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Abstract

In this memoir, we shall study Banach function algebras that have bounded pointwise approx-
imate identities, and especially those that have contractive pointwise approximate identities. A
Banach function algebra A is (pointwise) contractive if A and every non-zero, maximal modular
ideal in A have contractive (pointwise) approximate identities.

Let A be a Banach function algebra with character space ® 4. We shall show that the existence
of a contractive pointwise approximate identity in A depends closely on whether ||¢|| = 1 for
each ¢ € ®4. The linear span of ®4 in the dual space A’ is denoted by L(A), and this is
used to define the BSE norm ||-|zqz on A; the algebra A has a BSE norm if this norm is
equivalent to the given norm. We shall then introduce and study in some detail the quotient
Banach function algebra Q(A) = A”/L(A)*; we shall give various examples, especially uniform
algebras and those involving algebras that are standard in abstract harmonic analysis, including
Segal algebras with respect to the group algebra of a locally compact group.

We shall characterize the Banach function algebras for which L(A) = £'(®4), and then
classify contractive and pointwise contractive algebras in the class of unital Banach function
algebras that have a BSE norm; they are uniform algebras with specific properties. We shall also
give examples of such algebras that do not have a BSE norm.

Finally we shall discuss when some classical Banach function algebras of harmonic analy-
sis have non-trivial reflexive closed ideals, and make some remarks on weakly compact homo-
morphisms between Banach function algebras.
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1. Introduction

Let A be a Banach function algebra, so that A is a commutative, semi-simple Banach
algebra, with character space ® 4. There are many notions of ‘approximate identity’ asso-
ciated with A and its maximal modular ideals. Here we concentrate on studying bounded
pointwise approximate identities (BPAIs) and contractive pointwise approximate identi-
ties (CPAIs) in A. A net (e,) in a Banach function algebra A is a CPAT if ||e,| < 1 for
each o and limgy eqn(p) =1 (p € ®4); as in [18], a Banach function algebra is defined
to be pointwise contractive if A and all its non-zero, maximal modular ideals have a
CPAL These nets play an important role in the study of so-called BSE algebras, of the
BSE norm, and the determination of the space L(A) and the algebra A”/L(A)*, where
L(A)=1in®4 in A’. Here A” is the bidual space of a Banach algebra A, taken with the
first Arens product.

In this memoir, we shall characterize in various ways Banach function algebras that
have a CPAI and that are pointwise contractive, and give various properties of Banach
function algebras with a CPAI In particular, we shall obtain new results about Segal
algebras with respect to a Banach function algebra. We shall also define and study the
quotient algebra Q(A) = A”/L(A)*, showing that it is also always a Banach function
algebra; we shall discuss when this quotient algebra is a uniform algebra.

We shall give various examples of Banach function algebras to illustrate the above
concepts. These will mainly be uniform algebras and algebras that arise in harmonic
analysis, including group algebras, measure algebras, and Segal algebras.

Summary In Chapter 2, we shall recall some definitions and establish our notation; in
particular, we shall define Banach function algebras and recall some of their standard
properties, including regularity and strong regularity; we shall define multipliers on and
the bidual of a Banach function algebra using the Arens products, noting that sometimes
a Banach function algebra is an ideal in its bidual. We shall also define dual Banach
function algebras.

In Chapter 3, we shall give some preliminary results on pointwise contractive Banach
function algebras and, in particular, pointwise contractive uniform algebras. We shall
define an abstract Segal algebra with respect to a given Banach function algebra.

In Chapter 4, we shall define the separating ball property and weak separating ball
property for Banach function algebras, and shall obtain some results, in particular in-
volving strong boundary points and Gleason parts for uniform algebras.

In Chapter 5, we shall introduce the key space L(A) for a Banach function algebra
A, and use it to define the BSE norm on A. The terminology ‘BSE norm’ arises from the
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6 H. G. Dales and A. Ulger

Bochner—Schoenberg—Eberlein theorem, which shows, in particular, that the BSE norm
on a group algebra L'(G) for a locally compact abelian group G is equal to the given
norm. For example, in this chapter, we shall show that a Banach function algebra that
is an ideal in its bidual and has a bounded pointwise approximate identity has a BSE
norm.

The space L(A) will lead us in Chapter 6 to the definition of the Banach space
Q(A) = A”/L(A)*, an apparently new abstract definition; we shall prove that Q(A) is
also a Banach function algebra for every Banach function algebra A. The algebra Q(A)
has an identity if and only if A has a bounded pointwise approximate identity. The
character space ® 4 of A is naturally regarded as a subset of the character space ®g(4) of
Q(A) (although the embedding of ®4 in ®g(4 is rarely continuous). We shall consider
when ® 4, regarded as a subset of ®g(4), is open and discrete and when its closure is
compact. We shall see that ® 4 is open and discrete when A has the weak separating ball
property; the closure of ® 4 in ®g(4) is compact if and only if ® 4 is weakly closed in Al

In Chapter 7, we shall give a number of examples of Banach function algebras A, and
we shall determine the corresponding Banach function algebras Q(A) and the character
space ®g(4); most of these examples are uniform algebras or are related to well-known
Banach algebras that arise in abstract harmonic analysis. In particular, we shall identify
Q(A) when A is the disc algebra and when A is the group algebra of a locally compact
abelian group.

In Chapter 8, we shall characterize those Banach function algebras that have a con-
tractive pointwise approximate identity, and then use this to prove as a main result the
equality of two Banach function algebras Q(S7) and Q(Ss3), where S; and Sy are Segal
algebras with respect to the same Banach function algebra and both have contractive
pointwise approximate identities. This implies that a Segal algebra S with respect to
a group algebra on a locally compact abelian group G such that S has a contractive
pointwise approximate identity has a BSE norm only in the special case that S = L!(G).

In Chapter 9, we shall first prove in Theorem 9.3 a classification theorem for contract-
ive and for pointwise contractive unital Banach function algebras A that have a BSE
norm: these Banach function algebras are equivalent to uniform algebras that have spe-
cific properties. It will be shown in Examples 9.11 and 9.12, respectively, that pointwise
contractive and contractive Banach function algebras do not necessarily have a BSE norm
and may not be equivalent to a uniform algebra.

We shall also in Chapter 9 compare, for a Banach function algebra A, the two Banach

spaces (L(A),]-]|) and (¢*(®4),]-||,), and consider when these spaces are isomorphic or
isometrically isomorphic. For example, in Theorem 9.8, we shall show that the canonical

linear map ¢ : £1(®4) — L(A) is an isometric surjection if and only if A is pointwise
contractive and its BSE norm is equal to the uniform norm. We shall address the question
when Q(A) is a uniform algebra. In Theorem 9.10(i), we shall show that Q(A) is a uniform
algebra whenever it is the case that the above canonical linear map is an isometric
surjection; the converse holds whenever A is dense in the space (Co(®a), | |g,), but the
disc algebra will show that the converse is not true in general. Further, Example 9.11 will
show that, for a certain Segal algebra M with respect to Co((0, 1]), the algebra Q(M) is
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a uniform algebra, but M is not itself a uniform algebra.

In Chapter 10, we shall show that, for each Banach function algebra A that has a
contractive pointwise approximate identity and whose norm is equal to its BSE norm,
the multiplier algebra of A embeds isometrically into the unital Banach function algebra
Q(A). This result extends a known theorem in which it is supposed that the algebra A
has a contractive approximate identity.

In Chapter 11, we shall use the earlier results to consider when certain Banach function
algebras contain non-trivial closed ideals that are reflexive Banach spaces, and consider
when there are non-trivial weakly compact homomorphisms between two Banach function
algebras.

We shall conclude with a list of some questions that we cannot resolve.

Acknowledgements The first author is grateful to the second author and Bogazici
University for generous hospitality on several occasions.

We are very grateful indeed to the referee for a very careful reading of the first and
second submissions of this manuscript, and for many valuable comments that led to
corrections and improvements of some initial theorems.
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2. Notation and terminology

We shall now recall some definitions and notations that we shall use in this memoir; in
general, we shall follow the notation of the monograph [12] and our earlier paper [18].

The natural numbers and integers are N = {1,2,3,...} and Z, respectively; the
complex plane is denoted by C; the open unit disc in C is denoted by

D={zeC:|z| <1},

and the unit circle is T = {z € C: |z| = 1}. The closed unit interval [0, 1] in the real line
R is denoted by I. For n € N, set N,, = {1,2,...,n}. The cardinality of a set S is denoted
by |S].

All linear spaces are taken to be over C unless stated otherwise. Let E be a linear
space, with a non-empty subset S. Then the linear span of S is lin .S and the convex hull
in E of S is denoted by co S.

Let F be a normed space. Then we denote the Banach space which is the dual space
of E by E’, with the duality specified by

(x,A\) = (z,\), ExE —C;

sometimes this duality is written as (-, -)g g. The second dual space, or bidual space,
of Eis E” = (E')’, and we regard E as a subspace of E”; the canonical embedding is
kg : E — E”, where

(kp(x),\) = (x,)\) (r€E,NEE).

The closed ball in F that is centred at 0 and of radius r > 0 is Ej,j; the weak topology
on E'is o(E, E') and the weak-+ topology on £ is o(E’, E). Thus the closed ball E, is
weak-+ compact and Ej,) is weak-* dense in E[’; | for each r > 0.

Suppose that |- ||; and ||-||, are two norms on a linear space E. Then we say that

Il -1l; = |- |l5 if there is a constant C' > such that ||z[|; < C'||z||, (z € E), and

-1y ~ 11 ll
when the two norms are equivalent, so that ||-|; < |- ||y and |||l < |- [l;-
Let E and F' be two Banach spaces. The Banach space of all bounded linear operators
from E to F is denoted by
(B(E, F), [l “1lop)

with B(E) for B(E,FE). Let T € B(E,F). Then T' € B(F',E’) and T € B(E", F") are
the adjoint and the second adjoint of T, respectively; certainly, we have

_ / "
HTHop - ||T || T ||op :

op = I
The two spaces E and F' are isomorphic if there is an operator T' € B(FE, F) that is
bijective, and we then write

E~F;

the spaces are isometrically isomorphic if there is an isometry T € B(F,F) that is
bijective, and we then write
ExF.
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Let E be a Banach space with a closed linear subspace F. Then the quotient space
E/F is a Banach space with respect to the quotient norm. The annihilator in E’ of a
non-empty subset S of E is

St={NeFE:\|S=0},

so that S is a weak-* closed linear subspace of E' and E’/S+ = F' where F is the
closed linear span of S. For each closed linear subspace F' of FE, we have

H/\—|—FJ‘|| =inf{|[A+pl:p € FJ‘} :sup{\«, A:Ce F[ll} (2.1)

for each A € E'; further, we always have (E/F)' = F+. Indeed, A € F+ acts on E/F by
setting
(x+F,A)={(x,\) (x€E). (2.2)

The space F" is identified with the space (F1)* .

A closed subspace F' of a Banach space E is complemented in E if there is a closed
subspace G of E such that E = F @ G, or, equivalently, such that there is a projection
P € B(E) with P(E) = F. We shall later consider Banach spaces that are complemented
in their biduals. For example, suppose that F is isomorphically a dual Banach space, so
that E ~ I’ for a Banach space F'. Then the dual of the canonical embedding of I into
F" is a bounded projection

P:A—A|kp(F), E"—F,

such that |[P: F"" — F'|| ) =1 (this is the Dizmier projection), and so we can regard F’
as a closed subspace of E’ and write

E' =kp(E)o Ft=E@ F* (2.3)

as a Banach space; this shows that E is complemented in its bidual.

All algebras considered here are linear (over C) and associative. The centre and char-
acter space of an algebra A are denoted by 3(A) and ®4, respectively; the maximal
modular ideal that is the kernel of a character ¢ is denoted by M,. An idempotent in A
is an element p € A such that p? = p. Let B be a subalgebra and I an ideal of A such
that A = B @ I as linear spaces. Then A is the semi-direct product of B and I, and we
write

A=BxI.

The algebra formed by adjoining an identity to a non-unital algebra A is denoted by A¥;
in the case where A already has an identity, we set Af = A.

Let A be a Banach algebra. Each character ¢ on A is continuous, with [|¢|| < 1, and
® 4 is a locally compact subspace of the dual space A’ of A (when A’ has the weak-x*
topology); in fact, ® 4 U{0} is always a weak-*-compact subset of Ail], and ® 4 is compact
when A has an identity.

Let I be a closed ideal in a Banach algebra A, with quotient map ¢ : A — A/I. Then
the identification of ¢ € ®4,; with ¢ o g € &4 gives a homeomorphism that identifies
/1 as a closed subset of ®4 U {0}.

A multiplier of a commutative algebra A is a linear map T : A — A such that

T(ab) = aT(b) =T(a)b (a,be A).
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The collection of all the multipliers on A is a unital, commutative subalgebra of the
algebra of all linear maps on A; it is called the multiplier algebra of A, and it is denoted
by M(A). For a study of multipliers on general (non-commutative) Banach algebras, see
the texts [12, 41, 42, 44], for example.

We denote by (C*(K),|-|) the commutative Banach algebra of all bounded, contin-
uous functions on a non-empty, locally compact space K (always taken to be Hausdorff),
where || is the uniform norm on K. The function that is constantly 1 on K is 1k,
so that 1 is the identity of C'°(K). We denote by C(K) the algebra of all continuous
functions that vanish at infinity on K (with C(K) for C'o(K) when K is compact), so
that Co(K) is a closed ideal in C'*(K). The ideal in C¢(K) consisting of the functions of
compact support is C'oo(K), so that Cgo(K) is uniformly dense in Cy(K).

Let S be a non-empty set, and let E be a subset of C. The weakest topology 7 on S
such that each f € E is continuous with respect to 7 is the E-topology on S it is denoted
by 7.

DEFINITION 2.1. Let K be a non-empty, locally compact space. A function algebra on
K is a non-zero subalgebra A of C'?(K) that separates strongly the points of K, in the
sense that, for each x,y € K with z # y, there exists f € A with f(z) =0 and f(y) = 1,
and is such that the given topology on K is 74.

In the case where A is a subalgebra of C'o(K) that separates strongly the points of K,
the topology 74 is necessarily equal to the given topology on K [12, Proposition 4.1.2].

DEFINITION 2.2. Let K be a non-empty, locally compact space. A Banach function al-
gebra on K is a function algebra A on K that is also a Banach algebra with respect to
a norm || -||. In the case where 1x € A and ||1x|| = 1, the algebra A is a unital Banach
function algebra on K.

Let (A, |- ||4) and (B, || - || ) be Banach function algebras on the same locally compact
space K. Then we write write A = B to show that A and B consist of the same functions
on K in this case, || - || 4, ~ || || 5- We write ((4, | -] 4) = (B, | - || z) to show that, further,
the norms || - ||, and || - | 5 are equal on the algebra, so that A = B as Banach spaces.

Each Banach function algebra A on a locally compact space is a commutative, semi-
simple Banach algebra and ||f|| > |f|x (f € A). Further, A is algebraically isomorphic
by the Gel'fand transform to a Banach function algebra on ®, that is contained in
Co(®4), and we shall usually identify A with its image by this transform. The space @ 4
is compact if and only if A has an identity. See [12, 18], etc.

Let A be a Banach function algebra. A subset Q2 of ® 4 is determining for Aif f =0
whenever f € Aand f|Q=0.

DEFINITION 2.3. A Banach function algebra (A, ||-||) on a non-empty, locally compact
space K is a uniform algebra if ||f|| = |f|, (f € A), and A is equivalent to a uniform
algebra on K if there is a constant C' > 0 such that [|f|| < C|f|, (f € A), so that
-~ 1l

Thus C°(K) is a unital uniform algebra on K, and Cy(K) is a uniform algebra on K.
The Gel’fand transform of a uniform algebra A is a uniform algebra on ® 4.
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The classic texts on uniform algebras include those of Browder [7], Gamelin [31],
and Stout [51]. Note that, in these texts, a uniform algebra is, by definition, a closed
subalgebra A of C(K) for a (non-empty) compact space K such that A contains the
constant functions and separates the points of K, so our definition is somewhat more
general.

Let A be a Banach function algebra on a non-empty, locally compact space K. The
evaluation character at x € K is the map

ex: [ f(x), A—=C. (2.4)

The map  — ¢, K — ®4, is a homeomorphic embedding, and we regard K as a
subspace of ®4. The algebra A is natural if K = ® 4. For x € K, we write M, for the
corresponding maximal modular ideal of A that is the kernel of the character ¢,, and, for
convenience, we also set Mo, = A. In the case where |K| > 2, the ideal M, is a Banach
function algebra on K \ {z} for each z € K.

Let M be a uniform algebra, and suppose that M does not have an identity, so that
® ) is not compact. Set K = @y, U {oo}, the one-point compactification of ®,;, and
regard M as a subalgebra of C(K) by setting f(co) =0 (f € M). We identify A = M*
with {z1x + f: 2 € C, f € A}, and define

21k + fll = [21k + flx (2 €C, fe M),

so that A is a natural, unital uniform algebra on K and A contains M as a maximal
ideal.

The Banach space of all complex-valued, regular Borel measures on a locally compact
space K with the total variation norm is M (K), identified with the dual space, C(K)’,
of Co(K) by the Riesz representation theorem. A particular closed subspace of M (K) is
(1K), identified with

{u =3 aude € M) Jlull = 3 ol < oo} 7

zeK zEK

where ¢, is the point mass at  and o, € C for z € K.

Let K be a non-empty, locally compact space. Then f(z) = f(z) (z € K) for
f € CP(K). A natural Banach function algebra (4, -||) on K is self-adjoint if f € A
and ||7|| = || f|l for each f € A, so that the map f + f is an isometric involution on A.
Of course, every self-adjoint Banach function algebra on K is dense in (C'o(K), |- |x)-

Let (A, ]| -||) be a Banach function algebra, with multiplier algebra M(A). We regard
M(A) as a subalgebra of C'®(®4) by setting

M(A)={f € C¥d,): fAC A},

so that (M(A), ]| - [|,,) is a unital Banach function algebra on ® 4, and we regard A as an
ideal in M(A) by identifying a function f € A with the multiplier L; : g — fg, A — A,
in M(A). Clearly we have

[flo, < I fllop < 71 (f € 4). (2.5)

Let A be a Banach function algebra on a non-empty, locally compact space K. A
non-empty, closed subset S of K is a peak set for A if there is a function f € A with
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flx)=1 (z € S)and |f(y)| <1 (ye K\S). A point x € K is a peak point if {x} is a
peak set and a strong boundary point if, for each open neighbourhood U of z, there exists
f € Awith f(z) = [f|lx =1 and |f[fy < 1. In the case where X is metrizable, every
strong boundary point for A is a peak point.

Let K be a non-empty, compact subspace of C™, where n € N. The coordinate pro-
jections on K are denoted by Zi,...,Z,. Consider the algebra of restrictions to K of
all polynomials; the uniform closure in C(K) of this algebra is denoted by P(K). The
uniform closure of the restrictions to K of the rational functions that are analytic on
a neighbourhood of K is denoted by R(K), and the space consisting of all functions in
C(K) that are analytic on int K, the interior of K, is denoted by A(K). Thus P(K),
R(K), and A(K) are unital uniform algebras on K with

P(K)C R(K) C A(K) C C(K).

In particular, we shall mention the disc algebra, defined to be P(D) = A(D); A(D) is a
natural uniform algebra on D.

A Banach function algebra A on a locally compact space K is reqular on K if, for
each non-empty, closed subspace S of K and each z € K \ S, there exists f € A with
f(z) =1and f| S = 0; a Banach function algebra A is regular if it is regular on ® 4. For
x € K U{oo}, we set

Jo = Jo(A)={f € ANCoo(K) : = & supp f},

so that J, is also an ideal in A, with J, C M. Here, supp f, the support of f € A, is the
closure in K of the set {z € K : f(z) # 0}. The Banach function algebra A is strongly
reqular at x if J, is dense in M, and A is strongly regular on K if this holds for each
x € K U{oo}. Every strongly regular Banach function algebra is natural and regular.
The algebra A is Tauberian if J(A) is dense in A, and so a strongly regular Banach
function algebra is Tauberian. For proofs of these remarks and more, related properties
of Banach function algebras, see [12, §4.1].

Let A be a Banach function algebra, and suppose that I is a closed ideal in A. The
hull of I is the closed subset

hI)={pe®a:p(f)=0(fel)}
of ®4. We can identify ®; with ®4 \ h(I) and ®4,; with h(I). For a closed subset S of
D 4, set
I(S)={feA:f]S=0},
so that I(S) is a closed ideal in A, and also set
J(S)={f € Joo :supp f NS = 0},
an ideal in A. When A is a regular Banach function algebra, A(I(S)) = S and

J(S)ycIcI(S), where S=h(I), (2.6)

for each closed ideal I in A. The set S is a set of synthesis if J(S) = I(S).

A Banach sequence algebra on a non-empty set S is a Banach function algebra A
on S (taken with the discrete topology) such that coo(S) C A C £°°(S), where cgo(S)
denotes the algebra of functions of finite support on S and £°°(S) is the algebra of all
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bounded functions on S. A natural Banach sequence algebra on S is contained in ¢(S).
For Banach sequence algebras, Jo,(A) = cgo(S), and so a Banach sequence algebra is
Tauberian if and only if coo(S) is dense in A. A Tauberian Banach sequence algebra is
natural, a natural Banach sequence algebra is always regular, and it is strongly regular
if and only if it is Tauberian. For example, the space ¢P of all p—summable sequences on
N is a Tauberian Banach sequence algebra whenever 1 < p < oc.

Let A be a Banach algebra. Then the dual and bidual spaces A’ and A" are Banach A-
bimodules for operations denoted by -. There are two products, O and <, on the Banach
space A”, called the first and second Arens products, that extend the module actions on
A”. We recall the definition of the product O. Let a € A, A € A, and M € A”. Then
a-A€ A and A - M € A’ are defined by

(b,a - Ay={(ba, A) (beAd), {(a, A\-M)=M,a-A) (a€d,
and then, for M,N € A”, we define MON € A” by
(MON, A) = (M, N -\ (Aed).

The basic theorem of Arens is that k4 : A — A” is an isometric algebra mono-
morphism of a Banach algebra A into both (A”, O) and (A”, ¢ ). The algebra A is
Arens regular if the two products O and ¢ agree on A”.

For detailed terminology and a full definition of the two Arens products, see [12, §2.6].

Let A be a Banach algebra. We shall usually identify A with k4(A) and write just
A" for (A”, 0). For each N € A”, the map

Ry :M—MON, A" =5 A",
is always weak-* continuous on A”, and the map L, : M~ a - M, A” — A" is weak-*
continuous for each a € A. The algebra A is Arens regular if and only if the map

Ly M NOM, A" — A",

is also weak-* continuous for each N € A”. ( For certain ‘strongly Arens irregular’ Ba-
nach function algebras, including the group algebra of a locally compact group, the map
Ly :M— NOM, A” — A”, is continuous only when N € A4; see [16, 17].)

Let A be a commutative Banach algebra. We see that

M-p=¢p -M=(M,p)p MecA” pedy), (2.7)
and so
(MON, o) = (M, ) (N, ) (M\Ne A", pedy). (2.8)

For each ¢ € ®4, define ¢ on A” by setting (M) = (M, ¢) (M € A”). Then it follows
from (2.8) that ¢ € ® 4., and so we shall regard ® 4 as a subset of ® 4~ via the embedding
@ — @. However the embedding of ®4 into ® 4 is not necessarily continuous; this occurs
if and only if the weak and weak-* topologies of A’ coincide when restricted to ® 4. There
is a natural projection

A — | Kka(A), Par— DyU{0}.

A commutative Banach algebra A is Arens regular if and only if (A”,0) is commuta-
tive, i.e., if and only if 3(A”) = A”. For example, for each locally compact space K, the



14 H. G. Dales and A. Ulger

algebra Co(K) is Arens regular, and the bidual C'o(K)” is identified with C'(K), where
K is the compact space which is the hyper-Stonean envelope of the locally compact space
K; see [13] for a discussion and several ‘constructions’ of K. Since closed subalgebras
(and quotients) of Arens regular Banach algebras are Arens regular, it follows that every
uniform algebra A is Arens regular, and A” is a closed subalgebra of C(K) (although it
may not separate the points of K). Thus A” is a uniform algebra on ® 4.

A Banach function algebra A is an ideal in its bidual if k4 (A) is an ideal in (A", O).
This is the case if and only if the map

Ly:g—fg, A=A,

is weakly compact for each f € A. Let A be a Tauberian Banach sequence algebra. Then
it is easy to see that A is an ideal in its bidual [18, Proposition 2.8].

For the next definition, we follow the new book of V. Runde [49, Chapter 5], where
references to earlier work are given.

Let A be a Banach algebra, with dual module A’, and take a closed subspace F of
A’. Then there is a canonical operator 6 : a — k4(a) | F, A — F’, so that

0(a)(\) = (a, \) (a€ A, \eF).

Clearly 6 is a contraction, and € is a module homomorphism when F' is a submodule
of A’. A predual for A is a closed submodule F' of A’ such that the above map 6 is an
isomorphism. The algebra A is a dual Banach algebra if it has a predual; A is an isometric
dual Banach algebra if the map 6 is an isometry. A predual for A is unique if it is the
only closed submodule of A" with respect to which A is a dual Banach algebra.

We note that a predual of a Banach algebra is not necessarily unique. For example,
let E be any non-zero Banach space, so that E is a Banach algebra for the zero product.
Then any Banach space F' such that F/ = F, regarded as a closed subspace of F' = E’ is
a predual for E, so that E is a dual Banach algebra. Certainly the Banach space ¢! has
many Banach-space preduals no two of which are mutually isomorphic as Banach spaces.
Thus, strictly, we should refer to a pair (A, F) when discussing dual Banach algebras.
However, when the predual is clear from the context, as will almost always be the case
in this memoir, we shall not indicate F' in the notation, and just say that ‘A is a dual
Banach algebra’. A dual Banach function algebra is a Banach function algebra that is a
dual Banach algebra.

For example, let G be a locally compact group. Then it is standard that the measure
algebra (M(G), *,||-||) on G is a dual Banach algebra with predual C'o(G); for details,
see [49, Example 5.1.3]. The uniqueness of preduals for various examples, including M (G)
and some semigroup algebras, is explored in the papers [20, 21]. A C*-algebra is a dual
Banach algebra if and only if it is a von Neumann algebra.

Let A be a Banach algebra that is a dual Banach algebra with predual F. Then it is
clear that the product in A is separately o(A, F')-continuous. On the other hand, as in
[49], a Banach space F that is an isomorphic predual of A and such that the product in
A is separately o (A, F)-continuous is a predual of A in a natural way.

Let (A, F) be a dual Banach algebra. Then it follows that

A" =kp(A) o Ft =Aa Ft (2.9)
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as a Banach space, where the projection P : A” — A is the restriction map given by
PM)=M|F (M€ A"), and hence F* is a weak-#-closed ideal in A”, and

A" = Ax Ft (2.10)
as an algebra.

Let A be a Banach algebra. Then it is immediate from the definition that A” is a dual
Banach algebra, with Banach-algebra predual A’, if and only if A is Arens regular. In
particular, in the case where A is a uniform algebra, the bidual A” is a uniform algebra
on ® 4 that is a dual Banach function algebra.

We shall several times use the following famous Markov-Kakutani fized-point theorem;
see [23, V.10.6] or [45, Proposition (0.14)] for classical proofs.

THEOREM 2.4. Let L be a non-empty, compact, convex set in a locally convexr space.
Suppose that F is a commuting family of continuous, affine maps from L to L. Then the
operators in F have a common fixed point in L. m

We shall also use the Schauder—Tychonoff fized-point theorem [23, V.10.5].

THEOREM 2.5. Let K be a non-empty, compact, convex set in a locally conver space.
Then every continuous function from K to K has a fixed point. m
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3. Approximate identities

We shall recall the definitions of various types of approximate identities that we shall
consider in a commutative Banach algebra, and give some preliminary results.

DEFINITION 3.1. Let A be a commutative Banach algebra. A net (e,) in A is an approz-
imate identity if lim, eqpa = a (a € A); it is a bounded approzimate identity (BAI) if,
further, sup, ||ea|| < oo, and in this case the bound is sup, ||es|. A BAI is a contractive
approximate identity (CAI) if the bound is 1.

The following result is immediate.

PROPOSITION 3.2. Let A be a Banach function algebra with a bounded approximate iden-
tity of bound m. Then

[fllop < WM< mllflle,  (f €A,

and so || -|| and || - ||, are equivalent on A. m

op

DEFINITION 3.3. Let (4, ||| 4) be a Banach function algebra. A Banach function algebra
(S, -llg) on @4 is a Segal algebra (with respect to A) if S is an ideal in A and if there
is a net in S that is an approximate identity for both (A, |-/ ,) and (S, |- |/s)-

Thus, in this situation, S is dense in A; the Banach function algebra S is natural on
® 4, and we may, and shall, suppose that

Iflla <Wflls (f€9) and |fglls <Wfllalgls (feA ges).
This shows that a Segal algebra is a Banach A-module in the sense of [12, p. 239].

Examples of Segal algebras will be given later. For more information on Segal algebras,
see [12, pp. 409-410, 491-492].
The following two definitions were essentially given as [18, Definitions 2.3 and 2.11].

DEFINITION 3.4. Let A be a Banach function algebra. Then A is contractive if A and
each of its non-zero, maximal modular ideals have a contractive approximate identity.

For example, for any non-empty, locally compact space K, the Banach function algebra
Co(K) is contractive. Note that Co(K) = C when |K| = 1.

DEFINITION 3.5. Let A be a Banach function algebra. A net (ey) in A is a pointwise
approzimate identity (PAI) if
limeqa(p) =1 (p € Pa);
the pointwise approximate identity (e, ) is bounded, with bound m > 0, if
sup |leq|| = m,
«@

and then (e,) is a bounded pointwise approximate identity (BPAI); a bounded pointwise
approximate identity of bound 1 is a contractive pointwise approzimate identity (CPAI).

The algebra A is pointwise contractive if A and each of its non-zero, maximal modular
ideals have a contractive pointwise approximate identity.
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We note that, despite the use of the term ‘approximate identity’ in the above def-
inition, a bounded pointwise approximate identity need not be an approximate identity
in the sense of Definition 3.1.

Thus a Banach function algebra (A, |- ||) with |®4]| > 2 is pointwise contractive if
and only if, for each ¢ € ®4 U {o0}, each non-empty, finite subset F of &4 with ¢ & F,
and each € > 0, there exists f € M, with ||f|| <1+eand |1 - f(¢)] <e (¢ € F), and
this holds if and only if, for each ¢ € ®4 U{oo}, there exists M € M, such that [M]|| =1
and (M, ¥) =1 (1 € B4\ {i2}).

Examples of Banach function algebras with contractive pointwise approximate iden-
tities, but no approximate identities, were first given by Jones and Lahr in [37]; further
examples are given in [18] and [35]. We shall note in Example 7.7 that there are natural,
unital uniform algebras A on a compact space with maximal ideals M such that M has a
contractive pointwise approximate identity, but such that M has no approximate identity.

The following is clear.

PROPOSITION 3.6. Let A be a Banach function algebra, and take o € ® 4 such that M, is

non-zero. Suppose that A and M, have bounded pointwise approximate identities. Then
there exists an element M € A” such that (M, ¢) =1 and (M, ¢) =0 (¢ € Do\ {¢}). n

PROPOSITION 3.7. Let A be a Banach function algebra that is an ideal in its bidual, and
suppose that A has a bounded pointwise approzimate identity. Then A has a bounded
approximate identity with the same bound.

Proof. This is [18, Proposition 3.1]. m
PROPOSITION 3.8. Let A be a pointwise contractive Banach function algebra.

(i) Take F and G to be disjoint, non-empty, finite subsets of ® 4, and take e > 0. Then
there exists f € Apy such that |1 — f(p)| <e (¢ € F) and such that f(¢) =0 (¢ € G).

(ii) Let 1, ..., @n be distinct points in ® 4, take oy, ..., o, € D, and take e > 0. Then
there exists f € Apyy such that |f(pi) — o] < e (i € Ny).

Proof. (i) Set k = |G|, and choose 1 € (0,¢/k). For each ¢ € G, there exists f,, € Ay
with fy(¢¥) =0 and |1 — fyu(p)| <n (¢ € F). Now define

f=11{fe v ecy.
Then clearly f € Ap) and f(v) =0 (¢ € G). For each ¢ € F, we have

L= F@I <Y A= fu(p)] v G <kn<e,
as required.

(ii) First suppose that ai,...,a, € [0,1], say 0 < a3 < -+ < @, < 1, and set
ag = 0. By (i), for each j € N,, there exists f; € A with || f;|] < a; — a;_1, with
filgs)=0(i=1,...,5—1), and with

€ o
[fili) = (g —aj-)l < (- (@=4,...,m).
Define f = f1 + -+ + fu. Then f € Apj and [f(pi) — aq| < e/4 (1 € N,).
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Now consider the general case, where ai,...,a, € D. For j € N, there exist
Q5,02 5,03 5,04 5 € [0, 1] such that
o =ay; — o ti(as; — o).
For each i = 1,2,3,4, choose f; € Ay with |fi(x;) — as ;] < e/4 (j € Np), and then set

[ =fi— f2+i(f3s — fa), so that f € Ay. Clearly we have |f(¢;) — ;| <e (j € N,), as
required. m

LEMMA 3.9. Fiz ¢ > 0 and (o € T. Then there exist § > 0 and h € A(D);y) with
|h(0) — 0| < & and |h(2) — 1| < & whenever z € D with |z — 1| < 4.

Proof. Take r € (1 —¢,1), and set

- (58) (155 wem

where ¢ € T is to be specified. Then h € A(D)y;. Since h(1) = 1, clearly there exists

0 > 0 such that |h(z) — 1] < € whenever z € D is such that |z — 1] < §. We see that
h(0)/r = (r — ¢)/(1 — r¢). Since the map

CH(T—C)/(l—’I’C), TﬁT?
is a continuous surjection, there is a choice of ¢ € T such that h(0) = r(p, and this implies
that |h(0) — (o] =1 —r < &, as required. m

We shall now show that, in the case where A is a uniform algebra, we can reduce the
bound ‘4’ that occurs in Proposition 3.8(ii) to ‘1’.

PROPOSITION 3.10. Let A be a pointwise contractive, unital uniform algebra. Take £ > 0,
n €N, ¢1,...,0, to be distinct points in ®4, and (y,...,(, € T. Then there exists
fe A[l] with
1f(5) =Gl <e (G eN).

Proof. We have shown in Lemma 3.9 that there are ; > 0 and hy € A(D)}y) with
|h1(0) = (1] < e/n and |h1(z) — 1| < &/n whenever z € D with |z — 1| < ;. By Prop-
osition 3.8(i), there is g1 € Apj with gi1(¢1) = 0 and |g(p;) — 1| <61 (j =2,...,7n). Set
fi = 1 o g1, 0 that f € Ay, Then |fi(¢1) — G| < 2/n and |fi(gy) — 1] < &/n for
j1=2,...,n.

Similarly, there exist functions fi,..., f, € Ap) such that |f;(¢;) — (| < ¢/n and
|filg;) — 1] <e/n fori,j € N, with i # j.

Set f = f1 -+ fn, sothat f € Ay and

1F(0i) = GL< |filoi) = Gl + D |files) =1 <n - (¢/n) =¢
i=1,i#j

for each j € N,,, as required. =
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4. The separating ball property

In this section, we shall introduce the separating ball property for Banach function alge-
bras. The notion originates in the paper [57]. We shall also introduce a related notion by
defining when a Banach function algebra ‘has norm-one characters’.

DEFINITION 4.1. Let A be a Banach function algebra, and take ¢ € ® 4. Then A has the
separating ball property at ¢ if, given ¢ € &4 U {oo} with ¢ # ¢, there is f € (My)p
with f(p) = 1. The algebra A has the separating ball property if it has the separating
ball property at each p € ® 4.

Many Banach function algebras that arise in the theory of harmonic analysis have the
separating ball property. For example, the Fourier algebra A(T") has the separating ball
property for each locally compact group I' [57, Proposition 2.5] (see also Example 11.3(ii)),
but it has a bounded pointwise approximate identity if and only if I" is amenable [8]. The
Banach sequence algebras £P for 1 < p < oo also have the separating ball property, but
no bounded pointwise approximate identity.

Note that, for each non-empty, locally compact space K, the algebra Cy(K) has
the separating ball property; in particular, the one-dimensional algebra (C, |-|) has the
separating ball property.

PROPOSITION 4.2. Let A be a Banach function algebra, and take ¢ € ® 4. Suppose that
A has the separating ball property at . Then @ is a strong boundary point for A.

Proof. There exists fo € Apy with fo(p) = 1. Set L = {¢p € ®4 : |fo(¢)] > 1/2}, so that
L is a compact subset of ® 4.

Take an open neighbourhood U of ¢ in ®4. For each ¢ € L\ U, there exists
Jo € (My)p) with fy(p) = 1, and then there is a neighbourhood Uy of 9 such that
|fy(x)| <1/2 (x € Uy). Since L\ U is compact, there are n € N and ¢1,...,9, € L\U
such that

Uy, i eNg} D@4\ U.

Set f = fofy, -+ fy,, so that f € Ay, f(o) =1, and [f(¥)] < 1/2 (¢ € P4\ U). This
shows that ¢ is a strong boundary point for A. m

We shall see in Theorem 4.12 that the converse of the above proposition holds for
certain uniform algebras, but it does not hold for arbitrary Banach function algebras.

The first main result of this section is an extension of [57, Lemma 5.1].
THEOREM 4.3. Let A be a Banach function algebra.

(i) Take ¢ € ® 4, and suppose that A has the separating ball property at w. Then there
is an idempotent E, € Af}y with (Ey, @) =1 and (Ey,¢) =0 (¥ € 24\ {4}).

(ii) Suppose that A has the separating ball property. Then the space ® 4 is discrete
with respect to the relative weak topology, o(A’, A”).

Proof. (i) Define the set
S={feAn: flp)=1}.
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Since A has the separating ball property at ¢, the set S is not empty, and it is clearly a
convex subset of the space A. Consider S as a subset of A’[’l], and take L to be its weak-%
closure in A”. Then L is a non-empty, compact, convex set in the locally convex space
(A", 0(A”, A”)). For each f € S, the map
Ty:Me f-M, A" — A",

is linear, and so Ty | L is affine, and T is continuous with respect to the weak-* topology
o(A”, A"). Further, Tf(S) C S, and hence Ty (L) C L, for each f € S, and the operators
Ty commute. By the Markov-Kakutani theorem, Theorem 2.4, there exists E, € L C Aﬁ]
such that f - E, = E, (f € 5). By taking a net in S that converges to E,, weak-x, we
see that E, is an idempotent in A”. Clearly (E,, ) = 1. For each ¢ € &4 \ {¢}, there

exists f € S with f(¢0) =0, and so (E,, ¥) = f(¥)(E,, ¥) = 0.
From this, it follows that ¢ is isolated in ® 4 with respect to the weak topology.

(ii) It follows immediately that ® 4 is discrete with respect to the weak topology when
A has the separating ball property. =

As a first application of the above theorem, we present the following result.

COROLLARY 4.4. Let A be a Banach function algebra with the separating ball property,
and suppose that A has a bounded pointwise approximate identity with bound m. Then:

(i) each non-zero, mazximal modular ideal of A has a bounded pointwise approximate
identity with bound m + 1;

(ii) the algebra A is reflexive if and only if it is a finite-dimensional space.

Proof. (i) Take ¢ € ® 4, and consider the maximal modular ideal M,,, assumed to be non-
zero. Let E,, be the idempotent in Aﬁ] specified in Theorem 4.3(i), and let E be a weak-x
accumulation point in Aﬁn of the BPAI in A. Set F, = E — E, so that F, € Aﬁn_ﬂ].
Further, (Fy, ) = 0and (Fy,,9) =1 (¢ € @4\ {p}). A net in (M,)[,41] that converges

weak-* to F, is the required BPAI in M,,.

(ii) Suppose that A is reflexive, and hence an ideal in A”. By Proposition 3.7 and
clause (i), the algebra A and every non-zero, maximal modular ideal of A has a BAT;
since A is reflexive, each of these ideals has an identity, and so ® 4 is compact and each
point of ® 4 is isolated. Hence ® 4 is finite, and so A is a finite-dimensional space. m

A bound for a bounded pointwise approximate identity in M, that arises in clause
(i) of the above corollary is ||[E — E||, which is at most m + 1. In general, the bound
m + 1 cannot be improved. For example, let I' be an infinite, locally compact abelian
group. Then the Fourier algebra A(T") has a contractive approximate identity, and so, by
the corollary, every non-zero, maximal modular ideal in A(T") has a bounded pointwise
approximate identity of bound 2. It is shown in [18, Example 3.15] that 2 is the minimum
such bound.

The maximal ideal {f € A(D) : £(0) = 0} in the disc algebra does not have a bounded
pointwise approximate identity, and so A(ID) is not pointwise contractive; this shows that
we cannot remove the hypothesis that A have the separating ball property in Corollary
4.4 when obtaining clause (i).
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We also introduce the following definition.

DEFINITION 4.5. Let A be a Banach function algebra, and take ¢ € ® 4. Then A has the
weak separating ball property at ¢ if, given ¢ € ® 4 U {oo} with ¢ # ¢, there is net (f,)
in (My)q such that lim, f,(¢) = 1. The algebra A has the weak separating ball property
if it has the weak separating ball property at each ¢ € ®4.

Each pointwise contractive Banach function algebra and each Banach function algebra
with the separating ball property has the weak separating ball property.

Let A be a Banach function algebra with |®4| > 2, and take ¢ € ®4. Suppose
that, for each 1 € ®4 \ {0}, there is a net (g,) in Ap) such that lim, g,(¢) = 1 and
lim, g, (¢) = 0. Set

fv= (93 - gv('lzlj)gu)/ ngz/ - gu(d))guH

for each v. Then the net (f,) is contained in (My);) and lim, f, (@) = 1. It follows that
A has the weak separating ball property.

DEFINITION 4.6. Let A be a Banach function algebra. Then A has norm-one characters
if ol =1 (p € Da).

Certainly each unital Banach function algebra has norm-one characters; also, A has
this property whenever A has the weak separating ball property. On the other hand,
consider the maximal ideal M = {f € A(D) : f(0) = 0} in the disc algebra, so that
@5 =D\ {0}. Then, for each 2z € C with 0 < |z] < 1, we have ||e,|| = ||, and so M does
not have norm-one characters.

The following remark is obvious.

PROPOSITION 4.7. Let A be a Banach function algebra with |®4| > 2. Then A has
the weak separating ball property if and only if M, has norm-one characters for each
peEdy. n

PROPOSITION 4.8. Let A be a Banach function algebra that is reflexive as a Banach space
and is such that ® 4 is connected. Then the following are equivalent;

(a) A is unital;
(b) A has norm-one characters;
(c) there exists p € ® 4 such that ||| = 1.
Proof. (a) = (b) = (c) These implications are immediate.

(¢) = (a) Take p € &4 with ||¢|| = 1. Since A is reflexive, it follows from the Hahn—
Banach theorem that there exists u € A with [Ju| = 1 and u(yp) = 1. Define

K =co{u" :n €N},

so that K is a convex and weakly compact set in A with K C Apj, and v(p) =1 (v € K).
The map L, | K : K — K is weakly continuous on K, and so, by the Schauder—Tychonoff

fixed point theorem, Theorem 2.5, this map has a fixed point: there exists v € K such

2

that uv = v. Clearly wv = v (w € K), and, in particular, v* = v, so that v is an
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idempotent in A. Since v(p) =1 and P 4 is connected, the element v is the identity of A.
Also |lv|| =1, and so A is unital. m

In Example 3.3 of [18], there are examples of Banach function algebras that are
reflexive as Banach spaces and are defined on connected, compact, infinite spaces. These
algebras are unital.

THEOREM 4.9. Let A be a dual Banach function algebra, with predual F C A’. Suppose
that ®ANF # 0 and that ¢ € oNF is such that |¢|| = 1 . Then there is an idempotent
e € Apj such that e(¢) = 1 and fe = e for each f € Apy with f(p) = 1.

Proof. Again consider the set

Se={f€Ap: flp)=1}.
Since |¢| = 1, there is a net (f,) in Apj with lim, f,(¢) = 1. Let f € Ap) be an
accumulation point of (f,) with respect to the topology o(A, F'). Then f € S, because
¢ € F, and so S, is not empty. Clearly S, is convex, and it is compact with respect to
the topology o(A, F). For f € S, the maps

Li:g— fg, So,—5,,

form a commuting family of affine maps that are continuous with respect to (A4, F'), and
so, again by Theorem 2.4, the family has a fixed point, say e € S, C Apy). Thus fe =e
for each f € S,, and, in particular, e = e. =

The following example shows that the condition that ¢ € F' in the above theorem
cannot be removed when seeking an idempotent.

EXAMPLE 4.10. Let A = (¢}(Z7), x) be the standard semigroup algebra on Z*, where
* denotes the convolution product, so that A is isomorphic to the natural, unital Banach
function algebra on D consisting of the continuous functions on T with absolutely conver-
gent Taylor series. The maximal ideal M of functions in A that vanish at 0 corresponds
to the algebra ¢! = ¢1(N); ¢o = ¢o(N) is a closed submodule of M’ = ¢£>°(N), and clearly
M is a dual Banach function algebra with predual c(. Let ¢ be a character on M that
corresponds to evaluation at a point of T. Then ||¢|| = 1, but ¢ & c¢. There is no non-zero
idempotent in A. m

The following example shows that the condition that ¢ € F' in the above theorem
cannot be removed when obtaining the conclusion that fe = e for each f € S,.

EXAMPLE 4.11. Let A =¢°° = C(pN), where SN is the Stone-Cech compactification of
N, so that A is a dual Banach function algebra, with predual £'. Of course, ®4 = N.
Take x € BN. In the case where 2 € N, so that e, € ¢!, the corresponding idempotent
of the above theorem is the characteristic function of 2. However, when 2 € SN\ N| so
that e, & ¢!, there is no idempotent e € Apy such that fe = e for each f € Apy; with

flz)=1.n
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4.1. Uniform algebras. We now recall some background concerning uniform algebras.

Let A be a uniform algebra on a non-empty, locally compact space K. The set of strong
boundary points for A is now called the Chogquet boundary of A, and is denoted by I'g(A).
A closed subset S of K is a closed boundary for Aif |f|g = |f|x (f € A); the intersection
of all the closed boundaries for A is a closed boundary, called the Silov boundary, T'(A).
Suppose that K is compact. Then, by [12, Corollary 4.3.7(1)], I'(4) = T'o(A) and I'(A4) is a
closed boundary. For example, let A = A(D) be the disc algebra. Then I'y(A) = I'(4) = T.

The next theorem relates approximate identities in a maximal ideal of a unital uniform
algebra to strong boundary points. We recall that M. is commutative because uniform
algebras are Arens regular, and that M/ is itself a natural uniform algebra on ® 4 \ {x}.
The result is an extension of [18, Theorem 4.7].

THEOREM 4.12. Let A be a unital uniform algebra on a non-empty, compact space K
such that |K| > 2, and take x € K. Then the following conditions on x are equivalent:

(a) x € To(A);
b) M, has a bounded approzimate identity;
c) M has an identity;

d) M, has a contractive approximate identity;

(
(
(
(e) x is an isolated point of ®ar;

(f) A has the separating ball property at x.

Proof. The equivalence of (a) and (b) is [12, Theorem 4.3.5, (d) < (e)]. Clauses (b) and
(c) are clearly equivalent; trivially, (d) implies (b), and (f) implies (a) by Proposition 4.2.

Now suppose that (c¢) holds; the identity of M is E. Since E is a non-zero idempotent
in the uniform algebra C(K), necessarily |E|fz = 1, and so a net in (M, )] that converges
weak-* to F is a contractive approximate identity for M, giving (d).

Clearly (c¢) = (e). On the other hand, suppose that (e) holds. Then, by Silov’s idem-
potent theorem, there exists E € A” that is the characteristic function of ® 4~ \ {z}, and
then F is the identity of M, giving (c).

Suppose that (a) holds, so that z is a strong boundary point for A, and take y € K
with y # . Then there exists f € Ap) with f(z) = 1 and [f(y)| < 1, say f(y) = a.
pee (1 =)~ a)

B(C)—m ((eD).
Then B € A(ﬁ)[l], and so g := B o f € Apy. Clearly g(x) = 1 and g(y) = 0, and hence
A has the separating ball property at z, giving (f). =

DEFINITION 4.13. A natural uniform algebra A on a non-empty, compact space K is a
Cole algebra if T'o(A) = K.

It was a long-standing conjecture, called the peak-point conjecture that C'(K) is the
only Cole algebra on a compact space K. The first counter-example was due to Cole [10],
and is described in [51, §19]; an example of Basener [3], also described in [51, §19], gives
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a compact space K in C?2 such that R(K) is a non-trivial Cole algebra. Further, Fein-
stein [25] obtained examples of non-trivial, regular Cole algebras on compact, metrizable
spaces.

The next result is an immediate consequence of Theorem 4.12.

COROLLARY 4.14. Let A be a natural uniform algebra on a non-empty, compact space
K. Then the following conditions are equivalent:
(a) A is a Cole algebra;
(b)
(c) A is contractive;
(d)

Let A be a natural uniform algebra on a non-empty, compact space K, and take
z,y € K. Then

A has the separating ball property;

each point of K is an isolated point of ® 4. m

x~y if da(z,y) <2,
where dy4 is the Gleason metric given by
da(z,y) = lles —gyll (2,9 € K).

Then ~ is an equivalence relation on K; the equivalence classes with respect to this
relation are the Gleason parts for A. These parts form a partition of K, and each part
is a completely regular and o-compact topological space with respect to the Gel’fand
topology; by a theorem of Garnett, these are the only topological restrictions on Gleason
parts. For a discussion of Gleason parts, including Garnett’s theorem, see [31, Chapter VI]
and [51, §16]. Clearly, {z} is a one-point Gleason part whenever x is a strong boundary
point, but the converse fails, as we shall see below and in examples to be given in Chapter
7.

The Gleason parts of D for the disc algebra A(D) are the one-point parts that cor-
respond to points of the circle T together with the open disc . We shall write H> for
H> (D), the uniform algebra of all bounded, analytic functions on D (taken with respect
to the uniform norm on D); take ® to be the character space of H*°. Then the Gleason
parts of ® are well known; an early fine exposition is given in [34]; see also [31, 51]. In
particular, each point of the Silov boundary ['(H®°) is a strong boundary point, but there
are one-point parts that are not in I'(H°°). In fact, each part of ® is either a one-point
part or an ‘analytic disc’.

A related paper on Gleason parts and biduals of uniform algebras is [40].

The next proposition is standard [51, Lemma 16.1]; our proof is slightly different.

PRrROPOSITION 4.15. Let A be a natural uniform algebra on a non-empty, compact space
K, and take z,y € K. Then the following are equivalent:

(a) llex — eyl = 2;

(b) for each € > 0, there exists f € (My)p) with |f(z)] > 1 —e.

Proof. (a) = (b) Take ¢ > 0. There exists g € Apj with |g(z) —g(y)| > 2 — . Set
f=(9—9W1k)/2. Then f € (My)p) and |f(z)| > (2—¢)/2>1 e
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(b) = (a) Take ¢ > 0. By Lemma 3.9, there exist § > 0 and h € A(D)};; with
|h(0) + 1| < & and |h(z) — 1| < & whenever z € D with |z — 1| < 6. Take f € (M,)[;) with
|f(z)] >1—0,and set g =h o f € Ap. Then

lex — eyl = [9(z) —g(y)| > 2 —2e.
This holds for each € > 0, and so ||e; — &, =2. =

COROLLARY 4.16. Let A be a natural uniform algebra A on a non-empty, compact space
K. Then a point x € K is such that {x} is a one-point part if and only if A has the weak
separating ball property at x. m

The following theorem is an extension of Theorem 4.3(i) to uniform algebras; in general
these algebras do not have the separating ball property.

THEOREM 4.17. Let A be a natural, uniform algebra on a non-empty, compact space K.

(i) Let P be a Gleason part for A, and take xo € P. Then there is an idempotent
element E € Aﬁ] such that E | K = xp and such that F E = E whenever F € A’[’l] with

(ii) For each Gleason part P, there is an idempotent Ep € Aﬁ] with Ep | K = xp
and such that Ep Eq = 0 in A" whenever P and Q are distinct parts.
Proof. (i) We may suppose that P # K. Set

S={F¢ ﬁ] : F(z) =1}.

Since 1x € S, the set S is not empty. Since A” is a dual uniform algebra, with predual
A, and since €,, € ®4v N A’ with |leg,|| = 1, it follows from Theorem 4.9 that there
exists an idempotent E € S such that F'E = F whenever F € S

Suppose that y € K and E(y) = 0, so that E' € (M,/)y). Then there is a net (f,) in
(My)) such that lim, f, (zo) = (E, €4,) = 1, and so, by Proposition 4.15, y ¢ P.

Suppose that y € K\ P. By Proposition 4.15, there is a sequence (f,,) in (M,)[) with
fn(xo) = 1 as m — oo. Let F' be an accumulation point of (f,) in A”. Then F' € S and
F(y) =0, and so E(y) = FE(y) = 0.

It follows that {y € K : E(y) =0} = K\ P, and so FE | K = xp, as required.

(ii) Now choose zp € P for each part P, so that there exists an idempotent element
Ep e Aﬁ] such that Ep | K = xp and such that F'Ep = Ep whenever F € A’[’l] with
F(xp) = 1. Take distinct parts P and @, and set F' =1 — Ep. Then F is an idempotent
in A”, and so F' € Af};. Also F(zq) =1, and so (1 — Ep) Eq = FEq = Eq, and hence
EpEg=0.m

COROLLARY 4.18. Let A be a natural uniform algebra on a non-empty, compact space K.
Then each Gleason part of K is clopen in K with respect to the relative weak topology,
o(A’', A”). Further, each weakly compact subset of K has non-empty intersection with
only finitely many parts.

Proof. Let the Gleason part be P. Then the idempotent E of Theorem 4.17(i) belongs
to C(®4r) and F | K is the characteristic function of P, and so the result holds. =
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The following theorem is a main result of this section; for a generalization, see Theorem
8.4.

THEOREM 4.19. Let A be a uniform algebra. Then A has a contractive pointwise approx-
imate identity if and only if A has norm-one characters.

Proof. The uniform algebra A" is a dual Banach function algebra, with predual A’.

Suppose that A has norm-one characters, and take a non-empty, finite subset S of
® 4 and € > 0. Take ¢ € S. Then ||¢|| = 1 when we regard ¢ as an element of ® 4. Since
@ € ®ar N A it follows from Theorem 4.9 that there is an idempotent E, € A” such
that E,(¢) = 1. For each ¢ € S, set U, = {¢ € ®ar : E, () = 1}, so that U, is a
compact and open subset of ® 4~ with ¢ € U,. Thus S C U := |J{U,; ¢ € S}. The set U
is compact and open in ® 4, and so, by Silov’s idempotent theorem, the characteristic
function of U, say E, belongs to A”; E is an idempotent and E(p) =1 (¢ € S). Since
A" is a uniform algebra, |E|¢,A” = 1. It follows that there exists f € Ay with

If(p) =1 =1[f(p) —E(p)| <e (p€S).
Thus A has a CPAIL

The converse is immediate. m

COROLLARY 4.20. Let A be a uniform algebra with | 4| > 2. Then the following condi-
tions on A are equivalent:

(a) A is pointwise contractive;

(b) A has the weak separating ball property;

(¢) M, has norm-one characters for each ¢ € ® 4 U {oc0}.
Proof. (a) = (b) = (c) These are trivial.

(¢) = (a) This follows from Theorem 4.19. m

The following results extend those given in [18, Theorem 4.6]; they are also immediate
from the above results.

PROPOSITION 4.21. Let A be a natural uniform algebra on a compact space K with
K| > 2.

(i) Take x € K. Then {z} is a one-point part if and only if M, has a contractive
pointwise approximate identity if and only if M, has norm-one characters.

(ii) The algebra A is pointwise contractive if and only if each point of K is a one-point
part.

(iil) Take xz € K, and suppose that M, has a bounded pointwise approrimate identity.
Then x is isolated in (K,da). =

We note that it will be shown in Example 7.6 that, in the above notation, it may be
that z is an isolated point of (K,d4), but {«} is not a one-point part. We do not know
whether a maximal ideal M, in a natural, uniform algebra on K has a bounded pointwise
approximate identity whenever x is isolated in (K, d4), but we have the following result
that applies in a special case.
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A unital uniform algebra A with Silov boundary T'(A) is logmodular if the set of
functions log|f|, where f is an invertible function in A, when restricted to I'(A), forms
a dense subset of Cr(T'(A)), the space of real-valued continuous functions on I'(A); see
[51, §17]. For example, H *° is a logmodular algebra [51, Example 17.4(d)].

PROPOSITION 4.22. Let A be a natural, logmodular uniform algebra on a compact space
K with |K| > 2. Take x € K, and suppose that x is isolated in (K,ds). Then M, has a
contractive pointwise approximate identity.

Proof. By Proposition 4.21(i), we must show that {z} is a one-point part. Assume to
the contrary that there is a part P with z € P and |P| > 2. Consider the metric da
on P. Then z is an isolated point of (P,d4). Since A is logmodular, it follows from [57,
Lemma 4.5] (extending [51, Theorem 17.1]) that there is a homeomorphism between D
and (P,dy4). Since D has no isolated point, the point z is also not isolated in (P,d4), a
contradiction. Thus {z} is a one-point part. m

Let A be a natural, uniform algebra on a non-empty, compact space K, and take
x € K such that {z} is a one-point part. Then, by Theorem 4.17, there is an idempotent
element F, € A” such that E,(z) =1 and E,(y) =0 (y € K \ {z}). As in Theorem
4.12, in the case where z is a strong boundary point for A, we may suppose that £, € A"
is the characteristic function of {z} as a subset of ® 4., but this is not the case when
is not a strong boundary point. Indeed, suppose that the characteristic function of {x}
belongs to A”. Then z is an isolated point of ® 4, and hence, by Theorem 4.12, (e) =
(a), x is a strong boundary point for A.

Let {x} be a one-point part of K (with respect to A). Then we claim that z is always
an isolated point of K, the closure of K in ® 4. Indeed, take ¢ € K \ {x}. Then there is
anet (yo) in K \ {z} such that lim, yo = ¢ in (P4, 0(A"”, A"”)). In particular,

0 = hmEm(ya) = <Ezv 90>a

and so E, | K is the characteristic function of {z} as a subset of K, giving the claim. In
the case where z is not a strong boundary point for A, it follows that

{pe®ar:(Bsp)=1} ¢ K
and so K is not an open set in ® 4.
This gives the following result.

PROPOSITION 4.23. Let A be a unital uniform algebra such that every point of ®4 is
a one-point part. Then ®4 is open in ®anv if and only if each point of 4 is a strong
boundary point for A. m

We shall exhibit in Example 7.7 several examples that show that one-point parts in
the character space of a uniform algebra are not necessarily strong boundary points, or
even in the Silov boundary.
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5. The space L(A) and BSE norms

In this section, we shall introduce the key space L(A) for a Banach function algebra A,
and use it to define the BSE norm on A.

DEFINITION 5.1. Let A be a Banach function algebra, and take a non-empty subset Q of
® 4. Then L(A,Q) is the linear span of Q as a subset of A’, with L(A) for L(A, ®4).

Clearly
LA =05 ={MecA”: (M, @) =0 (pcda)}.

As Banach spaces, we have
L(A) = A" /L(A)*. (5.1)

The space L(A) is always weak-* dense in A’; L(A) is an A-submodule of A’ because
fre=e(f)e (f €A ¢ ®a) and so
L(A) Cc AA" :=1lin{f - X: fe A e A'}. (5.2)

Note that it follows from equation (2.7) that M - A =X - M € L(A, Q) whenever M € A”
and A\ € L(A,Q). The space L(A,Q)* is a closed ideal in A” for each non-empty subset
Q of @A.

PROPOSITION 5.2. Let A be a Banach function algebra that is an ideal in its bidual. Then
AA" =L(A), A+ L(A)" is an ideal in A", and

(f+M)O(g+N)=fg (f,g€ A M,Ne L(A)"). (5.3)

Proof. Always L(A) C AA’.

Take f € A and A € A’, and assume towards a contradiction that f - A & m Then
there exists M € A” with (M, f - A\) =1 and with (M, ) =0 (p € ®4). NowM - f € A
because A is an ideal in A”, and so

(M- fo0) =M, [ - 9) = (M o(f)p) = p(H)M, ) =0 (p€Pa).
Thus M - f = 0, a contradiction of the fact that (M - f; A} = 1. This shows that

A - A’ c L(A), and hence that AA” C L(A).

Thus AA’ = L(A).

Since both A and L(A)* are ideals in A”, so is A+ L(A)".

Now take elements f,g € A and M,N € L(A)". We have X - f € A/A= AA’ C L(A)
foreach A € A’ and so (f - N, A) = (N, A f) = 0. Hence f - N = 0. Similarly. M - g = 0.
Since Ry is weak-* continuous, it follows that M ON = 0. This gives equation (5.3). m

COROLLARY 5.3. Let A be a Banach function algebra that is an ideal in its bidual and

has a bounded approzimate identity. Then L(A) = A - A’.

Proof. Since A has a BAI, it follows from Cohen’s factorization theorem [12, §2.9] that
AA=A- - A. u
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PROPOSITION 5.4. Let A be a dual Banach function algebra, with predual F C A’, and
suppose that Q2 C ® 4 is a determining set for A with Q C F. Then

L(A,Q)=F and A" =Ax L(AQ)" .
Proof. By equation (2.10), A” = A x F*. Since Q2 C F, we have L(A,Q) C F. Now take
w € F with p | L(A,Q) = 0. Then p is an element, say f, of A with (f) =0 (¢ € Q),

and so u = f = 0 because () is a determining set for A. It follows from the Hahn—Banach
theorem that L(A4,Q) = F, and then A” = Ax L(A,Q)*. u

For example, let G be a compact, abelian group, and set A = (M (G), x ), the measure
algebra on G, regarded as the Banach sequence algebra B(T') consisting of the Fourier—
Stieltjes transforms of measures in M(G) on the discrete dual group I' = G of G. Then
I is determining for A and I' C C(G), and so, by the proposition, L(A,T) = C(G) and

M(G)" = M(G) x C(G)*.

We now define the BSE norm of a Banach function algebra.

DEFINITION 5.5. Let A be a Banach function algebra. Then
[flsse = Iflgsg,a = sup{l{f, N[ : A€ L(A)n} (f € A).

The function || - [|zgg is clearly a norm on A such that

o, < Ifllsse < 71 (f € A).

By equation (2.1), || f|lgsg = ||f + L(A)*|| (f € A). Further, it is clear that |- ||pgp is
an algebra norm, in the sense that

1f9llgse < [Ifllgse l9llese  (fr9 € A).
This was first proved in [52]. The norm || - ||zgg is called the BSE norm on A.

DEFINITION 5.6. A Banach function algebra A has a BSE norm if || - ||zgg is equivalent
to the given norm, in the sense that there is a constant C' > 0 such that

A< Clifllgse  (f €A4).

Clearly every uniform algebra has a BSE norm.

The notion of a BSE norm and the related notion of a BSE algebra were introduced
by Takahasi and Hatori in [52] and further studied in [39, 53, 54]; see also [19].

The BSE norm has particular significance because key examples in harmonic anal-
ysis have a BSE norm. For example, let G be a locally compact group, and write
A = (LYG), *,|||l;) for the group algebra on G. Then A has a contractive approx-
imate identity. In the case where G is abelian, A is identified via the Fourier transform
with the Banach function algebra A(T), where I' = G, and then L(A) is identified with
AP(G), the subspace of L°(G) = L*(G)’ consisting of the almost periodic functions, so
that AP(G) is a self-adjoint, closed subalgebra of C'*(G). Here || |lgsg = |-, on A;
this is a consequence of the Bochner—Schoenberg—Eberlein theorem that is proved in [47,
Theorem 1.9.1] and also follows easily from Kaplansky’s density theorem, which shows
that AP(G)y) is weak-* dense in C O(G)’[’l]. Of course, it is this theorem that leads to the
terminology ‘BSE norm’.
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More generally, let " be an arbitrary locally compact group, and let A(T') and B(T)
denote the Fourier and Fourier—Stieltjes algebras, respectively, on I (see the classic thesis
of Eymard [24] and the new book [38] of Kaniuth and Lau, where proofs of the following
statements can be found). Then A(T') is the closed ideal Jo(B(T')) in B(T'), A(T) is a
natural, self-adjoint, strongly regular Banach function algebra on I', and &gy =T UH,
where H is the hull of A(T") as an ideal in B(T"). Let C*(I") be the group C*-algebra of
I'. Then C*(T")’ = B(T"). Further, by [8], the following are equivalent:

(a) ' is amenable;

(b) A(T") has a contractive approximate identity;

(¢) A(T) has a contractive pointwise approximate identity;
(d) A(T") has a bounded pointwise approximate identity.

In this case, it is also true that ||f|| = || fllgsg (f € B(I')), and so B(T') and A(I") have
BSE norms; this also follows from Kaplansky’s density theorem, as in [24, Lemma (2.13)].

For other examples of Banach function algebras that have a BSE norm, see [39, 52,
53, 54]. There will be an account in [19], where more general results will be established.

PROPOSITION 5.7. Let A be a Banach function algebra with a BSE norm, and let B be

a Banach function algebra that is isomorphic to a closed subalgebra of A. Then B has a
BSE norm.

Proof. There are constants C7,Cs > 0 such that

flla<Ciliflls (feB) and |[fll4 <Collflpspa (f€A).

Take A € L(A)p). Then A | B € L(B)(c,), and so | fllgsg 4 < C1|fllgsg p for each
f € B. Thus ||f||p < C{C:||fllggp,p for f € B, and so B has a BSE norm. m

Although || f|lgsg < IfIl (f € A), we have the following result.

PROPOSITION 5.8. Let A be a Banach function algebra. Then

A= sup {[{f; M| : f € A, [[fllgsp <1} (A € L(A)). (5.4)

Proof. Take A € L(A), and let the supremum on the right be k.
Since || fllgsg < IIfll (f € A), certainly ||A|| < k. On the other hand,

[\l = sup {|(M+ L(A)*, \)| : M e A", M+ L(A)*| <1}

because L(A)' = A”/L(A)*. But || fllgse = ||f + L(A)*]| (f € A), and so [|A]| > k.
Equation (5.4) follows. m

THEOREM 5.9. Let A be a Banach function algebra with a bounded pointwise approzimate
identity of bound m. Then || f|lgsp < m | fll,, (f €A).

Proof. Take f € A. For each A = Y | a;p; € L(A)p) and & > 0, there exists g € Ay
such that

> el 1 (i)l 11 = glpi)| < e,
=1
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and so

(s NI g, VI = Fa, D fall + D laal L (@)l 11 = g(@i)l < m | fllop +e-
i=1

It follows that || f|lzgg < m | f]|,,, as required. m

op’
COROLLARY 5.10. Let (A, -||) be a Banach function algebra, and suppose that A has
a BSE norm and a bounded pointwise approzimate identity. Then |-|| and | -[|,, are
equivalent on A.

Proof. By Theorem 5.9, there is m > 0 such that | flgsg < m|fll,, (f € A4). By

hypothesis, there is a constant C' > 0 such that ||f|| < C'[|f|lgsg (f € A4), and so
[fllop < 1A < Cllfllgse < Cm i flloy  (f € A).

Thus [|- || and |- [|,,, are equivalent on A. =

EXAMPLE 5.11. Let A be a natural uniform algebra on a compact space K with |K| > 2,
and take x € K such that {x} is a one-point part. By Proposition 4.21(i), M, has a
contractive pointwise approximate identity. Then it follows from the above corollary (with
control of the constants) that the uniform norm and the operator norm on M, are equal.
However, in the case where z is not a strong boundary point, it follows from Theorem
4.12 that the maximal ideal M, does not have a bounded approximate identity. m

THEOREM 5.12. Let (A,||-]|) be a Banach function algebra that is an ideal in its bidual.
Then

Moy < llop < 11+ llsse
Proof. Certainly [-[g, < |- llgsg < [|-]| and [-|g, < |||
show that || : ||op S ” : ||BSE'

Take f € A,M € L(A)*,and g € Ajy). Then there exists A € Ah] with || fg|| = (fg, \).
By Proposition 5.2, AA’ = L(A), and so g - A € L(A), and this implies that (M, g- A) = 0.
Since g - A € Ah], necessarily

[f+M = [(f+M, g - N =I(f, g9 N=IFg N =gl -

Thus sup{[|fgll : g € A} < inf{[|f +M]| : M € L(A)*}, ie, [|fllop < IIfllpsg- The
result follows. m

<.

op < II-1I; and so it suffices to

COROLLARY 5.13. Let A be a Banach function algebra that is an ideal in its bidual.

(i) Suppose that A has a bounded pointwise approximate identity. Then A has a BSE
norm.

(ii) Suppose that A has a contractive pointwise approximate identity. Then

[fllgse = I (f € A4).

Proof. (i) By Proposition 3.7, A has a BAI, say the bound is m. By Proposition 3.2,
|- <m]| -, Thus it follows from Theorem 5.12 that || - || and || - [|pgp are equivalent.

(ii) This follows by taking m =1 in the above calculation. =
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6. The algebra A”/L(A)*

Let A be a Banach function algebra. In this section, we shall introduce the Banach space
Q(A) = A"/L(A)*" = L(A)

(taken with the quotient norm, |[-[/g4)), which we shall see is also a Banach function
algebra, and establish some general results. We find it to be somewhat surprising that it
seems that there has been little earlier study of this Banach algebra in an abstract setting;
however, there is an implicit definition of our algebra Q(A) in [44, Theorem 3.1.14], where
some of the properties of Q(A) that we develop are given.

For M € A”, the corresponding element in Q(A) is denoted by [M]. Note that, given
f € Q(A), there exists M € A” with [M] = f and [M| = [|f[/g4)- Indeed, for each
n € N, there exists M, € A” with [M,,] = f and [M,[| < | fllga)+1/n, and a o(A", A")-
accumulation point M € A” of the sequence (M,,) has the required properties.

The space L(A) is canonically embedded in L(A)H = Q(A)’ by setting

(M, A) = (M, A) (M e A7)

for A € L(A), so that
Ml g(ay = sup{|(M, )| : A € L(A)y} - (6.1)

First we verify that Q(A) is always a semi-simple, commutative Banach algebra.

It follows from (2.8) that the space L(A)' is a weak-* closed ideal in A”. Thus
Q(A) = A”/L(A)* is a Banach algebra.

Take M,N € A”. Then it follows from equation (2.8) that MON — NOM € L(A)+,
and so [M] [N] = [N][M]. Hence Q(A) is a commutative algebra. For each ¢ € ®4, the
map

G:M+ LA = (M, ¢), Q(A)—C,
is a well-defined character on Q(A), and M + L(A)* = 0 whenever (M + L(A4)1) =0
for all ¢ € ®4, and so Q(A) is semi-simple. Hence Q(A) is (identified with) a Banach
function algebra and as a subalgebra of £°°(® 4). Take ¢ € ® 4. By identifying ¢ with @,
defined above, we can, and shall, regard ® 4 as a determining subset of ®g(4).

Clearly AN L(A)* = {0} in A”, and so A+ L(A)" is an algebraic direct sum. Each
element f € A determines [f] in Q(A), and [f] | P4 = f, and so we can regard A as a
subalgebra of Q(A) by identifying f € A with [f] € Q(A). It follows that

1fllocay = fllgse  (f € A).
Since Q(A)" = L(A)” and L(A)” is identified with the annihilator of L(A)* in A",
each A € L(A)" acts on Q(A) through the formula
(IM], A)gay,oay = (M, A)ar am (M e A”). (6.2)

In particular, equation (6.2) holds when A € ®g(4).

It follows that L(A) is a closed submodule of Q(A)’, and it is clear that Q(A) is a
dual Banach function algebra, with isometric predual L(A).




Pointwise approximate identities 33

Given [M] € Q(A), say with [|[M][|g.4) = [M] = m, there is a net (fa) in Apy) that
converges weak-* to M in A”. Since

m < liminf || fo|| < limsup || fo| < m,
o a

it follows that lim,, || fo| = m. Further, lim,, f, = [M] in the space
(Q(4),7(2(4),Z(A)) ,
and so Apyj is weak-+ dense in Q(A)p.
The relative topology on ® 4 from ®g(4) is the weak topology o(A’, A”), and so
QA ={M | P4 :Me A"} CL>®(Da).
As we shall see in Example 7.3, the embedding of ®4 in ®g(4) need not be continuous.
Since
Dy C Pora) C L(A)" C A",

cach 1) € ®ga) is of the form ¢ = ¢ + ¢, where p =) | A€ 4 U {0} and £ € A+, and
so ([f], ¥) = {f, ¢) (f € A). In particular, it follows that

£(®) C (@) € @)U} and [[flly,, = fle, (FEA).  (63)

We see that Q(A)” = L(A)" = L(A) @ L(A)* = Q(A) @ L(A)* as Banach spaces,
and that L(A)" is an ideal in Q(A)”, so that
Q(A)" = Q(A) x L(A)* .
We have established the following theorem.

THEOREM 6.1. Let A be a Banach function algebra. Then L(A)" is a closed ideal in A”
and A+ L(A)* is a subalgebra of A”. The quotient Banach algebra

Q(A) == A"/L(A)" = L(A)

is commutative and semi-simple, so that Q(A) is a Banach function algebra, Q(A) is a
subalgebra of £°(P4), and Q(A) contains A as a subalgebra. Further, Q(A) is a dual
Banach function algebra, with isometric predual L(A), Apy is o(Q(A), L(A))-dense in
Q(A)[l], cmd

Q(A) = L(AY @ L(A)* and Q(A)" = Q(A) x L(A)*. .

In fact, the quotient algebra A”/L(A, Q)L is a Banach function algebra for each non-
empty subset Q of ® 4. The set €2 is always a determining set for A”/L(A, Q)"

Since ®g(4) C L(A)”, the Gel'fand topology on ®g(4) is the relative weak-* topology
o(L(A)",L(A)"). We shall write ®, for the weak-x-closure of ®, in ®g(4). In the case
where Q(A) is regular as a Banach function algebra on ®g(4), it is clear that ® 4 = ®g(a).
However, in general, ®4 C ®g(4); for example, see Example 7.8.

In the following result, 7, is the topology of pointwise convergence on the space ® 4.
PROPOSITION 6.2. Let (A, | -||) be a Banach function algebra. Then, given [M] € Q(A)

with ||[M]|| = m, there is a net (fo) in Apy such that limg, fo = M with respect to 7, and
limg, [| fa| = limq Hfa”Q(A) =m.
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Proof. Take M € A” with ||[M]|| = m. Then, as noted above, there is a net (fo) in Apy,
such that lim, f, = M with respect to 7, and lim, || fo|| = m. The net (f,) is contained
in Q(A)[m, and so lim, f, = [M] in the topology o(Q(A), L(A)). Hence

m = HM]”Q(A) < lirr}linf Hfa”Q(A) < lim sup HfOéHQ(A) =m,
and this gives the required result. m

The above proposition immediately gives the following corollary, which characterizes
the elements of Q(A) in £>°(Dy).

COROLLARY 6.3. Let A be a Banach function algebra. Then Q(A) is the set of functions
fel>o(Dy) for which there is a bounded net (fy) in A withlim, fo = fin (0°(P4),7p);
for f € Q(A), the infimum of the bounds of such nets is equal to || fllg 4)-

PROPOSITION 6.4. Let A be a Banach function algebra. Then:
@) IM]llgay = [IM]llgsr,0ay (M € A”), and so Q(A) has a BSE norm;

(ii) the algebra A has a BSE norm if and only if A is isomorphic to a closed subalgebra
of Q(A);

(iii) the algebra Q(A) has an identity if and only if A has a bounded pointwise approz-
imate identity.

Proof. (i) The space L(Q(A)) is the closure in L(A)" of L(Q(A)), and
L(A) c L(Q(A)) c L(A)"
isometrically. Thus, for each M € A”, we have
M+ L(A)* || = sup{|(M, \)| : A € L(A)y} -
Since sup {|(M + L(A)*, A)| : A € L(Q(A)))} < |[M + L(A)*||, we see that
M+ LAY || = sup{|(M + L(A)*, A)] : A € L(Q(A)m}

and so
||[M]||Q(A) = H[M]”BSE,Q(A) (Me A”).
In particular, this shows that Q(A) has a BSE norm.

(ii) We have [[[f]llga) = [ fllgsr,a < [[flla (f € A), and so A has a BSE norm if
and only if A is closed in Q(A).

(iii) First, suppose that A has a BPAI say (f.), and let E be a weak-* accumulation
point of the net (f,) in A”. Clearly (E, ¢) =1 (p € ®4), and so

EOM-Me L(A)t Me A”).
Hence [E] is the identity of the commutative Banach algebra Q(A).
Conversely, suppose that E € A” and that [E] is the identity of Q(A). Then
(E, 0) = (E+ LA 9)=1 (p€a).

There is a net, say (f,), in A that is bounded in norm by ||E|| and that converges weak-x
to E in A”, and clearly (f,) is a BPAI for A. m
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The norm of the identity of Q(A) that arises in clause (iii), above, is not necessarily
equal to 1. Of course, in the case where A has a contractive pointwise approximate
identity, the corresponding element E € A” is such that ||[E]|| = 1, and so Q(A) is a
unital Banach function algebra.

It follows from clause (iii), above, that ®¢(4) and P4 are compact when A has a
bounded pointwise approximate identity.

COROLLARY 6.5. Let A be a Banach function algebra, and suppose that (en) and (f3)
are bounded pointwise approximate identities in A. Then:

(1) [E] = [F] for any weak-+ accumulation points E and F of (en) and (f3), respectively,
mn A”;

(ii) for each weak-x accumulation point E of (eq) in A", there exists u € L(A)‘ with
IE + ull = I[E]-
Proof. (i) This follows because an identity of Q(A) is uniquely defined.

(ii) This follows because ||[E]|| = inf{||E + p|| : u € L(A)*} and the space L(A)* is
weak-* closed in A”, so that the infimum is attained. m

In particular, when A has a bounded pointwise approximate identity, the norm of the
identity in Q(A) does not depend on the choice of the bounded pointwise approximate
identity.

In the following corollary, note that neither A nor A” is necessarily unital.

COROLLARY 6.6. Let A be a Banach function algebra, and suppose that A has a bounded

pointwise approrimate identity. Take an element f € A such that f(p) 1 (p € Py).
Then there exists M € A" such that

M, p)(1=f(p) =1 (peda).

Proof. By Proposition 6.4(iii), Q(A) has an identity, say [E]. It follows from the hypo-
thesis and equation (6.3) that ([f], ¥) # 1 (¢ € ®g(a)), and hence

(E] =1/, &) #0 (Y €Pga)-
Thus E — [f] is invertible in Q(A), i.e., there exists M € A” with [M] - ([E] — [f]) = [E]
in Q(A). The result follows. m

We shall now regard Q(A) as a Banach function algebra, and usually write f, u, etc.,
for generic elements of Q(A).

PROPOSITION 6.7. Let A be a Banach function algebra, and take ¢ € @4 with ||¢| = 1.
Then there is an idempotent u € Q(A)ny such that u(p) = 1 and fu = u whenever

f € Q(A)uy with f(p) = 1.

Proof. Since Q(A) is a dual Banach function algebra with predual L(A) and since
© € L(A), this is a special case of Theorem 4.9. m

The following is immediate from Proposition 5.4.
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PROPOSITION 6.8. Let A be a dual Banach function algebra, with predual F C A’, and
suppose that ®4 C F. Then L(A) = F, A” = Ax L(A)*, and Q(A) = A. =

6.1. The subset ®4 of ®g(4). In the next results, we continue to regard ® 4 as a subset
of ®5(4), and will give conditions that imply that it is an open subset of ®g4).

LEMMA 6.9. Let A be a Banach function algebra, and let S be a non-empty subset of @ 4.
Then the following are equivalent:

(a) each point of S is isolated in ®g(a);
(b) S is open and discrete in ®g(a).
Proof. (a) = (b) This is immediate.
(b) = (a) Take ¢ € S, and suppose that () is a net in ®g(4) that converges to ¢.

Since S is open in ®g(4), the net (p,) is eventually in S. Since S is discrete in ®g(4),
eventually ¢, = ¢. Thus ¢ is isolated in Pg(4). =

THEOREM 6.10. Let A be a Banach function algebra.

(i) Suppose that o € ®4 and that A has the weak separating ball property at . Then
@ is an isolated point of ®g(4)-

(ii) Suppose that A has the weak separating ball property. Then ® 4 is the set of isolated
points of Pg(a), and so ® 4 is open and discrete as a subspace of Po(4).

Proof. (i) Note that ||¢|| = 1 because A has the weak separating ball property at ¢, and
so, by Proposition 6.7, there is an idempotent u € Q(A)p;) such that u(y) =1 and fu =u
whenever f € Q(A);) with f(p) = 1.

We may suppose that |® 4| > 2. Take ¢ € & 4 with ¢ # . Then there is a net (g,) in
(My)(r) with lim,, g, () = 1. Since ||gu[lg(4) < [|9v ] 4, this net has a weak-+ accumulation
point, say g, in Q(A)p; with g(¢) = 1; further, g(+) = 0. It follows that u(¢)) = 0, and
so (fu— f(p)u)(®) = 0 for cach f € Q(A). Thus (fu— f(p)u) | B4 = 0 (f € Q(4).

Since ¥ 4 is a determining set for Q(A), we have

fu=Fflp)u (f € Q(A)).

Suppose that @4 C ®go(a), and take ¥ € Pg(4) with 1) # . Then there exists
f e Q(A) with f(¢) =1 and f(1p) = 0, and hence u(y)) = 0. This shows that u is the
characteristic function of {} in ®g(4), and hence ¢ is an isolated point of ®g(4y. This
is immediate when ® 4 = ®g(4).

(ii) By (i), each point of ®4 is an isolated point of ®g(4). Since ®4 is determining
for Q(A), each isolated point of ®g(4) belongs to 4. By Lemma 6.9, ®4 is open and
discrete as a subspace of ®g(4). =

PROPOSITION 6.11. Let A be a Banach function algebra.

(i) Take ¢ € ®4 such that M, is non-zero, and suppose that My, has a bounded
pointwise approximate identity. Then ¢ is weakly isolated in ® 4 and an isolated point of
the space ®g(a)-
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(ii) Each isolated point of ®go(ay is in ®a, and is weakly isolated in 4.

Proof. (i) Let E be a weak-* accumulation point of the BPAI of M, in A”, so that E | ® 4
is the characteristic function of ® \ {¢}. This implies that ¢ is weakly isolated in @ 4.

For each F € A” with F(¢) = 0, we have (FE — F) | ®4 = 0, and so [F] [E] = [F]
in Q(A). It follows that [E] is the characteristic function of ®g4) \ {¢}, and so ¢ is an
isolated point of ®g(a).

(ii) Let ¢ be an isolated point of ®¢(4). By Silov’s idempotent theorem, the character-
istic function xy of {1} is in Q(A). Since ® 4 is a determining set for ®g(4), necessarily
1 € @y, and clearly v is weakly isolated in ® 4. =

THEOREM 6.12. Let A be a Banach function algebra such that |® 4| > 2, and take p € ® 4.
Then the following are equivalent:

(a) the ideal M, has a bounded pointwise approzimate identity;

(b) the algebra A has a bounded pointwise approzimate identity and ¢ is an isolated
point of ®g(a)-
Proof. The characteristic function of {¢} on ®¢(4) is denoted by x.,.

(a) = (b) Take E to be a weak-* accumulation point in A” of a BPAI in M,. By
Proposition 6.11(i), ¢ is an isolated point of ®g(4), and so x, € Q(A). Then [E] + x,, is
the identity of Q(A), and so, again by Proposition 6.4(iii), A has a BPAIL

(b) = (a) Since A has a BPAI there exists E € A” such that [E] is the identity of
Q(A). Since  is an isolated point of ®g(4), it follows that x, € Q(A), and so there
exists F € A" such that [F] = x,. The element E — F is in M7, and is such that
(E-F,¢) =1 (¢ € &4\ {¢}), and so M, has a bounded pointwise approximate
identity. m

COROLLARY 6.13. Let A be a Banach function algebra with a bounded pointwise approz-
imate identity and such that |® 4| > 2, and take ¢ € ® 4. Then the ideal M, has a bounded
pointwise approzimate identity if and only if ¢ is an isolated point of Pg). =

For example, let A be the disc algebra, so that A has an identity. The maximal ideal
My does not have a bounded pointwise approximate identity, and so 0 is not an isolated
point of ®g(4y. We shall identify Q(A) in Example 7.5. Again, take I' to be a locally
compact group. Then A(T") has the separating ball property (see Example 11.3(ii)), and
o0, by Theorem 6.10(i), each point of T' is isolated in D g(a(ry)- However, as noted on
page 30, in the case where T" is not amenable, A(T") does not have a bounded pointwise
approximate identity, and so no maximal modular ideal in A(T") has a bounded pointwise
approximate identity.

Let A be a natural uniform algebra on a non-empty, compact space K. In the following
proposition, we again regard K as a subset of ®g(4). Also, we write G(A) for the set of
points x € K such that {z} is a one-point Gleason part in K. Recall that d4 denotes the
Gleason metric on K.
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PROPOSITION 6.14. Let A be a natural uniform algebra on a non-empty, compact space
K.

(i) Each point of G(A) is an isolated point of ®g(ay, and so the set G(A) is open and
discrete in ®g(a).

(ii) Each isolated point of ®g(ay is an isolated point of (K,da).

iii) In the case where Q(A) is a uniform algebra on ®g( 4y, the space G(A) is equal
Q(A)
to the set of isolated points of ®g(a)-

Proof. (i) Suppose that € G(A). Then, by Corollary 4.16, A has the weak separating
ball property at x, and so, by Theorem 6.10(i),  is an isolated point of ®g(a).

(ii) Suppose that z is an isolated point of ®¢(4), so that 2 € K by Proposition 6.11(ii).
Then there exists ' € A” such that F' | ®g(4) is the characteristic function of {x} as a
subset of ®o(4), and again x € K. Set r = ||F'||, and take y € K with y # 2. Then

da(y, ) > [(Fiey) = (Fiex)| [ = 1/r,
and so z is an isolated point of (K, dy).

(iii) Now suppose that Q(A) is a uniform algebra on ®g(4). By (i), we must show
that each isolated point ¢ of ®g(4) is in G(A). Such a point ¢ is an isolated point of
(K,da) by (ii).

Since x is isolated in ®g(4), the function x, belongs to Q(A); since Q(A) is a uniform
algebra, ||xo | = 1. Take F' € Ajj; with F'| ®g(4) = Xo, and again take y € K\ {z}. Then
(F,ey) = 0 and (F,e,) = 1, and so there is a net (f,) in Apy with lim, f,(y) = 0 and
lim, f,(z) = 1. It follows that y is not in the same Gleason part as z, and so z € G(A). m

We shall give an example in Example 7.6, below, to show that an isolated point of
® g4y need not belong to G(A), and so we shall have an example of a uniform algebra
A such that Q(A) is not a uniform algebra.

6.2. Compactness in ®g(4). Let A be a Banach function algebra, and consider the
closure, ®4, of ®4 in the space ®go(4), where the latter space has its usual weak-*
topology, o(Q(A)’, Q(A)), identified with o(L(A)"”, L(A)"). Here we consider the question
when this closure is compact. We shall show that this is the case if and only if &4 is
weakly closed in A'.

Let A be a Banach function algebra, and suppose that ® 4 is not weakly closed in A’.
Then, as noted several times before, the weak closure of ®4 in A" is &4 U {0}.

Now let I be a Banach space such that its dual B = F’ is a Banach function algebra.
Then B’ = F”. Let  be a non-empty subset of & that is contained in F'. We note that
a net (¢q) in  converges to zero in the topology o(B’, B) if and only if (p,) converges
to zero in the weak topology, o(F, F’). On the other hand, no net (¢,) in £ converges
to zero in the weak-* topology o(B’, B) of B’ if and only if the closure Q of Q in ®5 is
compact.

These comments prove the following result.
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LEMMA 6.15. Let F be a Banach space such that its dual B = F' is a Banach function
algebra. Suppose that the set Q := ®g N F is non-empty, and let Q be its closure in .
Then Q is compact as a subset of @ if and only if Q is weakly closed in F. m

Now let A be a Banach function algebra, and set F = L(A) and Q(A) = A”/F*, as
before.

THEOREM 6.16. Let A be a Banach function algebra. Then the following conditions are
equivalent:

(a) @4 is weakly closed in A’;

(b) the closure of ® 4 in ®g(a) is compact.
Proof. This follows from Lemma 6.15, taking B = Q(A) and Q1 =d4.

PROPOSITION 6.17. Let A be a Banach function algebra, and suppose that A has a
bounded pointwise approrimate identity. Then ® 4 is weakly closed in A’.

Proof. By Proposition 6.4(iii), Q(A) has an identity, and so ®g(4) is compact. Hence,
the closure of ®4 in ®g(4) is compact, and so ®4 is weakly closed in A" by Theorem
6.16. =

We do not know whether the converse of the above proposition holds.
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7. Examples

We now present some examples of classical Banach function algebras A, and describe
the corresponding Banach function algebra Q(A) = A”/L(A)* and its character space

Po(a)-

7.1. Elementary examples. We first give examples that show that, for a Banach
function algebra A, we can have Q(A) = A and that we can have Q(A) = A”.

EXAMPLE 7.1. Let A = (£1, - ), the space of summable sequences with pointwise product,
so that A is a natural, Tauberian Banach sequence algebra on N, and hence an ideal in
its bidual. Further, A is a dual Banach function algebra with predual ¢o. Here

A == = C(BN),
so that L(A) = cgo C ¢p and A” = M(BN). Thus L(A)* = c¢§ = M(N*), where
= BN\ N is the growth of N in BN, and A” = A @®; L(A)*. As in equation (5.3), the
product in A” is given by

(a, ) O (B,v) = (B, 0) (a,f €l pve M(NY)).
Thus the algebra A is Arens regular, Q(A) = A, and &4 = ®g(4) = N. Also we have
A" = Q(A) x L(A)* as a Banach algebra.
Since L(A)py is weak-+ dense in Afl], the algebra A has a BSE norm; this also follows
from Proposition 6.4(i). =

ExXaMPLE 7.2. Take « such that 0 < o < 1, and consider the Banach function algebras
A =lip, I and Lip,I of Lipschitz functions on the closed interval I, as in [12, §4.4]. Then
the Lipschitz algebra A is Arens regular and A” = Lip,I [12, Theorem 4.4.34]. The
Banach function algebras A and A" are regular, natural, and self-adjoint on I. However
these algebras do not have the separating ball property, and maximal ideals in them do
not have a bounded pointwise approximate identity. Here L(A)* = {0} and Q(A) = A",
so that ®g4) =1. =

7.2. Uniform algebras. We now consider the case where A is a uniform algebra on a
locally compact space.

EXAMPLE 7.3. Set A = Co(K), where K is a non-empty, locally compact space, so
that A has the separating ball property. Then A’ = M(K) and A” = C’(f(), where K,
the hyper-Stonean envelope of K, is a hyper-Stonean space, as we noted earlier. Thus
D =K.

We recall that M(K) = M.(K) @1 Ma(K), where M.(K) and My(K) denote the
closed subspaces of M(K) consisting of the continuous and discrete measures, respect-
ively. We have My(K) = ¢*(K), and so My(K)' = {>(K) = (ﬁKd) where K; denotes
the space K with the discrete topology and 85 denotes the Stone-Cech compactification
of a discrete space S. We regard SK, as a clopen subspace of K and set K =K \ BK4,
so that M,(K) = C(K,). For details of these remarks, see [13].
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Here it is clear that L(A) = ¢1(K), and hence that
Q(A) = EOO(K) = C(ﬂKd) and (I)Q(A) = BKd .

Thus the predual of Q(A) is £!(K), and ®4 and ®g(4) can be identified with K and
BK,, respectively, so that &4 = Dg(4) and P4 is the set of isolated points in g4, in
accord with Theorem 6.10(ii). It follows that

L(A)" ={F € C(K) : F | K4 = 0} = I(8K,)

and A” = Q(4) x L(A)* as a Banach algebra. In fact, since 3Ky is a clopen subset of
K, we can identify Q(A) with the closed ideal

{FeCK):F|K,=0}=IK,)

in A”, so that Q(A) is a uniform algebra, and hence is itself Arens regular.
Here the embedding of ®4 in ®g(4) is continuous only in the special case that K is
discrete. In particular, consider the case where A = c¢(. Then

Q(A) = A" = (> = C(AN).

Again set A = C(K) for a compact space K, so that Q(A) = C(SK4). Then Q(Q(A))
is equal to C(B((BKa4)q)), usually a far bigger space than Q(A).

The natural continuous surjection from K onto K, the one-point compactification
of K, is denoted by 7x. Take x € K,. Then

Ky =7 ({z}) = {p € K : 7 (p) =z}

is the fibre in K at x. Each fibre K,y is a closed subspace of K , and clearly we have
K= U{K {2} : ¢ € Koo} It is easy to see that, when Cy(K) is regarded as a subspace of

C(K) via the canonical embedding, the space Cy(K) consists of the functions F € C/(K)
such that F' | K,y is constant for each x € K and also such that ' | Koy =0. m

ExXAMPLE 7.4. Let A be a natural uniform algebra on a compact space K. Then A" is
a closed subalgebra of C' (IZ’ ), and A is Arens regular; the canonical image of A in A”
consists of the functions in A” that are constant on each fibre in K. However A” does
not necessarily separate the points of K , and so A” may not be a uniform algebra on K.
The character space of A” is again denoted by ® 4, and we again regard K as a subset of
® 45 its closure in @ 4~ is K. For a study of the algebra A” (for a special class of ‘tight’
uniform algebras), see [11].

Denote by I = I(K) the closed ideal in A” (when defined on ® 4) consisting of all
functions in A” that vanish on K, so that Q(A) = A”/I. The hull of I in ® 4~ is h(I), so

that Q(A) is a natural Banach function algebra on h(I). m

We now determine Q(A) and ®g(4) in the case where A is the disc algebra. We are
greatly indebted to Professor Ken Davidson for some valuable explanations.

EXAMPLE 7.5. Let A = A(D) be the disc algebra. Our main source for results that we
use in this example is the book of Garnett [30].
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We shall write H* for the Hardy space H'(D) that consists of the analytic functions
f on D such that

1 2m .
Il 2= sup e [ Isre™)] a0 < o0,
0<r<1 2T Jo

with H} for {f € H' : f(0) = 0}. For these spaces, see [30, Chapter II and p. 133].

We regard A as a closed subalgebra of C(T), and we denote the Lebesgue measure
on T by m. The space of measures that are absolutely continuous with respect to m is
identified with L'(T,m) and M,.(T) is the space of continuous measures on T that are
singular with respect to m, and then

C(T) = M(T) = LY(T,m) @, £*(T) &1 M.(T).

The space At is the annihilator of A in M (T). The fact that AL can be identified
as a closed subspace of L!(T,m) is the classical F. and M. Riesz theorem for the disc
algebra, and, as explained in [30, p. 133], this implies that A can be identified with the
space H} (see also [31, Theorem I1.7.10]). Thus we conclude that

A = (LT, m)/Hg) &1 £"(T) &1 Mec(T). (7.1)
By a theorem of Ando [2] that is given in [30, Theorem V.5.4], L*(T,m)/H} is the unique
isometric predual of H> as a Banach space. Thus it follows from equation (7.1) that
A" = H® @ £°°(T) Boo Mye(T)

as a Banach space.
Each character on A, given by z € D, has a unique representing measure, say fi., on
T, so that

f(Z):/deuz (f € A);

see [30, p. 200].

Take z € T. Then the unique representing measure for ¢, is the point mass, J,, at z,
and so lin{e, : z € T} = £}(T), i.e., L(A,T) = £(T).

Each element of L(A,D)" extends by Hahn-Banach to an element of A”. The re-
striction to L(A,D) of each element of £°°(T) @, M.(T)’ is the zero functional, and so
L(A,D) is a identified with a subspace of H*. Now take f € H*. Then the map

Ay X = Zaﬁzi — Zaif(zi), L(A,D) - C,
i=1 i=1

is a linear functional on L(A,D). Fix ¢ > 0. There exists z € D with |f(2)| > | f|p —¢, and
so A7l = [{As,e)] = |£(2)] > |flp — &, whence [[Af > |flp- Set f(z) = f(r2) (= € D)
for 0 < r < 1,sothat f, € A, and take A € L(A, D). Then |X(f)| < ||A]||frlp (0 <7< 1),
and hence

(A7 )] = Tim AT < M1l -

Thus Ay € L(A,D)" with ||Af]| = |f|p, and the element of H> corresponding to Ay is f.
It follows that L(A,D)" = H®°.
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It now follows from equation (7.1) that L(A) = (LY(T,m)/H}) @1 £1(T), and hence
that
Q(A) = L(A)' = H*(D) © £>(T)
as a Banach space.
Take f € Q(A). It is clear that f is identified with the pair (f | D, f | T) in the space
H>®(D) oo £°°(T) and that the product in this latter space is given by

(F1,Gh) (F2,Go) = (F1F>2,G1G2)  (F1,Fo € H(D), G1,Gy € £%°(T)),

and so Q(A) is identified with the uniform algebra H*>(D) Go, £ *(T).

The character space of Q(A) is the disjoint union of ® g~ and S T4. We recall that,
by Carleson’s corona theorem [30, Chapter VIII], the character space of H* is a compact
space containing D as a dense subset, and so the set D is dense in Dga) and Pg(y) is
exactly the hull of L(A(D))*. =

The above proof can be generalized to apply to uniform algebras defined on suitable
subsets of C™ using the techniques of [9], [11], and [48].

EXAMPLE 7.6. In [26, Theorem 2.1], Feinstein constructed a separable, strongly regular,
natural uniform algebra A on a compact space K such that there is a two-point Gleason
part, say P := {z1,22}, in K and such that all other points of K are peak points, and
hence one-point Gleason parts. Here T'(A) = K and T'g(4) = K\ P.

Take a finite set F in K \ {x1}; we may suppose that zo € F, so that F has the
form {zo,x3,...,2,}, where x5, 23, ..., 2, are distinct points in K. Take fy € M,, with
fa(z1) = 1, and set m = |fa|. Fix € € (0,1), and take 6 > 0 such that (1 — )" < e.
For j = 3,...,n, take f; € M,, with |f;(z1) — 1] < ¢ and |fj|,, = 1, and then define
[ = fafs - fn € A, so that |f|, < m and |f(z1) — 1] < (1 — )" < e. Finally, define
g = f(z1)1x — f, so that g € M,, with |g(z;) — 1| < e and |g|, < m+ 1+ ¢. It follows
that M,, has a bounded pointwise approximate identity with bound m + 1. Similarly,
M, has a bounded pointwise approximate identity, and each other maximal ideal of the
algebra A has a contractive pointwise approximate identity.

By Theorem 4.17(i), there exists an idempotent E € A” such that (E, ;) =1 (z € P)
and (E,e,) =0 (y € K\ P). For M € A”, consider the element

Fyy=(ME— (M, e,,)E)(M— (M, e,,) E) € A"

Asin Theorem 6.10, ([Fis],&y) = 0 (y € K), and this implies that [Fis] = 0in Q(A). Take
@ € ®g(a) \ P, so that ([E],p) = 0 or ([E],¢) = 1, and assume towards a contradiction
that ([E],¢) = 1. Then there exists M € A” with ([M],e,,) = ([M],es,) = 1 and
([M],9) = 0, and hence (Fy, ) = 1, a contradiction. We conclude that [E] is the
characteristic function of P in ®g(4), and so each of the two points z; and x5 is isolated
in (I)Q(A)-

Certainly x; and x are isolated in (K,d4), but {z1} and {z2} are not one-point
parts. As we remarked, Proposition 6.14(iii) implies that Q(A) is not a uniform algebra,
but it is equivalent to a uniform algebra. It follows from Proposition 4.4 that the maximal
ideal M,, does not have norm-one characters because it clearly does not have the weak
separating ball property. Nevertheless, @5y, is weakly closed in M, . Indeed, there exists
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F e M with (F,e,) =1 (y € K\ P), and this implies that ®,7, is weakly closed in
M. . =
z1

An example that is a development of the above example will give a uniform algebra
A such that Q(A) is not even equivalent to a uniform algebra on ®¢4); see [15].

EXAMPLE 7.7. In [50], Sidney constructed a natural, separable uniform algebra on a
compact space K and a point « € K such that {z} is a one-point Gleason part, but such
that M2 is not dense in M,, and so M, does not have an approximate identity.

In [32], it is shown that there is a natural, separable, regular uniform algebra A on a
compact space K and & € K such that I'y(4) = K \ {z} (so that each point of K is a
one-point part, and hence A is pointwise contractive), but again M2 is not dense in M,.

In [14, Theorem 2.3], it is shown that there is a natural, separable uniform algebra
on a compact metric space K such that each point of K is a one-point Gleason part, but
I'(A) C K, so that A is not a Cole algebra, and hence not contractive.

Recall that it was shown in Proposition 4.21(i) that a maximal ideal M, in a natural
uniform algebra on a non-empty, compact space has a contractive pointwise approximate
identity if and only if {2} is a one-point part. Thus the above examples show that there
are maximal ideals in uniform algebras that have a contractive pointwise approximate
identity, but such that they do not have any approximate identity. m

7.3. Harmonic analysis. Here we give some examples related to Banach function alge-
bras that arise in harmonic analysis. Again the group algebra of a locally compact group
G is (L'(G), %) and A(T') and B(T') are the Fourier and Fourier—Stieltjes algebras of a
locally compact group I'.

EXAMPLE 7.8. Let G be a compact, abelian group, and set A = (L'(G), %), so that
®,4 = T, the dual group of G. Then T is discrete and A(T") is a Tauberian Banach
sequence algebra on I', and hence an ideal in its bidual. Also A" = L*°(G), a C*-algebra

for the pointwise product, L(A) = C(G), and A” = M(G) @1 C(G)*, so that
Q(4) = Q(LM(G)) = M(G). (7.2)
Since (M (G), %) is a closed subalgebra of (A”, O), we again see that
A" = Q(A) x L(A)*

as a Banach algebra. We have ®o(4) = I' U H, where H is the hull of A when A is
considered as an ideal in M (G). Here, the embedding of ®4 into ®g(4) is continuous.
Since M (G) is a unital Banach algebra, ®g(4) is compact and so ®, is also compact.
In the case where G is infinite, the Wiener—Pitt phenomenon shows that ® 4 is a proper
subset of (4. =

ExXaMPLE 7.9. Let G be a locally compact abelian group, with dual group I'. Then b G,
the dual group to I'y, is the compact abelian group that is the Bohr compactification of
G, so that the Banach function algebra B(T'y) is identified with (M (bG), *).
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Set A = (L*(Q), %), identified with the Banach function algebra A(T"). We have noted
that L(A) is identified with AP(G), and hence with C'(bG).
As Banach spaces, we have
Q(A)=L(A)Y =C(bG) =M(ObG),

and (Q(A), -) is Banach-algebra isometrically isomorphic to (M (bG), *) and hence to
(B(La),-). m

ExXAMPLE 7.10. Let T be a locally compact group. The dual space A(T")’ is identified
with VN(T'), the group von Neumann algebra of T'; see [38, Theorem 2.3.9]. For x € T
and h € L?(T), set
(Aeh)(y) =h(z"y) (yeT),
so that A\, € VN(T') C B(L*(T')) and VN(T) is the weak-operator closure of the space
lin{\; : « € '} [24, Définition (3.9)]. Each operator A\, acts as a character on A(T),
and indeed we can identify ® 4y with {\; : € T'}; for this, see [38, Lemma 2.3.1
and Theorem 2.3.8]. Thus L(A(T")) can be identified with the C*-subalgebra of VN(T")
generated by {A; : € I'}. This latter C*-algebra is denoted by C}(T') in the literature;
see [43, §4] and [8]. Thus
Q(A(I) = C5(T)".

We shall make some remarks on the identification of Cj(I")’.

The reduced C*-algebra of I' is denoted by C(I'); when T' is amenable, we have
Cy(I') = C*(I'). It was shown by Bédos in [4] that there is a natural surjection

R:C5(I') = Cy(Ta),

where 'y is the group I with the discrete topology, and so we can say that the algebra
Q(A(I")) contains the reduced Fourier-Stieltjes algebra B,(I'q) = C(I'4)’, and hence

B,(T'q) € Q(A(T)).

In the two cases where I' is discrete and where I'y is amenable, it is shown in [4,
Theorem 3] that C3(I') = C;(I'q). It follows that, in the case where I is discrete,

Q(AM)) = C5(I')' = CH(I')" = B,(T),
and that, when I'j is amenable,
Q(AM)) = C5(I) = C5(Tg)" = C*(Ta)' = B(Ta) -

These equations recover the previous example, equation (7.2), in the case where T' is
abelian and discrete.

In the case where the locally compact group I' is amenable, the above map R is an
injection if and only if T’y is amenable; in this case, we have Q(A(T')) = B,(T'y). An
extension of this result was given in [5, Theorem 1]: for an arbitrary locally compact
group I', the map R : C5(T') — C;(Tq) is an isomorphism if and only if I' contains an
open subgroup A such that Ay is amenable. It seems to be an open question whether
Q(A(T)) = B(T'y) in the case where I' = SO(3); in this case I is amenable, but I'y is not
amenable.
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We now give a separate, explicit identification of the isometric algebra isomorphism
from B(T'yq) onto Q(A(T)) in the case where I'y is amenable.
Indeed, let I be a locally compact group such that I'; is amenable. For u € B(I'y),
define
Ly : A= (u, Ny, C5(T)—C.
Since Cj (T") = C*(T'y) and C*(T'y)" = B(T'q), we see that
Ll =l (u € BE).
Since C(T') is a C*-subalgebra of V. N(I'), the functional L, on C*(I'y) has a Hahn-
Banach extension v € VN(I') = A(T")” with ||a|| = |ju|. Suppose that v € A(I")" is
another such extension of u. Then @ — v € L(A(T'))*+, and so the map
is a well-defined linear isometry, easily seen to be an algebra homomorphism.

To show that 6 is a surjection, take M € A(T')”. Then there is a bounded net, say
(fa), in A(T") that converges weak-* to M. Since

AT) c B') c B(Ty)
isometrically, the net (f,) is bounded in B(T'q) = C*(I'y)’, and so has a weak-* accumu-
lation point, say u, in B(I'g), and 6(u) = [M] € Q(A(T")). Thus 6 : B(T'q) — Q(A(T)) is
an isometric algebra isomorphism.
Again suppose that I' is a locally compact group such that 'y is amenable. Then

Poam) = Prry)
and so I' = ® 4y C ®p(r,). Since A(I'y) is a closed ideal in B(I['y), it follows that
®o(ary) =TqU H, where H is the hull of A(I'g) considered as a closed ideal in B(I'g),
and ® 4(ry is identified with the set of isolated points in ®g(4(r)), as in Theorem 6.10. =

Note that Example 7.9 is a special case of the above example.

EXAMPLE 7.11. Let w = (w,, : n € Z) be a weight on the group (Z,+), so that the
map w : Z — [1,00) is such that wy = 1 and wpmtn < Wmw, (M,n € Z), and let B, be
the weighted space £1(Z,w), with convolution product «, so that B, is a subalgebra of
(¢1(Z), ). The commutative Banach algebra B,, is an example of a Beurling algebra; for
a study of considerably more general versions of these algebras, see [12, §4.6] and [16].
The algebras B, can be identified with a natural Banach function algebra on a certain
compact subspace of C; the algebra B, is a dual Banach function algebra with predual

co(Z,1)w) = {(Bn :mn €Z): lim |B,|/wn=0}.
[n|—o0
In fact, we shall consider just the case where

inf{w!/™ : n € N} = sup{w_ /" :neN} =1, (7.3)

n —n
so that B, is identified with a natural Banach function algebra on the unit circle T.
Suppose further that lim),| o w, = oo (for example, we can take w = (w, : n € Z),
where
wp=1+n)* (nez)
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for some a > 0). Then each character on B,, has the form (¢" : n € Z) for some ¢ € T,
and so ®p, C ¢o(Z,1/w). It follows from Proposition 5.4 that L(B,,) = ¢y(Z,1/w) and
that Q(B,) = B,,.

We are not clear on the identification of Q(B,) when w satisfies (7.3) and is un-

bounded, but it is not the case that lim,|_,o w, = 00; such weights exist. m

ExaMpPLE 7.12. Let I' be a locally compact group, and take p such that 1 < p < oc.
Then the Figa-Talamanca-Herz algebra A = A,(T") is defined in [12, Definition 4.5.29]; it
was studied by Herz [33], and is described in the book of Derighetti [22, Chapter 3|. It is
known that (A,(T"), -) is a natural, self-adjoint, strongly regular Banach function algebra
on I' with the separating ball property; for this, see [22, Chapter 3], [33, Propositions 2
and 3], and [57, Proposition 2.5].

As noted in [8], @4 =T is weakly closed in A’ if and only if I' is amenable, and so,
by Theorem 6.16, the closure of ® 4 in ®g(4) is compact if and only if T' is amenable.

Let T" be a discrete, amenable group, and again set A = A,(T"). Then A is an ideal in
A" and A has a bounded approximate identity. Let B,(I') be the multiplier algebra of
A. Then, as in Example 7.8, we have Q(A) = B,(T") and

A" = B,() x L(A)*,

so that ®g(4) = I' U H, where H is the hull of A when A is regarded as an ideal in
B,(I). =
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8. Existence of contractive pointwise approximate identities

As we stated in the introduction, we are interested in finding necessary and sufficient
conditions on a Banach function algebra to have a bounded pointwise approximate iden-
tity and, especially, a contractive pointwise approximate identity. We shall obtain such
conditions in this section, and then give some applications.

Recall that a Banach function algebra A with a contractive pointwise approximate
identity has norm-one characters.

THEOREM 8.1. Let A be a Banach function algebra. Then A has a contractive pointwise
approzimate identity if and only if |[A]] =1 (A € coDy).

Proof. Certainly [|[A|| <1 (A € cody).

Suppose that A has a CPAL Then there exists an element E € A” such that ||E|| =1
and (E, p) =1 (¢ € ®4). Take A € co®4. Then (E, \) = 1, and so ||A|| > 1. Hence
A= 1.

Conversely, suppose that ||A]] = 1 (A € co®4). Then, for each A € co®Py, there
exists M € A” with |[M|| = 1 and (M, A) = 1. In particular, take n € N and a subset
S ={p1,..,n} of a. Set As = (37—, ¢;)/n € co®y4. Since ||As| = 1, there exists
Mg € A” with |[Mg|| =1 and (Mg, Ag) = 1. Since [(Mg, ¢)| <1 (¢ € ®4), the latter is
possible only if (Mg, ¢;) =1 (j € N,). Thus, for each non-empty, finite subset S of ®4,
there is Mg € A}, with (Mg, ¢) =1 (¢ € ), and this easily gives a CPAl'in A. =

As a first application of the above theorem, we present the following result.

Let A and B be Banach function algebras, and suppose that 8 : A — B is a homo-
morphism. We recall the standard fact [12, Theorem 2.3.3] that 6 is automatically con-
tinuous, and so it has a dual map 6’ : B’ — A’ that restricts to a continuous map
0" :dp — o4 U{0}.

THEOREM 8.2. Let A and B be Banach function algebras, and suppose that 0 : A — B is a
monomorphism with dense range such that 0'(®g) = ® 4. Then the map ¢’ : L(B) — L(A)
is a surjective isometry if and only if

10N lsse, 5 = 1flzsm, 4 (f €4). (8.1)

In this case, Q(A) and Q(B) are isometrically isomorphic as Banach algebras.

Proof. Since §(A) = B, it follows that 6(A) is also dense in (B, | |lpsg, ), and so

{00f): f €A 0(f)gsg, g < 1} is dense in the set {g € B : [|g[lggp, p < 1}-

Now suppose that equation (8.1) holds. It follows that {6(f) : f € A, [|f|psp 4 < 1}
is dense in the set {g € B : ||g|pgp, 5 < 1}

Next take A € L(B), so that 6'(A\) € L(A). By Proposition 5.8,

16" (M ar = sup{[(f, ' M) : f € A, [ fllzsm, a < 1}
and so
16" (Ml 4 = sup{[{g, M| : g € B, [|gllgsp, 5 < 1}

Thus, again by Proposition 5.8, ||0’(A)| 4, = [[All g/, and so ¢ : L(B) — L(A) is an
isometry. Since 8'(®p) = P 4, this map is a surjection.
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The converse is immediate from the definitions.

Set p=460"| L(B) : L(B) — L(A). In the case where p is a surjective isometry, the dual
map p' : L(A) — L(B)' is also a surjective isometry, and so u' : Q(A) — Q(B) is also
a surjective isometry. Moreover, u’ is a homomorphism because 6 is a homomorphism.
Hence Q(A) and Q(B) are isometrically isomorphic as Banach algebras. m

COROLLARY 8.3. Let A and B be Banach function algebras, and suppose that 0 : A — B
is a monomorphism with dense range such that 8'(®p) = ®4 and such that

10()pse, B = I fllgsr, a (f € A).

Then A has a contractive pointwise approximate identity if and only if B has a contractive
pointwise approrimate identity.

Proof. This now follows from Theorems 8.1 and 8.2. m

THEOREM 8.4. Let A be a Banach function algebra such that ||f|gsg = |f s, (f € A).
Then A has a contractive pointwise approximate identity if and only if A has norm-one
characters.

Proof. Suppose that A has norm-one characters. Take B to be the uniform closure of A
in Co(®4), so that &5 = @4 and B has norm-one characters. Since |- ||gsg g = | g,
it follows from the hypothesis that ||f|zsg 5 = | fllgse, 4 (f € A). By Corollary 8.3, A
has a CPAI if and only if B has a CPAL B7y Theorem 4.19, B has a CPAI, and so A has
a CPAL

The converse is immediate. m

Let (A, - || 4) be a Banach function algebra. Then (A, || - ||ggg) is complete if and only
if A has a BSE norm, and this is not always the case. Let (B, || - || 5) be the Banach function
algebra that is the completion of (A, -||pgg), so that ®p = &4 and L(B) = L(A). It
follows from equation (5.4) that |||z, = [|All 4+ (A € L(A)), and so

1flsse,a = Ifllp = ”f”BSE,B (fed).

Let 6 : A — B be the identity map. Then equation (8.1) is satisfied, and so Theorem 8.2
applies, and so we have the following corollary, which also uses Corollary 8.3.

COROLLARY 8.5. Let A be a Banach function algebra, and let B be the Banach function
algebra that is the completion of (A, ||-|lzsg). Then

(Q(A4), |- HQ(A)) =(Q(B) |- HQ(B))a
and B has a contractive pointwise approximate identity if and only if A has a contractive
pointwise approrimate identity. m

The following isomorphic form of Theorem 8.2 also holds.

PROPOSITION 8.6. Let A and B be Banach function algebras, and suppose that 0 : A — B
is @ monomorphism with dense range such that 0'(®p) = ® 4. Suppose that A and B both
have BSE norms. Then 0’ : L(B) — L(A) is an isomorphism if and only if 6 is a
surjection. m
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For example, let I'; and I'; be two locally compact groups, and suppose that there
is a monomorphism 6 : A(T'y) — A(T'2) such that 6 has dense range. Since A(T'y) is a
regular Banach function algebra, it follows that 6'(® 4r,)) = ®4(r,). Thus Proposition
8.6 shows that 6’ : C5(T'y) — C%(T'1) is an isomorphism if and only if 6 is a surjection.

Recall that, whenever A is a natural Banach function algebra on a locally compact
space K and S is Segal algebra with respect to A, the Banach function algebra S is also
a natural Banach function algebra on K, and so we can regard L(A) as a subspace of
both A’ and S’.

Let S be a Segal algebra with respect to a Banach function algebra A, and take
j: L(A) — L(S) to be the identity mapping, so that j is a contraction. The adjoint map
is j/ : L(S)" — L(A)’, so that

FM+LS)H) =M+ LA+ (MeS”).

(In the above equation, the M on the left is an element of S” C A”, but the M on the right
is regarded as an element of A”.) The map j' : Q(S) — Q(A) is a contractive algebra
homomorphism, and it is clearly injective. Thus j' : Q(S) — Q(A) is a Banach-algebra

monomorphism, but, in general, the image j'(Q(S5)) is not dense in Q(A). Clearly we
have

J(@a) =5 and j"(Pgra)) C Pors) U {0}.

In the case where ®g(4) is compact, §"(®4) is a compact subset of P o5y U {0}, but it
can be that 0 € j”(®,4 ). For example, take A = cg and S = £, so that ®o(a) = BN and

The following theorem implies that, in the case where S has a contractive pointwise
approximate identity, the map j : L(A) — L(S) is an isometry, and so j' : Q(S) — Q(A)
is an isometric Banach-algebra isomorphism.

THEOREM 8.7. Let (A, | -]/ 4) be a Banach function algebra, and suppose that (S, | | g)
s a Segal algebra with respect to A. Then the following are equivalent:
(a) S has a contractive pointwise approximate identity;
(b) A has a contractive pointwise approzimate identity and
[Alsr = lIAILa: (A € L(A)). (82)
(c) A has a contractive pointwise approzimate identity and

1flsse,s = Ifllgsm,a  (f €9). (8.3)

Proof. (a) = (b) Suppose that S has a CPAI, say (e, ). Then the net (e,) is also a CPAI
for A because ||f|l, < |[fllg (f € S). Also we clearly have ||A||g, < [|A]4 (A € L(A)).
Now take A € L(A) and & > 0. Then there exists f € Ay with [(f, A)| > ||A|| ,, — €. The
net (eqf) is in S, and [lea f|lg < llealls | fll4 < 1, and so

[(fs M =lim [(ea f, A)| < Timsup [lea fllg Ml < [Al]s0

which shows that ||A]| ,, —& < |[A||g . It follows that ||| ,, < [[Allg/, and then equation
(8.2) follows.
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(b) = (a) By Theorem 8.1, ||Al| ,, = 1 (A € co®4), and so, immediately from equation
(8.2), |Allgy =1 (A € co®,). Hence, by Theorem 8.1 again, S has a CPAIL

(b) = (c) By the definition of the BSE norm, (8.2) implies (8.3).
(c) = (b) It follows from equation (8.3) that the set {f € S : || fllggp, 4 < 1} is dense

in the set {g € A: ||gllgsp, 4 < 1} It now follows from equation (5.4) that equation (8.2)
also holds, giving (b). =

The above result has some rather unexpected consequences; the next theorem is a
main result of this work.

THEOREM 8.8. Let A be a Banach function algebra, and let S1 and Sy be two Segal
algebras with respect to A. Suppose that S1 and Ss both have contractive pointwise ap-
proximate identities. Then

(L(S1), - lsg) = (L(S2), I llsy) = (L(A), |- 1)

as Banach spaces and

(Q(51), I lgesyy) = (Q(S2), I lgrs,)) = (QLA), [ -llgay) - (8.4)
Proof. By the above theorem, the identifications of L(S1) and L(S2) with L(A) are
both isometries, and so L(S1) = L(S2), whence L(S1)" = L(S2)’ = L(A)’. Thus the
identifications of Q(S;) and Q(S3) with Q(A) are both Banach-algebra isometries, and
hence equation (8.4) follows. m

COROLLARY 8.9. Let G be a locally compact abelian group, and let S be a Segal algebra
with respect to L'(G). Suppose that S has a contractive pointwise approzimate identity.

Then (L(S), |- ) = (AP(G), |- ) and
(5). | los) = MBE). | -1).

(Q
Further, || fllgsg.s = Ifll, (f €5), and hence the Banach function algebra S has a BSE
norm if and only if S = L*(G).

Proof. By the Bochner-Schoenberg-Eberlein theorem, |f|lgsp 1) = [[fll; for each
f € LY(@G)), and so this follows from Theorems 8.7 and 8.8 and earlier examples. =

Thus, in the case where the Segal algebra S has a contractive pointwise approximate
identity, the biduals of S and L!(G) are equal modulo the ideals L(S)* and AP(G)*
respectively.

EXAMPLES 8.10. (i) Set A = co and S = ¢!, regarded as natural Banach sequence
algebras on N, so that S is a Segal algebra with respect to A. Then A has an obvious
contractive approximate identity, but S does not have a bounded pointwise approximate
identity; this easy example shows that a Segal algebra with respect to a Banach function
algebra that has a contractive pointwise approximate identity need not itself have a
contractive pointwise approximate identity.

(ii) Let G be a locally compact abelian group that is neither discrete nor compact;
the dual group is I'. Take p with 1 < p < co.
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Set S = L*(G) N LP(G), taken with the norm given by
1flls, = max{|[flly [If]l,} (feS).
Also set Sy = {f € L*(G) : f € LP(T")}, taken with the norm given by

151, =max {11 7]} 7 e 0.

Then S; and Sy are both Segal algebras with respect to L!'(G) [12, Examples 4.5.27).
Neither S; nor Sy has a bounded approximate identity, but it is proved in [35] that
both S; and S; have contractive pointwise approximate identities. Thus we can conclude
from the above results that L(S;) = L(S2) and
(

(QS1), I llgesyy) = (LS2)s [ -llgs,y) = (MG, | -11)

that
|f+LES)*| =|f+AP@G)* | (feS)

for S = S7 and S = 59, and that neither S; nor S; has a BSE norm. Indeed, by Theorem
8.7 and the fact that the BSE norm for L!(G) is equal to the given norm, we have

I fllgse,s = Ilfll,  (f€S)
forS=5,and S=55. =



Pointwise approximate identities 53

9. /'-norms on L(A)

In this section, our aim is to compare the spaces L(A) and £1(® 4) for a Banach function
algebra A, and determine when these two Banach spaces are mutually isometric or iso-
morphic. Equality of these two spaces is closely related to the equality of the two norms
||, and |- [|ggg, and is connected to the weak separating ball property.

Let A be a Banach function algebra. Then there is a natural contraction

cif e Y S e (e @)}, (CH@a), 1) = (A1)

Clearly t(£1(®4)) contains L(A) and is contained in L(A), and so t(£1(®4)) is a dense
subspace of L(A). However, the map ¢ is not always an injection: it may be that there
exist a sequence () in ®4 and an element a = (a,,) € ¢! such that > 2 | o, =0
(with convergence of the sum in A’), but with o # 0. For example, this occurs in the case
where A is the disc algebra A(D). For a discussion of this point, see [27]. Fortunately, the
following lemma shows that this difficulty does not arise in the cases of interest to us.

Recall from Corollary 4.4(i) that a Banach function algebra that has a bounded point-
wise approximate identity and has the separating ball property is such that every non-
zero, maximal modular ideal has a bounded pointwise approximate identity.

LEMMA 9.1. Let A be a Banach function algebra such that M, is non-zero and has a
bounded pointwise approximate identity for each ¢ € ® 4U{oc}. Take a set {a, : o € Do}
in C with

Z{|Oz¢| tp ey} <oo and Z{a¢g0 tp ey} =0.
Then a, =0 (p € Py).

Proof. Assume towards a contradiction that there exists ¢o € ®4 such that o, # 0.
Since both A and M,,, have bounded pointwise approximate identities, it follows from
Proposition 3.6 that there exists an element M € A” such that (M, ¢) = .4, (¢ € ®a).

Then
0= <Ma Z CV@‘P> = Z O‘¢<M» SD> = Qg

pEDA pEDA
a contradiction. Thus a, =0 (p € $4). m

It follows that, in the case where A satisfies the conditions of the above lemma, the
map ¢ : £1(®4) — A’ is an injection, and so we can regard £1(®4) as a subspace of
L(A). For A = u(f), where f € £1(®4), we set |||, = ||f|l;; in particular, for an element
A= 300, aipi € L(A), we have [N, = 3701 [eyl.

PROPOSITION 9.2. Let A be a Banach function algebra, and suppose that A is pointwise
contractive. Then | fllgsg < 4|flp, (f € A).

Proof. Take A = > | aijp; € L(A), and take ¢ > 0. Since A is pointwise contractive,
Proposition 3.8(ii) shows that there is f € Ay such that |a;f(w;) —|oi|| < e (1 € Ny).

Hence
n

M =D leil < [, M +ne < AN+ ne < 44| +ne.
=1



54 H. G. Dales and A. Ulger

Thus [|Afl; < 4[|A]-
Now take f € A. For each € > 0, there exists A = )" | a;¢; in L(A)p such that
[(f, M| > || fllgsg — €- and then

> aif(pi)

i=1

+5§Z|O‘i||f|<m‘ +5:||)‘||1‘f|<1>A +€§4|f|q>A +e,

i=1

1/ llgse <

and so || f[|ggg < 4flg,, giving the result. m

We can now give our main classification theorem for unital Banach function algebras
that have a BSE norm.

THEOREM 9.3. Let A be a unital Banach function algebra with a BSE norm.
(i) Suppose that A is contractive. Then A is equivalent to a Cole algebra.

(ii) Suppose that A is pointwise contractive. Then A is equivalent to a uniform algebra
for which each singleton in ®4 is a one-point part.

Proof. The result is trivial when [® 4] = 1 (and then A is a Cole algebra), and so we may
suppose that |®4]| > 2.

In both cases, A is pointwise contractive, and so, by Proposition 9.2, A is equivalent
to a uniform algebra.

(i) Since A is contractive, (4, |- |4 ) is also contractive, and so it is a Cole algebra by
Corollary 4.14.

(ii) Since A is pointwise contractive, (4, ][4 ) is also pointwise contractive, and so
each singleton in ® 4 is a one-point part by Proposition 4.21(ii). =

It is not true that every contractive or pointwise contractive Banach function algebra
is necessarily equivalent to a uniform algebra; this will be shown in Examples 9.11 and
9.12. In this case, of course, the algebras cannot have a BSE norm.

PROPOSITION 9.4. Let A be a self-adjoint Banach function algebra. Then the linear map

v 0N (®4) — L(A) is a surjective isometry if and only if || f|gsg = |fle, (f € A).

Proof. The embedding of A into Cy(®P 4) is a continuous monomorphism with dense range,
and so Theorem 8.2 applies. The result follows because L(Co(®4)) = (1 (P4). m

PROPOSITION 9.5. Let A be a pointwise contractive, unital uniform algebra. Then the
linear map v : £*(®4) — L(A) is a surjective isometry.

Proof. Consider A = Y"1 | aip; € L(A)p, and take € > 0. By Proposition 3.10, there
exists f € Apy with |y f(2;) —[ag|| < € (i € Np) and then, as in Proposition 9.2,
IAll; = |IAl]. Thus the specified map is a surjective isometry. m

COROLLARY 9.6. Let A be a natural uniform algebra on a non-empty, compact space K.
Then the following are equivalent:

(a) each singleton in K is a one-point Gleason part;
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(b) (Q(A); I+ lg(a)) = (€(K), |- |k)-

In particular, Q(A) is a uniform algebra in this case.

Proof (a) = (b) By Proposition 4.21(ii), A is pointwise contractive, and so the map

(Y(K) — L(A) is a surjective isometry by Proposition 9.5. Thus
VQ(A) = L(A) — (=(K)
is a surjective isometry. Since Q(A) is a subalgebra of ¢*°(K), (b) follows.
(b) = (a) Take x,y € K with x # y. Then there exists f € £°°(K)[y) with f(z) =

and f(y) = —1. By (b), f € Q(A)[y, and so there exists F' € A[l] with F' | K = f. This
shows that ||e; —gy]| = 2, and so o y. Thus (a) follows. =

PROPOSITION 9.7. Let A be a Tauberian Banach sequence algebra on a non-empty set S
such that A has a bounded pointwise approximate identity. Then the following conditions
on A are equivalent:

(a) the linear map v : £*(S) — L(A) is an isomorphism;

(b) A =co(S).
Proof. The norm on A is denoted by || -||.

(a) = (b) There is a constant m > 0 such that |||, < m|A|] (A € L(A)). Take
f € A. As in the proof of Proposition 9.2, || f|lgsg < m|flg,, and so |- |[ggg ~ |+ |g on
A. By Corollary 5.13(i), A has a BSE norm, and so ||- || ~ || - [|ggg on A. Thus |- |4 and
|- || are equivalent on A. Since A is dense in ¢((S), necessarily A = ¢((S).

(b) = (a) Since A = ¢((9), it follows that ¢ : £1(S) — A’ is an isomorphism. As
before, L(A) = ¢1(S), and so A’ = L(A), giving (a). =

The following is a further main theorem of this work.

THEOREM 9.8. Let A be a Banach function algebra. Then the following conditions on A
are equivalent:

(a) the linear map v : £1(®4) — L(A) is an isometric surjection;
(b) A has the weak separating ball property and | f|lgsg = |fle, (f € A);
(c) A is pointwise contractive and | f| gsg = |flep, (f € A).
In the case where |® 4| > 2, the above conditions are also equivalent to:
(d) for each ¢ € ® 4, the mazimal modular ideal M, has norm-one characters and

[fllsse = [fle, (f €A).

Proof. Take B to be the uniform closure of A in Cy(®4), so that B is a natural uniform
algebra on ® 4. Then the embedding of A into B is a continuous monomorphism with
dense range.
(a) = (c) Take ¢ € @4 U {oo}, and consider the corresponding ideal M, in A.
Define F,, € £>°(®4) = 01 (P4)’ to be the characteristic function of ® 4 \ {¢}, so that
|Fyll, = 1. Then, as a continuous linear functional on (L(A), | -||), we have || F,| = 1

because L(A) = ¢1(®4). Extend F,, to be an element F, of A” with ||F,| = 1. Then
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there is a net (f,) in Apy; that converges weak-* to F,, and we may suppose that (f,) is
in (My)p. Clearly (f,) is a CPAI in M, and hence A is pointwise contractive.
Take f € A. Then

1 lgse = sup{|(f, M| : A € L(A)p} = sup{[(f, N[ : A € (@)} = |flas,
as required.
(¢) = (b) This is immediate.

(b) = (a) Since A has the weak separating ball property, B also has the weak sep-
arating ball property, and so B is pointwise contractive by Corollary 4.20. By Proposition
9.5, (L(B), || 1) = (€1 (@A), |- [I,)-

For each f € A, we have ||f||BSE’A = |flp, by hypothesis, and ||fHBSE’B = |flo,»
and so || fllgsp.a = || fllgsg p- It follows from Theorem 8.2 that L(B) = L(A), and so

(L(A) [1-1) = (€4 (2a), - [ly), giving (a).
Now suppose that |®4| > 2. Then (b) < (d) by Proposition 4.7. m

Example 9.11, to be given below, will show that a Banach function algebra M such
that map ¢ : £1(®,;) — L(M) is an isometric surjection is not necessarily equivalent to
a uniform algebra.

The following is the isomorphic analogue of the above theorem.

THEOREM 9.9. Let A be a Banach function algebra. Then the following conditions on A
are equivalent:

(a) the linear map v : £*(®4) — L(A) is an isomorphism;
() Illgsg ~ | lp, on A and A and each non-zero mazimal modular ideal of A has
a bounded pointwise approrimate identity.

Proof. (a) = (b) This is essentially the same argument as that contained in the proof of
Theorem 9.8, (a) = (c).

(b) = (a) This implication is trivial when A = (C,|-|), and so we may suppose that
|®4] > 2. By Lemma 9.1, the map ¢ is an injection. Since |- [|ggg ~ |+ |p,, there is a
constant 3 > 0 such that || f||gggy < 1 whenever f € A with [f|,, < . It follows from

equation (5.4) that [¢(A)]| = BIAll; (A € L(A)), and so [ll(f)[| = BIIf]l, (f € £1(Pa))
because L(A) is dense in £1(®,4). This implies clause (a). =

The next theorem concerns the question when Q(A) is a uniform algebra on its char-
acter space ®g(a)-

THEOREM 9.10. Let A be a Banach function algebra.

(i) Suppose that the linear map v : £1(®4) — L(A) is an isometric surjection. Then
Q(A) is a uniform algebra on ®gay, and Pga) = fKa, where K = & 4.
(ii) Suppose that A is dense in the uniform algebra (Co(®4a),|-|g,) and that Q(A)

is a uniform algebra on ®g(ay. Then the linear map v : £1(®4) — L(A) is an isometric
surjection.
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Proof. (i) As in Corollary 9.6, (Q(A), [| - [[g(4)) = (¢>°(K), |- [ ), and so Q(A) is identi-
fied with the uniform algebra C(8Ky).

(ii) Since Q(A) is a uniform algebra on ®g(4), necessarily
1 o = flog, (€ Q(A).

Take f € A. By equation (6.3), ‘f“?g(A) = |flg,- Also |[fllgsg = I [f]1llg(a)- Hence

”fHBSE = |f|<1>A-
Now take A € L(A). It again follows from equation (5.4) that

A= sup{[(f, Ml = f € A, [flg, <13
Since A is dense in Co(®4), the set {f € A:|f|g, <1} is dense in Co(P )1}, and so

Al = sup{[(f, M| : f € Co(Pa)u}-

This implies that ||\ = [|A]l;, and hence that ¢ : £*(®4) — L(A) is an isometric surjec-
tion. m

Let A = A(D) be the disc algebra. By Example 7.5, Q(A) is a uniform algebra on
®g(4). However, it is not true that each point of ®4 = D is a one-point part, and so,
by Proposition 4.21(ii), A is not pointwise contractive. By Theorem 9.8, (c) = (a), it
is also not true that ¢ : £1(®,4) — L(A) is an isometric surjection. It follows that we
cannot delete the hypothesis that A be dense in the space (Co(®a), ][ ,) in clause (ii)
of Theorem 9.10.

Suppose that A is a natural uniform algebra on a compact space K such that each
singleton in K is a one-point part. Then ¢ : £1(®4) — L(A) is an isometric surjection by
Theorem 9.5 and Q(A) is a uniform algebra by Corollary 9.6. However we noted on page
23 that there are Cole algebras A that are not equal to C'(K) (and hence not dense in
C(K)). Thus the converse to Theorem 9.10(ii) does not hold.

In the following example, we shall exhibit a Banach function algebra M that is not

equivalent to a uniform algebra, but is such that Q(M) is a uniform algebra; the algebra
M does not have a BSE norm.

ExXAMPLE 9.11. Let A be the example constructed in [18, Example 5.1] and expounded
in [19]. Briefly, A consists of the functions f € C(I) such that

1 —
I(f) ::/0 1) = SOl ; 1)l dt < o0}
we define

=1l +1(F) (fed).

Then (A4, - ||) is a natural, self-adjoint, unital Banach function algebra on I. The algebra
A is a dense, proper subalgebra of C'(I), and so A is not equivalent to a uniform algebra.
Set

M={feA: f(0)=0}.

Then the maximal ideal M of A does not have a bounded approximate identity, but it
does have a contractive pointwise approximate identity; indeed, it is noted in [18, Example
5.1] that A is pointwise contractive. As in Theorem 8.4, M has norm-one characters.
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This example A of a unital Banach function algebra that is pointwise contractive, but
not equivalent to a uniform algebra, shows that the requirement in Theorem 9.3 that A
have a BSE norm cannot be dropped for the proof of clause (ii).

Set K = (0,1] and C'y = Co(K), so that C has a contractive approximate identity.
Then M is a Segal algebra with respect to Cg, and so, by Theorem 8.7, (a) = (c),

[ fllgsear = 1fly  (f €M),
which shows that M does not have a BSE norm. Further, by Theorem 8.8, we have

L(M) = L(Co) = 1(K) and (M), || g = (C(BKa).||sx,)-
Also Q(A) = C(B1y), and so Q(A) and Q(M) are isometrically isomorphic as Banach
algebras.
The Banach function algebra M is such that Q(M) is a uniform algebra, but M itself
is not equivalent to a uniform algebra. m

ExXAMPLE 9.12. Let A be the example constructed in [18, Example 5.2]. The algebra
A is a natural, unital Banach function algebra on the circle T such that A is dense in
(C(T),||g), but A is not equivalent to the uniform algebra (C(T), |- |). It is shown that
A is contractive. For this example, ||f|pqg < 41f|p (f € A) by Proposition 9.2, and so
A does not have a BSE norm. (In fact, || f||gsg = |fly (f € A4).)

This example A of a unital Banach function algebra that is contractive, but not
equivalent to a uniform algebra, shows that the requirement in Theorem 9.3 that A have

a BSE norm cannot be dropped for the proof of clause (i). =
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10. Embedding multiplier algebras

Our aim in this section is to show that, for each Banach function algebra A that has a
contractive pointwise approximate identity and whose norm is equal to its BSE norm,
the multiplier algebra of A embeds isometrically into the unital Banach function algebra
Q(A) = A"/L(A)*.

Let (A, || - ||) be a natural Banach function algebra on a locally compact space K, with
multiplier algebra M(A), as on page 11, so that

M(A) ={f e C*(K): fFAC A},

and

[l < W fllop < UIFI (F € A). (10.1)
For example, M(cq) = £°° = C(ON).

For a general algebra A, there is also a definition of left multipliers on A and of the
multiplier algebra, M(A); see [12, §1.4], for example. In the case where A is a Banach
algebra with a contractive approximate identity, it is proved in [12, Theorem 2.9.49] that
there is a specific isometric algebra embedding 6 of M(A) into (A", ).

Now let A be a Banach function algebra with a contractive approximate identity.
Then it follows easily that, in the case where || f||zeg = || fI| (f € A), the above map 6
gives an isometric algebra embedding of M(A) into Q(A). The theorem below gives the
same conclusion when A has just a contractive pointwise approximate identity, rather
than a contractive approximate identity.

Let A be a Banach function algebra, and take T' € M(A). Then

T"MON)=T"M)ON (M,Ne A"). (10.2)

Suppose that A has a contractive pointwise approximate identity, say (e,), and let
T =L; € M(A). Then

lim (Tea)(p) = f(p) (¢ € Pa). (10.3)

Take E and F to be weak-+ accumulation points of (e) in Afj;. Then (10.3) shows that

T"(E) — T"(F) € ®%, and hence [T”(E)] = [T"(F)] in Q(A). Thus the map 6 in the
following theorem does not depend on the choice of E.

THEOREM 10.1. Let A be a Banach function algebra such that ||f|lgeg = |fIl (f € A).
Suppose that A has a contractive pointwise approximate identity with a weak-* accumu-
lation point E in A”. Then the map

0:T— [T"(E)], (MA),l- ) = (A - lgca))
is an tsometric algebra embedding.

Proof. Tt is clear that 6 is a linear map. Take T' € M(A). Since E € Aﬁ],
10(T) gy < 1Tl and so 0 is a contraction.
Take S, T € M(A), and take ¢ € ® 4. First note that

(fg, 8'(0)) = (f, ©) (g, S"()) (frg€A).

it follows that
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Thus (f - T"(E), §'(¢)) = (f, ¢) (T"(E), S'(¢)) (f € A), and hence
(S"(EDT(E)), ¢) = (EDT(E), S'(¢)) = (T"(E), S'(¢)) = (5" o T")(E), ¢).
It follows that
(S o T)(E), ¢) = ((S" o T")(E), ) = (S"(ECT"(E)), ¢)
— (S"(B)OT"(E), ¢) by (10.2),
and so (S o T)"(E) — S”(E)OT"(E) € L(A)*. This shows that

(S o T)"(E)] = [S"(E)] [T (E)]
in O(A). Hence 0 : M(A) — Q(A) is an algebra homomorphism.
Now take a multiplier 7" € M(A). For each ¢ > 0, there exists f € A such that
ITfll > ITll,p — & Since [|Tfl|gsg = [T f[l, there also exists A € L(A)}y) such that
‘<Tf’ )\>‘ > ||T||op - & NOW

(T, N =KE - Tf N =[T"(E) - f, )] =KT"E), f - N
Since f - A € L(A)q, it follows that [(T'f, \)| < [[[T"(E)]|lg(4), and this implies that

1T llop < T (E)]ll o4 + - Thus [T, < [T (E)lllga) = 10(T)ll o), and so the map
# is an isometry. m

ExAMPLE 10.2. In general, the above map 6 is not a surjection.

For example, suppose that A = lip, I, as in Example 7.2, so that Q(4) = A” = Lip_I.
Then M(A) = A because A is unital, and so the range of 6 is A C Q(A).

Again, let A = L'(G) for a locally compact abelian group G. Then M(A) = M(G)
and Q(A4) = M (bG), as in Example 7.9. Clearly, M (G) embeds isometrically into M (b G),
but the embedding is rarely a surjection. m

ExAMPLE 10.3. Let M be the Segal algebra mentioned in Example 9.11. Then it is easy
to see that M (M) = C*((0,1]), and so M (M) embeds isometrically and algebraically in
£>((0,1]) = Q(M). =

PROPOSITION 10.4. Let A be a Banach function algebra that is an ideal in its bidual and
that has a contractive pointwise approzimate identity. Then Q(A) = M(A).

Proof. By Corollary 5.13(ii), || fllgsg = Ifll (f € A), and so, by Theorem 10.1, the map
0:T— [T"(E)], M(A) — Q(A), is an isometric algebra embedding.

Take M € A”. Then the map Ry : f— f-M, A — A, isamultiplier on A because A
is an ideal in A", and 0(Ry) = [M]. Hence the map 0 : M(A) — Q(A) is a surjection. =

ExAMPLE 10.5. Let A be a Banach function algebra with a contractive approximate
identity such that A is an ideal in A”. Then L(A) = A - A’ by Corollary 5.3. In the
case where A is also Arens regular, AA’ = A’ by [56, Corollary 3.2], and so L(A) =
and hence L(A)t = {0}. Thus Q(A) = A”. By Proposition 10.4, M(A) = Q(A). Hence
Pg(ay = P4 UH, where H is the hull of A considered as an ideal in M(A).

For example, let A = ¢y ® co. Then the algebra A satisfies the specified conditions,
and so Q(A) = M(A) = A”. Indeed, A is a Tauberian Banach sequence algebra, and
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so A is an ideal in A”; further, A has a bounded approximate identity, and A is Arens
regular by [55, Corollary 4.17(a)]. m

ExaMpPLE 10.6. Let G be a locally compact abelian group that is neither discrete nor
compact, and let S be either of the Segal algebras S; or S5 that were considered in
Example 8.10(ii). Then, as we have seen in Corollary 8.9, S does not have a BSE norm,
but Q(S) = Q(LY(G)) = M(bG). By [28], M(S) = M(G). As M(G) embeds in M (bG),
we see that M(S) embeds into Q(5), although S does not have a bounded approximate
identity. m
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11. Reflexive ideals and weakly compact homomorphisms

In this final section, we shall consider when Banach function algebras contain non-trivial,
closed ideals that are reflexive as Banach spaces and also when there are non-zero, weakly
compact homomorphisms between two Banach function algebras; our proofs use notions
that are given above.

11.1. Reflexive ideals. We first consider the consequences of assumptions that certain
closed ideals in and quotients of a Banach function algebra are reflexive.

DEFINITION 11.1. Let A be a Banach function algebra, and let I be a non-zero, closed
ideal in A. Then I is reflexive if I is reflexive as a Banach space.

Suppose that A is a Banach function algebra and that S is a finite set of isolated
points in ® 4. Then the closed ideal I(® 4 \ S) is a finite-dimensional Banach space, and
hence reflexive. However it is not true that all reflexive ideals in a Banach function algebra
are finite dimensional. Indeed, [18, Example 3.3] exhibits an infinite-dimensional, unital,
Banach function algebra A that is reflexive as a Banach space and is such that ®4 is
connected. Thus A has many non-trivial reflexive ideals, although ® 4 has no isolated
points and no non-zero, finite-dimensional, closed ideals.

Let A be a regular Banach function algebra, and suppose that I is a reflexive ideal.
Then it follows from (2.6) that J(h(I)) is also reflexive, and so we concentrate on closed
ideals of this latter form.

DEFINITION 11.2. Let A be a Banach function algebra, and take ¢ € ® 4. Then A has
the strong separating ball property at ¢ if, for each neighbourhood U of ¢ in ® 4, there
exists f € Ajqy with f(¢) =1 and supp f C U. The algebra A has the strong separating
ball property if it has the strong separating ball property at ¢ for each ¢ € ® 4.

ExaMPLES 11.3. (i) Let K be a non-empty, locally compact space. Then Cy(K) has the
strong separating ball property.

(ii) Let I' be a locally compact group. The Figa-Talamanca-Herz algebras A,(I") were
mentioned in Example 7.12. We claim that each Banach function algebra A,(I") has the
strong separating ball property; in particular, the Fourier algebra A(T") has this property.

Indeed, take z € T and U € MN,. There is a symmetric, open, relatively compact
neighbourhood V' of ep such that zV? C U, say a = 1/mp(V). Set f = a'/Px,y and
g = o'/, where ¢ = p’. Then 1£1l, = llgll, = 1. Set u = f x g, so that u € A,(T')p;.
Clearly

u(x) = o710 /V Yov(@y) dmr(y) = a - (1/a) = 1

and supp u C 2V? C U. Hence A,(T) has the strong separating ball property. m

THEOREM 11.4. Let A be a Banach function algebra with the strong separating ball prop-
erty, and take a proper, closed subset S of ® 4. Suppose that J(S) is a reflexive ideal in
A. Then the space @4 \ S is discrete.
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Proof. Take ¢ € ® 4\ S, and consider the set

Ko ={f€J(S)y : fle)=1}.

Since A has the strong separating ball property at ¢, the set K, is non-empty, and clearly
it is convex. Since J(5) is reflexive, the set K, is weakly compact in A. For g € K, the
maps Ly : f— gf, K, — K, form a commuting family of continuous, affine maps, and
so, again by Theorem 2.4, the family has a fixed point, say h € A. Thus h(y) = 1 and
gh = h for each g € K,

For each ¢ € &4 \ S with ¢ # ¢, there exists g € K, with g(¢) = 0. This implies
that h(v) = g(1)h(¢)) = 0, and so h is the characteristic function of {¢}. It follows that
v is isolated in @4, and so ® 4 \ S is discrete. m

Since there are reflexive Banach function algebras that have connected character
space, we cannot delete the hypothesis that A have the strong separating ball property
in the above theorem.

COROLLARY 11.5. Let T" be a locally compact group, and take p with 1 < p < oo. Then
A,(T) contains a non-zero, reflexive closed ideal if and only if ' is discrete.

Proof. Set A= A,(T).

As noted above, A has many reflexive closed ideals when I is discrete.

Conversely, suppose that A contains a non-zero, reflexive closed ideal I. Set S = h(I),
so that S is a proper, closed subset of I' = ® 4. Since A is regular, J(S) C I, and so the
ideal W is reflexive. Since A has the strong separating ball property, it follows from
Theorem 11.4 that each point in T'\ S is isolated in T'. Since I is a group, each point of

I" is isolated, and so I' is discrete. m

Let E be a Banach space that is weakly sequentially complete. By Rosenthal’s £1-
theorem [1, Corollary 10.2.2], either E is reflexive or it contains an isomorphic copy of
¢1. The Fourier algebra A(I') = A(T") is weakly sequentially complete, being the predual
of a von Neumann algebra, and so we have the following result.

COROLLARY 11.6. Let I" be a non-discrete, locally compact group. Then every non-zero,
closed ideal of A(T') contains an isomorphic copy of £1. m

In the case where G is abelian and non-compact, the above corollary (for the algebra
A = LY(G)) was obtained by Rosenthal in his seminal memoir [46, Theorem 2.12 and
Corollary 2.13] as a consequence of more general results.

THEOREM 11.7. Let A be a Banach function algebra with the separating ball property
such that ® 4 is weakly closed in A’. Suppose that I is a proper closed ideal in A such
that A/I is reflexive. Then h(I) is finite.

~

Proof. Since A/I is reflexive, the space I+ = (A/I) is a reflexive subspace of A’, and
h(I) is a subset of I*. Since A has the separating ball property, it follows from Theorem
4.3(ii) that ® 4 is weakly discrete, and so h(I) is relatively weakly compact as a subset
of (I*)p). Since @4 is weakly closed, the weak closure of h(I) in A’ is contained in the
discrete space ® 4, and hence h(I) is finite. m
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COROLLARY 11.8. Let T' be a locally compact, amenable group, and take p such that
1 < p < oo. Suppose that I is a proper closed ideal in A,(T') such that A,(T)/I is
reflexive. Then h(I) is finite.

Proof. Set A= A,(T"). As we remarked in Example 7.12 , &4 =T is weakly closed in A’
whenever I' is amenable. By Example 11.3(ii), A has the strong separating ball property,
and so the result follows from Theorem 11.7. m

The above corollary does not hold for an arbitrary locally compact group I'. Indeed,
let T be a locally compact group that contains Fs as a closed subgroup (so that I' is not
amenable). Then A,(F2) is a quotient of A,(I") by a result of Herz (see [22, Theorem 5
of §7.8]). The space Fa contains an infinite so-called Leinert set, say S. It follows from
clause (b) of the proof of [6, Proposition 1] that, for 1 < p < 2, the restriction map

R: Ay(T) = £(S)

is such that [|[R(f)ll, < Cpllflla,r (f € Ap(I)), where ¢ = p’. That is, the map
R : A,T) — ¢9(S) is a bounded linear surjection. Let I = ker R, a closed ideal in
Ap(T). Then I is such that the quotient A,(I")/I is a reflexive space, but h(I) is infinite.
Since A,(T") is isometrically isomorphic to A,(I") for each locally compact group T, it
follows that, whenever I' contains Fy as a closed subgroup, the algebra A,(I') contains a
reflexive ideal I such that h(I) is infinite. Thus, we cannot omit the word ‘amenable’ in
the hypotheses of Corollary 11.8.
The above remark, in the case where p = 2, is essentially contained in [57, p. 362].

11.2. Weakly compact homomorphisms. We now consider weakly compact homo-
morphisms between two Banach function algebras; these are algebra homomorphisms
that are weakly compact as bounded linear operators. There are many papers in the lit-
erature on weakly compact homomorphisms between Banach algebras; for example, see
[29, 36].

THEOREM 11.9. Let A and B be Banach function algebras. Suppose that A has norm-
one characters and that the only idempotent in B is zero. Then the only weakly compact
homomorphism from A into B is the zero homomorphism.

Proof. Assume towards a contradiction that 8 : A — B is a non-zero, weakly compact
homomorphism. Then 0" | &g : P — P4 U {0} is a continuous map, and there exists
1o € ®p such that pg := 6'(¥g) € P4 because 6 # 0. By hypothesis, ||¢o|| = 1, and so,
by Proposition 6.7, there is an idempotent u € Q(A)[;) with u(ypo) = 1.

Since 6 is weakly compact, the range of the map 6" : A” — B’ is contained in B. Take
M € L(A)*. For each ¢ € ®p, we have (0”(M), ¥) = (M, #'())) = 0, and so §”(M) =0
in B. Thus the map

6: M+ 6"(M), Q(A)— B,

is well defined; clearly, 0 is a continuous homomorphism.
Set ¢ = 8(u) € B. Then ¢ is an idempotent in B, and so g = 0. However we have
g(0) = u(go) = 1, the required contradiction.
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Thus the only weakly compact homomorphism from A into B is the zero homo-
morphism. m

COROLLARY 11.10. Let A be a Banach function algebra such that A has norm-one char-
acters, and let B = A(T'), where T' is a locally compact group that is connected and

non-compact. Then the only weakly compact homomorphism from A into B is the zero
homomorphism. =
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12. Open questions

We conclude with a list of some questions that we have not resolved.

1.

10.

11.

12.

Let A be a unital uniform algebra. Is every subset P of ® 4 that is a Gleason part
with respect to A also a Gleason part with respect to A” when it is regarded as a
subset of ® 4.7 In particular, is this true when the part P is a singleton?

Let (4, ] -]|) be a Banach function algebra such that inf{[|¢| : ¢ € 4} > 0. Is
there a norm ||| ||| on A that is equivalent to |- || and such that (A,]||-]||) is a
Banach function algebra and |||p||| =1 for each p € ®47

Let A be a Banach function algebra. Since the only possible weak-* accumulation
point of ®4 in A’ is 0, the set ® 4 is weakly closed in A’ whenever there exists
M € A” such that inf{|(M, ¢)| : ¢ € P4} > 0. Is the converse always true?

Let A be a Banach function algebra, and take ¢ € ® 4. We know from Proposition
6.11(ii) that ¢ is weakly isolated in ®4 whenever ¢ is an isolated point when
regarded as an element of ®g(4). Is the converse always true?

Let A be a Banach function algebra. We know from Proposition 6.17 that ®4 is
weakly closed in A’ whenever A has a bounded pointwise approximate identity. Is
the converse always true?

Let A be a natural uniform algebra on a compact space K. We do not know whether
each point x that is isolated in (K, d4) is also isolated in ®g(4), and so, by Corollary
6.13, we do not know whether the corresponding maximal ideal M, always has a
bounded pointwise approximate identity.

Is there a Banach function algebra A that does not have a bounded pointwise
approximate identity, but is such that the norms |- [, and [|- |ggp are equivalent
on A?

Let A be a Banach function algebra that is an ideal in its bidual and is such that
[ fllgse = Ifllop (f € A). Does A necessarily have a contractive pointwise approx-
imate identity?

In Example 7.5, we identified Q(A) in the case where A is the disc algebra. It is
likely that similar, but more complicated, arguments will identify Q(A) for more
general unital uniform algebras, such as the tight uniform algebras of [11].

Let T be a locally compact group. In Example 7.10, we identified Q(A(T)) in certain
cases. Can these results be extended to more general groups?

Let w be a weight on the group (Z, + ) such that
inf{w"/" :n € N} = sup{w /" :neN} =1,

n

with corresponding Beurling algebra A,,. In Example 7.11, we showed that we have
Q(A,) = A, for many weights w. Is this true for all such weights w?

Let T be a locally compact group, and take p with 1 < p < co. We do not have
any identification of Q(A,(T')) for groups that are not both discrete and amenable,
save in the case where p = 2.
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Leinert set, 64
Lipschitz algebra, 40, 60

Markov—Kakutani fixed-point theorem,
15, 20

measure algebra, 14

multiplier, 9

multiplier algebra, 10, 59

peak set, peak point, 11
peak-point conjecture, 23
predual, 14

predual, unique, 14

reflexive ideal, 62
Rosenthal’s theorem, 63

Schauder—Tychonoff fixed-point
theorem, 15

Segal algebra, 16, 50, 51, 61

semi-direct product, 9

separating ball property, 19
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set of synthesis, 12
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support, 12

uniform algebra, 10, 40
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weakly compact homomorphism, 64
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