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Abstract Grazing by large herbivorous mammals is still a structuring force in tropical grassy 19 

ecosystems, and cattle grazing is one of the main economic activities carried out in these 20 

ecosystems in modern times. Therefore, understanding the impacts of cattle grazing removal on 21 

biodiversity may be a key step for conservation of this ecosystem. Here, we studied the 22 

successional trajectory of dung beetle communities in a tropical grassy ecosystem after cattle 23 

removal. For this, we assessed the patterns of dung beetle taxonomic and functional diversity of 24 

14 natural grasslands with distinct cattle grazing removal ages (from 3 months to 22 years) along 25 

a chronosequence, applying the space-for-time substitution method. Our results show a strong 26 

decrease in dung beetle abundance (93 times) and species richness (6 times) in the first ten years 27 

of cattle removal. However, after ten years there is an increase in dung beetle abundance (73 28 

times) and species richness (5 times). Taxonomic composition was also influenced by cattle 29 

removal time demonstrating the importance of cattle in the structuring of dung beetle 30 

communities in natural grasslands. In contrast, functional composition and diversity were not 31 

affected by cattle grazing removal, indicating these metrics are less sensitive to cattle absence 32 

than taxonomic diversity and composition. Our results provide evidence that cattle grazing 33 

removal, at least in the short term (10 years), may be an inefficient management tool for 34 

restoration and conservation of tropical grassy ecosystems. However, we highlight the need to 35 

investigate the reintroduction of cattle grazing after different removal times to provide 36 

complimentary information to livestock management able to integrate human use and 37 

conservation of tropical grassy ecosystems.  38 

 39 

Key-words: Biodiversity conservation · Chronosequence · Functional diversity · Grasslands 40 

restoration · Livestock management · Scarabaeinae. 41 
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Introduction  42 

  43 

Livestock farming, the largest land-use sector on Earth, occupies more than 30% of the 44 

planet's continental surface (FAO 2012). In tropical grassy ecosystems (e.g. savannas and 45 

grasslands) cattle grazing is a traditional agricultural activity, and one of the main economic 46 

activities carried out in these ecosystems (Parr et al. 2014). Grazing by large mammalian 47 

herbivores has historically and prehistorically been a major structuring force in tropical grassy 48 

ecosystems (Bakker et al. 2015; Veldmann et al. 2015). These ecosystems evolved with and 49 

depended on herbivory, heavy hoof action, nitrogen deposits, and decomposing carcasses of large 50 

herbivores (Bond and Parr 2010), directly influencing the biodiversity and ecosystem services 51 

(van Klink et al. 2015; Dettenmaier et al. 2017). 52 

There is an increasing debate about the effects of cattle grazing in biodiversity of tropical 53 

grassy ecosystems (Parr et al. 2014; Veldmann et al. 2015; Overbeck et al. 2015; Lehmann and 54 

Parr 2016).  Livestock farming is considered the main driver of natural habitat loss worldwide 55 

(Alkemade et al. 2013; Herrero and Thornton 2013). The negative effects of livestock on 56 

biodiversity are related to the conversion of native to exotic vegetation, grazing intensity, the 57 

replacement of wild grazers by domestic animals and land management (e.g., use of fertilizers 58 

and veterinary drugs) (Alkemade et al. 2013; Lehmann and Parr 2016). In this context, some 59 

studies have reported that grazing exclusion throughout the world prevents ecosystem 60 

degradation and restores degraded areas (Kröpfl et al. 2013; Al-Rowaily et al. 2015; Listopad et 61 

al. 2018). Although the role of livestock farming as a global agent for the degradation of the 62 

ecosystems is recognized (Parr et al. 2014; Overbeck et al. 2015; Veldmann et al. 2015; Lehmann 63 

and Parr 2016), cattle grazing in suitable density and frequency may be beneficial for the 64 

biodiversity of grasslands ecosystems (Overbeck et al. 2007; Correa et al. 2019a). Cattle grazing 65 
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affects vegetation heterogeneity, plant succession and forage-plant growth control (Olff and 66 

Ritchie 1998; Adler et al. 2001), maintaining or restoring grasslands that would otherwise be 67 

converted into other land uses (Veldmann et al. 2015). Therefore, in some native grassy 68 

ecosystems, livestock grazing has been used as a strategy to improve biodiversity conservation 69 

(Verdú et al. 2007; Fynn et al. 2016; Törok et al. 2016). For example, in parts of Europe (Pykälä 70 

2003, Törok et al. 2016), African savannas (Fynn et al. 2016) and in Mexican grasslands (Verdú 71 

et al. 2007) low-intensity domestic livestock grazing is being used as an important factor to 72 

maintain and restore biodiversity (Veldmann et al. 2015). Indeed, both grazing and long-term 73 

cessation can differently affect various components of grassland biota (Foster et al. 2014; van 74 

Klink et al. 2015). Therefore, it is essential to understand the successional trajectory of the biotic 75 

communities along a gradient of exclusion and/or inclusion of cattle grazing, to incorporate 76 

conservation decisions into land management of tropical grassy ecosystems.  77 

In this sense, the importance of long-term time series (more than 20 years) for analyzing 78 

the effects of anthropic actions is widely recognized (Bakker et al. 1996; Rees et al. 2001; Peco et 79 

al. 2006), given that ecological processes that lead to functional and biodiversity changes in 80 

grassland ecosystems are generally long-term (Peco et al. 2006, 2017; Listopad et al. 2018). 81 

However, studies of the successional trajectory of biotic communities in tropical grassy 82 

ecosystems are scarce (see Cava et al. 2018), and the impacts of inclusion or exclusion of cattle 83 

grazing as a tool for ecosystem conservation are poorly known. Therefore, studies on the 84 

response of animal and/or plant groups that provide important services to the ecosystem are 85 

necessary to supply baselines for conservation policies, which may help to protect tropical grassy 86 

ecosystems around the world (Correa et al. 2019b). In this way, understanding the dynamics of 87 

these ecosystems can also be an important strategy for developing measures to restore 88 

anthropogenic landscapes (Bond and Parr 2010; Veldmann et al. 2015; Cava et al. 2018).  89 
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Here, we studied the successional trajectory of dung beetle communities in a tropical 90 

grassy ecosystem after cattle grazing exclusion. We choose dung beetles (Coleoptera: 91 

Scarabaeidae) because they are used across the globe as indicators of environmental changes 92 

(Nichols et al. 2007) and exhibit wide variation in life history strategies that are reflected in easily 93 

measurable functional traits (Halffter and Edmonds 1982; Hanski and Cambefort 1991). 94 

Therefore, they are viable models for functional diversity studies aimed at understanding the 95 

effects of anthropogenic actions on ecosystem processes (Barrágan et al. 2011; Audino et al. 96 

2014, 2017; Beiroz et al. 2018). In addition, dung beetles perform important ecological functions 97 

in grassland ecosystems, such as: dung removal, nutrient cycling, improving soil fertility, 98 

secondary seed dispersion and fly and gastrointestinal parasite control (see Nichols et al. 2008). 99 

We evaluated the patterns of dung beetle taxonomic and functional diversity along a 100 

chronosequence of natural grasslands with different cattle grazing removal ages (from 3 months 101 

to 22 years), to answer the following questions: (1) Do species richness, number of individuals, 102 

diversity, biomass and functional diversity decrease with cattle grazing removal age? (2) Are 103 

dung beetle taxonomic and functional composition influenced by time of cattle grazing removal? 104 

We expect dung beetle richness, abundance, diversity and biomass, and functional diversity to 105 

decrease with time since cattle grazing exclusion as a result of a reduction in resource availability 106 

(Tonelli et al. 2018). We expect changes in dung beetle taxonomic and functional composition 107 

because the grazing exclusion implies changes in spatial heterogeneity of vegetation (Wallis-de-108 

Vries et al. 2007), also modifying the local microclimate conditions (Edmondson et al. 2016; 109 

Ozkan and Gokbulak, 2017) and favoring colonization by a number of habitat specialist dung 110 

beetle species (Larsen 2012). 111 

 112 
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Material and Methods 113 

Study area 114 

 This study was conducted in the Aquidauana municipality, Mato Grosso do Sul state, 115 

Brazil (19°54'36 "S, 55°47'54" W), covering the southern part of Brazilian Pantanal sub region of 116 

Rio Negro (Padovani 2010). Native vegetation in the region is a complex mixture of aquatic, 117 

savanna, and forest formations that are strongly influenced by annual and multi-annual flood 118 

cycles (Pott and Pott 2009). The Pantanal is considered the largest Neotropical seasonal 119 

freshwater wetland on Earth, with a vast area of grassland plains often used for extensive cattle 120 

ranching (Eaton et al. 2017). Therefore, livestock production has been the main economic activity 121 

in this ecosystem, where approximately 80% of the land is used as native and introduced pastures 122 

(Eaton et al. 2011).   123 

 According to the Köppen classification (Alvares et al. 2014), the regional climate is Aw 124 

(tropical hot-wet), with a rainy summer and dry winter. The annual average temperature is 26°C 125 

(12-40°C), with the highest average temperature occurring between September and October, and 126 

the annual precipitation ranging from 1,200 to 1,300 mm (Cristaldo et al. 2017).  127 

 128 

Sampling sites 129 

 The studied area has been historically influenced by livestock farming activities, where 130 

we sampled dung beetles in 14 areas of natural grasslands that had been used for cattle grazing in 131 

the past. The vegetation of these areas is dominated by a ground layer composed of natural 132 

grasses (e.g. Andropogon spp. and Axonopus spp.), herbs, and small shrubs; and predominantly 133 

sandy soil (>70% sand). These areas present a gradient of different ages since cattle were 134 

removed: 0.4 year (3 months without cattle grazing), 1 year, 2 years, 3 years, 5 years, 6 years, 7 135 

years, 10 years, three areas with 20 years and three areas with 22 years. Unfortunately, we did not 136 
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find any area that had a cattle removal period between 10 - 20 years in the studied landscape. We 137 

also sampled dung beetles in ten areas of natural grasslands that were being used for cattle 138 

grazing (0.8 – 1.0 animals/ha) at the time of sampling, as the reference sites. All sites were 139 

separated by a distance varying from 0.5 – 80 Km, to ensure independence of the samples (da 140 

Silva and Hernández 2015). The landscape surrounding the sampling sites is dominated by 141 

extensive exotic pasturelands (Urochloa spp.) and patches of natural savannas (Correa et al. 142 

2016a), with the presence of wild animals typical of Pantanal and Cerrado biomes (eg., anteaters, 143 

armadillos, deer, wolves, tapirs, rodents and others) (Eaton et al. 2017).  144 

 145 

Experimental design 146 

 For this study, we applied the space-for-time substitution method (SFT). This method is 147 

widely applied in ecological modelling which contemporary spatial patterns of biodiversity are 148 

used to model temporal processes and project changes through time, either into the future or into 149 

the past (Blois et al. 2013; Wogan and Wang 2018; Damgaard 2019). In order to apply SFT, it is 150 

important that the sites are ordered into a sequence that reflects the stages of development, for 151 

example, the successional age (Blois et al. 2013; França et al. 2016). Thus, it is essential to know 152 

the history of the sites to understand if the process is constant or stationary; that is, the random 153 

variation of the environment around a fixed mean. In this case, spatial regression models may be 154 

used for studying interspecific interactions and successional processes (Damgaard 2019). As 155 

such, in our study, this method has been used to evaluate dung beetle diversity in restorating 156 

chronosequence in tropical forests (see Audino et al. 2014; Derhé et al. 2016)     157 

 158 
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Dung beetle sampling and identification 159 

 Sampling was conducted during the rainy season, in January-February 2016. The rainy 160 

season is the most appropriate period to sample due to increased dung beetle richness and 161 

functional diversity in Brazilian pastures (Correa et al. 2018). We used pitfall traps baited with 162 

~40 g of carrion (decaying beef) or cattle dung (40 g) in order to ensure an accurate 163 

representation of the local dung beetle functional and trophic groups (Correa et al. 2016b). The 164 

traps consisted of a plastic container (15 cm diameter and 9 cm deep), installed at ground level, 165 

which were partly filled with 250 mL of water, salt and detergent, and a plastic lid placed above 166 

ground to protect from rain and sun. The baits were placed in plastic containers (50 mL) at the 167 

center of each trap using a wire as bait holder. 168 

 In each site, we placed three sampling points spaced 250 m apart along a linear transect 169 

(500 m) installed 50 m from the habitat edge. Each sample point contained two pitfall traps 170 

separated by 3 m, one with each bait type (feces and carrion), which were active for 48 h. We 171 

performed the same sampling effort in the reference habitat. Dung beetles captured were 172 

identified at genus level (Vaz-de-Mello et al. 2011), and then sent to an expert to perform species 173 

identification (Fernando Z. Vaz-de-Mello). Vouchers were deposited in the Invertebrate Ecology 174 

and Conservation Laboratory, at the Universidade Federal de Lavras (UFLA; Lavras, Minas 175 

Gerais, Brazil). 176 

  177 

Dung beetle traits 178 

 We analyzed seven functional traits that are directly related to the ecosystem functions 179 

performed by dung beetles (Slade et al. 2007; Barrágan et al. 2011; Braga et al. 2013; Griffiths et 180 

al. 2015; Audino et al. 2014, 2017): food relocation habitat (rollers, tunnelers and dwellers), diet 181 

(coprophagous, necrophagous or generalists), diel activity (nocturnal, diurnal or mixed), body 182 
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mass, body mass-adjusted front leg area, body mass-adjusted pronotum volume, and back:front 183 

leg lengths (see Griffiths et al. 2015 for more details on the methodology) (Table S1 in 184 

Supplementary Material). We described the protocols used for trait assignments in the 185 

Supplementary Material. When necessary, we also obtained additional information on dung 186 

beetle traits from the literature and specialists. 187 

 188 

Data analysis 189 

Species richness, number of individuals and biomass 190 

 We tested the effects of cattle grazing removal on total species richness, number of 191 

individuals, diversity (Shannon index) and biomass of dung beetles using Generalized Additive 192 

Models (GAMs) with a thin plate smoother. GAMs were chosen due to their suitability to non-193 

parametric data showing a high degree of dispersal (Wood 2006). This analysis was implemented 194 

using the “mgcv” package in the R v 3.3.1 (R Development Core Team 2019).  195 

 196 

Taxonomic and functional composition 197 

 To verify whether dung beetle taxonomic and functional composition are influenced by 198 

time since cattle removal, we performed a DistLM analysis (Distance-based Multivariate 199 

Analysis for a Linear Model, Legendre and Anderson 1999; McArdle and Anderson 2001). 200 

Species and functional composition matrices were used as response variables and cattle removal 201 

time as a predictor variable. Matrices were transformed in triangular matrices using Bray-Curtis 202 

similarity index. Abundance data of each species and of each trait was standardized and square 203 

root transformed (Anderson and Willis 2003). Time since cattle abandonment was also 204 

transformed in a similarity matrix, but using Euclidian distance. DistLM analyzes and models the 205 
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relationship between a multivariate data cloud and one or more independent variables (Anderson 206 

et al. 2008).  207 

To determine whether taxonomic and functional composition of dung beetle assemblage is 208 

progressing towards or deviating from the reference sites, we performed non-metric 209 

multidimensional scaling analysis (NMDS) and a permutational multivariate analysis of variance 210 

(PERMANOVA). NMDS was used to graphically express the similarity between sites and 211 

PERMANOVA to test for significant differences in taxonomic and functional composition among 212 

site groups. To carry out this analysis we categorized the study sites as: control (reference sites; n 213 

= 10), early-stage (0.4–3 years; n = 4), mid-stage (5–10 years; n = 4) and late-stage of cattle 214 

removal time (20–22 years; n = 6). The NMDS and PERMANOVA were performed using the 215 

software PRIMER+ (Anderson et al. 2006; Clarke and Gorley 2006). Finally, we used similarity 216 

percentage (SIMPER) analysis (Clarke 1993) to determine the contributions of individual species 217 

in terms of distinguishing differences in community structure among categorized groups. This 218 

analysis was performed using Past (Hammer et al. 2001). 219 

 220 

Functional diversity 221 

 To calculate three functional diversity indexes that measure different aspects of functional 222 

diversity, we used the “FD” package (R Development Core Team 2019): 1) functional dispersion 223 

(FDis) the distribution of abundances in the space of functional traits in relation to a weighted 224 

centroid in abundance and the volume of space occupied (Laliberté and Legendre 2010), 225 

2) Functional evenness (FEve) summarizes how species abundances are distributed along the 226 

occupied functional space; and 3) Functional richness (FRic) represents the range of traits in a 227 

community quantified by the volume of functional trait space occupied (Villéger et al. 2008). 228 
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 We evaluated the influence of cattle removal time on FDis, FEve and FRic using GAMs. 229 

This analysis was implemented using the “mgcv” package in the R v 3.3.1 (R Development Core 230 

Team 2019).  231 

 232 

Results 233 

Species richness, number of individuals and biomass 234 

 We collected 1622 dung beetle individuals from 32 species of 16 genera and six tribes 235 

(Table S1). In the reference sites (cattle-used grasslands) we recorded 23 species and 557 236 

individuals, while in the cattle grazing removal sites; we recorded 32 species and 1065 237 

individuals (Table S1).  238 

The identity of dominant species changed over cattle removal age. However, Canthidium 239 

aff. viride was present among the three dominant species in 10 of the 11 cattle removal ages (Fig. 240 

1). Eleven species were no longer present on sites that had experienced no grazing for over 10 241 

years of cattle removal, three have appeared and 18 species were distributed along all cattle 242 

removal ages (Fig. 2).   243 

 Species richness (R2 = 0.46; p = 0.03 – Fig. 2a) and number of individuals (R2 = 0.51; p < 244 

0.001 – Fig. 2b) have a significant relationship with cattle removal time, decreasing the dung 245 

beetle abundance (93 times) and species richness (6 times) until ten years of cattle removal; and 246 

then increasing dung beetle abundance (73 times) and species richness (5 times) until 22 years. 247 

However, species diversity (Shannon index) (R2 < 0.001; p = 0.711 – Fig. 2c) and biomass were 248 

not influenced by time of cattle grazing removal (R2 < 0.001; p = 0.372 – Fig. 2d). 249 

 250 

 251 

 252 
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Taxonomic and functional composition 253 

 Taxonomic composition was significantly influenced by cattle removal time (13.84% of 254 

independent effect) (Pseudo-F = 3.53, p = 0.001, df = 22), however, functional composition was 255 

not (Table 1).  256 

 Taxonomic composition in the different categories of cattle grazing removal deviates 257 

from the reference sites (cattle-used sites) (Fig. 3a). PERMANOVA analysis revealed that except 258 

for reference sites and early-stage removal sites (t = 1.21; p = 0.13) (Table 2), all other categories 259 

were significantly different from each other based on taxonomic composition (Pseudo-F = 2.94; p 260 

= 0.001) (Fig. 3a; Table 2). Ten species Canthidium aff. viride, Ateuchus sp., Canthon conformis,  261 

Digitonthophagus gazella, Uroxys aff. corporaali, Canthon unicolor, Ontherus appendiculatus, 262 

Deltochilum aff. komareki, Canthon curvodilatatus and Dichotomius opacipennis contributed to 263 

>80% of the observed differences in community composition among all categories (Table S2). 264 

For functional composition, PERMANOVA analysis revealed that only mid-stage and late-stage 265 

abandonment were significantly different from each other based on functional composition (t = 266 

1.65; p = 0.04) (Table 2). In contrast, all other categories were not significantly different from 267 

each other (Pseudo-F = 1.37; p = 0.16) (Fig. 4b; Table 2). 268 

 269 

Functional diversity 270 

The time of cattle grazing removal did not influence the FRic (R2 < 0.001; p = 0.614 – 271 

Fig. 5a), FEve (R2 = 0.25; p = 0.10 – Fig. 5b) and FDis (R2 = 0.13; p = 0.18 – Fig. 5c). 272 

 273 

Discussion 274 

This study evaluated the successional trajectory of dung beetle communities in a tropical 275 

grassy ecosystem after cattle grazing removal. Our results show a strong decrease of both 276 
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abundance and species richness of dung beetles in the first ten years of cattle grazing 277 

abandonment. However, after ten years we observed an increase in dung beetle richness and 278 

abundance. Taxonomic composition was influenced by cattle removal time demonstrating the 279 

importance of cattle in the structuration of dung beetle communities in natural grasslands. 280 

Functional diversity and composition were not affected by cattle grazing removal. Thus, we 281 

demonstrated that taxonomic but not functional diversity of dung beetles was altered by cattle 282 

grazing removal, with a strong negative impact on taxonomic diversity in the first ten years of 283 

cattle grazing removal, with an onset of community recovery of species diversity after ten years, 284 

but with a distinct community.  285 

 286 

Patterns of dung beetle species distribution across natural grasslands with different cattle 287 

removal times 288 

 Canthidium aff. viride was the dominant in 10 of the 11 ages of cattle removal we 289 

examined, demonstrating that, this species is unaffected by the effects of cattle grazing removal 290 

on species composition. Dichotomius bos and O. appendiculatus are among the species that were 291 

distributed along all cattle removal ages. These species are also considered important for 292 

introduced Brazilian pastures due to their frequency, abundance and wide distribution in pastures 293 

(Tissiani et al. 2017), and are dominant in natural grasslands of the Pantanal (Correa et al. 294 

2016a). 295 

Dichotomius nisus, D. gazella and Trichillum externepunctatum disappeared after ten 296 

years of cattle removal. D. nisus and T. externepunctatum are also considered important for 297 

introduced Brazilian pastures (Tissiani et al. 2017). In addition, D. nisus is a dominant species in 298 

natural grasslands of the Brazilian Pantanal (see Correa et al. 2016a). We found a higher 299 

abundance of D. gazella in control sites and after 0.4 years of cattle removal. However, this 300 
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species remained in the sites until three years after cattle removal. It is an African species 301 

introduced to Brazil during the 1980s to help control gastrointestinal and parasitic flies. It is a 302 

strict coprophage (Miranda et al. 2000) and benefits from cattle presence (Correa et al. 2019a). 303 

However, D. gazella is a threat to the native dung beetle fauna and could negatively impact local 304 

ecosystems (Filho et al. 2018). These results demonstrated that these species are benefited by 305 

cattle presence with higher populations on sites where cattle farming is occurring.  306 

 Finally, C. unicolor, Canthon aff. maldonadoi and Phanaeus palaeno are the species that 307 

appeared after then years of cattle removal. These species are frequently found in savannahs 308 

(Cerrado strictu senso) and the Pantanal biome (Vaz-de-Mello et al. 2017), being adapted to open 309 

ecosystems, which may explain their distribution on sites that have been absent of cattle of a long 310 

period. Thus, these species demonstrated a positive effect of cattle removal in natural grasslands. 311 

 312 

Effects of cattle removal time on dung beetle community 313 

 Contrary to our expectations biomass was not influenced by time of cattle grazing 314 

removal. In contrast, we found decreasing dung beetle species richness and abundance until 10 315 

years; and then increasing from 10 to 22 years, showing that the absence of the major resource 316 

(cattle dung) causes a strong negative impact on the dung beetle community in the first 10 years. 317 

Fadda et al. (2008) studying beetle assemblages in France found similar results to ours. They 318 

found a decrease in beetle abundance during the first four year after sheep grazing abandonment; 319 

then after 23 years of grazing abandonment, there was no significant loss of species. Indeed, the 320 

absence, and even the reduction, of grazing and/or the abandonment of previously grazed 321 

grasslands has been reported to negatively affect dung beetle communities in Europe (Buse et al. 322 

2015; Tonelli et al. 2018, 2019), with a strong positive effect of grazing continuity on total 323 

species richness being reported (Buse et al. 2015).  The fact that the dung beetle community start 324 
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to recover after 10 years reveals that the impact of cattle grazing removal is dependent on 325 

exclusion time, and demonstrates the plasticity of Neotropical dung beetles to adapt in tropical 326 

grassy ecosystems. 327 

We propose two main mechanisms to explain the increase in dung beetle abundance and 328 

species richness after 10 years of cattle removal: presence of wild animals (change in food 329 

resource) and vegetation structure. Recently, Macedo et al. (2020) demonstrated that alterations 330 

in food resources and vegetation structure played an important role in the dung beetle 331 

assemblages in open ecosystems (e.g. exotic pastures). 1) Presence of wild animals: there is a 332 

consensus in literature that livestock grazing can have a negative impact on native mammals 333 

(Torre et al. 2007; Cao et al. 2016). So, cattle removal can promote the recovery of wild 334 

mammals (Madhusudan 2004; Legge et al. 2011). This was also demonstrated by a study 335 

performed in the same landscape we conducted our study (Eaton et al. 2017). However, this 336 

recovery generally takes a while (years) to happen (Legge et al. 2011; Frank et al. 2013). So, after 337 

10 years of cattle absence, grazing by wild herbivores may reach the level required to provide 338 

enough resources to maintain a high dung beetle species richness and abundance (Nichols et al. 339 

2009). However, our results show that this native mammalian fauna was not enough to maintain 340 

the dung beetle community during the first 10 years since cattle removal. In this case, it is likely 341 

that the native mammalian community was not yet well established in early years of removal, 342 

resulting not only in low resource abundance but also spatial distribution of dung diversity 343 

(Tonelli et al. 2019). 2) Changes in vegetation structure: grazing by cattle has a direct effect on 344 

vegetation by modifying the structure and the composition of plant communities and limiting or 345 

excluding ligneous species establishment (Listopad et al. 2018). The absence of livestock leads to 346 

changes in the vegetation structure (herbaceous density and complexity) of our study area; such 347 

as an invasion of shrubs, native herbs and increase in plant biomass (native grass). Thus, after ten 348 
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years of cattle removal, the changes in vegetation structure may have altered the local 349 

microclimate conditions (Edmondson et al. 2016; Ozkan and Gokbulak 2017) and favored the 350 

colonization by a number of habitat specialist dung beetle species (Larsen 2012). This suggests 351 

that greater availability of cattle dung is important, but not mandatory, for the increase in species 352 

richness and abundance of the local dung beetle community in tropical grassy ecosystems 353 

(Halffter and Arellano 2002; Correa et al. 2019a).  354 

 355 

Effects of cattle removal time on taxonomic and functional composition 356 

Although, the functional structure of dung beetle communities was not influenced by 357 

cattle grazing removal time, taxonomic structure was, demonstrating the importance of cattle in 358 

the structure of dung beetle communities in natural grasslands. Control and early-stage of cattle 359 

removal had similar species composition. This is probably happening because in the first three 360 

years of removal, environmental conditions and vegetation structure remain similar enough to 361 

maintain the same species group as cattle-used sites. Control sites and early-stage cattle removal 362 

shared a high number of dung beetle species (17 species, see Fig 1), being some of these species 363 

benefited by cattle grazing, such as: C. curvodilatatus, Deltochilum pseudoicarus and D. gazella 364 

(Correa et al. 2019a). In contrast, all other categories of cattle removal (mid-stage and late-stage) 365 

were different from control and early – stage removal sites. In these sites, a variation in the 366 

vegetation structure (mainly vegetation density) occurred due to cattle absence (see Fig. S1). This 367 

variation in vegetation structure can happen because cattle grazing can hinder plant succession, 368 

enabling forage development (Adler et al. 2001). Despite this, we could not find a statistical 369 

relationship between vegetation density and complexity and cattle removal age, it is possible to 370 

see a variation in vegetation density over time (see Fig. S1). The modification of the vegetation 371 

structure (e.g., herbaceous density and complexity) can influence environmental conditions (e.g. 372 
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atmospheric and soil surface luminosity, temperature and humidity) (Edmondson et al. 2016; 373 

Ozkan and Gokbulak 2017), directly affecting the biology of dung beetle species (Hanski and 374 

Cambefort 1991), and modifying the structure of dung beetle community (Halffter and Arellano 375 

2002; Costa et al. 2017). Indeed, our results show the occurrence of new species that did not 376 

occur in the control and early - stage of removal, such as; C. aff. maldonadoi, C. unicolor and P. 377 

palaeno (see Fig. 2), forming a distinct dung beetle community independent of cattle grazing. In 378 

summary, this result demonstrates that taxonomic composition is more sensitive than functional 379 

structure to cattle grazing removal. 380 

 381 

Effects of cattle removal time on functional diversity 382 

 Functional diversity did not show a relationship with cattle grazing removal. In our study, 383 

the decline and subsequent recovery of dung beetle species richness and abundance after 20 years 384 

of cattle grazing abandonment was not accompanied by similar functional diversity changes. 385 

Differences in taxonomic and functional patterns may be the result of functional redundancy 386 

between species in cattle-used systems and different cattle exclusion ages; or replacement by 387 

functionally different species that could maintain similar functional diversity values (Rosenfeld 388 

2002; Magnago et al. 2014). Thus, even with species richness reduction in the first ten years of 389 

cattle removal, the loss of functionally specialized species may not have occurred, resulting in a 390 

lack of reduction in functional diversity after cattle removal.  391 

Overall, functional responses have been shown to depend mainly on the intensity of the 392 

disturbed and the functional characteristics chosen (Mlambo 2014; Beiroz et al. 2018). Thus, high 393 

intensity disturbances tend to negatively affect both taxonomic and functional components of the 394 

local biodiversity (Mlambo 2014; Magnago et al. 2014; Correa et al. 2019b). In contrast, a low 395 

intensity disturbance in highly diversified communities does not modify functional structure, but 396 
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may alter species composition (Magnago et al. 2014). In this sense, the absence of cattle grazing 397 

may represent a low disturbance for dung beetle functional diversity in tropical grassy 398 

ecosystems. Since functional diversity is directly related to ecosystem functions (Gerisch et al. 399 

2012; Mouillot et al. 2013; Lauretto et al. 2015), our results suggest a possible maintenance of 400 

ecological functions performed by dung beetles in tropical grassy ecosystems after cattle grazing 401 

removal.  402 

 403 

Conservation implications 404 

Tropical grassy ecosystems dominate the tropics and account for 20% of the global 405 

surface area (Scholes and Archer 1997), sustaining unique biodiversity and providing valuable 406 

ecological services to humankind (Parr et al. 2014). Despite their importance, they have been 407 

neglected in terms of conservation and public policies (Overbeck et al. 2015). Although there is 408 

still debate about the trade-offs between livestock grazing and/or exclusion and the potential for 409 

grassland ecosystem regeneration (Törok et al. 2016; Listopad et al. 2018), in tropical grassy 410 

ecosystems this discussion is incipient (Overbeck et al. 2015; Veldmann et al. 2015). So, since 411 

the dung beetle is a considerable indicator for monitoring environmental change across the globe 412 

(Nichols et al. 2007), our results suggest that complete cattle grazing removal, at least in a short 413 

time (10 years), may be an inefficient management tool for restoration and conservation of 414 

detritus-feeding insects in tropical grassy ecosystems. We highlight a need for research on the 415 

benefit of moderate livestock grazing for the conservation of tropical grassy ecosystems. For 416 

example, research on semi-natural grassland in temperate zones (Europa) has led to the 417 

recommendations that complete grazing abandonment is not a good management plan for the 418 

conservation of this habitats and that moderate grazing is required (Törok et al. 2016; Tonelli et 419 

al. 2018). In the case of Europe where the majority of native grazers have gone extinct, the 420 
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continuity of grazing by domestic animals is needed (Buse et al. 2015; Tonelli et al. 2018, 2019); 421 

but in tropical grassy ecosystems it may be possible that eventually domestic animals will no 422 

longer be required. In addition, studies with reintroduction of cattle after different times of 423 

grazing removal are also needed (Listopad et al. 2018), to provide information that may help us 424 

to create a livestock management that determines the most appropriate cattle removal interval and 425 

reintroduction. Thus, we may integrate human use and conservation of tropical grassy ecosystems 426 

efficiently (Bond and Parr 2010; Veldmann et al. 2015).  427 
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Figure captions 677 

 678 

Fig. 1 Rank distribution of dung beetles species across natural grassland with different cattle 679 

removal times in a tropical grassy ecosystem. “a” = Canthidium aff. viride; “b” = Ateuchus sp.; 680 

“c” = Canthon conformis; “d” = Digitonthophagus gazella; “e” = Genieridium bidens; “f” = 681 

Ontherus appendiculatus; “g” = Dichotomius opacipennis; “h” = Canthon cinctellus; “i” = 682 

Canthon curvodilatatus; “j” = Eurysternus aeneus; “k” = Onthophagus aeneus; “l” = Canthon 683 

histrio; “m” = Canthidium aff. refulgens; “n” = Deltochilum aff. komareki; “o” = Uroxys aff. 684 

corporaali; “p” = Canthon unicolor.   685 

 686 

Fig. 2 Variation in the distribution of dung beetle species occurrence (percentage) across natural 687 

grasslands with different cattle removal times in a tropical grassy ecosystem. Percentage is based 688 

in the dung beetle abundance in each natural grassland.  689 

 690 

Fig. 3 Relationship between cattle removal time and (a) species richness, (b) number of 691 

individuals, diversity (c) and (d) biomass. 692 

 693 

Fig. 4 Non metric multidimensional scaling graph exhibiting (A) species composition similarity, 694 

and (B) functional composition similarity relationships (based on Bray-Curtis similarity) between 695 

areas with different cattle removal times and the control (cattle-used sites). Cattle grazing 696 

removal categories are: early-stage (0.4–3 years), mid-stage (5–10 years), and late-stage of 697 

removal (20–22 years). 698 

 699 
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Fig. 5 Relationship between cattle removal time and (a) functional richness, (b) functional 700 

evenness and (c) functional dispersion. 701 
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Table 1 Results of distance based linear models (DistLM). Response variable is dung beetle 719 

taxonomic composition and functional composition and predictor variable is cattle removal time 720 

(CRT). 721 

  Variable AICc SS(trace) Pseudo-F P Prop Cumulative res.df 

 
Marginal tests 

       Functional CRT - 6599.8 1.243 0.272 0.053 - 22 

Taxonomic CRT - 7323.5 3.534 0.001 0.138 - 22 

 
Sequential tests 

       Taxonomic CRT 185.75 7323.5 3.534 0.001 0.138 0.138 22 

 Note: Prop, Proportion of explained variation 722 
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Table 2 Permutational analysis of variance (PERMANOVA) contrasting grassland categories 735 

according to taxonomic and functional composition. Pseudo-F and p-value are presented for the 736 

main test and test statistic (t) and p-values for each pair-wise comparison. * = p-values < 0.05 737 

  
    

    Taxonomic Functional 

Source of variation   Pseudo-F p Pseudo-F p 

Grassland categories   2.94 0.001* 1.37 0.16 

Post hoc comparison of systems     

Grassland categories T p T p 

Control vs. late-stage of cattle removal 2.2 0.001* 1.20 0.19 

Control vs. mid-stage of cattle removal 1.47 0.02* 1.09 0.28 

Control vs. early-stage of cattle removal 1.2 0.12 0.84 0.57 

early-stage of cattle removal vs. late-stage of cattle removal 1.68 0.003* 1.19 0.23 

early-stage of cattle removal vs. mid-stage of cattle removal 1.63 0.03* 1.24 0.17 

mid-stage of cattle removal vs. late-stage of cattle removed 2.05 0.003* 1.65 0.04* 

       738 


