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Abstract

We introduce an approach to divisive hierarchical clustering that is capable

of identifying clusters in nonlinear manifolds. This approach uses the isometric

mapping (Isomap) to recursively embed (subsets of) the data in one dimension,

and then performs a binary partition designed to avoid the splitting of clusters.

We provide a theoretical analysis of the conditions under which contiguous and

high-density clusters in the original space are guaranteed to be separable in the

one-dimensional embedding. To the best of our knowledge there is little prior

work that studies this problem. Extensive experiments on simulated and real

data sets show that hierarchical divisive clustering algorithms derived from this

approach are effective.

Keywords: Nonlinearity, Dimensionality Reduction, Divisive Hierarchical

Clustering, Manifold Clustering

1. Introduction

Dimensionality reduction is a central component in clustering high dimen-

sional data. Well established methods like Principal Component Analysis (PCA)

and metric Multi-Dimensional Scaling (MDS) [1] have been shown to be effective

in a plethora of applications [2], despite the fact that neither method is guaran-5

teed to preserve the cluster structure in the data. More recently, a number of
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linear projection pursuit methods have been proposed that explicitly optimize a

clustering objective to identify appropriate subspaces for clustering. Such works

have considered optimizing objectives related to k-means clustering [3, 4], den-

sity clustering [5], and spectral connectivity [6, 7, 8], Even if a low dimensional10

subspace in which all clusters can be identified exists, establishing the dimen-

sionality of this subspace remains an open problem (for clustering algorithms

other than k-means, for known k). Furthermore, in a number of applications

such as computer vision, and image processing, clusters are defined in multiple

subspaces [9]. In this case there might not even exist a single subspace that is15

appropriate to identify all clusters. To overcome this issue hierarchical divisive

clustering algorithms have been proposed that determine the binary partition

at each level of the hierarchy from a one-dimensional projection [5, 4, 7]. This

approach is equivalent to splitting each cluster in the hierarchy through a hy-

perplane. However, hyperplane separators are inherently inappropriate when20

the clusters are not linearly separable.

Nonlinear dimensionality reduction techniques have been explicitly designed

to handle high dimensional data that lie in or close to a manifold of intrinsically

low dimension. Widely used manifold learning methods include isometric map-

ping (Isomap) [10], Kernel PCA [11], Locally Linear Embedding (LLE) [12], and25

its variants such as Laplacian Eigenmaps (LE) [13]. These methods share a com-

mon framework: First the neighbors of each observation are determined, and

are used to determine pairwise distances. Then the nonlinear transformation

between the original points and their low-dimensional embedding is obtained

through the eigenvectors of an appropriately defined matrix [14]. Nonlinear di-30

mensionality reduction methods can be categorised into global and local . Global

methods, such as Isomap and Kernel PCA, attempt to preserve global spatial

relationships in the data. In contrast, local methods such as LLE prioritise

the preservation of distances within small neighborhoods of points. Although,

visualization in two and three dimensional space can be significantly improved35

using local methods, there is no clear evidence that these also enhance clustering

performance.
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Manifold learning techniques have been widely used in clustering but to the

best of our knowledge there is very little work that addresses the question of

whether and under which conditions clusters (of any type) are preserved after40

applying nonlinear dimensionality reduction. In this work we investigate con-

ditions under which two types of clusters (contiguous and density clusters) are

preserved after a one-dimensional embedding through Isomap. This motivates

the development of divisive hierarchical clustering algorithms that rely on one-

dimensional embeddings and can handle nonlinearly separable clusters when the45

number of dimensions is high relative to the number of samples.

Related Work: Density based clustering algorithms like the established DB-

SCAN [15] and the more recent pdfCluster [16] and densityPeaks [17], are by

design capable of identifying nonlinear clusters. However, they are rarely effec-

tive when the number of dimensions increases even in the scale of a few tens.50

The recently proposed cut-edge spatial clustering (CutESC) [18] can identify

clusters of different densities and arbitrary shapes, and has proven competitive

against other density based methods. CutESC identifies clusters by partition-

ing an appropriate constricted proximity graph. However, this algorithm has

been mainly tested on relatively low dimensional datasets. The authors in [19]55

present a novel approach for identifying local high-density samples utilizing the

inherent properties of the nearest neighbor graph. After using the density esti-

mator to filter noise samples, the proposed algorithm performs a DBSCAN-like

clustering process. This algorithm has also been mainly assessed on relatively

low dimensional datasets. In [20] a method with promising results for high60

dimensional nonlinear clustering problems is proposed. The algorithm first gen-

erates several tight and small subclusters and then merges these by exploiting

the connectivity among them. To select appropriate values for the parameters

of the algorithm the authors propose an internal validity index whose relation

to the actual clustering structure is not known.65

Kernel k-means [21] is among the most popular methods for nonlinear clus-

tering. Kernel methods project the data into a high dimensional feature space

in which clusters are separable [11]. Kernel k-means applies the well known
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k-means algorithm on the feature space. The main limitation of this approach

is the difficulty of specifying an appropriate kernel for a particular dataset. An70

alternative and very recent approach to identify clusters defined in Rieman-

nian submanifolds, is the diffusion k-means algorithm [22]. This is achieved by

constructing a random walk on an appropriate similarity graph.

More generally, a number of nonlinear clustering algorithms have been pro-

posed under the generic term spectral clustering (SC) [23, 24]. These methods75

share the basic idea of applying a nonlinear dimension reduction step in order

to aid the extraction of cluster structures, and are closely related to LE [13].

In [25] the authors propose a modification to the normalised cut criterion, and

develop an iterative method with proved convergence to obtain the optimal solu-

tion that does not involve eigendecomposition. A spectral clustering approach80

for multiview data which performs simultaneously graph fusion and spectral

clustering has been recently proposed [26]. As in the case of kernel k-means a

critical choice in SC is the specification of the kernel and its parameters which

are used to construct the Laplacian matrix [24].

The authors in [27] applied k-means after embedding the data through85

Isomap. They observed that the resulting method failed even in simple artificial

examples. They then proposed a modified definition of the geodesic distances

but concluded that this was also unsatisfactory in real-world datasets where the

data is noisy, or the clusters are highly nonlinear.

In this paper we develop methods that explicitly leverage theoretical proper-90

ties of the cluster structures and their low-dimensional (in fact, one-dimensional)

embeddings. In the experimental section, we demonstrate that in many cases

this has a significant positive effect on the resulting clustering.

The rest of the paper is organized as follows. In Section 2 we give a brief de-

scription of the Isomap algorithm and its variant used in this work. In Section 395

we develop the theoretical background and propose new clustering algorithms.

Section 4 is devoted to experimental evaluation of the proposed approaches.

The paper ends with concluding remarks in Section 5.
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2. The Embedding Algorithm

Let D denote the set of d-dimensional observations, D = {xi}ni=1 ⊂ Rd, and100

X ∈ Rn×d the associated data matrix. The first step of the Isomap algorithm is

to create an undirected graph that represents the connectivity between obser-

vations. There are two methods to determine the neighbors of an observation.

According to the first two points are neighbors if one of them is amongst the

k-nearest neighbors of the other, for a pre-specified value of k, and choice of105

distance metric dX(xi, xj). The default choice of distance metric is the Eu-

clidean distance, dX(xi, xj) = ‖xi − xj‖2. In the second method, two points

are considered neighbors if dX(xi, xj) 6 ε, for a pre-specified ε > 0. The result-

ing undirected graph can be equivalently represented in terms of the adjacency

matrix, W ∈ Rn×n, where Wi,j > 0 if and only if xi and xj are connected,110

and for all pairs of connected observations Wi,j = dX(xi, xj). From this graph

the geodesic distance between two points, Gi,j = dG(xi, xj), is defined as the

length of the shortest path connecting xi to xj on the graph. Isomap applies

MDS to the matrix of geodesic distances G to compute an optimal embedding

into a low-dimensional space where the pairwise distances match the geodesic115

distances as well as possible.

A shown in [28] both approaches to build the neighbor graph are subject

to instability. More precisely, selecting a large value for k or ε can lead to the

so called “short-cut edges”, which are misleading connections between different

folds of the manifold, that render the embedding inaccurate. On the other hand,120

too small values for k or ε can create disconnected subgraphs in which case

the Isomap algorithm is not directly applicable. The latter problem pertains

especially to clustering tasks where different clusters may be far from each other.

To deal with this problem, Orsenigo and Vercellis [14] propose a variant of

Isomap called dbt-Isomap. In dbt-Isomap if the original neighborhood graph is125

disconnected, the separate subgraphs are then connected by creating a minimum

spanning tree among the centroids of the unconnected subgraphs. A visual

example of this method is given in Figure 1 where we employ an artificial two
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Figure 1: The initial disconnected k-NN graph (left) and the resulting connected graph (right)

using the dbt-Isomap method. The edges added by dbt-Isomap are indicated with thicker red

lines on the graph on the right.

dimensional dataset specially designed in a way so that building the k-nearest

neighbors graph for a relative small k value (k = 5 for this particular example)130

will result in several unconnected components (left part of Figure 1). At the

right part of the Figure 1 we can see the added undirected edges in red color

within the resulting fully connected graph.

3. Proposed Framework

In this section, we provide theoretical results characterizing the relationship135

between true clusters in the full-dimensional space and their one-dimensional

embeddings. Based on specific assumptions about the properties of clusters, we

propose appropriate methodologies to identify them. Throughout we assume

that using as input a finite set of points D, the dbt-Isomap algorithm produces

the undirected weighted graph G(D) = (D, E), which we call the neighborhood140

graph. The vertices of G(D) correspond to the set of points. The edge (xi, xj)

exists, only if xi and xj are connected through the Isomap algorithm. The

weight of every edge in G(D) is equal to the Euclidean distance between the

corresponding points, Wij = ‖xi − xj‖2 if (xi, xj) ∈ E . The geodesic distance

between any pair of observations, dG(xk, xl), is defined as the length of the145

shortest path connecting xk to xl on G(D). Therefore, dG(xk, xl) > ‖xk −
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xl‖2 and since G(D) is typically very sparse for the majority of pairs of points

dG(xk, xl) > ‖xk − xl‖2.

3.1. Contiguous Clusterability

Before investigating the theoretical properties of a clustering algorithm we

need to formally define a cluster with respect to the neighborhood graph G(D).

In the following for every non-empty set C ⊂ D, we define G(C) = (C, EC) as

the subgraph obtained by removing from G(D) the vertices in D \ C and all the

edges with an end-point in D \ C,

EC = {(xi, xj) |xi, xj ∈ C, (xi, xj) ∈ E} .

We first consider contiguous clusters [29]. To define this type of cluster we150

first need to define the coherence of a non-empty subset of D, and the coherence

of a partition of D into pairwise disjoint subsets.

Definition 1. (Set Coherence): Let C ⊂ D be a non-empty subset of D, and

G(D) the associated neighborhood graph. The coherence of C, coh(C), is defined

as,

coh(C) =

 max {‖xi − xj‖2 | (xi, xj) ∈ EC} , if G(C) is connected,

∞, otherwise.
(1)

Definition 2. (Partition Coherence and Separability): Let D be a set

of points and G(D) the associated neighborhood graph. The coherence of a

partition of D, into k non-empty and pairwise disjoint subsets, Π = {C1, . . . , Ck},

is the maximum coherence of any of the elements of the partition,

coh(Π) = max
m=1,...,k

coh(Cm),

while the separability of Π is defined as,

sep(Π) = min
m=1,...,k

min
xi∈Cm,

xj∈D\Cm

dG(xi, xj). (2)
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Definition 3. (Contiguous Set): Let D be a set of points and G(D) the

associated neighborhood graph. A non-empty set C ⊂ D, is a contiguous set if

for all xi ∈ D \ C,

coh(C) < coh(C ∪ {xi}). (3)

We are now able to define a k-contiguous clusterable set , and a k-contiguous

clustering .

Definition 4. (k-Contiguous Clustering): Let D be a set of points and155

G(D) the associated neighborhood graph. If there exists a partition Π =

{C1, . . . , Ck} into k non-empty and pairwise disjoint subsets of D such that

coh(Π) <∞ and sep(Π) > coh(Π), then D is k-contiguous clusterable, and Π is

a k-contiguous clustering .

A k-contiguous clustering with maximum separability,

Π? = arg max
Π={C1,...,Ck}

sep(Π), (4)

s.t. D = ∪km=1Cm,

Cm ∩ Cl = ∅ for all m 6= l,

is called an optimal k-contiguous clustering .160

Next we state and derive the main result of this section which provides

conditions under which contiguous clusters in the full dimensional space are

recovered by a simple splitting criterion that involves only the one-dimensional

embeddings.

Theorem 1. Let D = {xi}ni=1 be a k-contiguous clusterable set for some k > 1,165

and Π? = {C?1 , . . . , C?k} the optimal k-contiguous clustering of D. Denote as

P = {pi}ni=1 the set of one-dimensional embeddings of the points in D.

If there exists ε > 0 such that for all xi, xj ∈ D with (xi, xj) ∈ E,

‖xi − xj‖2 6 coh(Π?)⇒ |pi − pj | 6 ε, (5)

and for any xi, xj ∈ D,

dG(xi, xj) > coh(Π?)⇒ |pi − pj | > ε, (6)
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then, partitioning the data at the largest gap between consecutive points in P

induces a binary partition which is guaranteed not to split any contiguous cluster.

Proof. Consider a pair of consecutive points that belong to different clusters,170

xi ∈ Cm and xj /∈ Cm. By the definition of a k-contiguous clusterable set

dG(xi, xj) > coh(Π?), and the condition in (6) ensures that |pi − pj | > ε.

Consider now the case of two consecutive points from the same cluster,

xi, xj ∈ Cm. If xi is connected to xj in G(D), then ‖xi − xj‖2 6 coh(Π?) and

the condition in (5) ensures that |pi−pj | 6 ε. Assume instead that (xi, xj) /∈ E .

Since coh(Cm) < ∞ the subgraph G(Cm) is connected. Therefore there exists

at least one path in G(Cm) that connects xi to xj . Any such path on G(Cm)

contains an edge (xk, xl) (where it is possible that either xk = xi, or xl = xj)

that satisfies ‖xk − xl‖2 6 coh(Π?). Therefore,

|pi − pj | 6 |pk − pl| 6 ε.

The first inequality follows from the fact that pi and pj are consecutive, but not

directly connected in G(D), while the second is due to the condition in (5).

The above theorem states that if D is k-contiguous clusterable, for any k > 1 and175

the two conditions in (5) and (6) hold, then splitting at the largest gap between

two consecutive one-dimensional embeddings is guaranteed to avoid splitting any

contiguous cluster. Figure 2 provides a visualization of this result. The condition

in (5) requires that pairs of points from the same cluster that are connected by

an edge in G(D) are embedded within a distance of at most ε of each other.180

In Figure 2 |p1 − p2| is the maximum distance between the embeddings of any

pair of points that are connected with an edge in G(D) and belong to the

same contiguous cluster. Therefore, in this example any xi, xj ∈ Cm, where

m = {1, 2}, such that (xi, xj) ∈ E , |pi−pj | 6 |p1−p2|. The condition in (6) has

two implications. Let xi, xj be a pair of points in different clusters, and pi, pj185

their one-dimensional embeddings. If xi, xj are connected by an edge in G(D)

then dG(xi, xj) = ‖xi − xj‖2 > coh(Π?). (The last inequality follows from the

definition of a k-contiguous clusterable set.) According to (6) the embeddings of

9
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Figure 2: The top figure depicts the neighbor graph created by dbt-Isomap, using k = 2.

Points from the two contiguous clusters are indicated with different color. At the bottom the

one-dimensional embeddings are illustrated. Splitting at the largest gap between consecutive

embeddings avoids splitting a contiguous cluster.

points from different clusters that are connected in G(D) are more than ε apart.

In the example of Figure 2 there are two edges that connect points from different190

clusters, (x1, x10) and (x6, x9). The embeddings of the corresponding point

satisfy |p10−p1| > |p1−p2| and |p6−p9| > |p1−p2|. Assume instead that xi, xj

are not connected in G(D). In this case every path in G(D) that connects xi to

xj has at least one edge (xk, xl) such that dG(xk, xl) = ‖xk − xl‖2 > coh(Π?).

The definition of geodesic distance ensures that dG(xi, xj) > ‖xk − xl‖2, and195

for such points the condition in (6) requires that |pi − pj | > ε. In Figure 2 the

distance between the embeddings of any pair of points from different clusters

and not connected by an edge satisfies |pi − pj | > |p1 − p2|. Therefore, for the

example in this figure ε = |p1 − p2| > 0 satisfies the conditions in (5) and (6).

Clearly a user that wants to estimate a clustering of D does not know the200

optimal k-contiguous clustering, Π?. Therefore it is not feasible to assess in ad-

vance whether the conditions in (5) and (6) are satisfied. It is however possible
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to verify these conditions after observing the partition, Π̂ = {Ĉ1, . . . , Ĉm}, pro-

duced by the proposed clustering algorithm (described in Section 3.3). First it

is straightforward to verify whether each cluster is a contiguous set and whether205

sep(Π̂) > coh(Π̂), using Eqs. (3) and (2), respectively. This allows the user to

assess whether Π̂ is a k-contiguous clustering. If Π̂ is a k-contiguous clustering

then it is also straightforward to verify whether an ε > 0 that satisfies con-

ditions (5) and (6) exists. What is not feasible is to determine whether Π̂ is

the optimal k-contiguous clustering since to estimate Π? requires solving the210

combinatorial optimization problem in Eq. (4).

3.2. Density Clustering

The contiguous cluster definition in the previous subsection is appropriate

when clusters are well separated. In the presence of noise and outliers this is

not the case. To accommodate such datasets we consider high-density clusters215

(at level ρ) as defined by Hartigan [30, Ch. 11]. For brevity we refer to such

clusters as ρ-dense clusters. For continuous data, ρ-dense clusters are defined

as follows.

Definition 5. [30, Ch. 11] (ρ-dense cluster): Assume that D is an i.i.d.

sample of a random variable on Rd with unknown probability density func-

tion f : Rd → R+. For ρ > 0 and a choice of density estimator, f̂ , a ρ-dense

cluster is a maximally connected component of the superlevel set of f̂ ,

L(ρ; f̂) =
{
x ∈ Rd

∣∣∣ f̂(x) > ρ
}
.

This cluster definition underlies the influential DBSCAN algorithm [15],

which uses a uniform kernel density estimator as f̂ . By definition, ρ-dense220

clusters are separated from each other by contiguous regions of low density,

f̂(x) < ρ. It is therefore possible (depending on the choice of ρ) that only a

strict subset of D is allocated to ρ-dense clusters, that is L(ρ; f̂) ( D. The re-

maining points, for which f̂(xi) < ρ, are typically considered to be noise points.

Density clustering algorithms either do not assign these observations to a cluster225
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(effectively defining a separate “noise” cluster) [15], or use a heuristic to assign

each of these to the “closest” cluster [16].

To define ρ-dense clusters on a neighborhood graph we first define the

geodesic probability mass function.

Definition 6. (Geodesic Probability Mass Function): Given a set of points

D ⊂ Rd and the associated neighborhood graph G(D), the probability mass at

xi ∈ D is,

f̂G(xi;D, h) =
1

c0

n∑
j=1

K(dG(xi, xj), h),

where K is a symmetric kernel, h > 0 is the scaling (or bandwidth) pa-230

rameter of this kernel, and c0 is a normalizing constant which ensures that∑
xi∈D f̂G(xi;D, h) = 1.

Several choices of K are available, but typically, the quality of the approxi-

mation depends less on the shape of the kernel and more on the value of the

bandwidth, h. In this paper we use the uniform kernel,

f̂G(xi;D, h) =
1

c0

n∑
j=1

1[0,1] (dG(xi, xj)/h) , xi ∈ D (7)

c0 =

n∑
i=1

n∑
j=1

1[0,1] (dG(xi, xj)/h) , (8)

where 1A(x) is the indicator function which takes the value one if x ∈ A, and

zero otherwise. The central property of the uniform kernel is that f̂G(xi;D, h)

is proportional to the number of points in D that are within a geodesic distance

of h from xi. The normalizing constant, defined in Eq. (8), is equal to the total

number of neighbors within a geodesic distance of h over all the points in D.

We can thus define the superlevel set of f̂G as,

LG(ρ ; f̂G(·;D, h)) =
{
x ∈ D | f̂G(x;D, h) > ρ

}
. (9)

We are now in a position to define a (k, ρ)-dense clusterable set.

Definition 7. ((k, ρ)-Dense Clusterable Set): A setD with associated neigh-

borhood graph G(D) and geodesic probability mass function, f̂G(·;D, h), is235

12



(k, ρ)-dense clusterable if the ρ-superlevel set of f̂G can be decomposed into

k non-empty pairwise disjoint sets, L(ρ; f̂G) =
⋃k

i=1 Ci, and G(Ci) is connected

for all i = 1, . . . , k.

After D is embedded in the one-dimensional Euclidean space through dbt-

Isomap, the density of any point in the real line can be estimated using a kernel

density estimator. We will also use the uniform kernel for this purpose,

f̂1D(y;P, h1) =
1

2nh

n∑
i=1

1[0,1] (|y − pi|/h1) , (10)

where P = {pi}ni=1 denotes the set of one-dimensional embeddings of the points

in D. Note that the bandwidth parameter of f̂1D differs from that used in the240

geodesic probability mass function, f̂G. Using the same bandwidth would be

warranted only if pairwise geodesic distances were approximately preserved after

the one-dimensional embedding. Unfortunately this assumption is overly restric-

tive. Instead we propose to use the following mapping between the bandwidth

in the geodesic probability mass function, and that used in one-dimensional245

density estimator,

n∑
i=1

n∑
j=1

1[0,1] (|pi − pj |/h1) =

n∑
i=1

n∑
j=1

1[0,1] (dG(xi, xj)/h) . (11)

The above condition effectively requires that the average number of neighbors

within a geodesic distance of h for the points inD, is equal to the average number

of points within a Euclidean distance of h1 for the one-dimensional embeddings

P. We are now in a position to express the main result of this section.250

Theorem 2. Let D ⊂ Rd be a set of points, and G(D) the associated neigh-

borhood graph. Denote as P = {pi}ni=1 the set of one-dimensional embeddings

of the points in D, and without loss of generality assume that p1 6 p2 · · · 6 pn.

Assume that D is (k, ρ)-dense clusterable with respect to the geodesic probability

mass function f̂G(·;D, h) using the uniform kernel as defined in Eq. (7). Let

C1, . . . , Ck denote the ρ-dense clusters, and for each cluster let lm = minpi∈Cm pi
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and um = maxpi∈Cm pi. Let

ρ1 = min
y∈∪k

m=1[lm,um]
f̂1D(y;P, h1), (12)

where f̂1D is the kernel density estimator defined in Eq. (10), and the bandwidth

parameter, h1, satisfies Eq. (11). If,

ρ1 > min
y∈conv(∪k

m=1[lm,um])
f̂1D(y;P, h1), (13)

where conv denotes the convex hull, then splitting at the lowest minimum of

f̂1D(y;P, h1) in the interval [p1, pn] is guaranteed to not split a ρ-dense cluster.

Proof. The proof is straightforward. The definition of ρ1 in Eq. (12) ensures

that f(y;P, h1) > ρ1 for all y ∈ [lm, um]. In other words every interval [lm, um]

is a subset of L(ρ1; f̂1D(·;P, h1)), the ρ1-superlevel set f̂1D. Moreover,

min
y∈[p1,pn]

f̂1D(y;P, h1) 6 min
y∈[l,u]

f̂1D(y;P, h1) < ρ1.

The first inequality holds because [l, u] ⊂ [p1, pn] and the second inequality is

due to Eq. (13). Therefore splitting at the minimizer of f̂1D in the interval

[p1, pn] is guaranteed not to split a ρ-dense cluster.255

This theorem is analogous to Theorem 1 in the case of dense clusterable

sets. Figure 3 provides a visualization of this result. The dataset and neigh-

borhood graph used to obtain the one-dimensional embeddings is the same as

in Figure 2. The kernel density estimator, f̂1D, in Figure 3 uses the uniform260

kernel as specified in Eq. (10). In the figure points from the first cluster, C1, are

embedded in the interval [l1, u1], while points from the second cluster, C2, are

embedded in [l2, u2]. The value of ρ1, defined in Eq. (13), is the minimum of

the density in [l1, u1] ∪ [l2, u2]. In this example the minimum of f̂1D occurs in

[l1, u1] and is indicated with a dashed horizontal line. The interval containing265

the embedded points from all clusters, [l, u], is in this case equal to [l1, u2]. The

minimum value of f̂1D in [l, u] (indicated with a red dashed line in Figure 3)

is smaller than ρ1. Therefore splitting at the global minimum of f̂1D in the
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l1=l u1 l2 u2=u

ρ1

Figure 3: Kernel density estimator (using the uniform kernel) constructed from one-

dimensional embeddings. Splitting at the global minimizer of the density in the interval

defined by the points with smallest and largest values avoids splitting a dense cluster.

interval containing all the embedded points (which in this case this is equal to

[l, u]) is guaranteed to not split a dense cluster.270

The mapping of the bandwidth parameter in Eq (11) allows the user to verify

whether and to what extend the assumptions of Theorem 2 hold. The user can

specify the bandwidth parameter for the geodesic probability mass function, f̂G

and then the ρ-dense clusterable sets can be identified directly from the graph

G(D). By embedding the points in one-dimension and computing an appropriate275

value for h1 through Eq. (11) the user can then verify the extent to which the

conditions of Theorem 2, namely Eqs. (12) and (13) hold. In the contrary case,

if the user has no prior information about an appropriate value of h for the

geodesic probability mass function, they can follow the reverse procedure, which

is how our clustering algorithm operates. First, embed the data in one dimension280

through the dbt-Isomap algorithm and select an appropriate bandwidth for the

univariate dataset. Identify the splitting point as the minimizer of f̂1D in the

interval between the first and last modes of this function. One can then use

Eq. (11) to obtain an appropriate bandwidth for f̂G and then verify whether

the graph partition induced by the one-dimensional splitting procedure preserves285
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Algorithm 1 Function Cluster (D)

1: Calculate the undirected graph W ∈ Rn×n

2: Calculate the geodesic distances G from W

3: Set Π = {G}

4: repeat

5: Apply dimension reduction for each set C ∈ Π

6: Select a set C ∈ Π, using either of the criteria

7: Split C into two sub-sets C1 and C2
8: Replace C in Π by C1, C2
9: until Stopping criterion is satisfied

10: Return Π, the partition of D into |Π| clusters

dense clusters.

3.3. Summarizing Algorithms

The above theoretical results suggest the construction of a clustering method-

ology by splitting the data points either based on the maximum distance,

MaxDist, between consecutive one dimensional embeddings, or based on the290

global minimum of the corresponding density estimator, MinLocal. The algo-

rithm starts with a single cluster C0 = D and iteratively splits cluster Ci that

corresponds to the maximum MaxDist or minimum MinLocal, depending on the

choice of splitting criterion. The selected cluster is replaced by two subclusters

that constist of the points whose embeddings lie at the left and right of the295

splitpoint. The procedure terminates when the given number of clusters has

been retrieved. Ideally when using the density based approach we could in-

troduce an automatic cluster number determination procedure to estimate the

actual number of clusters. For instance in [29] it is suggested to terminate the

algorithm when there are no local minima of f̂1D in any of the remaining clus-300

ters. However the choice of bandwidth parameter greatly affects the outcome of

such rules, and suggesting an optimal bandwidth value for correctly estimating

the number of clusters is beyond the scope of the current work. Algorithm 1
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Figure 4: A toy example showing the hierarchical procedure of i-DivClu. First step at the

top row of the Figure where we see a scatter diagram and the corresponding kernel density

estimation of the one dimensional embedding. At the bottom row the cluster separated at

the previous step has been grayed out and the cluster split step is applied to the remaining

dataset.

provides an outline of the proposed iterative procedure. Note that the graph

construction and the computation of geodesic distances takes place once at the305

start of the clustering procedure, while the one-dimensional embedding through

MDS is executed at each binary split in the divisive process.

A simple illustrative example of the algorithmic procedure is presented in

Figure 4, where we employ a two dimensional dataset that contains clusters that

are not linearly separable. A scatter diagram is presented in top left while at the310

top right we see the one dimensional embedding along with the corresponding

kernel density estimation and the splitting hyperplane defined by MinLocal.

Next at the bottom we see the next step of the procedure where the algorithm

chooses to split the next cluster (corresponding to the coloured points in the

bottom left scatter plot) recalculating an appropriate splitting criterion. In what315

follows, we will refer to the proposed algorithm using the acronym i-DivClu

corresponding to the description “Isometric mapping for Divisive Clustering”.
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3.4. Computational Complexity

The cost of the nearest neighbor search for k nearest neighbors of n points

in r dimensions, is approximately O(r log(k)n log(n)). This can be significantly320

improved especially for high dimensional data by employing approximate near-

est neighbor searches [31]. Using Dijkstra’s algorithm to compute the shortest

paths with the implementation of a priority queue with a Fibonacci heap, the

time complexity is O(|E| + n log n) for each vertex, where |E| is the number of

edges in the neighborhood graph (cardinality of E). Since the number of edges325

in a k-NN graph is bounded by kn the complexity of evaluating the shortest

paths for all vertices is O(kn2 + n2 log n). If k is considered a fixed parameter

the complexity is bounded by O(n2 log n). Now, given the inexpensive step of

calculating the shortest path amongst the centroids connected by a spanning

tree, with dbt-Isomap the computational costs may be kept even lower since the330

shortest paths are computed only within each connected component, allowing

us to bound the computational complexity for the evaluation of the shortest

paths by O(m2 logm) where m is the number of points in the largest connected

component. Finally the complexity of MDS, based on the partial eigenvalue

decomposition is O(rdn
2), where rd is the output dimension. For the proposed335

clustering algorithms we require only one-dimensional embeddings, thus the

complexity of MDS is O(n2). Several methods for the fast approximation of

MDS have been proposed, that significantly reduce its computational cost [32].

Finally note that the computational cost of evaluating the uniform kernel is

much smaller than that of other commonly used kernels such as the Gaussian.340

4. Experimental Results

In this section we perform a comparative evaluation of the proposed i-DivClu

methodology. We consider both the density and the maximum distance variants,

which we refer to as i-DivClu-D and i-DivClu-M respectively. We compare

against ten well-established and state-of-the-art clustering algorithms. Kernel k-345

means [21] and (normalized) spectral clustering (SC) [33] are the two most well-
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established and widely used algorithms for nonlinear clustering. Both methods

still receive considerable attention from the research community. We use the

default implementation from the kernlab R package for both kernel k-means and

SC. We also consider a two-step approach in which we first apply Kernel PCA350

(KPCA) to calculate the projections of the high dimensional feature vectors onto

a number of kernel principal components and then perform Minimum Density

Divisive Clustering (MDDC) [5, 34]. By pre-processing the data through KPCA

a method like MDDC, that uses hyperplanes to recursively bi-partition the data

can identify nonlinearly separable clusters, as long as the classes are separable355

in the feature space. We will refer the aforementioned approach as “Kernel

MDDC”. We use the implementation of MDDC with default options from the

PPCI R. The use the default implementation from the As baseline comparisons

we also consider hierarchical agglomerative clustering using single linkage and

average linkage.360

In our experiments we compare against three density-based algorithms. DB-

SCAN [15] (implemented in the R package dbscan) is considered the baseline

density clustering algorithm and has been shown to be particularly effective in

low dimensions. We also consider the more recent pdfCluster [16] and densi-

tyPeaks [17], implemented in the R packages pdfCluster and densityClust365

respectively. Unlike DBSCAN, pdfCluster and densityPeaks can detect clus-

ters defined at different density thresholds. From the family of model-based

clustering methods we consider the High Dimensional Data Clustering (HDDC)

algorithm [35] and implemented in the R package HDClassif. HDDC handles

high dimensional data through a parametrisation of the Gaussian mixture model370

that combines the idea of dimension reduction and model constraints on the co-

variance matrices. Finally we consider the recent cut-edge spatial clustering

(CutESC) algorithm [18] 1. CutESC formulates the clustering problem as a

graph partitioning problem. It is designed to handle clusters of complicated

shapes and different densities, and can accommodate outliers.375

1For a Python implementation see https://https://github.com/alperaksac/cutESC
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The implementation of i-DivClu as well as that of all the competing algo-

rithms (except CutESC) is in basic R language. This renders computational

time comparisons meaningful. For consistency all experiments were performed

on a PC with Intel(R) Core(TM) i9-7920X CPU with 32 Gigabytes of RAM

and Ubuntu 18.04 Linux operating system.380

For i-DivClu we need to define the number of nearest neighbors k used to

construct the k-NN graph. All the reported experimental results are obtained

using k = 5. In Section 4.3 we perform a sensitivity analysis of the perfor-

mance of i-DivClu with respect to the choice of k. To avoid outliers affecting

the number of clusters retrieved by i-DivClu we prohibit binary partitions that385

result in clusters with less than max{5, n/(4L)} points, where n is the num-

ber of samples and L the user-defined number of clusters. For i-DivClu-D we

also need to specify the bandwidth parameter, h, used in the univariate kernel

density estimation. In all experiments h is equal to half the value suggested by

the rule proposed by Sheather and Jones [36]. For algorithms that require the390

number of clusters to be specified by the user, the actual number of clusters is

provided as input. DBSCAN, densityPeaks, pdfCluster, and CutESC estimate

the number of clusters during their execution, and their implementations do not

allow the user to determine this parameter. For densityPeaks there is no auto-

matic way to define the parameters “rho” and “delta” that affect the number of395

retrieved clusters. The authors provide a graphical tool with which the user can

manually set the respective values through a visual investigation of a scatter

plot. However, even through this approach this task is not straightforward for

high dimensional datasets. In our experiments we set these as the average val-

ues across the parameters calculated for all samples. For pdfCluster we set the400

graphtype parameter to “pairs” when evaluated on datasets with more than

10 dimensions as suggested by the authors. For all other methods we used the

default parameters provided by their respective implementations.

To assess clustering quality we use Normalized Mutual Information (NMI) [37]

and the Adjusted Rand index (ARI) [38], Both NMI and ARI are external405

cluster-validity measures that quantify the degree of agreement between a clus-
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ter assignment and the true classes to which the data belong. We selected

these evaluation measures because they are appropriate for comparing cluster-

ing assignments in which the number of clusters differ. NMI is an information

theoretic measure that takes values in [0, 1], with higher values indicating better410

performance. The Adjusted Rand index is the corrected-for-chance version of

the Rand index and takes values in [−1, 1]. Again higher values indicate bet-

ter performance, while a value of zero corresponds to a clustering for which the

Rand index is equal to its expected value (under the generalized hypergeometric

distribution assumption for randomness).415

To enable the reproducibility of our experimental analysis we provide all the

datasets and the source code for the empirical evaluation in a GitHub reposi-

tory2.

4.1. Artificial Example

We first assess i-DivClu on two-dimensional artificial datasets that contain420

both linearly and nonlinearly separable clusters of various shapes, sizes, and

densities. This allows us to visualize the cluster assignment and thus obtain in-

sights into the behavior of different algorithms. Although it is typical to assess

clustering algorithms on a number of artificial datasets, each exhibiting a single

characteristic of interest3 we prefer to consider two datasets each containing nu-425

merous challenging features. We created the first artificial dataset, Dataset1, to

comply with this requirement4, while the second dataset, Dataset2, is provided

in [18]5.

Figures 5 and 6 provide a visualization of the cluster assignments produced

by all the considered algorithms on Dataset1 and Dataset2, respectively. Points430

allocated to different clusters are indicated by points of different color and shape.

2see https://github.com/usersotiris/nonlinearclustering
3See for instance http://scikit-learn.org/stable/auto_examples/cluster/plot_

cluster_comparison.html
4Available at https://github.com/usersotiris/nonlinearclustering
5Available at https://https://github.com/alperaksac/cutESC.
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i−DivClu−D i−DivClu−M Spectral Clus.

kernel kmeans average linkage single linkage

DBSCAN densityPeaks CutESC

pdfCluster hddc Kernel MDDC

Figure 5: Clustering result of various algorithms for the artificial two dimensional dataset

Dataset1.

The output of kernel k-means and SC is not deterministic due to the random-

ization in the initialization of k-means. In the figures we depict the outcome of

an indicative run for each of these methods. SC performs reasonably well but

in both datasets fails to identify the dense cluster contained within the circular435

cluster. Kernel k-means also fails to detect this cluster, and performs poorly on

Dataset1. Hierarchical agglomerative clustering using single linkage can detect

nonlinear clusters but is also heavily affected by outliers. This is most evident

on Dataset2 where a few outliers are assigned to separate clusters. Since for

this algorithm the number of clusters is predefined this causes the clustering440

procedure to terminate prior to detecting all the actual clusters. Single link-

age performs much better on Dataset1 but again the dense cluster contained

within the circular cluster is not detected. Using average linkage increases the
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i−DivClu−D i−DivClu−M Spectral Clus.

kernel kmeans average linkage single linkage

DBSCAN densityPeaks CutESC

pdfCluster hddc Kernel MDDC

Figure 6: Clustering result of various algorithms for the artificial two dimensional dataset

refereed as Dataset2.

robustness to outliers however this approach produces poor clusterings on both

artificial datasets. After performing several experiments with DBSCAN to se-445

lect an appropriate neighborhood size parameter we visualize the most accurate

result obtained. As expected an appropriate choice of neighborhood size enables

DBSCAN to discover all the clusters. However on both datasets many points

are incorrectly characterized as outliers. This highlights the limitations of using

a single neighborhood size parameter in the presence of clusters with different450

densities. pdfCluster fails to detect the cluster contained in the center of the

circular cluster on both datasets. On Dataset1 this algorithm also splits the

sparse cluster in the bottom right corner into two, while on Dataset2 the points

in the sparse region are incorrectly assigned. densityPeaks performs poorly on

Dataset1, and slightly better on Dataset2, where it substantially overestimates455
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the number of clusters. On Dataset1 the performance of HDDC is similar to

that of pdfCluster. On Dataset2 HDDC incorrectly partitions the circular clus-

ter and the dense cluster in its center. It also partitions the dense cluster in

the right and the surrounding sparse region of points. Kernel MDDC produces

very similar clustering to that of HDDC for both datasets. CutESC achieves a460

nearly perfect clustering on Dataset2 but it considers the sparse cluster at the

bottom right of Dataset1 as outliers. The two i-DivClu algorithms achieve an

optimal result for Dataset1 while i-DivClu-M appears to perform better than

i-DivClu-D on Dataset2.

4.2. Experiments on Real Datasets465

In this section we assess the relative performance of the proposed methodol-

ogy on real-world datasets. We selected a wide range of datasets with different

characteristics but specifically focused on high dimensional datasets that are

likely to contain data drawn from multiple nonlinear manifolds. Image datasets

containing different poses of similar objects, such as those used for facial recog-470

nition, are known to have this property [9].

COIL An image dataset provided by Columbia University Computer Vision

Laboratory. In the original dataset there are images of 20 objects in 72

different angles. The resulting dimensionality is 163846.

USPS A portion of the original USPS dataset containing images of handwritten475

digits. Each image is of size 16× 16. Here we use a subset containing the

digits 2, 4, 6 and 8 forming a 4575× 256 data matrix7.

Olivetti This dataset provided by AT&T Laboratories Cambridge contains a

set of face images. There are ten different 92 × 112 images of each of 40

distinct subjects forming the 400× 10304 data matrix8.480

6www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
7https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
8http://www.uk.research.att.com/
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ISOLET A widely used UCI dataset that was generated by subjects that pro-

nounced the name of each letter of the alphabet twice. It consists of 1560

observations of dimensionality 6179.

SEEDS A dataset from the UCI repository based on images of kernels belong-

ing to three different varieties of wheat. There are 70 elements from each485

category characterized by 7 variables10.

MOVE A video capturing different movements is analysed to generate 90 fea-

tures. The dataset contains 15 classes of 24 instances each, where each

class refers to a type of hand movement11.

CMU 640 black and white face images of people taken with varying pose490

(straight, left, right, up), expression (neutral, happy, sad, angry), eyes

(wearing sunglasses or not), and size. There are 32 images for each person

capturing every combination of features while the image resolution used

here is 128× 12012.

Fashion MNIST A random sample of the Fashion-MNIST dataset consisting495

of a 70000 examples in total. Each example is a 28× 28 grayscale image,

associated with a label from 10 classes. The resulting data matrix is of

size 3000× 784 representing all available classes 13.

OML DNA microarray expression profiles for 383 samples with 54675 genes

characterized by 9 classes, including data for medical diagnosis and treat-500

ment by the RSCTC’2010 Discovery Challenge [39]. Data were gathered

by the OpenML open science platform.

PANCAC Microarray expression profiles for 801 samples and 20531 genes.

Samples are categorized on five tumor types profiled by the TCGA (Cancer

9https://archive.ics.uci.edu/ml/datasets/isolet
10https://archive.ics.uci.edu/ml/datasets/seeds
11https://archive.ics.uci.edu/ml/datasets/Libras+Movement
12http://archive.ics.uci.edu/ml/datasets/cmu+face+images
13https://github.com/zalandoresearch/fashion-mnists
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Genome Atlas), a landmark cancer genomics program [40].505

MNIST The MNIST database of handwritten digits which have been size-

normalized and centered in a fixed-size image. The sample used here is of

size 3000× 784 representing all available classes 14.

We take representative samples of the Fashion-MNIST and MNIST datasets to

ensure that the majority of the considered algorithms can process these datasets510

with reasonable computational requirements.

Table 1 reports the performance of each algorithm with respect to NMI, ARI

and computational time in seconds. For non-deterministic algorithms the results

are averages over 20 replications. In the table we only present the performance of

algorithms that could handle the size and dimensionality of all the real datasets515

with reasonable memory and computational time requirements. In particular,

CutESC is only applicable when the number of samples exceeds the number

of dimensions. Even then CutESC and pdfCluster required more than 60 GB

of RAM for most of the datasets considered. These algorithms are therefore

excluded from the analysis of real-word datasets. For DBSCAN we tried a range520

of values for the neighborhood size parameter for each dataset. We found that

the appropriate value for this parameter differs considerably across datasets,

and even for the best parameter choice DBSCAN was not competitive. Given

this and due to space considerations we do not report the performance of this

algorithm in Table 1. To economize on space we only report the performance of525

the single linkage algorithm as it performed significantly better on average that

the average linkage strategy for agglomerative clustering.

The results reported in Table 1 indicate that overall i-DivClu-D outperforms

the competing methods. The table shows that on real-world datasets i-DivClu-

M outperforms i-DivClu-D only once. We therefore always recommend using the530

density variant of i-DivClu. In terms of NMI i-DivClu-D is the best algorithm in

seven out of the eleven datasets. In terms of ARI it outperforms all other meth-

14http://yann.lecun.com/exdb/mnist/
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Table 1: Clustering accuracy with respect to NMI, ARI and the corresponding computational

time in seconds for the real datasets.

Algorithms

i-Div i-Div Spectral Kernel Single Kernel. density HDDC

Clu-D Clu-M Clust. k-means Link. MDDC Peaks

Datasets NMI/ARI

CMU 0.79/0.51 0.76/0.43 0.8/0.52 0.65/0.37 0.71/0.36 0.23/0.05 0.78/0.47 0.75/0.5

COIL 0.89/0.73 0.82/0.39 0.82/0.55 0.68/0.43 0.64/0.32 0.10/0.02 0.77/0.54 0.78/0.57

FASH. 0.57/0.39 0.54/0.21 0.54/0.37 0.42/0.28 0.4/0.24 0.01/0.00 0.51/0.28 0.54/0.36

ISOL. 0.77/0.49 0.6/0.11 0.74/0.51 0.62/0.32 0.73/0.42 0.36/0.14 0.71/0.42 0.76/0.52

MNIST 0.54/0.32 0.42/0.16 0.63/0.45 0.39/0.29 0.4/0.21 0.00/0.00 0.54/0.28 0.61/0.46

MOVE 0.6/0.32 0.6/0.25 0.62/0.33 0.53/0.26 0.54/0.23 0.57/0.27 0.61/0.29 0.62/0.34

OLIV. 0.88/0.66 0.86/0.6 0.84/0.53 0.65/0.26 0.84/0.52 0.45/0.03 0.86/0.56 0.86/0.57

OML. 0.52/0.31 0.45/0.23 0.45/0.24 0.37/0.19 0.38/0.29 0.06/0.01 0.5/0.08 0.48/0.27

PANC. 0.97/0.98 0.98/0.99 0.9/0.88 0.82/0.75 0.86/0.85 0.01/0.01 0.67/0.54 0.92/0.89

SEEDS 0.63/0.57 0.44/0.27 0.36/0.32 0.65/0.68 0.62/0.55 0.64/0.58 0.53/0.5 0.3/0.29

USPS 0.86/0.9 0.83/0.86 0.76/0.65 0.71/0.68 0.44/0.29 0.49/0.44 0/0 0.6/0.5

Aver. 0.73/0.56 0.66/0.41 0.68/0.49 0.59/0.41 0.59/0.39 0.26/0.14 0.59/0.36 0.66/0.48

Time in seconds

CMU 8.78 8.11 3.32 23.26 22.37 9.42 22.33 68.63

COIL 30.14 22.8 25.32 113.04 154.81 70.53 153.78 302.02

FASH. 35.34 25.56 179.53 19.81 12.89 358.38 12.98 14.3

ISOL. 6.6 9.45 26.33 4.05 1.25 126.28 1.34 26.84

MNIST 36.32 69.98 147.64 29.68 12.8 340.15 12.84 17.06

MOVE 0.36 0.15 0.58 0.17 0.01 5.39 0.02 0.5

OLIV. 2.12 1.87 1.24 12.68 5.14 9.21 5.16 28.18

OML. 7.85 7.72 3.03 44.88 28.05 3.40 28.07 56.92

PANC. 8.85 8.56 6.13 58.89 54.09 6.76 54.12 29.08

SEEDS 0.23 0.04 0.22 0.04 0 1.65 0.01 0.22

USPS 74.68 75.76 659.49 30.57 5.15 552.96 5.22 5.94

Aver. 19.21 14.44 82.36 30.31 26.03 134.92 26.06 49.02

ods in six datasets. Moreover i-DivClu-D is among the best performing methods

in all cases. This is also reflected in the fact that it achieves the highest average

NMI and ARI performance. The second best average performance with respect535

to both NMI and ARI is achieved by SC, followed by HDDC. HDDC achieves

the highest ARI score in four datasets while the Kernel k-means achieves the

27



●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

3 5 10 15 20 25 30
k

N
M

I
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

3 5 10 15 20 25 30
k

A
R

I

dataset

●

●

●

●

●

●

●

●

●

CMU

COIL

ISOLET

MOVE

OLIVETTI

OML

PANCAN

SEEDS

USPS

i−
D

iv
C

lu
−D

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

3 5 10 15 20 25 30
k

N
M

I

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

3 5 10 15 20 25 30
k

A
R

I

dataset

●

●

●

●

●

●

●

●

●

CMU

COIL

ISOLET

MOVE

OLIVETTI

OML

PANCAN

SEEDS

USPS

i−
D

iv
C

lu
−M

Figure 7: Clustering performance in terms of NMI and ARI for both proposed methods with

respect to the parameter k used to build the k-NN graph. Average values over k are illustrated

through the gray shaded line.

best performance on the SEEDS dataset. Kernel MDDC perform poorly in

most cases probably due to inappropriate representations by the default KPCA

parameters while also being the most computationally intensive method.540

The computational cost of both i-DivClu variants is on average lower, but in

the same order of magnitude, as that of competing algorithms. Computational

time clearly depends on the characteristics of each dataset however i-DivClu

offers a compromise between algorithms like SC whose running time is mainly

determined by the number of samples, and those like HDDC and densityPeaks545

whose running time is mainly affected by the dimensionality of the dataset.

4.3. Parameter Analysis

We conclude our empirical evaluation by studying the sensitivity of i-DivClu

to the choice k in the k-NN graph employed by Isomap. For many manifold

learning methods this parameter is critical as it can greatly affect the structure550

of the similarity graph. Using a large value for k can lead to connections being
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established between previously unconnected components of the graph, while a

low value may cause dense areas of points to be split to many small disconnected

components [14]. Our hypothesis is that the dbt-Isomap approach of ensuring

the k-NN graph is connected, jointly with the proposed splitting criteria for555

binary partitioning, render i-DivClu relatively robust to variations of this pa-

rameter. Figure 7 illustrates the performance of i-DivClu-D and i-DivClu-M on

the real-word datasets for different values of k. Overall a better performance is

attained using relatively small values for k (specifically in the range between 3

and 5). In most datasets increasing k causes a gradual performance degradation,560

but this trend is not monotonic.

5. Concluding Remarks

In this paper we extended earlier clustering approaches to deal with clusters

that are not linearly separable. The central idea is to discuss conditions under

which that a suitably defined one-dimensional representation is sufficient to565

partition the data without splitting any of the clusters. Applying this procedure

recursively provides a theoretically justified and efficient nonlinear clustering

methodology. The theoretical results show that the two clustering techniques

we propose can deal with both linear and nonlinear cases under assumptions

on the cluster structure. Our experimental results indicate that the proposed570

methods perform well on challenging simulated and real data sets compared to

well-established and state-of-the-art clustering algorithms.

In future work, we intend to explore the use of alternative dimension reduc-

tion methods, including the automatic determination of their parameters. We

are currently also working on applications to very large datasets and streaming575

data, which require development of iterative and approximate variants.
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