
New Valid Inequalities for

Knapsack and

Fixed-Charge Problems

Georgia Souli, B.Sc., M.Res

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

November 2020

Abstract

A wide variety of important problems, in Operational Research and other fields, can

be modelled as optimisation problems with integer-constrained variables. Algorithms

and software for integer programming have improved substantially. One of the key

ingredients to this success is the use of strong valid linear inequalities, also known as

cutting planes. A key concept is that the convex hull of feasible solutions forms a

polyhedron.

One strand of the literature on cutting planes is concerned with the knapsack

polytope. In the 1970s, Balas and Wolsey derived a family of inequalities, called

lifted cover inequalities (LCIs), for the knapsack polytope. We have taken a lifting

procedure due to Balas, and shown that it can be substantially improved, so that it

yields stronger and more general LCIs.

In 2000, Carr and co-authors introduced another family of valid inequalities for

the knapsack polytope. These inequalities, called knapsack cover inequalities, can be

rather weak. We have used two lifting procedures to strengthen these inequalities. The

first procedure is based on integer rounding, whereas the second uses superadditivity.

Another important class of optimisation problems are those that involve fixed

I

II

charges. In 1985, Padberg, Van Roy and Wolsey introduced a procedure which enables

one to take known valid inequalities for the knapsack polytope, and convert them into

valid inequalities for the fixed-charge polytope. We have shown how this procedure

can be extended to obtain a wider family of inequalities for the fixed-charge and

single-node flow polytopes.

Finally, we have considered problems where a fixed charge is incurred if and only

if at least one variable in a set takes a positive value. We have derived strong valid

inequalities for these problems and shown that they generalise and dominate a subclass

of the flow cover inequalities for the classical fixed-charge problem.

Acknowledgements

First and foremost, I would like to thank the EPSRC and Morgan Stanley for the

financial support.

Furthermore, I would like to thank my supervisor, Adam Letchford, for his expert

guidance over the last three years. His vast knowledge and experience have been

invaluable.

I would also like to thank Alex Armstrong for his support and guidance. I am

truly grateful for all the great opportunities that he has given me to challenge myself

to keep learning and growing.

STOR-i Centre for Doctoral Training has been an amazing place to learn and

grow. I would like to thank the directors, Jonathan Tawn and Idris Eckley, for their

advice and pastoral support throughout the MRes and the PhD. I would also like to

thank the STOR-i administrators, Jennifer Bull, Kim Wilson, Wendy Shimmin and

Nicola Sarjent, for their continuing support.

Thank you to Niamh Lamin, the STOR-i intern that I supervised during the first

summer of my PhD. Niamh’s preliminary polyhedral experiments were very helpful

for the fifth chapter of the thesis.

III

IV

Last but not least, I would like to thank my family and friends in Greece for

continuing to be there for me when I moved to the UK. Mum, Dad, Maria, Joanna,

Niki, Fenia and Maria-Christina I am very grateful for having you in my life! I also

feel very lucky for all the new friends that I made in Lancaster. I genuinely feel that

I have found a second family here. Edwin, Euan, Hankui, Rob, Sean and Zak thank

you so much!

Declaration

I declare that the work in this thesis has been done by myself and has not been sub-

mitted elsewhere for the award of any other degree.

This thesis is constructed as a series of papers and thus Chapters 2, 3, 4 and 5 should

be read as separate entities.

Chapter 2 has been published as A.N. Letchford & G. Souli (2019) On lifted cover

inequalities: A new lifting procedure with unusual properties. Operations Research

Letters, vol. 47, pp. 83-87.

Chapter 3 has been published as A.N. Letchford & G. Souli (2020) Lifting the knap-

sack cover inequalities for the knapsack polytope. Operations Research Letters, vol.

48, pp. 607-611.

Chapter 4 has been published as A.N. Letchford & G. Souli (2019) New valid inequal-

ities for the fixed-charge and single-node flow polytopes. Operations Research Letters,

V

VI

vol. 47, pp. 353-357.

Chapter 5 has been published as A.N. Letchford & G. Souli (2020) Valid inequali-

ties for mixed-integer programmes with fixed charges on sets of variables. Operations

Research Letters, vol. 48, pp. 240-244.

Georgia Souli

Contents

Abstract I

Acknowledgements III

Declaration V

Contents XI

List of Figures XII

List of Abbreviations XIII

1 Introduction 1

1.1 Optimisation . 1

1.2 Linear Programming and Extensions 2

1.3 Binary Variables in Model Formulation 4

1.3.1 The knapsack problem . 4

1.3.2 Fixed charges . 5

1.3.3 Either-or constraints . 6

1.3.4 Semi-continuous variables . 7

VII

CONTENTS VIII

1.4 Computational Complexity . 8

1.5 Classical Approaches for MILP . 10

1.5.1 Branch-and-bound . 10

1.5.2 Cutting planes . 11

1.5.3 Dynamic programming . 12

1.5.4 Heuristics . 12

1.6 Polyhedral Approaches . 13

1.6.1 Definitions and notation . 13

1.6.2 Example: The knapsack polytope 16

1.6.3 Algorithms . 17

1.7 Structure of the Thesis . 18

2 On Lifted Cover Inequalities: A New Lifting Procedure with Unusual

Properties 20

2.1 Introduction . 20

2.2 Literature Review . 22

2.2.1 Lifted cover inequalities . 22

2.2.2 Balas’ lifting procedure . 23

2.2.3 Other lifting procedures . 24

2.3 The New Procedure and Its Properties 25

2.3.1 A key quantity . 26

2.3.2 The improved procedure . 26

2.3.3 Unusual properties of the new procedure 29

CONTENTS IX

2.4 Additional Improvement Via Superadditivity 31

2.5 Concluding Remarks . 36

3 Lifting the Knapsack Cover Inequalities for the Knapsack Polytope 38

3.1 Introduction . 38

3.2 Literature Review . 40

3.2.1 Cover inequalities . 40

3.2.2 Knapsack cover inequalities 40

3.2.3 Lifting . 41

3.2.4 Mixed-integer rounding . 42

3.3 Lifting Knapsack Cover Inequalities 43

3.3.1 Motivation . 43

3.3.2 Lifted KCIs . 45

3.3.3 Lifting via mixed-integer rounding 46

3.3.4 Lifting via superadditivity . 49

3.4 Concluding Remarks . 54

4 New Valid Inequalities for the Fixed-Charge and Single-Node Flow

Polytopes 55

4.1 Introduction . 55

4.2 Literature Review . 57

4.2.1 Knapsack polytope . 58

4.2.2 Fixed-charge polytope . 58

4.2.3 Single-node flow polytope . 59

CONTENTS X

4.3 Fixed-Charge Polytope . 60

4.3.1 General procedure . 60

4.3.2 Facet-defining RKIs . 62

4.3.3 Special cases . 64

4.4 Single-Node Flow Polytope . 66

4.5 Concluding Remarks . 69

5 Valid Inequalities for Mixed-Integer Programs with Fixed Charges

on Sets of Variables 71

5.1 Introduction . 71

5.2 Literature Review . 73

5.2.1 Valid inequalities for the fixed charge polytope 73

5.2.2 Optimality cuts . 74

5.3 The Nested Case . 75

5.3.1 Notation and terminology . 75

5.3.2 Complexity . 77

5.3.3 Relation to FCNF . 78

5.3.4 The new inequalities . 80

5.3.5 Optimality cuts . 82

5.4 The General Case . 83

5.5 Acknowledgements . 87

6 Conclusion 88

6.1 Summary . 88

CONTENTS XI

6.2 Further Work . 90

6.2.1 Lifted cover inequalities . 90

6.2.2 Lifted knapsack cover inequalities 92

6.2.3 Rotated knapsack inequalities 92

6.2.4 Valid inequalities for problems with fixed charges on sets of

variables . 93

Bibliography 95

List of Figures

1.5.1 Example of a cutting plane. 12

1.6.1 Convex hull. 15

1.6.2 Weak cut. 15

1.6.3 Stronger cut. 15

1.6.4 Facet-defining cut. 15

1.6.5 Example of a knapsack polytope. 16

2.4.1 The lifting function f(z) for Example 1. 32

2.4.2 The improved lifting function g(z) for Example 1. 34

3.3.1 The exact lifting function g(r) for Example 4. 50

3.3.2 The lifting function f(r) for Example 4. 50

3.3.3 The lifting function h(r) for Example 4. 52

4.3.1 Projection of feasible points onto 2-dimensional subspace. 62

5.3.1 Visualisation of nested sets using a directed tree. 76

XII

List of Abbreviations

CI Cover Inequality

FCI Flow Cover Inequality

FCNF Fixed-Charge Network Flow

FCP Fixed-Charge Polytope

ILP Integer Linear Program

KCI Knapsack Cover Inequality

KP Knapsack Polytope

LCI Lifted Cover Inequality

LKCI Lifted Knapsack Cover Inequality

LP Linear Program

MILP Mixed-Integer Linear Program

MIR Mixed-Integer Rounding

RKI Rotated Knapsack Inequality

SNFP Single-Node Flow Polytope

XIII

Chapter 1

Introduction

1.1 Optimisation

Many times it is required to determine the best course of action. For example, air-

lines decide on which destinations to fly with the aim of maximising their revenue.

Supermarkets try to determine how many members of staff to allocate to each shift

in order to minimise cost. Factories design their production line with the aim of

maximising their revenue. The branch of applied mathematics that is concerned with

methods for finding the best among a huge range of alternatives is called optimisation.

Optimisation problems arise in many fields, such as Operational Research, Statistics,

Computer Science and Engineering.

In practice, optimisation consists of the following steps. First, the problem in

question needs to be formulated mathematically. To formulate a problem as an op-

timisation problem, one needs to define the variables, the objective function and the

constraints. The variables represent the decisions to be made and their respective val-

1

CHAPTER 1. INTRODUCTION 2

ues are to be determined. The objective function is a performance measure, expressed

as a function of the variables, and is to be maximised or minimised. The constraints

represent restrictions on the values of the variables.

Once an optimisation problem has been formulated, one must design, analyse

and implement one or more solution algorithms. Optimisation solution algorithms

should be capable of yielding good quality solutions in reasonable computing times.

In this thesis, we have explored several specific optimisation problems with the view

to produce quicker algorithms.

The remaining of this chapter is structured as follows. In Section 1.2, we introduce

a class of optimisation problems, known as linear programs, and some extensions. In

Section 1.3, we show how binary variables can be used to formulate a wide range of

problems. Section 1.4 is an introduction to computational complexity. In Section 1.5,

we review some classical approaches for mixed-integer linear programs. In Section 1.6,

we introduce polyhedral approaches, that can help improve the classical approaches

substantially. Finally, in Section 1.7, we discuss the structure of the thesis.

1.2 Linear Programming and Extensions

Let m and n be positive integer numbers, denoting the number of variables and

the number of constraints of the optimisation problem. Let c be an n-dimensional

real-valued vector, b be an m-dimensional real-valued vector and A be an m×n real-

valued matrix. Let x be the n-dimensional vector of decision variables that need to

CHAPTER 1. INTRODUCTION 3

be determined. A linear program is a problem of the form

min cTx

s.t. Ax ≤ b

x ∈ Rn
+.

The quantity cTx is called the objective function and the matrix A is called the

constraint matrix. The vector c contains the objective function coefficients, and the

vector b contains the right-hand sides of the inequalities.

Any vector x that satisfies the constraints is called a feasible solution to the op-

timisation problem. The set of all feasible solutions is called the feasible region of

the problem. Provided that the feasible region is not an empty set (i.e., there is at

least one feasible solution), and that the objective function is not unbounded (i.e.,

it cannot take infinitely small values), there exists at least one feasible solution that

minimises the objective function. Such a solution is called optimal.

Linear programming has been studied in great depth and, nowadays, there are so-

lution algorithms and computer software capable of solving large-scale linear problems

within a reasonable amount of time. The most well-known solution algorithms are

the simplex method [24] and interior point methods [13]. We omit detail for brevity.

Note that the variables of a linear program are allowed to take fractional values.

If all the variables are required to take integer values, then the problem is called

an Integer Linear Program (ILP). If some of the variables are required to be inte-

ger (and the remaining are allowed to take fractional values), then the problem is

called a Mixed-Integer Linear Program (MILP). If we consider a MILP, but relax the

CHAPTER 1. INTRODUCTION 4

integrality constraints, the resulting problem is called the continuous relaxation or

LP relaxation of the MILP. In general, MILPs are much harder to solve than LPs.

Famous textbooks on MILP include [65, 73].

1.3 Binary Variables in Model Formulation

Integer variables are very useful for modelling quantities that can only take integer

values, such as the number of people that perform a particular task. A particularly

useful type of integer variables is associated with decisions where there are only two

possible choices: yes and no. Such a decision can be represented by a variable y such

that

y =


1, if decision is yes

0, if decision is no.

A variable that is restricted to just two values, 0 and 1, is called binary. Mixed-integer

linear programs such that some of the variables are required to be binary are called

mixed 0-1 linear programs.

Binary variables enable us to model a wide range of problems as integer program-

ming problems. In the remaining of this section, we present some examples. The

interested reader can find more examples in [55, 68].

1.3.1 The knapsack problem

The knapsack problem is a classic example of modelling yes-no decisions. Consider a

set of n items and a knapsack with capacity b. For every item j, let aj be its (positive)

CHAPTER 1. INTRODUCTION 5

weight, vj be its (positive) value and

yj =


1, if item j is included in the knapsack

0, otherwise.

The aim is to choose which items to include in the knapsack in order to maximise

the total value. Given that the knapsack has a limited capacity, the total weight of

the items that are included in the knapsack should not exceed the knapsack capacity.

The knapsack problem can be formulated as follows

max
n∑
j=1

vjyj

s.t.
n∑
j=1

ajyj ≤ b

yj ∈ {0, 1} (j = 1, . . . , n).

1.3.2 Fixed charges

One of the main assumptions of MILP is proportionality. This means that the con-

tribution of a variable to the objective function is proportional to the value of the

variable. However, in several applications there is a fixed set-up cost associated to

some activity (e.g., cost to initiate the activity).

Let x be a non-negative continuous variable that represents the level of the activity,

k denote the “set-up cost” and c denote the cost per unit of activity. The total cost

is equal to

f(x) =


k + cx, if x > 0

0, if x = 0.

CHAPTER 1. INTRODUCTION 6

In order to convert the problem to the MILP format, we introduce a binary variable

y such that

y =


1, if x > 0

0, if x = 0.

Then, we can write f(x) = cx + ky. In order to ensure that y is equal to 1 if x > 0,

we also add to the problem the constraint x ≤ My, where M is a “large” positive

number. This approach is known as the “big M” method.

1.3.3 Either-or constraints

Another main assumption of MILP is that all the constraints of the problem must

be satisfied. However, sometimes it is possible to choose between two constraints so

that only one must hold. For example, there may be a choice as to which of two

resources to use. In that case, only the constraint for the chosen resource has to hold.

For example, suppose that it is required that either the constraint x1 + x2 ≤ 5 or the

constraint x1 + 2x2 ≤ 6 has to hold (not necessarily both).

In order to convert the problem to the MILP format, we introduce a very large

positive number M and a binary variable y, and add to the problem the constraints

x1 + x2 ≤ 5 +My

x1 + 2x2 ≤ 6 +M(1− y).

To see how this formulation actually works, we consider the two possible values of y.

CHAPTER 1. INTRODUCTION 7

If y = 1, then the constraints become

x1 + x2 ≤ 5 +M

x1 + 2x2 ≤ 6.

The first inequality is satisfied trivially for any x1, x2, and, essentially, only the second

constraint is enforced. On the other hand, if y = 0, then the constraints become

x1 + x2 ≤ 5

x1 + 2x2 ≤ 6 +M.

Similarly, the second inequality is satisfied trivially for any x1, x2, and, essentially,

only the first constraint is enforced.

1.3.4 Semi-continuous variables

A semi-continuous variable, x, takes either the value 0, or a value greater than or equal

to some constant `. In order to model this type of variable in the MILP setting, we

can introduce x as a continuous variable and then, also, introduce a binary variable,

y, and the constraint

`y ≤ x ≤My,

where M is again a very large positive number. This constraint ensures that, if y = 0,

then x is also equal to 0. If y = 1, then x takes values greater than or equal to `.

CHAPTER 1. INTRODUCTION 8

1.4 Computational Complexity

Once an optimisation problem has been formulated, one must design and implement

solution algorithms. Before we introduce some well-known solution algorithms for

MILP, it is important to discuss how we measure the efficiency of an algorithm. The

interested reader is also referred to [27] for more detail on the topic.

Efficiency can be measured in a number of different ways. For example, an im-

portant measure of efficiency is the amount of computer memory that is required by

the algorithm. However, the most commonly used measure of the efficiency is the

algorithm’s running time, which is the number of computational steps required by

the algorithm.

Let n be a measure of the size of an instance of an optimisation problem. The big

O notation is used to represent an asymptotic upper bound for the running time of an

algorithm (based on a worst-case instance). The running time f(n) of an algorithm

is said to be O(g(n)) if there exist constants c and n0 such that f(n) ≤ cg(n) for all

n ≥ n0. For example, if the running time of an algorithm is known to never exceed

5n2 − 3n+ 9, the algorithm would be said to run in O(n2) time.

In order to classify the difficulty of different optimisation problems, we consider

a type of problems known as decision problems. These are problems that can be an-

swered with a single ‘yes’ or ‘no’. For example, given an integer w and a minimisation

integer program with objective function z, the corresponding decision problem would

be “is there a feasible solution x such that z(x) < w?”.

An algorithm is said to run in polynomial time, or more briefly to be polynomial, if

CHAPTER 1. INTRODUCTION 9

its running time is O(nk), where k is a known constant. The class of decision problems

for which there is a polynomial-time algorithm is denoted by P . Essentially, P is the

class of problems that can be solved “quickly”.

The class of decision problems for which, given a ‘yes” instance of the problems,

this can be checked in polynomial time, is called NP . Consider, for example, the

problem of determining whether a given graph contains a Hamiltonian circuit. Sup-

pose that, after using a huge amount of computing resources, we eventually find such

a circuit. If we are given a list of the edges in the circuit, we can check in O(n) time

that the given list does indeed correspond to a circuit. So, the Hamiltonian circuit

problem is in NP . It is straightforward that P ⊆ NP . However, it has not been

verified yet whether P = NP or P 6= NP .

A decision problem is called NP-complete if it can be shown that any other prob-

lem in NP can be mapped to this problem in polynomial time in its input size.

An optimisation problem is called NP-hard if the corresponding decision problem is

NP-complete. For example, the Travelling Salesman Problem is NP-hard, since the

Hamiltonian circuit problem, which is NP-complete [43], can be reduced to it.

An interesting class of NP-hard problems are weakly NP-hard problems. An

optimisation problem is called weakly NP-hard if there is a solution algorithm whose

running time is bounded by a polynomial in both the size of the problem and the

magnitude of the numbers involved. The corresponding algorithm is called pseudo-

polynomial. For example, the knapsack problem is weakly NP-hard. Let n denote the

number of items and b denote the capacity of the knapsack. The knapsack problem

can be solved in O(nb) time using a technique called dynamic programming. This

CHAPTER 1. INTRODUCTION 10

does not give a true polynomial algorithm, since a positive integer b is exponential in

the number of bits needed to encode b. The knapsack problem is NP-hard, but, as

long as b is “small”, the problem is relatively easy to solve.

1.5 Classical Approaches for MILP

Mixed-integer linear programming is a very active area of research. Over the years,

several solution algorithms have been developed. In the following subsections, we

briefly introduce some of the most well-known classical solution approaches for MILP,

i.e., branch-and-bound, cutting planes, dynamic programming and heuristics. We also

refer the interested reader to [3, 6, 39] for more detail on the topic.

1.5.1 Branch-and-bound

Branch-and-bound was first introduced in [45]. It follows a “divide-and-conquer”

strategy in the sense that the algorithm partitions the feasible region of the problem

into subregions and explores each subregion recursively. The basic structure of the

algorithm is an enumeration tree. The root node corresponds to the original problem.

The algorithm starts with solving the LP relaxation of the original problem. If the

solution satisfies the integrality constraints, then this solution is also the optimal

solution to the original problem. Otherwise, we branch, which means that we create

two (or more) child nodes of the parent node by adding constraints to the problem of

the parent node.

At each node, we solve the LP relaxation of the corresponding MILP. If the optimal

CHAPTER 1. INTRODUCTION 11

solution satisfies the integrality constraints, then we do not consider this node any

further, and the given solution is a candidate solution to the original problem. If it is

better than the best candidate solution found so far (which is called the incumbent

solution), then we update the incumbent solution. If the optimal solution does not

satisfy the integrality constraints, there are two options. If the value of this solution

is worse than the incumbent solution, there is no point in exploring this node any

further. If it is better, then we branch again. The procedure continues until there are

no more nodes to consider.

1.5.2 Cutting planes

Cutting planes, or cuts, were first introduced in [30]. A cutting plane for a MILP is an

inequality that is satisfied by all feasible solutions of the MILP but not by all feasible

solutions of the LP relaxation. The idea of the algorithm is intuitively rather simple.

We solve the LP relaxation of the problem, and then, if the solution does not satisfy

the integrality constraints, we find a cutting plane that is violated by this solution

and add it to the formulation. Then, we solve the strengthened LP relaxation, and

repeat the process until we find the optimal solution to the MILP.

Figure 1.5.1 demonstrates a very simple example of an ILP with 2 integer variables

(x1 and x2), 5 linear constraints and 5 feasible integer solutions. The optimal solution

to the LP relaxation is marked by ∗, and the dotted line shows a cutting plane that

removes ∗ while all integer feasible solutions remain intact.

CHAPTER 1. INTRODUCTION 12

s
s
s
s
s

�
�
�
�
��

````̀

A
A
A
A
A
A

((((
(

��
���

�

*

6

- x1

x2

qqqqqqqqqqqqqqqqqqqqqqqqqqq

0

1

2

3

1 2 3

Figure 1.5.1: Example of a cutting plane.

1.5.3 Dynamic programming

In Section 1.4, we mentioned that the knapsack problem is an NP-hard problem, but

can be solved in O(nb) time using a technique called dynamic programming. Dynamic

programming was introduced by Bellman [10]. This method transforms a complex

optimisation problem into a sequence of simpler subproblems. The basic idea is to

decompose the problem into a nested sequence of smaller subproblems, such that

the optimal solutions to the smaller subproblems can help us determine the optimal

solutions to the larger ones.

1.5.4 Heuristics

All the techniques for MILP that we have reviewed so far are exact methods. This

means that they provide the optimal solution to the MILP. However, exact methods

do not always work well in practice. In many cases the required computational cost for

the exact method can be prohibitive. Heuristics (first introduced in [62]) and meta-

heuristics (first introduced in [28]) are methods that provide good feasible solutions for

the problem within reasonable computational time. However, the obtained solutions



CHAPTER 1. INTRODUCTION 13

are not guaranteed to be optimal, and we do not know how far these solutions are

from being optimal.

More specifically, a heuristic is a technique that employs a practical method to find

a good (near-optimal) solution at a reasonable computational cost. A metaheuristic

is a higher-level methodology that guides and modifies the operations of subordinate

heuristics to produce high quality solutions. The interested reader can find more

detail on the topic in [2, 14].

1.6 Polyhedral Approaches

In this section, we discuss how polyhedral approaches can be used to create faster

algorithms for MILP. This section is structured as follows. In Subsection 1.6.1, we

introduce relevant definitions and notation from polyhedral theory. In Subsection

1.6.2, we introduce the knapsack polytope. Finally, in Subsection 1.6.3, we introduce

some algorithms that have been developed as a result of the use of polyhedral theory.

The interested reader is also referred to [20] for a more detailed discussion on the

topic.

1.6.1 Definitions and notation

Let x1, . . . , xk ∈ Rn and λ1, . . . , λk ∈ R. The vector x = λ1x
1 + · · ·+ λkx

k is called a

linear combination of x1, . . . , xk. If
∑k

i=1 λi = 1, x is called an affine combination of

x1, . . . , xk. If x is an affine combination of x1, . . . , xk and λi ≥ 0 for all i = 1, . . . , k,

then x is called a convex combination of x1, . . . , xk. A set of vectors is called affinely



CHAPTER 1. INTRODUCTION 14

independent if no member of the set can be written as an affine combination of the

others.

Let S ⊂ Rn. The set S is called convex if θx1 + (1 − θ)x2 ∈ S for all x1, x2 ∈ S

and 0 ≤ θ ≤ 1. Given C ⊂ Rn, the convex hull of C, denoted by conv(C), is the

smallest convex superset of C. Note that the convex hull of C is the set of all convex

combinations of finitely many vectors in C.

A convex set P ⊆ Rn is called a polyhedron if it can be written as a solution set of

finitely many linear inequalities. In other words, there are (a) a non-negative integer

m, (b) an m× n real-valued matrix A, and (c) a real-valued vector b such that

P = {x ∈ Rn : Ax ≤ b}.

If a polyhedron is a bounded set, it is called a polytope. Let k denote the largest

number of affinely independent vectors in a polytope P . The dimension of P , denoted

by dim(P ), is equal to k − 1. The dimension of P can be -1 (if P is empty), 0 (if

P consists of one point), and up to n if P ∈ Rn. If dim(P ) = n, then P is called

full-dimensional.

Let αTx ≤ β be a linear valid inequality for a polyhedron P . The set

F = P ∩ {x ∈ Rn : αTx ≤ β}

is called the face of polyhedron induced by the given valid inequality. If F 6= ∅, the

valid inequality is called supporting. If dim(F ) = dim(P )− 1, then F is called a facet

of P.

In order to demonstrate some of the concepts that we have introduced in this

subsection, we return to simple example of Figure 1.5.1. The inner polygon in Figure



CHAPTER 1. INTRODUCTION 15

s
s
s
s
s

�
�
�
�
��

````̀

A
A
A
A
A
A

((((
(

��
���

�

6

- x1

x2

0

1

2

3

1 2 3

@
@
@

Figure 1.6.1: Convex hull.

s
s
s
s
s

�
�
�
�
��

````̀

A
A
A
A
A
A

((((
(

��
���

�

6

- x1

x2

qqqqqqqqqqqqqqqqqqqqqqqqqqq
*

0

1

2

3

1 2 3

@
@
@

Figure 1.6.2: Weak cut.

s
s
s
s
s

�
�
�
�
��

````̀

A
A
A
A
A
A

((((
(

���
���

*

6

- x1

x2

qqqqqqqqqqqqqqqqqqqqqqqqqqq
0

1

2

3

1 2 3

@
@
@

Figure 1.6.3: Stronger cut.

s
s
s
s
s

�
�
�
�
��

````̀

A
A
A
A
A
A

((((
(

���
���

6

- x1

x2

*
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

0

1

2

3

1 2 3

@
@
@

Figure 1.6.4: Facet-defining cut.

1.6.1 demonstrates the convex hull of the feasible region. Figures 1.6.2, 1.6.3 and 1.6.4

illustrate three different cutting planes that can be used to remove the solution of the

LP relaxation. The strength of a cutting plane is determined by the convex hull of

the feasible region of the MILP. The cutting plane in Figure 1.6.2 does not even touch

the convex hull. The cutting plane in Figure 1.6.3 is stronger because it touches the

convex hull and the one in Figure 1.6.4 is a strongest possible cutting plane, because

it defines a facet of the convex hull.



CHAPTER 1. INTRODUCTION 16

t t

s s
t

�
�
�
�
�
�

�
�
�
�
�
�

@
@
@
@
@
@
@
@
@

HHH
HHH

``````````````̀

y30 1

y1

0

1

y2

0

1

Figure 1.6.5: Example of a knapsack polytope.

1.6.2 Example: The knapsack polytope

In Section 1.3, we introduced the 0-1 knapsack problem. In the 0-1 knapsack problem,

we are given n items with given weights aj and a knapsack with capacity b. The

polyhedron

conv
{
y ∈ {0, 1}n :

n∑
j=1

ajyj ≤ b
}

is called a knapsack polytope. In Figure 1.6.5, we have visualised the knapsack polytope

P1 = conv
{
y ∈ {0, 1}n : 2y1 + y2 + y3 ≤ 2

}
.

Consider a subset C of items. It is called a cover if their total weight is larger

than the capacity of the knapsack. In the aforementioned example, C1 = {1, 2} and

C2 = {1, 3} are covers. Intuitively, if we have a set of |C| items, whose total weight

exceeds the capacity of the knapsack, we can only fit at most |C| − 1 of them in the

knapsack. Mathematically, this can be expressed as follows

∑
j∈C

yj ≤ |C| − 1.

This inequality is called a cover inequality. Returning to the example, the correspond-

ing cover inequalities are y1 + y2 ≤ 1 for C1, and y1 + y3 ≤ 1 for C2.

CHAPTER 1. INTRODUCTION 17

A cover is called minimal if we remove one item and the remaining set is no longer

a cover. If C is a minimal cover, then the associated cover inequality defines a face of

dimension at least |C|−1. Furthermore, there exists at least one lifted cover inequality

of the following form ∑
j∈C

yj +
∑
j∈N\C

αjyj ≤ |C| − 1,

where αj is a non-negative integer for all the items outside the cover. The process of

computing the coefficients αj is known as lifting. Several fast and effective algorithms

exist for lifting cover inequalities [7, 9, 23, 32, 34, 41, 74]. We discuss lifting in more

detail in following chapters of the thesis.

1.6.3 Algorithms

In 1983, Crowder, Johnson and Padberg [23] first used results regarding the facial

structure of 0-1 polytopes to create cutting planes. They considered 0-1 LPs, treated

each constraint in the problem as a knapsack constraint and derived lifted cover

inequalities from that. Then, they used these cutting planes in the root node of the

branch-and-bound tree. More specifically, after solving the LP relaxation, if the node

demanded further consideration, they would attempt to detect violated cuts. Any

detected cuts would be added to the formulation and the LP would be solved again.

If no more violated cuts could be be detected, they would continue with branch-

and-bound. This technique helped them to solve to optimality ten 0-1 LPs, which

were until then considered to be impossible to solve to optimality within reasonable

computation times. The technique of generating cutting planes in the root node of

CHAPTER 1. INTRODUCTION 18

the branch-and-bound tree has come to be known as cut-and-branch.

The use of cutting planes can be expanded to the other nodes of the branch-and-

bound tree. The resulting technique is called branch-and-cut [59]. After solving the

LP relaxation at each node, if the node demands further consideration, we attempt

to detect violated cuts. Any cuts detected are added to the formulation and the LP

is solved again. If no more violated cuts can be detected, we branch. The problem

of finding violated cuts is called the separation problem. There is a trade-off between

the strength of the cuts and the time it takes to solve the separation problem. If the

required computational time is prohibitive, we can branch instead. Furthermore, the

more cuts created, the more complicated the problem. So, it might be reasonable

to remove some cuts from the formulation in order to keep the size of the problem

manageable.

1.7 Structure of the Thesis

The thesis is structured as follows.

Chapter 2 has been published as [48]. It is concerned with lifted cover inequalities

for the knapsack polytope. More specifically, in this chapter we show how one of the

earliest lifting procedures, due to Balas, can be significantly improved. The resulting

procedure has some unusual properties. For example, (i) it can yield facet-defining

inequalities even if the given cover is not minimal, (ii) it can yield facet-defining

inequalities that cannot be ontained by standard lifting procedures, and (iii) the

associated lifting function is integer-valued almost everywhere.

CHAPTER 1. INTRODUCTION 19

In Chapter 3, which has been published as [50], we revisit the knapsack polytope.

In this chapter, we focus on the knapsack cover inequalities, introduced in 2000 by Carr

and co-authors [15]. In general, these inequalities can be rather weak. To strengthen

them, we use lifting. Since exact lifting can be time-consuming, we present two

fast approximate lifting procedures. The first procedure is based on mixed-integer

rounding, whereas the second uses superadditivity.

Chapter 4 has been published as [47]. It is concerned with new valid inequalities

for two other polytopes, namely the fixed-charge polytope and the single-node flow

polytope. More specifically, in this chapter we introduce a new procedure which

enables one to take known valid inequalities for the knapsack polytope, and convert

them into valid inequalities for the fixed-charge and single-node flow polytopes. The

resulting inequalities are very different from the previously known inequalities, and

define facets under certain conditions.

Chapter 5 has been published as [49]. It is concerned with valid inequalities for

mixed-integer programs with fixed charges on sets of variables. More specifically, we

consider mixed 0-1 linear programs in which one is given a collection of (not necessarily

disjoint) sets of variables and, for each set, a fixed charge is incurred if and only if at

least one of the variables in the set takes a positive value. We derive strong valid linear

inequalities for these problems, and show that they generalise and dominate a subclass

of the well-known flow cover inequalities for the classical fixed-charge problem.

Finally, Chapter 6 is the conclusion of this thesis. In this chapter, we provide an

overview of our contributions and discuss further work that can stem from our work.

Chapter 2

On Lifted Cover Inequalities: A

New Lifting Procedure with

Unusual Properties

2.1 Introduction

Strong valid linear inequalities, also called cutting planes, are a key ingredient of

modern exact algorithms for integer programs (see, e.g., [16, 21]). In the case of pure

0-1 linear programs (0-1 LPs), one very well-known and widely used family of cutting

planes is the so-called lifted cover inequalities (LCIs), discovered independently by

Balas [7] and Wolsey [69] (see also the surveys [5, 42]).

LCIs are obtained from a weaker family of inequalities, the so-called cover inequal-

ities (CIs), by a process called lifting. Several procedures for lifting CIs have been

proposed in the literature [7, 9, 23, 32, 34, 41, 74]. In this paper, we focus on one of

20

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 21

the earliest lifting procedures, which was described in Section 3 of Balas [7]. The LCIs

generated by Balas’ procedure are not guaranteed to define facets of the associated

knapsack polytope, but they tend to be strong in practice. Moreover, the procedure

is extremely fast. Specifically, it runs in only O(n log c) time, where n is the number

of variables and c is the number of items in the cover.

The purpose of this paper is to show that the above-mentioned lifting procedure of

Balas can be significantly improved, so that it yields both stronger and more general

LCIs, while still running in only O(n log c) time. The improved procedure is sequence-

independent, and it has some unusual properties:

• It can increase coefficients for variables inside the cover as well as outside.

• It can yield facet-defining LCIs even if the given cover is not minimal.

• It can even yield facet-defining inequalities that cannot be obtained by standard

lifting procedures.

• The associated lifting function is integer-valued almost everywhere.

Moreover, the proof that the improved procedure is valid is itself unusual. It relies

on the use of “dummy variables”, by which we mean variables that do not exist in

reality.

The paper is structured as follows. In Section 2.2, we review the literature. In

Section 2.3, we present and analyse the improved lifting procedure. In Section 2.4, we

show how to further enhance the procedure, via an analysis of superadditive functions.

Finally, in Section 2.5, we discuss some preliminary computational results.

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 22

Throughout the paper, x1, . . . , xn will be a collection of binary variables and N

will denote {1, . . . , n}. Moreover, given a vector v ∈ Qn
+ and a set S ⊆ N , we will let

v(S) denote
∑

j∈S vj.

2.2 Literature Review

We now briefly review the relevant literature.

2.2.1 Lifted cover inequalities

A knapsack constraint is a linear constraint of the form
∑

j∈N ajxj ≤ b, where a ∈

Zn+ and b is a positive integer. Any linear inequality involving binary variables can

be converted into a knapsack constraint, by complementing variables with negative

coefficients [69]. The polyhedron

conv

{
x ∈ {0, 1}n :

∑
j∈N

ajxj ≤ b

}

is called a knapsack polytope [7].

A set C ⊆ N such that a(C) > b is called a cover. If C is a cover, then the

inequality x(C) ≤ |C| − 1 is valid for the knapsack polytope [29]. It is called a cover

inequality (CI). A cover (and the associated CI) is minimal if a
(
C \ {k}

)
≤ b for all

k ∈ C. Minimal CIs dominate all other CIs.

Unfortunately, minimal CIs do not in general define facets of the knapsack poly-

tope. On the other hand, given any minimal cover C, there exists at least one facet-

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 23

defining lifted cover inequality (LCI) of the form

x(C) +
∑
j∈N\C

αjxj ≤ |C| − 1, (2.2.1)

where αj ∈ Z+ for j ∈ N \ C [7, 58, 69]. (There may also exist facet-defining LCIs

in which some αj are fractional.) The process of computing the αj for j ∈ N \ C is

called lifting. Encouraging computational results with LCIs were given in [23].

One can define more general LCIs of the form

x(C \D) +
∑
j∈N\C

αjxj +
∑
j∈D

βjxj ≤ |C \D| − 1 + β(D), (2.2.2)

where D ⊂ C [58, 69]. Encouraging computational results with general LCIs are given

in [32, 36, 41]. We will follow Gu et al. [32] in calling the computation of the αj and

βj up-lifting and down-lifting, respectively. We will also call LCIs of the form (2.2.1)

simple.

2.2.2 Balas’ lifting procedure

Balas [7] introduced the following elegant up-lifting procedure, which can be imple-

mented to run in O
(
n log |C|

)
time. Let C be a minimal cover and, for r = 1, . . . , |C|,

let S(r) be the sum of the r largest aj values over the members of C. Also let S(0) = 0.

Given any j ∈ N \C, let λj be the (unique) integer such that S(λj) ≤ aj < S(λj + 1).

Then the simple LCI

x(C) +
∑
j∈N\C

λjxj ≤ |C| − 1 (2.2.3)

is valid.

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 24

Balas & Zemel [9] proved the following stronger result. Given any j ∈ N \ C, let

µj be the (unique) integer such that

a(C)− S
(
µj + 1

)
≤ b− aj < a(C)− S

(
µj
)
. (2.2.4)

Then, in any facet-defining simple LCI, we have λj ≤ αj ≤ µj ≤ λj + 1 for all

j ∈ N \ C.

We will use the following example at several points through the paper.

Example 1. Let n = 10, a = (15, 13, 9, 8, 8, 8, 5, 5, 5, 5) and b = 16. The set

{7, 8, 9, 10} is a minimal cover. We have S(k) = 5k for k = 0, . . . , 4. Since a1 =

15 ≥ S(3), we have λ1 = 3. Since a2 = 13 ≥ S(2), we have λ2 = 2. On the other

hand, since a3, . . . , a6 < S(2), we have λ3, . . . , λ6 = 1. The resulting (simple) LCI is

therefore

3x1 + 2x2 + x3 + · · ·+ x10 ≤ 3. (2.2.5)

One can also check that µ1 = µ2 = 3 and µk = 2 for k ∈ {3, 4, 5, 6}. So, in any facet-

defining LCI obtained from that specific cover, α1 = 3, α2 ∈ [2, 3] and α3, α4, α5, α6 ∈

[1, 2]. �

2.2.3 Other lifting procedures

It was shown in [58, 69] that one can obtain at least one facet-defining simple LCI by

performing up-lifting sequentially, i.e., one coefficient at a time. This can be done by

solving a small knapsack problem for each variable in N \C. Zemel [74] showed how

to do it in O(n |C|) time by dynamic programming.

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 25

It is also possible to obtain facet-defining simple LCIs with fractional coefficients,

by up-lifting simultaneously instead of sequentially. Unfortunately, this is not easy. In

fact, even recognising a facet-defining simple LCI obtained by simultaneous up-lifting

is NP-hard [35].

It is of course possible to perform simultaneous up-lifting approximately in poly-

nomial time. If an approximate simultaneous up-lifting procedure does not require

any ordering of the variables in N \ C, it is called sequence-independent [9, 34]. The

procedure of Balas, described in the previous subsection, can be viewed as a simple

sequence-independent up-lifting procedure.

Wolsey [71] established a connection between sequence-independent lifting and

superadditive functions. Gu et al. [34] used that result to improve Balas’ up-lifting

procedure, without increasing the asymptotic running time. Their improved proce-

dure can yield simple LCIs with fractional coefficients. Further results on lifting can

be found in [32, 36, 42].

2.3 The New Procedure and Its Properties

In this section, we show how to improve the procedure of Balas [7], in a way that is

different from the one given in [34]. Throughout this section, we assume that we have

a fixed knapsack constraint aTx ≤ b and a fixed (not necessarily minimal) cover C, for

ease of notation. We let c and amax denote |C| and maxj∈C{aj}, respectively. Finally,

we assume that the items in C have been sorted in non-increasing order of aj value,

and we let `1, . . . , `c be the sorted values. Note that the sorting can be performed in

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 26

O(c log c) time.

2.3.1 A key quantity

The following quantity will play a crucial role in our analysis.

Definition 2.3.1. We let ā denote the unique (positive and rational) number such

that ∑
j∈C

min
{
aj, ā

}
= b.

For example, if C = {1, 3, 4}, a1 = 10, a3 = 7, a4 = 5 and b = 18, then ā = 6.5,

since 6.5 + 6.5 + 5 = 18.

Remark 1: We have b
c
≤ ā < amax.

Remark 2: If the items in C have already been sorted, one can compute ā in O(c)

time. See Algorithm 1.

In the remainder of this section, we let C− =
{
j ∈ C : aj ≤ ā

}
and C+ = C \C−.

Note that C− can be empty, but C+ cannot be
(
since ā < amax

)
.

2.3.2 The improved procedure

The improved version of Balas’ procedure is described in the following theorem.

Theorem 2.3.2. For all j ∈ C, let a−j = min
{
aj, ā

}
. For r = 1, . . . , c, let S−(r) be

the sum of the r largest a−j values. (Note that S−(c) = b.) Also let S−(0) = 0. Finally,

given any j ∈ N \C−, let γj be the largest integer such that S−(γj) < aj ≤ S−(γj +1).

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 27

Algorithm 1 Efficient computation of ā

input: cover C, knapsack capacity b, sorted values `1, . . . , `c

1: Set ā := `1 and σ := a(C)− b

2: for k = 1, . . . , c− 1 do

3: Let δ = ā− `k+1

4: if kδ < σ then

5: Set ā := `k+1 and σ := σ − kδ

6: else

7: Set ā := ā− σ/k and σ := 0

8: break

9: end if

10: end for

11: if σ > 0 then

12: Set ā := b/c

13: end if

output: Value of ā.

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 28

Then the inequality

x
(
C−
)

+
∑

j∈N\C−
γjxj ≤ c− 1 (2.3.1)

is valid for the knapsack polytope, and it is at least as strong as (2.2.3).

Proof. First, we expand the definition of “knapsack polytope”, by permitting b and/or

some of the aj to take fractional values. One can check that Balas up-lifting procedure

is valid even in this more general setting. Without loss of generality, we assume that

C \ C− = {1, . . . , c′} for some 1 ≤ c′ ≤ c. We then define the following “augmented”

knapsack polytope:

K+ = conv

{
x ∈ {0, 1}n+c′ :

n∑
j=1

ajxj + (ā+ ε)
n+c′∑
j=n+1

xj ≤ b

}
,

where ε is some small positive rational number. By construction, the set

C̃ = C− ∪ {n+ 1, . . . , n+ c′}

is a cover for K+, and it has the same cardinality as C. If ε is sufficiently small, then

applying Balas’ up-lifting procedure to the CI associated with C̃ yields the following

LCI for K+:

x(C̃) +
∑

j∈N\C−
γjxj ≤ c− 1.

Now, the original knapsack polytope is the face of K+ obtained by setting xj to zero

for j = n+1, . . . , n+ c′. Thus, the inequality (2.3.1) is valid for the original polytope.

Finally, note that, by construction, S−(r) < S(r) for all r. Thus, γj ≥ λj for all

j ∈ N \ C. Moreover, γj ≥ 1 for all j ∈ C \ C−. Thus, (2.3.1) is at least as strong as

(2.2.3).

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 29

As mentioned in the introduction, a peculiarity of the above proof is that it relies on a

consideration of “dummy variables” (namely, xn+1, . . . , xn+c′), which do not actually

exist in the original problem.

We now illustrate Theorem 2.3.2 on the same example that we considered in

Subsection 2.2.2.

Example 1 (cont.) We have ā = 4 and C = C+. This means that S−(k) = 4k for

k = 0, . . . , 4. Since a1 = 15 > S−(3), we have γ1 = 3. Since a2 = 13 > S−(3), we

have γ2 = 3. Since a3 = 9 > S−(2), we have γ3 = 2. Finally, since aj = 8 < S−(2) for

j ∈ {4, 5, 6}, we have γj = 1 for j ∈ {4, 5, 6}. Thus, the resulting (simple) LCI is

3(x1 + x2) + 2x3 + x4 + · · ·+ x10 ≤ 3.

This dominates the LCI (2.2.5). �

Now, observe that, if λ1, . . . , λc have already been computed, then one can compute

S−(0), . . . , S−(c) in O(c) time. Moreover, for each j ∈ N \ C−, one can compute γj

in O(log c) time, by binary search. Thus, our improved lifting procedure can be

performed in O(n log c) time.

2.3.3 Unusual properties of the new procedure

As stated in the introduction, our new lifting procedure has some unusual properties.

The first is that, if we start with covers that are not minimal, we can obtain LCIs

that are not simple. This is illustrated in the following example.

Example 2. Let n = 5, a = (5, 5, 2, 2, 2) and b = 10. The cover C = {1, 2, 3, 4, 5}

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 30

is not minimal, but we can still apply our procedure. We have ā = b/c = 2, so that

S−(r) = 2r for r = 0, . . . , 5. Now, since C+ = {1, 2}, we may be able to increase the

coefficients of x1 and x2. Indeed, since a1 = a2 = 5 > S−(2), we have γ1 = γ2 = 2.

The resulting valid inequality is 2x1 +2x2 +x3 +x4 +x5 ≤ 4. This is not a simple LCI,

since only three variables have a left-hand side coefficient equal to 1. It is however an

LCI, as one can see by setting C = {2, 3, 4, 5}, D = {2}, α1 = 2 and β2 = 2 in (2.2.2).

It also defines a facet of the associated knapsack polytope. �

In general, our procedure yields a simple LCI if and only if at least |C| variables

receive a left-hand side coefficient of 1. One can check that this is equivalent to

requiring ∣∣∣{j ∈ N \ C− : ā < aj ≤ S−(2)
}∣∣∣ ≥ |C \ C−|.

In particular, we have the following result.

Lemma 2.3.3. If the original cover C is minimal, then our procedure yields a simple

LCI.

Proof. Let σ = a(C)− b. Since C is minimal, we have σ ≤ `c ≤ `2. Thus,

amax = `1 ≤ `1 + (`2 − σ) = (`1 + `2)− σ ≤ `−1 + `−2 = S−(2).

This implies that γk = 1 for all k ∈ C \ C−.

An even more unusual property of the new procedure is that, if we start with

covers that are not minimal, we can obtain inequalities that are not LCIs at all (in

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 31

the traditional sense).

Example 3. Let n = 5, a = (10, 7, 7, 4, 4) and b = 16. The cover C = {1, . . . , 5} is not

minimal, but we apply our procedure. We have ā = b/c = 31
5
, so that S−(0), . . . , S−(5)

are 0, 31
5
, 62

5
, 93

5
, 124

5
and 16. Now, since C+ = C, we may be able to increase the

coefficients for some of the variables in the cover. One can check that we get γ1 = 3,

γ2 = γ3 = 2 and γ4 = γ5 = 1. The resulting valid inequality is

3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4.

One can check (by brute-force enumeration of all possible lifting orders) that this

inequality cannot be obtained from a CI by standard lifting methods, sequential or

otherwise. One can also check (either by hand or with the help of a software package

such as PORTA [17]) that it defines a facet of the associated knapsack polytope. �

2.4 Additional Improvement Via Superadditivity

A further improvement in the lifting procedure can be achieved from a consideration

of superadditive lifting functions. The lifting function associated with Theorem 2.3.2

is:

f(z) =


0 if z = 0,

h if S−(h) < z ≤ S−(h+ 1) for some h = 0, . . . , c− 1;

where the domain of z is understood to be [0, b].
(
Figure 2.4.1 shows the function

f(z) for Example 1.)

Our goal is to construct an even stronger lifting function. We will need the fol-

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 32

z

f(z)

0 4 8 12 16
0

1

2

3

s s
s
s
s

c
c
c

Figure 2.4.1: The lifting function f(z) for Example 1.

lowing three results.

Lemma 2.4.1. The function f is superadditive on its domain.

Proof. Let z, z′ ∈ [0, b] be such that z+z′ ≤ b. Suppose that f(z) = γ and f(z′) = γ′.

Then, by definition, we have z > S−(γ) and z′ > S−(γ′). Let `−1 , . . . , `
−
c be the a−j

values sorted in non-increasing order. We have z >
∑γ

j=1 `
−
j and z′ >

∑γ′

j=1 `
−
j . We

then have:

z + z′ >

γ∑
j=1

`−j +

γ′∑
j=1

`−j ≥
γ+γ′∑
j=1

`−j ,

where the second inequality follows from the fact that the `−j are sorted in non-

increasing order. Thus, f(z + z′) ≥ γ + γ′ = f(z) + f(z′).

Lemma 2.4.2. The upper bound of Balas and Zemel [9] remains valid even when the

cover C is not minimal. That is, for any k ∈ N \C, the lifting coefficient of xk cannot

exceed µk, where µk is the unique integer such that (2.2.4) holds.

Proof. The lifting coefficient achieves its maximum possible value when xk is lifted

first. Note that, if we set xk to 1, the remaining capacity in the knapsack is b − ak.

Then, the maximum value that x(C) can take is equal to the largest integer s such

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 33

that
∑c

j=c−s+1 `j ≤ b− ak. But
∑c

j=c−s+1 `j = a(C)− S(c− s). Since the right-hand

side of the CI is c−1, the lifting coefficient cannot exceed (c−1)−s, which is nothing

but µk.

Lemma 2.4.3. The function f reaches the Balas–Zemel bound when z ≥ b− a(C−).

Proof. Note that γj is the unique integer such that S−
(
γj
)
< aj ≤ S−

(
γj + 1

)
, and

µj is the unique integer such that S
(
µj
)

+ b − a(C) < aj ≤ S
(
µj
)

+ b − a(C). But

S−(C) = b = S(C) + b − a(C), which implies that S−(k) = S(k) + b − a(C) for

k ≥ |C+|. So γj = µj for z ≥ b− a(C−).

Lemma 2.4.3 leaves open the possibility that the value of f(z) could be increased

for some values of z smaller than b− a
(
C−
)
. This is indeed the case.

Theorem 2.4.4. The following function is a superadditive valid lifting function:

g(z) =


f(z) + 1

2
if z = h ā for some integer h ∈ [1, |C+| − 1]

f(z) otherwise.

(See Figure 2.4.2 for an illustration.)

Proof. From the results in Wolsey [71], we need to prove that (a) g is superadditive

and (b) g(z) never exceeds the Balas–Zemel bound.

First, we prove superadditivity. Since f is superadditive, we need to prove only

that g(z) + g(z′) ≤ g(z + z′) when g(z) > f(z), i.e., when z = h ā for some integer

h ∈ [1, |C+|− 1]. We have z =
∑h

j=1 `
−
j , where `−j is defined as in the proof of Lemma

2.4.1. We also have g(z) = h− 1
2
. We consider two cases.

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 34

z

f(z)

0 4 8 12 16
0

1

2

3

s s
s
s s

c
c c
c c
c

Figure 2.4.2: The improved lifting function g(z) for Example 1.

1. g(z′) = f(z′) = γ′. In this case, we have z′ >
∑γ′

j=1 `
−
j . This implies

z + z′ >
h∑
j=1

`−j +

γ′∑
j=1

`−j ≥
h+γ′∑
j=1

`−j ,

which in turn implies g(z + z′) ≥ h+ γ′ > h− 1
2

+ γ′ = g(z) + g(z′).

2. g(z′) = f(z′) + 1
2
. In this case, z = h′ ā for some integer h′ ∈ [1, |C+| − 1]. This

implies

z + z′ =
h∑
j=1

`−j +
h′∑
j=1

`−j ≥
h+h′∑
j=1

`−j ,

which in turn implies g(z + z′) ≥ h+ h′ − 1 = (h− 1
2
) + (h′ − 1

2
) = g(z) + g(z′).

Now we show that g(z) never exceeds the Balas–Zemel bound. Since f is a valid

lifting function, it follows that f(z) never exceeds the bound. The only time that

g(z) > f(z) is when z = hā for some integer h ∈ [1, |C+| − 1]. In this case, we have

b− z = b− hā =
c∑

j=h+1

`−j <

c∑
j=h+1

`j = a(C)− S(h).

Together with (2.2.4), this means that the Balas-Zemel upper bound is at least h.

This exceeds g(hā) = h− 1
2
.

It turns out that using g(z) in place of f(z) can lead to stronger LCIs, even when

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 35

the aj are integers and the cover is minimal.

Example 1 (cont.) We have ā = 4 and |C+| = 4. Setting h = 2 in Theorem 2.4.4,

we obtain g(2ā) = g(8) = 3/2. This yields the stronger LCI

3(x1 + x2) + 2x3 +
3

2
(x4 + x5 + x6) + x7 + · · ·+ x10 ≤ 3.

This LCI can be shown to be facet-defining. �

We also have the following result:

Proposition 2.4.5. The function g(z) is non-dominated (that is, there does not exist

a superadditive valid lifting function that is stronger than g(z)).

Proof. Lemma 2.4.3 shows that g(z) cannot be increased when z ≥ b − a
(
C−
)

=

|C+| ā. One can check that, for any pair (z, z′) such that z + z′ = |C+| ā, we have

g(z) + g(z′) = g
(
|C+| ā

)
= |C+| − 1. Thus, g(z) cannot be increased when z < |C+| ā

either.

Note that g(z) is half-integral, and integer-valued almost everywhere. We found it

surprising that a non-dominated lifting function with these properties exists. (Indeed,

the lifting function presented in [34] is integer-valued only on certain intervals.)

We know of some other superadditive valid lifting functions that dominate f(z).

The one that we find most interesting is presented in the following proposition.

Proposition 2.4.6. If aj 6= ā for all j ∈ C, the following function is a non-dominated

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 36

superadditive valid lifting function :

g′(z) =



f(z) + 1 if z = h ā for some integer h ∈
(
|C+|/2, |C+| − 1

]
f(z) + 1

2
if |C+| is even and z = |C+|ā/2

f(z) otherwise.

Proof. The proof is similar to that of Theorem 2.4.4 and Proposition 2.4.5. The

key difference occurs when g′(z) = f(z) + 1 and g′(z′) > f(z′). In this case, let

z = hā and z′ = h′ā. Since h exceeds |C+|/2 and h′ is at least |C+|/2, we must

have z + z′ > |C+| ā. Moreover, if aj 6= ā for all j ∈ C, we have S−(k) < kā for all

k > |C+|. This implies that g′(z + z′) ≥ h+ h′ = g′(z) + g′(z′).

This lifting function is integer-valued at all points when |C+| is even.

2.5 Concluding Remarks

Our examples show that our new lifting procedure can yield non-trivial facet-defining

inequalities. Therefore, a natural extension to our work is the design and implemen-

tation of efficient separation heuristics.

We conducted some initial computational experiments, where we compared our

new procedure with Balas’ original procedure. We focused on the generalised assign-

ment problem and used the 27 instances used in [46]. In these experiments, we did

not observe any significant improvement by using our procedure compared to using

Balas’ procedure. Note that we used the heuristic of [32] to select the initial cover.

The covers generated by that heuristic are minimal. However, we know that our lifting

CHAPTER 2. LCIS: NEW LIFTING PROCEDURE 37

procedure can generate facet-defining inequalities even when the cover is not mini-

mal. So, the lack of improvement may be due to choice of heuristic. One direction for

further work could be the design of a better heuristic, which permits the generation

of non-minimal covers. Future work could also include extending the computational

study to other classes of problems.

Chapter 3

Lifting the Knapsack Cover

Inequalities for the Knapsack

Polytope

3.1 Introduction

A knapsack constraint is a linear constraint of the form
∑n

i=1 aixi ≤ b, where b and

n are positive integers and a ∈ Zn+. Knapsack constraints arise in many applications,

such as vehicle routing [38], facility location [1], machine scheduling [61]. Moreover,

any linear inequality involving binary variables can be converted into a knapsack con-

straint, by complementing variables with negative coefficients [69]. The polyhedron

conv
{
x ∈ {0, 1}n :

n∑
i=1

aixi ≤ b
}

38

CHAPTER 3. LIFTING THE KCIS FOR THE KP 39

is called a knapsack polytope [7]. Valid inequalities for knapsack polytopes have proven

to be very useful in exact algorithms for mixed-integer linear programming (e.g.,

[12, 23, 32, 34, 36, 41, 46]).

There are many papers on valid inequalities for knapsack polytopes. Most of

these focus on lifted cover inequalities (e.g., [7, 9, 23, 32, 34, 35, 41, 48, 69, 74]),

but there are a few papers on other families of inequalities. These include weight

inequalities [67], lifted pack inequalities [5, 41], Chvátal-Gomory cuts [46], Fenchel cuts

[12], and the inequalities in [15], which are (somewhat confusingly) called knapsack

cover inequalities. These last inequalities have received very little attention in the

literature, and have not been analysed from a polyhedral point of view.

We will see that, in general, knapsack cover inequalities can be rather weak. To

strengthen them, we use lifting (see [7, 58, 69]). Since exact lifting can be time-

consuming, we present two fast (and sequence-independent) approximate lifting pro-

cedures. The first procedure, which runs in O(n) time, is based on a simple mixed-

integer rounding argument (see [31, 54, 56]). The second procedure is stronger, but

is a bit more complicated and runs in O(n log n) time. It is based on the construc-

tion of a valid superadditive lifting function (see [34, 71]). Our examples show that

it is possible for both procedures to generate new facet-defining inequalities for the

knapack polytope.

The paper has a simple structure. The literature is reviewed in Section 3.2, the

new lifting procedures are presented in Section 3.3, and some concluding remarks are

made in Section 3.4. Throughout the paper, we let N denote {1, . . . , n}.

CHAPTER 3. LIFTING THE KCIS FOR THE KP 40

3.2 Literature Review

For brevity, we review here only works of direct relevance. We recall cover inequalities

in Subsection 3.2.1, knapsack cover inequalities in 3.2.2, lifting in Subsection 3.2.3,

and mixed-integer rounding in Subsection 3.2.4.

3.2.1 Cover inequalities

A set C ⊆ N such that
∑

i∈C ai > b is called a cover. If C is a cover, then the cover

inequality
∑

i∈C xi ≤ |C| − 1 is valid for the knapsack polytope [29]. A cover C is

minimal if
∑

i∈C\{k} ai ≤ b for all k ∈ C. The minimal cover inequalities dominate

all others [7, 69]. Although they are not guaranteed to define facets of the knapsack

polytope, they can be strengthened to make them facet-defining (see Subsection 3.2.3).

3.2.2 Knapsack cover inequalities

Now consider a knapsack constraint of the form
∑

i∈N aixi ≥ d, where d and n are

positive integers and a ∈ Zn+. Crowder et al. [23] noted that such a constraint can be

strengthened simply by replacing each ai with min{ai, d}. Carr et al. [15] generalised

this as follows. Consider any S ⊂ N , possibly empty, such that
∑

j∈S aj < d. The

inequality ∑
i∈N\S

aixi ≥ d−
∑
j∈S

aj

is trivially valid, and it can be strengthened to yield:

∑
i∈N\S

min
{
ai, d−

∑
j∈S

aj
}
xi ≥ d−

∑
j∈S

aj. (3.2.1)

CHAPTER 3. LIFTING THE KCIS FOR THE KP 41

Rather confusingly, Carr et al. call the inequalities (3.2.1) knapsack cover inequal-

ities. We will therefore refer to them as KCIs. The standard cover inequalities,

mentioned in the previous subsection, will be called CIs.

3.2.3 Lifting

We now recall the basics of lifting [58, 70], focusing on 0-1 linear programs (0-1 LPs).

Let P ⊂ [0, 1]n be the convex hull of feasible solutions to a 0-1 LP, let S be a proper

subset of N , and let P (S) be the face of P obtained by setting xi to 0 for all i ∈ S.

Suppose we know that dim
(
P (S)

)
= dim(P)− |S|, and that the inequality

∑
i∈N\S

αixi ≤ β

defines a facet of P (S). Then, there exists at least one inequality of the form

∑
i∈N\S

αixi +
∑
i∈S

γixi ≤ β,

that defines a facet of P . (In particular, any minimal cover inequality can be strength-

ened to make it facet-defining for the knapsack polytope.)

The process of computing the γi is called lifting. Lifting is usually done sequen-

tially, i.e., one variable at a time. To compute each lifting coefficient, one has to solve

an auxiliary 0-1 LP, which may be time-consuming. Fortunately, fast exact and ap-

proximate algorithms are available for sequentially lifting CIs [7, 9, 23, 32, 41, 69, 74].

For other kinds of inequalities, Wolsey [70] suggests solving the LP relaxations of the

auxiliary 0-1 LPs.

There can sometimes exist facet-defining lifted inequalities that cannot be obtained

by sequential lifting [69]. To obtain such inequalities, one must lift several variables

CHAPTER 3. LIFTING THE KCIS FOR THE KP 42

simultaneously. Unfortunately, simultaneous lifting is very complicated, even for CIs

[9, 35]. Wolsey [71] devised an elegant way to perform simultaneous lifting approxi-

mately, based on superadditive functions. This approach, sometimes called sequence-

independent lifting, has been used to good effect in, e.g., [5, 34, 48]. However, the

resulting inequality is not guaranteed to define a facet of P . For brevity, we omit the

details.

3.2.4 Mixed-integer rounding

Finally, we recall some results from cutting-plane theory. Let P ⊂ Rn
+ be a polyhe-

dron, and suppose that the inequality αTx ≤ β, with β /∈ Z, is valid for P . It is

well known that the inequality
∑

i∈Nbαicxi ≤ bβc is satisfied by all integer points in

P [18, 30]. Less well known is that one can derive a stronger inequality as follows

[31, 56]. Given a real number r, let φ(r) denote r − brc, the so-called fractional part

of r. Also define the folllowing (continuous and non-decreasing) function

Fβ(r) =


brc, if φ(r) ≤ φ(β)

brc+ φ(r)−φ(β)
1−φ(β)

, if φ(r) > φ(β).

The strengthened inequality takes the form:

∑
i∈N

Fβ
(
αi
)
xi ≤ bβc.

We follow [54, 56] in calling these inequalities mixed-integer rounding (MIR) inequal-

ities.

CHAPTER 3. LIFTING THE KCIS FOR THE KP 43

3.3 Lifting Knapsack Cover Inequalities

In this section, we show how to strengthen the KCIs by lifting. In Subsection 3.3.1,

we present some simple results and examples to motivate our study. In Subsection

3.3.2, we define lifted KCIs formally and give examples. In Subsections 3.3.3 and

3.3.4, we present our sequence-independent lifting procedures.

We remind the reader that there is one KCI (3.2.1) for every S ⊆ N satisfying∑
j∈S aj < d. Throughout this section, we let d− denote d−

∑
j∈S aj, and we sometimes

refer to the sets L = {i ∈ N \ S : ai > d−} and R = N \ (S ∪ L). (The idea here is

that L contains indices with “large” ai value, and R contains the “remaining” indices.)

With this notation, the KCIs can be written in the simpler form

∑
i∈R

aixi + d−
∑
i∈L

xi ≥ d−. (3.3.1)

We let e denote the all-ones vector of length n. We also frequently refer to the

following two polytopes:

P≥ = conv
{
x ∈ {0, 1}n : aTx ≥ d

}
P≤ = conv

{
x̄ ∈ {0, 1}n : aT x̄ ≤ eTa− d

}
.

Note that these polytopes are congruent, via the trivial mapping x̄i = 1−xi for i ∈ N .

3.3.1 Motivation

In some preliminary experiments with the software package PORTA [17], we found

that KCIs usually (though not always) define low-dimensional faces of P≥. A partial

explanation is given by the following two lemmas:

CHAPTER 3. LIFTING THE KCIS FOR THE KP 44

Lemma 3.3.1. If
∑

j∈R aj < d−, then the KCI (3.3.1) is equivalent to or dominated

by the inequality
∑

i∈L xi ≥ 1. Note that this inequality is equivalent to a CI for P≤.

Proof. By the definition of d−, the stated condition can be written as
∑

j∈R∪S aj <

d. Under this condition, the inequality
∑

i∈L xi ≥ 1 is valid for P≥. Writing this

as d−
∑

i∈L xi ≥ d−, we see that it is at least as strong as the KCI. Writing it as∑
i∈L x̄i ≤ |L| − 1 instead, we see that it is equivalent to a CI for P≤.

Lemma 3.3.2. If
∑

j∈R aj ≥ d−, but
∑

j∈R\{i} aj < d− for all i ∈ R, then the KCI

(3.3.1) is dominated by the inequalities
∑

j∈L∪{i} xj ≥ 1 (i ∈ R). Note that these

inequalities are equivalent to CIs for P≤.

Proof. Suppose the stated conditions hold. If xi = 0 for all i ∈ L, then we must set

xi to 1 for all i ∈ R. Thus, the following inequalities are valid for P≥:

∑
j∈L∪{i}

xj ≥ 1 (i ∈ R). (3.3.2)

Writing these inequalities in the form
∑

j∈L∪{i} x̄j ≤ |L|, we see that they are

equivalent to CIs for P≤. Now, for each i ∈ R, multiply the inequality (3.3.2) by

aid
−/
∑

j∈R aj, and sum the resulting |R| inequalities together, to yield:

d−∑
j∈R aj

∑
i∈R

aixi + d−
∑
i∈L

xi ≥ d−.

Since
∑

j∈R aj ≥ d− by assumption, this last inequality is at least as strong as the

KCI.

When the conditions in Lemmas 3.3.1 and 3.3.2 do not hold, the KCI may or may

not define a facet of P≥. This is shown in the following example.

Example 1: Let n = d = 7 and a = (1, 2, 2, 2, 4, 4, 7)T . Taking S = {1} yields the

CHAPTER 3. LIFTING THE KCIS FOR THE KP 45

KCI 2(x2 +x3 +x4)+4(x5 +x6)+6x7 ≥ 6. We have R = {2, . . . , 6} and
∑

i∈R ai = 14,

so Lemmas 3.3.1 and 3.3.2 do not apply. One can check (either by hand or with the

help of a package like PORTA) that this KCI defines a facet of P≥. On the other hand,

if we take S = {2}, we get the KCI x1 + 2(x3 + x4) + 4(x5 + x6) + 5x7 ≥ 5. We

have R = {1, 3, 4, 5, 6} and
∑

i∈R ai = 13, so, again, the lemmas do not apply. Yet,

this KCI does not define a facet, since every extreme point of P≥ that satisfies it at

equality also satisfies x1 + x7 = 1. �

3.3.2 Lifted KCIs

We propose to lift KCIs, regardless of whether or not Lemma 3.3.1 or Lemma 3.3.2

applies. The idea is as follows. The KCI (3.3.1) is equivalent to the following valid

inequality for P≤:

∑
i∈R

aix̄i + d−
∑
i∈L

x̄i ≤
∑
i∈R

ai + d−(|L| − 1).

It is now apparent that we may be able to lift the variables in S, to obtain a valid

inequality for P≤ of the form:

∑
i∈R

aix̄i + d−
∑
i∈L

x̄i +
∑
i∈S

γix̄i ≤
∑
i∈R

ai + d−(|L| − 1).

The corresponding valid inequality for P≥ takes the form:

∑
i∈R

aixi + d−
∑
i∈L

xi ≥ d− +
∑
i∈S

γi(1− xi). (3.3.3)

We call (3.3.3) a lifted knapsack cover inequality or LKCI. In general, LKCIs are

not guaranteed to define facets of P≥. On the other hand, the following example

CHAPTER 3. LIFTING THE KCIS FOR THE KP 46

shows that LKCIs can define non-trivial facets even when Lemma 3.3.1 applies.

Example 2: Let n = 5, d = 8 and a = (2, 2, 2, 5, 5)T . Taking S = {1, 2} yields the

KCI 2x3 + 4(x4 + x5) ≥ 4. We have R = {3} and
∑

i∈R ai = 2 < d− = 4. Thus,

Lemma 3.3.1 applies. One can check however that the LKCI 2x3 + 4(x4 + x5) ≥

4 + 2(1− x1) + 2(1− x2) is valid and facet-defining for P≤. Moreover, if we write the

LKCI in the form x̄1 + x̄2 + x̄3 + 2(x̄4 + x̄5) ≤ 3, we see that it is not equivalent to a

lifted CI. �

Now recall that lifting can be done sequentially or simultaneously. If one wishes to

lift a KCI sequentially, one must solve an auxiliary knapsack problem (KP) to compute

each lifting coefficient [58, 70]. This is likely to be too time-consuming to be useful

in practical computation. Following Wolsey [71], one could compute approximate

lifting coefficients sequentiallly, by solving the continuous relaxations of the KPs. We

prefer however to use sequence-independent lifting, as described in the following two

subsections.

3.3.3 Lifting via mixed-integer rounding

It turns out that one can lift KCIs using mixed-integer rounding. This can be done

in four steps, as follows.

1. Write the constraint aTx ≥ d in the form

∑
i∈S

aix̄i −
∑
i∈N\S

aixi ≤ −d−. (3.3.4)

CHAPTER 3. LIFTING THE KCIS FOR THE KP 47

2. Let a+ = maxi∈N\S{ai}, and assume that a+ > d− (since, if not, the KCI is

redundant.) Divide (3.3.4) by a+ to obtain

∑
i∈S

(
ai
a+

)
x̄i +

∑
i∈N\S

(
−ai
a+

)
xi ≤ −

d−

a+
.

3. We now set −d−/a+ to β, and apply mixed-integer rounding to get

∑
i∈S

Fβ
(
ai/a

+
)
x̄i +

∑
i∈N\S

Fβ(−ai/a+)xi ≤ bβc.

We can simplify this inequality, as follows. Since a+ > d−, we have bβc = −1

and φ(β) = 1−d−/a+. For i ∈ R, we have that ai ≤ a+ (by the definition of a+)

and ai ≤ d− (by the definition of R). Hence, φ(−ai/a+) = 1−ai/a+ ≥ φ(β) and

Fβ(−ai/a+) = −ai/d−. For i ∈ L, we have that ai ≤ a+ (by the definition of

a+) and ai > d− (by the definition of L). Hence, φ(−ai/a+) = 1−ai/a+ < φ(β)

and Fβ(−ai/a+) = b−ai/a+c = −1. So, we get

∑
i∈S

Fβ
(
ai/a

+
)
x̄i −

∑
i∈R

ai
d−
xi −

∑
i∈L

xi ≤ −1.

4. Multiplying the MIR inequality by d− and re-arranging, we obtain:

∑
i∈R

aixi + d−
∑
i∈L

xi ≥ d− + d−
∑
i∈S

Fβ
(
ai/a

+
)
(1− xi). (3.3.5)

This is the desired LKCI.

The following example shows that the above MIR procedure can yield non-trivial

facet-defining LKCIs.

Example 3: Let n = 7, d = 17 and a = (3, 3, 3, 4, 7, 7, 7)T . Taking S = {4, 5} yields

the KCI 3(x1 + x2 + x3) + 6(x6 + x7) ≥ 6. We have d− = 6 and a+ = 7, which gives

CHAPTER 3. LIFTING THE KCIS FOR THE KP 48

β = −6/7. We have Fβ
(
a4/a

+
)

= F1/7(4/7) = 1/2 and Fβ
(
a5/a

+
)

= F1/7(1) = 1.

The resulting LKCI is therefore 3(x1 +x2 +x3)+6(x6 +x7) ≥ 6+3(1−x4)+6(1−x5).

One can check (either by hand or with the help of a package like PORTA) that this

LKCI defines a facet of P≥. Moreover, if we write the LKCI in the form x̄1 + x̄2 +

x̄3 + x̄4 + 2(x̄5 + x̄6 + x̄7) ≤ 5, we see that it is not equivalent to a lifted CI. �

For the purpose of what follows, we will find it helpful to express the lifting

coefficients in the LKCI (3.3.5) in a more explicit form.

Proposition 3.3.3. For any r ≥ 0, let f(r) denote d−Fβ
(
r/a+

)
. We have

f(r) =


d−br/a+c if r mod a+ ≤ a+ − d−

d−dr/a+e − a+ + r mod a+ if r mod a+ > a+ − d−.

Proof. Write r as ka+ + ε, where k = br/a+c and ε = r mod a+. If ε ≤ a+ − d−, we

have φ(r/a+) = ε/a+ ≤ 1− d−/a+ = φ(β), and therefore

Fβ
(
r/a+

)
= k.

On the other hand, if ε > a+ − d−, we have φ(r/a+) > φ(β), and therefore

Fβ
(
r/a+

)
= k +

φ
(
r/a+
)
−
(

1−d−/a+
)

d−/a+

= k +
a+φ
(
r/a+
)
−a++d−

d−

= k + 1− a+−ε
d−

.

We have established that:

Fβ

(r

a+

)
=


br/a+c if r mod a+ ≤ a+ − d−

dr/a+e − a+−ε
d−

if r mod a+ > −d−.

CHAPTER 3. LIFTING THE KCIS FOR THE KP 49

Multiplying by d− yields the result.

We remark that the MIR function Fβ is superadditive for any β (see [56]). Thus,

the function f is superadditive for any d− and a+.

3.3.4 Lifting via superadditivity

Consider again the LKCI (3.3.3), and suppose that we wish to lift xk first, for some

k ∈ S. Let r denote ak. Following [58, 70], we can compute the largest possible value

of γk by computing

z(r) = min
∑

i∈R aixi + d−
∑

i∈L xi (3.3.6)

s.t.
∑

i∈L∪R aixi ≥ d− + r (3.3.7)

xi ∈ {0, 1} (i ∈ L ∪R), (3.3.8)

and then setting γk to z(r) − d−. The function g(r) = z(r) − d− is called the exact

lifting function. Note that the domain of g is
[
0,
∑

j∈L∪R aj − d−
]

since, if r exceeds∑
j∈L∪R aj − d−, the above 0-1 LP becomes infeasible.

It follows from the main result in [71] that, if g is superadditive, then we can use

it to lift all variables in S simultaneously. Unfortunately, g is not superadditive in

general. This is demonstrated in the following example.

Example 4: Let n = 7, a = (3, 3, 3, 7, 8, 9, 17), d = 23 and S = {7}. The reduced

knapsack constraint is 3x1 + 3x2 + 3x3 + 7x4 + 8x5 + 9x6 ≥ 6. We have d− = 6

and a+ = 9. The KCI is 3(x1 + x2 + x3) + 6(x4 + x5 + x6) ≥ 6. The function g is

shown in Figure 3.3.1. To see that g is not superadditive, note that, for example,

CHAPTER 3. LIFTING THE KCIS FOR THE KP 50

r

g(r)

0 3 6 11 14 18 21 24 27
0

3

6

9

12

15

18

21

s s s
s s
s s
s s

c c
c c

c c
c c

Figure 3.3.1: The exact lifting function g(r) for Example 4.

r

f(r)

0 3 9 12 18 21 27
0

3

6

9

12

15

18

21

s s
s s

s s
s

��
��

��
!!

!!
!!

!!
!!

!!

Figure 3.3.2: The lifting function f(r) for Example 4.

g(14) = 9 < 2g(7) = 12. �

Following the approach in [34, 71], we are led to search for superadditive valid

lifting functions, i.e., superadditive functions that do not exceed g. As, we remarked

in subsection 3.3.3, the MIR lifting function, called f , is such a function. Figure 3.3.2

shows the function f for Example 4. Note that f is piecewise-linear, and each “piece”

has a slope equal to either 0 or 1.

We now introduce a third lifting function, called h, which we will show to be

CHAPTER 3. LIFTING THE KCIS FOR THE KP 51

superadditive and intermediate between f and g. Let h(r) = z̃(r)− d−, where

z̃(r) = min y + d−
∑

i∈L xi (3.3.9)

s.t. y +
∑

i∈L aixi ≥ d− + r (3.3.10)

xi ∈ {0, 1} (i ∈ L) (3.3.11)

y ≥ 0. (3.3.12)

Note that, due to the continuous variable y, z̃(r) is feasible for all non-negative values

of r. Hence, the domain of h is the whole of R+. In the following proposition, we give

an explicit formula for h.

Proposition 3.3.4. For k = 1, . . . , |L|, let S(k) be the sum of the k largest aj values

over the members of L. We trivially set S(0) = 0. Then, we can write h(r) as follows

h(r) =



kd−, if S(k) ≤ r < S(k + 1)− d− for k ∈ {0, . . . , |L| − 1}

r − (S(k)− d−), if S(k)− d− ≤ r < S(k) for k ∈ {1, . . . , |L| − 1}.

r − (S(|L|)− d−), if r ≥ S(|L|)− d−.

Proof. Consider the mixed 0-1 knapsack problem (3.3.9)-(3.3.12). Observe that every

time that we set a variable xi to 1, we incur a cost d−. This increases the LHS of the

constraint (3.3.10) by ai, which is greater than d− by the definition of L. Hence, to find

the optimal solution, it makes sense to keep switching on binary variables in decreasing

order of ai as long as the constraint (3.3.10) is violated. The continuous variable y

will only take a positive value if the remaining violation of the constraint (3.3.10) is

so “small” that it is not worth switching on an additional binary variable.

CHAPTER 3. LIFTING THE KCIS FOR THE KP 52

r

h(r)

0 3 9 11 17 18 27
0

3

6

9

12

15

18

21

s s
s s

s s
s

��
��

��
!!

!!
!!

!!
!!

!!
!!
!

Figure 3.3.3: The lifting function h(r) for Example 4.

To aid the reader, we show the lifting function h for Example 4.

Example 4 (cont.): Recall that d− = 6 and L = {4, 5, 6}. Moreover, S(0) = 0,

S(1) = 9, S(2) = 17 and S(3) = 24. Using these, one can compute the function h,

which is shown in Figure 3.3.3. �

Note that, like f , h is piecewise-linear, and each “piece” has a slope equal to either

0 or 1. In the following proposition, we prove that h is intermediate between f and g.

Proposition 3.3.5. For all r ∈
[
0,
∑

j∈L∪R aj − d−
]
, we have f(r) ≤ h(r) ≤ g(r).

Proof. We will first prove that h(r) ≤ g(r). Given that g(r) = z(r)− d− and h(r) =

z̃(r)− d−, it is sufficient to show that z̃(r) ≤ z(r). To see why this inequality holds,

note that the mixed 0-1 knapsack problem (3.3.9)-(3.3.12) is a relaxation of the integer

program (3.3.6)–(3.3.8), obtained by replacing the binary variables xi for i ∈ R with

a single continuous variable y.

We will now prove that h(r) ≥ f(r). Recall that f and h are piecewise-linear. For

the function h, the k-th “piece” with slope 0 has length `hk = S(k+1)−S(k)−d−. For

the function f , the k-th piece with slope 0 has length `fk = a+−d−. By the definitions

CHAPTER 3. LIFTING THE KCIS FOR THE KP 53

of S and a+, we have `hk ≤ `fk . Hence, h(r) ≥ f(r) for all r ∈
[
0,
∑

j∈L∪R aj − d−
]
.

(The reader may find it helpful to compare Figures 3.3.2 and 3.3.3.)

In the following proposition, we prove that h is superadditive, which immediately

implies that we can use h for simultaneous lifting.

Proposition 3.3.6. The function h is superadditive in its domain.

Proof. We will prove that h is superadditive by contradiction. Suppose that h is not

superadditive. Then, there are values r1 and r2 such that h(r1 + r2) < h(r1) + h(r2).

Recall that each “piece” of the function has a slope of either 0 or 1. We will call

the points where h is non-differentiable “breakpoints”, and the points where h is

differentiable “interior” points.

Suppose that r1 is either an interior point where the slope is 0, or a breakpoint

where the slope on the left of r1 is 0 and the slope on the right is 1. Then, there

exists a small ε > 0 such that h(r1− ε) = h(r1). We therefore have h(r1− ε) +h(r2) =

h(r1) + h(r2) > h(r1 + r2) ≥ h(r1 + r2− ε). This means that r1− ε and r2 also form a

counter-example. So, we can assume w.l.o.g. that r1 is neither an interior point with

slope 0 nor a breakpoint where the slope on the left is 0.

Now, suppose that r1 is an interior point with slope 1. Then, there exists a

small ε > 0 such that h(r1 + ε) = h(r1) + ε. We therefore have h(r1 + ε) + h(r2) =

h(r1) + h(r2) + ε > h(r1 + r2) + ε ≥ h(r1 + r2 + ε). This means that r1 + ε and r2 also

form a counter-example. So, we can assume w.l.o.g. that r1 is a breakpoint where the

slope on the left is 1 and the slope on the right is 0.

The same argument enables us to assume that r2 is also a breakpoint of the

CHAPTER 3. LIFTING THE KCIS FOR THE KP 54

same type. Hence, to complete the proof, we have to show superadditivity for the

case where both r1 and r2 are breakpoints of that type. Note these points are such

that there exist positive integers k1, k2 such that r1 = S(k1) and r2 = S(k2). So,

r1 + r2 = S(k1) + S(k2) ≥ S(k1 + k2) by the definition of S. The function h is

increasing. So, h(r1 + r2) ≥ h(S(k1 + k2)). By the definition of h, we have that

h(r1) = h(S(k1)) = k1d, h(r2) = h(S(k2)) = k2d and h(S(k1 + k2)) = (k1 + k2)d−.

This implies that h(r1 + r2) ≥ h(r1) + h(r2), which is a contradiction.

We now revisit Example 4 to demonstrate the LKCIs that we get using f and h.

Example 4 (cont.): Recall that d− = 6 and L = {4, 5, 6}. Using the MIR lifting

function, we get the LKCI 3(x1 + x2 + x3) + 6(x4 + x5 + x6) ≥ 6 + 11(1− x7). Using

the lifting function h, we get the stronger LKCI 3(x1 + x2 + x3) + 6(x4 + x5 + x6) ≥

6 + 12(1 − x7). One can check (either by hand or with the help of a package like

PORTA) that the latter is facet-defining. Note that this inequality is not equivalent to

a lifted cover inequality. �

3.4 Concluding Remarks

We have introduced two lifting procedures for knapsack cover inequalities. Our ex-

amples show that it is possible for these lifting procedures to yield non-trivial facet-

defining inequalities. An interesting extension to our work would be the design and

implementation of efficient separation heuristics for LKCIs. It would also be interest-

ing to compare LKCIs with lifted cover inequalities.

Chapter 4

New Valid Inequalities for the

Fixed-Charge and Single-Node

Flow Polytopes

4.1 Introduction

Polyhedral methods have proven to be remarkably useful for solving pure and mixed

0-1 linear programs (see, e.g., [20, 22]). In the case of large, sparse instances without

special structure, three families of polytopes have proven to be of particular im-

portance: the knapsack, fixed-charge and single-node flow polytopes. The knapsack

polytope is the convex hull of vectors y ∈ {0, 1}n satisfying

∑
i∈N

ajyj ≤ b,

55

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 56

where b and the aj are positive integers, and N denotes {1, . . . , n} [7, 69]. The fixed-

charge polytope is the convex hull of pairs (x, y) ∈ Rn
+ × {0, 1}n satisfying

∑
j∈N xj ≤ d (4.1.1)

xj ≤ ujyj (j ∈ N), (4.1.2)

where d and the uj are positive integers [60]. Finally, the single-node flow polytope

is the convex hull of pairs (x, y) ∈ Rn
+ × {0, 1}n satisfying

∑
j∈N+ xj −

∑
j∈N− xj ≤ d (4.1.3)

`jyj ≤ xj ≤ ujyj
(
j ∈ N+ ∪N−

)
, (4.1.4)

where d and the uj are again positive integers, the `j are non-negative integers, N+

and N− are disjoint sets, and n now denotes |N+ ∪N−| [63].

Fixed charges appear in numerous applications. For example, in production plan-

ning, there is often a fixed set-up cost to use a machine. In vehicle routing, there is

usually a hiring cost to use a vehicle. Finally, in network design, there is an installa-

tion cost to deliver a commodity (e.g., gas, water, electricity) from point A to point

B of a network.

Several families of valid linear inequalities are known for the knapsack polytope,

including cover, extended cover and lifted cover inequalities [7, 69], weight inequalities

[67] and lifted pack inequalities [5, 41]. Inequalities for the fixed-charge polytope in-

clude flow cover inequalities [60] and lifted flow cover inequalities [33, 34]. Inequalities

for the single-node flow polytope include generalized flow cover inequalities [63, 64],

reverse flow cover inequalities [66], lifted generalised flow cover inequalities [33] and

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 57

lifted flow pack inequalities [4]. Inequalities like these have proven to be so useful

that many of them are now generated by default in the leading integer programming

solvers (such as CPLEX, Gurobi and Xpress).

The purpose of this note is to present a procedure which enables one to take valid

inequalities for the knapsack polytope and convert them into valid inequalities for

the fixed-charge and single-node flow polytopes. We call the resulting inequalities

rotated knapsack inequalities or RKIs. Even if one applies our procedure to simple

inequalities for the knapsack polytope, such as cover inequalities, one can still obtain

new and non-trivial inequalities for the other polytopes.

The paper is structured as follows. In Section 4.2, we review some of the well-

known inequalities for our three families of polytopes. In Section 4.3, we present

our procedure for the fixed-charge polytope, show that the resulting inequalities can

define facets, and examine the special cases that arise when the initial inequality is

a cover or extended cover inequality. In Section 4.4, we extend our procedure to the

single-node flow polytope. Finally, Section 4.5 includes some concluding remarks and

suggestions for further research.

4.2 Literature Review

We now review the literature. The following subsections are concerned with valid

inequalities for the knapsack polytope, the fixed-charge polytope and the the single-

node flow polytope.

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 58

4.2.1 Knapsack polytope

As mentioned above, many families of inequalities are known for the knapsack poly-

tope. For brevity, we recall here only a few results from [7, 69]. A set C ⊆ N is called

a cover if
∑

j∈C aj > b. If C is a cover, then the cover inequality
∑

j∈C yj ≤ |C| − 1

is valid. The strongest cover inequalities are obtained when C is minimal (i.e., no

proper subset of C is a cover).

Cover inequalities can be strengthened in various ways. For example, let a∗ =

maxj∈C aj and let E = {j ∈ N \ C : aj ≥ a∗} be the extension of C. The extended

cover inequality takes the form

∑
j∈C∪E

yj ≤ |C| − 1.

4.2.2 Fixed-charge polytope

Padberg et al. [60] presented two families of inequalities for the fixed-charge polytope.

The inequalities of the first family are derived as follows. A set F ⊆ N is called a flow

cover if
∑

j∈F uj > d. Given a flow cover F and a (possibly empty) set L ⊆ N \ F ,

we let λ denote
∑

j∈F uj − d and u+ denote maxj∈F uj. The following flow cover

inequality is valid:

∑
j∈F∪L

xj ≤ d −
∑
j∈F

αj(1− yj) +
∑
j∈L

αjyj,

where αj is max{0, uj − λ} for j ∈ F , and max{u+, uj}− λ for j ∈ L. The flow cover

inequalities were slightly strengthened in [33], yielding lifted flow cover inequalities.

The second family is very different. Let P= be the face of the fixed-charge polytope

obtained by setting the inequality (4.1.1) to equality. One can check that, if (x, y) ∈

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 59

P=, then y must lie within the knapsack polytope

K = conv

{
y ∈ {0, 1}n :

∑
j∈N

ujyj ≥ d

}
.

Let αTy ≥ β be any valid inequality for K with α ∈ Zn+ and β ∈ Z+. It is shown in

[60] that there exists a positive rational δ such that the inequality

∑
j∈N

xj ≤ d+ δ

(∑
j∈N

αjyj − β
)

is valid for the fixed-charge polytope. To the best of our knowledge, this procedure

has received no attention in the literature.

4.2.3 Single-node flow polytope

Van Roy & Wolsey [63] extended the flow cover inequalities to the single-node flow

polytope. Now, a pair (F+, F−) is called a generalised flow cover if F+ ⊆ N+,

F− ⊆ N− and
∑

j∈F+ uj −
∑

j∈F− `j > d. Given a generalised flow cover (F+, F−)

and sets L+ ⊆ N+ \ F+ and L− ⊆ N− \ F−, one can construct a valid inequality of

the form

∑
j∈F+∪L+

xj −
∑
j∈N−

xj ≤ d−
∑
j∈F+

αj(1− yj) +
∑
j∈L+

αjyj

+
∑
j∈F−

αj(1− yj)−
∑
j∈L−

αjyj,

where αj ∈ Z+ for j ∈ F+∪L+∪F−∪L−. (For brevity, we skip the details on how to

compute the αj.) These are called generalised flow cover (GFC) inequalities. They

have been generalised and strengthened in various ways [33, 34, 66, 63]. A related

family of inequalities, the lifted flow pack inequalities, were studied by Atamtürk [4].

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 60

4.3 Fixed-Charge Polytope

In this section, we consider the fixed-charge polytope. Subsection 4.3.1 presents our

procedure for generating inequalities, Subsection 4.3.2 gives a sufficient condition for

the resulting inequalities to define facets, and Subsection 4.3.3 analyses two special

cases.

4.3.1 General procedure

Let P denote the fixed-charge polytope and F ⊆ N be a flow cover. The inequality∑
j∈F xj ≤ d is trivially valid for P . Let P= be the face of P obtained by setting this

inequality to equality. That is,

P= := conv

{
(x, y) ∈ Rn

+ × {0, 1}n : (4.1.1), (4.1.2),
∑
j∈F

xj = d

}
.

One can check that the following inequality is valid for P=:

∑
j∈F

ujyj ≥ d. (4.3.1)

Let ȳj = 1− yj for all j ∈ F . Then, we can write (4.3.1) as

∑
j∈F

uj ȳj ≤
∑
j∈F

uj − d,

and define the restricted knapsack polytope

K = conv

{
ȳ ∈ {0, 1}F :

∑
j∈F

uj ȳj ≤
∑
j∈F

uj − d
}
. (4.3.2)

Let αT ȳ ≤ β be a supporting valid inequality for K with α ∈ ZF+ and β a positive inte-

ger. (All non-trivial valid inequalities for K have this form; see [69].) Complementing

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 61

the ȳj variables, and writing β∗ =
∑

j∈F αj − β, we obtain the inequality

∑
j∈F

αjyj ≥ β∗, (4.3.3)

which is valid and supporting for P=. Our goal is to ‘rotate’ this inequality, in order

to make it valid and supporting for P .

At this point, it is helpful to project P and P= onto a 2-dimensional subspace,

having
∑

j∈F xj and the left-hand side of (4.3.3) as axes. This is illustrated in Figure

4.3.1. The thick vertical lines represent feasible solutions in P , and the horizontal

line inside the ellipse at the top-right represents P=. One can see that the inequality

(4.3.3) is valid for P= but not for P . Moreover, given that the inequality (4.3.3)

is supporting for P=, any feasible solution satisfying
∑

j∈F αjyj < β∗ also satisfies∑
j∈F xj < d. Therefore, there exists a positive rational number δ such that the

inequality ∑
j∈F

xj ≤ d + δ

(∑
j∈F

αjyj − β∗
)

is valid and supporting for P . Setting δ to the largest such value yields the desired

rotated knapsack inequality (RKI), which is represented by a dashed line in the figure.

In order to determine δ, we define the function φ : Z+ → {0, 1, . . . , d} with

φ(t) = max

{∑
j∈F

xj : (4.1.1), (4.1.2),
∑
j∈F

αjyj ≤ t, (x, y) ∈ RF
+ × {0, 1}F

}
.

By definition, φ is non-decreasing in t. Also, from the definition of β∗, and the fact

that the inequality (4.3.3) is supporting for P=, we have φ(t) = d if and only if t ≥ β∗.

Moreover, for t = 0, . . . , β∗ − 1, the constraint (4.1.1) is redundant, and we have:

φ(t) = max

{∑
j∈F

ujyj :
∑
j∈F

αjyj ≤ t, y ∈ {0, 1}F
}
.

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 62

∑
j∈F

αjyj

∑
j∈F xj

0 β∗

d P=

-

6

s

s
s s s

�
�
��
�
��
�

��
��
��
��
��
��
��
��
��
��p p p p p p p p p p p p p p p p p p p p�� �

Figure 4.3.1: Projection of feasible points onto 2-dimensional subspace.

The problem of determining φ(t) for t = 0, . . . , β∗ − 1 is therefore a parametric 0-1

knapsack problem. It can be solved in O
(
|F |min{d, β∗}

)
time by dynamic program-

ming. Once this has been done, one can compute δ easily, in O(β∗) time, as follows:

δ = min
0≤t<β∗

{
d− φ(t)

β∗ − t

}
.

4.3.2 Facet-defining RKIs

A natural question is to determine conditions under which RKIs define facets of

P . The following proposition gives a sufficient condition. (We remark that a similar

condition was given in [19] for rank inequalities to define facets of stable set polytopes.)

Proposition 4.3.1. Suppose the inequality
∑

j∈F αj ȳj ≤ β, with α ∈ ZF+ and β a

positive integer, defines a facet of K. Let G be a graph defined as follows. The vertex

set is F . For all pairs {i, j} ⊂ F , the edge {i, j} is present in G if and only if there

exists a vector ȳ ∈ {0, 1}F satisfying

ȳi = ȳj = 0,
∑
j∈F

αj ȳj = β, and
∑
j∈F

uj ȳj <
∑
j∈F

uj − d.

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 63

If G is connected, then the resulting RKI defines a facet of P .

Proof. For brevity, we only sketch the proof. Let us call a pair (x, y) ∈ Rn
+ × {0, 1}n

a ‘root’ if it satisfies the RKI at equality. Note that the roots are of two types: (i)

those with
∑

j∈F αjyj = β∗,
∑

j∈F xj = d, and xj = 0 for j ∈ N \ F , and (ii) those

with
∑

j∈F αjyj < β∗ and
∑

j∈F xj < d. Now, since the original inequality defines a

facet of K, there exist |F | affinely independent roots of the first type. Without loss of

generality, we assume that these roots have yj = 0 for j ∈ N \F . So we can construct

n− |F | additional affinely independent roots of the first type, by changing yj from 0

to 1 for each j ∈ N \F in turn. We now have n affinely independent roots of the first

type.

Now, let T be a spanning tree in G, and note that it has |F | − 1 edges. From

the definition of G, it follows that, for each edge {i, j} ∈ T , there exists a root of

the first type, such that yi = yj = 1 and
∑

j∈F ujyj > d. Without loss of generality,

we can assume that this root satisfies xi ∈ (0, ui) and xj ∈ (0, uj). If this root is

not affinely independent of the roots that we have seen so far, then we can make it

affinely independent by increasing xi by some small quantity ε, and decreasing xj by

ε. In this way, we construct |F | − 1 additional affinely independent roots of the first

type.

Next, observe that there exists a root of the second type for which xj = 0 and

yj = 1 for all j ∈ N \ F , and this root is affinely independent of the previous ones.

Moreover, for any j ∈ N \ F , we can construct another root of the second type by

increasing xj by some small quantity ε. In this way, we obtain an additional n− |F |

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 64

affinely independent roots.

We illustrate this theory with an example.

Example 1: Let n = 6, d = 10 and u = (1, 3, 3, 3, 5, 5). If we let F = {2, 3, 4, 5, 6},

we have

K =

{
ȳ ∈ {0, 1}F : 3ȳ2 + 3ȳ3 + 3ȳ4 + 5ȳ5 + 5ȳ6 ≤ 9

}
.

The inequality

ȳ2 + ȳ3 + ȳ4 + 2ȳ5 + 2ȳ6 ≤ 3

defines a facet of K. (In fact it is a so-called “general LCI”, see [32, 41]). So the

inequality y2 + y3 + y4 + 2y5 + 2y6 ≥ 4 is valid for P=. One can check that φ(0) = 0,

φ(1) = u2 = 3, φ(2) = u2 + u3 = 6, φ(3) = u2 + u3 + u4 = 9 and φ(4) = d = 11. This

yields δ = (11− 9)/(4− 3) = 2. Therefore, the RKI

x2 + x3 + x4 + x5 + x6 ≤ 3 + 2(y2 + y3 + y4 + 2y5 + 2y6)

is valid for P . Moreover, the graph G contains the edge {i, j} for i = 2, 3, 4 and

j = 5, 6, since 3 + 5 = 8 < 9. So G is connected, and the RKI defines a facet of P .�

4.3.3 Special cases

We now consider the particular RKIs that are obtained when the given valid inequality

for K is a cover or extended cover inequality. It turns out that, in both of these special

cases, there is a closed-form expression for δ.

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 65

Let F ⊆ N be a flow cover, and let K be defined as in (4.3.2). A set C ⊆ F is a

cover for K if and only if ∑
j∈C

uj >
∑
j∈F

uj − d. (4.3.4)

Moreover, a cover C is minimal if and only if

∑
j∈C\{k}

uj ≤
∑
j∈F

uj − d (∀k ∈ C). (4.3.5)

Given a minimal cover C, the cover inequality
∑

j∈C ȳj ≤ |C| − 1 is valid and

supporting for K. Complementing, we find that the inequality
∑

j∈C yj ≥ 1 is valid

and supporting for P=.

Now, if
∑

j∈C yj = 0, the largest value that
∑

j∈F ujyj can take is
∑

j∈F\C uj.

Moreover, from (4.3.4), this quantity is less than d. So φ(0) =
∑

j∈F\C uj < d. On

the other hand, when
∑

j∈C yj = 1, the largest value that
∑

j∈F ujyj can take is

u∗ +
∑

j∈F\C uj, where u∗ = maxj∈C uj. From (4.3.5), this quantity is larger than d.

So φ(t) = d for t = 1, . . . , |C|. This implies that δ = d−
∑

j∈F\C uj, and the resulting

RKI is ∑
j∈F

xj ≤ d+

(
d−

∑
j∈F\C

uj

)(∑
j∈C

yj − 1

)
. (4.3.6)

As for extended cover inequalities, we set E = {j ∈ F \ C : uj ≥ u∗}, and the

extended cover inequality takes the form

∑
j∈C∪E

ȳj ≤ |C| − 1.

Complementing yields the following valid inequality for K:

∑
j∈C∪E

yj ≥ 1 + |E|.

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 66

Using the same argument as before, we have φ(0) =
∑

j∈F\(C∪E) uj and φ(t) = d

for t ≥ |E| + 1. Now, let S(t) denote the sum of the t largest uj values for j ∈ E.

One can check that φ(t) equals φ(0) + S(t) for t = 0, . . . , |E|. In particular, φ(|E|) =∑
j∈F\C uj < d. Now, observe that φ(t)− φ(t− 1) ≥ u∗ for t = 1, . . . , |E|, but

φ(|E|+ 1)− φ(|E|) = d−
∑
j∈F\C

uj ≤ u∗,

where the inequality on the right is implied by (4.3.5). So δ = d −
∑

j∈F\C uj, and

the resulting RKI is :

∑
j∈F

xj ≤ d+

(
d−

∑
j∈F\C

uj

)(∑
j∈C∪E

yj − 1− |E|
)
. (4.3.7)

One can check that the RKI (4.3.7) dominates the RKI (4.3.6).

4.4 Single-Node Flow Polytope

We now extend our results to the single-node flow polytope, which we will again

denote by P . This case turns out to be considerably more complicated. After some

experimentation with the software package PORTA [17], we managed to find a procedure

that yields inequalities that are facet-defining in several cases.

Let U+ and L+ be disjoint subsets of N+, and let U− and L− be disjoint subsets of

N−. The sets U−, L+ and L− are permitted to be empty, but U+ must be non-empty.

Let P≥ be the convex hull of the feasible solutions that satisfy the inequality

∑
j∈U+

xj −
∑
j∈L−

xj ≥ d+
∑
j∈U−

uj −
∑
j∈L+

`j. (4.4.1)

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 67

Since P≥ is contained in P , every (x, y) ∈ P≥ must satisfy the trivially valid inequality

∑
j∈U+∪L+

xj ≤
∑
j∈N−

xj + d. (4.4.2)

Multiplying (4.4.1) by 2 and adding (4.4.2) we get

∑
j∈U+∪N−

xj −
∑

j∈L+∪L−
xj −

∑
j∈L−

xj ≥ d+ 2
∑
j∈U−

uj − 2
∑
j∈L+

`j.

Hence, all points in P≥ satisfy the inequality

∑
j∈U+∪(N−\L−)

xj −
∑

j∈L+∪L−
xj ≥ d+ 2

∑
j∈U−

uj − 2
∑
j∈L+

`j.

Weakening this using (4.1.4), we find that all points in P≥ satisfy

∑
j∈U+∪(N−\L−)

ujyj −
∑

j∈L+∪L−
`jyj ≥ d+ 2

∑
j∈U−

uj − 2
∑
j∈L+

`j.

Now, as before, let ȳj denote 1 − yj. Also let R− denote N− \ (U− ∪ L−). All

points in P≥ satisfy:

∑
j∈U+∪U−∪R−

uj ȳj +
∑

j∈L+∪L−
`jyj ≤

∑
j∈U+∪R−

uj −
∑
j∈U−

uj + 2
∑
j∈L+

`j − d. (4.4.3)

We now define a knapsack polytope, K, as the convex hull of pairs (y, ȳ) ∈ {0, 1}U+∪U−∪R−∪L+∪L−

that satisfy (4.4.3). We remark in passing that a necessary condition for K to be full-

dimensional is ∑
j∈U+∪R−

uj + 2
∑
j∈L+

`j > d+
∑
j∈U−

uj.

Next, let ∑
j∈U+∪U−∪R−

αj ȳj +
∑

j∈L+∪L−
βjyj ≤ γ.

be a supporting valid inequality for K with non-negative coefficients. Complementing

yields ∑
j∈U+∪U−∪R−

αjyj −
∑

j∈L+∪L−
βjyj ≥

∑
j∈U+∪U−∪R−

αj − γ.

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 68

To simplify the notation, let γ∗ =
∑

j∈U+∪U−∪R− αj − γ.

As in Section 4.3, there exists a largest positive rational δ such that the inequality

∑
j∈U+

xj −
∑
j∈L−

xj ≤ d+
∑
j∈U−

uj −
∑
j∈L+

`j

+ δ

(∑
j∈U+∪U−∪R−

αjyj −
∑

j∈L+∪L−
βjyj − γ∗

)
is valid for P . This inequality is the desired RKI.

As before, in order to determine the value of δ, we define an auxiliary function.

For t ∈ Z, let

φ(t) = max

{ ∑
j∈U+

xj −
∑
j∈L−

xj : (4.1.3), (4.1.4),

∑
j∈U+∪U−∪R−

αjyj −
∑

j∈L+∪L−
βjyj ≤ t, xj ≥ 0, yj binary

}
.

Again, φ(t) is an integer-valued, non-decreasing function, but its natural domain is

Z ∩

− ∑
L+∪L−

βj,
∑

j∈U+∪U−∪R−
αj

 .
One can compute the values taken by φ(t) over this domain efficiently by dynamic

programming. (Details omitted for brevity.) Once the φ(t) values have been com-

puted, one can compute the value δ as follows. Let t∗ be the minimum value of t such

that φ(t) = d+
∑

j∈U− uj −
∑

j∈L+ `j. (Note that t∗ ≥ γ∗.) Then let

δ = min
−

∑
j∈L+∪L− βj≤t<t∗

{
d− φ(t)

γ∗ − t

}
.

Again, we illustrate this theory with an example.

Example 2: Let n = 7, N+ = {1, 2, 3}, N− = {4, 5, 6, 7}, d = 4, u = (4, 3, 3, 2, 2, 2, 2)

and ` = (1, 1, 1, 1, 1, 1, 1). Suppose we set U+ = {2, 3}, L+ = ∅, U− = ∅ and L− = {4}.

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 69

The knapsack constraint is 3y2 + 3y3− y4 + 2y5 + 2y6 + 2y7 ≥ 4. Complementing gives

3ȳ2+3ȳ3+y4+2ȳ5+2ȳ6+2ȳ7 ≤ 8. The inequality 2ȳ2+2ȳ3+y4+ȳ5+ȳ6+ȳ7 ≤ 5 is valid

for K. (Again, it is a non-simple LCI.) So the inequality 2y2+2y3−y4+y5+y6+y7 ≥ 2

is valid for P≥. We have φ(−1) = −1, φ(0) = 0, φ(1) = 2, φ(2) = 3 and φ(3) = 4. So

t∗ = 3 and δ = 1, and we obtain the RKI x2 + x3 − x4 ≤ 4 +
(
2y2 + 2y3 − y4 + y5 +

y6 + y7 − 2
)
. One can check that this RKI defines a facet of P . Other RKIs for this

instance include, for example, the following:

x1 + x2 − x4 − x5 ≤ 4 +
(
3y1 + 2y2 − y4 − y5 + y6 + y7 − 3)

x2 + x3 − x5 ≤ 4 + (2y2 + 2y3 + y4 − y5 + y6 + y7 − 3)

x1 + x3 − x7 ≤ 4 + (2y1 − y2 + y3 + y4 + y5 + y6 − y7 − 1).

One can check that these too are facet-defining. �

4.5 Concluding Remarks

We have introduced new families of valid inequalities for the fixed-charge and single-

node flow polytopes. The inequalities, called rotated knapsack inequalities (RKIs),

are completely different from the well-known flow cover inequalites and variants. Note

that our procedure can yield a huge number of RKIs, because the number of possible

choices for the subsets U+, U−, etc. and the number of facets of the restricted

knapsack polytope can both grow exponentially in the size of the problem. A natural

topic for research is to find a necessary and sufficient condition for an RKI to be facet-

CHAPTER 4. VALID INEQUALITIES FOR THE FCP AND SNFP 70

defining. Another pressing question is the development of effective exact or heuristic

separation algorithms for the RKIs.

Chapter 5

Valid Inequalities for

Mixed-Integer Programs with

Fixed Charges on Sets of Variables

5.1 Introduction

It is well known that a wide range of important optimisation problems can be modelled

as mixed-integer linear programs (MILPs). A key ingredient of modern exact MILP

algorithms is the use of strong valid linear inequalities, also known as cutting planes,

to strengthen the continuous relaxation of the problem (see, e.g., [20, 22]).

One strand of the literature on cutting planes is concerned with MILPs that involve

fixed charges (see, e.g., [4, 33, 34, 37, 47, 52, 53, 54, 60, 66, 63, 64, 72]). A fixed charge

is an additional cost that is incurred whenever a certain variable takes a positive value.

The textbook way to model fixed charges is as follows. Suppose that xj is a continuous

71

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 72

non-negative variable, and the fixed charge dj is incurred whenever xj > 0. Suppose

also that we know an upper bound uj on the value taken by xj in an optimal solution.

We define a new binary variable, say yj, taking the value 1 if and only if the fixed

charge is incurred. We then add djyj to the cost function, and add the linear constraint

xj ≤ ujyj.

Unfortunately, when the textbook approach is used, the continuous relaxation of

the resulting MILP is often very weak. In this situation, cutting planes are essential.

In particular, the so-called flow cover inequalities [60, 63], and various extensions of

them [33, 34, 54], have proven to be so effective that they are now generated by default

not only in commercial MILP solvers (such as CPLEX, Gurobi and Xpress), but also

in open-source solvers (such as CBC and SCIP).

In this paper, we consider a more general situation, in which fixed charges are

associated with sets of variables. More precisely, we suppose that we have continuous

variables x1, . . . , xn, a collection of (not necessarily disjoint) sets S1, . . . , Sm satisfying⋃m
i=1 Si = {1, . . . , n}, and a fixed charge di for i = 1, . . . ,m. The idea is that, for each

i, the fixed charge di is incurred if xj > 0 for any j ∈ Si.

To see how this situation could arise in practice, consider a set of products that

share a common machine. If any of the products are to be manufactured on a given

day, then the machine must be set up at the start of that day. Another application

can be found in vehicle routing, if, for example, there is a call-out charge for each

vehicle. This situation could also arise in transportation problems if there are excess

suppliers and there is a fixed charge if a supplier is used.

The paper has the following structure. Section 5.2 is a literature review. In Section

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 73

5.3, we consider the case in which the sets S1, . . . , Sm are nested. We derive a family

of valid inequalities for the associated polytope, and show that the inequalities both

generalise and dominate a subclass of the flow cover inequalities. In Section 5.4, we

extend some of our results to the general case, in which the sets can intersect in an

arbitrary way. Throughout the paper, N and M denote {1, . . . , n} and {1, . . . ,m},

respectively.

5.2 Literature Review

We now review the relevant literature. In Subsection 5.2.1, we briefly review valid

inequalities for fixed-charge problems. In Subsection 5.2.2, for reasons which will

become clear later, we review some papers on what we call optimality cuts.

5.2.1 Valid inequalities for the fixed charge polytope

Padberg et al. [60] introduced the fixed-charge polytope, defined as the convex hull of

pairs (x, y) ∈ Rn
+ × {0, 1}n satisfying

∑n
j=1 xj ≤ d

xj ≤ ujyj (j = 1, . . . , n),

where d and the uj are positive integers.

A set C ⊆ N is called a cover if
∑

j∈C uj > d. Given a cover C, we let λ denote

the “excess capacity”
∑

j∈C uj − d, we let u+ denote maxj∈C uj, and we define the set

C∗ = {j ∈ C : uj > λ}. Padberg et al. showed that, given a cover C and a (possibly

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 74

empty) set L ⊆ N \ C, the following flow cover inequality (FCI) is valid:

∑
j∈C∪L

xj ≤ d −
∑
j∈C∗

(uj − λ)(1− yj) +
∑
j∈L

αjyj,

where αj is max{u+, uj} − λ for j ∈ L. As a special case, when L = ∅ we obtain:

∑
j∈C

xj ≤ d −
∑
j∈C∗

(uj − λ)(1− yj). (5.2.1)

We will call inequalities of this type simple FCIs.

The FCIs were extended to fixed-charge network flow (FCNF) problems in [63].

They have been further generalised and strengthened in various ways [33, 34, 66, 63].

A related family of inequalities, the flow pack inequalities, were studied by Atamtürk

[4]. For a very different family of inequalities, derived from knapsack polytopes, see

our recent paper [47].

5.2.2 Optimality cuts

By an optimality cut, we mean a linear inequality that is satisfied by all optimal MILP

solutions, but may be violated by one or more sub-optimal solutions. Note that some

authors expand this definition to include linear inequalities that are satisfied by at

least one optimal solution. This concept appears, sometimes under different names,

in many places (e.g., [8, 11, 25, 26, 37, 40, 44, 57]).

Among these works, Hooker et al. [37] is itself concerned with FCNF problems.

Consider a directed network in which, for each arc a, there is a continuous flow variable

xa and a binary fixed-charge variable ya. Consider a node i. Let a be an arc entering

node i, and let α, . . . , ω be the arcs leaving i. Suppose that ya = 1 in an optimal

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 75

solution. Then xa must be positive, since, if that were not so, we could have made

a cost saving by setting ya to 0. The flow entering node i via arc a must then exit

node i via one or more of the outgoing arcs. This in turn implies that at least one

of the y variables associated with the outgoing arcs must take the value 1. Thus, the

inequality ya ≤ yα + · · ·+ yω is an optimality cut (called a logic cut in [37]).

5.3 The Nested Case

In this section, we consider the special case in which the sets S1, . . . , Sm are nested

(that is, for all pairs {i, i′} ⊂M , we have Si∩Si′ = ∅, Si ⊂ Si′ or Si′ ⊂ Si). The section

is organised as follows. In Subsection 5.3.1, we give some notation and terminology.

In Subsection 5.3.2, we prove a negative complexity result. In Subsection 5.3.3, we

show that our problem is closely related to FCNF problems. In Subsection 5.3.4, we

present our valid inequalities. Finally, in Subsection 5.3.5, we consider the effect on

our inequalities when optimality cuts are present.

5.3.1 Notation and terminology

From now on, we let P denote the convex hull of the pairs (x, y) ∈ Rn
+ × {0, 1}m

satisfying ∑
j∈Si

xj ≤ uiyi (i = 1, . . . ,m). (5.3.1)

Note that, in the nested case, we can assume without loss of generality that Sm = N .

Indeed, if there did not exist some set Si that contained all the other sets, then P

would be the Cartesian product of simpler polytopes of the same kind.

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 76

t t t t t t t
t t
t

t
t
t

t

�
�
��

A
A
AU ?

�
�
��

A
A
AU

�
�

��	

@
@
@@R

�
�/
S
S
S
S
SSw

�
�/
S
S
S
S
S
S
SSw

�
�

�
�
�

�
�+

H
HHH

HHHj

1 2 3 4 5 6 7

S1 S2

S3

S4

S5

S6

S7

Figure 5.3.1: Visualisation of nested sets using a directed tree.

Given i, i′ ∈ M , we will call i a descendant of i′ if Si ⊂ Si′ . If, in addition, there

is no k ∈ M such that Si ⊂ Sk ⊂ Si′ , we call i a child of i′. We let δ(i) and χ(i)

denote the set of descendants and children, respectively, of i. We also let ρ(i) denote

Si \
⋃
k∈χ(i) Sk. (Note that at most one of χ(i) and ρ(i) can be empty.) We also

represent the sets S1, . . . , Sm as a rooted directed tree, as follows. There is one node

for each set Si, and one node for each j ∈ N . There is an arc from Si to Si′ if i′ is a

child of i, and there is an arc from Si to j if j ∈ ρ(i).

The above notation and terminology is illustrated in the following example.

Example 1. Let n = 7 and m = 7, and suppose that S1 = {1, 2}, S2 = {3},

S3 = {1, 2, 3}, S4 = {4, 5}, S5 = {4, 5, 6}, S6 = {4, 5, 6, 7} and S7 = {1, . . . , 7}. The

corresponding tree is shown in Figure 5.3.1. One can check that, for example, 4 is a

descendent of 6 and 1 is a child of 3. One can also check that δ(2) = ∅, δ(6) = {4, 5},

χ(3) = {1, 2}, χ(4) = ∅, ρ(3) = ∅ and ρ(5) = {6}. �

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 77

5.3.2 Complexity

Our first result is that, even in the nested case, optimisation over P is difficult.

Proposition 5.3.1. Even in the nested case, optimising a linear function over P is

NP-hard.

Proof. We reduce SUBSET SUM, shown to be NP-complete in [27], to the problem in

question. An instance of SUBSET SUM is given by positive integers p1, . . . , pk and a

“target” t. The task is to determine if there exists a subset of {p1, . . . , pk} whose sum

is t. To convert this to our problem, set n to k and m to k + 1. For i ∈ N , set Si to

{i}, set ui to pi, give xi a profit of 1 and give yi a cost of pi(1− ε), where ε is a small

positive quantity. Finally, set Sm to N , um to t, and give ym a cost of zero. Since all

ui values are integers, there exists an optimal solution in which x is integral. Then,

for any given i ∈ N , it is not worth setting yi to 1 unless xi is set to pi, in which case

we gain a profit of εpi. So the answer to SUBSET SUM is “yes” if and only if there is a

point (x, y) ∈ P with profit εt. (A suitable value for ε is 1/n.)

In light of this result, we cannot expect to obtain a complete description of P in terms

of linear inequalities. So, we must be content with a partial linear description.

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 78

5.3.3 Relation to FCNF

Given a set of nodes V and a set of arcs A, the FCNF polytope is the convex hull of

the pairs (x, y) ∈ R|A|+ × {0, 1}|A|, such that

∑
j∈V

xji −
∑
j∈V

xij = bi (i ∈ V)

xij ≤ uijyij ((i, j) ∈ A).

Next, we will show that, in the nested case, there is a strong connection between

the polytope P and FCNF problems. Consider Figure 5.3.1 once more. For i ∈ M ,

let fi denote the flow entering the node that represents Si, and set the capacity of the

corresponding arc to ui. We also interpret the binary variable yi as an indicator of

whether that arc is being used or not. Finally, for j ∈ N , we let node j be a “sink”

node, and we interpret xj as representing the flow entering node j. By construction,

a triple (x, y, f) ∈ Rn
+ × {0, 1}n × Rn

+ represents a feasible flow if and only if (x, y)

satisfies (5.3.1).

This observation is formalised in the following proposition.

Proposition 5.3.2. Suppose that S1, . . . , Sm are nested. Let M ′ =
{
i ∈ M : χ(i) =

∅
}

, and let P f be the convex hull of the triples (x, y, f) ∈ Rn
+×{0, 1}m×Rm

+ satisfying

fi =
∑

j∈Si
xj (i ∈M ′) (5.3.2)

fi =
∑

k∈χ(i) fk +
∑

j∈ρ(i) xj (i ∈M \M ′) (5.3.3)

fi ≤ uiyi (i ∈M). (5.3.4)

Then (a) P f is an FCNF polytope of a directed acyclic graph, (b) P is the projection

of P f onto (x, y)-space, and (c) P is affinely congruent to P f .

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 79

Proof. By construction, the equations (5.3.2) and (5.3.3) enforce conservation of flow

in a directed acyclic graph, and the constraints (5.3.4) enforce arc capacities, as well

as ensuring that no flow can pass through an arc unless the arc is open. This proves

claim (a). Now, by conservation of flow, we must have fi =
∑

j∈Si
xj for all i ∈ M .

Thus, if we eliminate the f variables, using the equations (5.3.2) and (5.3.3), the

constraints (5.3.4) reduce to (5.3.1). This proves claim (b). To see that claim (c)

holds, it suffices to note that there is an invertible affine transformation which maps

each extreme point of P to an extreme point of Pf . This transformation consists of

leaving x and y unchanged, and setting fi to
∑

j∈Si
xj for all i ∈M .

This link with FCNF polytopes has an interesting consequence:

Corollary 5.3.3. Consider the following set function, which maps sets T ⊆ N to Z+:

φ(T) = max

{∑
j∈T

xj :
∑
j∈Si

xj ≤ ui (i ∈M), xj ≥ 0 (j ∈ N)

}
. (5.3.5)

If the sets S1, . . . , Sm are nested, then φ is submodular.

Proof. Wolsey ([72], Th. 4) proved the following. Let G = (V,A) be a directed

graph, let u ∈ RA
+ be a vector of arc capacities, and let p ∈ RA

+ be a vector of arc

profits. Given any S ⊂ V , the maximum-profit flow through the arcs leaving S is

a submodular function of the set of arcs that are open. To apply this result to our

problem, it suffices to set S to the set of nodes representing S1, . . . , Sm, and set pj to

1 for each arc that connects a node in S1, . . . , Sm to a node in N .

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 80

5.3.4 The new inequalities

From now on, we assume w.l.o.g. that, for each i ∈M such that ρ(i) = ∅, the condition

ui ≤
∑

k∈χ(i) uk holds. (If it did not hold, then one could decrease ui without losing

any feasible solutions.)

Now, let T ⊆ N be any set such that φ(T) = ui for some i ∈ M . The following

inequality is trivially valid and supporting for P :

∑
j∈T

xj ≤ ui. (5.3.6)

We will use sequential lifting [58, 70] to strengthen (5.3.6). More precisely, let I ={
k ∈M : Sk ∩T 6= ∅

}
, let c denote |I|, and let s(1), . . . , s(c) be an arbitrary ordering

of the elements of I. We will compute a valid inequality of the form

∑
j∈T

xj ≤ ui −
c∑

k=1

βk
(
1− ys(k)

)
, (5.3.7)

where the (non-negative) coefficients βk are computed according to the given ordering.

The coefficients βk can be calculated as follows. Let φ(T, k) denote the maximum

value that
∑

j∈T xj can take when ys(k) = 0. If φ(T, k) = ui, then βk = 0. Otherwise,

let ∆(k) =
{
i ∈ {1, . . . , k − 1} : s(i) ∈ δ

(
s(k)

)}
and set

βk = ui − φ(T, k)−
∑
`∈∆(k)

β`. (5.3.8)

Note that, for fixed T and k, one can compute φ(T, k) and βk in O(m + n) time.

Thus, for fixed T , one can compute all lifting coefficients in O
(
m(m+ n)

)
time. The

following example shows that it is possible for this procedure to yield many inequalities

that define facets of P . It also shows that it is possible for different lifting sequences

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 81

to lead to different facets.

Example 2. Suppose that n = 3, m = 5, Si = {i} for i = 1, 2, 3, S4 = {1, 2},

S5 = {1, 2, 3}, ui = 4 for i = 1, 2, 3, u4 = 7 and u5 = 10. Taking T = {1, 2},

the inequality (5.3.6) is x1 + x2 ≤ 7. We have I = {1, 2, 4, 5}. Lifting in the order

1, 2, 4, 5, we obtain ∆(1) = ∆(2) = ∅, ∆(3) = {1, 2} and ∆(4) = {1, 2, 3}. This yields

β1 = β2 = 7 − 4 = 3, β3 = 7 − 0 − 3 − 3 = 1 and β4 = 7 − 0 − 3 − 3 − 1 = 0. The

resulting valid inequality is

x1 + x2 ≤ 3y1 + 3y2 + y4. (5.3.9)

One can check that different lifting orders yield seven additional inequalities:

x1 + x2 ≤ 3y1 + 3y2 + y5

x1 + x2 ≤ 3y1 + 4y4

x1 + x2 ≤ 3y1 + 4y5

x1 + x2 ≤ 3y2 + 4y4

x1 + x2 ≤ 3y2 + 4y5

x1 + x2 ≤ 7y4

x1 + x2 ≤ 7y5.

One can also check (either by hand or with the help of a software package such as

PANDA [51]) that all eight lifted inequalities define facets of P . Finally, one can check

that a further sixteen facets of P can be obtained by taking T = {1, 2, 3} and using

different lifting sequences. �

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 82

We also have the following lemma:

Lemma 5.3.4. The inequalities (5.3.7) generalise and dominate the simple flow cover

inequalities (5.2.1).

Proof. Let n, d, u and C be given, as in Subsection 5.2.1. To put this into our

framework, set m to n + 1, and set Si to {i} for i = 1, . . . , n. Also set Sm and

N to {1, . . . , n + 1}, um to d, and T to C. We have I = C ∪ {m}. Let r denote

d −
∑

j∈C∗(uj − λ), and note that r > 0. One can check that, if we lift ym last, we

obtain:
n∑
i=1

xj ≤ d −
∑
j∈C∗

(uj − λ)(1− yj) − r(1− ym).

This dominates (5.2.1).

An interesting question is whether there can exist facet-defining inequalities of the

form (5.3.7) that cannot be obtained by lifting sequentially.

5.3.5 Optimality cuts

We end this section with some remarks on optimality cuts. Note that if yi takes the

value 0 in an optimal solution, then yk should also take the value 0 for all k ∈ χ(i).

Therefore, one can strengthen the LP relaxation by adding the optimality cut yk ≤ yi

for all i, k ∈ M such that k ∈ χ(i). Given the connection between our problem and

FCNF problems mentioned in Subsection 5.3.2, these can be viewed as a special kind

of logic cuts.

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 83

Note that, once these optimality cuts have been added, the convex hull of the

feasible pairs (x, y) is no longer an FCNF polytope. Nevertheless, our procedure for

generating valid inequalities still applies. It turns out, however, that most lifting

sequences no longer yield facets. Indeed, a necessary condition for obtaining a facet

is that, for each i ∈ I with δ(i) 6= ∅, the descendants of i are lifted before i itself is

lifted. The effect of this is that, for a given T , one of the valid inequalities dominates

all of the others. This is illustrated in the following example.

Example 2 (cont.) We add the optimality cuts y1 ≤ y4, y2 ≤ y4, y3 ≤ y5 and

y4 ≤ y5. Taking T = {1, 2} and lifting in the order 1,2,4,5, as before, we obtain

inequality (5.3.9). Together with the optimality cuts, this inequality dominates the

other seven inequalities mentioned in Example 2. One can verify that it also defines

a facet of the modified polytope. �

In other words, the optimality cuts eliminate some of the facets of the polytope

P . The effect is to make the polytope simpler. Note that Lemma 5.3.4 still holds for

the modified polytope.

5.4 The General Case

In this last section, we consider the general case, in which the sets Si do not need to

be nested. It turns out that this case is much more complicated, in several respects.

A first complication is that one can no longer assume that Sm = N . For example,

if n = 3, m = 2, S1 = {1, 2} and S2 = {2, 3}, then the polytope P is not the Cartesian

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 84

product of simpler polytopes.

A second complication is that optimising over P becomes even more difficult.

Proposition 5.4.1. In the general case, optimising a linear function over P is NP-

hard in the strong sense.

Proof. We reduce the maximum independent set problem, proven to be strongly NP-

hard in [27], to the problem in question. Let G = (V,E) be a graph with n nodes and

p edges. Set m to n+ p. For i = 1, . . . , n, set Si to {i}, give xi a profit of 3 and give

yi a cost of 2. For r = 1, . . . , p, let Sr+i contain the end-nodes of the rth edge. Set all

u values to 1. There exists an independent set of size k in G if and only if there is a

solution with profit k.

A third complication is that one can sometimes decrease one or more u values, by

solving a series of LPs. This is shown in the following example.

Example 3. Let n = 3, m = 7, S1 = {1}, S2 = {2}, S3 = {3}, S4 = {1, 2}, S5 =

{1, 3}, S6 = {2, 3} and S7 = {1, 2, 3}. Also, let u1 = u2 = u3 = 2, u4 = u5 = u6 = 3

and u7 = 5. Recall the function φ from Subsection 5.3.3. Solving the LP (5.3.5) with

T = S7, we find that φ(S7) = 4.5. Hence u7 can be reduced from 5 to 4.5. �

This example also shows that, even when the original vector u is integral, it is possible

for φ(T) to be fractional for a given T ⊆ N .

A fourth complication is that the polytope P is no longer an FCNF polytope in

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 85

general. In fact, the function φ is no longer submodular.

Example 3 (cont.) We have φ(S4) = φ(S5) = 3, φ(S4 ∪ S5) = φ(S7) = 4.5, and

φ(S4 ∩ S5) = φ(S1) = 2. Since 3 + 3 < 4.5 + 2, φ is not submodular. �

On the positive side, the function φ remains subadditive.

Proposition 5.4.2. In the general case, φ is subadditive.

Proof. Let S, T be subsets of N . Let x∗ be the vector that maximises
∑

j∈S∪T xj in

(5.3.5). Let x1, x2 ∈ X be defined as follows

x1
j =


x∗j , if j ∈ S

0, if j /∈ S

x2
j =


0, if j ∈ S

x∗j , if j /∈ S.

We have

φ(S ∪ T) =
∑
j∈S∪T

x∗j =
∑
j∈S

x1
j +

∑
j∈T\S

x2
j ≤

∑
j∈S

x1
j +

∑
j∈T

x2
j ≤ φ(S) + φ(T).

A fifth complication is that the closed formula (5.3.8) that we presented in Sub-

section 5.3.3 can no longer be used to compute the lifting coefficients. Moreover, even

when the correct coefficients are used, the resulting inequality is no longer guaranteed

to be facet-defining.

Example 3 (cont.) Suppose we take T = {1, 2, 3}. The inequality (5.3.6) is

x1 + x2 + x3 ≤ 4.5. We have I = M . If we lift 4, 5 and 6 first, the formula

(5.3.8) yields β1 = β2 = β3 = 4.5 − 2 = 2.5, which yields the invalid inequality

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 86

x1 + x2 + x3 ≤ −3 + 2.5(y4 + y5 + y6). If we lift exactly (by solving a sequence of

small mixed 0-1 LPs, as in [58, 70]), then we obtain β1 = 2.5, β2 = 2 and β3 = 0. The

resulting valid inequality x1 + x2 + x3 ≤ 2.5y4 + 2y5 does not define a facet of P . �

In fact, we do not know whether lifting can be performed in polynomial time in the

general case, and we do not have a necessary and sufficient condition for a lifted

inequality (5.3.7) to define a facet. On the positive side, it turns out that the lifted

inequalities still define facets of P in many cases.

Example 3 (cont.) Suppose we change u7 from 5 to 4. Taking T = {1, 2, 3} again,

the inequality (5.3.6) is x1 + x2 + x3 ≤ 4. Lifting in the order 1, 2, 3, 7, 4, 5, 6, we get

x1 + x2 + x3 ≤ y1 + y2 + y3 + y7. (5.4.1)

Lifting in the order 1, 2, 5, 6, 3, 4, 7, we get

x1 + x2 + x3 ≤ y1 + y2 + y5 + y6. (5.4.2)

One can check that these two inequalities define facets of P . One can also check that,

using different lifting sequences, one can obtain an additional 42 facets. �

Finally, we mention that, as in the nested case, when optimality cuts are present,

most lifting sequences no longer yield facets. Interestingly, however, we can now

obtain more than one facet for a given T .

Example 3 (cont.) Suppose that, as before, u7 = 4 and T = {1, 2, 3}. We add

the optimality cuts y1 ≤ y4, y1 ≤ y5 and so on. One can check that the inequalities

CHAPTER 5. FIXED CHARGES ON SETS OF VARIABLES 87

(5.4.1) and (5.4.2) remain facet-defining, and so do the following two inequalities:

x1 + x2 + x3 ≤ y1 + y3 + y4 + y6

x1 + x2 + x3 ≤ y2 + y3 + y4 + y5.

�

An interesting open question is whether, in the general case, one can obtain facet-

defining inequalities with fractional coefficients, even if the original u values are inte-

gers.

5.5 Acknowledgements

We thank Niamh Lamin for performing some preliminary polyhedral computations

for us.

Chapter 6

Conclusion

6.1 Summary

As mentioned in Chapter 1, strong valid linear inequalities are a key component

of modern exact algorithms for integer programming. In this thesis, we introduced a

number of procedures to generate valid linear inequalities for certain specific problems.

Firstly, we derived valid inequalities for the knapsack polytope. Secondly, we showed

how to convert valid inequalities for the knapsack polytope into valid inequalities for

the fixed-charge and single-node flow polytopes. Finally, we derived valid inequalities

for mixed-integer programs with fixed charges on sets of variables.

In Chapter 2, we introduced a new procedure for lifting cover inequalities. More

specifically, we showed how one of the earliest lifting procedures, due to Balas, can be

significantly improved, so that it yields both stronger and more general LCIs, while

still being very fast. The resulting procedure can yield facet-defining inequalities that

cannot be obtained by standard lifting procedures. The procedure has a number of

88

CHAPTER 6. CONCLUSION 89

other interesting properties, including that it can yield facet-defining inequalities even

if the given cover is not minimal. Interestingly, we did not use superadditivity to prove

that our lifting procedure is valid. However, we did use superadditivity to improve the

lifting procedure further. The resulting associated lifting function is integer-valued

almost everywhere.

In Chapter 3, we revisited the knapsack polytope, focusing on another family of

inequalities, called knapsack cover inequalities. In general, these inequalities can be

rather weak. To strengthen them, we used two fast approximate lifting procedures.

The first procedure is based on a simple mixed-integer rounding argument. The second

procedure is slightly more complicated and is based on the construction of a superad-

ditive lifting function. Both procedures can yield new facet-defining inequalities for

the knapsack polytope.

In Chapter 4, we introduced a new procedure for converting valid inequalities

for the knapsack polytope into valid inequalities for the fixed-charge and single-node

flow polytopes. The resulting inequalities are very different from previously known

inequalities for these polytopes, and define facets under certain conditions. We have

considered the particular inequalities that are obtained when the given inequality for

the knapsack polytope is a cover or extended cover inequality. In both cases, we

managed to get closed-form expressions. One very interesting result is that, even if

one applies our procedure to simple inequalities for the knapsack polytope (such as

cover inequalities), one can still obtain new and non-trivial inequalities for the other

polytopes.

In Chapter 5, we considered mixed-integer programs with fixed charges on sets of

CHAPTER 6. CONCLUSION 90

variables. We first considered the case in which the sets are nested and established a

connection with fixed-charge network flow problems. We derived strong valid linear

inequalities for this case, and showed that they generalise and dominate a subclass of

the well-known flow cover inequalities for the classical fixed-charge problem. Then,

we considered the general case, in which the set of variables do not need to be nested.

We discussed the complications that arise, and extended some of our results.

6.2 Further Work

We believe that the work presented in this thesis has the potential to be extended in

a number of ways. In this section, we outline some suggestions for further work that

can stem from our work.

6.2.1 Lifted cover inequalities

In Chapter 2, we introduced a new procedure for lifting cover inequalities. The in-

teresting properties of this procedure encourage us to believe that our work can be

extended in a number of directions, from both polyhedral and computational perspec-

tives.

We have come across several examples where our procedure yields facet-defining

inequalities. So, an interesting question would be to derive necessary and/or sufficient

conditions for our inequalities to be facet-defining. An even more interesting question

would be to find a necessary and sufficient condition for the knapsack polytope to be

completely described by our LCIs, together with the trivial bounds 0 ≤ xi ≤ 1.

CHAPTER 6. CONCLUSION 91

We have proved that our procedure yields valid inequalities which are at least as

strong as the ones generated by Balas’ procedure, and we have come across several

examples where our procedure yields stronger inequalities. One possible direction

for further work would be a more extensive comparison of the two procedures. For

example, one could try adding the two different cuts to the LP relaxation of the some

test instances and compare the gap that each type of cuts closes. This can also be

expanded to a cut-and-branch or even a branch-and-cut algorithm.

Furthermore, one could design a wide range of computational experiments to study

our new lifting procedure in more detail. For example, one could add the new in-

equalities to existing solvers (such as CPLEX, Gurobi, SCIP, etc.) to test if the new

inequalities improve the solvers’ performance.

In order to use the inequalities in practice, one would need to design effective sepa-

ration algorithms. One question is whether the separation problem for our inequalities

can be solved exactly in pseudo-polynomial time. As for separation heuristics, one

would have to bear in mind the fact that our lifting procedure can generate useful

inequalities even when the cover is not minimal.

Finally, we showed that our procedure for lifting cover inequalities can be improved

using superadditivity. Our examples demonstrate that the improved lifting functions

can lead to stronger LCIs. It would be interesting to design some computational

experiments to explore how much the additional improvement helps in practice.

CHAPTER 6. CONCLUSION 92

6.2.2 Lifted knapsack cover inequalities

In Chapter 3, we revisited the knapsack polytope and introduced two lifting proce-

dures for knapsack cover inequalities. One direction for further work would be to

compare LKCIs with various kinds of lifted cover inequalities.

Our examples show that it is possible for these lifting procedures to yield non-

trivial facet-defining inequalities. So, a natural extension to our work would be to

derive necessary and/or sufficient conditions for the inequalities to be facet-defining.

Another potential extension to our work would be the design and implementa-

tion of efficient separation heuristics for LKCIs. Again, a question is whether the

separation problem for either version of our LKCIs can be solved exactly in pseudo-

polynomial time.

Finally, it would be worthwhile incorporating LKCIs (and some or all of the in-

equalities that we introduced in this thesis) into an exact algorithm for Fixed-Charge

Network Flow problems. We believe that the LKCIs have the potential to perform

very well in practice. Thus, it would be interesting to conduct some extensive com-

putational experiments to study their performance in more detail.

6.2.3 Rotated knapsack inequalities

In Chapter 4, we introduced new families of valid inequalities for the fixed-charge and

single-node flow polytopes. The inequalities, called rotated knapsack inequalities, are

very different to the well-known flow cover inequalities. So, one direction for further

work would be to compare rotated knapsack inequalities to flow cover inequalities.

CHAPTER 6. CONCLUSION 93

Another idea for further work would be to add the new inequalities to solvers

and test if the new inequalities can improve the solvers’ performance. Note that our

procedure can yield a huge number of RKIs. Thus, it is important to develop effective

separation algorithms for the RKIs.

We have considered the special cases when the given inequality for the knapsack

polytope is a cover or extended cover inequality. One could also try other particular

families of valid inequalities for the knapsack polytope. For example, one could use

the LCIs that we introduced in Chapter 2 as input.

Finally, due to the huge number of inequalities that this procedure can yield,

another pressing question is to derive necessary and sufficient conditions for an RKI

to define a facet of the single-node flow polytope.

6.2.4 Valid inequalities for problems with fixed charges on

sets of variables

In Chapter 5, we introduced valid inequalities for mixed-integer problems with fixed

charges on sets of variables. When the sets are nested, we have proved that our

inequalities generalise and dominate simple flow cover inequalities. So, an natural

question is how the two families of inequalities compare in practice.

It would also be interesting to see how well the new inequalities perform in practice.

Hence, another potential direction for further work would be to test if the inequalities

can improve existing solvers’ performance. Note that this procedure can yield a huge

number of inequalities. Hence, it is imperative to derive effective separation heuristics.

CHAPTER 6. CONCLUSION 94

Again, an interesting question is whether the separation problem can be solved exactly

in pseudo-polynomial time.

The non-nested case is much more complicated than the nested case. We have

discussed some of the complications in Chapter 5. It would be interesting to study

this case further and try to get a better understanding of the corresponding polytope.

Bibliography

[1] K. Aardal, Y. Pochet, and L. A. Wolsey. Capacitated facility location: valid

inequalities and facets. Math. Oper. Res., 20:562–582, 1995.

[2] E.H. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization.

Princeton University Press, Princeton, NJ, 2003.

[3] R.W. Ashford and R.C. Daniel. Some lessons in solving practical integer pro-

grams. J. Oper. Res. Soc., 43:425–433, 1992.

[4] A. Atamtürk. Flow pack facets of the single node fixed-charge flow polytope.

Oper. Res. Lett., 29:107–114, 2001.

[5] A. Atamtürk. Cover and pack inequalities for (mixed) integer programming.

Ann. Oper. Res., 139:21–38, 2005.

[6] A. Atamtürk and M.W.P. Savelsbergh. Integer-programming software systems.

Ann. Oper. Res., 140:67–124, 2005.

[7] E. Balas. Facets of the knapsack polytope. Math. Program., 8:146–164, 1975.

95

BIBLIOGRAPHY 96

[8] E. Balas. Cutting planes from conditional bounds: a new approach to set cover-

ing. Math. Program. Stud., 12:19–36, 1980.

[9] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers.

SIAM J. Appl. Math., 34:119–148, 1978.

[10] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

[11] M. Bellmore and H.D. Ratliff. Set covering and involutory bases. Mgmt. Sci.,

18:194–206, 1971.

[12] E.A. Boyd. Generating Fenchel cutting planes for knapsack polyhedra. SIAM J.

Optim., 3:734–750, 1993.

[13] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, New York, 2004.

[14] E.K. Burke and G. Kendall, editors. Search Methodologies. Springer US, New

York, 2005.

[15] R.D. Carr, L.K. Fleischer, V.J. Leung, and C.A. Phillips. Strengthening integral-

ity gaps for capacitated network design and covering problems. In Proceedings

of SODA XI, pages 106–115. SIAM, New York, 2000.

[16] D.-S. Chen, R.G. Batson, and Y. Dang. Applied Integer Programming. Wiley,

Hoboken, NJ, 2011.

BIBLIOGRAPHY 97

[17] T. Christof and A. Loebl. PORTA (polyhedron representation trans-

formation algorithm). software package, available for download at

http://www.iwr.uni-heidelberg.de/groups/comopt/software.

[18] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.

Discr. Math., 4:305–337, 1973.

[19] V. Chvátal. On certain polytopes associated with graphs. J. Combin. Th. B, 18:

138–154, 1975.

[20] M. Conforti, G. Cornuéjols, and G. Zambelli. Polyhedral approaches to mixed

integer linear programming. In M. Juenger et al., editors, 50 Years of Integer

Programming, pages 343–385. Springer, Heidelberg, 2010.

[21] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming, volume 271

of Graduate Texts in Mathematics. Springer, 2015.

[22] W. Cook. Fifty-plus years of combinatorial integer programming. In M. Juenger

et al., editors, 50 Years of Integer Programming, pages 387–430. Springer, Hei-

delberg, 2010.

[23] H. Crowder, E. Johnson, and M.W. Padberg. Solving large-scale zero-one linear

programming programs. Oper. Res., 31:803–834, 1983.

[24] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,

Princeton, NJ, 1963.

BIBLIOGRAPHY 98

[25] E. Fernández and K. Jørnsten. Partial cover and complete cover inequalities.

Oper. Res. Lett., 15:19–33, 1994.

[26] M. Fischetti, J.J. Salazar Gonzalez, and P. Toth. Solving the orienteering problem

through branch-and-cut. INFORMS J. Comput., 10:133–148, 1998.

[27] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, New York, 1979.

[28] F. Glover. Future paths for integer programming and links to artificial intelli-

gence. Comput. Oper. Res., 13:533 – 549, 1986.

[29] F. Glover. Unit-coefficient inequalities for zero-one programming. Management

Science Report 73-7, University of Colorado, July 1973.

[30] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs.

Bull. Amer. Math. Soc., 64:275–278, 1958.

[31] R.E. Gomory. An algorithm for the mixed integer problem. Technical Report

RAND-P-1885, Rand Corporation, Santa Monica, CA, 1960.

[32] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities for

0-1 integer programs: computation. INFORMS J. Comput., 10:427–437, 1998.

[33] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted flow cover inequalities

for mixed 0-1 integer programs. Math. Program., 85:439–467, 1999.

[34] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Sequence-independent lifting

in mixed integer programming. J. Comb. Optim., 4:109–129, 2000.

BIBLIOGRAPHY 99

[35] D. Hartvigsen and E. Zemel. The complexity of lifted inequalities for the knapsack

problem. Discr. Appl. Math., 39:113–123, 1992.

[36] K.L. Hoffman and M.W. Padberg. Improving LP-representations of zero-one

linear programs for branch-and-cut. ORSA J. Comput., 3:121–134, 1991.

[37] J.N. Hooker, H. Yan, I.E. Grossmann, and R. Raman. Logic cuts for processing

networks with fixed charges. Comput. & Oper. Res., 21:265–279, 1994.

[38] M. K. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. A branch-and-cut

algorithm for the capacitated profitable tour problem. Discr. Optim., 14:78–96,

2014.

[39] E.L. Johnson, G.L. Nemhauser, and M.W.P. Savelsbergh. Progress in linear

programming-based algorithms for integer programming: An exposition. IN-

FORMS J. Comput., 12:2–23, 2000.

[40] K. Kaparis and A.N. Letchford. Local and global lifted cover inequalities for the

multidimensional knapsack problem. Eur. J. Oper. Res., 186:91–103, 2008.

[41] K. Kaparis and A.N. Letchford. Separation algorithms for 0-1 knapsack poly-

topes. Math. Program., 124:69–91, 2010.

[42] K. Kaparis and A.N. Letchford. Cover inequalities. In J.J. Cochran et al., editors,

Encyclopedia of Operations Research and Management Science. Wiley, New York,

2011.

[43] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller, J.W.

BIBLIOGRAPHY 100

Thatcher, and J.D. Bohlinger, editors, Complexity of Computer Computations,

pages 85–103. Plenum, New York, 1972.

[44] G. Lancia, F. Rinaldi, and P. Serafini. Local search inequalities. Discr. Optim.,

16:76–89, 2015.

[45] A.H. Land and A.G. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28:497–520, 1960.

[46] K.S. Lee. Separation heuristic for the rank-1 Chvátal-Gomory inequalities for

the binary knapsack problem. J. Korean Inst. Indust. Eng., 38:74–79, 2012.

[47] A.N. Letchford and G. Souli. New valid inequalities for the fixed-charge and

single-node flow polytopes. Oper. Res. Lett., 47:353–357, 2019.

[48] A.N. Letchford and G. Souli. On lifted cover inequalities: a new lifting procedure

with unusual properties. Oper. Res. Lett., 47:83–87, 2019.

[49] A.N. Letchford and G. Souli. Valid inequalities for mixed-integer programmes

with fixed charges on sets of variables. Oper. Res. Lett., 48:240–244, 2020.

[50] A.N. Letchford and G. Souli. Lifting the knapsack cover inequalities for the

knapsack polytope. Oper. Res. Lett., 48:607–611, 2020.

[51] S. Lörwald and G. Reinelt. PANDA: a software for polyhedral transformations.

EURO J. Comput. Optim., 3:297–308, 2015.

[52] Q. Louveaux and L.A. Wolsey. Lifting, superadditivity, mixed integer rounding

and single node flow sets revisited. Ann. Oper. Res., 153:47–77, 2007.

BIBLIOGRAPHY 101

[53] H. Marchand and L.A. Wolsey. The 0-1 knapsack problem with a single contin-

uous variable. Math. Program., 85:15–33, 1999.

[54] H. Marchand and L.A. Wolsey. Aggregation and mixed-integer rounding to solve

MIPs. Oper. Res., 49:363–371, 2001.

[55] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, New York, 1988.

[56] G.L. Nemhauser and L.A. Wolsey. A recursive procedure to generate all cuts for

0–1 mixed integer programs. Math. Program., 46:379–390, 1990.

[57] P. Nobili and A. Sassano. A separation routine for the set covering polytope. In

E. Balas, G. Cornuéjols, and R. Kannan, editors, Proceedings of the 2nd IPCO

Conference, pages 201–219. CMU Press, Pittsburgh, PA, 1992.

[58] M.W. Padberg. A note on zero-one programming. Oper. Res., 23:833–837, 1975.

[59] M.W. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling

salesman problem by branch and cut. Oper. Res. Lett., 6:1–7, 1987.

[60] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey. Valid linear inequalities for fixed

charge problems. Oper. Res., 33:842–861, 1985.

[61] Y. Pochet and L.A. Wolsey. Production Planning by Mixed Integer Programming.

Springer Science & Business Media, 2006.

[62] G. Polya. How to Solve It: A New Aspect of Mathematical Method. Princeton

University Press, Princeton, NJ, 1945.

BIBLIOGRAPHY 102

[63] T.J. Van Roy and L.A. Wolsey. Valid inequalities for mixed 0-1 programs. Disc.

Appl. Math., 14:199–213, 1986.

[64] T.J. Van Roy and L.A. Wolsey. Solving mixed integer programming problems

using automatic reformulation. Oper. Res., 35:45–57, 1987.

[65] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,

Chichester, 1998.

[66] J.I.A. Stallaert. The complementary class of generalized flow cover inequalities.

Disc. Appl. Math., 77:73–80, 1997.

[67] R. Weismantel. On the 0-1 knapsack polytope. Math. Program., 77:49–68, 1997.

[68] H.P. Williams. Model Building in Mathematical Programming. John Wiley &

Sons, Chichester, 5th edition, 2013.

[69] L.A. Wolsey. Faces for a linear inequality in 0–1 variables. Math. Program., 8:

165–178, 1975.

[70] L.A. Wolsey. Facets and strong valid inequalities for integer programs. Oper.

Res., 24:367–372, 1976.

[71] L.A. Wolsey. Valid inequalities and superadditivity for 0-1 integer programs.

Math. Oper. Res., 2:66–77, 1977.

[72] L.A. Wolsey. Submodularity and valid inequalities in capacitated fixed charge

networks. Oper. Res. Lett., 8:119–124, 1989.

[73] L.A. Wolsey. Integer Programming. John Wiley & Sons, New York, 1998.

BIBLIOGRAPHY 103

[74] E. Zemel. Easily computable facets of the knapsack polytope. Math. Oper. Res.,

pages 760–765, 1989.

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Optimisation
	Linear Programming and Extensions
	Binary Variables in Model Formulation
	The knapsack problem
	Fixed charges
	Either-or constraints
	Semi-continuous variables

	Computational Complexity
	Classical Approaches for MILP
	Branch-and-bound
	Cutting planes
	Dynamic programming
	Heuristics

	Polyhedral Approaches
	Definitions and notation
	Example: The knapsack polytope
	Algorithms

	Structure of the Thesis

	On Lifted Cover Inequalities: A New Lifting Procedure with Unusual Properties
	Introduction
	Literature Review
	Lifted cover inequalities
	Balas' lifting procedure
	Other lifting procedures

	The New Procedure and Its Properties
	A key quantity
	The improved procedure
	Unusual properties of the new procedure

	Additional Improvement Via Superadditivity
	Concluding Remarks

	Lifting the Knapsack Cover Inequalities for the Knapsack Polytope
	Introduction
	Literature Review
	Cover inequalities
	Knapsack cover inequalities
	Lifting
	Mixed-integer rounding

	Lifting Knapsack Cover Inequalities
	Motivation
	Lifted KCIs
	Lifting via mixed-integer rounding
	Lifting via superadditivity

	Concluding Remarks

	New Valid Inequalities for the Fixed-Charge and Single-Node Flow Polytopes
	Introduction
	Literature Review
	Knapsack polytope
	Fixed-charge polytope
	Single-node flow polytope

	Fixed-Charge Polytope
	General procedure
	Facet-defining RKIs
	Special cases

	Single-Node Flow Polytope
	Concluding Remarks

	Valid Inequalities for Mixed-Integer Programs with Fixed Charges on Sets of Variables
	Introduction
	Literature Review
	Valid inequalities for the fixed charge polytope
	Optimality cuts

	The Nested Case
	Notation and terminology
	Complexity
	Relation to FCNF
	The new inequalities
	Optimality cuts

	The General Case
	Acknowledgements

	Conclusion
	Summary
	Further Work
	Lifted cover inequalities
	Lifted knapsack cover inequalities
	Rotated knapsack inequalities
	Valid inequalities for problems with fixed charges on sets of variables

	Bibliography

