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Abstract 
 

Recent vehicle charging schemes aim to reduce pollution and other congestion 
externalities. We reexamine the London congestion charge introduced in 2003 
and demonstrate significant reductions in several pollutants relative to 
controls. We even find evidence of reductions per mile driven suggesting 
amelioration of a congestion externality. Yet, we find a more robust 
countervailing increase in harmful NO2 likely reflecting the disproportionate 
share of diesel vehicles exempt from the congestion charge. This unintended 
consequence informs on-going concern about pollution from diesel-based 
vehicles and provides a cautionary note regarding substitution effects implicit 
in many congestion charging schemes.  
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I. Introduction 
 
Starting in 2003 the Greater London Authority imposed a charge for driving during prime 

hours on the roads in its central district. Supporters championed this congestion charge as a tool 

to battle the incredibly slow speeds and gridlocked traffic of the UK capital.  These same 

supporters saw a "secondary benefit" of reduced air pollution (Transport for London, 2004). 

Whether or not this secondary benefit came to fruition has taken on increasing importance as a 

British Parliament select committee recently declared London air pollution a "public health 

emergency" (Carrington, 2016) and argued for new charges within the congestion zone 

specifically designed to combat vehicle emissions.1 With as many as 50 thousand premature 

deaths in the UK due to air pollution and with automobile exhaust the single most rapidly rising 

source of deaths world-wide (Lim et al., 2012), the time is ripe for greater understanding the 

consequences of the original London congestion charge on air pollution. 

This paper reexamines the introduction of the London Congestion Charge Zone (CCZ) in 

2003 focusing on three objectives. The first objective is to test whether the CCZ reduced harmful 

pollutants associated with motor vehicles. This has been the subject of previous research as we 

will summarize. In practice this research often lacks an identification strategy likely to provide 

credibly causal estimates. We adopt such a strategy by relying on comparisons with other urban 

areas. The second objective, simply not previously examined, recognizes that while pollution 

itself may evidence an externality, it may be made worse by the underlying congestion 

externality. Thus, we test whether or not the congestion charge reduced pollutants beyond the 

underlying reduction in traffic flows. A reduction in pollution per mile driven likely reflects 

                                                 
1 Slated to start in September 2020, the Ultra Low Emission Zone requires cars, motorcycles, vans, minibuses, 
buses, coaches and heavy goods vehicles to either meet far tighter exhaust emission standards or pay a daily 
charge to travel. The charge will apply inside the current Congestion Charging Zone (CCZ) and will be in addition 
to the existing congestion charge (Transport for London, 2015).   
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alleviating the congestion externality and improving road speeds. The third objective, not 

sufficiently explored, tests for substitution effects implicit in the details of the congestion charge. 

In common with other congestion charge pollution schemes, the London CCZ incorporated both 

a range of exemptions by vehicle type and, at the same time, active promotion of alternatives to 

personal car travel. We show an influence on the mix of pollutants consistent with such 

substitution.2  

Air pollution stands as a textbook negative externality ‘inherently’ not priced into individual 

decisions (Walters, 1961; Vickery, 1963). While governmental action is not new (e.g. the UK 

Clean Air Act of 1956 responding to the 1952 ‘great smog of London’), attention has been 

renewed in major cities where air pollution, largely due to exhaust, frequently exceeds harmful 

levels. Indeed, London has remained in violation of governmental standards since 2010 and lost 

a critical Supreme Court decision for its failure to meet standards in 2015 (Harvey, 2015).  The 

idea that reducing congestion can improve air quality and improve health seems sensible and has 

received support. Currie and Walker (2011) show that increased speed and eliminating the traffic 

congestion associated with toll road booths contributes significantly to improved health among 

infants.3 Knittel et al. (2016) use shocks in traffic interacted with weather to show that reduced 

automobile congestion reduces ambient air pollution and lowers infant mortality in California. 

Wolff (2014) examines German cities implementing the European Commission’s 2005 Clean 

Air Directive by prohibiting entry by high polluting vehicles. He demonstrates marked 

reductions in pollution with no offsetting pollution increase in non-policy areas.  

                                                 
2Davis (2008) found that driving restrictions in Mexico City based on license plate numbers changed the mix of 
vehicles toward those with higher emissions. 
3 Relatedly, Fu and Gu (2017) show that a temporary elimination of road pricing between major Chinese cities 
increased congestion and pollution. 
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While a range of potential policy interventions might be implemented to address the 

externality of pollution, the efficient pricing of auto exhaust remains difficult. The determination 

of proper Pigouvian taxes depends on understanding the associated damages (Vickery, 1963). 

These vary by type and vintage of vehicle, the number of other drivers on the road at the same 

time, the concentration of drivers nearby and the number of other non-driving citizens in close 

proximity (Newberry, 1990). This variation means that second best uniform taxes like the 

gasoline tax perform very poorly in eliminating the deadweight burden associated with auto 

exhaust (Knittel and Sander, 2013).  This has led to somewhat more targeted approaches with 

urban driving charges among the leading candidates. Yet, optimal road pricing also remains 

complicated and should also vary with the type of vehicle and time of travel. Pricing is further 

complicated by interactions with parking provision and costs (Fogerau and De Palma, 2013) and 

the endogenous choice of speed by drivers (Verhoef and Rouwendal, 2004).  

In contrast to such optimal pricing, actual congestion charges are blunt instruments. 

Nonetheless, London, Stockholm, Singapore and Milan, have each adopted congestion charges 

within the last 20 years. Over the same period New York City, Hong Kong, Manchester and 

Edinburgh have rejected explicit bids for such charging. Such rejections often reflect political 

resistance to a charge not explicitly designed to pay for infrastructure (Hårsman and Quigley, 

2010). The adopting cities vary in their emphasis on increasing traffic speeds (London) and on 

reducing pollution (Milan).  They also differ in earmarking the revenue from the congestion 

charge. London earmarked mass transit improvements while Stockholm earmarked road 

construction. Yet, insofar as these charges successfully reduce traffic flows, the schemes have 
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the potential to reduce motor vehicle pollution in settings where the density of living and foot 

traffic is high and so where the damage from pollution is likely to be substantial.4   

While some trips to the city center simply may not take place, congestion charging policies 

seem more likely to change the method of transit. Driving becomes more expensive and, at least 

in London, mass transit was improved, especially the bus service.  In addition, certain forms of 

transit are exempt from the London congestion charge. These include bikes, motorcycles, taxis 

and mass transit.5  As might be anticipated, these exemptions meant that more travelers used 

buses and taxis in central London (Transport for London, 2005). In both cases, this causes a 

move away from predominantly petroleum-based transportation (private vehicles), towards a 

diesel-based transportation (black cabs and buses). In fact, a key component of the congestion 

charge introduction was an increase in bus frequency and expansion in bus routes (Transport for 

London, 2006)   

This raises questions regarding the effect of the policy on pollution levels, and the pollution 

mix. While many forms of air pollution can hurt health (see Lagravinese et al. 2014), there are 

mounting concerns regarding the dramatically negative effects of diesel-based pollution in urban 

settings. Indeed, the UK Department of Energy and Climate Change concludes that fumes from 

diesel are significantly more harmful than those from petrol engines and the World Health 

Organization lists diesel but not petrol fumes as a Group 1 carcinogen (Vidal, 2013). Historically, 

these concerns in part reflected the fact that diesel engines emitted higher levels of particulate 

matter than petrol engines. However, changes in modern diesel engines over the last several 

                                                 
4 Beyond the London studies which we will review, Gibson and Carnovale (2015) examine the Milan congestion 
charge demonstrating marked reductions in CO and particulate matter.  The fees in Stockholm reduced ambient air 
pollution which, in turn, reduced acute asthma attacks among young children (Simeonova et al., 2018).  
 
5 Road safety initiatives together with the exemption on bikes resulted in a huge increase in cyclists in London 
with controversy surrounding the increase in cyclist injuries and in their breathing of exhaust (Green et al., 2016). 
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decades first closed this gap and recent diesel engines actually emit less particular matter than 

comparable petrol-based engines (Platt et al., 2017).  Diesel combustion continues to still 

produce higher levels of NO and NO2 emissions. Yet, NO2 emissions are much greater with 

diesel use while NO is only modesty greater (UCAR 2017; Air Quality Expert Group, 2004; 

Khalek et al., 2009). Thus, if sufficiently many petrol cars are taken off the road, NO could 

decrease while NO2 increases.6  This is critical because NO2 is linked to a range of particularly 

adverse health outcomes including severe lung and respiratory problems (see for instance 

Guerriero et al., 2016).  Moreover, the scientific consensus increasingly regards the association 

between respiratory morbidity and NO2 to be causal and not just a function of other associated 

pollutants (Committee on the Medical Effects of Air Pollution, 2015).  

As mentioned, we are not the first to test whether the London congestion charge reduced 

pollution. However, this previous literature has often suffered from a lack of suitable comparison 

areas. Tonne et al. (2008) find modest reduction in pollutions, approximate 1% reductions in 

NO2 and PM10, simply looking before and after without control jurisdictions. This assumes both 

that the vehicle fleet remained constant (highly unlikely given the exemptions) and that pollution 

would have remained entirely unchanged conditional on observables in the absence of the charge. 

Atkinson et al. (2009) use jurisdictions within London as controls finding mixed results 

depending on pollutant and methodology. Jurisdictions within London seem an unsuitable 

control. First, there exists potential substitution in travel behavior and pollution in areas 

surrounding the charge area (Wolff, 2014; Green et al., 2016). Second, the potential for common 

shocks to regional pollution seems unlikely to be adequately captured by control variables.  

                                                 
6 Such predictions are difficult because after emission, NO further oxidizes and becomes NO2 (Air Quality Expert 
Group 2004 and UCAR 2017). 
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As this review suggests, it can be problematic to find suitable comparison areas for policies 

aimed at reducing congestion externalities. By their very nature, such policies typically find 

support and are implemented in the densest and most congested urban areas. As made clear in 

the economics literature on urban form, the densest urban areas bring higher wages, greater 

innovation and more amenities but also the major cost of greater pollution (see Ahlfeldt and 

Pietrostefani, 2019, and sources therein). In response, we adopt the approach of Green et al. 

(2016) who examined the influence of the London congestion charge on traffic accidents. We 

take observations from the 20 other largest UK cities (in terms of population) as comparisons. 

This, as we discuss in the data section, brings data quality advantages. It avoids making 

comparisons within the same dense urban area of London in which pollution can easily travel or 

be generated outside the congestion zone in response to the policy.7 Yet, the number 20 remains 

arbitrary so we examine robustness using narrower comparisons (10 largest and 5 largest) and 

let model-based methods determine the appropriate comparison.  

We implement two obvious model-based candidates. First, we use propensity score 

matching (PSM) to select comparison groups most similar to the treated area. In practice, we are 

limited by a lack of cross-sectional variation. We have only 2 treatment cross-sectional units and 

adopting two alternative comparisons over all periods seems very limiting. Thus, we adopt a 

form of PSM that selects the best matched observations to the treated units among the potential 

control area but allow these to vary over time. Our propensity score measure is estimated through 

a probit specification on the basis of observable co-variates such as vehicle miles travelled, 

population size, unemployment rates and weather measures that are collected annually at the 

local authority level. Second, we adopt a synthetic control approach which matches a weighted 

                                                 
7 We recognize that in contexts other than pollution the edge of the congestion zone can be critical.  For example, 
see Tang (2018) who examines house prices on either side of the boundary. 



7 
 

average of the potential controls to best mimic pre-intervention trends of the treatment. Thus, we 

adopt a range of approaches aimed at examining the robustness (or not) of the main policy effects. 

In addition to issues of a suitable control, previous work does not examine the relationship 

between pollution and miles driven and so does not address the congestion externality at the heart 

of the charging scheme.  Instead, they may simply reflect that reductions in miles driven reduced 

pollution. We examine whether the alleviation of congestion was sufficient that reduced 

standstills and faster commutes reduced pollution per mile. 

To summarize our findings, we demonstrate varied but substantial reductions in three 

pollutants but a sharp increase in NO2. The reduction of the first three pollutants can credibly be 

linked to the reduction in petrol-based and overall motor-vehicle transportation. We argue the 

NO2 increase likely reflects the unintended incentives that the charging scheme provided to shift 

towards diesel-based transportation. These findings differ from previous literature which, as 

highlighted before, often found mixed effects of the congestion charge on pollution and where 

the findings of an increase in NO2 are simply absent or not robust.8 We also show that the 

reduction in the three basic pollutants exceeds that expected from the reduction in traffic flows 

alone. As such, it provides evidence of these pollutants (but obviously not NO2) potentially being 

reduced because of ameliorating a congestion externality beyond simply reducing miles driven. 

In addition, we further examine statistical inference by adjusting in various ways for the small 

number of treated jurisdictions. This reveals that the increase in NO2 stands as a far more robust 

result than the reduction in the other three pollutants.  

                                                 
8 Thus, Atkinson et al. (2009) find that based on roadside monitors it was not possible to identify any relative 
changes in pollution concentrations in the CCZ relative to other London controls.  Yet, when they examine 
monitors not on roadside (background) monitors they find no relative change for PM10 and CO but a decline for 
NO and an increase for NO2.   
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The finding that substitution may thwart the objective of reducing pollution fits other 

evidence such as licensed plate-based driving restrictions in Colombia where pollution 

reductions were undermined by both the purchase of a second car and the use of alternative dirtier 

modes of transportation (Zhang et al., 2017).  It argues that aggregate reductions need not be 

beneficial (Borck 2019) as it provides a cautionary tale about exemptions that altered the fuel 

mix in an unhealthy manner.  These exemptions resulted from the desire to encourage mass 

transit (buses) and to protect entrenched interests (taxis). Ultimately, we are unable to 

definitively identify the relative contribution of increased bus and taxi use. However, a 

substantial role for polluting diesel buses would fit with efforts to replace the London fleet with 

newer hybrid buses.  

 The remainder of the paper is structured as follows. The next section provides 

background information on the introduction of the CCZ. Section 3 sets out the data sources and 

empirical methodology. Section 4 provides the results, while section 5 concludes.  

 
 
2. Background on the Congestion Charge 

 
Central London has long been among the most congested of western cities. Traffic speeds 

decreased and vehicle counts increased continuously over the second half of the 20th century. 

Just prior to imposing the congestion charge, all-day average speeds averaged a low 8.6 mph and 

more than 1/3 of all travel time was spent at a complete standstill (Transport for London, 2003).  

The London congestion charge was first imposed on the 17th of February 2003. The initial 

charge was £5 for entering the congestion zone between 7 a.m. and 6:30 p.m. on weekdays. 

Despite subsequent increases in fees (£8 in 2005, £10 in 2011 and £11.50 in 2014), and charging 

times (reduced to 6pm in February 2007), the charge still exists largely in its original form. Passes 
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can be purchased on-line and enforcement relies on a series of video cameras at every entry point 

to the zone and on mobile units within the zone.  A sophisticated license plate recognition system 

matches against daily purchases and violators are sent penalty notices for escalating fines that 

average 20 to 30 times the daily charge. The day pass allows travel in and around the congestion 

zone of Central London.  This eight square mile zone includes tourist sites, the City (London’s 

financial district), Parliament, major government offices and prime business locations (see 

Figure 1). This zone was extended in February 17th 2007 to take in areas immediately west of 

the initial congestion zone (the so-called ‘Western Extension’) but this extension was 

subsequently removed in December 24th 2010.9 As discussed later, this timing ultimately 

influences our policy window. 

 
< INSERT FIGURE 1 > 

 
The charge applies to private and commercial vehicles entering the congestion zone 

during the charging hours, but motorcycles, bicycles, buses and taxis are exempt.  There are 

exemptions for vehicles belonging to those who live within the zone but keep their vehicles off 

the street during the charging hours.  When these residents do travel during the charging hours, 

they pay a highly discounted charge of 10 percent of the full charge.   

Revenue raised from the charge program is earmarked primarily for mass transit 

improvements, along with smaller expenditures on road safety and bike/walking initiatives.10 

Santos (2005) identifies that a key part of the mass transit initiative was an expansion of the bus 

                                                 
9 It is also worth noting that in February 2008 the Low Emission Zone (LEZ) policy was introduced which 
charged certain high emission vehicles for driving in the Greater London area.  
10 Note that the well-known London Bike rental programme, colloquially known as Boris Bikes, did not start until 
2010 and is separate from the Congestion Charge initiative.  
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transit network within the zone and across London. Santos and Schaffer (2004) and Leape (2006) 

report initial changes in traffic flows after the introduction of the congestion charge. Notably, 

while overall traffic volume decreased, bus travel flows increased by 22% and Taxi flows 

increased by 21%. These increases persisted for many years as shown by Santos (2008). As 

emphasized, this raises potentially unintended consequences as, in London, these two types of 

vehicle are exclusively diesel powered.  

 

 

3. Data and Methodology 

The data used in this paper come from several administrative sources. We draw pollution data 

for both the CCZ and control cities from fixed location monitoring stations within the UK. We 

focus on a set of pollutants related to vehicular traffic for which we have consistent data across 

our period of interest: CO, NO, PM10 and NO2. We collect pollution data from stations within 

the congestion zone area and from other urban areas of Britain. The concentrations of the specific 

pollutants are reported hourly from each station. We chose as our comparison groups the twenty 

largest UK cities, in terms of population, that had pollution monitoring stations in a fixed location 

over the time period being examined. The set of comparison cities are Aberdeen, Belfast, 

Birmingham, Brighton, Bristol, Cardiff, Glasgow, Hull, Leeds, Leicester, Manchester, 

Newcastle, Nottingham, Plymouth, Portsmouth, Sheffield, Southampton, Stoke, Swansea and 

Wolverhampton.  When more than one station exists within a local authority, we adopt the most 

central location in order to best mimic the CCZ. We have two stations within the CCZ each 

within their own local authority. Thus, we have a single reporting station per local authority in 

both our treatment and control. 
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We explicitly exclude all monitoring stations for London and the greater London area 

outside the congestion zone. This exclusion is crucial as past work has shown that the congestion 

charge influences urban area traffic flows outside the CCZ.11 Thus, there is a high potential for 

pollution spillover effects from the congestion charge when other London jurisdictions have been 

chosen as controls. Moreover, it seems sensible that there also exist common unobserved factors 

that influence pollution, or traffic flows, in both the CCZ and other parts of London threatening 

independence of treatment and control.  Our emphasis on using controls outside the urban area 

is unique and causes us not to use, for instance, the Kings College data used by several of the 

earlier studies. In extensions however, and in the interest of understanding the total effect of the 

congestion charge zone on pollution, we examine the effect on areas of London surrounding the 

charge zone.  

We restrict our data to the period from 2000 to 2007 for several reasons. First, pollution 

data before 2000 is simply less reliable. There are fewer air quality reporting stations and many 

more problems with missing data. Second, we attempt to achieve consistency by roughly 

balancing the time before and after the introduction of the CCZ.  Third, we stop at the end of 

2007 as the Low Emission Zone (LEZ) introduced in early 2008 seems a potentially important 

confounding factor.12 This also means that we are examining the effect of the CCZ before the 

also potentially confounding introduction of the western extension. The pollution effects of this 

extension are interesting, but we cannot easily disentangle this from any effects of the LEZ which 

covered much of greater London. 

                                                 
11Green et al. (2016) demonstrate that the introduction of the charge reduced traffic flows in areas outside the 
CCZ. 
12 This was a more modest version of the Ultra Low Emission Zone described in the introduction.  It did charge 
certain vehicles if they had extremely high emissions. 
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In addition to this data we utilize weather data drawn from the Met Office-MIDAS Land 

Surface Station Data Source.  We match weather and pollution stations geographically and use 

daily weather information. We ultimately match our pollution data to traffic flows data available 

from the Traffic Count Data Source collected by the Department of Transport. This data is 

available at the road level and aggregated to the local authority level. Thus, we match to each 

monitoring station, local authority population, vehicle miles driven and unemployment rates and 

weather from the closest weather station to the monitoring station. These are matched with 

comparable data for the two stations within the CCZ, each within its own separate local authority. 

The traffic flows data has two additional complications. First, it is annual providing fewer 

observations. Second, the disaggregation by vehicle type is limited by the underlying mechanics 

of the surveying technology. Thus, we cannot distinguish between private cars and taxis in the 

flow data. This is important as the taxis are exempt from the charge. We discuss our approaches 

to using this data in more detail later when discussing our pollution rate estimates.  

Our basic approach is to estimate variants of the following:  

 
𝑃𝑃𝑖𝑖𝑖𝑖 = 𝜑𝜑 + 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛼𝛼𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 + 𝛽𝛽(𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ∗ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖) + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑇𝑇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖     (1) 

 
The underlying observation is the local authority i at time t with the dependent variable an hourly 

pollution reading. The core estimates are limited to the hours of the congestion charge. The 

coefficient β  provides a difference-in-difference estimate of the effect of the introduction of 

the CCZ on pollutant P. We observe two stations within the zone (Bloomsbury and Westminster) 

and our main approach is to use both.13 In robustness checks we estimate (1) using each station 

                                                 
13 We cannot identify PM10 within the charged time for the Westminster station as it provides only daily measures 
for PM10. As a result, our main estimates for PM10 are for only the Bloomsbury station. In unreported results, we 
estimate daily observation models of PM10 using both Bloomsbury and Westminster together. These are available 
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in turn. Policy is an indicator variable for an observation from the 17th of February 2003 onwards 

and X is a vector of controls. We adopt a range of approaches to specifying the time dimension.  

We routinely allow for differential trends by treatment and control and show the results are 

robustly allowing for even station specific time trends. Similarly, experimenting with a variety 

of time specific dummies does not greatly alter the estimates. 

 We estimate (1) separately for each of the 4 pollutants. As emphasized, the substitution 

to diesel transport suggests that β may be differently signed according to pollutant type. Our 

basic estimates cluster standard errors at the level of the local jurisdiction. Recognizing the 

potential for problems we examine the robustness of our inference to approaches aimed at 

estimating correct standard errors in the presence of small numbers of clusters. 

 

3.1 Initial Description of the Data 

As an initial description, Figures 2 and 3 present information on monthly average 

pollutant levels before and after the introduction of the CCZ for the treatment and control local 

authorities.  In Figure 2 we present the first hint that the response of CO, PM10 and NO differs 

from that of NO2.  In the left panel we aggregate the first three pollutants by transforming each 

observation to its relevant z-score and then averaging across pollutants.14  The trend lines clearly 

show a decline after the CCZ relative to the comparison. This contrasts with the right panel which 

shows declining NO2 that was declining more steeply in the treated area prior to the CCZ.  The 

CCZ itself is associated with a huge increase of more than a standard deviation in NO2 relative 

to the control.  Figure 3 shows the underlying monthly pollution averages for each of the four 

                                                 
upon request, but the resultant policy estimates remain essentially unchanged. Likewise, our estimates are not 
sensitive to using only one of the two stations in our main results.  
14 Z-scores are obtained by normalizing each pollution observation by subtracting the mean of each pollutant and 
dividing it by the pollutant specific standard deviation. 
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pollutants measured in the concentration levels relevant for each rather than in z-scores.  The 

visual pattern remains evident. 

 
<INSERT FIGURE 2 and 3> 

 
At issue is whether the apparent changes associated with the initiation of the CCZ remain 

after examining the disaggregated hourly data (not monthly averages) and after accounting for 

controls and proper inference. All figures raise concerns regarding the violation of the parallel 

trends assumption. These concerns are not, for instance, mitigated in unreported figures plotting 

these trends after controlling for monthly fixed effects and weather.  Thus, our approach, as 

discussed above, includes treatment specific trends (the trend plus a treatment times the trend) 

and tests using even individual local authority trends to evaluate the robustness of our results. 

We also experiment with a wide variety of time fixed effects including year, month and hour 

among others.  We now turn to those results. 

 

4. Results 

Table 1 provides estimates of the impact of the introduction of the congestion charge on the four 

different pollutants from 2000-2007.  All models include controls that capture daily local 

authority weather variation (see Table 1 notes for more detail). Weather conditions profoundly 

influence pollutant concentrations and the concern is that weather differences over time and 

between treatment and control may influence the results. In the final column of Table 1 we 

additionally include all weather controls in quadratic form to explore the robustness of our results 

to potential non-linearities in the impact of weather.  Note that each table, including Table 1, 

reports pretreatment means for the congestion zone to aid in interpretation. 
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<INSERT TABLE 1> 

 
Table 1 suggests that the introduction of the CCZ reduced the levels of CO, PM10 and 

NO. In the case of the latter two pollutants, these estimated reductions are largely unaffected by 

different approaches to controlling for time variation through temporal fixed effects.15 These 

include Estimated reductions in PM10 range from -5.6 to -7.7, while for NO the reduction ranges 

from -7.2 to -9.5. These are large effects of around 20% reductions when compared to the 

pretreatment means for the congestion zone. These are important effects of the policy insofar as 

these pollutants are associated with a range of negative health outcomes. At the same time, the 

reductions in CO are small between 6% to 9% and the statistical significance of these fade with 

some of the controls for time variation.  

The results for NO2 differ starkly. The key estimate of interest remains positive across 

all specifications. The effect magnitudes are large at 14% to 17% depending on the specification. 

This provides initial evidence of substitution effects as a result of the congestion charge.  Three 

pollutants decrease while NO2 increases dramatically.   

A concern is that identification of the key parameters come from a change in policy for 

only two local authorities in a relatively small number of overall local authorities. Clustering at 

the local authority level in this case can cause the reported standard errors to be misleadingly 

small (Bertrand et al., 2004). In response we implement the Wild bootstrap procedure from 

Cameron et al. (2008). This reduces the high type I error rates common in the presence of 

clustering on a small number of groups. The procedure replicates the within group correlation in 

                                                 
15 Note that in robustness checks we add day of the week and week of the year fixed effects to each of the 
estimates in Table 1.  The pattern shown in Table 1 remains essentially unchanged. The estimates are available 
upon request. 
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errors when generating new estimates (Cameron and Miller, 2015). Under the null hypothesis of 

no difference in difference effect, the Wild bootstrap p-values clustered at a local authority level 

with 1000 replications were performed for every estimate in Table 1. In no case in Table 1 does 

the bootstrapping reverse the claims of statistical significance.   

As an alternative, we follow Simeonova et al. (2018) and conduct a permutation test 

where equation (1) is estimated using 1000 Monte Carlo simulations in which treatment is 

randomly assigned across monitors and time. We then examine the fraction of times that the 

coefficient estimate exceeds the estimated value when the CCZ is correctly assigned. Our results 

always yield p-values of nearly zero suggesting that virtually none of the permutation 

coefficients exceeded the actual coefficient.  This simply reinforces the Wild bootstrapping 

exercise.16 

 As discussed earlier, previous literature on the pollution effects of the London Congestion 

Charge may not have adopted the appropriate comparison groups. This is likely inherent in the 

analysis of policies aimed at reducing urban traffic in uniquely congested cities.  We have argued 

that it is unlikely that areas near the treated ones are sensible controls and so focus on other 

distant major cities that are less likely to exhibit confound effects. Yet, within this broad 

approach we investigate the stability of our main estimates to a range of alternative methods of 

constructing comparison groups. These are summarized in Table 2.  

 
< INSERT TABLE 2 > 

 

                                                 
16 One might be concerned that extreme cases of pollution generate the patterns evident in Table 1. To examine 
this, we truncated the largest 1 percent of observations and the largest 5 percent of observations.  The pattern of 
results remains plainly evident and these two replications of Table 1 are available upon request. 
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 The first two columns report variants of our main approach by restricting our comparison 

groups to, successively, the 10 and the 5 most populous cities in the UK. Restricting to the 10 

most populous cities leaves the estimates essentially unaffected for PM10, NO and NO2, while 

the estimates for CO become more negative. Moving to the 5 largest cities has more deleterious 

effects on precision, particularly PM10, which when compared to a reduction in the size of the 

estimate means we can no longer detect a negative statistically significant effect on this pollutant. 

The effects for the other pollutants are essentially unchanged. Thus, narrower comparison groups 

leave the estimates of the effect of NO and NO2, while those for CO and PM10 fade.  

 The next two columns adopt approaches based on model selection of appropriate 

comparison groups through propensity score matching. We build a propensity score to select 

control observations most similar to the treatment observations in terms of observed 

characteristics including local authority population size, unemployment rates, vehicle miles 

travelled and weather controls. Given the propensity score, we conduct two estimates.  The first 

uses the overlapped region to compare our treatment with the controls having very similar 

observed characteristics. Estimates remain robust in terms of direction and significance. In an 

alternative estimate (Column IV of Table 2), we use the inverse of our propensity score to weight 

our regression. Again, the main estimates are, in the whole, robust to this approach and 

essentially follow the patterns reported in Table 1.  

 Finally, we adopt a synthetic control approach as set out by Abadie and Gardeazabal 

(2003). This generates a unique control group time series of pollution levels as a weighted 

average of pollution levels in the different potential control local authorities. This is generated 

to optimally match pre-intervention trends of the treatment group in terms of not only pollution 

levels but also observed characteristics such as population, unemployment rates, vehicle miles 
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travelled and weather controls (as we were doing in the PSM approach).  One difficulty 

implementing this method is occasional missing data as reporting stations temporarily 

malfunction or are replaced. The synthetic control approach requires no missing data, this leads 

us to move away from hourly data and instead aggregate data from each local authority to an 

average monthly level. When examining NO2, as an example, the mean squared prediction error 

between the CCZ and the control was reduced from 359 over all equally weighted control cities 

to only 12.2 with the optimal city weighting. The procedure routinely gave greatest weight to 

Hull and Manchester. 

The resulting estimates are reported in the column V and corresponding figures reported 

as figure 4.  The estimates appear somewhat larger and less precise.  Yet, the general pattern 

remains. The differences from earlier results may flow from the aggregation rather than from 

identifying a synthetic cohort.  Thus, in column VI we ignore the synthetic cohort procedure and 

simply provide estimates with data aggregated for each local authority to the monthly level.  

These estimates tend to look broadly like those using the synthetic cohort. In summary, the 

results in Table 2 suggest that once we have decided to use major cities outside London as our 

control, the exact choice of how we use them is not crucial.17 With this in mind, we revert to 

using the 20 largest cities in the UK as the comparison group for the remainder of the paper.  

 
<INSERT FIGURE 4> 

 
We recognize that there may exist unmeasured differences in local authorities that 

influence pollution measurement. These differences may influence the key measurements in the 

treatment area and across our controls. As many of these differences seem unlikely to vary 

                                                 
17 As with Table 1, neither Wild Bootstrapping nor permutation tests reverse any claims of achieving statistical 
significance. 
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systematically over time, we re-estimate our main models introducing local authority fixed 

effects. Such estimates remove the effect of time invariant local authority specific factors that 

might bias the estimated influence of the policy. Table 3 reports these estimates replicating the 

alternative temporal controls from Table 1.18  

 
< INSERT TABLE 3 > 

 
The point estimates associated with the first three pollutants do not differ dramatically 

across specification in Table 3 or from those presented in Table 1. Even when we allow local 

authority specific trends (column VI), the pattern remains. 19 While the permutation tests 

continue to reinforce the pattern of significance, for the first time, the Wild bootstrap reverses a 

claim of significance. Using the bootstrap inference, the reductions in CO are not statistically 

different from zero at reasonable levels even as the magnitudes remain as in Table 1.  The 

bootstrap inference continues to support significant declines in both PM10 and NO.  

The point estimates for NO2 suggest an increase in concentration of 5 or 6 which is 

smaller than the results in Table 1 without local authority fixed effects.  Those earlier results 

suggested an increase of 8 or 9.  Nonetheless, there is no reversal in significance as the bootstrap 

inference continues to easily indicate statistical significance.  Thus, allowing for local authority 

fixed effects and specific trends leaves in place the general view that while the levels of some 

pollutants decrease, that of NO2 has clearly increased. 

Table A3 aims to provide evidence on spatial heterogeneity across areas in London 

surrounding but outside the charge zone. In order to do this, we identify 3 London areas each 

                                                 
18 Again, in robustness checks we add day of the week and week of the year fixed effects to each of the estimates 
in Table 3.  The pattern shown in Table 3 remains essentially unchanged. The estimates are available upon 
request. 
19 Table A2 provides a corresponding version of Table 2 where we include local authority fixed effects.  
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farther away from the congestion zone as different potential treatment groups. This allows us to 

see whether the effects we identify attenuate as we move away from the congestion zone area or, 

on the contrary, reverse or become stronger. The latter could happen if, for example, traffic is 

displaced outside the congestion charge zone. Our estimating approach is to vary equation (1) 

by additionally including dummy variables for these areas and the interaction between these and 

the policy. We do this for different combinations of areas in greater London but always including 

the main congestion zone areas. Table A3 reports these area specific, difference in difference, 

estimates.  

In all cases in Table A3, the significant pattern of CCZ results remain. When we compare 

columns I, IV, VII, X with columns II, V, VIII and XI we observe that the point estimate is very 

similar for the CCZ difference-in-difference regardless of whether surrounding jurisdictions are 

treated. There are, however, significant coefficients within some of the surrounding areas for 

some of the pollutants.  Given previous evidence that traffic flows in surrounding areas were 

influenced by the CCZ this is not surprising (Green et al., 2016). Indeed, it supports our basic 

motivation that controls within London may be unsuitable as they will be variously influenced 

by the congestion charge. Similarly, we urge some caution in interpreting coefficients for the 

London areas outside of the CCZ due to the potential for the comparison cities to be less suited 

as controls for the areas of London away from the central city.  

The coefficients on the Panel B of Table A3 in the Appendix shows how the charge 

affected air quality in the charge zone outside charged hours. If anything, these suggest that the 

focus on charged hours understates the effect of the congestion charge on pollution.  This result 

may reflect the well-known tendency for pollution to "linger" or that the congestion charge 

altered miles driven even outside the charged hours (Green et al., 2016). We also add a note of 
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caution that part of the congestion zone policy was an increase in public transport and that late 

night public transport may be substantially more limited in other cities in the UK. 

 

4.1 Rates of Pollution  

To this point we have demonstrated reasonably robust reductions in pollutants associated with 

petrol-based vehicles, and an increase in NO2 pollution closely linked to diesel based vehicles. 

The original hope for the CCZ was that it would improve speeds and reduce gridlock.  Santos 

and Shaffer (2004), Leape (2006) and Green et al. (2016) suggest that this happened.  This, in 

turn, raises the possibility that reductions in pollution might reflect not just that there was less 

driving but that a congestion externality was ameliorated.  In the case of the three pollutants, if 

they were reduced simply in proportion to the miles driven, the pollution externality itself might 

be reduced but there would be no evidence of an improved congestion externality. Evidence in 

favor of ameliorating the congestion externality would be suggested if each mile driven by a 

charged vehicle into London was associated with less pollution.  

This suggestion mirrors Edlin and Karaca-Mandic (2006) who argue that only a reduction 

in traffic accidents per mile driven is evidence of ameliorating a congestion externality. We 

recognize that measured pollution need not always be linearly related to miles driven due to 

absorptive capacity of the environment, wind patterns and terrain. Yet, traffic congestion is 

empirically associated on average with sharply deteriorating ambient air quality (see Zheng and 

Batterman 2013 and cites therein). It is this non-linear relationship that makes a reduction in 

pollution relative to miles driven suggestive evidence of reducing a congestion externality. Thus, 

less time spent in slow or stalled traffic (less congestion) would improve ambient air quality 

more than indicated by the reduction in total miles driven.  At minimum, a reduction relative to 
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miles driven stands as a far stricter standard and as, at least suggestive of reduced congestion. 

We now turn to this question: did the introduction of the congestion charge influence pollution 

per mile for charged vehicles?  

We examine this by combining our earlier pollution data with traffic flow data sourced 

from the Department of Transport for each local authority. This data is only available at an annual 

level and as a result we aggregate our pollution data up to annual data.  We compute the average 

pollution across the year within the charged time for each local authority. The dependent variable 

then becomes this average charge time pollution in the year divided by the millions of miles 

driven in the authority in the year. 

As mentioned, a complication is that the surveying technology cannot distinguish 

between private cars and taxis, when ideally we would like to completely disentangle flows by 

charging status. In our preferred measure we divide the pollution levels by all the closest proxy 

of charged mileage available. For our combined pollutants this is cars. We estimate analogous 

models to (1) that include local authority and year fixed effects. These results are included as 

Table 4.  

 
< INSERT TABLE 4 > 

 
Interpreting these results requires a recognition that a zero estimate would imply that the 

earlier estimates entirely reflect changes in traffic flows. In other words, the decline in pollution 

merely reflected a decline in miles driven. Yet, this is not the case. There is a marked reduction 

in PM10 and NO. These do not markedly vary when using an alternative flow of all miles driven 

rather than our proxy for charged miles. These results suggest that the introduction of the charge 

reduced pollution beyond what would have been expected from the reduction in traffic flows 
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itself.  Thus, part of the reduction in the pollutants came from reduced congestion indicating that 

not only the pollution externality was improved but that a congestion externality may also have 

improved. The reductions in the rates of PM10 and NO appear roughly of the same order of 

magnitude as the estimates without rates but this is only an artifact resulting from dividing by 

millions of miles in the jurisdiction and that average number of miles is not far from a one million 

miles (see appendix).   

The evidence on NO2 shows a very large increase in the rate of pollution. This increase 

of over 20 in the concentration per million miles falls when dividing by total miles rather than 

charged miles.  The fall in charged miles is more marked and so the increase in NO2 looks 

somewhat more dramatic.  Nonetheless, the increase when using total miles remains over 14 in 

the concentration and highly significant (also available upon request).  This unique sensitivity of 

the NO2 to the choice of miles (charged vs. total) continues to argue that it is associated with 

uncharged vehicles. 

The vehicle flows that underlie these estimates are of interest in their own right.  They 

allow us to expand on this point and show how the composition of vehicle miles driven changed 

as a result of the congestion charge.  Table 5 estimates the difference in difference on the annual 

data for total miles driven and for miles driven by each type of vehicle that is given in our traffic 

flow data.  The results show the large decline in total miles driven.  Yet, counteracting this 

general movement is an increase in uncharged miles by buses, motorcycles and bicycles.  The 

results also show the decline in the charged miles by heavy vehicles, light vehicles and cars 

(which unfortunately include the uncharged taxis). We use these estimates to make a back of the 

envelope calculation to suggest the increase in the miles driven by diesel powered vehicles. 

 
< INSERT TABLE 5 > 
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While it is easy to observe the miles driven by diesel buses and transport vehicles (light 

and heavy), it requires sensible assumptions to imagine what happens to diesel powered taxis.  

We know from our data that the average annual miles driven in the CCZ prior to the charge by 

cars and taxis together is 478.70 million miles. From Leape (2006) we know that prior to the 

charge 24.9 percent of all taxi and car miles in the CCZ were from taxis or 119.2 million miles.  

Thus, we imagine that these taxi miles increased by the same percent as did the miles of other 

uncharged vehicles.  From Table 5 the increase in the three uncharged categories is 15.45 million 

miles (the sum of the three coefficients).  This happens on a base prior to the CCZ of 181.56 for 

an increase in miles driven by uncharged vehicle categories is 8.5%.  If taxi miles increased by 

this same percent, the increase in diesel powered taxi miles would be 10.13.  This should be 

combined with the decrease in diesel-powered heavy transport and the increase in diesel powered 

buses for a net increase of 8.49 million miles per year.  Thus, it appears that increases in diesel 

miles driven stands as a crucial indicator behind the substantial increase in NO2 generated by the 

congestion charge.  

We recognize that our estimated increase in miles driven by buses in Table 5 of 3.6 

million miles is smaller than our imputed increase in the miles driven by taxis of 10.1 million 

miles.  This reflects the basic fact that many more miles are driven per year by taxis than buses 

in the CCZ (Leap 2006). This might argue for taxis being included in the charge scheme if 

perhaps with a smaller charge.  Yet, as a caveat, both the pollution and the passengers per mile 

associated with buses exceed that from taxis.  Thus, in the end we must leave the exact role of 

buses versus taxis in doubt but emphasize that both contribute substantially to the increase in 

NO2. 

 



25 
 

4.2 Robustness: Additional Concern with Inference 
 
 We have presented a cautionary tale about the changing composition of pollution and 

isolated the increasing concentration of dangerous NO2 even in the face of fewer driven miles 

and lower concentrations of other pollutants. We now turn to additional exercises to test the 

sensitivity of this conclusion. We follow the randomization inference procedure of Conley and 

Taber (2011) which is based on estimated coefficients (or where treatment point estimators can 

be used as test statistics). Using test statistic inversion, we construct confidence intervals in order 

to identify the key parameter when its identification arises from changes in policy by a small 

number of groups.  

Table 6 presents the results for the full set of estimates from Table 3.  These routinely 

include local authority fixed effects. The individual pollutants provide inconsistent and 

heterogeneous results. There is weak or no support for inferring a decline in the first three 

pollutants. The NO2 results present a more consistent picture.  The levels of NO2 in the CCZ 

increased as a result of the congestion charge. The confidence bands rule out negative estimates 

indicating statistical significance.  These results provide added emphasis to our concern that the 

single strongest inference is the unanticipated increase in the NO2 associated with diesel. 

 
<INSERT TABLE 6> 

With this robust effect on NO2 in mind, we further explore of influence of the CCZ on 

NO2 levels by estimating a time-trend DD model following Ahlfeldt et al. (2017) and Vuuren et 

al. (2019). This is reported in Figure 5 and illustrates two related points. First, it demonstrates a 

sharp increase at the discontinuity which fits with the evidence throughout this paper. Second, it 

provides point estimates of the policy for leads and lags allowing us to be confident that our main 

policy effects do not reflect, for instance, mean reversion in NO2 pollution levels. 
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<INSERT FIGURE 5> 

 

5. Conclusion 

Air pollution in central cities has been a source of increasing concern. As vehicle exhaust 

represents a huge share of urban pollution, congestion charging offers a method of reducing total 

travel miles and standstills (congestion) and so reducing pollution. This paper reexamines the 

effect of the London Congestion Charge introduced in 2003 on a range of pollutants. It differs 

from past studies by using other major urban areas as controls. We demonstrate significant 

reductions across a range of pollutants in comparison to control cities in the same period. 

Moreover, these reductions are substantially larger than what would be expected from the 

reduction in traffic flows by itself. Thus, the charging scheme not only internalized a pollution 

externality, but had additional social benefits through the reduction of the congestion externality. 

The reduction in standstills and the speeding up travel time reduced pollution per mile.  

At the same time, we focus on NO2 closely linked to diesel powered motor vehicles. 

Exempting buses and taxis, and increasing the provision of bus services, meant that these diesel 

vehicles drove many more miles as a result of the congestion charge as commuters transferred 

out of personal cars into these forms of public transport.  This reflected an explicit policy to 

expand public transport provision in the zone.  Thus, the fuel mix of vehicles in the zone moved 

toward diesel to such an extent that we show that diesel miles increased.  

The reduction in other pollutants must be weighed against the particularly negative health 

effects associated with a marked increase in NO2. Our experimentation with alternative inference 

methods makes clear that the increase in NO2 remains the most robust of the results we present. 

This provides a cautionary note regarding substitution effects implicit in congestion charging 
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schemes. Reducing congestion and reducing the harms of air pollution may be related but are 

certainly not identical as our study shows.  Indeed, the concern with diesel in Europe continues 

to grow with Dusseldorf and Stuttgart moving toward simply banning older diesel fueled 

vehicles.  These and related moves now seem legally allowed by a recent German court ruling 

(Connolly, 2018). Indeed, Norway will ban diesel fueled vehicles as of 2025. London continues 

to have exemptions to the congestion charge that we have argued may be harmful but at the same 

time it has begun to increasingly rely on alternative charges (such as the LEZ) and even limiting 

some corridors to only electric and hybrid vehicles.  The overall influence of these seemingly 

contradictory policies has yet to be observed. 
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Figure 1:  The original London Congestion Charge Zone 
 

 
 
Source: Transport for London (2004 p.8) 
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Figure 2: CO, PM10 and NO (averaged z-scores) and NO2 (z-scores) Pre and Post Introduction 
of the Congestion Charge Zone 
 

 
 
Legend: Solid upper lines – Congestion Charge Zone pre and post linear trend 
   Dashed lower lines – Comparison Group pre and post linear trend 
 
Note: The dots correspond to quarterly pollution averages for treatment (dark triangles) and 
comparison (light circles) areas. 
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FIGURE 3: Each Polutant (measure in underlying concentrations) Pre and Post Introduction of 
the Congestion Charge Zone 
 

 
Legend: Solid upper lines – Congestion Charge Zone pre and post linear trend 
   Dashed lower lines – Comparison Group pre and post linear trend 
 
Note: The dots correspond to quarterly pollution averages for treatment (dark triangles) and 
comparison (light circles) areas. 
  

.2
.5

1
C

O

-10 0 10 20 30
Quarter from and to CC

25
30

35
40

45
PM

10

-10 0 10 20 30
Quarter from and to CC

10
30

50
70

90
N

O

-10 0 10 20 30
Quarter from and to CC

10
30

50
70

90
N

O
2

-10 0 10 20 30
Quarter from and to CC



35 
 

FIGURE 4: Synthetic Cohort Estimates of Congestion Charge Effects on Pollution.  
Panel A – Combined 3 Pollutants, Z-Scores 
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Panel B – Individual Pollutants, Levels 
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FIGURE 5 Estimated Effect of the Congestion Charge on NO2  Levels 
 
 

 
 
Note: Dashed lines correspond to the 95% pointwise confident intervals, using the Delta 
method so as to calculate standard errors. 
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TABLE 1 The Effect of the Introduction of the Congestion Charge on Hourly Pollution Levels 
during Charge Time 2000-2007 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The table reports the difference in difference estimate of the introduction of the congestion charge on levels of 
each pollutant. Standard Errors clustered at the local authority level in parentheses (). ***, **, * indicate statistical 
significance at the 1%, 5% and 10% level, respectively. All models include daily, local authority level, controls 
for average temperature, precipitation, average wind speed and average wind direction. All columns allow for 
treatment specific trends. Column I provides our baseline specification, Columns II and III show robustness of our 
estimates to including month fixed effects and year by month fixed effects, respectively. Columns IV and V add 
hour fixed effects and a second order polynomial of weather controls to our baseline specification, respectively. 
 
 

 (I) (II) (III) (IV) (V) 
      
CO -0.060** -0.040 -0.040 -0.060** -0.060** 
 (0.025) (0.025) (0.030) (0.025) (0.025) 
p-value (Wildbootstrap) 0.036 0.144 0.238 0.036 0.028 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 
Mean 0.618 0.618 0.618 0.618 0.618 
Observations 444,430 444,430 444,430 444,430 444,430 
R-squared 0.205 0.217 0.229 0.223 0.220 
      
PM10 -7.690*** -7.168*** -5.664*** -7.691*** -8.279*** 
 (1.299) (1.311) (1.417) (1.298) (1.272) 
p-value (Wildbootstrap) 0.002 0.002 0.002 0.002 0.002 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 
Mean 34.890 34.890 34.890 34.890 34.890 
Observations 421,758 421,758 421,758 421,758 421,758 
R-squared 0.084 0.096 0.112 0.092 0.103 
      
NO -9.543*** -7.268** -8.030*** -9.607*** -9.625*** 
 (2.520) (2.742) (2.563) (2.506) (2.868) 
p-value (Wildbootstrap) 0.002 0.014 0.004 0.002 0.004 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 
Mean 44.214 44.214 44.214 44.214 44.214 
Observations 457,465 457,465 457,465 457,465 457,465 
R-squared 0.168 0.182 0.191 0.194 0.197 
      
NO2 7.940*** 9.442*** 9.436*** 7.893*** 7.838*** 
 (1.287) (1.288) (1.231) (1.279) (1.372) 
p-value (Wildbootstrap) 0.000 0.000 0.000 0.000 0.000 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 
Mean 56.700 56.700 56.700 56.700 56.700 
Observations 450,310 450,310 450,310 450,310 450,310 
R-squared 0.260 0.297 0.304 0.286 0.273 
      
Treatment Specific Trends X X X X X 
Year FE X X  X X 
Month FE  X  

  

Year-by-month FE   X   
Hour-FE    X  
Quadratic Weather Controls    X 
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TABLE 2 The Effect of the Introduction of the Congestion Charge on Hourly Pollution Levels 
during Charge Time. 2000-2007, Alternative Comparison Groups 
 

 (I) (II) (III) (IV) (V) (VI) 
 10 Largest Cities  5 Largest 

Cities 
PSM trimmed PSM weighted Synthetic 

Control 
Collapsed 

  
 

 
 

 
 

       
CO -0.089** -0.119** -0.063** -0.046 -0.112 -0.071*** 
 (0.030) (0.040) (0.027) (0.032) (0.076) (0.023) 
p-value 
(Wildbootstrap) 

0.018 0.082 0.046 0.212   

p-value (Permute) 0.000 0.000 0.000    
Mean 0.618 0.618 0.618 0.618 0.654 0.657 
Observations 249,486 145,532 417,674 417,674 192 1,792 
R-squared 0.228 0.236 0.209 0.207 0.395 0.434 
       
PM10 -5.880** -3.523 -7.556*** -6.148*** -5.349** -8.467*** 
 (2.006) (3.151) (1.365) (2.098) (2.322) (1.221) 
p-value 
(Wildbootstrap) 

0.010 0.370 0.002 0.004   

p-value (Permute) 0.000 0.000 0.000    
Mean 34.890 34.890 34.890 34.890 36.464 35.107 
Observations 236,261 132,368 393,911 393,911 192 1,723 
R-squared 0.084 0.096 0.085 0.089 0.317 0.165 
       
NO -7.259** -5.709** -9.115*** -7.632** -11.906* -7.728*** 
 (2.466) (2.324) (2.607) (2.745) (6.340) (1.459) 
p-value 
(Wildbootstrap) 

0.004 0.042 0.002 0.036   

p-value (Permute) 0.000 0.000 0.000    
Mean 44.214 44.214 44.214 44.214 44.143 44.384 
Observations 252,266 144,890 430,102 430,102 192 1,832 
R-squared 0.195 0.210 0.171 0.189 0.188 0.436 
 

  
 

 
  

NO2 8.831*** 7.053*** 7.975*** 7.492*** 11.026** 11.591*** 
 (1.256) (1.856) (1.323) (1.909) (4.650) (0.507) 
p-value 
(Wildbootstrap) 

0.000 0.016 0.000 0.000   

p-value (Permute) 0.000 0.000 0.000    
Mean 56.700 56.700 56.700 56.700 57.186 57.290 
Observations 245,273 138,993 422,947 422,947 192 1,814 
R-squared 0.281 0.294 0.266 0.264 0.366 0.506 
       
Treatment Specific 
Trends 

X X X X X X 

Year FE X X X X X X 
       
       
       

The table reports the difference in difference estimate of the introduction of the congestion charge on levels of 
each pollutant experimenting with most suitable control groups. Standard Errors clustered at the local authority 
level in parentheses (). ***, **, * indicate statistical significance at the 1%, 5% and 10% level, respectively. All 
models include daily local authority controls for average temperature, precipitation, average wind speed and 
average wind direction. All columns allow for treatment specific trends and year fixed effects. Columns I and II 
provide the effect of the charge on pollution using as control group the 10 and 5 most populated cities in the UK, 
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respectively. Column III shows estimates for the sample of treatment and control observations which fall in the 
overlapping region for Propensity Scores resulting from matching our treatment with controls in terms of 
observable characteristics including local authority population size, unemployment rates, vehicle miles travelled 
and weather controls. Column IV shows the effect of the charge weighting our estimates by the inverse of the 
derived propensity score. Column V show estimates from a synthetic cohort procedure that matches pre-trends on 
pollution, weather, population, unemployment rates and vehicle miles travelled measures. Since our synthetic 
cohort estimation is implemented at the month and year level, Column V aggregates the time dimension of our 
data at the month-year level in order for Columns V and VI to be comparable. 
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TABLE 3 The Effect of the Introduction of the Congestion Charge on Hourly Pollution levels 
during Charge Time. 2000-2007 Local Authority Fixed Effects and Specific Trends 

VARIABLES (I) (II) (III) (IV) (V) (VI) 
       
CO -0.058** -0.038 -0.038 -0.058** -0.058** -0.062** 
 (0.026) (0.026) (0.031) (0.026) (0.025) (0.027) 
p-value (Wildbootstrap) 0.178 0.448 0.61 0.174 0.232 0.154 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 0.000 
Mean 0.618 0.618 0.618 0.618 0.618 0.618 
Observations 444,430 444,430 444,430 444,430 444,430 444,430 
R-squared 0.212 0.226 0.237 0.233 0.229 0.305 
       
PM10 -7.742*** -7.322*** -5.810*** -7.743*** -8.354*** -7.418*** 
 (1.273) (1.291) (1.384) (1.272) (1.233) (1.339) 
p-value (Wildbootstrap) 0.002 0.004 0.068 0.002 0.002 0.008 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 0.000 
Mean 34.890 34.890 34.890 34.890 34.890 34.890 
Observations 421,758 421,758 421,758 421,758 421,758 421,758 
R-squared 0.080 0.091 0.107 0.089 0.101 0.126 
       
NO -10.711*** -8.379*** -9.087*** -10.764*** -10.814*** -10.534*** 
 (2.369) (2.631) (2.347) (2.352) (2.747) (2.437) 
p-value (Wildbootstrap) 0.006 0.068 0.020 0.006 0.012 0.008 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 0.000 
Mean 44.214 44.214 44.214 44.214 44.214 44.214 
Observations 457,465 457,465 457,465 457,465 457,465 457,465 
R-squared 0.178 0.192 0.201 0.205 0.206 0.217 
 

      

NO2 4.845*** 6.474*** 6.499*** 4.802*** 4.745*** 5.310*** 
 (1.578) (1.568) (1.495) (1.569) (1.661) (1.518) 
p-value (Wildbootstrap) 0.006 0.000 0.000 0.006 0.012 0.008 
p-value (Permute) 0.000 0.000 0.000 0.000 0.000 0.000 
Mean 56.700 56.700 56.700 56.700 56.700 56.700 
Observations 450,310 450,310 450,310 450,310 450,310 450,310 
R-squared 0.216 0.256 0.264 0.247 0.231 0.335 
       
Local Authority FE X X X X X X 
Treatment Specific Trends X X X X X 

 

Year FE X X  X X X 
Month FE  X 

 
   

Year-month FE   X    
Hour-FE    X   
Quadratic Weather Controls     X  
Local Authority Specific 
Trends 

     X 

 
The table reports the difference in difference estimate of the introduction of the congestion charge on levels of 
each pollutant with local authority fixed effects. Standard Errors clustered at the local authority level in 
parentheses (). ***, **, * indicate statistical significance at the 1%, 5% and 10% level, respectively. All models 
include daily local authority controls for average temperature, precipitation, average wind speed and average wind 
direction. Column I presents our baseline specification. Columns II and III show robustness to including month 
fixed effects and year by month fixed effects, respectively. Columns IV and V add hour fixed effects and a second 
order polynomial of weather controls to our baseline specification. Column VI allows for local authority specific 
trends. 
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TABLE 4. The Effect of the Congestion Charge on the Rate of Annual Pollution during 
Charge Time 2000-2007. Charged Miles (Millions). 
 
 CO PM10 NO NO2 

DD -0.029 
(0.072) 

-12.969*** 
(2.157) 

-9.800*** 
(3.293) 

20.888*** 
(1.810) 

p-value (Wildbootstrap) 0.6720 0.0020 0.0020 0.0000 

p-value (Permute) 0.8099 0.0000  0.3333 0.0000 

Mean 1.105 63.239 76.274 97.935 

Treatment Specific Trends X X X X 

Year FE X X X X 

Local Authority FE X X X X 

Observations 152 146 154 154 

R2 0.537 0.222 0.333 0.242 

 
The table reports the difference in difference estimate of the introduction of the congestion charge on the annual 
rates of each pollutant. ***, **, * indicate statistical significance at the 1%, 5% and 10% level, respectively. All 
models include annual local authority level controls for average temperature, precipitation, average wind speed 
and average wind direction. 
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TABLE 5: The Congestion Charge and Annual Vehicle Miles Driven, 2000-2007 (in millions)  
 
 

 
Total Cars/Taxis Light 

Goods 
Heavy 
Goods Bicycles Motor 

Cycles Buses 

  CHARGED UNCHARGED 
        
DD -42.733*** -38.513*** -13.613*** -5.216*** 5.581*** 6.291*** 3.575*** 
 (4.035) (2.864) (0.000) (0.951) (0.101) (0.105) (0.326) 
p-value (Wildbootstrap) 0.0020 0.0020 1 0.0020 0.0000 0.0000 0.0000 
p-value (Permute) 0.0270 0.0150 0.0150 0.0270 0.0420 0.0150 0.0150 
Mean 673.400 478.704 79.404 23.673 23.691 43.983 24.031 
Treatment Specific Trends X X X X X X X 
Year FE X X X X X X X 
Local Authority FE X X X X X X X 
Observations 176 176 176 176 176 176 176 
R2 0.002 0.007 0.996 0.008 0.946 0.926 0.304 

The table reports the difference in difference estimate of the introduction of the congestion charge on the annual 
vehicle miles driven by transportation model.***, **, * indicate statistical significance at the 1%, 5% and 10% 
level, respectively. All models include annual local authority level controls for average temperature, precipitation, 
average wind sped and average wind direction. 
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TABLE 6: Alternative Inference as per Conley and Taber (2011) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The table reports the 95% confidence intervals for the effect of the congestion charge introduction on each of the 
pollutants. 
 
 
 
  

 (I) (II) (III) (IV) (V) 
      
CO      
CI (Conley and Taber) [-0.289, 

1.645] 
[ -0.218, 
0.574] 

[-0.216, 
0.273] 

[-0.289, 
1.643] 

[-0.303, 
1.643] 

      
PM10      
CI (Conley and Taber) [-16.022, 

2.701] 
[-15.098, 

7.619] 
[ -20.461, 
33.519] 

[-16.030, 
2.699] 

[-16.735, 
2.300] 

      
NO      
CI (Conley and Taber) [-25.509, 

3.112] 
[-20.582, 

1.280] 
[-18.131, 

0.940] 
[-25.534, 

3.099] 
[-26.703, 

1.849] 
      
NO2      
CI (Conley and Taber) [6.902, 

20.864] 
[6.738, 
18.204] 

[6.678, 
23.127] 

[6.915, 
20.742] 

[6.149, 
19.873] 

      
      
      
Treatment Specific Trends X X X X X 
Year FE X X  X X 
Month FE  X  

  

Year-by-month FE   X   
Hour-FE    X  
Quadratic Weather Controls    X 
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APPENDIX TABLE A1: Descriptive Statistics, 2000-2007 
 

Variables Observations Mean 
Standard 

Dev Min Max 
CO 444,430 0.435 0.358 0 15.1 
PM10 421,758 27.3325 19.140 0.05 1097 
NO 457,465 30.250 44.433 0 1454 
NO2 450,310 40.526 20.451 0 397 
Av Temperature 450,310 10.050 4.983 -7.05 25.9 
Av Precipitation 450,310 2.549 5.473 0 107.2 
Mean Wind direction 450,310 202.135 70.742 0 608.667 
Mean Wind speed 450,310 8.201 4.360 0 45.125 
CO rate Total Miles 152 0.839 0.536 0.089 2.642 
CO rate Miles Charged 152 0.975 0.624 0.105 3.043 
PM10 rate Total Miles 146 49.478 23.905 9.518 129.393 
PM10 rate Miles Charged 146 57.571 28.319 11.119 153.827 
NO rate Total Miles 154 53.729 28.255 11.251 159.087 
NO rate Miles Charged 154 62.482 33.051 12.894 183.225 
NO2 rate Total Miles 154 73.033 32.256 14.729 174.414 
NO2 rate Miles Charged 154 85.018 38.203 17.206 207.350 
Total Miles (in millions) 154 0.738 0.556 0.263 2.711 
Miles in Charge period 154 0.637 0.479 0.220 2.298 
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APPENDIX TABLE A2, Alternative Control Groups with Local Authority Fixed Effects 
 10 controls 5 controls PSM Trimmed PSM weighted      
     
CO -0.079** -0.117** -0.063** -0.045 
 (0.032) (0.042) (0.027) (0.032) 
Observations 249,486 145,532 417,674 417,674 
R-squared 0.232 0.239 0.217 0.279 
     
PM10 -5.886** -3.408 -7.716*** -6.528*** 
 (2.039) (3.193) (1.347) (1.873) 
Observations 236,261 132,368 393,911 393,911 
R-squared 0.087 0.091 0.082 0.130 
     
     
NO -7.956*** -7.757** -10.507*** -9.669*** 
 (2.103) (3.024) (2.361) (2.529) 
     
Observations 252,266 144,890 430,102 430,102 
R-squared 0.212 0.225 0.182 0.234 
     
NO2 5.997*** 4.034* 4.658*** 4.045* 
 (1.552) (2.059) (1.581) (2.012) 
Observations 245,273 138,993 422,947 422,947 
R-squared 0.236 0.245 0.220 0.335 
     
Treatment specific trends X X X X 
Year FE X X X X 
      

    
 
 



TABLE A3. The Effect of the Congestion Charge Across Different Areas of London and Outside of Charge Time, Hourly Pollution 
Levels 2000-2007. 
  

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) 
 CO CO CO PM10 PM10 PM10 NO NO NO NO2 NO2 NO2 
PANEL A – Alternative 
Treatment Areas 

            

             
DD (CCZ) -0.075*** -0.078*** -0.079*** -7.539*** -6.952*** -7.077*** -7.785* -11.270** -11.572** 7.339*** 6.842*** 6.748*** 
 (0.023) (0.025) (0.026) (1.105) (1.268) (1.315) (3.954) (4.171) (4.625) (1.955) (2.054) (2.288) 
DD (A)  0.027 0.027  4.927*** 4.780***  -27.353*** -27.577***  -6.262* -6.347* 
  (0.047) (0.047)  (0.863) (0.873)  (7.252) (7.307)  (3.596) (3.665) 
DD (B)     1.680 1.540  -1.242 -1.168  2.876** 2.936** 
     (1.818) (1.828)  (3.253) (3.302)  (1.280) (1.296) 
DD (C)  -0.033   3.993*   -6.518   0.751  
  (0.035)   (2.098)   (4.801)   (2.722)  
Observations 660,489 660,489 592,828 565,612 565,612 504,791 551,589 551,589 505,721 667,963 667,963 600,228 
R-squared 0.022 0.165 0.180 0.094 0.112 0.107 0.010 0.037 0.038 0.018 0.103 0.110 
             
PANEL B – Outside of 
Charged Times 

            

             
DD (CCZ) -0.040*   -2.550***   -3.758*   11.837***   
 (0.021)   (0.510)   (2.142)   (0.771)   
Observations 450,363   427,287   457,985   449,145   
R-squared 0.159   0.090   0.128   0.249   
             
Treatment Specific Trends X X X X X X X X X X X X 
Year FE X X X X X X X X X X X X 

The table reports the difference in difference estimate of the introduction of the congestion charge on levels of each pollutant. Standard Errors 
clustered at the local authority level in parentheses (). ***, **, * indicate statistical significance at the 1%, 5% and 10% level, respectively. All 
columns allow for treatment specific trends. Columns I, IV, VII and X of Panel A constitutes our baseline specification. Columns II, V, VIII and 
XI show robustness of our estimates to including effects of the congestion charge policy on closer areas in London surrounding the charge zone 
such as A (Camden, Tower Hamlets and Southwark), more distant areas such as B (Lewisham, Greenwich and Haringey) and still more distant 
areas C (Bromley, Bexley and Hillingdon). Columns III, VI, IX and XII show robustness of our estimates to including effects of the congestion 
charge policy on areas in London surrounding the charge zone such as A (Camden, Tower Hamlets and Southwark) and B (Lewisham, Greenwich 
and Haringey). Panel B shows the difference in difference estimate of the introduction of the congestion charge on levels of each pollutant for non-
charged hours. 
 


