
2. How to Properly Test for U- and S-Shaped Relationships? 

2.1. Testing for U 

As mentioned, many hypotheses in tourism and hospitality focus on U (or inverted U)-shaped 

relationships (e.g. Park and Lee, 2009; Jang and Tang, 2009; Chen et al. 2012; Chen and Lin, 2015, 

among others).  Theorizing a U-shaped relationship simple requires that “the dependent variable 

Y first decreases with the independent variable X  at a decreasing rate to reach a minimum, after 

which Y  increases at an increasing rate as X continues to rise” (Hans et al. 2016, p. 1178).  The 

opposite is true for the inverted U. 

Unfortunately, most studies in tourism and hospitality do not properly test for U (or inverted U) 

-shaped relationships. The common trend, for instance, is to estimate a model like: 

2

0 1 2Y β β X β X= + +           (4) 

where the independent variables include both X  and its square. For
2β  that is negative and 

significant, studies tend to accept an inverted U-shaped relationship between X  and for 2β  that 

is positive and significant studies tend to accept a U-shaped relationship.  

Unfortunately, we argue that while this is important, it is never sufficient for accepting a U (or 

inverted U) -shaped relationships (Lind and Mehlum, 2010; Hans et al. 2016). For instance, the 

sign and significance of 
2β  is only one of the three steps required to confirm a U (or inverted U) 

-shaped relationships.  For proper testing, one also needs the slope to be steep enough at both 

tails of the data range (Hans et al. 2016).  For instance, the marginal effect ( ME ) for the model in 

(4) is: 
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and the turning point of the curve:  
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If 1β  or 2β  are insignificant there could be no optimum (U-shaped or inverted U-shaped 

relationships)1. To have a U-shaped relationship we need: 2 0β  , and also : 

*

L UX X X                                                                                                                           (8) 

                                                           
1 If 2β  is insignificant we have a problem as the denominator is zero and b1/b2 follows asymptotically a 

Cauchy distribution 



where 
LX  and 

UX  are the lower and upper end of the X  -range.  For a proper testing for a U 

(or inverted U) -shaped relationships one also needs to test whether the slope at both 
LX  and 

UX  is significant. For instance, using (8) we have: 
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                    (9)                     

                              

                    (10) 

Hence, the left hand side of both (9) and (10) need also to be significant.  The same process for 

the inverted-U. We need 2 0β  , and also: 

1 22 0Lβ β X+          (11) 

          

                              (12) 

 Finally, along with above, we also need to confirm that 1

22

β

β
−  is within the range of the data. 

The same applies for inverted-U-shape. Hence, to sum up, to confirm a U-shape relationship, we 

need 
2 0β  , (9) and (10) to be significant, and 1

22

β

β
− within the range of the data. To confirm 

an inverted U-shape, we need 2 0β  , the left hand side of (11) and (12) to be significant, and 

1

22

β

β
−  within the range of the data.  To confirm that 1

22

β

β
− is within the range of data, one can 

construct a confidence interval for this term, and check whether this confidence interval is within 

the data range.  

We show in Figure 1 an example of a true U-shaped relationship. The second and third graph of 

this Figure show a failed U-shaped when the domain of the data is to the right and left of the 

minimum, respectively.  We  truly recommend drawing the X Y−  relationship over the relevant 

range of X  to clearly illustrate and confirm the shape the relationship. Hans et al. (2016) further 

recommended further important robustness checks to confirm the quadratic shape of the model 

in (4). For example, one can split the data on the turning point and estimate two separate 

regressions, and then validate whether the slope of these regressions are consistent with the U (or 

inverted U) shape of the curve. For example, the regression on the data before the turning point 

should provide a negative relationship between X  and Y , and the one after the turning point 

should provide a positive relationship between X  and Y 2.  

                                                           
2 This procedure does not however guarantee statistical efficiency and one needs to have a large sample.  

1 22 0Lβ β X+ 

1 22 0Uβ β X+ 

1 22 0Uβ β X+ 



Some other robustness check may include confirming the existence of the U-shaped relationship 

using flexible methods such as non-parametric regression prior to estimating the traditional 

regression in (3).  We also recommend conducting the proper specification tests to confirm the 

non-linear shape of the model in (4)3.  Finally, it is also important to check for the endogeneity 

problem due the potential reverse causality problem between X  and Y , which may lead to 

spurious regression and incorrect conclusion about the true shape of the relationship between X  

and Y .  We discuss this issue in more detail in later sections of the paper. 

 

Figure 1. Different Cases of a U-Shaped Relationship 

 

2.2. Testing for S 

Many studies go beyond the traditional U-shaped relationship and test for S-shaped relationship 

between X  and Y (Lu and Beamish, 2004). This can be done by adding the cubic term of X  to 

the model in (4).  

2 3

0 1 2 3Y β β X β X β X= + + +           (13) 

Most studies test for S-Shape (e.g. Lu and Beamish, 2004) by checking whether the relationship is 

negative at low level of X (i.e. 1 0β  ), positive at medium level of X (i.e. 2 0β  ) , and negative 

again at high level of X ( 3 0β  ).  However, we argue that such approach has its limitations. For 

a more complete and accurate testing, one would need to follow the same approach described in 

2.1. To illustrate, the marginal effect for the model in (13) is:   

2
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ME β β X β X
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
= = + +


                                                     (14) 

                                                           
3 For details, see Assaf and Tsionas (2019). 



and the curvature is:  

2

2 32
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
= +


          (15) 

Setting (14) to zero and solving for X , in order to have S-shape we need two distinct roots. The 

discriminant of this quadratic is: 

 ( )2 2

2 1 3 2 1 34 12 4 3β β β β β β = − = −                                                                                          (16)  

If  2

2 1 33 0β β β− =  is true, then we do not have two distinct roots. If 0  , then we do not have 

any root at all. So, we recommend a confidence interval for 2

2 1 33β β β− . Suppose now that 0 

, so there is a possibility of S-shape.  

The roots are: 
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Suppose that * *

1 2X X  so that we have a minimum at *

1X  and a maximum at *

2X . So, we need: 

i) First, 2

2 1 33 0β β β−   so that we have two distinct roots. 

ii) Evaluating 
2

2

y

X




 at the two roots we obtain: ( )*

2 32 3β β X+ . Manipulating the 

expression for the two roots we have: 
* 2

2 3 2 1 33 2 3β β X β β β+ =  −  so, the second 

derivative is positive at *

1X  and negative at *

2X , giving us a minimum and maximum 

respectively.  

iii) The difference between the two roots is 

2
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− =     

iv) So, the idea of simply having 3 0β   and 1 0β   is not sufficient and more restrictive 

than  necessary. In reality however, we need 3 0β   and 2

2 1 33β β β . If 1 0β   this 

will certainly happen but, in fact, it can happen even with 1 0β   provided 

2

2 1 33β β β .  



Therefore, for S-shape, we need 
3 0β  , 2

2 1 33β β β , * *

1 2, .L UX X X X   These place nonlinear 

restrictions among the coefficients which are hard to test. Figure 2, for example, presents various 

example of a S-relationship. Only the last case of this figure represents a true S relationship while 

the others fail some of the conditions discussed above. 

 

 

 

Figure 2. Different Cases of a S-Shaped Relationship 

 

3. Testing for Moderating Effects with U and S 

3.1. Moderating with a U-shaped Relationship  

As mentioned, the use of moderating variables is highly common in tourism and hospitality 

research. However, it is astonishing that most studies do not properly test for moderation in the 

presence of non-linear relationships such as U or S.  For instance, let us assume we have the 

following U-shaped relationship: 

2 2

0 1 2 3 4 5Y β β X β X β Z β XZ β X Z= + + + + +        (20) 

where the model is similar to (4) but now we have one moderator Z  that affects the relationship 

between X  and Y . Also note that the moderator in (20) is multiplied by both by X  and its square 

term. In the presence of a U-shaped relationship, we argue that this is the correct and more 

complete thing to do. 

Studies in the field seem to be taking one of these three different approaches to handle moderation 

with non-linear effect (i.e. U or S): 



1- Testing for shape and moderation separately. For instance, estimating a model like (4) to test 

for a U (or inverted U)-shaped relationship between X  and Y , and then a separate model  

like : 
0 1 3 4Y β β X β Z β XZ= + + +  to test for moderating effect. 

2- Estimating a simplified version of model in (20) through excluding the term 2X Z  from the 

model. Hence, using a model such as: 2

0 1 2 3 4Y β β X β X β Z β XZ= + + + + . 

3- Estimating the model in (20), but not fully exploiting the moderating effect of Z . For 

instance, it is common for studies to state that Z  affects the curvilinear relationship between  

X  and Y without providing any insight about the nature of this moderation.   

We argue that each of the three approaches above is potentially problematic.  The first approach, 

for instance, is contradicting the theoretical proposition that X  and Y follow a U (or inverted U)-

shaped relationship. In other words, if a U-shaped has been theoretically supported in the model, 

then the moderating effect needs to also to be present in the full model in (20).  

The second approach is also missing some important moderating effects. For example, 
4β  only 

represents the moderating effect on the marginal effect of X . For example, using

2

0 1 2 3 4Y β β X β X β Z β XZ= + + + + , the marginal effect is 
1 2 42

Y
β β X β Z

X


= + +


, and the 

moderating effect is
2

4

y
β

X Z


=

 
, which is simply a constant. The decision to remove the term 

2X Z  should be theoretically and empirically supported (e.g. the term is not significant).  

The third approach is certainly the most complete, but simply stating that the moderator affects 

the curvilinear relationship is vague and not sufficient. One needs for instance to hypothesize and 

test the nature of this moderation, which can be due to two effects. For example, is this moderation 

due to a shift of the turning point of the U-shaped relationship, or it due to flattening or steepening 

of the curve? Each of these moderations is theoretically and empirically different (Hans et al. 2016).  

Unfortunately, it is rare to see any study in tourism and hospitality hypothesizing any of these of 

these two moderation effects. Other fields of study such as strategy have more common 

mentioning of these effects (e.g. Henderson et al. 2006; Mihalache et al. 2012). For example, one 

can write a hypothesis like the following to state a steepening effect on the U-Shaped relationship:  

H1: The performance gap steepens the U-shaped relationship between learning and customer dissatisfaction 

or a hypothesis like the following to indicate a shift of the turning point: 

H2: the negative impact of learning on customer dissatisfaction will occur earlier for luxury hotels than for economy 

hotels  

To illustrate how to test for these two different moderating effects, we start with the marginal 

effect 
Y

X




 for the model in (20), which  can be written as: 



       

                      (21) 

  

Setting 0
y

X


=


,  and solving for X , we can obtain the turning point of the curve: 

( )
* 1 4

2 52

β β Z
X

β β Z

+
= −

+
                   (22) 

To test for U-shape in the presence of the moderator Z  , the same process applies here, as 

described in 2.1.  We need *X to be a minimum which in the presence of the moderator implies: 

2 5 0β β Z+  . For Inverted U-Shape, we need: 
2 5 0β β Z+  . We must also have: 

*

L UX X X  ,  i.e. 
( )

1 4

2 52
L U

β β Z
X X

β β Z

+
 

+
. This condition yields, after some algebra:  

1 2 4 5 1 2 4 52 ( 2 ) 0, 2 ( 2 ) 0.U Lβ β β β X Z β β β β X Z+ + +  − + −   This condition should be easy to 

check at specific values of Z. What we need is to test the joint hypothesis: 

( )
1 4

1
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L

β β Z
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β β Z

+
 + 

+
                    (23) 

( )
1 4

2

2 5

0
2

U

β β Z
θ X

β β Z

+
 + 

+
4 

Turning Point Moderation 

To test a hypothesis like H2, we need to examine how the turning point in (22) changes with the 

moderator Z . This can be done by taking the derivative of *X  with respect to Z  : 

*

1 4

2 5

1

2

β β ZX

Z Z β β Z

 + 
= −  

  + 
         (24) 

Therefore, we have: 

                                                           
4 Again, we have nonlinearities in the parameters, but an important point is that we need a joint 

confidence interval for 1θ  and 2θ  to test whether 1 0θ  , 2 0θ  . We can perhaps draw a large number 

of draws from the asymptotically normal distribution of 1β , 2β , 4β , 5β , evaluate 1θ  and 2θ  for each 

draw and present contours of their implied bivariate distribution. 
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So 
*

0
X

Z


 


2 4 1 5 0β β β β−                                           (26) 

So when 
2 4 1 5 0β β β β−  , as Z  increases, the turning point *X  moves to the right, and when 

2 4 1 5 0β β β β−  , the turning point will move to the left as Z  increases. 

As 
2 4 1 5θ β β β β= −  is a single parameter we can use a confidence interval to see whether an 

increase in 
1Z  moves the curve to the right or left, respectively.  

Figure 4, for example, provides an example of a turning point moderation, where the upper panel 

different cases of U-shape or inverted-U shape as the moderating variable changes. We can see 

clearly that as the value of the moderator Z  is increasing the turning point is moving to the right 
5. 

Flattening or Steepening Moderation  

To examine a hypothesis like H1, which involves flattening or steepening moderation, Hans et al. 

(2016) recommended comparing the slope at two different turning points (
1

*X  and 
2

*X )  for two 

specific values of the moderator 1Z Z=  and 2Z Z= , where 1 2Z Z 6. However, one can obtain 

their results in a far simpler way by deriving the curvature:  

( )
2

2 52
2

Y
β β Z

X


= +


          (27) 

and then taking the partial derivative of (27) with respect to Z :  

2

52
2

Y
β

Z X

  
= 

  
                       (28) 

Therefore, for steepening, we simple need the coefficient of 2X Z , 5 0β  , and for flattening, 

we need 5 0β  7.  

                                                           
5 Of course, it is important to have the optimum in the range of the data. 

6 Specifically, Haans et al. (2016) proposed to compare the slopes 1S  and 2S  at points *

1X h−  and *

2X h−

, where * *

1 2,X X  correspond to the solutions when 1Z Z=  and 2Z Z= , and 0h  . If 2 1S S then the 

inverted-U shape is steepening, and if  2 1S S  the inverted-U shape is flattening. As shown in their (A4.5) 

(p. 1195), this depends only on 5 as we have shown in our equation (28) using a much simpler argument. 
7 Appendix 1 provides more details about using the curvature for flattening and steepening.   



As an alternative approach one can also check whether: 

* *
1 2

1 2

2 2

2 2X X X X
Z Z Z Z

Y Y

X X= =
= =

 


 
         (29) 

The argument is based on the rate of change of the first derivative which is much slower when 

1Z Z=  compared to 
2Z Z= . 

 

 



 

                                       

Figure 4. Turning Point Moderation with U and Inverted U 



3.2. Moderating with a S-shaped Relationship   

When a study is hypothesizing a moderating effect on the S-relationship between X  and Y , the 

model can be written as follows: 

2 2 3 3

0 1 2 3 4 5 6 7Y β β X β Z β XZ β X β X Z β X β X Z= + + + + + + +     (30) 

In the case of S, we recommend interacting the moderator Z with both 2X  (as discussed in 3.1) 

and 3X . Again, any specification that is different from (30) require theoretical and empirical 

justification.  For instance, the paper by Lu and Beamish (2004) tested a model of the following 

form: 2 3

0 1 2 3 4 5Y β β X β Z β XZ β X β X= + + + + + . Hence, they had the S-relationship but they 

only interacted the moderator with X . As discussed in Section 3.1, this only represents the 

moderating effect on the marginal effect of X  . For instance, the marginal effect is 

2

1 3 4 52 3
Y

β β Z β X β X
X


= + + +


, and the moderating effect is

2

3

y
β

X Z


=

 
, which is simply a 

constant8. 

To test for the presence of S-relationship in a model like (30) we follow the same approach as in 

Section 2.2.  For instance, the marginal effect is: 

( ) ( ) ( )2

6 7 4 5 1 33 2
Y

X Z X Z X Z
X


= + + + + +


            (31) 

For S-Shape (such as the las case of Figure 2) we need two roots of 0
Y

X


=


. The discriminant of 

the second-order polynomial is: 

( ) ( )( )
2

4 5 6 7 1 34 12Z Z Z = + − + +             (32) 

And we have two roots: 
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+

 

 
         (33) 

where ( ) ( )( )
2

0 4 5 6 7 1 33
4

Z Z Z


 = = + − + +       

For 0 0   (so we can have two real roots) we expand the expression of  0 : 

( ) ( )

2 2 2 2

0 4 5 4 5 1 6 3 6 1 7 3 6

2 2 2

5 3 6 4 5 3 6 1 7 4 1 6

2 3 3 3 3

  3 2 3 3 3

Z Z Z Z Z

Z Z

 = + + − − − −

= − + − − + −

           

           
    (34) 

                                                           
8 Note that the moderating effect with respect to (31) is 2

7 5 33 2X X  + + . Given the discriminant

( )2

5 3 74 3  = − this is positive if 2

5 3 73 0  −  and 
7 0  , and negative if 2

5 3 73 0  −  and 
7 0  . 



For 
0  we need the discriminant of (34) : 

 ( ) ( )( )
2 2 2

4 5 3 6 1 7 5 3 6 4 1 62 3 4 3 3D β β β β β β β β β β β β= − + − − −               (35) 

to be 0  and also 2

5 3 73 0β β β−  . 

So, we need (35) to hold, 
0 0   and the roots in (33) to always exist.  One roots correspond to 

minimum and the other to maximum so that * *

1 2X X , with *

1X  being the minimum and *

2X  

being the maximum and also within the range of the data9.  

To make sure * *

1 2X X  we have  

( )
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β β Z


− =   + 

+
       (36) 

Turning Point Moderation 

To obtain how the moderator affects the turning, we need again to derive 
*X

Z




. We start with 

(31) which this can be expressed as: 

* * *2 *2

1 3 4 5 6 72 2 3 3β β Z β X β X Z β X β X Z+ + + + +                                                                   (37) 

where *X  is either 
1

*X  or 
2

*X . 

Differentiating this turning point with respect to the moderator Z , we obtain: 

( ) ( )

2

3 5 7

4 5 6 7

2 3

2 3

* **

*

X XX

Z Z X Z

+ +
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The denominator is 0  at 
1

*X X=  and 0  at 
2

*X X=  by ().  Therefore: 

At * *1X X= , 0
*X

Z





 1

3 5 72 3 0* *X X+ +          (39) 

At * *2X X= , 0
*X

Z





 2

3 5 72 3 0* *X X+ +          (40) 

 Therefore, the critical expression is : 
3 5 72 3* *X X+ +   10. 

                                                           
9 Notice that if 6 7 0β β= = (i.e. U-Shape) then () has only one solution as it becomes a linear equation.  
10 We present in Figure 5 an illustration on how the turning point shift with the moderator. For instance, 

it is clear from the first case that the turning point is moving to the left when the value of the moderator 



Figure 5.  Turning Point Moderation with the S-Curve  

 

 

Flattening or Steepening Moderation  

To derive the flattening/steepening moderation we again use the curvature and take its partial 

derivative which respect to Z . The curvature can be expressed as: 

2

4 6 5 72
2 6 2 6

Y
X Z XZ

X


= + + +


            (41) 

And the partial derivative of (32) with respect to Z is:  

( )
2

5 72
2 3

Y
β β X

Z X

  
= + 

  
         (42) 

Based on these results we have the following propositions: 

Proposition 1:  Suppose that 0D  , 2

5 3 73 0β β β−   as in () and 6 7 0β β Z+  as in ().  For 

flattening near the maximum we need *

5 7 23 0β β X+  . For steepening we need *

5 7 23 0β β X+  . 

For flattening near the minimum we need *

5 7 23 0β β X+  , and for steepening we need 

*

5 7 23 0β β X+  . 

                                                           

increases. In the second case however ( Z =6,8,20) we do get the S-shape although it appears that the 

maxima and minima are not very different corresponding to different values of z. 

 



Proposition 2:  Flattening or steepening are not the only possibilities. When 
0 0   at some 

1Z Z=  but 
0 0 =  at some 

2Z Z=  or even 
0 0   at some 

3Z Z= , then we move from two 

roots 
1 2

*

,X  to a single root *X , and then to no real roots at all.   

The condition for 
0 0   is 0D  and 2

5 3 63 0β β β−  , and for 
0 0 = (i.e. single root), we need 

2

5 3 63 0β β β− = , and the single root can be expressed as: 
( )

2

4 4 6

4 5 3 6 1 7

3

2 3

β β β

β β β β β β

−
−

− +
, which may or 

may not belong to the range of the data.  So, the value of 2

5 3 63β β β−  appears to be very important, 

and it is a parameter that we should always check in the context of S-Shape models.  If 3 0 =  and 

for 
6 0 = no issue for criticality (should we define criticality?) arises (why?). 

Another situation arises when we do not have always have 0D  as in (35). Remember that  

D  depends on the parameters  ( ) . For example, when 2

5 3 63 0β β β−  (i.e. the criticality 

parameters) then 0D  , and the equation 0 0 =  has at least one real root (and two in general). 

So, the roots 
1 2

*

,X  in (33) may or may not exist depending on the particular value of  Z .   

 

4. Deviation from an arbitrary point 

Here we re-examine all previous models when the data for explanatory variables are expressed as 

deviations from an arbitrary point 
0x , 

0z . The deviations are 
0X x− , 

0Z z− .  The dependent 

variable y  is kept the same.  We show that we have vast simplifications in terms of analysing 

marginal effects, moderation effects, flattening, steepening, etc. 

U-Shape: 

We can write (20) as: 

2 2

1 2 3 4 5y β x β z β zx β x β x z= + + + +         (43) 

Choosing an arbitrary point, say: 

0x x= , 0z z=  

We will use the deviations: 

0X x x= − , 0Z z z= −  

We can write the model as follows: 

( ) ( ) ( )( ) ( )

( ) ( )

2

0 1 0 2 0 3 0 0 4 0

2

5 0 0

y β β X x β Z z β Z z X x β X x

β X x Z z

= + + + + + + + + +

+ + +  
                                 (44) 



Our intention is to regress y  on the variables 2 2, , , ,X Z XZ X X Z . We will show that considerable 

simplification is possible if we do so. Marginal and moderation effects will be simpler to analyse 

and the same will be for the case for the examination of flattening or steepening.   

 We can write (44) as: 

 
( ) ( )

( )

2 2

0 1 1 0 2 2 0 3 0 0 0 0 4 0 0

2 2 2 2

5 0 0 0 0 0 0 0

2

2 2

y β β X β x β Z β z β XZ Xz x Z x z β X x x X

β X Z x Z x XZ z X x z x z X

= + + + + + + + + + + +

+ + + + + +   
 

Or: 

( ) ( ) ( )

( ) ( ) ( )

2

1 4 0 5 0 0 3 0 2 3 0 5 0 3 5 0

2 2 2 2

4 5 0 5 0 1 0 2 0 3 0 0 4 0 5 0 0

2 2 2y X β β x β x z β z Z β β x β x XZ β β x

X β β z X Z β β β x β z β x z β x β x z

= + + + + + + + +

+ + + + + + + + +   
                       (45) 

So, when the point of approximation is 
0x x=  and 

0z z= , the deviations form in (45) has the 

same functional form as (43) but the coefficients are different.   

So, if we write the model in () as : 

2 2

0 1 2 3 4 5 ,y γ γ X γ Z γ XZ γ X γ X Z= + + + + +        (46) 

where the 'γ s are the same as the complicated expression of the coefficients in (45).  

We see that: 

1 3 4 52 2
y

γ γ Z γ X γ XZ
X


= + + +


        (47) 

which is simply 1γ=  at 0X Z= =   

The moderation with respect to the marginal effect is: 

2

4 5 42 2 2
y

γ γ Z γ
X


= + =


 at 0Z =         (48) 

Turning Point Moderation: 

For the derivation of the turning point , we again set the marginal effect in (47) to 0 zero and 

solve for X . We obtain the following: 

( )
* 1 3

4 52

γ γ Z
X

γ γ Z

+
= −

+
          (49) 

To see how the turning point changes with the moderator Z , we take the derivative of (49) with 

respect to Z : 



5 1 3 4

2

42

*X

Z

   



−
=


           (50) 

This is a non-linear function of the parameters which we can plot along with   2 standard 

errors as function of 
0x (given 

0z ) or as a function of 
0z (given 

0x ).    

Flattening or Steepening Moderation: 

For flattening or steepening moderation, we again find the the curvature point: 

2

4 5 42
2 2 2

y
Z

X
  


= + =


  at 0Z =                     (51) 

The partial derivative of (51) with respect to Z is: 

2

52
2

y

Z X


  
= 

  
           (52) 

Hence, all the above expressions are quite simple and can be obtained by: 

I. Choosing a point of approximation ( )0 0x ,z   

II. Expressing the variables in terms of deviations 0 0X x x ,Z z z= − = − . 

III. Estimating () by OLS and obtain estimates of 'γ s   

IV. Change the point of approximation ( )0 0x ,z and go to II. 

We also recommend to plot the estimates of 's  and their standard errors to trace out the 

various effects discussed above. 

 

S-Shape: 

2 2 3 3

1 2 3 4 5 6 7y β x β z β xz β x β x z β x β x z= + + + + + +       (53) 

Again if we chose: 

0x x= , 0z z= , and express the model in terms of: 0X x x= − , 0Z z z= − : 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

2

1 0 2 0 3 0 0 4 0

2 3 3

5 0 0 6 0 7 0 0  

y β X x β Z z β X x Z z β X x

β X x Z z β X x β X x Z z

= + + + + + + + +

+ + + + + + + +
 

with some algebra we can show that : 



( )

( ) ( )

( ) ( )

( ) ( ) ( )

2 2

1 3 0 4 0 5 0 0 6 0 7 0 0

2 3 2

2 3 0 5 0 7 0 3 5 0 7 0

2 2

4 5 0 6 0 7 0 0 5 7 0

3 3 2 2 3 3

6 7 0 7 1 0 2 0 4 0 5 0 0 6 0 7 0 0

2 2 3 3

2 3

3 3 3

y X β β z β x β x z β x β x z

Z β β x β x β x XZ β β x β x

X β β z β x β x z X Z β β x

X β β z X Z β β x β z β x β x z β x β x z

= + + + + + +

+ + + + + + +

+ + + + + +

+ + + + + + + +

    

    

    

  (54) 

Suppose we write the model on (54) as follows: 

 2 2 3 3

0 1 2 3 4 5 6 7y X Z XZ X X Z X X Z,= + + + + + + +            (55) 

where the ' s  are the coefficients in (54) which depend on 
0 0x ,z  . We obtain: 

2 2

1 3 4 5 6 7 12 2 3 3
y

Z X XZ X X Z
X

      


= + + + + + =


, at 0X Z= =     (56) 

 
( )2

2

3 5 72 3
y

X X
X Z

  


= + +
 

= 3 , at 0X Z= =       (57) 

Flattening or Steepening: 

Contribution of Z  to curvature: 

( )2

5 7 52
2 6 2

E y | X ,Z
X

Z X
  

 
= + = 

  

, 0X Z= = . 

The Case of Limited Dependent Variables (LDV) 

Suppose ( )Φy F= , where ( ),F F x z=  is an arbitrary functional form, and ( )Φ .  is a 

cumulative density function (CDF) with density ( ).φ . In the case where: 

( ) 2 2 3 3

0 1 2 3 4 5 6 7,F x z γ γ x γ z γ xz γ x γ x z γ x γ x z= + + + + + + +      (58) 

We have the following 

Proposition: For the probit model, the marginal effect is: 

( )
1

| ,E y x z
γ

x


=


                                               (59) 

The moderation effect is: 

( )
( )( )0 3 0 1 3

| ,E y x z
φ γ γ γ γ γ

x z


= −

 
        (60) 

The curvature is: 



( )2

42

| ,
2

E y x z
γ

x


=


,          (61) 

And the contribution of z to the curvature is: 

( )
( ) ( ) ( ) 

2

2 2

0 0 1 2 0 1 3 2 4 52

| ,
1 2 2

E y x z
φ γ γ γ γ γ γ γ γ γ γ

z x

 
= − − + + − 

  

    (62) 

Proof: The proof relies on the general function form ( ),F F x z= . We have: 

( )
( )

,
x

E y x z
φ F F

x


=


 

( )
( ) ( )'

| ,
x z xz

E y x z
φ F F F φ F F

x z


= +

 
 

( )
( ) ( )

2

' 2

2

| ,
,x xx

E y x z
φ F F φ F F

x


= +


 

Where the subscripts indicate differentiation. Moreover, 

 
( )

( ) ( ) ( ) ( )
2

'' 2 ' '

2

| ,
2x z x xz z xx xxz

E y x z
φ F F F φ F F F φ F F F φ F F

z x

 
= + + + 

  
 

After some algebra, we get: 

( ) ( )

( )

( )

( )
 

2 '' '

2

2

| ,
2x z x xz z xx xxz

E y x z φ F φ F
F F F F F F F

z x φ F φ F

    
= + + +  

      

 

In the case of probit we have: 

( ) ( )
( )

( )

2
'

1/2 /22 ,z
φ z

φ z π e z
φ z

− −= = − , and 

( )

( )
( )

''

21 , .
φ z

z z
φ z

= − −    

We obtain the following derivatives: 

2 2

1 3 4 5 6 72 2 3 3 ,xF γ γ z γ x γ xz γ x γ x z= + + + + +  

2

3 5 72 3 ,xzF γ γ x γ x= + +  

( )4 5 6 72 3 3 ,xxF γ γ z γ x γ xz= + + +  



76 .xxzF γ=  

Setting 0x z= = , we obtain: 

( )
1

| ,E y x z
γ

x


=


, The moderation effect is : 

( )
( )( )0 3 0 1 3

| ,E y x z
φ γ γ γ γ γ

x z


= −

 
, and

( )2

2

| ,E y x z

z x

 
 

  

 as stated in the proposition. 

At a local extrema, we have 1 0γ = , and this is maximum (minimum) if ( )4 0 0γ   . The 

contribution of z to the curvature at this point is: 

( )
( ) 

2

0 0 2 4 52

| ,
2

E y x z
φ γ γ γ γ γ

z x

 
= − − 

  

. Notice that the moderation effect does not depend 

exclusively on 
3γ  as in linear models but on 

0 1 2, ,γ γ γ  as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix 1:  The Flattening and Steepening Concepts 

 

To illustrate our new concept of steepening / flattening based on the curvature, we use a second-

order polynomial: 2( )y f x ax bx c= = + + . The second derivative is ( ) 2f x a =  so, steepening 

/ flattening should depend on the magnitude of a . The alternative in the literature is to examine 

how the root of * * *( ) 2 0
2

b
f x ax b x

a
 = + =  = −  changes with a moderator Z , i.e. examine 

*dx

dZ
. As both a  and b  can depend on Z , this can become quite complicated. 

For example, if we have inverted-U shape, so that 0a  , the function can be thought of as a  

log-likelihood in terms of “parameter” x . The variance of the “parameter” is given by minus the 

inverse of the second derivative, the well-known Fisher information: 
1 1

( ) 2
I

f x a
= − = −


. 

Flattening corresponds to larger variance and, therefore, corresponds to higher values of a . 

With U-shape curves, higher values of a  will produce steepening, as we show in Figure A.1.  

Moreover, in terms of the absolute value of a , we can state that as | |a  increases we have 

steepening and as | |a  decreases we have flattening, in a neighbourhood of x . 

Figure A.1. Flattening and Steepening 

 

 



As an example, consider the model: 

2 21 1
0 1 2 3 4 52 2

( )Y f X X Z XZ X X Z     = = + + + + +     (A.1) 

We obtain the following derivatives: 

( )1 3 4 5

Y
Z z X

X
   


= + + +


       (A.2) 

2

4 52

Y
Z

X
 


= +


         (A.3) 

Clearly, the contribution of z to the curvature is: 
2

52
,

Y

Z X


  
= 

  
so we can see immediately 

that as 
5| |  increases we have more curvature and, therefore, flattening. 

The argument based on slopes would be far more complicated with cubic effects (S-shape). For 

example, if we have  

2 2 3 31 1 1 1
0 1 2 3 4 5 6 72 2 3 3

Y X Z XZ X X Z X X Z       = + + + + + + +   (A.4) 

it is easy to show that: 

2

5 72
2

Y
X

Z X
 

  
= + 

  
        (A.5) 

and, therefore, the contribution of Z to curvature depends on x .  

 

 

 

 

 

 

 

 

 

 

 


