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Abstract 

We propose updating a multiplier matrix subject to final demand and total output 

constraints, where the prior multiplier matrix is weighted against a LASSO prior. We 

update elements of the Leontief inverse, from which we can derive posterior densities 

of the entries in input-output tables. As the parameter estimates required by far exceed 

the available observations, many zero entries deliver a sparse tabulation. We address 

that problem with a new statistical model wherein we adopt a LASSO prior. We develop 

novel numerical techniques and perform a detailed Monte Carlo study to examine the 

performance of the new approach under different configurations of the input-output 

table. The new techniques are applied to a 196 ×196 U.S. input-output table for 2012.   
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1. Introduction 

The problem that concerns us has been stated clearly by Golan, Judge, and Robinson 

(1994, p.541):  

Commonly, one starts with complete data for a particular period and 
seeks to estimate the matrix of flows for a later period, based only on row 
and column sum information. In general, the problem is to recover, from 
the incomplete data, a new matrix that satisfies a number of linear 
restrictions  

A well-known means of solving this problem is RAS (Bacharach, 1970); a prominent 

alternative is the entropy method (Golan, Judge, and Robinson, 1994). RAS is the most 

well-known and widely used method if we include its variants, such as generalized RAS 

algorithm (Günlük-Senesen and Bates, 1988; Junius and Oosterhaven, 2003; Lahr and 

De Mesnard, 2004). The basic idea of RAS and its extensions is minimizing the 

dissimilarity between the existing table and the target table. RAS is based on the 

assumption that we know the row and column sums of the matrix to be estimated. Some 

techniques also employ a range of partial information (Lenzen et al., 2006, 2009, 2013; 

Wood, 2011; Tukker et al., 2013). Of the RAS alternatives, perhaps that by Lenzen et 

al. (2006, 2007, 2009) is the most general; called ‘Konfliktfreies RAS’ (KRAS), it 

balances and reconciles input-output (IO) tables under conditions of conflicting 

external information and inconsistent constraints. Another prominent technique is using 

least squares to minimize the relative difference between a prior and the target table 

(for a description and variants see Miller and Blair, 2009, Chapter 7; Robinson et al., 

2001; and Canning and Wang, 2005).  

For econometric procedures in IO analysis, see, for example, Gerking (1976) 

and Kockläuner (1989). See Temursho (2017), for a more detailed discussion of this 

topic, where, for example, the probability density of the Leontief inverse is spelled out 

for any given probability density of the direct input coefficients matrix as per Fox and 

Quirk (1985Kop Jansen and ten Raa (1990) characterize the problem in an axiomatic 

fashion. which may be of considerable empirical importance. Rueda-Cantuche and 

Amores (2010) also use least squares in the context of IO analysis; their number of 

observations is greater than that of estimated parameters—the usual case in least-

squares regressions. In ten Raa and Rueda-Cantuche (2007), a “large 𝑛 , small 𝑝” 

paradigm is at work as well: Specifically, there are more activities than commodities 

and output multipliers can be estimated as regression coefficients. Counter to the usual 
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econometric approach, in this paper the number of elements in the input-output table is 

greater than the number of observations, the well-known “small 𝑛, large 𝑝” paradigm 

(where 𝑛 denotes the number of observations and 𝑝 is the number of parameters). This 

disables the use of ordinary least-squares techniques. For other studies using the 

econometric approach, see Lynch (1986), ten Raa and Steel (1994) and the references 

therein. Least squares and instrumental variables estimation also have been discussed 

by Gerking (1976).  

So the present problem is different and much more difficult than anything that 

can be handled by RAS or regular econometric techniques. Moreover, we want to 

estimate/update the IO table elements, not multipliers. In this vein, related studies 

include those by Rodrigues, Amores and Paulo (2019), Torres-González and (2019), 

and Valderas-Jaramillo et al. (2019) among others 

In this paper, we propose a novel Bayesian approach to estimate an IO table 

given a prior table exists, along with a LASSO (“least absolute shrinkage and selection 

operator”) prior. A LASSO prior is used since sparsity is typically a characteristic 

feature of IO tables. The use of a Bayesian analysis is fairly novel in IO analysis. 

Rodrigues (2014) has proposed also a Bayesian approach, but it focuses on entropy-

based techniques. The advantage of the LASSO relative to, for example, a normal or 

𝐿2 prior, is that when a coefficient is zero, then it is estimated exactly as zero, not as a 

“small” number. Given the abundance of zero elements in typical IO matrices, this is a 

significant advantage of the LASSO prior. More precisely, another alternative is to use 

ridge regression, which is equivalent with an 𝐿2 -norm prior on the regression 

coefficients. The problem is that 𝐿2 -norm never enforces zeros when appropriate, 

whereas the LASSO is based on the 𝐿1-norm, which does enforce such constraints 

(Tibshirani, 1996; Figueiredo, 2003; Bae and Mallick, 2004; Yuan and Lin, 2005; Park 

and Casella, 2008). One may think that as a result, some nonzero elements of updated 

matrix are transformed to zero, indicating that the corresponding variables are not 

contributing to the model; so, using this approach may lead to the misrepresentation of 

the interindustrial flow structure. It is rare that elements of small IO tables are zero, 

whereas in much larger tables this is quite often the case. As we use a prior table to 

revise the IO matrix, the 𝐿1-approach is better suited when prior tables contains zeros, 

whereas the 𝐿2-approach should prove better when such zeros are absent. It is also 
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possible to use both approaches and compare them formally in the light of the data 

using the concepts of marginal likelihood and Bayes factors.  

As I mentioned earlier, the use of least squares and other econometric 

techniques in the context of IO analysis is well-established. In fact, in this paper I show 

that the problem of updating IO matrices reduces to a least-squares problem in which 

the prior on the coefficient vector has to account for (1) the abundance of zeros in the 

original IO table and (2) the fact that, in this problem, the number of observations is 

much less the number of observations. For example, in the case of a 10 × 10 table, the 

number of unknown elements (or “𝛽” in the least-squares problem) is 100. If final 

demand is available for 10 years and the assumption of approximate constancy of IO 

coefficients can be made, then we the sample has a size of 10. Clearly, estimating 100 

parameters from 10 observations is an ill-posed problem. I will use “ill-posed” in this 

sense throughout the paper. I should mention, however, that incorporating prior 

information in least-squares problems is possible through a “mixed estimation” 

approach (Theil and Goldberger, 1961). But some elements of the prior must be selected 

by the analyst; This can be avoided, for the most part, by using formal Bayesian 

analysis.  

There are special Bayesian techniques that deal with ill-posed problems of this 

sort. A prominent one is the LASSO prior, which can deliver at most 10 nonzero 

elements out of the 100 that we seek. This is not an outcome that most analysts would 

consider to be reasonable. The purposes of this paper are as follows. First, it delivers 

posterior inferences for a new IO table (or Leontief inverse). Second, in doing so, I 

propose a way to craft the prior using information from the LASSO, a normal prior as 

well as a benchmark IO table (or Leontief inverse). The prior is crafted so that with 

probability 𝜛 we choose the benchmark, and with probability 1 − 𝜛 we choose the 

LASSO prior. Naturally, 𝜛 is unknown and has to be determined from the data.  

Another novelty of the paper is that I introduce a prior IO table (or Leontief 

inverse) corresponding to a benchmark year. The table to be estimated and the prior 

table need not be the same or similar vintage. If they are, however, this clearly increases 

the precision of the estimated table. If not, the user can control the effect of the prior 

table through a precision parameter that shows how close the tables are. This parameter 

can be estimated from the data given some other underlying prior information about its 

prior mean and prior standard deviation. To see how powerful Bayesian analysis is, we 
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focus on Theil and Goldberger’s (1961) approach. We have a linear regression model 

given by  

𝑦 = 𝑋𝛽 + 𝑢,  𝑢 ∼ 𝑁(𝟎, 𝜎2𝐼𝑛), 

where 𝑋 is the 𝑛 × 𝑘 matrix of regressors and 𝑦 is the 𝑛 × 1 vector of observations 

on the dependent variable. A frequentist believes that vector 𝛽  has mean 𝑏  and 

covariance 𝜔2𝐼𝑘 so that 𝛽 ∼ 𝑁(𝑏,  𝜔2𝐼𝑘), where 𝑏 and 𝜔 are known. The frequentist 

does not use Bayesian analysis but rather by a “leap of faith” perhaps he can be 

convinced that 𝑏 is part of the data as it represents his “prior belief”. So, we can write 

the model as follows:  

𝑦 = 𝑋𝛽 + 𝑢,
𝑏 = 𝐼𝑘𝛽 + 𝑣,

 

where 𝑣 ∼ 𝒩(𝟎, 𝜔2𝐼𝑘). If we use the generalized least-squares estimator,1 we end up 

with the following estimator, after a bit of algebra:  

�̂� = (𝜔2𝑋′𝑋 + 𝜎2𝐼𝑘)−1(𝜔2𝑋′𝑦 + 𝜎2𝑏) = (𝑋′𝑋 +
𝜎2

𝜔2
𝐼𝑘)−1(𝑋′𝑦 +

𝜎2

𝜔2
𝑏). 

Clearly, as 𝜔 → ∞, �̂� converges to the least-estimator 𝛽 = (𝑋′𝑋)−1𝑋′𝑦. If 𝜔 → 0 

then we obtain the prior mean, 𝑏 . The important lesson here is that if 𝜎2  can be 

estimated (which is, of course, possible) and the frequentist can provide 𝜆 =
𝜎2

𝜔2 (which 

is the inverse of a noise-to-signal ratio) then, it does not matter if 𝑋′𝑋 is perfectly 

collinear or whether 𝑛 > 𝑘 or 𝑛 < 𝑘! So, the reader may wonder why we do not make 

use of this simple device (“mixed estimation”) to address the problems of this prior. 

First of all, we do not want to assume outright a value for 𝜆 (which when 𝑏 = 𝟎 

corresponds to ridge regression!). Second, there is no reason to assume a normal prior 

for 𝛽. Third, one can combine a normal prior and a Laplace prior as the latter is more 

robust. Fourth, the importance of data versus priors and normal versus Laplace priors, 

cannot be set outright by the user but a more-subtle procedure should be used to 

determine such key parameters of the problem from the data themselves.  

Given the ill-posed nature of the problem of updating IO tables, this paper 

contributes to the literature by showing how Bayesian analysis can update IO tables, 

 
1
Writing 𝑏 = 𝐼𝑘𝛽 + 𝑣 instead of 𝛽 ∼ 𝑁(𝑏, 𝜔2𝐼𝑘) , which is equivalent to 𝛽 = 𝐼𝑘𝑏 + 𝑣 is, of course, 

unacceptable from the point of view of both frequentist and Bayesian purists. Taking this “leap of faith” can, 

actually, be traced back to Fisher (1939) who, in a simpler context, called this produce by the name of “fiducial 

inference”. Nonetheless, �̂� is exactly equal to the posterior mean through formal Bayesian analysis! As a matter of 

fact, in the author’s view, this is a good way for students or novices to be introduced into the “apocrypha” of 

Bayesian analysis. 
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given a prior benchmark input-output table. This techniques performs well in extensive 

Monte Carlo experiments and an actual application to the 196 × 196 table for the U.S. 

in 2012. A novel Markov Chain Monte Carlo (MCMC) technique is applied to 

implement Bayesian inference. We examine their performance through a detailed 

Monte Carlo study involving large IO tables. The new technique performs well even 

when sparsity is not prevalent.  

2. Bayesian updating of input-output coefficients 

2.1. Model 

Consider the basic IO model:  

 𝑦𝑖 = ∑ 𝑧𝑖𝑗

𝑛

𝑗=1

+ 𝑓𝑖 , 𝑖 = 1, … , 𝑛, (1) 

where 𝑦𝑖 is production of sector 𝑖 ∈ {1, … , 𝑛}, 𝑧𝑖𝑗 represents intersectoral flows flows 

from sector 𝑖 to sector 𝑗, and 𝑓𝑖 is final demand. Suppose  

 𝑧𝑖𝑗 = 𝛼𝑖𝑗𝑦𝑗 , (2) 

where 𝛼𝑖𝑗 are input-output coefficients. From (9) and (2) we have:  

 𝑦𝑖 = ∑ 𝛼𝑖𝑗

𝑛

𝑗=1

𝑦 + 𝑓𝑖 , 𝑖 = 1, … , 𝑛. (3) 

 

In vector notation:  

 𝐲 = 𝐀𝐱 + 𝐟, (4) 

where 𝐟 = [𝑓1, . . . , 𝑓𝑛]′ and, therefore:   

 𝐲 = (𝐈 − 𝐀)−𝟏𝐟. (5) 

 

Define  

 𝐁 = (𝐈 − 𝐀)−𝟏, (6) 

the Leontief matrix, so that  

 𝐲 = 𝐁𝐟. (7) 

 

Notationally, I use 𝐁 instead of the more familiar 𝐋 to represent the Leontief 

inverse since parameters of 𝐀  will be denoted by 𝛼𝑖𝑗  and elements of 𝐁  by 𝛽𝑖𝑗 , 

which is the standard in statistical literature. One advantage of the Bayesian approach 
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is that given the posterior distribution of entries in 𝐀 we can derive easily the posterior 

distribution of entries in 𝐁 and vice versa. Let 𝐁 = [𝛽𝑖𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛].   

Typically, a benchmark IO table is known and the problem is to update it 

(Bacharach, 1970; Golan, Judge and Robinson, 1994). In the approach presented here, 

the system in (7) is rewritten as follows:  

 

𝑦1 = 𝛽11𝑓1 + 𝛽12𝑓2 + ⋯ + 𝛽1𝑛𝑓𝑛,
𝑦2 = 𝛽21𝑓1 + 𝛽22𝑓2 + ⋯ + 𝛽2𝑛𝑓𝑛,

(… )
𝑦𝑛 = 𝛽𝑛1𝑓1 + 𝛽𝑛2𝑓2 + ⋯ + 𝛽𝑛𝑛𝑓𝑛,

 (8) 

where 𝛽𝑖𝑗 s are elements of the Leontief inverse, 𝐁 = (𝐈 − 𝐀)−𝟏  as in (5) and (6). 

Define 𝐲 = [𝑦1, . . . , 𝑦𝑛]′.   

Therefore, we can write (8) as:  

 𝐲 = 𝐗𝛃 + 𝐮, (9) 

 

where2  

 
𝛃 = (𝛽11, 𝛽12, … , 𝛽1𝑛, … , 𝛽𝑛1, 𝛽𝑛2, … , 𝛽𝑛𝑛)′ = vec(𝐁)

= vec[(𝐈𝑛 − 𝐀)−1], 
(10) 

is the 𝑛2 × 1 vector of stacked rows of the Leontief matrix,  

 𝐗 = [

𝐟′ 𝟎′ … 𝟎′

𝟎′ 𝐟′ … 𝟎′

… …
𝟎′ 𝟎′ … 𝐟′

] = 𝐈𝑛 ⊗ 𝐟′, (11) 

and 𝑢 represents a statistical error term. In (9) we have a standard linear model where 

the number of coefficients 𝑛2 exceeds the number of observations 𝑛 for a given time 

period. In the statistical literature, the situation is known as “small 𝑛, large 𝑝”, where, 

now, 𝑛 stands for the number of observations and 𝑝 denotes the number of unknown 

parameters. In this instance, it is clear that application of standard least-squares or other 

econometric techniques is not possible. A multi-year formulation of the problem is 

possible and details are provided in Appendix A in the Supplementary file.  

Given an existing 𝑛 × 𝑛  input-output matrix 𝐀𝑜  that results in a Leontief 

matrix whose rows are stacked in the 𝑛2 × 1 vector 𝛼𝑜, we expect that 𝛼 and 𝛼𝑜 are 

not very dissimilar. Suppose also that elements of 𝑢 are normally distributed with zero 

mean and variance 𝜎2. Let  

 
2For any matrix 𝐌, the vec operator stacks rows of 𝐌 to a vector.. 
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 𝛂 = vec(𝐀), (12) 

so that 𝛂 is 𝑛2 × 1. Our prior information is about 𝛂, not 𝛃.   

Before proceeding, I should note that the social accounting matrix (SAM) 

approach is a special case if we set 𝐟 = 𝟎, a zero vector, and impose the additional 

constraints: ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 = 1, ∀𝑖 = 1, . . . . , 𝑛 (Golan, Judge and Robinson, 1994). In this 

case, we may or may not have prior information about 𝛼, depending on whether a 

benchmark matrix is available. In fact, if there is prior information in the form of 

additional constraints, this is quite easy to impose using Bayesian analysis.  

2.2. Priors in input-output models 

As mentioned before, the prior information is mostly about 𝜶, see (12), not 𝛃, viz. the 

elements of the Leontief matrix. Specifically, for the elements of 𝐀, we must have:  

 0 ≤ 𝑎𝑖𝑗 ≤ 1 ∀𝑖, 𝑗 = 1, … , 𝑛. (13) 

 

In SAMs, in addition, we must have (Golan, Judge, and Robinson, 1994):  

 ∑ 𝑎𝑖𝑗

𝑛

𝑗=1

= 1 ∀𝑖 = 1, … , 𝑛. (14) 

Any prior for 𝛂  must be subject to these restrictions which establish nonlinear 

relationships between β and the elements of 𝐀, since 𝐁 = (𝐈𝑛 − 𝐀)−𝟏, see Temursho 

(2017) and Kop Jansen and ten Raa (1990). In a Bayesian framework, the issue has an 

easy solution taking full account of measurement errors.  

Before proceeding, it is important to describe briefly the LASSO procedure 

(Tibshirani, 1996; Park and Casella, 2008). Suppose a linear model of the form 𝐲 =

𝐗𝛉 + 𝐞 where 𝐗 is 𝑛 × 𝑝, 𝛉 is 𝑝 × 1, 𝒆 is an 𝑛 × 1 error term, and 𝐲 denotes the 

𝑛 × 1 vector of observations on the dependent variable. We use bold symbols for the 

dependent variable and the matrix of regressors, as these may not correspond to (9). A 

major reason is that elements of 𝛃 in (9) depend on 𝛂 and sparsity information relates 

to 𝛂. Here, 𝜽, however, is a usual regression parameter.  

We believe that certain or most elements of 𝛉 are zero as many predictors in 

matrix 𝐗 may be irrelevant. Clearly, a penalization term must be used in least-squares 

estimation. The problem solved by LASSO is: min
𝛉

:  (𝐲 − 𝐗𝛉)′(𝐲 − 𝐗𝛉) + 𝜆 ∑ |𝑝
𝑗=1 𝜃𝑗| 

where 𝜆 ≥ 0 is the LASSO penalization parameter. Larger values of 𝜆 place more 
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emphasis on the penalization term and imply that more elements of the regression 

coefficient zero are likely to be zero. Notice that a quadratic penalty of the form: 

min
𝛉

:  (𝐲 − 𝐗𝛉)′(𝐲 − 𝐗𝛉) + 𝜆 ∑ 𝜃𝑗
2𝑝

𝑗=1  would not be consistent with placing 

(unknown) zero restrictions on 𝛉 contrary to the 𝐿1 penalty term used in LASSO. The 

reason is that the LASSO problem is equivalent to: min
𝛉

:  (𝐲 − 𝐗𝛉)′(𝐲 −

𝐗𝛉), s. t. ∑ |𝑝
𝑗=1 𝜃𝑗| ≤ 𝑢  for a certain value of 𝜏  which determines the amount of 

“regularization”. Ridge regression is based on minimizing the same objective with a 

different constraint: ∑ 𝜃𝑗
2𝑘

𝑗=1 ≤ 𝜏′ for a certain value of 𝜏′, viz. ridge regression uses 

an 𝐿2 penalty or regularization term. Unlike 𝐿2, 𝐿1 −penalization results in certain 

zeros in the optimal solution. In revising an IO table, it is clear that many elements will 

actually be zero. Therefore, the LASSO prior seems appropriate in this setting.   

The LASSO prior (Tibshirani, 1996; Figueiredo, 2003; Bae and Mallick, 2004; 

Yuan and Lin, 2005; Park and Casella, 2008) leaves unanswered the question of how 

to use a benchmark 𝛼𝑜  resulting from an existing 𝐀𝑜 . LASSO stands for “least 

absolute shrinkage and selection operator”. It is true that we could have used ridge 

regression as well in our context. To anticipate some of our results in Monte Carlo 

simulations, as expected, ridge regression results are worse compared to the benchmark 

– LASSO approach, as ridge regression corresponds to 𝐿2-regularization. Therefore, if 

there are many zero entries in an IO table, these cannot be estimated as exactly zero 

and, as a result, the mean squared error of ridge regression is inflated, particularly when 

the dimensionality of the IO matrix is large and the degree of sparsity (number of zero 

entries) is moderate to large. These results are available in Appendix C of the 

Supplementary file. Moreover, in the statistical literature it has been shown that the 

LASSO has an “oracle property” in the sense that, asymptotically, model selection / 

variable selection work as if we knew the true model / true variables in the model. In 

the context of IO analysis, this means that this approach does not lead to the 

misrepresentation of the interindustry flow structure. This result is of considerable 

interest as it implies that the true interindustry flow structure can be recovered due to 

the “oracle property” of the LASSO (Zou, 2012).  

To illustrate the situation, suppose 𝑛 = 2 so that, in the context of (4) or (8), 

we have:  
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𝑦1 = 𝛽1𝑓1 + 𝛽2𝑓2 + 𝑢1,
𝑦2 = 𝛽3𝑓1 + 𝛽4𝑓2 + 𝑢2,

 

as in (8) with the error terms in (9). The parameters 𝛃 = [𝛽1, . . . , 𝛽4]′ are elements of 

the Leontief inverse. Clearly, we have two observations but four parameters. Therefore, 

we must use prior information as the least squares problem:  

min
𝛽

  (𝑦1 − 𝛽1𝑓1 − 𝛽2𝑓2)2 + (𝑦2 − 𝛽3𝑓1 − 𝛽4𝑓2)2, 

does not have a solution. A normal prior 𝜷 ∼ 𝑁4(𝛃𝑜, 𝐕) with mean 𝛃𝑜 = [𝛽𝑜,𝑗, 𝑗 =

1, . . . ,4]′  and covariance matrix 𝐕 = 𝜆1
−1𝐈4  can certainly be used. In this case, the 

corresponding problem would be:  

min
𝛽

  (𝑦1 − 𝛽1𝑓1 − 𝛽2𝑓2)2 + (𝑦2 − 𝛽3𝑓1 − 𝛽4𝑓2)2 + 𝜆1 ∑(𝛽𝑗 − 𝛽𝑜,𝑗)
2

4

𝑗=1

. 

 

In this problem, we are trying to make fit as best as possible and keep the 𝛽s as close 

to 𝛽𝑜 as possible with a weight which is given by prior precision (viz. the inverse of 

the variance, 𝜆1).   

If we use a LASSO prior the corresponding problem would be:  

min
𝛽

  (𝑦1 − 𝛽1𝑓1 − 𝛽2𝑓2)2 + (𝑦2 − 𝛽3𝑓1 − 𝛽4𝑓2)2 + 𝜆2 ∑ |

4

𝑗=1

𝛽𝑗|. 

In this problem, we are trying to make fit as best as possible but impose the notion of 

sparsity in the sense that we expect “many” elements of 𝛃 to be zero. In the context of 

IO tables, we know that sparsity usually prevails particularly when 𝑛 increases. A 

modification of the LASSO formulation would be:  

min
𝛽

  (𝑦1 − 𝛽1𝑓1 − 𝛽2𝑓2)2 + (𝑦2 − 𝛽3𝑓1 − 𝛽4𝑓2)2 + 𝜆2 ∑ |

4

𝑗=1

𝛽𝑗 − 𝛽𝑜,𝑗|. 

In this problem we are trying to make fit as best as possible and impose the notion that 

certain elements of β are exactly equal to the benchmark 𝛃𝑜 . Clearly, at most two 

elements of 𝛃 would be updated in this instance, as 𝑛 = 2 and 𝑝 = 4. This approach 

does not seem reasonable particularly when the benchmark refers to the distant past, 

and the sparsity prior seems more reasonable.  

Our strategy is to modify the prior of 𝛂 as follows: 

 

With probability 𝜛, 𝛼 follows a multivariate normal distribution:  
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𝛼 ∼ 𝒩𝑛2(𝛼𝑜 , 𝜂�̃�𝑜), 
 

and with probability 1 − 𝜛, 𝛼 follows the LASSO prior:  

𝑝(𝛼|𝜂) = ∏𝑛2

𝑗=1
𝜆

2𝜂
𝑒−𝜆|𝛼𝑗|.                       (15) 

 

where 𝜂 > 0 is a smoothing parameter, 𝜆 is a parameter that controls sparsity in the 

LASSO prior. We call this the “benchmark-LASSO prior” since it combines a 

benchmark matrix 𝐀𝑜 with the LASSO. Here, �̃�𝑜 = [�̃�𝑖𝑗
𝑜 ], where  

𝑎𝑖𝑗 = �̃�𝑖𝑗
𝑜   if   �̃�𝑖𝑗

𝑜 > 0, and  1  otherwise, 𝑖, 𝑗 = 1, . . . , n. 

The introduction of matrix �̃�𝑜  is necessary as (i) we want to make the 

covariance matrix in the first line of (15) dependent on elements of 𝐀𝑜 to control for 

size differences and scaling issues, instead of being 𝜂𝐼𝑛2, and (ii) for zero entries in 𝐀𝑜 

we do not wish to have zero elements in 𝐀  as well but, instead, allow for prior 

variation. Unfortunately, it does not seem a good idea to use different 𝜂s and / or 𝜆s 

for each entry in 𝛂 as the proliferation of parameters would compromise what we are 

trying to do via both prior components in (15).  

A natural question is whether we use (15) instead of simply using 𝛂 ∼

𝒩𝑛2(𝛼𝑜, 𝜂𝐼𝑛2). This is certainly possible but we want the “best of two options”: The 

first option is a LASSO prior and the second option is a standard normal prior as in the 

first line of (15). More specifically, in the so-called “elastic net” approach, the objective 

is:  

min
𝛉

 (𝐲 − 𝐗𝛉)′(𝐲 − 𝐗𝛉) + 𝜆1 ∑ 𝜃𝑗
2

𝑝

𝑗=1

+ 𝜆2 ∑ |

𝑝

𝑗=1

𝜃𝑗|, 

for certain weights 𝜆1 and 𝜆2. Therefore, if we set 𝜛 = 1 we use a normal prior and 

if 𝜛 = 0 we use the LASSO prior. Intermediate values of 𝜛 allow for a model which 

is in the “elastic network” spirit. Additionally, in the “large 𝑝, small 𝑛” paradigm, the 

LASSO delivers at most 𝑛 non-zero entries. In general, the quadratic penalty (normal 

prior) delivers non-zero entries when, in fact, such entries are precisely zero. Therefore, 

(15) corrects the drawbacks of both a normal prior and the LASSO. This correction is 

made with an eye towards an update of IO tables as precisely as possibly, realizing that 

deviations between actual and estimated entries is due to both (i) ignoring the difference 

between non-zero entries that should, in fact, be zero, when using a normal prior, as 

well as (ii) having at most 𝑛 non-zero entries when, in fact, many more could have 
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been non-zero, as in LASSO. To the best of our knowledge, there is no easy or 

automatic procedure to determine the weights 𝜆1 and 𝜆2. Using (15) we have such a 

procedure, which seems to be novel in the literature.  

Notice that this prior is not conjugate as in typical LASSO applications. The 

probability 𝜛 is assumed unknown, and follows a beta distribution:  

 𝜛 ∼ 𝐵𝑒(𝑃, 𝑄). (16) 

A relatively “uninformative” prior is when 𝑃 = 𝑄 = 0.01 . As the smoothing 

parameter, 𝜂, is unknown, we assume a gamma prior:  

 𝜂 ∼ 𝐺𝑎(𝑟𝜂 , 𝑑𝜂). (17) 

We set 𝑟𝜂 = 𝑑𝜂 = 0.1 so that the mean is 1 and the prior standard deviation is 3.16, 

which is fairly diffuse or “uninformative”. Therefore, we have the model in (9) which 

we rewrite as:  

 𝐲 = 𝐗𝛃𝛂 + 𝑢, 𝑢 ∼ 𝒩𝑛(0, 𝜎2𝐼𝑛), (18) 

where  

 𝛃𝛂 = vec(𝐈𝑛 − 𝐀)−1,  𝛂 = vec(𝐀), (19) 

and the prior on elements of 𝛂 is described in (15) and (16)-(17). This notation makes 

it clear that 𝛃 depends on 𝛂 so, although we update the Leontief inverse, in fact, we 

can obtain an update for input-output coefficients in α. Although the point may seem 

trivial, it is important as the posterior density of entries in 𝛃 can be derived easily based 

on the posterior density of entries in 𝛂.   

Combining the likelihood of (18) and the prior we have the following posterior:  

 

𝑝(𝛽𝛼, 𝜂, 𝜛, 𝜎|𝑦, 𝑋)

∝ 𝜎−(𝑛+1) exp { −
1

2𝜎2
(𝑦 − 𝑋𝛽𝛼)′(𝑦

− 𝑋𝛽𝛼)} ⋅ 𝑝(𝛽𝛼|𝜂, 𝜛) ⋅ 𝑝(𝜂) ⋅ 𝑝(𝜛), 

(20) 

where 𝑝(𝛽𝛼|𝜂, 𝜛, 𝜎) is the implied prior of 𝛃 given the benchmark LASSO prior on 

𝛂 , conditional on the parameters 𝜂 ,  𝜎  and 𝜛 , and 𝑝(𝜂),  𝑝(𝜛)  denote the prior 

densities of 𝜂 and 𝜛 from (17) and (16) respectively. The prior of 𝜎 is 𝑝(𝜎) ∝ 𝜎−1, 

the standard “reference prior” for regression problems. The prior of 𝛃𝛂 is defined over 

the set of restrictions in (13) and (14).  

To set up a MCMC scheme, we first notice that it is easy to obtain draws from 

the posterior conditional distribution of 𝜎 :  
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(𝑦 − 𝑋𝛽𝛼)′(𝑦 − 𝑋𝛽𝛼)

𝜎2
|𝑦, 𝑋, 𝛽𝛼, 𝜂, 𝜛 ∼ 𝜒2(𝑛2). (21) 

Moreover, we can obtain draws from the posterior conditional distributions of 𝜂, 𝜛 

following univariate inversion of the respective cumulative density functions (cdfs).3 

We obtain draws for 𝛃𝛼 using an efficient Girolami and Calderhead (2011) Langevin 

diffusion MCMC scheme using first- and second-order derivative information from the 

log posterior. For details about the Girolami-Calderhead algorithm the interested reader 

is referred to Technical Appendix B.   

An alternative would have been the Metropolis-Hastings algorithm to obtain a 

long sample {𝛽𝛼
(𝑠)

, 𝑠 = 1, . . . , 𝑆}  which converges to the distribution whose 

unnormalized density is 𝑝(𝛽𝛼|𝑦, 𝑋). More details are provided in Appendix B of the 

Supplementary file. But the main problem is that with a large number of parameters we 

have not been able to maintain an acceptance rate close to 20-30% and, in fact, the rate 

has been zero or one. Another variation of the Metropolis-Hastings algorithm is to draw 

each parameter in 𝛽𝛼 individually. Unfortunately, maintaining this rate is impossible 

for a large number of parameters, and it is, again, zero or unity. Moreover, the 

autocorrelation in the Metropolis-Hastings draws is substantial which means that it is, 

nearly, impossible to explore the posterior in finite time with certain numerical 

accuracy. The restrictions in (13) and (14) are enforced via rejection sampling. A Monte 

Carlo experiment to examine the behavior of new techniques, is presented in Technical 

Appendix C in the Supplementary file.  

3. Empirical application 

We use data from the Bureau of Labor Statistics4 and specifically the 196 × 196 

(Real, Use) Table for 2012. We use the 1993 version as a benchmark. In Figure 1 and 

panel (a) reported are actual and estimated ordered mod eigenvalues of A. In panel (b) 

we show actual versus estimated elements 𝛼𝑖𝑗 along with the 45-degree line (dotted). 

In panel (c) reported is the histogram of the percentage approximation error of 𝛼𝑖𝑗.   

 
3
For each parameter, say 𝜛 we construct a grid consisting of 100 values on a support, which is 

adapted every 500 MCMC iterations during the burn-in phase. The cdf is computed using density 

values and then normalizing. In turn, we invert the cdf to obtain a random draw from the respective 

posterior conditional distribution. This is also known as “griddy Gibbs sampler”. 
4  Obtained from http://www.bls.gov/emp/ep_data_input_output_matrix.htm. 
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Figure 1: Posterior statistics for the 2012 US table (using 2010 as benchmark) 

[Picture: "Figure_1.EPS" , Please insert here] 

[Picture: "Figure_2.EPS" , Please insert here]  

[Picture: "Figure_3.EPS" , Please insert here]  

We perform MCMC using as (alternative) benchmarks the tables for 1993, 2000, 2005 

and 2010. The marginal posterior densities of 𝜛 are reported in Figure 2. Evidently, 

tables that are closer to 2012 receive greater weight. However, the LASSO prior is still 

receiving weight due to the ill-posed nature of the problem and the significance of the 

LASSO in dealing with it. For example, using the 1993 table as benchmark, produces 

a posterior mean of 𝜛 close to 0.35 with a minor mode close to 0.72. Using the 2000 

table as benchmark, the posterior mean is 0.32 and ranges from 0.2 to 0.55. The table 

for 2005 has a posterior mean of 𝜛 close to 0.5 and ranges from 0.35 to 0.7. Using 

2012 as benchmark, 𝜛 ranges from slightly over 0.8 to unity with a posterior mean 

close to 0.90. Therefore, the benchmark tables for 1993, 2000 and 2005 produce, on the 

average, values of 𝜛  less than about 0.5, implying that the LASSO receives 

considerable weight. On the contrary, using the 2010 table as benchmark, places a 

weight (posterior probability) near 0.90 for the normal prior and nearly 0.10 for the 

LASSO. As the 2010 table should be close to the table for 2012, this is a reasonable 

outcome. However, it is quite interesting that LASSO still has posterior probability 

between 0 and 0.2 (viz. 1 − 𝜛) which implies that zero elements in the 2010 table need 

to be replicated in the 2012 table. This is not possible using the normal prior as the 

update would be close to zero but not exactly zero.  

Figure 2. Marginal posteriors of 𝝕 for different benchmark priors, 𝑨𝑜 

[Picture: "Figure_4.EPS" , Please insert here]  

The important questions that we need now to address are the following:  

• How well does the method perform?   

• How well does it compare to other methods and priors?   

• What happens when the benchmark table is more distant? How wide are the 

posterior intervals of large and small elements?   

The first question is answered in Appendix C of the Supplementary Information file in 

which I report details of Monte Carlo experiments. To answer the second and third 

questions in a concise way, and in the context of the empirical application, I present 
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Figure 3, kernel densities of percentage approximation errors of RAS, LASSO (𝜛 =

0), normal prior (𝜛 = 1), and a simplified prior where we set 𝜛 = 0.5. Panel (a) is 

based on the 2010 table as benchmark and panel (b) on the 1993 table. This suggests 

that benchmarking and the use of a LASSO prior can produce accurate estimates of 

tables delivering smaller errors compared to what is known for methods such as RAS 

and other priors. As a matter of fact, the only density which is centered close to zero is 

the one corresponding to the prior in (15). Although using 1993 as the benchmark table 

(panel (b) of Figure 3) has much larger errors (ranging from -0.1 to 0.1% relative to -

0.04% to 0.04% when the benchmark is the table for 2010) it still is the best performing 

method relative to RAS and the other priors.  

Figure 3: Densities of approximation errors of different techniques / priors 
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Concluding remarks 

In this paper, I propose new techniques in connection with updating input-output (IO) 

tables and social accounting matrices (SAMs). I use a stochastic representation of the 

IO model along with LASSO priors to derive posterior means of the updated IO tables 

and associated matrices. I present traditional measures for matrix comparison (like 

SRMSE, Ψ and 𝜑 statistics) are used and their posterior distributions. I use MCMC 

methods for the computations. The new methods appear to perform well in a Monte 

Carlo study in which sparsity of IO matrices is controlled. An empirical application to 

U.S. illustrates the new techniques. I apply data from the U.S. Bureau of Labor 

Statistics, specifically the 196 × 196 (Real, Use) Table for 2012 and use as alternative 

benchmarks and priors tables for 1993, 2000, 2005 and 2010. As Bayesian models 

organized around MCMC and a benchmark LASSO prior perform very well; the 

methods could thus well be of considerable practical use in empirical IO studies.  

One could also apply this approach to estimate output multipliers or emission 

multipliers in the vein of Kop Jansen and ten Raa (1990), Rueda-Cantuche and ten Raa 

(2009), and Rueda-Cantuche and Amores (2010). In this context, least-squares 

techniques can be used as well since the multipliers can be represented as a parameter 

vector in a regression equation where the number of observations exceeds the number 

of parameters. Admittedly least-squares techniques provide unbiased estimators, but 
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they may still be of considerable interest to adopt Bayesian techniques as developed in 

the present paper due to the “oracle” properties of the LASSO but also because the 

degrees of freedom do not always yield the precision required to estimate such 

multipliers. Thus, Bayesian techniques based on MCMC and the LASSO may well 

provide much better finite-sample performance.  
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