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Abstract

A common challenge in time series is to forecast data which suffers from
structural breaks or changepoints which complicate modeling. If we naively
forecast using one model for the whole data, the model will be incorrect and
thus our forecast error will be large. There are two common practices to
account for these changepoints when the goal is forecasting: 1) Pre-process
the data to identify the changepoints, incorporating them as dummy vari-
ables in modeling the whole data; 2) Include the changepoint estimation
into the model and forecast using the model fit to the last segment. This
article examines these two practices, using the computationally exact PELT
algorithm for changepoint detection, comparing and contrasting them in the
context of an important Software Engineering application.

1 Introduction

Structural breaks and changepoints occur in time series data arising from a vari-
ety of fields including; medicine', environment>3, psychology* and finance’®. A
key goal in many applications is to understand the dynamics of a time series to
produce accurate forecasts into the future. If there are changepoints within a time
series, and these changepoints are not accounted for, then the estimated dynam-
ics are distorted. This paper considers the different methods for accounting for
changepoints when forecasting time series and compares and contrasts them.
Forecasting in the presence of changepoints is considered by®® and in partic-
ular,” discuss and quantify the costs associated with ignoring changepoints when
forecasting in macroeconomic and financial settings. In contrast we consider how



the changepoints are taken into account and present the findings for two common
approaches.

Let us denote our time series data as {y; }i—1,.,, for which we make no as-
sumptions regarding the data generating process. Suppose we wish to forecast
future observations {y; }i—n+1.. n+n for some horizon h. Then, it is common to
first select a class of time series models, seemingly appropriate for the data, from
which forecasts will be generated. In what follows, the class of time series mod-
els we use for forecasting are seasonal Autoregressive Moving Average (ARMA)
models of known frequency f. We denote this model as ARMA(p, ¢) x (P, Q)
and write:
0(B)O(B/)
S(B)D(BT)"

where ¢(B) is the autoregressive operator and 0(B) is the moving average opera-
tor, each represented as a polynomial in the backwards shift operator given as

¢(B)=1-—¢1B—...—¢,B", 2)
9B)=14+6,B+...+6,B% 3)

vo=pt (1)

Similarly, ©(B’) and ®(B”) are the seasonal moving average and autoregressive
operators, respectively, given by

®B)=1-&,B —... - ,B" (4)
O(B)=1+06,B'+...+06,B/9. (5)

The noise process €; in equation (1) is i.i.d. Gaussian with mean zero and variance
o?. Here we are using a seasonal ARMA model rather than seasonal differenc-
ing to allow seasonal lags in both the AR and MA components. One could use
seasonal differencing but estimating the order of the differencing becomes chal-
lenging as the presence of changepoints makes any test invalid.

Once the class of time series models has been chosen, the order and parameters
are often estimated using all of the historical data. However, if the data are subject
to changes then using all of this data may not be appropriate.

If the data are subject to changepoints, then® propose to only use post-break
data to estimate the time series model used for forecasting. They estimate the
location of the break to be the most recent changepoint which is obtained using
a reversed CUSUM procedure . In further work,'! propose that if the goal is to
minimize the mean squared forecast error, then some pre-break data may be useful
for model fitting. This so called “trade off window” approach of!!, using both
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pre- and post-break data, is motivated by the trade off between bias and forecast
error variance. Provided that the changepoint is not too large (in magnitude), by
introducing more observations, they are reducing variance at the cost of possible
bias which may overall result in improved forecasts.

In this article we consider two approaches that are used in practice to forecast
in the presence of changepoints. The first approach pre-estimates the change-
points and, acknowledging that there may be more complex dynamics, uses the
changepoint locations as dummy variables in the model in equation (1), denoted
the pre-estimation approach. The second approach creates a changepoint model
where each segment is assumed to follow model (1) and uses only the model fit
from the final segment to produce forecasts, denoted the modeling approach.

In each of the approaches, in order to detect changepoints, we use a penal-
ized cost function approach which solves the constrained minimization problem
exactly. In such a setting, given a sequence of observations {y; }i—1,. . the aim is
to find the number of changes, m, and the associated changepoints, {Tj }jzlp,.,m,
which minimize:

m—+1
Z [C(y(Tj_1+1)ZTj)] + Bm (6)
j=1

The m changepoints cause the data to be split into m + 1 independent segments
such that segment j contains the observations y,_, y1).-,. We necessarily set 7o =
1 and 7,41 = n. In practice we impose a minimum segment length, g, such that
Tj+1 — T7; = g > 2. Naturally the length of the segment constrains the maximum
order of the model from (1). The first term in equation (6) is a cost function
for the segment y(,,_, y1).r;- The second term in equation (6) is a penalty which
guards against over fitting. Different methods can be adopted in order to minimize
equation (6). Here, we use the Pruned Exact Linear Time (PELT) algorithm 2, to
minimize equation (6) as it solves the constrained optimization problem exactly
using a computationally efficient strategy.

The structure of this article is as follows. In Sections 2 and 3, we describe the
pre-estimation and modeling approaches for forecasting in the presence of change-
points. In Section 4 we compare each of these methods to their non-changepoint
counterparts. Finally, in Section 5, we test our methods on two time series from a
Software Engineering problem.



2 Pre-Estimation Approach

Time series are often prone to changes in mean. However, if these changes are
not modeled, then the autocorrelation across time may be estimated incorrectly,
potentially indicating a long memory model when inappropriate . The seasonal
ARMA model in equation (1), relies on capturing the autocorrelation of the time
series appropriately. Often changepoint detection is part of the pre-processing of
data prior to further analysis. In this vein the locations of the changepoints them-
selves are not of particular interest and, just as with detecting outliers, changepoint
estimation is conducted to “clean” the data. Thus, the estimated changepoints are
entered as dummy regressors in the seasonal ARMA model (1).

2.1 The Model

Suppose we wish to forecast time series data {y; },—1 ., using the seasonal ARMA
model in equation (1). Prior to estimating this model, we first detect any changes
in mean. To do this, we take a penalized likelihood approach to changepoint de-
tection (6). In this setting, we replace the cost function C(-), in equation (6), with
twice the negative log-likelihood for a Gaussian distribution with common vari-
ance and segment specific mean. We estimate the global variance by the median
of the variances of a moving window of size 30. Using the median decreases the
effect of the increased variances in windows containing the mean changes. We use
a window of size 30 as this strikes a balance between wanting a large window size
to avoid too much variance in the estimation and wanting a small window size to
avoid the inclusion of changepoints within too many windows. We should be clear
that we do not assume this is an appropriate model for the data, but is a “broad
brush” to identify large changes in mean and is the approach that practitioners
often take in practice.

The second component of equation (6) is the penalty used to prevent over-
fitting to the mean of the data. We are assuming that {y; };,—1__, are independent
Gaussian observations. However, in a time series setting our data will contain
autocorrelation. Despite this,'* demonstrate that minimizing equation (6) is still
effective at locating changes in mean but we need to inflate our penalty to avoid
overfitting.

Having minimized equation (6) using a Gaussian cost function and an inflated
penalty, the result is m’ changepoint locations, {7;},=1 ., estimating changes
in the mean level of the time series. Using these m' changepoint locations, we can



produce (m’ + 1) segment indicators:

j { 1 iij_1<t§Tj,

_ . /
U= 0 otherwise. forj=2,...,m + 1. (7)

Our data can now be modeled using the following linear relationship:

m/+1 m/+1
’ ., 0(B)O(BY)
Yp = v + 1 = 1507 + €t, (8)
21T = 2 G
where v = (vy,..., v, 11) are the segment indicators and the remaining parame-

ters are as in equation (1). See!® for consideration of this model.

In equation (8), {/4;} j=1,....m/+1 are the size of the mean change to be estimated.
In order to produce forecasts, we estimate the model (8) using all of the historical
data. When the model is estimated, it is preferable to minimize the sum of squared
values ¢;, and not the r;, as this takes into account the estimation of the mean
for each segment. Alternatively, it is also common practice to first estimate the
changepoint model and then estimate the seasonal ARMA model on the residuals.
This is a similar approach, however the estimates of the seasonal ARMA structure
are potentially biased by mis-estimation of the overall mean. Thus, we do not
consider this approach further. In either case, the estimated model can then be
used to produce forecasts assuming no changes occur in the forecast period.

In Section 4 we see how the pre-estimation approach behaves in a simulation
study. In the following section, we describe an alternative approach, incorporating
the changepoint estimation into the seasonal ARMA model.

3 Modeling Approach

In the approach described in Section 2, the seasonal ARMA model (1) is estimated
(via maximum likelihood estimates) using all of the historical data {y;},—; ., and
is assumed not to vary. In practice, the parameters of this model may change over
time. In such a case, we may not want to use all of the historical data to estimate
the model. Here, we outline an alternative approach, which instead estimates the
changepoints and the varying time series structure together.

3.1 The Model

Suppose again that we wish to forecast time series data {y; };—1,., using the sea-
sonal ARMA model in equation (1). However, we do not necessarily want to



use all of the historical data for forecasting as we believe that the model struc-
ture varies. Hence, in order to determine which observations should be used to
estimate the model in equation (1), we propose to use a cost function, C(-), in
equation (6), which is based upon the log-likelihood of a seasonal ARMA model.
That is, we use the cost function C(y(-,_,+1).,) = —20(y1:n;0), Where £(-) is the
log-likelihood of a seasonal Autoregressive Moving Average (ARMA) model.

It should be noted that in the above framework, we are allowing both the order
of the ARMA model to change, and the associated coefficients. In addition to this,
we are also allowing for a change in mean level to occur by the inclusion of x; in
equation (1).

Once we have minimized equation (6), we forecast from the model in the last
segment, using the data {y; }i—.,, .., where 7, is the final changepoint location
detected.

There are several practical considerations when applying this approach which
we discuss in the following section.

3.2 Discussion

In the previous section we outlined an approach which only uses the most recent
segment of the data for model estimation. Consequently, once a changepoint has
occurred, we are deeming pre-change data uninformative. It is therefore important
to carefully consider the choice of minimum segment length, g, in equation (6).

It important that the minimum segment length is not set so small such we
are producing out-of-sample forecasts based only on a small amount of data. In
particular, if the data has seasonality, then we must allow enough observations in a
segment to estimate this seasonality. Although, the longer the minimum segment
length, the more time we have to wait to detect a change. Consequently, we could
be fitting an incorrect model to the last segment of the data therefore introducing
bias into our model.

The combination of penalty and minimum segment length can have a large
influence on the detected changepoint locations and hence the window we are
using to estimate our forecasting model. The combination of these two allows us
to control the trade off between the bias and variance of our forecasts. As such, in
practice, one could compare, or combine, multiple forecasting models based upon
the different segmentations obtained when changing the combination of minimum
segment length and penalty. However, this is beyond the scope of this paper.

A further consideration is the number of parameters we are fitting. This is
unknown a priori as both approaches use model selection to identify the order of
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the model. However, if there is a changepoint present then the modeling approach
is likely to estimate more parameters than the pre-estimation approach. This is
because the modelling approach fits a full ARMA model either side of the change,
whereas the pre-estimation only adds a single extra parameter for the post-change
mean.

The following section considers the performance of the pre-estimation and
modeling approaches in a simulation study.

4 Simulation Study

In this simulation study we test the performance of the pre-estimation and model-
ing approaches in forecasting. Specifically, we compare the following approaches:

e MO (naive): A (seasonal) ARMA model estimated using data points [1, n];

e M1 (pre-estimation): A (seasonal) ARMA model with regressors, each of
which represent a mean level, which is estimated using data points [1, n], as
described in Section 2;

e M2 (modeling): A (seasonal) ARMA model which is estimated using data
points [7,,, n], as described in Section 3.

In each approach, we estimate the seasonal ARMA model (1) using the auto.arima
function from the forecast package ' available for R!7. In applying the auto.arima
function we use the default settings except that we do not allow any of the param-
eters p, ¢, P or () in equation (1) to exceed three.

To detect changes in mean for approach M1 we use the cpt . mean function
from the changepoint package'® in R. This function implements the PELT
algorithm ! for a change in mean under the assumption of Gaussian data. We set
a minimum segment length of g = 2. We use a scaled BIC penalty ! (6logn) to
account for potential autocorrelation. Note that the cpt . mean function is written
in such a way that it assumes that the constant variance across the data is equal
to one. As such, we pre-scale the data to have variance one prior to detecting
changes in mean.

For approach M2, the piecewise seasonal ARMA model is again fit using the
auto.arima function. The penalty we use in equation (6) is the Modified Bayes
Information Criteria (MBIC)?°. The MBIC penalty accounts for the lengths of the
segments and encourages changes to be distributed evenly across the dataset. This



is useful for forecasting as we want to discourage small segment lengths. We set a
minimum segment length of g = 8§, to ensure enough observations to fit an ARMA
process.

We fit the models MO, M1 and M2 to a range of generative models detailed
below. In each instance we simulate 500 replications, in which the error process
is given by ¢; ~ N(0, 1), and report a selection of commonly used in-sample and
out-of-sample performance metrics:

e Mean Error (ME);

e Root Mean Squared Error (RMSE);
Mean Absolute Error (MAE);

Mean Percentage Error (MPE);

Mean Absolute Scaled Error (MASE)';

All results are reported in Table 1 for the training (in-sample) set and in Table 2
for the test (out-of-sample) set. The test set is four observations and uses a rolling
one-step ahead forecast.

The following generated models are used.

(a) An AR(2) model with no seasonal components. This scenario is de-
signed to asses the method when there are no changepoints and hence the most
appropriate model is M0. Specifically, for this model, we simulate from

Y, =0.8Y,_1 —0.2Y,_5 + ¢, 1<t <512 )

For scenario (a), M1 produces an overall better in-sample fit (Table 1) than the
other two models. This over-fitting of the data is due to the presence of autocor-
relation which can induce features that resemble changes in mean when indepen-
dence is assumed?. Figure 1 shows a single realization from scenario (a) along
with incorrectly detected changes in mean. Despite inflating the penalty to ac-
count for some autocorrelation, changes in mean are still detected. Consequently,
M1 over-fits to the level of the time series, and as a result, will miss-specify the
autoregressive parameters of the model.

Tables 1 and 2 for MO and M2 are the same as no changes are detected once the
autocorrelation is modeled. This suggests a low false positive rate for detecting

'MASE calculation is scaled using MAE of training set naive forecasts for non-seasonal time
series, training set seasonal naive forecasts for seasonal time series and training set mean forecasts
for non-time series data'°.



Figure 1: A realization {Y;} from scenario (a) with detected changes in mean.
We can see that although there are no ‘true’ changes in mean, the autocorrelation
causes periods of lower and higher mean values.

changes in the ARMA model and implies that very few changes are detected. For
the test set, MO and M2 produce better out-of-sample forecasts, which confirms
the over fitting of M1.

(b) An AR(2) model with no seasonal components and a change in mean
level. This scenario is designed to asses the approaches when there are no changes
in AR structure but there is a change in mean. This scenario should favour M1, if
a single mean is estimated. However M2 could also perform well despite the AR
structure being estimated differently either side of the mean change. Specifically,
for this model, we simulate from

BYi 1 —0.2Y— <t<
Yt:{OSY;‘/l 0.2Y, o+ ¢ 1<t <256 (10)

24+08Y_; —0.2Y, o +¢ 256 <t <512

For scenario (b), we can see from the results in Table 1 that approach M1
produces a better fit to the training set overall, this is expected as it is the most
appropriate method to use for the scenario. Out-of-sample however, the results
in Table 2 show that MO produces the best forecasts with M2 producing similar
values.

When we compare M1 to M2, overall M2 produces better forecasts. This
suggests that M2 is detecting the change in mean more effectively. If it were
not, we would expect M1 to outperform M2 because M1 would be estimating the
ARMA model using all of data. M2 is more capable of detecting the true location
of the change in mean because the cost function used in equation (6) is true to the
data generating process.



Overall, the results in Tables 1 and 2 for this scenario suggest that forecasts
with the correct model are not always more accurate than forecasts from an incor-
rect model. This confirms previous similar findings in!.

(c) A piecewise AR(2) model with changing coefficients. The scenario
should favour the approach in M2. We simulate from

(1)

v — 0.8Y;_; —0.2Y, 5 +¢ 1<t<256
7] 0.5 — 0.1V, 0 46 256 <t <512

As expected M2 produces a better in-sample fit to the data (Table 1). The
in-sample results for MO and M1 differ, suggesting that M1 is detecting changes
in mean as a consequence of the autocovariance. The almost zero mean error for
model M2 suggests that the changepoints are being detected with very high accu-
racy. Overall, the results in Tables 1 and 2, for the training and test set respectively,
support the use of model M2.

(d) A piecewise AR model with changing AR order and a short segment
at the beginning of the time series. Again model M2 should perform the best for
this scenario. We simulate from

Y, — { 0.1Y,_; —0.6Y,_o —03Y,5+¢ 1<t<50 (12)

0.3Y;1 + & 01 <t <512

In this scenario both the order and the coefficients of the AR model change
and thus M2 can capture this. We can see from the results in Tables 1 and 2,
that as expected, M2 produces the best in-sample results, and it also achieves the
best out-of-sample forecasts. Once again, the very small mean error suggests that
the changepoints are being detected with high accuracy. Model M1 produces the
worst out-of-sample forecasts, likely due to the over fitting of the changepoint
process.

(e) A piecewise AR model with changing AR order and a short segment
at the end of the time series. This is subtly different from scenario (d) as the
changepoint is towards the end of the series thus may affect the forecasts more
substantially. Whilst we expect M2 to be the best model again, it will be interest-
ing to see how the other models behave. For this model, we simulate from

y, — { 0.1Y,_; —0.6Y;_9 —0.3Y, 5 +¢ 1<t<462 (13)

0.3Y_1 + & 462 <t <512

Table 2 shows that M2 produces better out-of-sample forecasts. However, M1
produces the best in-sample forecasts due to over-fitting. Table 2 shows that the
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results are similar to scenario (d) except for MAPE which is considerably higher
for model (e) than in model (d). In addition, the MPE is very poor for M2. This is
expected because scenario (d) has a longer segment at the end of the data which
will produce a better model fit with less variability and thus improved forecasts.
This suggests that M2 is successfully detecting the changepoint towards the end
of the data. We would expect, that as the length of the final segment becomes
smaller, forecasts will become less accurate for approach M2 as the time series
model is being estimated with increasingly less data. However, a point will be
reached such that the final change is too close to the end of the data to detect, at
which point M2 will perform similarly to MO.

(f) A piecewise seasonal ARMA (2,0)(1,0) model, frequency 4, whose sea-
sonal component has a change in coefficients. As the seasonal component is
changing the most appropriate model is M2. Specifically, for this model, we sim-
ulate from

y, — { 0.9Y, 1 —0.2Y, 5 —09Y, 4 +¢ 1<t<256 (14)

09Y,_1 —0.2Y; 2 —0.2Y;_4 + ¢ 256 <t <512

For this scenario, we can see again from Tables 1 and 2 that approach M2
produces the best results for both in-sample and out-of-sample forecasts. Both
MO and M1 produce very poor results in comparison to M2. This suggests that
M2 is accurately detecting the changes in seasonal coefficient.

(g) A piecewise seasonal AR model whose seasonal component has a change
in order, i.e. an ARMA(2,0)(2,0) changes to an ARMA(2,0)(1,0). Specifically,
for this model, we simulate from

Y, — { 09Y;1—-02Y, 2 —-09Y,4, —08Y, s +¢ 1<1t<256 (15)

0.9}/15_1 — 0.2Yt_2 — 0.9}/15_4 + € 256 S t S 512

In scenario (g) the seasonality component of the model exhibits a change in
order. Approach M2 captures this the best in-sample and out-of-sample, with MO
producing the poorest in-sample results. This demonstrates, that as the nature of
the changes become more complex, approach M2 is best at capturing them. This
overall results in improved forecasts.

(h) A piecewise ARMA model which changes from an ARMA(1,0) to an
ARMA(1,1). For this scenario, a moving average term is introduced in the second
segment of the time series. We specifically simulate from

<t <
Yt:{ 0.3Yi1 + € 1<t<300 (16)

0.3Y;1 +€+0.7¢-1 300 <t <512
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Approach M2 best captures the introduction of a moving average term in the
second segment of time series realised from scenario (h). This is most clear in-
sample (Table 1). This again illustrates that as the nature of the change becomes
more complex, approach M2 performs best.

Overall we can conclude that the inclusion of changepoints in the modeling
stages of forecasting, i.e. approach M2, produces better results. In particular,
when the time series exhibits changes in its seasonal structure, or changes in
AR order, then estimating the model using the final segment of the data can out-
perform estimation based upon the entire data set.

At times, estimating the model using all the data, whilst including regressors
for changes in the mean level, can over fit the data. However, as these changes
begin to occur in higher order structures of the time series, for example in scenario
(g), the inclusion of these regressors produces better out-of-sample forecasts.

In the following, we consider forecasting for a software engineering problem
using each of the approaches.

S Application to Software Run-Time Prediction

A recent study found that website sales fall by roughly 7% for each extra 0.1s
a page takes to display??. Thus accurately measuring and predicting software
performance is a vital task for software engineers. However, the ever-increasing
levels of non-determinism in modern hardware and software mean that many pro-
grams have unpredictable and surprising performance patterns that undermine cur-
rent benchmarking performance methodologies.

One surprising aspect of software run-times is that they are subject to change-
points. We consider here two examples from?* which are depicted in Figure 2.
This experiment controlled the environment for the benchmark to ensure exact
replication across tests. The data recorded is the time taken to run the bench-
mark in seconds across 2000 replications. It is clear from Figure 2 that whilst
very different in manifestation, both benchmark run times contain changepoints
which will affect a naive forecast. Typically, hundreds of models and forecasts
would be produced, and it would be impractical to inspect each one. Thus we
have intentionally picked two benchmarks with different dynamics to assess.

We will compare the performance of approaches M0, M1 and M2 on these two
runtime processes whose dynamics are very different. To do this, we perform an
extending window estimation. To begin, we fix an initial estimation period from
the iteration 1 until iteration 1950. Then we forecast 1 step ahead and calculate
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ME RMSE MAE MPE MAPE MASE
Scenario (a)
MO | 0.0016 1.0060 0.8037 47.0690 346.8433 0.9177
M1 | -0.0000 0.9914 0.7916 49.0590  336.7375 0.9040
M2 0.0016 1.0060 0.8037 47.0690  346.8433 0.9177
Scenario (b)
MO | 0.0333 1.0255 0.8175 -1.3018  264.2667 0.9309
M1 | -0.0029 1.0002 0.7984 -13.5072  250.8929 0.9089
M2 | -0.0008 1.0017 0.7985 -12.6762  203.3246 0.9101
Scenario (¢)
MO | 0.0003 1.0106 0.8055 52.8808  296.6232 0.8728
M1 0.0017 0.9979 0.7951 39.7553  301.7013 0.8617
M2 | -0.0000 0.9966 0.7938 50.4126  263.5910 0.8392
Scenario (d)
MO | 0.0013 1.0400 0.8285 89.0696  293.5366 0.7906
M1 | -0.0008 1.0274 0.8186 86.7520  299.5224 0.7812
M2 0.0001 1.0046 0.8034 70.5495  305.7549 0.8053
Scenario (e)
MO | -0.0001 1.0206 0.8124 -10.0230 665.4235 0.5624
M1 | -0.0007 1.0113 0.8056 -31.3873  679.9682 0.5569
M2 0.0037 1.0374 0.8261 -191.9323  604.2020 0.5932
Scenario (f)
MO | -0.0019 1.7558 1.3751 6461.9811 7115.0305 0.5908
M1 | -0.0011 1.7444 1.3670 6464.0948 7118.3103 0.5855
M2 0.0167 1.2740 1.0198 41.7718  239.5152 0.8775
Scenario (g)
MO | 0.0030 2.3865 1.8896 34,7642  265.1804 0.5545
M1 | -0.0003 2.2755 1.7986 33.3716  255.8116 0.5286
M2 | -0.0087 1.8575 1.4690 34.4501 191.2260 0.4271
Scenario (h)
MO | -0.0015 1.0671 0.8522  692.5047  958.4427 0.8537
M1 0.0003 1.0481 0.8368 625.4978 922.4785 0.8384
M2 0.0020 1.0011 0.8001 86.2657 318.5515 0.7989

Table 1: Mean Error, Root Mean Square Error, Mean Absolute Error, Mean Per-
centage Error, and Mean Absolute Square Error, to four decimal places, for the
in-sample forecasts for 500 realizations of scenarios (a)-(h) using approaches MO,
M1 and M2.
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ME RMSE MAE MPE MAPE MASE
Scenario (a)
MO | -0.1563 1.1671 1.0282 113.3594 169.0906 1.1740
M1 | -0.2580 1.3524 1.1853 130.0618 184.9175 1.3521
M2 | -0.1563 1.1671 1.0282 113.3594 169.0906 1.1740
Scenario (b)
MO | -0.1769 1.1521 1.0119 -17.0005 221.3590 1.1517
M1 | -0.2434 13917 1.2360 -202.3013 456.4171 1.4062
M2 | -0.1411 1.1583 1.0183  -17.8884 206.2740 1.1602
Scenario (¢)
MO | 0.1661 1.0751 0.9265 68.4680 188.4346 1.0055
M1 | 01211 1.1043 0.9442 110.8610 196.6434 1.0249
M2 | 0.1711 1.0643 0.9143 68.0920 156.3316 0.9695
Scenario (d)
MO | 0.0313 09381 0.7881 102.6425 160.8289 0.7535
M1 | 0.0325 09767 0.8260 129.5255 207.3461 0.7888
M2 | 0.0354 0.9100 0.7644 76.8555 133.8241 0.7679
Scenario (e)
MO | -0.0711 1.1381 0.9713 90.1890 216.4954 0.6714
M1 | -0.1162 1.1723 1.0029 100.3486 244.7225 0.6941
M2 | -0.0752 1.1093 0.9436 86.3775 201.4708 0.6774
Scenario (f)
MO | -0.0669 1.8831 1.6579 117.3606 278.6023 0.7133
M1 | -0.1936 2.1786 19157 178.7814 263.3264 0.8164
M2 | -0.0197 1.7353 1.5182 90.9365 194.1363 1.3165
Scenario (g)
MO | -0.1240 2.7002 2.3515 81.9197 142.3822 0.6852
M1 | 0.0237 6.0104 5.3974 -54.1455 460.6030 1.5817
M2 | -0.2269 2.1403 1.8835 61.0397 185.1860 0.5466
Scenario (h)
MO | -0.0771 1.2732 1.1167 103.9533 112.0250 1.1220
M1 | -0.1899 13714 1.2174 79.4708 145.6388 1.2230
M2 | -0.0983 1.2607 1.1050 109.0164 127.0335 1.1112

Table 2: Mean Error, Root Mean Square Error, Mean Absolute Error, Mean Per-
centage Error and Mean Absolute Square Error, to four decimal places, for the
out-of-sample forecasts for 500 realizations of scenarios (a)-(h) using approaches
MO, M1 and M2.
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Figure 2: Runtime in seconds for the specified; benchmark, virtual machine, ma-
chine, across 2000 iterations.

the mean error of the forecast. Having done this, we extend the estimation period
by one time step and again forecast one step ahead and calculate the mean error.
We iterate this procedure up until iteration 2000 to produce an expanding window
forecast for runtimes over 50 windows.

Figure 3 shows the results for the expanding window forecasts for the Fannkuch
Redux, Hotspot, Linux,799 benchmark. This data set looks as though it may have
a constant second order structure and simply be subject to changes in mean be-
haviour, thus we would expect M1 to be preferred. Each of the models have a
similar average mean error for the forecasts. However we can clearly see that
model M1 is not performing as well as MO or M2 as it has higher variability. Note
that within the window period there is a changepoint around 1970. Model M1
correctly finds this large change, the larger error instead comes from the inability
to accurately estimate the post-change mean. It takes around 12 observations be-
fore the post-change mean is consistently estimated - recall that M1 does not take
the autocorrelation into account when estimating the mean. In contrast model MO
adapts to the changepoint quickly and M2 is restricted by the minimum segment
length as expected.

For the second example, Spectral Norm, LuaJIT, Linux479o, there appear to be
fewer changes in mean, a potential changing second order structure, and a longer
segment at the end with no changes during the forecast window. Thus we may
expect M2 to be preferred. Figure 4 shows the results for the expanding window
forecasts. Models MO has the smallest mean error but the largest variance. The
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Figure 3: Fannkuch Redux, Hotspot, Linux,;9,: The Mean Error for a one
step ahead forecast with model estimation period starting at iteration 1950 and
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window Mean Errors of the forecast for models MO, M1 and M2 respectively, and
figure (d) compares the Mean Errors for each of the models.
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mean error does not follow a Normal distribution as it exhibits strong left-skew.
In contrast whilst model M1 and M2 have larger negative error, they do appear to
be more symmetric with M2 slightly more symmetric than M1, indicating a better
model fit.

6 Discussion and Conclusion

In this article we have assessed two commonly used approaches to forecasting
which incorporate changepoints. We have shown that these two approaches have
different strengths depending on the dynamics of the data. In addition to this,
we have shown that forecasts can be based on less historical data, whilst still
producing reasonable forecasts. As data is becomingly large scale, the need for
reducing the amount of data used to fit models is becoming increasingly important,
and questions such as “how much of my data is relevant for forecasting” can be
potentially answered using changepoint methodology.

The two modeling frameworks presented here are very flexible. We can pro-
duce variants on our models by altering the minimum segment length and penalty
choice. The choice of minimum segment length and penalty together, give us
control over the trade off between bias and forecast error variance, especially in
approach M1. This methodology is not restricted to the models considered here
and can be adapted to other time series models provided we can define the cost
function for a segment. For example, the seasonal ARMA model could be re-
placed with an exponential smoothing or GARCH model.

It may be the case, that in practice, the cost function for a segment is harder to
define. In such a case, the M1 approach could instead be used in a post-processing
step. To do this, the methodology can be applied to residual errors of the time
series model from MO, such an approach is compared from a model fit perspective
in.

Finally, we applied our methodology to forecasting software runtimes and saw
that different benchmarks required different approaches. It would be interesting to
investigate this further to see if using the benchmark attributes, as identified in??,
as a covariate indicates which approach performs best.
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