve

identified.”

Participant A

‘... if you can save complex searches as well. It’s quite handy to

be able to just pick something up again.”

Participant B

This could be achieved in many ways, both within the interface and within

the architecture of LexiDB itself, perhaps by providing a search history that is

saved within the database. In many other search systems, query histories can

also be leveraged into creating search suggestions.

“I think that the more you can bring it to life for people by maybe

building into it a mini case study and saying how this is this

search this is this visualisation this is how we build, I think you’ll

get a lot of people interested in it.”

Participant A

“It could just be a series of searches around a theme I suppose

that’d help show people. ”

Participant B

This final thought of building a wider case study (on top of the previously sug-

116 Chapter 5

Novel Database Design for Extreme Scale Corpus Analysis

gested list of worked examples) is very much an area that would get potential

users interested in using the Hansard corpus and user interface here for specific

purposes by providing a clear path to using the tool to conduct research, and

demonstrating the types of visualisations and the types of insights into the

data that the tool can help uncover. This is less to do with the underlying

database; however, by demonstrating the types of capability that the database

can support, the participants believe that this could help to fuel interest and

adoption of not only the Hansard user interface but also of LexiDB itself.

5.4 Summary

In this chapter, we have discussed an evaluation methodology that attempts

to resolve the lack of any standardised approach for evaluating corpus data

systems or corpus databases within the literature. This methodology hopes

to answer research questions 2 and 3 in chapter 1. The methodology can also

serve as the foundations upon which a standardised approach can be built. The

method presented is two-pronged including both a quantitative comparison of

the proposed system LexiDB to other corpus data systems, modern database

management systems and indexing systems as well as a qualitative analysis of

how LexiDB can be used as a data layer to develop a simple corpus tool based

on a large scale diachronic corpus, Hansard.

The quantitative analysis demonstrated that LexiDB’s design can outperform

existing corpus data tools. This is demonstrated through its ability to con-

sistently outperform CQP and Lucene for corpus queries and patterns with

typically faster query response times than both systems (see section 5.2.3).

The ability of LexiDB to scale out to handle an ever greater size of corpora is

also demonstrated in section 5.2.2 and how the specialised architecture of the

system is comparably scalable to modern database systems (MongoDB and

Cassandra) when scaling out in a clustered configuration.

Section 5.3.1 illustrated how easily the API of the system can be used to

Chapter 5 117

Novel Database Design for Extreme Scale Corpus Analysis

rapidly develop a web-based corpus tool in a single stand-alone HTML page.

The effectiveness of this prototype is qualitatively examined in the focus group

presented in section 5.3.1.3. The corpus linguists who participated, were ex-

cited by the possibilities of such a flexible tool that can also scale to accom-

modate large modern corpora.

Chapter 6 will discuss some of the shortcomings of the evaluation methodology

and suggest potential future enhancements that can take this approach further.

118 Chapter 5

Chapter 6

Conclusions

6.1 Summary of Thesis

Chapter 2 surveyed the plethora of related techniques and approaches. This

established the foundational background needed to understand and reconcile

established methods into a coherent design for performing corpus analysis. This

began with a discussion of the types of querying that are necessary to perform

generic corpus analysis and moves into how existing corpus tools allow linguists

to store and interrogate corpora. From the examination of existing tools it was

concluded that a wider range of approaches must be taken to modernise the

methods that corpus software use and this motivated further consideration of

patterns utilised by modern database management and information retrieval

systems which are tailored to handling big data. This examination of processes

for indexing and distributing databases acted as the basis for the novel design

and approach of this project.

The fundamental architecture that the design for LexiDB is built upon is

outlined in chapter 3. Here the proposal for a distributed architecture for a

corpus database is put forth. This allows for the design to be both scalable and

differentiates it from existing corpus tools that do not have this capability and

are only able to handle greater scales of corpora by scaling up i.e. running on

119

Novel Database Design for Extreme Scale Corpus Analysis

bigger, faster more powerful machines. By contrast, LexiDB’s design enables

for distribution across multiple machines or nodes which would allow the design

to be deployable on various cloud infrastructures (an example of which would

be AWS which it was demonstrated on in evaluation). Whilst the architectural

design shifts away somewhat from traditional ACID style SQL databases it is

demonstrated that the modern style of No-SQL type databases which act as

document stores is far more in keeping with the paradigm of data management

used in corpus analysis and can also be observed in the methods and manner

of usage of other corpus tools discussed in chapter 2. Methods by which

existing indexing techniques for both looking up and compressing postings

lists can be applied in this context are described. Finally, ways such a design

can be distributed through the adaption of an existing distributed hash table

algorithm are put forth. Disparate approaches are synergised into a single

coherent design and the implications for how it can be used to resolve corpus

queries are considered.

In chapter 4, how the architecture proposed in chapter 3 can be used to per-

form searching and querying in the context of corpus linguistics is discussed.

This goes beyond the simple lookups of information retrieval and indexing

systems to the ability to resolve regular expressions at not only the character

level within words but at the token level within documents. To do this, two

algorithms are proposed; the first an adaption of an existing approach[7] to

resolve finite-state automata over tries, the second an entirely novel algorithm

to resolve finite state machines based purely on postings lists with no need to

access the underlying data. These algorithms are then applied to the architec-

ture of LexiDB and further methods are proposed to utilise these techniques

to resolve the commonly used corpus queries.

The evaluation performed and discussed in chapter 5 examines the scalability

of the architecture proposed in chapter 3. It contrasts this with the scalaibility

of existing distributed database management systems. It also explores how the

approaches in chapter 4 allow LexiDB to outperform an existing corpus data

120 Chapter 6

Novel Database Design for Extreme Scale Corpus Analysis

system and a commonly used indexing library that is utilised by other corpus

data systems. Beyond this, the chapter explored qualitatively the usefulness of

the proposed database system to experienced corpus linguists through the use

of a custom-built web interface designed as part of a case study where linguists

could explore a corpus consisting of around two billion words (Hansard).

6.2 Proposed Design

Chapters 3 and 4 describe the proposed design implemented in LexiDB to allow

for corpus analysis to be performed on extreme-scale corpora in the order of

billions or even tens of billions of words. The design allows for the system

to be scaled out to handle the ever-greater size of corpora by scaling out not

up, this as identified in chapter 2, is a key limitation of existing, off the shelf,

corpus data systems that only allow for scaling up to support bigger sizes of

corpora. LexiDB achieves this by making use of an adapted use of the Chord

algorithm which is demonstrated to be an effective approach for distributing

data sets and maintaining redundancy.

The design as implemented has been demonstrated to scale similarly to ex-

isting NoSQL database management systems MongoDB and Cassandra (see

sections 5.2.1 and 5.2.2). This means that the approach can be considered an

appropriate alternative to less specialised modern database systems due to the

tailoring of the API towards corpus data. The design acts as a column store

internally whilst exhibiting the outward appearance in the API of a document

store (see chapter 3). This makes it far better suited to storing corpus data

than NoSQL systems that both inwardly and outwardly have either one of

these properties i.e. document stores have well-suited APIs to corpus data

but do not have the internal storage advantages of column stores and column

stores vice versa.

In what way this approach compares to existing corpus tools can be seen in

section 5.2.3 where it is found that the prototype implementation of LexiDB

Chapter 6 121

Novel Database Design for Extreme Scale Corpus Analysis

outperforms CWB consistently across a multitude of uni, bi and trigram part-

of-speech pattern searches where it is up 535% faster on basic searches and

consistently faster across all types. It is also demonstrated that the querying

approach can outperform Lucene on many occasions, even despite the added

overhead of actual retrieval of data in context after index lookups which Lucene

does not perform in the associated tests. This demonstrates that the approach

taken in the design has advantages over many other hosted corpus data systems

discussed in chapter 2, many of which utilise Lucene for indexing.

6.3 Limitations and Future Work

While the design of LexiDB allows for efficient storage and retrieval of multi-

layered annotated corpora in the form of token streams, it does not fully sup-

port the ability to handle corpora at multiple layers. Although the column

store approach can be customised to handle structures such as XML (XPath

can be used to extract metadata), the primary file format that must be used

when inserting data is TSV or CSV. While sufficient for the aims of this project

this does create a problem of conversion being required for many corpora whose

annotations are not stored as columns in a TSV or CSV file but as attributes

or elements in an XML document. Alternative approaches and methods to

handle XML based corpus formats such as LPath are discussed in chapter 2,

as well as methods in which column stores can be modified to store and effi-

ciently execute XPath queries, are illustrated by the design of XBase. Future

work to combine these approaches and incorporate them into the architecture

of LexiDB would provide a good foundation to build on going forward. This

would make the design capable of supporting any potential format of source

data without any need to convert to some tabular type format.

Beyond this, how the proposed approach can be compared meaningfully to

existing systems is somewhat limited. This is in no small part due to the

unfortunate lack of availability of many existing corpus data systems. As

122 Chapter 6

Novel Database Design for Extreme Scale Corpus Analysis

discussed in section 2.2 many of these systems are only available as hosted

online resources and users are tied into using both the corpora that are read-

ily made available on these systems as well as the hardware upon which they

are hosted. This makes meaningful comparisons between systems extremely

difficult to attain, even in situations where the same, or comparably similar

corpora are available on two hosted systems, information on the hosted setup,

specifically the hardware being used, is consistently lacking. Greater dissem-

ination of source code or at least deployable versions of existing systems so

that linguists can utilise the systems in their own environment could help to

remedy this problem but this is a community-wide concern and does not look

likely to change soon due to the high proportion of systems built for a specific

research project and/or with specific corpora in mind, the motivation to allow

the systems to be released for more general purposes may simply not be there

or in many cases to do so may simply not be practical.

Finally, the focus within the evaluation was on English language corpora. This

could conceivably be considered a problem in other languages, perhaps where

the text reads right to left, unlike English. However, in practice, this is less

likely to be a problem as this would need to be handled by a toolchain respon-

sible for tokenisation, once in the form of a token stream any language could

be handled by LexiDB. In terms of displaying query results in a user interface,

this would again be an application-level concern. The user interface described

chapter 5 was designed specifically for the Hansard corpus. Interfaces for cor-

pora in other languages may need a custom application level to display results

appropriately.

6.4 Research Questions and Contributions

The main research question of this thesis was to investigate how modern

database and information retrieval techniques could be tailored to meet the

requirements of the ever-increasing scale of corpora utilised for corpus analysis.

Chapter 6 123

Novel Database Design for Extreme Scale Corpus Analysis

Through the development of a new architecture combining several existing ap-

proaches and the formulation of unique algorithms to handle corpus querying,

it has been demonstrated that this new design can be more effective than ex-

isting systems for fast querying of extreme-scale corpora. The sub-questions

outlined in section 1.4 have been answered and the following novel contribu-

tions are claimed;

1. A novel database architecture tailored specifically for corpus data that

has the ability to scale out to handle ever greater sizes of corpora.

2. An adapted method for applying regular expressions over a dictionary of

strings based on resolving finite state machines against pre-constructed

radix trees.

3. A novel method of performing token regular expression lookups utilising

only index information without any need to access the underlying token

stream.

4. A proposal for an evaluation methodology that allows for corpus query

systems to be meaningfully compared quantitatively based on their re-

sponse times to the most heavyweight or typically time-consuming queries.

5. Demonstration that the proposed design can be meaningfully used by

corpus linguists via the Hansard case study.

124

References

[1] V. Abramova and J. Bernardino. NoSQL Databases: MongoDB vs Cas-

sandra. In Proceedings of the International C* Conference on Computer

Science and Software Engineering, pages 14–22, 2013.

[2] S. Adolphs, B. Brown, R. Carter, P. Crawford, and O. Sahota. Applying

Corpus Linguistics in a Health Care Context. Journal of Applied Linguis-

tics and Professional Practice, 1(1):9–28, 2007.

[3] M. Alexander and M. Davies. The Hansard Corpus 1803-2005. 2015.

[4] M. Alexander, M. Davies, and F. Dallachy. Semantic EEBO. 2017.

[5] L. Anthony. AntConc (Version 3.4. 3)[Computer Software]. Tokyo, Japan:

Waseda University, 2014.

[6] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern Information Retrieval,

volume 463. ACM press New York, 1999.

[7] R. A. Baeza-Yates and G. H. Gonnet. Fast Text Searching for Regu-

lar Expressions or Automaton Searching on Tries. Journal of the ACM

(JACM), 43(6):915–936, 1996.

[8] P. Baker. Corpus Methods in Linguistics. Research Methods in Linguistics,

pages 93–113, 2010.

[9] P. Baker, C. Gabrielatos, and T. McEnery. Sketching Muslims: A Cor-

pus Driven Analysis of Representations Around the Word ’Muslim’in the

British Press 1998–2009. Applied linguistics, 34(3):255–278, 2013.

125

Novel Database Design for Extreme Scale Corpus Analysis

[10] P. Bański, J. Bingel, N. Diewald, E. Frick, M. Hanl, M. Kupietz, P. Pzik,

C. Schnober, and A. Witt. KorAP: The New Corpus Analysis Platform

at IDS Mannheim. Proceedings of the 6th Language and Technology Con-

ference, 2013.

[11] P. Bański, E. Frick, and A. Witt. Corpus Query Lingua Franca (CQLF).

In Proceedings of the Tenth International Conference on Language Re-

sources and Evaluation (LREC’16), pages 2804–2809, 2016.

[12] M. W. Bauer and B. Aarts. Corpus Construction: A Principle for Qual-

itative Data Collection. Qualitative Researching With Text, Image and

Sound: A Practical Handbook, pages 19–37, 2000.

[13] H. R. Bazoobandi, S. de Rooij, J. Urbani, A. ten Teije, F. van Harmelen,

and H. Bal. A Compact In-Memory Dictionary for RDF Data. In European

Semantic Web Conference, pages 205–220. Springer, 2015.

[14] G. Berry and R. Sethi. From Regular Expressions to Deterministic Au-

tomata. Theoretical computer science, 48:117–126, 1986.

[15] S. Bird, Y. Chen, S. B. Davidson, H. Lee, and Y. Zheng. LPath, a Sym-

metric XPath Dialect for Linguistic Queries.

[16] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,

J. Siméon, and M. Stefanescu. XQuery 1.0: An XML Query Language.

2002.

[17] E. A. Brewer. Towards Robust Distributed Systems. In PODC, volume 7.

Portland, OR, 2000.

[18] O. Christ. A Modular and Flexible Architecture for an Integrated Corpus

Query System. arXiv preprint cmp-lg/9408005, 1994.

[19] K. W. Church and P. Hanks. Word Association Norms, Mutual Informa-

tion, and Lexicography. Computational linguistics, 16(1):22–29, 1990.

126

Novel Database Design for Extreme Scale Corpus Analysis

[20] J. Daciuk, S. Mihov, B. W. Watson, and R. E. Watson. Incremental

Construction of Minimal Acyclic Finite-State Automata. Computational

Linguistics, 26(1):3–16, 2000.

[21] M. Davies. The Corpus of Contemporary American English (COCA): 560

Million Words, 1990-Present, 2008.

[22] M. Davies. Expanding Horizons in Historical Linguistics With the 400-

Million Word Corpus of Historical American English. Corpora, 7(2):121–

157, 2012.

[23] M. Davies. Corpus of News on the Web (NOW): 3+ billion words from

20 countries, updated every day. Retrieved January, 25:2019, 2013.

[24] M. Davies. The Best of Both Worlds: Multi-Billion Word “Dynamic”

Corpora. Challenges in the Management of Large Corpora (CMLC-7)

2019, page 23, 2019.

[25] M. Davies and J.-B. Kim. The Advantages and Challenges of “Big Data”:

Insights From the 14 Billion Word iWeb Corpus. Linguistic Research,

36:1–34, 2019.

[26] R. De La Briandais. File Searching Using Variable Length Keys. In Papers

presented at the the March 3-5, 1959, western joint computer conference,

pages 295–298, 1959.

[27] H. De Smet. Corpus of Late Modern English texts (extended version).

2008.

[28] H. De Smet. Yahoo-based Contrastive Corpus of Questions and Answers.

2009.

[29] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:

Amazon’s Highly Available Key-Value Store. ACM SIGOPS operating

systems review, 41(6):205–220, 2007.

127

Novel Database Design for Extreme Scale Corpus Analysis

[30] L. Denoyer and P. Gallinari. The wikipedia xml corpus. In International

Workshop of the Initiative for the Evaluation of XML Retrieval, pages

12–19. Springer, 2006.

[31] T. Dunning. Accurate Methods for the Statistics of Surprise and Coinci-

dence. Computational linguistics, 19(1):61–74, 1993.

[32] P. Elias. Efficient Storage and Retrieval by Content and Address of Static

Files. Journal of the ACM (JACM), 21(2):246–260, 1974.

[33] S. Evert. The CQP Query Language Tutorial. IMS Stuttgart. CWB

version, 2:b90, 2005.

[34] S. Evert and A. Hardie. Twenty-first Century Corpus Workbench: Updat-

ing a Query Architecture for the New Millennium. Proceedings of Corpus

Linguistics, 2011.

[35] S. Evert and A. Hardie. Ziggurat: A New Data Model and Indexing For-

mat for Large Annotated Text Corpora. Challenges in the Management

of Large Corpora (CMLC-3), page 21, 2015.

[36] R. M. Fano. On the Number of Bits Required to Implement an Associative

Memory. Massachusetts Institute of Technology, Project MAC, 1971.

[37] P. Forchini and A. Murphy. N-Grams in Comparable Specialized Corpora:

Perspectives on Phraseology, Translation, and Pedagogy. International

journal of corpus linguistics, 13(3):351–367, 2008.

[38] W. N. Francis and H. Kucera. Brown Corpus Manual. Letters to the

Editor, 5(2):7, 1979.

[39] R. Garside. The CLAWS Word-Tagging System. The Computational

Analysis of English: A Corpus-Based Approach. London: Longman, pages

30–41, 1987.

[40] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations and

Indexes. In Proceedings 14th International Conference on Data Engineer-

ing, pages 370–379. IEEE, 1998.

128

Novel Database Design for Extreme Scale Corpus Analysis

[41] S. T. Gries. Dispersions and Adjusted Frequencies in Corpora. Interna-

tional Journal of Corpus Linguistics, 13(4):403–437, 2008.

[42] C. Grün, S. Gath, A. Holupirek, and M. H. Scholl. XQuery Full Text

Implementation in BaseX. In International XML Database Symposium,

pages 114–128. Springer, 2009.

[43] D. Gullick, P. Rayson, J. Mariani, S. Piao, and F. Taiani. CONE: COllo-

cational Network Explorer [Computer Software], 2010.

[44] T. Haerder and A. Reuter. Principles of Transaction-Oriented Database

Recovery. ACM computing surveys (CSUR), 15(4):287–317, 1983.

[45] A. Hardie. CQPweb—combining Power, Flexibility and Usability in a Cor-

pus Analysis Tool. International journal of corpus linguistics, 17(3):380–

409, 2012.

[46] D. Hawking. Web Search Engines: Part 2. Computer, 39(8):88–90, 2006.

[47] S. Hellmann, C. Chiarcos, and A.-c. N. Ngomo. The Tiger Corpus Naviga-

tor. In In Proc. 9th International Workshop on Treebanks and Linguistic

Theories (TLT-9. Citeseer, 2010.

[48] K. Hofland and S. Johansson. Word Frequencies in British and American

English. Norwegian Computing Centre for the Humanities, 1982.

[49] S. Z. W. Huilin. Overview on the Advance of the Research on Named

Entity Recognition. Data Analysis and Knowledge Discovery, 26(6):42–

47, 2010.

[50] D. Janus and A. Przepiórkowski. Poliqarp 1.0: Some Technical Aspects

of a Linguistic Search Engine for Large Corpora. In The proceedings of

Practical Applications of Linguistic Corpora, 2005.

[51] D. Janus and A. Przepiórkowski. Poliqarp: An Open Source Corpus

Indexer and Search Engine with Syntactic Extensions. In Proceedings of

the 45th Annual Meeting of the Association for Computational Linguistics

129

Novel Database Design for Extreme Scale Corpus Analysis

Companion Volume Proceedings of the Demo and Poster Sessions, pages

85–88, 2007.

[52] B. Jurish and K.-M. Würzner. Word and Sentence Tokenization with

Hidden Markov Models. JLCL, 28(2):61–83, 2013.

[53] D. E. Knuth. The Art of Computer Programming, volume 3. Pearson

Education, 1997.

[54] O. Kolesnikova. Survey of Word Co-Occurrence Measures for Collocation

Detection. Computación y Sistemas, 20(3):327–344, 2016.

[55] G. Leech. 100 Million Words of English: The British National Corpus.

Language Research, 28(1):1–13, 1992.

[56] G. Leech, R. Garside, and E. S. Atwell. The Automatic Grammatical

Tagging of the LOB Corpus. ICAME Journal: International Computer

Archive of Modern and Medieval English Journal, 7:13–33, 1983.

[57] F. M. Liang. Word Hy-phen-a-tion by Com-put-er. Technical report,

Calif. Univ. Stanford. Comput. Sci. Dept., 1983.

[58] C. D. Manning, H. Prabhakar Raghavan, R. Baeza-Yates, and B. Ribeiro-

Neto. Information Retrieval Systems, 2009.

[59] T. McEnery. Corpus linguistics, volume 978019. Oxford University Press

Inc, 2012.

[60] T. McEnery and A. Wilson. Corpus Linguistics. The Oxford Handbook of

Computational Linguistics, pages 448–463, 2003.

[61] R. McNaughton and H. Yamada. Regular Expressions and State Graphs

for Automata. IRE transactions on Electronic Computers, (1):39–47,

1960.

[62] P. Meurer. Corpuscle–A New Search Engine for Large Annotated Corpora.

Technical report, Technical report, Uni Digital, Uni Research AS, Bergen,

Norway, 2010.

130

Novel Database Design for Extreme Scale Corpus Analysis

[63] P. Meurer. Corpuscle–A New Corpus Management Platform for Anno-

tated Corpora. G. Andersen (ed), pages 31–50, 2012.

[64] J. Michelfeit, J. Pomikálek, and V. Suchomel. Text Tokenisation Using

unitok. In RASLAN, pages 71–75, 2014.

[65] A. Møller. dk.brics.automaton – finite-state automata and regular expres-

sions for Java, 2017. http://www.brics.dk/automaton/.

[66] Y. Murata, T. Inaba, H. Takizawa, and H. Kobayashi. A Distributed and

Cooperative Load Balancing Mechanism for Large-Scale P2P Systems.

In International Symposium on Applications and the Internet Workshops

(SAINTW’06), pages 4–pp. IEEE, 2006.

[67] A. Nayak, A. Poriya, and D. Poojary. Type of NOSQL Databases and Its

Comparison With Relational Databases. International Journal of Applied

Information Systems, 5(4):16–19, 2013.

[68] J. Nivre and M. Scholz. Deterministic Dependency Parsing of English

Text. In COLING 2004: Proceedings of the 20th International Conference

on Computational Linguistics, pages 64–70, 2004.

[69] A. Nurmi. The Corpus of Early English Correspondence Sampler

(CEECS). ICAME journal, 23:53–64, 1999.

[70] D. D. Palmer. Tokenisation and Sentence Segmentation. Handbook of

natural language processing, pages 11–35, 2000.

[71] J. Porta, M. Kupietz, H. Biber, H. Lüngen, P. Bański, and E. Breiteneder.

From Several Hundred Million to Some Billion Words: Scaling Up a Cor-

pus Indexer and a Search Engine With MapReduce. In Proceedings of the

workshop on Challenges in the Management of Large Corpora (CMLC-2),

pages 25–29, 2014.

[72] M. F. Porter et al. An Algorithm for Suffix Stripping. Program, 14(3):130–

137, 1980.

131

Novel Database Design for Extreme Scale Corpus Analysis

[73] P. Rayson. From Key Words to Key Semantic Domains. International

Journal of Corpus Linguistics, 13(4):519–549, 2008.

[74] P. Rayson, D. Archer, S. Piao, and A. M. McEnery. The UCREL Se-

mantic Analysis System. In Proceedings 4th International Conference on

Language Resources and Evaluation, 2004.

[75] P. Rayson and R. Garside. Comparing Corpora Using Frequency Profiling.

In Proceedings of the workshop on Comparing corpora-Volume 9, pages 1–

6. Association for Computational Linguistics, 2000.

[76] J. Rissanen and G. G. Langdon. Arithmetic Coding. IBM Journal of

Research and Development, 23(2):149–162, 1979.

[77] P. Rychlỳ. Manatee/Bonito-A Modular Corpus Manager. In RASLAN,

pages 65–70, 2007.

[78] A. B. Sardinha. WordSmith tools. Computers & Texts 12 (1996), 1996.

[79] R. Schäfer and F. Bildhauer. Building Large Corpora From the Web Using

a New Efficient Tool Chain. In LREC, pages 486–493, 2012.

[80] R. Schäfer and L. W. C. DFG. Processing and Querying Large Web

Corpora With the COW14 Architecture. Challenges in the Management

of Large Corpora (CMLC-3), page 28, 2015.

[81] C. Schnober. Using Information Retrieval Technology for a Corpus Anal-

ysis Platform. In KONVENS, pages 199–207, 2012.

[82] A. Shaker and D. S. Reeves. Self-Stabilizing Structured Ring Topology

p2p Systems. In Fifth IEEE International Conference on Peer-to-Peer

Computing (P2P’05), pages 39–46. IEEE, 2005.

[83] C. Shaoul and C. Westbury. A USENET Corpus (2005–2009). University

of Alberta, Canada, 2009.

[84] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-

132

Novel Database Design for Extreme Scale Corpus Analysis

tions. ACM SIGCOMM Computer Communication Review, 31(4):149–

160, 2001.

[85] M. Straka, J. Hajic, and J. Straková. UDPipe: Trainable Pipeline for Pro-

cessing CoNLL-U Files Performing Tokenization, Morphological Analysis,

Pos Tagging and Parsing. In Proceedings of the Tenth International Con-

ference on Language Resources and Evaluation (LREC’16), pages 4290–

4297, 2016.

[86] C. J. Tauro, S. Aravindh, and A. Shreeharsha. Comparative Study of the

New Generation, Agile, Scalable, High Performance NOSQL Databases.

International Journal of Computer Applications, 48(20):1–4, 2012.

[87] V. Vandeghinste and L. Augustinus. Making a Large Treebank Searchable

Online. The SoNaR Case. In Proceedings of the LREC2014 2nd Workshop

on Challenges in the Management of Large Corpora (CMLC-2), pages 15–

20. ELRA; Paris, 2014.

[88] S. Wattam, P. Rayson, M. Alexander, and J. Anderson. Experiences with

Parallelisation of an Existing NLP Pipeline: Tagging Hansard. In LREC,

pages 4093–4096, 2014.

[89] J. J. Webster and C. Kit. Tokenization As the Initial Phase in NLP. In

COLING 1992 Volume 4: The 15th International Conference on Compu-

tational Linguistics, 1992.

[90] D. Wright. Using Word N-Grams to Identify Authors and Idiolects: A

Corpus Approach to a Forensic Linguistic Problem. International journal

of corpus linguistics, 22(2):212–241, 2017.

[91] R. E. Wylls. Empirical and Theoretical Bases of Zipf’s Law. Illinois, 53,

1981.

[92] G. K. Zipf. Human Behavior and the Principle of Least Effort. 1949.

[93] M. M. Zloof. Query by Example. In Proceedings of the May 19-22, 1975,

National Computer Conference and Exposition, pages 431–438, 1975.

133

Novel Database Design for Extreme Scale Corpus Analysis

[94] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-Scalar RAM-CPU

Cache Compression. In 22nd International Conference on Data Engineer-

ing (ICDE’06), pages 59–59. IEEE, 2006.

134

Appendices

135

Appendix A

Experimental Results 1

t1 = time of first test, t2 = time of second test etc. ta = average (mean) time.

All times are in milliseconds (ms).

137

Novel Database Design for Extreme Scale Corpus Analysis

word freq t1 t2 t3 t4 t5 ta ta-1
gauntly 1 58 21 21 26 21 29 22
croquet 1 56 21 21 20 22 28 21
patronym 1 56 21 24 21 20 28 22
ratpayers 1 59 21 21 20 21 28 21
thugutt 1 47 21 20 21 21 26 21
ogies 1 31 21 21 21 21 23 21
fecias 1 63 20 21 21 21 29 21
gacious 1 48 20 20 21 20 26 20
unspared 1 60 21 21 21 21 29 21
moyland 1 21 20 21 21 21 21 21
weeny 28 139 21 22 25 21 46 22
kilometers 28 103 21 22 21 22 38 22
plebs 28 81 21 21 22 21 33 21
appraiser 28 54 21 21 20 21 27 21
earldoms 28 105 21 21 21 21 38 21
candlemas 28 73 22 21 21 21 32 21
laudations 28 50 21 21 20 21 27 21
coachmakers 28 60 21 21 20 21 29 21
heinkel 28 111 21 21 21 21 39 21
conegate 28 142 21 21 21 21 45 21
it 18358013 161617 5357 5429 5597 5627 36725 5503
i 22062590 190707 70376 77344 72931 72892 96850 73386
is 22102628 81032 80796 80591 80365 80125 80582 80469
a 25980641 80596 80428 80398 80390 80021 80367 80309
in 32033919 99537 99773 99761 100039 99803 99783 99844
and 32911704 105452 104283 104154 104228 104088 104441 104188
that 37707967 154634 135725 135410 135455 135441 139333 135508
to 51541721 204702 164010 164241 164610 164101 172333 164241
of 57134689 238192 176470 176444 176507 176705 188864 176532
the 117510509 455524 424382 424640 424597 424560 430741 424545

Table A.1: Query times (ms) MongoDB 4 node cluster

138 Appendix A

Novel Database Design for Extreme Scale Corpus Analysis

word freq t1 t2 t3 t4 t5 ta ta-1
gauntly 1 69 20 20 20 23 30 21
croquet 1 21 20 20 20 20 20 20
patronym 1 22 20 20 20 20 20 20
ratpayers 1 21 20 20 19 20 20 20
thugutt 1 20 20 19 20 20 20 20
ogies 1 22 19 20 20 20 20 20
fecias 1 21 20 20 20 19 20 20
gacious 1 21 20 19 20 20 20 20
unspared 1 22 20 20 20 20 20 20
moyland 1 21 20 20 20 20 20 20
weeny 28 25 20 20 21 21 21 21
kilometers 28 30 20 20 20 20 22 20
plebs 28 28 20 20 21 21 22 21
appraiser 28 26 21 20 21 21 22 21
earldoms 28 29 20 20 20 20 22 20
candlemas 28 29 20 20 20 20 22 20
laudations 28 30 19 20 20 20 22 20
coachmakers 28 35 20 21 20 20 23 20
heinkel 28 31 20 20 20 20 22 20
conegate 28 41 20 20 20 20 24 20
it 18358013 106998 4361 4094 4034 4074 24712 4141
i 22062590 111147 5201 5189 5216 5227 26396 5208
is 22102628 104715 5385 5314 5357 5323 25219 5345
a 25980641 102845 6030 6053 6087 6161 25435 6083
in 32033919 107884 7260 7238 7242 7233 27371 7243
and 32911704 109151 7394 7261 7377 7277 27692 7327
that 37707967 122596 8423 8437 8347 8234 31207 8360
to 51541721 169546 12369 12299 12237 12237 43738 12286
of 57134689 310229 13308 13566 13822 13195 72824 13473
the 117510509 642588 521226 516511 512301 510788 540683 515207

Table A.2: Query times (ms) MongoDB 8 node cluster

Appendix A 139

Novel Database Design for Extreme Scale Corpus Analysis

word freq t1 t2 t3 t4 t5 ta ta-1
gauntly 1 359 22 22 27 24 91 24
croquet 1 24 27 22 21 22 23 23
patronym 1 21 22 22 21 21 21 22
ratpayers 1 23 21 21 21 23 22 22
thugutt 1 23 22 21 21 21 22 21
ogies 1 23 25 20 22 22 22 22
fecias 1 23 21 26 32 21 25 25
gacious 1 23 24 28 25 28 26 26
unspared 1 30 22 25 27 36 28 28
moyland 1 25 26 55 24 22 30 32
weeny 28 32 24 26 21 26 26 24
kilometers 28 28 24 24 22 22 24 23
plebs 28 28 25 22 22 22 24 23
appraiser 28 34 23 90 22 22 38 39
earldoms 28 25 22 22 21 25 23 23
candlemas 28 44 25 24 22 22 27 23
laudations 28 28 24 25 22 25 25 24
coachmakers 28 29 31 26 27 32 29 29
heinkel 28 36 25 25 22 22 26 24
conegate 28 36 22 21 32 24 27 25
it 18358013 46650 2516 2490 2551 2457 11333 2504
i 22062590 46670 2994 2894 2913 2917 11678 2930
is 22102628 41307 2972 2930 2915 2931 10611 2937
a 25980641 45397 3207 3283 3248 3333 11694 3268
in 32033919 50214 4093 3992 3859 3879 13207 3956
and 32911704 43207 4125 4152 4122 3908 11903 4077
that 37707967 39895 5154 5055 5026 5223 12071 5115
to 51541721 45373 6860 6505 6463 6507 14342 6584
of 57134689 46361 7122 7125 7471 7269 15070 7247
the 117510509 186992 14821 15002 15420 15188 49485 15108

Table A.3: Query times (ms) MongoDB 16 node cluster

140 Appendix A

Novel Database Design for Extreme Scale Corpus Analysis

word freq t1 t2 t3 t4 t5 ta ta-1
gauntly 1 60 24 24 24 25 31 24
croquet 1 24 23 22 23 22 23 23
patronym 1 33 25 24 24 26 26 25
ratpayers 1 24 27 23 24 25 25 25
thugutt 1 25 25 24 23 27 25 25
ogies 1 31 33 29 22 24 28 27
fecias 1 26 24 23 23 22 24 23
gacious 1 24 24 27 27 28 26 27
unspared 1 25 23 24 23 23 24 23
moyland 1 39 23 24 27 30 29 26
weeny 28 67 33 33 30 31 39 32
kilometers 28 38 31 28 28 27 30 29
plebs 28 46 29 32 26 26 32 28
appraiser 28 44 31 32 35 33 35 33
earldoms 28 36 29 27 25 26 29 27
candlemas 28 30 27 31 28 25 28 28
laudations 28 35 29 26 26 26 28 27
coachmakers 28 34 27 27 27 25 28 27
heinkel 28 35 27 25 27 26 28 26
conegate 28 31 29 26 26 27 28 27
it 18358013 88 32 33 35 29 43 32
i 22062590 112 38 26 36 30 48 33
is 22102628 46 28 28 26 41 34 31
a 25980641 83 31 29 29 29 40 30
in 32033919 43 28 28 27 27 31 28
and 32911704 53 26 59 27 27 38 35
that 37707967 68 26 41 27 31 39 31
to 51541721 55 26 36 26 27 34 29
of 57134689 105 31 29 28 31 45 30
the 117510509 52 28 28 28 26 32 28

Table A.4: Query times (ms) Cassandra 4 node cluster

Appendix A 141

Novel Database Design for Extreme Scale Corpus Analysis

word freq t1 t2 t3 t4 t5 ta ta-1
gauntly 1 38 22 23 23 22 26 23
croquet 1 24 22 22 22 22 22 22
patronym 1 32 23 23 23 24 25 23
ratpayers 1 25 22 23 24 24 24 23
thugutt 1 23 23 25 22 23 23 23
ogies 1 22 23 21 21 23 22 22
fecias 1 22 22 22 22 22 22 22
gacious 1 22 23 22 21 22 22 22
unspared 1 21 22 22 22 22 22 22
moyland 1 23 22 22 22 24 23 23
weeny 28 33 27 24 23 24 26 25
kilometers 28 24 24 25 24 25 24 25
plebs 28 26 23 24 24 25 24 24
appraiser 28 33 27 26 27 26 28 27
earldoms 28 26 23 24 24 23 24 24
candlemas 28 25 25 25 25 25 25 25
laudations 28 22 23 22 22 22 22 22
coachmakers 28 25 24 24 24 23 24 24
heinkel 28 25 25 23 27 23 25 25
conegate 28 21 23 22 23 24 23 23
it 18358013 31 27 25 25 25 27 26
i 22062590 29 25 27 28 25 27 26
is 22102628 26 26 25 25 27 26 26
a 25980641 253 25 26 25 26 71 26
in 32033919 27 25 25 24 25 25 25
and 32911704 30 26 27 26 26 27 26
that 37707967 29 26 26 28 26 27 27
to 51541721 33 25 26 24 23 26 25
of 57134689 29 24 25 25 24 25 25
the 117510509 30 24 22 24 22 24 23

Table A.5: Query times (ms) Cassandra 8 node cluster

142 Appendix A

Novel Database Design for Extreme Scale Corpus Analysis

word freq t1 t2 t3 t4 t5 ta ta-1
gauntly 1 40 23 23 23 22 26 23
croquet 1 24 33 25 28 23 27 27
patronym 1 23 23 23 25 23 23 24
ratpayers 1 22 23 22 24 22 23 23
thugutt 1 23 24 24 23 22 23 23
ogies 1 23 24 24 24 23 24 24
fecias 1 23 22 22 21 22 22 22
gacious 1 25 21 21 22 22 22 22
unspared 1 22 22 23 22 21 22 22
moyland 1 22 22 23 21 22 22 22
weeny 28 39 26 27 26 26 29 26
kilometers 28 22 22 24 22 22 22 23
plebs 28 22 22 22 23 23 22 23
appraiser 28 29 26 26 25 25 26 26
earldoms 28 32 23 23 23 23 25 23
candlemas 28 23 22 22 21 28 23 23
laudations 28 23 22 23 22 24 23 23
coachmakers 28 23 22 22 22 22 22 22
heinkel 28 22 23 23 23 23 23 23
conegate 28 21 22 22 21 21 21 22
it 18358013 30 27 32 31 27 29 29
i 22062590 25 26 24 25 25 25 25
is 22102628 25 25 28 30 27 27 28
a 25980641 26 25 25 25 24 25 25
in 32033919 25 24 26 24 25 25 25
and 32911704 27 25 26 27 25 26 26
that 37707967 27 25 25 24 24 25 25
to 51541721 25 24 24 24 24 24 24
of 57134689 25 22 23 26 23 24 24
the 117510509 26 24 25 23 23 24 24

Table A.6: Query times (ms) Cassandra 16 node cluster

Appendix A 143

Novel Database Design for Extreme Scale Corpus Analysis

144 Appendix A

Appendix B

Experimental Results 2

145

Novel Database Design for Extreme Scale Corpus Analysis

term freq corpus 1 node 2 nodes 4 nodes
the 40743718 eebo 23804 6801 1921
of 28049678 eebo 5056 2212 1223
and 24941692 eebo 4320 1794 1273
to 19692295 eebo 4094 1869 1009
in 13423220 eebo 3495 1513 869
that 11899383 eebo 2945 1285 763
a 9971399 eebo 2411 1059 667
is 8401733 eebo 2162 1053 523
it 7217334 eebo 1912 942 482
his 6748581 eebo 1823 871 660
the 108400120 hansard 77554 22242 7792
of 54755688 hansard 12626 7400 2337
to 49684555 hansard 12508 5512 2321
that 35621789 hansard 11447 3664 1637
and 32621665 hansard 7313 2854 1601
in 27959294 hansard 7752 3136 1760
a 25092849 hansard 6299 3613 1532
I 22046663 hansard 5071 3151 1205
is 21539984 hansard 4652 2215 1328
not 15135930 hansard 3934 1843 994

Table B.1: Query times (ms) LexiDB KWIC search

term freq corpus 1 node 2 nodes 4 nodes
the 40743718 eebo 167576 80798 39590
of 28049678 eebo 122585 54237 26965
and 24941692 eebo 111693 49544 24577
to 19692295 eebo 85640 37750 19342
in 13423220 eebo 58655 27287 13995
that 11899383 eebo 45529 21558 11085
a 9971399 eebo 41088 19325 9907
is 8401733 eebo 31007 15026 7661
it 7217334 eebo 26761 12758 6549
his 6748581 eebo 27015 12869 6944
the 108400120 hansard 386920 179127 98252
of 54755688 hansard 187106 96880 47333
to 49684555 hansard 170487 86686 43072
that 35621789 hansard 122651 56805 29010
and 32621665 hansard 117492 55401 28066
in 27959294 hansard 107583 50259 25595
a 25092849 hansard 89335 42165 21452
I 22046663 hansard 67831 33378 16857
is 21539984 hansard 71195 33419 17126
not 15135930 hansard 49202 22916 11738

Table B.2: Query times (ms) LexiDB Collocation search

146 Appendix B

Novel Database Design for Extreme Scale Corpus Analysis

term freq corpus 1 node 2 nodes 4 nodes
the 40743718 eebo 33605 12636 6931
of 28049678 eebo 26389 9879 5475
and 24941692 eebo 20969 9201 5319
to 19692295 eebo 16317 6963 3980
in 13423220 eebo 13215 6073 3617
that 11899383 eebo 12265 4083 2402
a 9971399 eebo 8620 3755 2164
is 8401733 eebo 8868 2913 1721
it 7217334 eebo 5313 2398 1392
his 6748581 eebo 5595 2535 1454
the 108400120 hansard 77074 34222 14268
of 54755688 hansard 35568 15923 7964
to 49684555 hansard 39755 14948 7379
that 35621789 hansard 40699 11558 4949
and 32621665 hansard 39457 9927 5099
in 27959294 hansard 42739 9950 5240
a 25092849 hansard 30250 7341 3783
I 22046663 hansard 11897 5471 2733
is 21539984 hansard 13368 6041 3086
not 15135930 hansard 10280 4238 2138

Table B.3: Query times (ms) LexiDB NGram search

Appendix B 147

Novel Database Design for Extreme Scale Corpus Analysis

148 Appendix B

Appendix C

Experimental Results 3

149

Novel Database Design for Extreme Scale Corpus Analysis

q
u
er

y
””

”c
5”

”:
””

N
N

1”
””

10
33

83
7

67
0

64
1

65
6

63
6

62
8

63
0

62
4

62
6

””
”c

5”
”:

””
P

U
N

””
”

32
9

31
7

31
6

31
8

31
6

31
6

31
7

32
3

31
6

31
9

””
”c

5”
”:

””
A

T
0”

””
24

9
27

7
24

8
24

7
25

5
24

5
24

6
24

5
24

7
24

4
””

”c
5”

”:
””

P
R

P
””

”
22

5
23

1
22

7
23

0
22

7
22

7
22

8
23

2
23

3
24

9
””

”c
5”

”:
””

A
J
0”

””
18

4
18

2
18

3
18

2
18

3
18

3
18

3
18

5
18

1
18

2
””

”c
5”

”:
””

N
N

2”
””

15
2

15
6

15
5

15
5

15
4

16
5

15
4

15
3

15
3

15
4

””
”c

5”
”:

””
P

N
P

””
”

14
8

14
8

15
6

14
6

14
4

14
3

14
2

14
1

14
1

14
2

””
”c

5”
”:

””
A

V
0”

””
13

3
13

1
13

4
13

4
13

1
13

8
13

5
13

2
13

1
13

4
””

”c
5”

”:
””

N
P

0”
””

11
4

11
4

11
3

11
3

11
5

12
2

11
7

11
4

11
4

12
1

””
”c

5”
”:

””
C

J
C

””
”

11
2

10
3

10
4

10
5

11
0

10
9

10
3

10
2

10
3

10
2

””
”c

5”
”:

””
P

R
F

””
”

91
91

94
89

91
89

95
96

92
92

””
”c

5”
”:

””
V

V
I”

””
81

73
76

71
73

73
72

73
72

71
””

”c
5”

”:
””

D
T

0”
””

70
70

73
80

71
72

71
70

71
70

””
”c

5”
”:

””
V

V
N

””
”

60
60

60
60

62
62

57
59

61
61

””
”c

5”
”:

””
V

V
D

””
”

55
58

53
53

53
57

58
54

55
54

””
”c

5”
”:

””
C

R
D

””
”

56
54

54
53

52
55

54
54

54
55

””
”c

5”
”:

””
P

U
Q

””
”

49
51

48
49

49
48

50
48

49
49

””
”c

5”
”:

””
T

O
0”

””
49

48
49

45
46

51
48

46
49

45
””

”c
5”

”:
””

V
M

0”
””

44
42

41
41

41
40

40
43

42
41

””
”c

5”
”:

””
D

P
S
””

”
40

41
41

40
40

40
43

42
43

40
””

”c
5”

”:
””

A
T

0”
””

”c
5”

”:
””

N
N

1”
””

31
34

29
78

29
13

27
92

27
46

26
69

28
50

28
34

27
67

26
48

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

U
N

””
”

30
86

30
77

29
92

30
45

30
47

30
53

30
22

30
09

29
63

29
88

””
”c

5”
”:

””
P

R
P

””
””

c5
””

:”
”A

T
0”

””
19

86
20

66
18

51
20

66
19

15
19

95
18

45
20

13
19

60
19

16
””

”c
5”

”:
””

A
J
0”

””
”c

5”
”:

””
N

N
1”

””
22

50
22

40
22

15
22

58
22

33
22

52
22

13
23

23
22

49
22

97
””

”c
5”

”:
””

A
T

0”
””

”c
5”

”:
””

A
J
0”

””
17

74
17

30
17

03
17

18
17

20
17

72
16

84
17

48
16

58
17

74
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

P
R

F
””

”
20

50
20

01
17

93
20

42
17

81
19

22
17

81
18

04
20

60
19

91
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

P
R

P
””

”
24

73
23

86
24

55
24

75
25

19
24

05
25

70
24

78
24

98
24

71
””

”c
5”

”:
””

N
N

2”
””

”c
5”

”:
””

P
U

N
””

”
17

01
16

72
16

87
17

77
16

21
16

50
17

62
16

22
16

24
17

76

T
ab

le
C

.1
:

Q
u
er

y
ti

m
es

(m
s)

L
ex

iD
B

co
m

m
on

P
O

S
p
at

te
rn

s

150 Appendix C

Novel Database Design for Extreme Scale Corpus Analysis

q
u
er

y
””

”c
5”

”:
””

P
U

N
””

””
c5

””
:”

”P
N

P
””

”
16

41
16

46
18

15
16

52
16

74
16

76
16

69
17

00
18

14
16

50
””

”c
5”

”:
””

T
O

0”
””

”c
5”

”:
””

V
V

I”
””

46
0

41
0

42
8

41
9

41
6

41
8

43
8

42
9

29
3

28
6

””
”c

5”
”:

””
A

J
0”

””
”c

5”
”:

””
N

N
2”

””
11

20
12

05
12

34
13

28
13

01
13

09
13

14
13

13
13

25
13

17
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

N
N

1”
””

12
16

12
25

12
46

12
18

12
48

12
16

12
17

12
09

12
22

12
13

””
”c

5”
”:

””
P

U
N

””
””

c5
””

:”
”A

T
0”

””
20

87
20

99
21

68
21

11
20

77
21

19
20

94
21

03
20

94
21

21
””

”c
5”

”:
””

P
R

P
””

””
c5

””
:”

”N
N

1”
””

24
25

22
78

22
58

23
04

23
08

22
55

22
55

22
95

23
22

22
39

””
”c

5”
”:

””
P

U
N

””
””

c5
””

:”
”C

J
C

””
”

16
16

15
65

13
78

15
49

15
79

14
49

14
25

13
82

16
83

15
87

””
”c

5”
”:

””
P

U
N

””
””

c5
””

:”
”P

U
Q

””
”

13
68

13
64

13
99

13
41

13
39

12
57

11
66

12
62

13
55

13
58

””
”c

5”
”:

””
P

R
F

””
””

c5
””

:”
”A

T
0”

””
12

37
12

21
12

40
12

24
12

21
12

20
12

24
10

82
11

18
12

04
””

”c
5”

”:
””

N
P

0”
””

”c
5”

”:
””

P
U

N
””

”
13

85
16

66
16

56
15

28
15

39
15

79
15

35
16

29
15

37
16

00
””

”c
5”

”:
””

V
V

N
””

””
c5

””
:”

”P
R

P
””

”
91

6
93

7
10

06
90

2
10

29
10

22
97

0
89

7
90

0
97

2
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

C
J
C

””
”

19
67

19
18

17
74

18
36

17
90

19
64

18
62

19
51

19
84

17
91

””
”c

5”
”:

””
P

R
P

””
””

c5
””

:”
”A

T
0”

””
”c

5”
”:

””
N

N
1”

””
36

30
36

24
34

46
36

53
36

84
34

89
35

99
36

52
34

58
36

49
””

”c
5”

”:
””

A
T

0”
””

”c
5”

”:
””

A
J
0”

””
”c

5”
”:

””
N

N
1”

””
34

38
33

13
34

24
33

23
33

87
33

69
34

21
33

36
34

41
33

63
””

”c
5”

”:
””

A
T

0”
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

P
R

F
””

”
30

01
31

94
32

05
31

59
32

29
30

99
32

86
32

09
32

87
31

75
””

”c
5”

”:
””

A
T

0”
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

P
U

N
””

”
41

26
40

85
39

87
40

85
39

09
41

47
40

54
40

36
39

22
40

83
””

”c
5”

”:
””

A
J
0”

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

U
N

””
”

38
29

38
11

38
05

38
49

38
25

38
44

37
68

39
37

37
97

38
44

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

R
P

””
””

c5
””

:”
”A

T
0”

””
36

95
36

95
35

16
36

87
34

99
36

74
35

27
37

15
35

65
37

78
””

”c
5”

”:
””

P
R

P
””

””
c5

””
:”

”A
T

0”
””

”c
5”

”:
””

A
J
0”

””
28

66
26

74
27

35
27

12
26

93
26

54
27

43
27

67
27

35
26

43
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

P
R

F
””

””
c5

””
:”

”A
T

0”
””

29
58

30
62

30
80

31
60

30
14

30
57

28
75

30
13

30
86

31
15

””
”c

5”
”:

””
P

U
N

””
””

c5
””

:”
”A

T
0”

””
”c

5”
”:

””
N

N
1”

””
39

52
39

50
40

56
39

76
38

33
40

52
39

81
40

72
39

85
40

87
””

”c
5”

”:
””

A
T

0”
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

P
R

P
””

”
36

53
36

70
37

10
37

41
37

31
34

66
37

22
37

13
36

54
34

56
””

”c
5”

”:
””

P
R

F
””

””
c5

””
:”

”A
T

0”
””

”c
5”

”:
””

N
N

1”
””

27
60

29
14

27
71

29
68

27
54

27
59

29
46

29
50

27
35

26
90

””
”c

5”
”:

””
A

J
0”

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

R
P

””
”

33
03

32
76

33
56

32
73

33
15

32
48

34
00

32
03

33
23

32
44

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

U
N

””
””

c5
””

:”
”P

N
P

””
”

36
32

34
19

36
23

34
39

36
77

34
76

36
26

34
57

35
95

34
62

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

U
N

””
””

c5
””

:”
”A

T
0”

””
42

48
41

04
39

58
42

19
41

73
41

47
40

08
42

03
41

60
39

27
””

”c
5”

”:
””

N
N

1”
””

”c
5”

”:
””

P
R

F
””

””
c5

””
:”

”N
N

1”
””

18
39

19
24

17
54

17
31

18
37

19
29

17
82

18
37

17
74

18
21

””
”c

5”
”:

””
A

T
0”

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
N

N
1”

””
23

99
24

02
23

84
25

63
24

41
24

88
24

32
24

23
25

21
24

15
””

”c
5”

”:
””

A
J
0”

””
”c

5”
”:

””
N

N
2”

””
”c

5”
”:

””
P

U
N

””
”

26
53

25
60

25
96

24
72

25
24

25
28

24
41

25
65

24
64

25
46

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

U
N

””
”

28
11

26
26

26
13

28
60

26
92

26
41

28
01

28
25

26
89

28
32

””
”c

5”
”:

””
A

J
0”

””
”c

5”
”:

””
N

N
1”

””
”c

5”
”:

””
P

R
F

””
”

27
38

27
05

27
32

27
82

26
47

28
16

27
33

26
97

27
51

27
33

T
ab

le
C

.2
:

Q
u
er

y
ti

m
es

(m
s)

L
ex

iD
B

co
m

m
on

P
O

S
p
at

te
rn

s
(c

on
ti

n
u
ed

)

Appendix C 151

Novel Database Design for Extreme Scale Corpus Analysis

q
u
er

y
”[

c5
=

””
N

N
1”

”]
”

20
84

20
74

20
90

20
74

20
85

20
71

20
86

20
83

20
90

20
80

”[
c5

=
””

P
U

N
””

]”
16

34
16

40
16

31
16

28
16

32
16

41
16

35
16

27
16

25
16

41
”[

c5
=

””
A

T
0”

”]
”

13
03

13
01

12
93

12
92

13
01

12
92

12
99

12
90

12
91

12
94

”[
c5

=
””

P
R

P
””

]”
11

88
11

98
11

95
11

97
11

93
11

96
11

89
11

92
11

89
11

89
”[

c5
=

””
A

J
0”

”]
”

98
6

98
5

98
5

98
4

99
6

98
7

98
9

98
0

98
9

98
7

”[
c5

=
””

N
N

2”
”]

”
82

0
81

4
81

4
81

4
81

5
80

9
81

3
81

4
82

5
81

6
”[

c5
=

””
P

N
P

””
]”

78
0

77
7

78
4

77
2

77
3

77
1

77
6

77
2

77
1

77
4

”[
c5

=
””

A
V

0”
”]

”
71

9
71

6
71

6
71

6
71

4
71

5
71

6
71

6
71

5
71

9
”[

c5
=

””
N

P
0”

”]
”

60
3

60
5

60
3

60
3

60
3

61
5

60
4

59
7

60
3

59
7

”[
c5

=
””

C
J
C

””
]”

55
6

55
8

55
5

55
6

55
4

55
5

55
6

55
8

55
7

55
2

”[
c5

=
””

P
R

F
””

]”
49

5
50

1
49

6
49

7
50

0
49

7
49

4
49

4
49

4
49

2
”[

c5
=

””
V

V
I”

”]
”

38
7

38
5

38
8

38
5

38
3

38
4

38
9

38
2

38
7

38
2

”[
c5

=
””

D
T

0”
”]

”
38

9
38

8
39

1
38

3
39

0
38

8
38

6
38

8
38

5
38

7
”[

c5
=

””
V

V
N

””
]”

34
5

34
4

34
3

34
4

34
2

34
5

34
5

34
4

34
0

34
2

”[
c5

=
””

V
V

D
””

]”
31

9
31

6
31

7
31

9
31

5
31

5
31

3
31

6
31

8
31

3
”[

c5
=

””
C

R
D

””
]”

31
6

31
8

31
1

31
1

31
1

31
2

30
9

31
3

31
0

31
1

”[
c5

=
””

P
U

Q
””

]”
28

4
27

8
27

9
28

0
27

9
27

6
27

8
27

7
27

9
28

2
”[

c5
=

””
T

O
0”

”]
”

28
6

28
2

28
0

28
0

28
3

27
7

27
8

27
7

27
8

28
1

”[
c5

=
””

V
M

0”
”]

”
25

5
25

1
25

2
25

3
25

3
25

4
25

3
25

0
25

3
25

2
”[

c5
=

””
D

P
S
””

]”
25

0
24

8
24

6
24

5
24

8
24

5
24

5
24

7
24

6
24

5
”[

c5
=

””
A

T
0”

”]
[c

5=
””

N
N

1”
”]

”
64

95
64

85
64

90
65

25
65

02
65

04
64

87
64

83
64

98
64

98
”[

c5
=

””
N

N
1”

”]
[c

5=
””

P
U

N
””

]”
77

03
77

04
76

74
76

73
76

73
76

78
77

08
77

12
76

81
76

88
”[

c5
=

””
P

R
P

””
][
c5

=
””

A
T

0”
”]

”
63

08
63

47
63

33
64

17
63

51
62

90
63

02
63

05
62

92
63

04
”[

c5
=

””
A

J
0”

”]
[c

5=
””

N
N

1”
”]

”
60

34
59

43
59

51
59

50
59

43
59

43
59

42
59

39
59

38
59

39
”[

c5
=

””
A

T
0”

”]
[c

5=
””

A
J
0”

”]
”

64
28

64
59

64
35

64
25

64
17

64
29

64
23

64
27

64
23

64
21

”[
c5

=
””

N
N

1”
”]

[c
5=

””
P

R
F

””
]”

76
53

76
26

76
20

76
38

76
21

76
18

76
28

76
22

76
21

76
22

”[
c5

=
””

N
N

1”
”]

[c
5=

””
P

R
P

””
]”

76
32

76
36

76
23

76
26

76
41

76
42

76
29

76
34

76
92

76
23

”[
c5

=
””

N
N

2”
”]

[c
5=

””
P

U
N

””
]”

55
34

55
41

55
66

55
32

55
37

55
45

55
69

55
34

55
36

55
75

”[
c5

=
””

P
U

N
””

][
c5

=
””

P
N

P
””

]”
69

31
69

20
69

19
69

34
69

61
69

29
69

24
69

21
69

36
69

20

T
ab

le
C

.3
:

Q
u
er

y
ti

m
es

(m
s)

C
W

B
co

m
m

on
P

O
S

p
at

te
rn

s

152 Appendix C

Novel Database Design for Extreme Scale Corpus Analysis

q
u

er
y

”[
c5

=
””

T
O

0”
”]

[c
5=

””
V

V
I”

”]
”

39
80

39
75

40
08

39
79

39
86

39
82

39
76

39
82

39
80

39
75

”[
c5

=
””

A
J
0”

”]
[c

5=
””

N
N

2”
”]

”
58

92
58

97
58

92
59

00
58

88
58

86
59

23
58

87
59

01
58

97
”[

c5
=

””
N

N
1”

”]
[c

5=
””

N
N

1”
”]

”
76

14
76

19
76

05
76

00
76

05
76

05
76

01
76

03
76

05
76

00
”[

c5
=

””
P

U
N

””
][

c5
=

””
A

T
0”

”]
”

69
18

69
16

69
21

69
48

69
08

69
15

69
19

69
07

69
28

69
55

”[
c5

=
””

P
R

P
””

][
c5

=
””

N
N

1”
”]

”
62

35
62

37
62

46
62

40
62

34
62

75
62

41
62

36
62

33
62

45
”[

c5
=

””
P

U
N

””
][

c5
=

””
C

J
C

””
]”

69
17

69
15

69
11

69
20

69
14

69
11

69
04

69
48

69
08

69
10

”[
c5

=
””

P
U

N
””

][
c5

=
””

P
U

Q
””

]”
69

13
69

14
69

58
69

10
69

12
69

13
69

09
69

17
69

17
69

11
”[

c5
=

””
P

R
F

””
][

c5
=

””
A

T
0”

”]
”

48
29

48
60

48
24

48
24

48
27

48
26

48
28

48
36

48
26

48
24

”[
c5

=
””

N
P

0”
”]

[c
5=

””
P

U
N

””
]”

43
39

43
24

43
34

43
24

43
27

43
33

43
28

43
23

43
18

43
20

”[
c5

=
””

V
V

N
””

][
c5

=
””

P
R

P
””

]”
43

39
43

38
43

48
43

70
43

37
43

34
43

32
43

52
43

44
43

43
”[

c5
=

””
N

N
1”

”]
[c

5=
””

C
J
C

””
]”

76
28

75
90

75
93

75
95

75
98

75
96

76
08

75
86

75
83

75
91

”[
c5

=
””

P
R

P
””

][
c5

=
””

A
T

0”
”]

[c
5=

””
N

N
1”

”]
”

64
84

64
80

64
80

64
86

64
85

64
86

64
97

64
91

64
81

64
87

”[
c5

=
””

A
T

0”
”]

[c
5=

””
A

J
0”

”]
[c

5=
””

N
N

1”
”]

”
65

71
65

68
65

81
65

74
65

73
65

70
65

74
66

16
65

73
65

76
”[

c5
=

””
A

T
0”

”]
[c

5=
””

N
N

1”
”]

[c
5=

””
P

R
F

””
]”

67
66

67
64

67
66

67
68

67
64

67
71

67
64

67
84

68
41

67
65

”[
c5

=
””

A
T

0”
”]

[c
5=

””
N

N
1”

”]
[c

5=
””

P
U

N
””

]”
67

56
67

70
67

71
67

66
67

69
67

64
67

59
67

58
68

01
67

58
”[

c5
=

””
A

J
0”

”]
[c

5=
””

N
N

1”
”]

[c
5=

””
P

U
N

””
]”

60
95

61
00

60
94

60
92

60
90

61
32

61
01

60
91

61
25

60
91

”[
c5

=
””

N
N

1”
”]

[c
5=

””
P

R
P

””
][

c5
=

””
A

T
0”

”]
”

78
06

78
47

78
17

78
09

78
06

78
36

79
50

78
21

78
50

78
24

”[
c5

=
””

P
R

P
””

][
c5

=
””

A
T

0”
”]

[c
5=

””
A

J
0”

”]
”

64
70

64
62

64
59

65
35

64
68

64
66

64
64

64
62

64
62

64
52

”[
c5

=
””

N
N

1”
”]

[c
5=

””
P

R
F

””
][

c5
=

””
A

T
0”

”]
”

78
25

78
55

78
05

78
08

78
27

78
27

78
05

78
15

78
17

78
46

”[
c5

=
””

P
U

N
””

][
c5

=
””

A
T

0”
”]

[c
5=

””
N

N
1”

”]
”

70
58

70
46

70
35

70
47

70
32

70
30

70
52

70
55

70
30

70
38

”[
c5

=
””

A
T

0”
”]

[c
5=

””
N

N
1”

”]
[c

5=
””

P
R

P
””

]”
67

97
67

60
67

61
67

51
67

55
67

61
67

48
67

55
67

90
67

50
”[

c5
=

””
P

R
F

””
][

c5
=

””
A

T
0”

”]
[c

5=
””

N
N

1”
”]

”
48

98
48

58
48

56
48

54
48

51
48

49
48

90
48

54
48

48
49

79
”[

c5
=

””
A

J
0”

”]
[c

5=
””

N
N

1”
”]

[c
5=

””
P

R
P

””
]”

61
88

60
88

60
84

60
80

60
83

60
88

60
87

60
91

60
85

60
84

”[
c5

=
””

N
N

1”
”]

[c
5=

””
P

U
N

””
][

c5
=

””
P

N
P

””
]”

79
77

79
27

79
43

79
24

79
36

79
34

79
58

79
31

79
46

79
27

”[
c5

=
””

N
N

1”
”]

[c
5=

””
P

U
N

””
][

c5
=

””
A

T
0”

”]
”

79
51

79
35

79
60

79
48

79
37

79
35

79
25

79
40

79
32

79
71

”[
c5

=
””

N
N

1”
”]

[c
5=

””
P

R
F

””
][

c5
=

””
N

N
1”

”]
”

78
48

78
07

78
08

78
05

78
00

78
49

78
08

78
39

78
17

78
41

”[
c5

=
””

A
T

0”
”]

[c
5=

””
N

N
1”

”]
[c

5=
””

N
N

1”
”]

”
67

54
67

49
67

42
67

84
67

45
67

82
67

38
67

45
67

48
67

46
”[

c5
=

””
A

J
0”

”]
[c

5=
””

N
N

2”
”]

[c
5=

””
P

U
N

””
]”

59
93

59
67

59
69

59
72

59
77

59
68

60
04

59
71

59
67

60
08

”[
c5

=
””

N
N

1”
”]

[c
5=

””
N

N
1”

”]
[c

5=
””

P
U

N
””

]”
77

65
78

40
77

61
77

54
77

59
77

63
77

79
77

65
77

56
77

65
”[

c5
=

””
A

J
0”

”]
[c

5=
””

N
N

1”
”]

[c
5=

””
P

R
F

””
]”

60
78

61
16

60
86

60
80

60
88

60
80

60
81

60
93

61
20

60
81

T
ab

le
C

.4
:

Q
u
er

y
ti

m
es

(m
s)

C
W

B
co

m
m

on
P

O
S

p
at

te
rn

s
(c

on
ti

n
u
ed

)

Appendix C 153

Novel Database Design for Extreme Scale Corpus Analysis

q
u
er

y
N

N
1

19
70

15
00

14
91

14
87

14
87

15
26

15
09

14
86

14
73

14
78

15
41

P
U

N
14

79
15

01
15

17
14

94
15

05
14

93
14

65
14

58
14

77
14

81
14

87
A

T
0

14
70

14
89

15
40

15
22

15
73

15
88

14
80

14
90

14
66

14
74

15
09

P
R

P
14

86
14

65
14

56
14

74
14

95
14

65
14

75
14

96
15

31
14

82
14

83
A

J
0

14
71

14
72

14
74

15
65

15
41

14
55

14
56

14
62

14
62

14
69

14
83

N
N

2
14

63
14

71
14

59
14

57
14

66
14

65
14

66
14

65
14

63
14

63
14

64
P

N
P

14
61

14
57

14
54

14
72

14
56

14
56

14
69

14
60

14
60

14
55

14
60

A
V

0
14

57
14

60
14

63
14

57
14

51
14

61
14

58
14

66
14

73
14

71
14

62
N

P
0

14
69

14
54

14
56

14
52

14
57

14
61

14
58

14
58

14
61

14
57

14
58

C
J
C

14
65

14
67

14
60

14
64

14
78

14
61

14
58

14
61

14
65

14
58

14
64

P
R

F
14

57
14

56
14

58
14

54
14

62
14

55
14

52
14

64
14

67
14

60
14

59
V

V
I

14
60

14
56

14
58

14
60

14
57

14
62

14
56

14
55

14
65

14
55

14
58

D
T

0
14

76
14

65
14

59
14

65
14

60
14

65
14

55
14

64
14

57
14

62
14

63
V

V
N

14
60

14
69

14
55

14
70

14
61

14
55

14
53

14
62

14
70

14
62

14
62

V
V

D
14

61
14

54
14

60
14

64
14

62
14

53
14

52
14

58
14

59
14

66
14

59
C

R
D

14
65

14
57

14
55

14
55

14
52

14
52

14
55

14
53

14
53

14
53

14
55

P
U

Q
13

07
13

07
13

07
13

19
13

11
13

23
13

08
13

09
13

17
13

12
13

12
T

O
0

14
62

14
57

14
65

14
58

14
54

14
53

14
55

14
55

14
56

14
66

14
58

V
M

0
14

66
14

73
14

64
14

59
14

61
14

72
14

66
14

53
14

56
14

57
14

63
D

P
S

14
54

14
52

14
60

14
57

14
59

14
68

14
67

14
54

14
56

14
64

14
59

A
T

0
N

N
1

18
19

18
12

17
92

17
86

17
84

17
85

17
91

17
86

17
84

18
04

17
94

N
N

1
P

U
N

18
24

18
23

18
21

18
42

18
42

18
25

18
36

18
36

18
31

18
30

18
31

P
R

P
A

T
0

17
02

17
05

17
02

17
10

16
99

17
22

17
10

17
05

17
00

17
11

17
07

A
J
0

N
N

1
17

56
17

54
17

33
17

50
17

49
17

47
17

43
17

41
17

50
17

54
17

48
A

T
0

A
J
0

16
70

16
78

17
02

16
89

17
03

16
92

16
79

16
80

16
69

16
67

16
83

N
N

1
P

R
F

16
68

16
71

16
80

16
74

16
59

16
68

16
67

16
63

16
64

16
67

16
68

N
N

1
P

R
P

17
52

17
57

17
67

17
49

17
56

17
68

17
63

17
54

17
59

17
57

17
58

N
N

2
P

U
N

16
79

16
77

16
69

16
72

16
68

16
73

16
69

16
71

16
65

16
67

16
71

P
U

N
P

N
P

16
66

16
67

16
74

16
68

16
62

16
62

16
60

16
60

16
67

16
60

16
65

T
O

0
V

V
I

15
28

15
24

15
41

15
07

15
10

15
14

15
14

15
05

15
15

15
20

15
18

T
ab

le
C

.5
:

Q
u
er

y
ti

m
es

(m
s)

L
u
ce

n
e

co
m

m
on

P
O

S
p
at

te
rn

s

154 Appendix C

Novel Database Design for Extreme Scale Corpus Analysis

q
u
er

y
A

J
0

N
N

2
16

17
16

21
16

11
16

11
16

09
16

19
16

12
16

11
16

16
16

18
16

15
N

N
1

N
N

1
17

79
17

79
17

72
17

79
17

83
17

86
17

92
17

90
17

86
17

85
17

83
P

U
N

A
T

0
17

15
17

14
17

20
17

16
17

23
17

20
17

23
17

81
17

61
19

42
17

52
P

R
P

N
N

1
18

10
17

60
17

67
17

90
19

56
19

47
18

79
18

86
17

76
17

84
18

36
P

U
N

C
J
C

16
97

16
43

16
36

16
55

16
37

16
31

16
44

17
02

17
81

17
57

16
78

P
U

N
P

U
Q

14
61

14
21

14
71

14
64

14
44

15
21

14
65

16
08

14
49

14
92

14
80

P
R

F
A

T
0

17
88

17
46

18
28

17
35

17
22

17
41

17
13

17
25

17
34

18
22

17
55

N
P

0
P

U
N

16
76

16
77

16
66

16
51

17
95

16
58

16
32

16
39

16
75

16
54

16
72

V
V

N
P

R
P

16
06

16
12

15
76

15
73

16
15

15
91

15
83

16
26

16
24

16
39

16
05

N
N

1
C

J
C

16
85

16
61

17
07

16
97

17
11

17
22

17
55

17
24

17
37

17
47

17
15

P
R

P
A

T
0

N
N

1
19

06
19

34
19

12
19

59
19

30
19

41
19

01
18

93
19

57
20

62
19

40
A

T
0

A
J
0

N
N

1
19

88
19

80
19

69
19

84
19

78
19

44
19

64
19

53
19

40
19

48
19

65
A

T
0

N
N

1
P

R
F

19
15

19
22

19
29

19
66

19
54

19
32

19
49

19
45

19
41

19
49

19
40

A
T

0
N

N
1

P
U

N
21

55
20

16
20

18
19

92
19

61
19

33
19

25
20

60
22

68
21

49
20

48
A

J
0

N
N

1
P

U
N

20
86

20
15

20
37

20
05

21
51

20
63

20
33

20
17

20
07

20
53

20
47

N
N

1
P

R
P

A
T

0
20

37
20

19
20

22
20

47
20

00
20

15
20

05
20

09
20

05
19

99
20

16
P

R
P

A
T

0
A

J
0

19
18

18
95

19
03

19
20

19
20

19
00

19
06

18
95

18
91

18
99

19
05

N
N

1
P

R
F

A
T

0
19

21
19

22
19

22
19

02
19

05
19

13
19

30
19

31
19

24
19

17
19

19
P

U
N

A
T

0
N

N
1

20
21

20
72

21
20

20
46

20
08

20
07

19
97

19
83

20
56

19
86

20
30

A
T

0
N

N
1

P
R

P
19

99
20

18
19

83
20

06
20

03
20

65
20

39
20

15
19

98
20

18
20

14
P

R
F

A
T

0
N

N
1

19
48

18
92

18
53

18
60

18
62

18
70

19
36

18
65

18
65

18
91

18
84

A
J
0

N
N

1
P

R
P

19
59

19
61

19
61

19
67

19
99

19
90

19
64

19
57

19
70

20
14

19
74

N
N

1
P

U
N

P
N

P
19

75
19

74
19

69
19

94
20

07
20

13
20

58
19

71
19

88
18

94
19

84
N

N
1

P
U

N
A

T
0

20
95

20
71

20
62

20
62

20
17

20
53

20
59

20
79

20
53

20
65

20
62

N
N

1
P

R
F

N
N

1
19

81
19

35
19

56
19

56
19

65
19

85
19

81
19

47
19

45
19

37
19

59
A

T
0

N
N

1
N

N
1

20
90

21
33

21
28

20
92

21
12

21
14

21
38

21
76

21
13

20
91

21
19

A
J
0

N
N

2
P

U
N

18
72

18
67

18
67

18
60

18
75

18
72

18
62

18
69

18
65

18
54

18
66

N
N

1
N

N
1

P
U

N
20

45
20

79
20

56
21

25
21

22
20

57
20

88
20

47
20

69
20

89
20

78
A

J
0

N
N

1
P

R
F

18
91

18
91

18
83

18
78

19
34

19
28

18
99

18
98

18
78

18
75

18
96

V
V

N
P

R
P

A
T

0
17

91
17

92
17

97
18

51
17

75
17

77
17

83
17

80
18

17
17

98
17

96

T
ab

le
C

.6
:

Q
u
er

y
ti

m
es

(m
s)

L
u
ce

n
e

co
m

m
on

P
O

S
p
at

te
rn

s
(c

on
ti

n
u
ed

)

Appendix C 155

Novel Database Design for Extreme Scale Corpus Analysis

156 Appendix C

Appendix D

Sample Focus Group Questions

D.1 Using the web interface

Which elements of the graphical interface were most useful?

How did the query language compare to similar languages such as CQL?

Are there any obvious deficiencies that could be easily addressed?

Do you foresee that you would use the system in the future?

D.2 Comparisons to other systems

What other corpus data systems have you used in the past?

Does LexiDB compare favourably to them?

Are there any features that other systems have that you feel LexiDB is lacking?

Can you envisage research questions that LexiDB can help you answer, that

previous systems you have used could not?

D.3 Future developments

Is the query language presented sufficient or would the ability to use existing

157

Novel Database Design for Extreme Scale Corpus Analysis

query language in LexiDB be preferable?

Are there any other visualizations within the web interface that would be useful

for certain corpus query types?

With regards to corpora that you use regularly, what is their typical scale?

Is a system capable of supporting billions of words sufficient?

Are you interested in studies using live data sources, such as Twitter etc?

If a similar interface was available that you could upload your own corpora to,

would you use it?

158

