
1 
 

COVID-19 Pandemic Imperils Weather Forecast 1 

Ying Chen
1,*

 2 

1
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK 3 

*Correspondence to: Y. Chen (y.chen65@lancaster.ac.uk)  4 

 5 

Key points:  6 

1. The COVID-19 pandemic eliminated 50-75% of aircraft meteorological 7 

observations. 8 

2. Accuracy of weather forecast reduced significantly especially over southeast 9 

China and US, and error develops as forecast goes longer. 10 

3. This could handicap early warning of extreme weather, establishing more 11 

meteorology stations can buffer the impact of global emergencies. 12 

 13 

Keywords: COVID-19 pandemic, weather forecast, aircraft, assimilation, accuracy  14 

  15 



2 
 

Abstract:   16 

Weather forecasts play essential parts in economic activity. Assimilation of 17 

meteorological observations from aircraft improves forecasts greatly. However, global 18 

lockdown during the COVID-19 pandemic (March-May 2020) has eliminated 50-75% 19 

aircraft observations and imperils weather forecasting. Here, we verify global 20 

forecasts against reanalysis to quantify the impact of the pandemic. We find a large 21 

deterioration in forecasts of surface meteorology over regions with busy air flights, 22 

such as North America, southeast China and Australia. Forecasts over remote regions 23 

are also substantially worse during March-May 2020 than 2017-2019, and the 24 

deterioration increases for longer-term forecasts. This could handicap early warning 25 

of extreme weather and cause additional economic damage on the top of that from the 26 

pandemic. The impact over Western Europe is buffered by the high density of 27 

conventional observations, suggesting that introduction of new observations in 28 

data-sparse regions would be needed to minimize the impact of global emergencies on 29 

weather forecasts. 30 

 31 

Plain Language Summary:  32 

Weather forecasts play essential parts in daily life, agriculture and industrial 33 

activities, and have great economic value. Meteorological observations on 34 

commercial aircraft help improve the forecast. However, the global lockdown during 35 

the COVID-19 pandemic (March-May 2020) chops off 50-75% of aircraft 36 

observations. Here, we verify global weather forecasts (1-8 days ahead) against the 37 
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best estimates of atmospheric state, and quantify the impact of the pandemic on 38 

forecast accuracy. We find large impacts over remote (e.g., Greenland, Siberia, 39 

Antartica and the Sahara Desert) and busy air-flight regions (e.g., North America, 40 

southeast China and Australia). We see deterioration in the forecasts of surface 41 

meteorology and atmospheric stratification, and larger deterioration in longer-term 42 

forecasts. This could handicap early warning of extreme weather and cause additional 43 

economic damage on the top of that from the pandemic itself. The impacts over 44 

Western Europe are small due to the high density of conventional observations, 45 

suggesting that introduction of new observations would be needed to minimize the 46 

impact of global emergencies on weather forecasts in future. 47 

 48 

1. Introduction 49 

Weather forecasts play an essential part in daily life [Böcker et al., 2013], 50 

agriculture [Calanca et al., 2010] and industrial activities [Teisberg et al., 2005], and 51 

have great economic value [Zhu et al., 2002]. The accuracy of forecasts is largely 52 

dependent on the quality of initial conditions used in numerical weather prediction 53 

models. The number of meteorological observations has increased steadily over the 54 

past decades globally, and their assimilation has greatly improved model initial 55 

conditions and forecasts [Kanamitsu, 1989]. Aircraft observations from commercial 56 

airlines around the world are a critical component of global meteorological 57 

observations. Assimilation of aircraft observations exerts the largest improvements in 58 

global weather forecasts compared with each individual category of conventional 59 



4 
 

observations (exclude satellite), both for long-term average and for individual events 60 

[Ota et al., 2013; Petersen, 2016]. 61 

However, availability of these critical aircraft observations has reduced 62 

remarkably since March 2020, resulting from the global lockdown in response to the 63 

COVID-19 pandemic. According to the International Civil Aviation Organization, by 64 

the end of March 2020, more than 20 commercial airlines have stopped flights 65 

entirely and about 12 airlines stopped all international flights. This eliminates about 66 

50-75% of aircraft observations globally during March-May 2020, according to the 67 

World Meteorological Organization (WMO, [WMO, 2020]), the European Centre for 68 

Medium-Range Weather Forecasts (ECMWF, [ECMWF, 2020]) and the Aircraft 69 

Meteorological DAta Relay programme (https://amdar.noaa.gov). Lack of critical 70 

aircraft observations could imperil the weather forecast. WMO, ECMWF and 71 

scientists expressed concerns over the impacts to the public regarding the possible of 72 

unreliable weather forecasts [ECMWF, 2020; Viglione, 2020; WMO, 2020]. The lack 73 

of aircraft data may become worse as the COVID-19 pandemic develops further and 74 

the associated lockdown extends, and this will lead to larger impacts on weather 75 

forecasting and impose an additional economic cost on the top of that from the 76 

pandemic itself. Therefore, a quantifying understanding of the potential impacts of the 77 

pandemic on weather forecasting and development of mitigation approaches are 78 

critical for protecting current living standards and economic activity. 79 

In this study, we quantify the impact of the COVID-19 pandemic on weather 80 

forecasts by verifying global weather forecast against reanalysis data, which is the 81 
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best available estimate of the atmospheric state. We also present the difference in 82 

impacts over different regions. Based on scientific evidences, we provide suggestions 83 

to minimize the impact of global emergencies, such as the COVID-19 pandemic, on 84 

weather forecasting in future.  85 

 86 

2. Materials and Methods  87 

2.1 COVID-19 pandemic impacts on aircraft meteorological observations 88 

Coronavirus disease 2019 (COVID-19) broke out globally during February 2020 89 

and became a global pandemic in March 2020 [WHO, 2020]. Since March, lockdown 90 

has been enforced by countries across the world to control the spread and save lives. 91 

For example, Italy announced lockdown on March 9
th

, followed by Spain on 14
th

, 92 

France on 17
th

, Germany on 22
nd

, UK on March 23
rd

, US banned travel from Europe 93 

since March 14
th

 and Australia banned all international visitors since March 19
th

. 94 

These restricting measures have produced a remarkably reduction in meteorological 95 

observations from commercial airlines since March 2020 [WMO, 2020].  96 

Aircraft Meteorological DAta Relay programme (AMDAR), initiated by WMO, 97 

includes more than 3500 aircraft from ~40 commercial airlines globally, and provides 98 

more than 680,000 temperature and wind reports per day [Petersen, 2016]. About 100 99 

aircraft, mainly over the United States, can also provide moisture observations 100 

[Petersen, 2016]. These observations are reported every few minutes when aircraft are 101 

at cruise levels and every few seconds for profiles during take-off or landing. As part 102 
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of WMO protocols [Moninger et al., 2003], these AMDAR observations are quality 103 

controlled by National Centers for Environmental Prediction (NCEP). The AMDAR 104 

dataset has the highest density over North America and Europe, where the airspace is 105 

busiest, but these regions are also the centres of the COVID-19 pandemic in 106 

March-May 2020. Due to lockdown during the pandemic, the total number of 107 

meteorological profile aircraft-reports reduced by more than 50% from about 102,000 108 

per week in February 2020 to about 52,000 in the last week of March 2020, and 109 

further reduced to about 26,000 in the last week of April and May 2020 (data source: 110 

https://amdar.noaa.gov).  111 

2.2 Weather forecast dataset and observation-based datasets 112 

In order to investigate the impact of the reduction in aircraft observations on 113 

global weather forecasts in March-May 2020, the NCEP Global Forecast System 114 

(GFS) dataset (ds084.1, [NCEP, 2015a]) is verified against the high resolution NCEP 115 

Global Data Assimilation System (GDAS) reanalysis dataset (ds083.3, [NCEP, 116 

2015b]) and Global Precipitation Climatology Centre monthly precipitation dataset 117 

(GPCC, [Ziese et al., 2011]). The GFS model couples atmosphere, ocean, land/soil 118 

and sea ice modules to produce the weather forecast. There are 64 hybrid 119 

sigma-pressure layers in the atmospheric module, from the ground surface to about 120 

0.27 hPa [Sela, 2009]. More details of GFS model are given in the website of 121 

NCEP-GFS [NCEP, 2019 ]. The GDAS data is our best estimate of the atmospheric 122 

state; it assimilates the greatest number of meteorological observations from global 123 

sources, including aircraft, radiosonde, satellite-based and ground-based observations, 124 
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details given in NCEP [2018]. GPCC data provides monthly total precipitation over 125 

land-surface on a global scale at a resolution of 1.0° × 1.0° (latitude × longitude), 126 

based on the surface synoptic observations from WMO [Ziese et al., 2011]. GDAS 127 

and GFS datasets with a horizontal resolution of 0.25 degree are adopted, and forecast 128 

results up to 192 hours are analysed in this study.  129 

We demonstrate the reduction of forecast accuracy in temperature, relative 130 

humidity (RH), wind speed and pressure with a special focus on temperature, because 131 

temperature is widely observed by commercial airlines with high quality and 132 

assimilated in the GDAS [Petersen, 2016]. In this study, we mainly focus on the 133 

surface layer and at 00:00 UTC. These GDAS reanalyses are believed to be the 134 

highest quality ones, since most surface meteorological observations are still working 135 

properly during the COVID-19 pandemic, and the largest availability of radiosonde 136 

observations is at 00:00 UTC around the world [Ingleby et al., 2016]. We also discuss 137 

the impacts of elimination in aircraft observations during the pandemic on 138 

precipitation forecasts by validating GFS forecasts against the observation-based 139 

GPCC dataset.  140 

To investigate the impact of the COVID-19 pandemic on the weather forecast, 141 

we compare the forecast accuracy for March-May 2020 (during global lockdown) 142 

against the average of March-May 2017-2019. In addition, we conduct the same 143 

analysis for February 2020 before global lockdown, in order to demonstrate that this 144 

impact on accuracy is associated with the pandemic in March-May 2020 rather than 145 

the meteorological characteristics of 2020. 146 
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 147 

3. Results and discussion 148 

3.1 COVID-19 pandemic reduces accuracy of weather forecast 149 

As shown in Fig. 1, the accuracy (absolute error) of surface meteorology forecast 150 

in March-May 2020 decreases remarkablely (with respect to March-May 2017-2019; 151 

red colours indicate worse forecasts, blue colours indicate better forecasts) over north 152 

and south polar regions (latitude > 70 degree), throughout the 1-8 day forecasts. 153 

Temperature forecast in March-May 2020 shows an extra 0.5-1.0 
o
C bias compared 154 

with that in March-May 2017-2019 over south polar regions. The deterioration in 155 

temperature forecasts over north polar regions is less than south polar regions, by an 156 

extra 0-0.5 
o
C bias; however, before the global lockdown in February, the temperature 157 

forecast over north polar regions is generally improved by 0.5-1.5 
o
C in 2020 against 158 

2017-2019, with small exceptions in the 24-48 hour forecast (Fig. 2a). The surface 159 

RH, pressure and wind speed forecasts in March-May 2020 are also remarkably worse 160 

than the forecast in February 2020 (Fig.1b-1d and Fig. 2b-2d). The deterioration of 161 

the temperature forecast in March-May 2020 develops in the upper layers as the 162 

forecast is extended, with large deterioration (~1.0 
o
C) over polar regions from ground 163 

up to ~300 hPa in the 168-hour forecast (details in Fig. S1). This could lead to larger 164 

uncertainties in longer forecasts in the descriptions of atmospheric stratification and 165 

synoptic scale weather systems, with impacts on medium-range (3-10 days ahead) to 166 

long-range (15-30 days ahead) forecasts. And the deterioration in global model 167 
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accurary could worsen predictions for mesoscale and microscale systems using 168 

high-resolution models, whose boundary conditions are constrained by global 169 

produces. 170 

No notable deterioration in the surface pressure and wind speed forecasts in 171 

March-May 2020 is observed in 24-96 hours forecasts (Fig. 1c and 1d), but there is a 172 

slight improvement in February 2020 (Fig. 2c and 2d). However, the errors develop as 173 

the forecasts are extended. In northern polar regions, the 96-192 hour forecasts of 174 

surface pressure are worsened by 1-3 hPa in March-May 2020, even though an 175 

improvement of 1-4 hPa is seen in the February results (Fig. 2c). Similar for wind 176 

speed forecast, error in March-May forecasts develops as the forecasts are extended 177 

and the accuracy is worsened by up to 0.8 m/s in north polar regions when forecast is 178 

more than 100 hours ahead. However, wind forecast of February 2020 shows an 179 

improvement by 0.2-0.5 m/s against February 2017-2019, throughout 24-192 hours 180 

forcasting period (Fig. 2d). Very limited diurnal variation in the deteriorations is 181 

observed (Fig. S2), indicating these deteriorations in the forecasts of surface 182 

meteorology are consistent throughout a day.  183 

The total precipitation forecasts during March-May 2020 are validated against 184 

the observation-based GPCC dataset, and compared the accuracy in March-May 2020 185 

with March-May in 2017-2019 (Fig. S3). No significant deterioration in precipitation 186 

forecasts during March-May 2020 is observed, compared with 2017-2019. Although 187 

there is some deterioration in a small area of southeast China, the deterioration in 188 

precipitation forecasts does not consistently present over a large scale of the regions 189 
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with busy air flights as the deterioration in temperature forecasts does (Fig. 3, detail 190 

discussion in the next section). This is not surprising, since previous studies show that 191 

aircraft observations play a critical role in the forecasts of temperature, humidity and 192 

wind from troposphere to lower-stratosphere [James and Benjamin, 2017; Ota et al., 193 

2013; Petersen, 2016]; while, cloud properties from satellites are important for rainfall 194 

forecasts [James and Benjamin, 2017], and are not eliminated during the global 195 

lockdown. 196 

In summary, better forecasts of surface meteorology are expected in 2020 as 197 

indicated by February results, but significant worse forecasts are shown in 198 

March-May 2020. This discrepancy strongly suggests that the COVID-19 pandemic 199 

imperils weather forecasting of surface temperature, RH, pressure and wind speed due 200 

to the lack of aircraft observations during the global lockdown. However, 201 

precipitation forecasts are not remarkably affected. 202 

3.2 Impact in different regions 203 

We notice that the degradation of the weather forecast is more substantially in the 204 

northern hemisphere than the southern hemisphere. This is because there is a much 205 

larger number of aircraft observations in this region to constrain the initial conditions 206 

of the forecast model. We notice a much larger degradation in the March-May 207 

forecast over some regions than others, as shown by the 168-hour forecast as an 208 

example in Fig. 3. Remote regions (magenta boxes), such as the Greenland, Siberia, 209 

Antartica and the Sahara Desert, are impacted greatly. This is because assimilation of 210 

aircraft observations provides a much larger improvement in forecasts over regions 211 
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where very limited conventional observations are available [Ota et al., 2013]. Regions 212 

with busy air flights are also affected greatly, such as North America, southeast China 213 

and Australia (green boxes in Fig. 3). The accuracy of the surface temperature 214 

forcasts over these regions is reduced or occasionally slightly improved (0-0.5 
o
C) in 215 

March-May 2020 (Fig. 3a), but we could reasonably expect a larger improvement of 216 

0.5-1.5 
o
C over these regions as seen in the February result (Fig. 3b). Therefore, this 217 

gap of 0.5-1.5 
o
C improvement between forecasts in March-May and February 218 

(calculated as “Fig. 3a – Fig. 3b”, shown in Fig. 3c) could be attributed to the lack of 219 

aircraft observations during the COVID-19 pandemic. This is supported by the 220 

reduced availability of aircraft observations as discussed in the Methods section, 221 

where only about 25-50% of aircraft observations were available globally during 222 

March-May 2020 compared with February 2020.  223 

As reported in previous studies [Ota et al., 2013; Petersen, 2016] (see also Fig. 224 

S4), North America, southeast China and Australia are regions with a large number of 225 

aircraft observations under normal conditions. Western Europe (blue box in Fig. 3) 226 

also has a large amount of aircraft observations, which reduced greatly during the 227 

COVID-19 pandemic with strict lockdown over most European countries. However, 228 

nearly no impact on the surface temperature forecasts is observed. This is because 229 

there is a dense network of meteorological stations over western Europe compared 230 

with other regions, 1519 stations in the small blue box of Fig. 3 (sourced from WMO: 231 

https://oscar.wmo.int/), providing a good constraint on the initial conditions of 232 

forecast model and hence a reliable weather forecast. Additional aircraft observations 233 
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make limited improvement over regions where observation information is almost 234 

“saturated” [Ota et al., 2013], such as western Europe. Therefore, the high density of 235 

conventional meteorological observations buffers the impact of the COVID-19 236 

pandemic on weather forecasts over western Europe.   237 

 238 

4. Summary 239 

Weather forecasts play an essential part in daily life, agriculture and industrial 240 

activities, and their accuracy is largely dependent on the amount of meteorological 241 

observations assimilated in forecast models. The COVID-19 pandemic has led to a 242 

global lockdown and greatly reduce the number of flights and the associated aircraft 243 

observations during March-May 2020. In this study, we verify global weather 244 

forecasts in March-May 2020 against high resolution global reanalysis dataset and an 245 

observation-based global precipitation dataset, which are the best estimate of the 246 

atmospheric state. To investigate the forecast deterioration during the pandemic, the 247 

forecast accuracy during March-May 2020 is further compared with the average 248 

accuracy during March-May 2017-2019. We report a significant deterioration in the 249 

forecasts of surface temperature, RH, wind speed and pressure, but no significant 250 

deterioration in precipitation forecast is observed. A similar analysis for February 251 

2020 suggests that the forecast accuracy of surface meteorology could have been 252 

expected to improve in 2020 compared with 2017-2019, if aircraft observations were 253 

carried out as usual.  254 
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Forecasts over remote and busy air-flight regions are more vulnerable due to the 255 

lack of aircraft observations. Over the Greenland and Siberia, the accuracy of surface 256 

temperature forecasts could be reduced by up to 2 
o
C, and the deterioration in the 257 

forecasts of surface wind speed and pressure develops as the forecasts are extended. 258 

Forecasts over North America, southeast China and Australia are also greatly affected 259 

by the COVID-19 pandemic, but the impact over western Europe is compensated to 260 

some extent by the high density of meteorological observations stations available. 261 

The lack of aircraft observations may become more severe as the COVID-19 262 

pandemic develops and the associated lockdown extends. This study warns that 263 

further worsening of weather forecasts may be expected and that the error could 264 

become larger for longer-term forecasts. This could handicap early warning of 265 

extreme weather and cause additional hardship for daily life in the near future. The 266 

results also highlight that establishing more meteorological stations in 267 

observation-sparse regions and report data to WMO can improve the weather forecast 268 

and effectively buffer the impact of global emergencies, such as the COVID-19 269 

pandemic, in future.  270 

  271 
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Figure 1. Deviation in absolute error of weather forecasts between 2020 and the average of 

2017-2019. Forecasts of 24-192 hour (1-8 day) ahead in the period of March to May, all variables 

are at 00:00 UTC and in surface layer: (a) temperature; (b) RH; (c) pressure; (d) wind speed. Only 

deviations with significance higher than 95% confidence level according to t-test are shown. Red 

colours indicate worse forecasts in 2020, blue colours indicate better forecasts in 2020. 
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Figure 2. Similar as Fig. 1, but forecasts for February. Red colours indicate worse forecasts in 

2020, blue colours indicate better forecasts in 2020. 
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Fig. 3 continues in next page. 
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Figure 3. Global map of deviation in absolute error of surface temperature forecasts between 

2020 and the average of 2017-2019. The results are for March to May (a) and February (b). The 

168-hour forecasts at 00:00 UTC in surface layer are shown. Only deviations with significance 

higher than 95% confidence level according to t-test are shown. The number of meteorological 

stations in different regions (boxes) are also marked, data sourced from WMO 

(https://oscar.wmo.int/). Green boxes indicate the regions with busy air flights and large 

degradation in forecasts, light blue box indicates the region with busy air flights and moderate 

degradation in forecast, and magenta boxes indicate the remote regions with large degradation in 

forecasts. The difference between Fig. 3a and Fig. 3b is shown in Fig. 3c. In all panels, red colours 

indicate worse forecasts, blue colours indicate better forecasts.  
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