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Abstract. For any dg algebra A we construct a closed model category structure on dg

A-modules such that the corresponding homotopy category is compactly generated by dg

A-modules that are finitely generated and free over A (disregarding the differential). We

prove that this closed model category is Quillen equivalent to the category of comodules

over a certain, possibly nonconilpotent dg coalgebra, a so-called extended bar construction

of A. This generalises and complements certain aspects of dg Koszul duality for associative

algebras.

1. Introduction

Koszul duality is an algebraic phenomenon that goes back to Quillen’s work [Qui69] on

rational homotopy theory; it later manifested itself in many different contexts: operads

[GK94], deformation theory [Hin01], representation theory [BGS96] and numerous others.

The modern understanding of Koszul duality for differential graded (dg) algebras and dg

modules has been formulated in [Pos11]. According to this formulation there is an adjunction

between the categories of augmented dg algebras and conilpotent dg coalgebras, given by

bar and cobar constructions, which becomes a Quillen equivalence under certain model

category structures. The conilpotent dg coalgebra associated to an augmented dg algebra

by this equivalence is called its Koszul dual; similarly the augmented dg algebra associated

to a conilpotent dg coalgebra is called its Koszul dual. There is also a Quillen equivalence

between the corresponding categories of dg modules and dg comodules. A variant of this

correspondence exists for non-augmented dg algebras and their modules.

A salient feature of this theory is that the closed model category structures on the Koszul

dual side (both for coalgebras and their comodules) are of the “second kind”: the weak

equivalences are not created in the underlying chain complexes but are of a more subtle

nature (so-called filtered quasi-isomorphisms).

The module-comodule Koszul duality is the easiest one to prove (though still quite

nontrivial), essentially because of its linear character: this is a duality between stable closed

model categories whose homotopy categories are triangulated. There are two symmetric

versions of it:

(1) the duality between modules over a dg algebra and dg comodules over its Koszul

dual conilpotent dg coalgebra and

(2) the duality between comodules over a conilpotent dg coalgebra and dg modules over

its Koszul dual dg algebra.

What happens if one drops the condition of conilpotency on the coalgebra side? The

closed model structure on the category of comodules does not depend on the conilpotency

assumption, [Pos11, Theorem 8.2]. Furthermore, Positselski proves ([Pos11, Theorem 6.7])

that there is a Koszul duality between dg comodules over a possibly nonconilpotent dg

coalgebra and modules over its Koszul dual dg algebra. However, this time both closed model

structures are of the second kind: the weak equivalences on dg modules are not merely
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quasi-isomorphisms. If the coalgebra happens to be conilpotent, then the duality specialises

to the ordinary one: the Koszul dual dg algebra becomes cofibrant and weak equivalences of

dg modules over a cofibrant dg algebra are ordinary quasi-isomorphisms.

In the present paper we construct a complementary version of Positselski’s non-conilpotent

Koszul duality as a Quillen equivalence between closed model categories of dg modules over

a dg algebra and comodules over its “Koszul dual” dg coalgebra. The difference between our

version and the standard one is two-fold: firstly, the weak equivalences between dg modules

are of “second kind” (i.e. they are not created in the category of underlying complexes) and

secondly, our “Koszul dual” dg coalgebra is typically much bigger than the ordinary bar

construction; in particular it is not conilpotent in general. This extended bar construction

has been considered, e.g. in a recent paper [AJ].

Perhaps the most interesting feature of this correspondence is an exotic model structure

of the second kind on dg modules over a dg algebra: in the case of an ordinary algebra (or,

more generally, cohomologically non-positively graded dg algebra) this structure reduces to

the usual one; however in general it is different. There are many competing inequivalent

notions of weak equivalence of the second kind for dg modules over a dg algebra (as opposed

to dg comodules where there is only one such notion); some of them support closed model

category structures, [Bec14, Proposition 1.3.6], [Pos11, Theorem 8.3]. Our structure is

generally different from those considered in the mentioned references and characterised by

its compatibility with Koszul duality. It is, necessarily, compactly generated (since such is

the category of dg comodules over any dg coalgebra, to which it is Quillen equivalent). This

model structure is relevant to the study of various triangulated categories of geometric origin:

coherent sheaves on complex analytic manifolds, cohomologically constant sheaves on smooth

manifolds, and D-modules on smooth algebraic varieties. Its prototype is contained in the

paper [Blo10] where the notion of a cohesive module over a dg algebra is introduced, which

is essentially the same as a cofibrant object in our closed model structure.

1.1. Notation and conventions. Throughout the paper, k denotes a field. All vector spaces will

be over k and differential graded (dg) vector spaces are further assumed to be cohomologically

Z-graded. Given a graded vector space V , its suspension ΣV is a graded vector space with

(ΣV )i = V i+1 and its dual V ∗ is a graded vector space with (V ∗)i = (V −i)∗. Unadorned

tensor products and Homs are assumed to be over k. The category of (graded) algebras is

denoted Alg, the category of dg algebras is denoted DGA and the category of augmented dg

algebras is denoted DGA∗; all of these are also implicitly assumed to be over k.

A pseudocompact vector space is a projective limit of finite-dimensional vector spaces,

equipped with the inverse limit topology. In particular, the k-linear dual V ∗ of a discrete

vector space V is pseudocompact, and a finite-dimensional vector space is pseudocompact

if and only if it is discrete. Given a pseudocompact vector space V , its dual V ∗ is defined

to be its topological dual, hence V ∼= V ∗∗ is always true. Given pseudocompact vector

spaces V and W , the space of morphisms Hom(V,W ) is assumed to mean the space of

continuous linear maps, and the tensor product V ⊗W is assumed to mean the completed

tensor product. If V = lim←−−i Vi is pseudocompact and W is discrete, then their tensor product

is defined to be V ⊗W = lim←−−i Vi ⊗W ; note that in general this is neither discrete nor

pseudocompact. The category of (graded) pseudocompact algebras is denoted pcAlg, the

category of pseudocompact dg algebras is denoted pcDGA and the category of augmented

pseudocompact dg algebras is denoted pcDGA∗. These categories are anti-equivalent to the

categories of (coaugmented) (dg) coalgebras via taking linear and topological duals.

We will generally work with right modules over dg algebras and pseudocompact dg

algebras, unless stated otherwise. Given a dg algebra A, the category of dg A-modules is
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denoted DGMod-A. Given a pseudocompact dg algebra C, a pseudocompact C-module is a

pseudocompact vector space V together with a continuous linear map V ⊗ C → V satisfying

the usual axioms of associativity and unitality. The category of pseudocompact dg C-modules

is denoted pcDGMod-C; this category is anti-equivalent to the category of dg C∗-comodules,

again via taking duals. Thus, all our results concerning pseudocompact dg modules can

readily be translated into results about dg comodules if one wishes to do so.

1.2. Acknowledgement. The authors would like to thank Leonid Positselski for freely sharing

his expert knowledge of the subject matter and Joe Chuang for many stimulating discussions.

2. Extended bar construction

Given an algebra A, its pseudocompact completion qA is the projective limit of the inverse

system of quotients by cofinite-dimensional ideals of A. Pseudocompact completion defines

a functor from Alg → pcAlg that is left adjoint to the functor pcAlg → Alg forgetting the

topology.

Definition 2.1. Let V be a pseudocompact graded vector space. If V is finite-dimensional, its

pseudocompact tensor algebra qTV is the pseudocompact completion of the tensor algebra TV .

For a general pseudocompact vector space V = lim←−−i Vi, its pseudocompact tensor algebra is

qTV := lim←−−
i

qTVi.

Proposition 2.2. Let V be a pseudocompact graded vector space.

(1) The pseudocompact tensor algebra qTV is the free pseudocompact algebra on V , that

is, for any pseudocompact algebra A there is a bijection

HompcAlg( qTV,A) ∼= Hom(V,A).

(2) For any pseudocompact qTV -qTV -bimodule M there is a bijection

Der( qTV,M) ∼= Hom(V,M).

Proof.

(1) If V is finite-dimensional, then V is discrete and Hom(V,A) ∼= HomAlg(TV,A), which

equals HompcAlg( qTV,A) as pseudocompact completion is left adjoint to the forgetful

functor. More generally, writing V = lim←−−i Vi and A = lim←−−j Aj with Vi and Aj
finite-dimensional, we have

HompcAlg( qTV,A) ∼= lim←−−
j

HompcAlg( qTV,Aj)

∼= lim←−−
j

lim−−→
i

HompcAlg( qTVi, Aj)

∼= lim←−−
j

lim−−→
i

Hom(Vi, Aj) ∼= Hom(V,A).

Here, the second bijection holds as finite-dimensional algebras are cocompact in

pcAlg, that is, for any finite-dimensional algebra A, the functor HompcAlg(−, A) takes

filtered limits to filtered colimits.

(2) Recall the following construction, which allows us to turn questions about derivations

into question about algebra homomorphisms. Given a graded pseudocompact algebra

A and an A-A-bimodule M consider the pseudocompact algebra A⊕M with multipli-

cation (a,m) ·(b, n) = (ab, an+mb), and let p : A⊕M → A be the natural projection.

Then there is a bijection Der(A,M) ∼= {f ∈ HompcAlg(A,A ⊕M) : p ◦ f = 1A}.
Setting A = qTV and using part (1), we have

Der( qTV,M) ∼= {f ∈ Hom(V, qTV ⊕M) : p ◦ f = 1A} ∼= Hom(V,M). �
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Remark 2.3. The pseudocompact algebra qTV is the k-linear dual to the Sweedler cofree

coalgebra on the discrete vector space V ∗, [Swe69, Section 6.4].

Proposition 2.4. For any pseudocompact vector space V , there is a bimodule resolution of
qTV given by

0 qTV ⊗ V ⊗ qTV qTV ⊗ qTV qTV 0d m

where m is multiplication and d(1⊗ v ⊗ 1) = v ⊗ 1− 1⊗ v.

Proof. We use the following well-known fact for algebras, that also holds in the pseudocompact

setting. Let (A,µ) be a graded pseudocompact algebra. Then Ω(A) = kerµ is an A-A-

bimodule and the map δ : A → Ω(A) given by δ(a) = a ⊗ 1 − 1 ⊗ a is a derivation. For

any derivation d : A→M taking values in an A-A-bimodule M , there is a unique bimodule

homomorphism f : Ω(A)→M such that d = f ◦ δ; hence Der(A,M) ∼= HomA-A(Ω(A),M).
Now by Proposition 2.2, Der( qTV,M) ∼= Hom(V,M) ∼= HomA-A(A ⊗ V ⊗ A,M), so

Ω( qTV ) ∼= qTV ⊗ V ⊗ qTV as required. �

All our dg algebras are augmented, except in Section 4. The augmentation ideal of a dg

algebra A is denoted sA.

Definition 2.5. We define a pair of functors

Ω: (pcDGA∗)op � DGA∗ : qB

as follows. The cobar construction associates to a pseudocompact dg algebra C the dg algebra

ΩC := TΣ−1
sC∗

with differential defined in the usual way.

The extended bar construction associates to a dg algebra A the pseudocompact dg algebra

qBA := qTΣ−1
sA∗.

We define the differential on qBA as follows: Let d1 : Σ−1
sA∗ → Σ−1

sA∗ and d2 : Σ−1
sA∗ →

Σ−1
sA∗⊗̂Σ−1

sA∗ be induced by dualising the differential and multiplication on A respec-

tively. For a pseudocompact vector space V , consider the semi-completed tensor algebra

T ′(V ) =
⊕

n≥1 V
⊗̂n, which has a topology that is neither pseudocompact nor discrete, and

has the property HomAlg(T ′(V ), B) ∼= Hom(V,B) for any pseudocompact algebra B (see

[Gua, Lemma 4.5]). Then by Proposition 2.2(1), the identity on qTΣ−1
sA∗ induces a map

i : T ′(Σ−1
sA∗)→ qT (Σ−1

sA∗), and we define the differential to be

i ◦ (d1 + d2) : Σ−1
sA∗ → T ′(Σ−1

sA∗)→ qT (Σ−1
sA∗).

2.1. The Maurer–Cartan functor and representability. Let A be a dg algebra (possibly

discrete, pseudocompact or otherwise). A Maurer–Cartan element in A is an element

x ∈ A of degree 1 such that dx + x2 = 0. The set of all Maurer–Cartan elements in A

is denoted MC(A). For any dg algebra A and any pseudocompact dg algebra C, define

MC(A,C) := MC(A⊗ C); this is functorial in both arguments.

Proposition 2.6. Let A be an augmented dg algebra and C be an augmented pseudocompact

dg algebra. There are natural bijections

HomDGA∗(ΩC,A) ∼= MC( sA, sC) ∼= HompcDGA∗( qBA,C).

In particular, Ω is a left adjoint functor to qB.

Proof. Forgetting the differential, any map of augmented pseudocompact algebras f : qBA→
C is equivalent to a linear map Σ−1

sA∗ → sC by Proposition 2.2, which is equivalently a degree

1 element x ∈ sA⊗ sC. The condition that f commutes with differentials is then equivalent
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to condition that x satisfies the Maurer–Cartan equation; this can be proven just like the

corresponding statement for the non-extended bar construction, see for example [CL11,

Proposition 2.2]. The other bijection is proved similarly. �

Remark 2.7. An adjoint pair of functors (Ω,Bext) between DGA∗ and pcDGA∗ was defined

in [AJ, Section 5.3] in a different way; it was also proved that that these functors represent

the MC sets (called twisting cochains in op. cit.) as in Proposition 2.6. It follows that these

functors are (isomorphic to) the functors Ω and qB defined above.

3. Koszul duality for modules

3.1. Maurer–Cartan twisting. We begin this section by recalling the notion of Maurer–Cartan

twistings of dg algebras and dg modules.

Definition 3.1. Let (A, dA) be a dg algebra and x ∈ MC(A).
(1) The twisted algebra of A by x, denoted Ax = (A, dx), is the dg algebra with the same

underlying algebra as A and differential dx(a) = dA(a) + [x, a].
(2) Let (M,dM ) be a left dg A-module. The twisted module of M by x, denoted

M [x] = (M,d[x]), is the left dg Ax-module with the same underlying module structure

as M and differential d[x](m) = d(m) + xm.

Furthermore, if A and B are dg algebras and M is a dg A-B-bimodule, then for any

x ∈ MC(A) the twisted module of M by x is a dg Ax-B-bimodule, that is, the right B-module

action remains compatible with the new differential.

Definition 3.2. A twisted A-module is a dg A-module that is free as an A-module after

forgetting the differential, that is, it is isomorphic as an A-module to V ⊗A for some graded

vector space V . A finitely generated twisted A-module is a twisted A-module V ⊗A with V

finite-dimensional.

Given any graded vector space V , the A-module V ⊗A equipped with the differential 1⊗dA
is a twisted A-module. More generally, by considering V ⊗A as a (End(V )⊗A)-A-bimodule,

every twisted A-module is of the form (V ⊗A, 1⊗ dA)[x] for some x ∈ MC(EndV ⊗A), as

noted in [CHL, Remark 3.2].

Definition 3.3. LetA be an augmented dg algebra, and let qBA be its extended bar construction.

Let ξ ∈ MC(A⊗ qBA) be the canonical Maurer–Cartan element corresponding to the counit

Ω qBA→ A of the adjunction Ω a qB. Define a pair of functors

G : (pcDGMod- qBA)op � DGMod-A :F

as follows. The functor F associates to a dg A-module M the pseudocompact dg qBA-module

FM := (M∗ ⊗ qBA)[ξ]

and the functor G associates to a pseudocompact dg qBA-module N the dg A-module

GN := (N∗ ⊗A)[ξ].

The functors F and G are well-defined as FM is a dg (A⊗ qBA)ξ- qBA-bimodule and GN

is a dg ( qBA⊗A)ξ-A-bimodule; the left (A⊗ qBA)ξ-module structure on FM is disregarded

as similarly with GN . It is a standard fact that G is left adjoint to F ; more generally this is

true replacing qBA with any pseudocompact dg algebra C and ξ with any Maurer–Cartan

element in A⊗ C, see for example [Pos11, Section 6.2].

Remark 3.4. In the standard formulation of Koszul duality, the functors are defined as

follows: the bar construction of a dg algebra A is instead defined to be BA = T̂Σ−1
sA∗,
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a local or pronilpotent pseudocompact dg algebra (or dually, a conilpotent dg coalgebra).

Given a dg A-module M , the corresponding BA-module is defined as (M∗ ⊗BA)[ξ] where

ξ ∈ MC(A ⊗ BA) is the canonical Maurer–Cartan element corresponding to the counit

ΩBA→ A of the Koszul duality adjunction for algebras. Conversely, given a BA-module N ,

the corresponding A-module is defined as (N∗ ⊗A)[ξ].

3.2. Model category structure on DGMod-A. We now define model category structures on

DGMod-A and pcDGMod- qBA making the adjunction G a F a Quillen pair. In [Pos11]

Positselski constructs a model category structure of the “second kind” on the category of

dg comodules over an arbitrary (not necessarily conilpotent) dg coalgebra; this will be the

model category structure on pcDGMod- qBA. We begin by recalling this result.

Definition 3.5. Let C be a dg coalgebra. A dg C-comodule is coacyclic if it is in the minimal

triangulated subcategory of the homotopy category of dg C-comodules containing the total

C-comodules of exact triples of dg C-comodules and closed under infinite direct sums.

Theorem 3.6. [Pos11, Theorem 8.2] Let C be a dg coalgebra. There exists a model category

structure on the category of dg C-comodules, where

(1) a morphism f : M → N is a weak equivalence if its cone is a coacyclic dg C-comodule;

(2) a morphism is a cofibration if it is injective;

(3) a morphism is a fibration if it is surjective with a fibrant kernel.

Furthermore, this model category structure is cofibrantly generated, where generating

cofibrations are injective maps between finite-dimensional comodules.

Theorem 3.7. Let A be an augmented dg algebra. There is a cofibrantly generated model

category structure on DGMod-A, where

(1) a morphism f : M → N is a weak equivalence if it induces a quasi-isomorphism

HomA((V ⊗A)[x],M)→ HomA((V ⊗A)[x], N)

for any finitely generated twisted A-module (V ⊗A)[x];

(2) a morphism is a fibration if it is surjective;

(3) a morphism is a cofibration if it has the left lifting property with respect to acyclic

fibrations.

With this model structure, the adjunction G a F is a Quillen pair.

To prove Theorem 3.7, we will apply the following version of the transfer principle, which

appears in [BM03, Sections 2.5–2.6].

Theorem (Transfer principle). Let M be a model category cofibrantly generated by the sets I
and J of generating cofibrations and generating acyclic cofibrations respectively. Let C be a

category with finite limits and small colimits. Let

L : M � C :R

be a pair of adjoint functors. Define a map f in C to be a weak equivalence (respectively

fibration) if R(f) is a weak equivalence (respectively fibration). These two classes determine

a model category structure on C cofibrantly generated by L(I) and L(J ) provided that:

(1) The functor L preserves small objects;

(2) C has a functorial fibrant replacement and a functorial path object for fibrant objects.

Furthermore, with this model structure on C, the adjunction L a R becomes a Quillen pair.

We first check that the weak equivalences and fibrations, obtained by transferring the

model structure on pcDGMod- qBA along the adjunction G a F , admit the characterisations
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in Theorem 3.7. In fact, both the functors F and G preserve weak equivalences between all

objects.

Lemma 3.8.

(1) A morphism g of dg A-modules is a weak equivalence if and only if F (g) is a weak

equivalence.

(2) A morphism f of pseudocompact qBA-modules is a weak equivalence if and only if

G(f) is a weak equivalence.

Proof. For (1), let g : M → N be a map of dg A-modules. By definition F (g) : FM → FN

is a weak equivalence if and only if it induces a quasi-isomorphism

Hom
qBA(FM,V )→ Hom

qBA(FN, V )

for any finite-dimensional dg qBA-module V . Equivalently, this says that the dg A-modules

M ⊗ V and N ⊗ V (with possibly twisted diffferentials) are quasi-isomorphic for any finite-

dimensional V , that is, g is a weak equivalence.

For (2), it suffices to show that G takes exact triples of qBA-modules to weakly trivial

A-modules. Let N1 → N2 → N3 be an exact triple of qBA-modules and N be its total

complex. Then GN is the total complex of the complex G(N3)→ G(N2)→ G(N1), which is

a bicomplex with three vertical columns and the all horizontal rows exact.

Now let M = A ⊗ V be a finitely generated twisted A-module. Applying HomA(M,−)
to the above bicomplex gives Hom(V,G(N3))→ Hom(V,G(N2))→ Hom(V,G(N1)). Since

exactness of the rows is preserved, GN is indeed weakly trivial. �

Lemma 3.9. A morphism g of dg A-modules is a fibration if and only if F (g) is a fibration.

Proof. Let g : M → N be a fibration in dg A-modules, so M ∼= N ⊕ V for some graded

vector space V . Then F (g) : FN → FM is a cofibration in pcDGMod- qBA if and only if it

is injective with cofibrant cokernel. But indeed, F (g) : (N∗ ⊗ qBA)[ξ] → (M∗ ⊗ qBA)[ξ] has

cokernel (V ∗ ⊗ qBA)[ξ], which is cofibrant. �

Proof of Theorem 3.7. By Lemma 3.8 and Lemma 3.9, it suffices to check conditions (1) and

(2) in the transfer theorem. Condition (1) holds as G preserves small objects, and every

object is fibrant so the first part of (2) trivially holds. Hence it only remains to prove that

functorial path objects exist for any A-module. Let I be the standard interval object for

dg vector spaces, that is, I = k ⊕Σ−1k ⊕ k with differential d(a, b, c) = (da,−db+ a− c, dc).
Then for any A-module M , there is a factorisation

M
e−→M ⊗ I (p1,p2)−−−−→M ⊕M

where e(a) = (a, 0, a) and p1(a, b, c) = a, p2(a, b, c) = c. Clearly (p1, p2) is a fibration by

Lemma 3.9. Since I is acyclic, we have a quasi-isomorphism

(M ⊗ V ∗)[x] → (M ⊗ V ∗)[x] ⊗ I ∼= (M ⊗ I ⊗ V ∗)[x]

for any finitely generated twisted A-module (V ⊗ A)[x], so e is a weak equivalence. Thus

M ⊗ I is a functorial path object for M . �

We now show that the adjoint pair (F,G) is a Quillen equivalence.

Theorem 3.10. Let A be an augmented dg algebra and qBA be its extended bar construction.

(1) For any dg A-module M , the counit GFM → M of the adjunction is a weak

equivalence of A-modules.

(2) For any pseudocompact qBA-module N , the counit FGN → N of the adjunction is a

weak equivalence of pseudocompact qBA-modules.
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Thus, the Quillen adjunction G a F is a Quillen anti-equivalence between dg A-modules and

pseudocompact qBA-modules.

Proof. For any qBA-module N , consider

BN := qBA⊗ Σ−1
sA∗ ⊗N,

which is a cofibrant resolution of N . Then the functor G : (pcDGMod- qBA)op → DGMod-A

can also be written as Hom
qBA(BN, k), and the functor F : DGMod-A→ (pcDGMod- qBA)op

is (M∗ ⊗ qBA)[ξ].

Now for any A-module M , the qBA-module F (M) is cofibrant, so GF (M) is quasi-

isomorphic to Hom(F (M), k) = M . Cofibrantly replacing M with a twisted module M ⊗ V ,

we obtain that M and GF (M) are weakly equivalent.

Conversely, given a qBA-module N , the composition FG(N) is the two-term resolution of

N from Proposition 2.4, so is weakly equivalent to N . �

Remark 3.11. Note that the homotopy category of the constructed closed model category on

dg A-modules is a compactly generated triangulated category (being anti-equivalent to the

category of pseudocompact dg modules over a qBA) with compact (small) objects being dg

modules that are homotopy equivalent to retracts of finitely generated twisted A-modules.

We will denote this homotopy category by DII
c (A).

Example 3.12. Consider the dg algebra A = k[x]/x2 with zero differential and x in degree 1.

We have }BA ∼= }k[x]. If k is algebraically closed then the pseudocompact completion }k[x] of

k[x] is the product of completions of k[x] at every maximal ideal of k[x], the latter correspond

precisely to elements of k. In other words,

}BA ∼= }k[x] ∼=
∏
α∈k

(k[[x]])α

(this result, in a more general form, is given in [GG99, Example 1.13]). The derived category

DII
c (A) of A of second kind is anti-equivalent to the derived category (of second kind) of

pseudocompact modules over
∏
α∈k(k[[x]])α and thus, is drastically different from the ordinary

derived category of A. Note that MC(A) = {ax : a ∈ k}; then the twisted A-modules Aξ

for ξ ∈ MC(A) are pairwise weakly inequivalent and form a set of compact generators for

DII(A); it is easy to see that it is not possible to choose a single compact generator.

Example 3.13. The derived category of second kind DII
c arises in a number of situations of a

geometric origin:

• Let M be a smooth manifold and A ∗(M) be its smooth de Rham algebra; here the

ground field k is R, the real numbers. The choice of a point in M makes A ∗(M)
into an augmented dg algebra. A compact object in DII

c (A ∗(M)) is a cohesive

A ∗(M)-module of [Blo10] and the subcategory of compact objects is equivalent to

the triangulated category of perfect cohomologically locally constant complexes of

sheaves on M by [CHL, Theorem 8.1].

• Let M be a smooth affine algebraic variety over a field k of characteristic zero having

a base point Spec(k) → M and A ∗(M) be its algebraic de Rham algebra. Then

twisted modules over A ∗(M) correspond to D-modules, i.e. modules over the ring

of differential operators on M by [Pos11, Theorem B.2] while compact objects in

DII
c (A ∗(M)) correspond essentially to coherent D-modules.

• Let M be a compact complex manifold and A 0∗(M) be the Dolbeault algebra of

M that can be viewed as augmented by a choice of a base point in M . Again, a

compact object DII
c (A ∗(M)) is a cohesive A 0∗(M)-module and the subcategory of
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compact objects is equivalent to the derived category of sheaves on M with coherent

cohomology, [Blo10, Theorem 4.1.3] or [CHL, Theorem 8.3]

3.3. Comparison with other weak equivalences in DGMod-A. Here, we compare the notion

of weak equivalences in our model structure on DGMod-A with other notions of a weak

equivalence from the literature.

Firstly, we can consider the standard model structure on DGMod-A where weak equiv-

alences are quasi-isomorphisms and fibrations are surjections. It is clear that any weak

equivalence in our model structure is a quasi-isomorphism, by considering A-modules trivially

twisted by the Maurer–Cartan element x = 0. It follows that DII
c (A) contains the ordinary

derived category of A as a full subcategory. If A is concentrated in nonpositive degrees

(e.g. it is an ordinary algebra), or Ā is concentrated in degrees > 1 (e.g. cohomology algebras

of simply-connected topological spaces) then by the degree considerations, qBA ∼= T̂Σ−1
sA∗,

the usual bar construction of A from which it follows that our closed model structure on

A-modules is the ordinary one (i.e. of the first kind). Another situation where we obtain the

ordinary closed model category of the first kind is when the dg algebra A is cofibrant. However,

for general A, even with a vanishing differential, we get a different result, cf. Example 3.12.

In [Pos11], the coderived category and contraderived category of a dg algebra A are defined,

which are obtained by localising at coacyclic dg A-modules and contraacyclic dg A-modules

respectively. These categories are different, in general, from the ordinary derived category of

the first kind, even for ungraded algebras, see e.g. [Pos11, Example 3.3] and thus, also from

DII
c (A).
It was observed in [Pos11, KLN10] that the category DII

c (A) is contained in both the

coderived and contraderived category of A. It is, therefore, the derived category of A of the

second kind that is closest to the ordinary derived category of A. If A is right Noetherian

and has finite right homological dimension then DII
c (A) coincides with both coderived and

contraderived category of A by [Pos11, Question 3.8]. Another situation when this happens

is when A is the cobar construction of a (possibly nonconilpotent) dg coalgebra B since in

this case the co/contraderived category of A is equivalent to the coderived category of B

and is, therefore, compactly generated. Related questions are considered in the recent paper

[Pos17].

4. Curved Koszul duality for modules

In this section, we consider generalisations of the previous results in the cases where the

underlying dg algebra is curved or non-augmented. First we need to develop the extended

bar-cobar formalism in the curved, non-augmented context.

A curved dg algebra is a graded algebra A with a degree one derivation d : A→ A, such

that for any a ∈ A, d2(a) = [h, a] for some h ∈ A2 satisfying d(h) = 0. The linear map

d is usually called the differential of A, despite not being square zero, and h is called the

curvature of A.

A morphism of curved algebras (A, dA, hA)→ (B, dB , hB) is a pair (f, b) consisting of a

morphism of graded algebras f : A→ B and an element b ∈ B1 satisfying the equations:

f(dA(x)) = dB(f(x)) + [b, f(x)],

f(hA) = hB + dB(b) + b2,

for all x ∈ A; if b = 0 then the corresponding morphism A → B is called strict. The

category of curved dg algebras is denoted CDG and the category of pseudocompact curved

dg algebras is denoted pcCDG; additionally we assume that our (pseudocompact or not)

curved dg algebras have nonzero units. A Maurer–Cartan element in a curved dg algebra A
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is an element x ∈ A of degree 1 such that h+ dx+ x2 = 0. Given two curved dg algebras

(A, dA, hA) and (B, dB , hB) their tensor product A⊗B is likewise a curved dg algebra with

dA⊗B := dA ⊗ 1 + 1⊗ dB and hA⊗B := hA ⊗ 1 + 1⊗ hB .

Given a curved dg algebra (A, dA, hA) and an element b ∈ A1 (not necessarily Maurer–

Cartan) we can define the twisting of A by b as a curved dg algebra Ab with the same

underlying vector space as A, twisted differential db(x) := dA(x) + [b, x] for x ∈ A and

curvature hb := hA + dA(b) + b2. Then (id, b) determines a (curved) isomorphism Ab → A.

If A is a curved dg algebra, then a dg A-module is a graded (right) A-module M with a

degree one derivation dM : M →M such that dM is compatible with the differential d on A,

and for any m ∈M , d2
M (m) = mh; one can similarly define left dg A-modules. If M is a left

dg A-module and x ∈ A1, then there is a left dg Ax-module M [x] defined as in the uncurved

case, cf. Definition 3.1. Given a curved dg algebra A and a pseudocompact curved dg algebra

C, we denote the categories of dg A-modules and pseudocompact C-modules by DGMod-A

and pcDGMod-C, just as before.

We now describe how to modify the bar and cobar constructions from Definition 2.5 in

the general non-augmented and curved case. Let A be a unital curved dg algebra with

differential d and curvature h. Since 1 6= 0 in A we can choose a homogeneous k-linear

retraction ε : A→ k, to be regarded as a “fake augmentation”. It allows one to identify the

dg vector space sA := A/k with a subspace (possibly not dg) of A so that A ∼= k ⊕ sA. The

multiplication m : A ⊗ A → A restricted to sA has two components mε
sA
: sA ⊗ sA → sA and

mε
k : sA ⊗ sA → k. We will denote the corresponding components of the differential d and

curvature h by dε
sA
, dεk and hε

sA
, respectively; note that the component hεk vanishes for degree

reasons. Explicitly, for all sa,sb ∈ sA ⊂ A,

mε
sA(sa,sb) = sasb− ε(sasb), mε

k(sa,sb) = ε(sasb);
dε
sA(sa) = d(sa)− ε(d(sa)), dεk(sa) = ε(d(sa));

hε
sA = h− ε(h) = h.

(1)

To alleviate notation, we will suppress the superscript ε at m
sA, mk etc. where it does not

lead to confusion.

Consider the graded algebra T ′Σ−1A∗, the non-reduced semi-completed bar construction

of A. Choose a basis {ti : i ∈ I} in sA where I is some indexing set and let {τ, ti : i ∈ I} be

the basis in Σ−1A∗ dual to the basis {1, ti : i ∈ I} in A. We will write ∂ti for the derivation

of T ′Σ−1A∗ having value 1 on ti and zero on other basis elements of Σ−1A∗ and similarly

for ∂τ . Then define the differential on T ′Σ−1A∗ as the following derivation:

ξ :=
∑
i∈I

([τ, ti] + fi(t))∂ti + (g(t) + τ2)∂τ +
∑
i∈I

ai∂ti

where fi(t), g(t) stand for sums of linear and quadratic monomials in t (so these elements of

T ′Σ−1A∗ do not depend on τ). Here the term
∑
i∈I fi(t)∂ti corresponds to the“multiplication

and differential”m
sA and d

sA, the term
∑
i∈I ai∂ti reflects the curvature h

sA, the term g(t)∂τ
corresponds to mk and dk, and the term (

∑
i∈I [τ, ti] + τ2)∂τ reflects the multiplication with

the unit in A. Let ξ1 :=
∑
i∈I fi(t)∂ti +

∑
i∈I ai∂ti and ξ2 :=

∑
i∈I [τ, ti]∂ti + (g(t) + τ2)∂τ ;

then ξ = ξ1 + ξ2.

The reduced semi-complete bar construction B′εA of A is a subalgebra in T ′Σ−1A∗ spanned

by sums of monomials which do not depend on τ (so only depend on ti, i ∈ I). Thus, the

underlying graded algebra of B′εA is isomorphic to T ′Σ−1
sA∗. The differential on B′εA is ξ1.

Note that ξ2 = 0 but ξ2
1 = 0 only when ε : A→ k is a dg algebra map; in this case g(t) = 0.

However (B′εA, ξ1) is a curved dg algebra, more precisely the following result holds.

Lemma 4.1. Let A be a curved dg algebra. Then:
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(1) The reduced semi-complete bar construction B′εA endowed with the differential ξ1
defined above, is a curved dg algebra with curvature −g(−t), an element of T ′Σ−1

sA∗

obtained from −g(t) by replacing every indeterminate ti with −ti.
(2) The curved dg algebra B′εA is independent, up to a natural isomorphism, of the

choice of a basis in sA. Furthermore, for different choices of retractions A→ k, the

corresponding reduced semi-complete bar constructions are isomorphic as curved dg

algebras. More precisely, denote by bε−ε′ the element in B′A ∼= T ′Σ−1
sA∗ correspond-

ing to the linear map ε − ε′ : A → k; then the curved map (id, bε−ε′) determines a

curved isomorphism B′εA→ B′ε′A.

(3) The correspondence A→ B′εA determines a contravariant functor from the category

CDG to the category of topological curved dg algebras.

Proof. Taking into account that 0 = ξ2 = ξ2
1 + [ξ1, ξ2] + ξ2

2 we have for k ∈ I,

ξ2
1(tk) = −[ξ1, ξ2](tk)− ξ2

2(tk).

Furthermore, a straightforward calculation shows that [ξ1, ξ2](tk) has no terms depending on

ti, i ∈ I whereas the only term of ξ2
2(tk) depending on ti, i ∈ I has the form g(t)∂τ ([tk, τ ]) =

(−1)|tk|[tk, g(t)]. It follows that

ξ2
1(tk) = −(−1)|tk|[g(t), tk]

as required.

Next, the statement about the independence of B′ε(A) on a basis in sA is obvious. Let

ε′ : A→ k be another fake augmentation; then formulas (1) show that h is unchanged whereas

mε′
sA
(sa,sb) = mε

sA
(sa,sb) + (ε− ε′)(sasb), and similarly for the differential. This implies that B′ε′A

is obtained from B′εA by twisting with the element ε− ε′ ∈ B′εA, which is equivalent to the

stated claim.

To see that the construction A→ B′εA is functorial, we will view an object in CDG as a

curved dg algebra A with a choice of a retraction A→ k, however morphisms need not respect

the retraction; this is clearly the same as (or, more accurately, equivalent to) the category

CDG. Any map A→ B in CDG can canonically be factorised in CDG as A→ A→ B with

the first map being a change of retraction in A followed by a map preserving retractions.

The construction B′εA is clearly functorial with respect to retraction-preserving maps and a

change of retraction is also functorial by part (2). �

This allows us to define the extended bar construction of a curved dg algebra in the same

way as it was done in the uncurved case; from now on we will suppress the subscript ε and

write B′εA for the semi-complete bar construction of A; by Lemma 4.1 this specifies a curved

pseudocompact dg algebra up to a natural isomorphism.

Definition 4.2. Let A be a curved dg algebra with a retraction ε : A→ k. The extended bar

construction of A is the graded pseudocompact algebra

qBA := qTΣ−1
sA∗.

Then by Proposition 2.2(1), the identity on qTΣ−1
sA∗ induces a map i : B′A ∼= T ′(Σ−1

sA∗)→
qBA ∼= qT (Σ−1

sA∗), and we define the differential d
qBA on qBA to be

d
qBA := i ◦ ξ1 : Σ−1

sA∗ → T ′(Σ−1
sA∗)→ qT (Σ−1

sA∗).

The curvature of qBA is the image of the curvature in B′A under the map i : B′A → qBA.

This gives qBA the structure of a curved pseudocompact dg algebra.

Remark 4.3. It follows from Lemma 4.1 that the correspondence A 7→ qBA is a functor

CDG→ pcCDGop. A version of the definition above with T̂Σ−1
sA∗ (the local pseudocompact
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bar construction of a curved non-augmented algebra) in place of qTΣ−1
sA∗ is found in [Pos11,

Section 6.1], albeit formulated in the language of coalgebras. However Positselski’s local bar

construction is not functorial with respect to non-strict maps in CDG since maps between

pseudocompact algebras of the form T̂Σ−1
sA∗ must preserve their maximal ideals whereas

this is not true for pseudocompact algebras of the form qTΣ−1
sA∗ (which can have many

maximal ideals).

Now recall that given a pseudocompact curved dg algebra C there is defined a curved dg

algebra

ΩC := TΣ−1
sC∗

with sC := C/k, cf. [Pos11, Section 6.1]. Note that the definition of Ω can be given along

the lines of the definition of qB, only simpler since there is no analogue, or need, for an

intermediate step involving the semi-complete bar construction. Then we have the following

result.

Proposition 4.4. The correspondence C 7→ Ω(C) determines a functor pcCDGop → CDG.

This functor is left adjoint to qB : CDG→ pcCDGop.

Proof. The functoriality of ΩC was explained in [Pos11, Section 6.1], alternatively the

arguments in the proof of Lemma 4.1 apply with obvious modifications. The adjointness

follows as in the non-curved case; namely by noticing that for A ∈ CDG, C ∈ pcCDG the

sets of morphisms HomCDG(ΩC,A) and HompcCDG( qBA,C) are both naturally isomorphic to

MC(A⊗ C). �

Remark 4.5. If a curved dg algebra A is happens to be augmented, then there is a natural

choice of a retraction ε : A→ k, namely, the given augmentation. In this case, qBA is uncurved.

Similarly, if A has vanishing curvature, qBA is naturally augmented. If A is both augmented

and uncurved, then so is qBA.

Now for a curved dg algebra A and its bar construction qBA, there is an adjunction

(2) G : pcDGMod- qBAop � DGMod-A :F

as defined in Definition 3.3; these functors are well-defined as the twisting of a curved dg

algebra by a Maurer–Cartan element gives an uncurved dg algebra. Furthermore, Theorem

3.6 holds (with the same definitions of weak equivalences, fibrations and cofibrations) when

the dg coalgebra C is curved (indeed, this is how it was formulated in [Pos11]). Thus,

pcDGMod- qBAop has the structure of a model category and by transferring along the adjunc-

tion (2) we obtain the following generalisation of Theorem 3.7; the arguments are the same

as in the uncurved case.

Theorem 4.6. Let A be a curved dg algebra. There is a cofibrantly generated model category

structure on DGMod-A, where

(1) a morphism f : M → N is a weak equivalence if it induces a quasi-isomorphism

HomA((V ⊗A)[x],M)→ HomA((V ⊗A)[x], N)

for any finitely generated twisted A-module (V ⊗A)[x];

(2) a morphism is a fibration if it is surjective;

(3) a morphism is a cofibration if it has the left lifting property with respect to acyclic

fibrations.

With this model structure, the adjunction G a F is a Quillen pair.

Similarly, there are model structures on DGMod-A when A is curved and augmented, or

non-curved and non-augmented. Altogether there are four cases as below. Case (4) is the
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case considered previously and proved in Theorem 3.10. Again, the arguments employed in

the augmented uncurved case generalise in a straightforward fashion.

Theorem 4.7. With the above model structures, the functors G a F form a Quillen anti-

equivalence between the categories pcDGMod- qBA and DGMod-A in each of the following four

cases:

(1) A is curved and non-augmented, qBA is curved and non-augmented;

(2) A is curved and augmented, qBA is non-curved and non-augmented;

(3) A is non-curved and non-augmented, qBA is curved and augmented;

(4) A is non-curved and augmented, qBA is non-curved and augmented.
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