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Abstract 

 

The trans-influence (TI), whereby the bond directly opposite a strong σ-donor, in 

certain d-block complexes, is relatively lengthened. The inverse trans-influence (ITI), 

whereby the analogous bond in certain f-block complexes, is relatively shortened. 

The purpose of this work is investigate the origin of the TI and its inverse (ITI) in a 

variety of d- and f-block species of the [MOX5]
− form (M = U, Mo, W, and halide X = 

F, Cl, Br). Relative magnitudes of the influences as both a function of the metal 

species and halide ligand are determined computationally. Several model chemistries 

are tested, spanning eight basis sets and seven DFT exchange–correlation functionals. 

Characterisation of the complexes in the ground state considers bond length, QTAIM, 

and natural bond orbital (NBO) analyses. The results demonstrate that the d-block TIs 

have generally higher magnitudes than the f-block ITIs, and that regardless of metal 

centre, the magnitudes of the influences are greatest in the F-ligand complexes, and 

lowest in the Br-ligand complexes. NBO analysis identifies that the trans-bonds, 

relative to the cis-bonds in the ITI-exhibiting [UOX5]
− species, exhibit reduced f- and 

s-orbital, and enhanced d-orbital character from the U contributions. A novel 

examination of the influence of electronic excitation (as studied using TDDFT) on the 

TI and ITI is considered. The geometries of the ground and of pertinent excited states 

are compared to identify key excitations that significantly alter the influences. 

Analysis of three excitations proved particularly insightful; two exclusive to the f-

block species, and one common to both the d- and f-block species. For the latter 

excitations yielded a reduction of the TI in the d-block and a reduction (and reversal) 

of the ITI in the f-block species. The results hint at a possible common electronic 

origin for the TI and ITI and demonstrate that these influences can be moderated by 

electronic excitation.  
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Chapter 1  

Introduction to the trans-influence and its inverse 

 

1.1 The trans-influences and its inverse 

 

The trans-influence (TI), is a ground-state structural deformation that manifests in 

certain d-block square planar, or pseudo-octahedral complexes. It is characterised by 

the bond directly opposite (trans-) to a strong σ-donating ligand, being lengthened 

relative to the remaining cis-bonds1 (this is illustratively shown in figures 1.1a for the 

octahedral geometry). A σ-donating ligand in this case, is a species that donates 

electrons very efficiently to a metal species, forming a strong single bond resultantly. 

The trans-influence is a strictly thermodynamic process, not to be confused (although 

the two are similar) with the kinetic trans-effect,2 a distinction that we revisit. Note that 

some authors use different nomenclature to describe the trans-influence including terms 

such as the ‘structural trans-effect’ or the ‘thermodynamic trans-effect.’1 The majority 

of research on the trans-influence pertains to complexes with square planar geometries, 

a recent review attempts to compile research pertaining to the pseudo-octahedral 

geometrires;1 it is this geometry that will be focused on in this project.   

The inverse trans-influence (ITI), much as its name suggests, is the opposite of the 

trans-influence, where the bond that is directly opposite (trans-) to a strong σ-donating 

ligand, this time, appears shortened, relative to the remaining cis-bonds3 (this is 

illustratively shown in figure 1.1b for the octahedral geometry). This influence often 

occurs in high oxidation state f-block complexes,4–6 and has been demonstrated in 

several geometries including octahedral,7,8 trigonal bipyramidal,9 and linear (in the case 

of the uranyl UO2
2+ molecule10). The octahedral geometry will be the focus of this 

project. Previous characterisation of the ITI has been performed both experimentally7,11 

and theoretically using density functional methods;6,8 the latter is implemented in this 

project.  
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Figures 1.1a + 1.1b. Illustrations of the trans-influence (1.1a, LHS) and the inverse trans-influence (1.1b, RHS) for the pseudo-

octahedral geometry, where M = a d-block cation for the trans-influence, and an f-block cation for the inverse trans-influence.  

 

Extending beyond the relative shortening/lengthening of the trans-bonds, the influences 

have been shown in certain instances to play a more structurally-defining role. For 

example, the ITI has been proposed to explain why certain f-block dioxo-cations of the 

MO2
2+ moiety (M = U, Np, Pu) readily prefer a linear O-M-O arrangement,5 and when 

assuming this arrangement, the M-O bonds are typically shorter, and more robust than 

expected.10 On the other hand, the corresponding d-block dioxo-cations, MO2
2+ tend to 

typically prefer a bent cis-MO2
2+ arrangement.12 Gregson et al 5 provide an illustrative 

example (figure 1.2) of how this trend can be applied to the octahedral geometries. 

 

 

 

 

 

 

Figure 1.2. Comparing structures UO2Cl2(OPPh3)2 (left) and MoO2Cl2(OPPh3)2 (right). UO2Cl2(OPPh3)2 adopts a linear O-U-O 

moiety due to the directing effects of the ITI in the UO2
2+ moiety. Alternatively, like most other d-bock complexes of this type, 

MoO2Cl2(OPPh3)2 adopts a bent cis-favoured O-U-O geometry on account of the TI. Data were obtained through simulations carried 

out by Gregson et al5 
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The origins of the TI and ITI are generally regarded to be a consequence of the strong 

σ-donor polarising the core of the central metal species.7 Denning,7 prescribes a 

‘polarisation model’ that elucidates this effect, where the polarisation manifests in two 

ways: dipolar, characterised by charge build-up in the trans-bonds (causing a repulsion 

of the trans-ligands, distinctive of the TI), and quadrupolar, characterised by charge 

build-up in the cis-positions (causing a analogous repulsion in the cis-bonds, 

characteristic of the ITI). Denning7 reasons that these polarisation effects are a result of 

the different orbital arrangements in the metal species; that typically (although not 

exclusively, as is the case for thorium, Th7,13) can be characterised by existing in the f-

block (quadrupolar, ITI) or a d-block (dipolar, TI) groups in the periodic table.  

We provide further details of this polarisation model in section 1.3.4. Considering the 

strong σ-donors, Glenwright and Coe1 detail some of the different types that have been 

shown to contribute to the TI in d-block species, including oxides, nitrides, sulphides, 

hydrides, and imido ligands. There are less accounts of the relatively new ITI, compared 

to the TI, but of the research, strong σ-donors include oxides,8 imido ligands,14 and 

carbenes.3  
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1.2 Overview of the Project   

For this project, complexes of the type MOX5 (M = U, Mo, W and X = F, Cl, Br as 

illustrated in figure 1.3) are simulated using Density Functional Theory (DFT). All of 

the structures present a pseudo-octahedral geometry with C4v symmetry, a metal atom 

of a formally 6+ oxidation state and no unpaired electrons. In figure 1.3, the d-block 

complexes IV – IX ( rows 2 and 3) exhibit the trans-influence, and the f-block 

complexes I – III (row 1) exhibit the inverse trans-influence. This project is effectively 

divided into two sections: characterisation of the ITI and TI at the ground state, and 

characterisation of the TI and ITI in excited states in UV-vis regions. 

The main aims of the ground state analysis are to provide elucidation of the structural 

and energetic magnitudes of the TI and ITI as a function of both the central metal cation, 

and the coordinating ligand species; furthermore, to assess the similarities and 

differences between the TI and ITI. Using DFT methods, the ground state analysis 

proceeds through three main analyses: bond length, topological, and bond-orbital, the 

latter two are mostly concerned with bond covalency. Additionally, via bond length 

analysis, the limiting points of the TI and ITI will be explored by varying the length of 

the strong σ-donor bond (the O-species) to assess how this affects the ITI/TI. 

Comparison of the TI and ITI can be achieved simply by taking the ratio of the trans- 

and cis-bond distances to give an ‘influence magnitude.’ This way only the relative 

influence magnitude for a system is shown- irrespective of whether it is ITI- or TI-

exhibiting. Equation 1 gives details of this, where ‘I’ represents the influence 

magnitudes, and ‘D’ represents the distance in picometres pm between the central cation 

M and the cis-ligands L (cis), or the central cation and the trans-ligands L (trans). 

 

I =
DM-L (trans)

DM-L (cis)
(1) 
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If the value of the influence magnitude is below 1, it is a result of the cis-bond lengths 

being greater than the trans-bond length, characteristic of the inverse trans-influence 

(the lower the deviation from 1, the more prominent the influence is). If the influence 

is greater than 1, it is a result of the trans-bond length being greater than the cis-bond 

lengths, characteristic of the trans-influence (the higher the deviation from 1, the more 

prominent the influence).   

 

 

Figure 1.3. Molecules I – III (top row) all exhibit the ITI, as illustrated by their slightly shorter U-Xtrans bonds relative to the U-

Xcis bonds. Molecules IV – IX (bottom two rows) all exhibit the TI, as illustrated by their slightly longer M-Xtrans bonds relative to 

the M-Xcis Bonds. All molecules are modelled using DFT methods, of which the details and model chemistries are presented in 

section 2.2. These complexes were selected due to previous work from Denning7 and Kaltsoyannis8 et al.  

I 

IV 

VII 

II 

V 

VIII 

III 

VI 

IX 
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The excited state analysis involves identifying occupied molecular orbitals in both the 

TI and ITI-exhibiting species, that upon excitation, could affect the influences in a 

characteristic way. Using time-dependant DFT (TD-DFT), we simulate the UV-Vis 

absorption spectra, identifying excitations that involve transitions pertaining to these 

molecular orbitals. From here, the structural impact and relevance to the ITI and TI of 

certain electronic excitations is assessed by geometrically optimising these excited 

states, then assessing if and how the ITI/TI is affected. The most ideal example is 

identifying molecular orbital transitions that either remove or reverse the influences.   

Prior to both sections, a full methodology is detailed, showing how basis sets, 

functionals and other simulation factors were chosen (i.e. the model chemistry); 

discussions for their suitability in the project are provided. In total, eight different basis 

sets were compared for the main group O, F, Cl, and Br species in molecules I – IX, as 

well as seven different DFT functionals. 
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1.3 The trans-Influence in Detail 

 

As mentioned, the trans-influence is a thermodynamic process, it is subtly different to 

another process called the kinetic trans-effect (KE), of which it is it is the main 

contributor; the other contributors being steric effects involving the cis-ligands’ π-

acceptor capabilities.2,15 The trans-influence lengthens the bonds that are trans- to a 

strong sigma donor, the kinetic trans-effect (KTE) is a utilisation of this bond 

lengthening (and further labilization), and results in in the selective substitution of this 

trans-ligand, via a kinetic intermediate. As such, the KTE is a thorough and robust 

method for fine-tuning d-block complexes in various platforms in industry; the fact that 

the trans-influence is a main contributor to the KE immediately provides incentives for 

its study.  

 

 

1.3.1 Identification of the trans-influence 

 

Various modern spectroscopy methods have been shown to effectively characterise the 

TI with ease. Techniques include NMR, IR and various diffractive methods such as x-

ray crystallography.1,16 These methods do, however, all have drawbacks to some degree. 

X-ray diffraction, a more popular quantitative analysis of crystal systems has been used 

on a multitude of examples.17–19 Kapoor et al however argue that packing and 

conformational effects within a crystal may influence the metal-ligand bonding.17 In the 

case of NMR, sure we can expect two different bond peaks to show up in systems 

exhibiting the TI, which certainly identifies the occurrence of the TI but does not 

provide much in terms of qualitative data. Additionally, NMR comes with the 

stipulation that both the metal and ligand must be ‘NMR active.’ Ligand species such 

as the NMR-active phosphorus would be a good option albeit a great limiter in terms of 

variability. IR is considered a cheap and efficient method of probing the complexes 

characteristic bond frequencies, but the complexity of certain M-X vibrational modes 

again limits the variety of ligands this technique is effective for.20,21  
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1.3.2 Origins of the trans-influence   

 

The discovery of the trans-influence was predated by the kinetic trans-effect (KE) due 

to the relatively easier identification of the latter, simply it was simpler to observe the 

directed substitution of certain of ligands (the KE), rather than observing different bond 

lengths (the TI). The first suggestion of ligands being able to direct substitution 

reactions was made by Werner22 in late 1893 with his coordination theory. In the same 

year, Kurnakov,23 whilst investigating the substitution of ligands by thiourea and 

thioacetamide in square planar complexes, of the variety M(NH3)X2 (M = Pt, Pd; X = 

acid radical or halogen), found that in the cis-structures, total ligand substitution with 

thiourea or thioacetamide occurred whereas in the trans-structures, only partial 

substitution of the acid radicals or halide occurred (as detailed in figure 1.4). This 

provided the basis for Chernyaev’s major discovery some 33 years later.23 Chernyaev, 

was an inorganic chemist who dealt mostly with square planar Pt(II) complexes. For 

differing ligands (nitro, aquo and hydroxylamine); he observed the differing 

dissociation rates of certain ligands that were trans- to each other. Furthermore, he 

suggested from his experimental work, that anions are the strongest trans-labilising 

ligands.1,23  

 

 

 

 

 

 

 

Figure 1.4. Equations detailing the kinetic trans-effect. The top  equation shows the total substitution of ligands in a cis-square 

planar complex where ‘tu’ is either thiourea or thioacetamide, ‘A’ is the strong sigma donor (either N or O in this case), and X is 

an acid radical or halogen. The bottom equation shows how the anionic substituents (A) stabilise each other in the trans-formation, 

resulting in only partial substitution by tu.  
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The first attempt at rationalising the trans-effect was carried out by the Russian chemist 

Grinberg.24 Grinberg24 suggested that the polarisation from a strong σ-donor would 

result in a build-up of negative charge on the metal centre of a complex, in turn repelling 

the ligand trans- to the σ-donor.1,24,25 In 1966, Pidock et al,27 using 195Pt-31P NMR, 

identified the ground-state deformation of bond lengths (in square planar geometries) 

that contributed to the kinetic trans-effect prior to being substituted, the first indication 

of the trans-influence.18,27 Mason and Towl28 then considered the overall trans-

influences in octahedral geometries.  

The pseudo-octahedral TI-exhibiting structures took slightly longer to elucidate due to 

the complex nature of higher coordinated d-block metal species;1 Coe and Glenwright1 

give an excellent overview of the trans-influence (and effect) in this geometry. To give 

a quantitative impression of the TI, using equation 1, influence magnitudes were 

calculated for several pseudo-octahedral d-block crystal complexes obtained from the 

literature,1 this is shown in table 1.1.  

 

Table 1.1. Crystallographic data for several octahedral d-block complexes exhibiting the TI with the MAnX5 structure. Where ‘An’ 

is the strong sigma donor instigating the TI, and ‘X’ are the remaining bound ligands (4 equatorial and one axial, the latter is in the 

trans-position). All data were obtained from Glenwright and Coe.1 The influence magnitudes were calculated using equation 1.  

 

 

 

 

 

 

 

 

d-block complex M-Xcis / pm M-Xtrans / pm ITI magnitudes 

[COIII(NO)(NH3)5]Cl2 198.1 222.0 1.121 

[CoI(CN)5(NO)]∙2H2O 203.4 208.1 1.023 

(PPh4)3[RevN(CN)5]∙7H2O 212.2 239.1 1.127 

(AsPh4)2[OsVIN(CN)5] 202.2 231.1 1.144 
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1.3.3 Incentives to study the trans-influence 

 

 

There are many incentives for studying the trans-influence that go far beyond academic 

curiosity. The direct implementation of the TI within the kinetic trans-effect implies 

that it would have great use in various industrial29,30 and biochemical syntheses,31,32 

effectively allowing manufacturers to ‘fine-tune’ d-block complexes. For example, the 

trans-influence has been utilised in the synthesis of homogenous organic catalysts,33 

and for modelling the function of metal-containing biological molecules such as co-

enzymes.1    
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1.4 The Inverse trans-Influence in Detail 

 

Much like how the trans-influence is found exclusively in d-block complexes, the 

inverse trans-influence is found exclusively in f-block complexes, often with high 

oxidation states.34 Table 1.2 provides some bond length data for several complexes 

exhibiting the inverse trans-influence,7 the influence magnitudes were calculated using 

equation 1. 

 

Table 1.2. Crystallographic data for some f-block complexes exhibiting the ITI with the MAnX5 structure. Where ‘An’ is the strong 

sigma donor instigating the ITI, and ‘X’ are the remaining bound ligands (4 equatorial and one axial that is in the trans position). 

 

f-block complex M-Clcis / pm M-Cltrans / pm Influence magnitude 

(PPh4)U
VIOCl5 253.6 243.3 0.959 

(Et4N)2PaVOCl5 264.0 242.0 0.917 

 

 

As shown in table 1.2, clearly the trans-bonds (opposite the O ligand, in the axial plane) 

are longer than the cis-bonds (equatorial plane); this results in an influence magnitude 

value less than 1. In this case, the second species, (Et4N)2PaVOCl5, exhibits a ‘higher 

ITI’ on account of its greater deviation from 1 (or lower value). 

 

 

 

1.4.1 The f-block Elements  

 

The f-block elements comprise two rows of metals on the periodic table, whose 

behaviours are dominated by the filling of f-orbitals. They are sometimes considered as 

inner-transition metals and range from lanthanum to lawrencium. They are further 

divided into two groups, the lanthanides (cerium to lutetium) and the actinides (thorium 

to lawrencium).  
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The actinide series are the interest of this project, specifically complexes of uranium in 

its 6+ oxidation state with no unpaired electrons.  

Different to lanthanide bonding (which is often characterised as ionic in nature),35 

actinide bonding is less clear cut.36 In the actinides, the greater atomic sizes result in 

strong relativistic effects, coupled with their weak crystal fields and their large electron 

correlation potentials all result in a poorly defined valence region for bonding.36 

Typically, their valence region is thought to have contributions from the 5f, 6d and 7s 

shells.36 Interestingly, the filled 6p-orbital, that would ordinarily be considered core-

like can also play a role in bonding and has been detailed in previous literature.3,7,8 A 

generally accepted bonding model is FEUDAL37,38 (f’s essentially unaffected, d’s 

accommodate ligands), which ultimately suggests the d-orbitals in actinide complexes 

play the structure-determining role, whilst the f-orbitals remain mostly non-bonded. 

However, ITI-exhibiting species, have been shown to be an exception,37 where the f-

orbitals assume a more prominent and structurally-dictating role.  

The most advantageous feature of the actinide elements is their nuclear instability, 

manifesting as radioactivity. Every known element of the actinide series is radioactive, 

the half-lives are such that only isotopes of thorium (232Th), uranium (235U) could have 

survived since the origins of the solar system.35 Their potential to undergo nuclear 

fission associates them as sources of nuclear fuel.  Due to this, experimental probing of 

the actinides can be difficult; therefore research naturally turns to theoretical 

practices,3,8,36,39 much like in this project.  

Actinides play a surprising variety of roles in society, for example, americium is used 

in certain smoke detectors, by periodically releasing α-particles and/or low energy γ-

radiation, that are sequentially and continuously detected. If smoke is present the 

emitted radiation is intercepted, causing the alarm to sound. Presuming the average 

house has a negligible background radioactivity, this is a novel application.40 Other uses 

for actinides include contrasting agents in nuclear magnetic resonance imaging. 

Gadolinium, and to lesser extents europium, terbium, dysprosium, thulium and 

ytterbium are all used. Gadolinium (III) is particularly suitable due to its high 

paramagnetic (7 unpaired electrons) nature and long electronic relaxation times.41 The 
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contrasting agents shorten the relaxation time of nearby water molecules, enhancing the 

contrast with background tissues.42  

1.4.2 Uranium and its use in the Nuclear Industry  

 

As uranium is prevalent in this project, we present a very brief discussion concerning 

its radioactivity, history, and the current climate for uranium mining. Nuclear fission is 

an energy-releasing process where large nuclei are split into two highly energetic, 

smaller nuclei, as well as a variable number of neutrons. If there are enough neutrons 

(and they have the correct energy), they can induce further nuclear fission in 

neighbouring nuclei, forming a self-propagating chain reaction (a brief depiction of this 

is shown in figure 1.5 for a 235U isotope). The kinetic energy of the main colliding 

fragments is rapidly converted to heat35 and is subsequently used large scale to generate 

electricity, although it finds small scale uses such as medicine, space missions, nuclear 

weapons or desalination.43 Almost all commercial nuclear reactors use uranium or 

plutonium (plutonium is produced through neutron bombardment of uranium via two 

β-decays) due to their readiness to undergo nuclear fission.35 Thorium fuel cycles do 

also exist, but are typically not considered as efficient as uranium or plutonium.44 

U92
235 + n0

1             2 × fragments + x n0
1    (x = 2-3) 

Figure 1.5. a simplified equation showing how the 235U isotope, upon bombardment by neutrons (n), undergoes nuclear fission and 

splits into two fragment ions and releases more neutrons.  

 

Uranium is one of the more plentiful of the actinide elements, second to thorium with 

natural abundancies in the earth’s crust of 2.8 ppm43 (thorium at 8.1 ppm).35 Mined 

uranium typically exists in a mixture of its various oxidised states, the most common 

being the uraninite mineral form (also known as pitchblende). Other uranium minerals 

include carnotite (KUO2VO4∙3H2O) and autunite (Ca(UO2)2(PO4)2∙nH2O). Extraction 

of uranium from its ores is dependent on the type of ore, the regional location of the 

production plant (different countries use different treatments) and the desired product 

(UO3, UO2 or U-metal are often the outcomes). As a general overview, the ore is 
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crushed, roasted and then leached with sulphuric acid in the presence of an oxidising 

agent such as MnO2 or NaClO3 to convert the uranium to the UO2
2+ cation.35  

In 2017, globally, 6,142,600 tonnes of uranium was mined; the top five contributors 

were Australia (1,818,300 tonnes, 30% of global total), Kazakhstan (842,200 tonnes, 

14%), Canada (514,400 tonnes, 8%), Russia (485,600 tonnes, 8%) and Namibia 

(442,100 tonnes, 7%).43  Known isotopic proportions of natural uranium exist as 238U 

(99.27% abundance), 235U (0.72% abundance) and 234U (0.005% abundance).35 Of 

which, 235U is the only naturally occurring fissile nucleus; the mechanism for this fission 

is outlined in figure 1.5. The neutrons produced in the fission reaction in figure 1.5 are 

considered ‘fast neutrons’ and typically have around 2 MeV of energy.35 

Problematically, this energy is unsuited to propagate further fission in neighbouring 

235U (‘slow neutrons’ with an energy of around 0.025 eV are preferred). There are two 

options to counteract this: moderating the ‘fast neutrons’ with large bulk materials such 

as graphite or enriching the uranium deposit to increase the proportion of 235U isotope. 

The early nuclear reactors used metallic uranium, nowadays UO2 (in the form of pellets 

or tablets) are used in instead due to their chemical inertness and increased melting 

point. Uranium carbide (UC2) is sometimes used also, but ultimately less ideal due to 

its reactiveness with O2.
35 

The first manmade self-sustaining chain reaction took place on the 2nd of December 

1942 in a deserted squash court at the University of Chicago. This was before nuclear 

enrichment and so the set-up consisted of 6 tonnes of uranium metal, 50 tonnes of 

uranium oxide and around 400 tonnes of graphite (acting as a moderator) piled on top 

of each other. This experiment, carried out by Fermi and his team, ushered in the nuclear 

age whilst inadvertently inventing the term ‘nuclear pile-up.’35 Following this, the first 

nuclear reactor was commissioned in 1956 at Calder Hall in Cumberland, UK. 

It is interesting to note that the use of uranium in nuclear reactions long predated the 

squash court in 1942.45 In May 1972, routine mass spectrometry of UF6 samples from 

the Oklo mine in Gabon, central west Africa carried out at the Pierrelatte uranium 

enrichment facility yielded peculiar results.45 It was shown that these samples 

consistently had a low natural 235U isotopic abundance of 0.60% compared to the 
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expected 0.72%; subsequent investigations into the Oklo deposit gave readings as low 

as 0.296% abundance.35 The only known way this could occur to this degree was 

through a self-propagation nuclear chain reaction, which was predicted to have occurred 

over two billion years ago. An interesting paper46 released in 2010 proposes that a 

historic explosion from a natural nuclear reactor lead to the formation of the moon, as 

opposed to the generally accepted giant impact hypothesis.  

1.4.3 Origins of the inverse trans-influence 

 

Looking more closely at the [UOCl5]
− complex (complex II in figure 1.3), a crystal 

centred around the [UOCl5]
− species was first synthesised experimentally by Bagnell et 

al.11 Through spectroscopic methods, they showed the trans-Cl ligand was shorter in 

length than the axial cis-Cl ligands, and further documented how the [UOClBr4]
− salt 

(where the remaining chlorine ligand is trans- to the oxygen) could be isolated when 

reacting a [UOCl5]
− species with HBr.11 This stubbornness for the trans-ligand to be 

substituted conclusively implied a superior stability of that trans-ligand compared to 

the equatorial ligands.  

The term ‘inverse trans-influence was coined for the first time in 1992 by Denning.7 

His paper makes a comparison of this relatively unexplored ITI to the much more well-

known TI, similar to the focus of this project.  Since Denning, the ITI has been 

demonstrated in a variety of complex molecules with different oxidation states, and 

varying ligand types. Lewis et al consider the ITI in pentavalent uranium(V) complexes 

with an N-species as the anion.9 Kovacs and Konings6 simulated tetravalent U(VI)OX4 

(X = F, Cl, Br) structures, of which further highlighted the importance of the trans-

linear moiety and the effect the ITI can have on molecular stability (their results showed 

that C3v symmetry with the trans-linear X-U-O moiety is preferred6). Fryer-Kanssen3 

demonstrate the ITI in a series of imido and carbene analogous to the uranyl species, 

and Lam et al14 present the ITI in a series of uranium-imide complexes. 

In addition to coining the term, Denning7 also offered an explanation as to the 

electrostatic origin of the influence, showing its dependence upon the σ-donor’s 

polarisation of the cation,4,47 as well as comparing this electronic consideration to the 

trans-influence in certain d-block complexes.7  
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1.4.4 The Polarisation Model and the pseudo-core 6p-orbital 

Denning provides, in his words a “naïve but pleasingly simple” electronic interpretation 

that provides a framework to fit the TI and ITI, as well as providing elucidation to 

uranyl’s linearity, and ThO2
2+ non-linearity (or bent cis-geometry). The model 

describes the anionic σ-donor ligand (O in our case) electrostatically perturbating the 

metal’s core electrons;7 this perturbation causes a polarisation effect that can be 

expressed in terms of a dipolar or quadrupolar moment. If the highest filled core orbital 

of the complex has opposite parity compared to the lowest valence orbital, then the 

moment would be dipolar; the resultant effect would be a destabilisation in the trans-

formation (manifesting in a lengthened trans-bond). If the opposite is the case (highest 

filled core orbital has the same parity compared to the lowest valence orbital), then the 

moment would be quadrupolar, and the resultant effect here would be a favouring in 

the bent cis-formation (manifesting as the cis-bonds being more contracted relative to 

the trans-bonds) 

Considering the octahedral species (complexes I - IX) in this project, for the d-block 

complexes IV - IX, the HOMO is the 4p- and 5p-orbitals (for M= Mo(VI) and W(VI) 

respectively); the LUMO is the partially filled 4d- and 5d-orbitals (again, for Mo(VI) 

and W(VI) respectively), both of which have opposite parity (the p-orbital being 

ungerade; the d-orbitals being gerade). Therefore, this causes a dipolar effect, resulting 

in a build-up of negative charge in the trans-position (opposite to the O ligand), 

destabilising and elongating the trans-bond exclusively. Inversely, in the case of f-block 

complexes I – III, the HOMO is the filled 6p-orbital (in the U(VI) species) and the 

LUMO is the unfilled 5f-orbital, of which both have the same parity (ungerade). This 

manifests as a quadrupolar effect, characterised by a build-up of negative charge in 

the cis-positions (relative to the O ligand); correspondingly results in the trans-position 

being the most stable.  

However, this is not exclusive to the position of the cation in the periodic table, but 

more on account of the relative orbital positionings of the metal species. For example, 

applying this model to the f-block UO2
2+ and the ThO2

2+ systems, as shown in figure 

1.6, the former species adopts a linear trans-UO2
2+ geometry; the latter a bent cis-
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MoO2
2+ geometry expected for d-block complexes. Considering the polarisation model, 

for the UO2
2+ species, the LUMO is the core-like 6p-orbital (ungerade in polarity); the 

HOMO is the unoccupied 5f-orbital (also ungerade). The HOMO and LUMO, both 

possessing the same parity establishes a quadrupolar character, which resultantly 

ensures the trans-UO2
2+ geometry is most favoured. Differently in the ThO2

2+ species, 

the LUMO is still the core-like 6p-orbital (ungerade), but the HOMO in this case is the 

6d-orbital (gerade), on account of the thorium’s lower charge.7 The HOMO and the 

LUMO having opposite parity establishes a dipolar character, resulting in the cis-

ThO2
2+ geometry being favoured.7,13 

 

 

 

 

 

Figure 1.6. A comparison of the linear trans-UO2
2+ species to the bent cis-ThO2

2+ species (θ = 122.2)13 

 

In an additional publication,48 Denning provides an alternate reasoning that implements 

the pseudo-core 6p-orbital further in the ITI, this time showing how it can relatively 

strengthen the trans-bond. They state that the 6p-orbital’s involvement in the σ-bond, 

between the metal centres and the strong σ-donor, leads to a hybridisation with, and a 

transfer of charge to, the f-orbitals, resultantly leaving a partial core-hole in the 6p-

orbital directed in the trans-position. This core-hole effectively removes charge from 

the anti-bonding 6p-orbital; consequently enhancing the overlap between the U-5f 

orbital and the trans-ligand orbitals, strengthening the bonding interaction.8,48  

Further quantification of the ITI and the 6p-orbital contribution in uranyl and similar 

complexes (U(NH2)2
2+ and U(CH2)

2+) is provided by Fryer-Kanssen and Kerridge 

through QTAIM simulatiuons.3 Pierre and Meyer34 also confirm the role of the pseudo-

core 6p-orbital in producing the ITI in high oxidation uranium,34 they describe the 

bonding in the ITI-exhibiting complexes as a ‘synergistic interplay between ionic and 
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covalent bonding’34 Suggesting that the charge separation between the U-species and 

the ligands leads to the inevitable 6p-orbital polarisation, and further 5f-orbital mixing. 

However, Berryman37 suggests that the ionic and covalent bonding in the ITI is not 

synergistic but in fact works against eachother.37 In an example that is reminiscent of 

the thorium/uranyl previously described, they show how the presence of a strong σ-

donor generates an electrostatic potential at the metal centre, that in terms of ligand 

coordinating, is cis-directing (such as the case of thorium as described). However, when 

f-orbitals participate more readily (in instances of more efficient orbital-driven 

covalency), then this ionic effect is overcome; consequently, the trans-position is 

favoured.37  

Kaltsoyannis et al, through DFT methods have quantified the ITI for the MOX5 

complexes that are analysed in this project (figure 1.3). Furthermore, they have 

determined key molecular orbitals influenced by the pseudo-core 6p-orbital that 

contribute to the inverse trans-influenece.8 Interestingly, they also showed that by 

freezing the 6p-orbital of the f-block species, the ITI was lessened but not fully 

eradicated.  

The excited state section of this project very much builds upon Denning’s7 polarisation 

model, where we attempt to remove these dipolar and quadrupolar effects (in the TI and 

ITI respectively) via excitation, in an attempt to effectively remove or reverse the 

influences.  

1.4.5 Incentives to study the inverse trans-influence 

The implications of the ITI, much like the TI also extends beyond scientific curiosity. 

The immediate area that would benefit from further actinide research would be the 

nuclear industry, due to unavoidable participation of the f-block elements in such 

chemistry. Pierre and Meyer34 discuss two ways in which this ITI research could benefit 

the nuclear enterprise: the selective design of actinide extractants, and the development 

of uranyl sequestration or other chemical remedial technologies.49 Development of 

chemical remedial or sequestrating technologies has been hugely successful, most 

notably via the functionalisation of the U-O bonds that was previously believed to be 
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chemically inert.34,50,51 The detailed study of uranium-ligand multiple bonding has also 

offered new insights into the study of multiple ligand bonding in d-block complexes, 

which in turn has opened new areas of biologically and industrially relevant reactions 

of d-block complexes. 34,52  
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Chapter 2 

Computationally Modelling Chemistry  

 

2.1 Overview of Computational Chemistry  

In this project to assesses the [MOX5]
− complexes (figure 1.1), we use a variety of 

computational chemistry methods including Density Functional Theory (DFT) and its 

time-dependant derivative (TD-DFT), Quantum Theory of Atoms in Molecules 

(QTAIM), and Natural Bonding Orbital (NBO) analysis. 

Computational chemistry is a powerful tool that is used to predict new and unexplored 

chemical systems, or used to provide further insights to currently established chemical 

systems.53 It is an encompassing discipline that uses mathematical and computer 

practices, implemented with theoretical and quantum chemical reasonings to model 

molecular systems. The highly intricate modelling of molecular systems in this way 

provides a quantitative and qualitative description of that system’s electronic behaviour; 

it is by an understanding of this electronic behaviour in a molecule, that various 

fundamental principles including chemical bonding, valence regions, and molecular 

orbitals can be elucidated. Some immediate benefits of computational chemistry include 

reducing the time and the cost of ‘real-world’ experiments, as well as improving the 

safety of certain experiments (considering chemicals that are notoriously hazardous); 

therefore, computational chemistry is a valuable asset in both chemical industry and 

research.  

2.1.1 Quantum theory and the Schrödinger equation 

The heart of both theoretical and quantum chemistry (and then by extension, 

computational chemistry) really lies with the Schrödinger equation, the most 

fundamental concept on which non-relativistic quantum theory is based, it is a linear 

partial differential equation that describes the complex wavefunction Ψ and the total 

energy E of a quantum system. The wavefunction Ψ is an effective descriptor of the 
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quantum systems’ unique wave-like propagation through space. Considering Born’s 

statistical interpretation of non-relativistic quantum mechanics,54 the square of the 

wavefunction gives the real-world probability distribution of that quantum system. In 

the case of a molecular wavefunction, its squared value will yield the electron 

distribution of that molecule. In quantum theory we strive for probabilistic knowledge, 

provided by this statistical interpretation of the wavefunction, as oppose to the more 

conventional deterministic knowledge.  

Equation 2 shows the Schrödinger equation in its reduced, time-independent form, 

where �̂� is the Hamiltonian operator. Applied to a molecular system, solving the 

Schrödinger equation and finding exact solutions to both the total energy E and the 

wavefunction Ψ would give all observable information about that molecular system.  

�̂�Ψ = 𝐸Ψ (2) 

 

The Hamiltonian operator �̂� is a sum of the kinetic �̂� and potential �̂� energy operators. 

Equation 3 shows this summation as well as its expansion when applied to a hydrogen 

atom (or in extension,  one-electron systems in general), assuming a fixed nucleus. 

Equation 3 and all equations throughout (unless stated) are in atomic units au.   
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For a series of one-electron-like systems, the Schrödinger equation is exactly solvable. 

In many-body molecular systems however, the Hamiltonian �̂� becomes lamentably 

complicated as shown in equation 4.   
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As the number of bodies in a system increases, the variables to be solved in the potential 

energy terms (equation 4 - terms 3, 4 and 5) increase massively; therefore, an exact 

solution of the Schrödinger equation applied to a many-body system is almost 

completely intractable.  

The central role and yet unavoidable complexity the Schrödinger equation plays in 

quantum chemistry has been an arduous struggle throughout the years. Resultantly, 

various approximations categorised as ab initio or semiempirical methods have been 

considered to try and alleviate the many-body problem, the most fundamental being the 

Born-Oppenheimer approximation (BO). First proposed in 1927, the Born-

Oppenheimer approximation proposes that the total molecular wavefunction can be 

written as a product of the electron and nuclear wavefunctions. This is allowed due to 

the significant difference in mass (and therefore motion) between the nuclei and 

electrons. A demonstrative example is shown in equation 5. Where the total molecular 

wavefunction, 𝜓(𝑟) (LHS) is a function of every nuclear 𝑅𝑖 and electron 𝑟𝑖 degree of 

freedom; on the RHS, the Born-Oppenheimer approximation allows for separation of 

the molecular wavefunction into electronic 𝜙(𝑟) and nuclear Ω(𝑟) components.  

𝜓(𝑟1, 𝑟2, . . . , 𝑟𝑛, 𝑅1 , 𝑅2 , . . . , 𝑅𝑛) → 𝜙(𝑟1, 𝑟2, . . . , 𝑟𝑛)Ω(𝑅1 , 𝑅2, . . . , 𝑅𝑛) (5) 

Revaluating equation 4 with the BO-approximation would see the kinetic energy of the 

nuclei removed (second term); the nuclei would become ‘fixed’ and so the nuclear-

nuclear interaction energy can be treated as a constant when solving with the remaining 

potential energy terms.  

2.1.2 The Wavefunction Approach 

Solving the Schrödinger equation becomes manageable by a series of approximations, 

like the BO approximation; different methods take different approximations. For the 

sake of this project, these approximations can be classified into wavefunction and 

density-based approaches, the former, deals directly with the wavefunction, and 

includes Hartree-Fock (HF), post-HF and multi-reference methods; the latter is 

concerned with the observable of the wavefunction (the squared value that gives the 

electron density) and includes density functional theory (DFT).  
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The Hartree-Fock (HF) or self-consistent field method (SCF) method is perhaps the 

most fundamental wavefunction approach, of which nearly all other approaches are 

based on to some degree. The HF or SCF method makes the intrepid assumption that 

an n-body wavefunction can be characterised as n-one-electron wavefunctions; that, 

furthermore, can be represented by a single slater determinant of n-spin orbitals. 

Approximating an n-electron wavefunction in this way gives a Hartree-product, detailed 

in equation 6. Where 0(𝑥) represent electronic (atomic or molecular) orbitals. Orbitals 

are defined and discussed further in section 2.2.1.  

𝜓0 = 𝜑0(1)𝜑0(2)𝜑0(3)… , 𝜑0(𝑛) (6) 

The Hartree product effectively takes the assumption that each particle is independent; 

following this, solving proceeds though the self-consistent-field procedure in which 

each one-electron wavefunction is singled-out and solved in turn using the remainder 

wavefunctions as a ‘smeared out’ and averaged electrostatic field. The cycle is repeated 

in this way k times, where the energy of 𝜓𝑘  is essentially the same or consistent with 

the energy of the 𝜓𝑘−1 state. 
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2.2 Evaluating the Model Chemistry  

 

Modern techniques to computational modelling involve implementing adaptable ‘model 

chemistries’ to describe the systems in question. A model chemistry is a term that 

defines the details of a non-empirical electronic structure calculation that would be 

required to reproduce the results again. Model chemistries can be fine-tuned to suit 

certain chemical environments, and often selecting suitable model chemistries becomes 

a rationale between modeling accuracy (typically compared to like-experimental data) 

and computational efficiency. A robust model chemistry must be defined as it 

effectively forms the backbone of any simulation and is carried forward if performing 

subsequent calculations and obtaining results. The model chemistry in this project 

include; include basis sets, solvation models, exchange-correlation functionals (for 

DFT) and dispersion parameters, all of which will be discussed individually in the 

proceeding sections.  

2.2.1 Orbitals and basis sets   

The so-called ab initio approach, fundamentally, involves likening the real-world many-

electron wavefunction to vectors that can be represented in terms of a mathematical 

basis, a one-electron virtual ‘wavefunction’ called orbitals.55,56 This effectively reduces 

the theoretical wavefunction from its 4N degrees of freedom to a more manageable (and 

computational) function. Analogous to the conventional statistical interpretation of the 

wavefunction,54 orbitals can be used to calculate the probability distribution of an 

electron at a specific region around the nucleus (by similarly taking the square of the 

orbital).  

Orbitals can come in a variety of flavours including atomic orbitals, planes waves, 

geminal and numerical functions. Regarding atomic orbitals (AO), for simple atomic 

species, each orbital can hold a maximum of two electrons and they can be totally 

described by three of the four quantum numbers: principle quantum number (n - 

describing the orbitals energy ranging from 1 to infinity, typical systems stay in the 1-

8 range however), azimuthal quantum number (ℓ - describing the angular momentum: 

typically either s, p, d or f orbitals. In certain theoretical cases virtual g orbitals are 
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considered), and the magnetic quantum number (mℓ - of which distinguishes the orbitals 

available in a subshell and can be used to calculate the azimuthal component of the 

orbital’s orientation in space). The fourth quantum number is the spin quantum number 

(ms) describing the occupying electrons spin value. Although not necessary for 

describing the orbital, the spin quantum number is essential to describing both of the 

electrons occupying the orbital in order to differentiate between them, concurrently 

adhering to the Pauli exclusion principle.55 These AOs are computationally modelled in 

atomic systems, two particularly common atomic orbital-types used in computational 

chemistry are the Slater-type orbitals (STO) and Gaussian-type orbitals (GTO), the 

latter being used throughout this project. Furthermore, in molecular systems where the 

electron distributions are more complicated, the modelled AOs are utilised in a linear 

combination of atomic orbitals (LCAO) approach to form molecular orbitals, or their 

formal computational definitions: basis sets.    

Going back to STOs and GTOs, equations 7 and 8 show the atom-centred radial 

functions of STO and GTOs (respectively) at a distance ‘r’ from the nucleus, where ‘α’ 

is a nucleus- and state-dependant constant, and ‘A’ is a normalisation factor used to 

determine functions ‘height’ at the nucleus. Figure 2.1 shows a plot of both orbital 

types as a function of r,55 where we see the orbital decays further away from the nucleus.  

φ(𝑟) = 𝐴𝑒−𝛼𝑟 (7) 

φ(𝑟) = 𝐴𝑒−𝛼𝑟2
(8) 
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Figure 2.1. radial plot of a typical STO and a GTO (equations 7 + 8 respectively) with increasing distance from the nucleus (r).  

STOs are generally accepted to be most efficient at modelling the cusp conditions close 

to the nucleus (r → 0), as well as the exponential decay of the wavefunction at distances 

much further away the nucleus (r → ∞).55,57,58 However, STOs are computationally less 

efficient when modelling molecular systems with more than one atomic centre (as 

generally their mathematical complexity increases with the number of bodies involved). 

GTOs, although considered poor when evaluating the cusp and decay conditions,57 on 

account of the Gaussian Product Theorem,59 are effective at handling 8u 

systems with multiatomic centres, and exhibit a far greater computational efficiency 

than STOs.55 It is therefore customary to linearly combine multiple GTOs to allow the 

behaviour of STOs to be replicated using the expansion coefficients ck as ‘fine-tuneable’ 

parameters. Overall this achieves a high degree of modelling accuracy for a fraction of 

the computational cost. The linear combination of ‘gaussian primitives’ to form 

contracted basis functions is shown in equation 9, Hehre, Stewart and Pople,60  were 

the first to qualitatively determine optimal expansion coefficients ck that would 

effectively mimic STO’s with contracted GTO’s.60  

𝜑𝑝(𝑟, 𝜃, 𝜙) = ∑𝑐𝑘

𝑘
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As mentioned, linearly combining GTOs (or any contracted basis function set) form 

basis sets a set of functions used to model the electronic behavior of an entire molecular 

system  (in the case of atomic orbitals as basis functions, they form molecular orbitals).3 

Basis sets can be fine-tuned with either the adaptable expansion coefficients, or by 

manipulating the amount of basic functions used, allowing the model chemistry to 

account for certain unique molecular environments.  

It is good practice to use different basis sets for different atoms, as well as different 

split-basis sets for inner and core regions of those atom.55 Typically, each basis set is 

‘fitted’ to the expected behaviour of that atom, an O-atom for example would behave 

more diffusely than a F-atom despite possessing a similar valance description. 

Additionally, valence regions as a whole are more susceptible to electron delocalisation 

than the relatively inert core regions, due to actively taking part in bonding interactions. 

Higher-order spilt-valance basis sets are signified by a nζ-parameter (nζ = 1, single, nζ 

= 2, double, nζ = 3, triple etc), where n is the number of basis functions used to define 

each atomic-species’ valence region. For example, a second-row element such as carbon 

has the electronic configuration: 1s22s22p2 where the first core shell can be represented 

by a 1s basis function; the valence shell represented by the 2s and 2p functions. When 

characterised by a valence double-ζ basis set, each valence function would be doubled 

(1 x 1s, 2 x 2s, 6 x 2p)- resulting in 9 basis functions altogether including the core 

function. If the same element was model by a triple-ζ, each valence function would be 

tripled (1 x 1s, 3 x 2s, 9 x 2p), resulting in 13 functions altogether, this is shown in table 

2.1. Typically, a higher value of n (higher ζ value) would imply a higher order of 

accuracy to the system, this is important for larger systems or systems that contain 

heavier atoms. 

However, the downside to using a larger basis set, is that it usually incurs a greater 

computational cost. Furthermore, increasing the number of basis functions will move 

the basis set subsequentially closer to the basis set limit; i.e. the point beyond which the 

addition of extra basis functions has negligible influence on the system. Therefore, it is 

not always be necessary or feasible to use the largest basis set available. As illustrated 

in table 2.1, the CPU (central processing unit) time generally scales for DFT 
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calculations (the main method used in this project) formally at m4 where m is equal to 

the number of basis functions.  

 

Table 2.1. The effect of CPU scaling (at m4 where m is equal to the number of basis functions) for a DFT single-point energy 

calculation is shown for different basis sets. For the first CPU scaling factor, in the cc-pVDZ row, the arbitrary value of α is assigned 

to represent a CPU time value, the preceding values are scaled according to this value. The basis sets here are part of the correlation-

consistent polarised valence family of basis sets.   

Basis set Valence functions no. of 

functions 

CPU scaling 

factor 

cc-pVDZ [2 x s], [2 x p], [1 x 3d] 18 1α 

cc-pVTZ [3 x s], [3 x p], [2 x d], [1 x f] 34 12.7α 

cc-pVQZ [4 x s], [4 x p], [3 x d], [2 x f], [1 x g] 59 115.4α 

cc-pVPZ [5 x s], [5 x p], [4 x d], [3 x f], [2 x g], [1 x h] 95 775.9 α 

 

Polarised basis sets involve basis sets with additional basis functions that possess a 

higher azimuthal number than the basis functions of a minimal basis set.55 For example, 

a polarised basis set for a molecular system with a valence region comprised of p-orbital 

functions would also include a set of additional d-orbital functions. The benefit is that 

polarisation functions provide additional flexibility to the basis set when modelling 

systems with more distorted electron density, particularly in environments where high 

levels of polarisation occurs such as bonding regions.  

Augmented basis sets or diffuse basis sets involve the addition of more diffuse basis 

functions to the basis set. They are often considered in systems with a greater spatial 

diffuseness; i.e. systems where the electrons are more likely to be found at greater 

distances from the nucleus.55,57 This is particularly useful when describing anionic 

systems or systems with a non-ground state configuration.  

To find the most efficient basis sets in the model chemistry to describe the molecular 

systems (I – IX, figure 1.1) went as follows. It was decided that the central elements 

(uranium, molybdenum, tungsten) and the main group elements (oxygen, chlorine, 

fluorine, bromine) would be described using different basis sets. Instinctively this was 

due to the uranium species (molecules I – III) being relatively heavier and additional 

relativistic parameters would need to be considered when modelling with a basis set. 
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To keep consistency, the central d-block species in molecules (IV – IX) were assigned 

the same basis sets (minus the relativistic parameters) as the uranium, it should be noted 

that there are not as many basis sets available for actinide elements such as uranium, 

relative to other elements in the periodic table.  

To decide on a suitable basis set for the main group elements, eight different basis sets 

were compared: def2-SVP, def2-TZVP, cc-pVDZ, cc-pVTZ, cc-pVQZ, aug-cc-pVDZ, 

aug-cc-pVTZ, aug-cc-pVQZ (obtained from the TURBOMOLE61 library, references 

and details are provided in section 2.2.5). DFT geometry optimisation calculations 

(using B3LYP exchange-correlation functional throughout) were performed on the 

same control molecule using different basis sets, table 2.2 shows the results in terms of 

bond lengths as well as the CPU time. 

Table 2.2. DFT geometry optimisation of the [UOCl5]- molecular system using a B3LYP functional, different basis sets have been 

taken from the TURBOMOLE61 basis set library, and have been used to model the main group elements (Cl, O), references and 

further definitions are provided in section 2.2.5. The central uranium atom’s basis set is kept constant. In a similar fashion to table 

2.1, we opt to present the CPU times scaled from the lowest CPU time β, for the def2-SVP basis set 

 

 

Table 2.2 shows that in terms of bond distances, the basis set does not have much of 

an impact, suggesting the model chemistry is approaching the basis set limit. 

Literature shows the full capability and flexibility of Dunning’s correlation-consistent 

basis sets when modelling high valence molecular environments.55 Additionally, the 

anionic nature, excited state calculations (see section: excited states) and QTAIM 

analysis (see section: QTAIM) of molecules (I – IX) imply that using augmented 

 DU-Cl (cis) / pm 
DU-Cl (trans) / 

pm 

Influence 

magnitude 

CPU scaling 

factor 

Experimental: 253.6 243.3 0.959 - 

Basis set      

def2-SVP 257.0 251.6 0.978 β 

def2-TZVP 257.5 251.5 0.977 2.5 β 

cc-pVDZ 257.3 251.6 0.978 2.2β 

cc-pVTZ 257.7 251.6 0.977 2.4β 

cc-pVQZ 257.8 251.7 0.976 6.5β 

aug-cc-pVDZ 257.7 251.6 0.976 2.2β 

aug-cc-pVTZ 257.8 251.7 0.976 6.1β 

aug-cc-pVQZ 257.9 251.7 0.976 16.6β 
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basis sets would be advisable.55 This effectively narrows the basis set choice down to 

three: aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, the correlation-consistent Dunning 

types.62 Table 2.2 shows that CPU time scale massively, tripling from 2.2β to 6.1β  

for the aug-cc-pVDZ to aug-cc-pVTZ; then nearly tripling again to 16.6β for the aug-

cc-pVQZ. Recent literature63 states the ineptness of the double-ζ for quantum theory 

of atoms (QTAIM) approach, one of the forms of characterisation at the ground state 

we employ in this project; further recommend using a higher-order Dunning type. 

Considering these factors, using a triple-Ϛ seems like a good compromise of chemical 

accuracy and computational costs.  

 

In summary, the aug-cc-pVTZ basis set was decided to be best suited to model the 

main group elements (oxygen, fluorine, bromine, chlorine) in the molecular systems (I 

– IX). Details of the basis sets used for the f-block and d-block species (U, Mo, and 

W) are provided in the computational details section (section 2.3).  

2.2.2 Density Functional Theory (DFT) 

Density Functional Theory (DFT) is a computational method used widely in various 

disciplines including physics, chemistry and materials science. It is used to investigate 

the electronic structure of many-body systems, the majority of which include atoms, 

molecules and condensed phase systems. Between the years of 1980 and 2010, DFT is 

credited as the most active field (in terms of recognised citations) in physics.64,65 Its true 

heritage lies with Hohenberg, Kohn and Sham,66,67 these seminal works were published 

in 1964 and 1965. But its central ideas can be traced back to Hartree-Fock theory and 

the Thomas-Fermi method.68,69 

The uniqueness of DFT compared to other ab initio approaches is that it sets out 

determining the electronic energy exclusively from the electron density, as opposed to 

the wavefunction that most other approaches take. Modern DFT calculations are reliant 

upon the Kohn-Sham approach, a methodology predated by two theorems by 

Hohenberg and Kohn in 1964. The first theorem states that the ground state electronic 

energy can be determined completely by the electron density ρ.66,70 This is remarkably  
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convenient as it effectively bypasses having to directly deal with the complex 

wavefunction (complex in both the mathematical and difficult sense). Instead of relying 

on the traditional 4N-variable (3 spatial and 1 spin for each electron) wavefunction, 

DFT is only concerned with the three spatial coordinates (+1 spin) which constitute the 

electron density.  

Connecting the electron density ρ to the total energy of the ground state is achieved with 

a functional- a function of a function. A function is a set of instructions to transform a 

number to another number. A functional would be a function of which its input is 

another function, but which still returns a number. The first function would have spatial 

coordinates 𝒓 as an input, and electron density ρ at point 𝒓 as the output. The second 

function(al) would then use the electron density function as input and give the total 

ground state energy E0 as an output, equation 10 shows this, where F is the unknown 

functional term that relates the E0 and ρ0. Equation 11 shows a ‘normalisation’ 

condition where the integral of the electron density would have to equal the number of 

electrons, n.  

𝐸0 = 𝐹[𝜌0(𝒓)] = 𝐸[𝜌0(𝒓)] (10) 

𝑛 = ∫𝜌(𝒓)𝑑𝒓 (11) 

Considering the first theorem (mathematically defined in equation 10), it indicates that 

the only indefinite parameter between linking the electronic density ρ to the actual 

energy of the ground state would be the functional F used (i.e. what the set of 

instructions are to link the two factors). That is why this theorem is more appropriately 

titled an ‘existence theorem…’ it tells us there is in principle a way of calculating the 

energy from the density (using a functional) but it doesn’t tell us how or what the 

functional is.57 The second theorem states that any trial electron density ρ will always 

give energy higher (or equal if the ρ were the exact true electron density) to the ground 

state energy. Moreover, by varying the trial electron density ρt, the value that minimises 

the total energy will be the exact ground state energy.57 This is called the variational 

theorem, equation 12 gives an overview. 
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𝐹[𝜌𝑡] ≥ 𝐸0[𝜌0] (12) 

Equation 13 shows the expansion of the Hamiltonian (from equation 4) in terms of 

energy functionals of the electron densities, showing the kinetic energy functional, 

𝑇[𝜌(𝒓)], the nucleus-electron interaction functional 𝑉ne[𝜌(𝒓)] and the electron-electron 

interaction energy functional 𝑉ee[𝜌(𝒓)]. 

𝐸[𝜌(𝒓)] = 𝑇[𝜌(𝒓)] + 𝑉ne[𝜌(𝒓)] + 𝑉ee[𝜌(𝒓)] (13) 

 

The main difficulty in solving the Schrödinger equation for a many-electron system lies 

in the final potential energy terms in the Hamiltonian. To elucidate this in DFT 

methodologies, Kohn and Sham proposed a fictitious system in which there were no 

interactions between electrons in which the system’s electron density ρ is identical to 

the ground state density of a real electron-interacting system, this is shown in equation 

14. 

𝜌KS(𝒓) = 𝜌0(𝒓) (14) 

Equation 15 shows the total electron density ρ of a non-interacting system expressed 

as a sum of the eigenfunctions of one-electron operators called Kohn-Sham orbitals. 

Solving this type of system is analogous to the HF/SCF approach, except in this case a 

new functional term is included to account for the electron interactions. 

𝜌KS(𝒓) = ∑|𝜑𝑖
KS(𝒓)|

2
𝑚

𝑖

(15) 

From this, an expansion of the total ‘real’ energy functional 𝐸KS[𝜌(𝒓)] can be expressed 

as a sum of the non-interacting independent energies as well as an exchange-correlation 

functional term that accounts for all differences between an interacting and non-

interacting system. This expression is shown in equation 16, terms include the non-

interacting kinetic energy 𝑇ni[𝜌(𝒓)], nuclear-electron interaction 𝑉ne[𝜌(𝒓)], coulomb 

repulsion between electrons 𝐽[𝜌(𝒓)], and the unknown exchange-correlation functional 

𝐸XC[𝜌(𝒓)].  
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𝐸[𝜌(𝒓)] = 𝑇ni[𝜌(𝒓)] + 𝑉ne[𝜌(𝒓)] + 𝐽[𝜌(𝒓)] + 𝐸XC[𝜌(𝒓)] (16) 

 

The first three components in equation 16 (functionals of a non-interacting system) can 

be calculated in a similar fashion to the HF method, it is the exchange-correlation 

functional that is of the concern of DFT methodology. As shown in equation 17, the 

exchange-correlation functional, can be further expanded in terms of the kinetic energy 

contribution (the difference between the interacting and non-interacting), 𝛥𝑇I[𝜌(𝒓)], 

the exchange contribution from electron-electron interactions 𝑉ee
X[𝜌(𝒓)], and the 

correlation energy from electron-electron interactions 𝑉ee
C[𝜌(𝒓)].  

𝐸XC[𝜌(𝒓)] = 𝛥𝑇I[𝜌(𝒓)] + 𝑉ee
X[𝜌(𝒓)] + 𝑉ee

C[𝜌(𝒓)] (17) 

From here, it is convenient to adopt the typical DFT notation for the exchange-

correlation functionals;55 this is shown in equation 18, where the relationship between 

energy density 𝜀XC and electron density ρ55 can clearly be seen. 

𝐸XC[𝜌(𝒓)] = ∫𝜌(𝒓)𝜀XC [𝜌(𝒓)]𝑑𝒓 (18) 

 

The exchange-correlation functional is very much where the variation part of DFT 

resides, where if the exact functional is known, then the DFT calculations are exact. 

Through the years, multiple different approaches to calculating this XC-functional 

effectively have been thoughtfully considered. These programmed ‘exchange-

correlation functionals’ (XC-functionals) such as LDA’s, GGA’s and hybrid-GGA’s 

have become a sporting debate amongst computational scientists about which 

functionals give the most accurate depiction. Section 2.2.3 details how different XC-

functionals handle the exchange-correlation energy as well as how we specifically 

decided on which functional to use for this project.  
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2.2.3 Exchange-correlation Functionals  

Table 2.3 shows the results in terms of bond lengths of a DFT geometry optimisation 

(of the [UOCl5]
- system), using seven different XC-functionals, as well as showing the 

different functional types. The different functional types all offer a different 

methodology for estimating the exchange-correlation energy, and the different 

functionals themselves have a unique implementation of their functional-types 

methodology. For example, the hybrid-GGA’s (hybridised General Gradient 

Approximation) BHHLYP and PBE0 both use the general approach to incorporate the 

exact HF-exchange energy in their approximations, but individually do so in their own 

characteristic ratios (we provide further details of this later on). This inevitably raises 

the challenge as to what functional would be best to use; unfortunately, there is no easy 

answer to this. Although, there is a generally accepted hierarchal approach to the 

functional type’s performance, and typically different systems may respond better do 

different XC-functionals, and so it is customary to compare the performance of different 

functionals.  

Table 2.3. the results of a geometry optimisation on a [UOCl5]- system using different functionals. Experimental values were 

obtained from Denning’s 1992 paper.7 References for XC-functionals are provided in section 2.3. 

  
DU-O 

/ pm 

DU-Cl (cis)  

/ pm 

DU-Cl (trans)  

/ pm 

Influence 

magnitude  

Experimental:   253.6 243.3 0.959 

Functional Functional type  

PBE0 Hybrid-GGA 175.69 254.66 247.73 0.973 

PBE GGA 180.06 256.49 252.14 0.983 

B3LYP Hybrid-GGA 177.8 257.53 251.46 0.976 

BHHLYP Hybrid-GGA 173.35 256.56 246.97 0.963 

TPSS Meta-GGA 179.8 256.60 252.19 0.983 

TPSSh 
Meta-Hybrid-

GGA 
177.99 255.75 250.36 0.979 

BLYP GGA 181.83 259.92 255.88 0.984 

 

First quantified by Perdew et al,71 the ‘Jacob’s Ladder of DFT approximations’ gives 

an insightful comparison of XC-functional types. The ladders ‘rungs’ go as follows, 

from least chemically accurate to most: LDA, GGA, meta-GGA, hybrid, random phase 

approximation (RDA).71 It is largely accepted that Local Density Approximation 
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functionals (LDA’s) are now outdated by the more universally accurate Generalised 

Gradient Approximations (GGAs), and their derivatives (meta-GGAs and hybrids. 

LDAs however really should be given credit for providing the foundations of which 

higher approximation functionals (GGA, meta-GGA) are all formulated upon.  

The LDA approach gives the exchange-correlation energy 𝐸𝑋𝐶  by simply assuming the 

energy density 𝜀𝑋𝐶  at every point in the molecule is solely dependent upon the 

electronic density ρ at that point.57 The LDA expansion for exchange-correlation energy 

𝐸𝑋𝐶  is shown in equation 19. Typically, they are known to over-estimate the correlation 

energy whilst underestimating the exchange energy. And as such they are best suited 

for more homogenous systems, as opposed to molecular systems, but nonetheless find 

their place on the bottom rung Jacobs’s ladder of computational chemsitry.65  

𝐸LDA
XC [𝜌(𝒓)] = ∫𝜌(𝑟)𝜀XC[𝜌(𝒓)] 𝑑𝒓 (19) 

GGA functionals (PBE72 and BLYP73–75 in this case) offer an improvement to the LDA 

approach by including a third term in the exchange-correlation energy: the gradient of 

the electron density 𝛻𝜌. The inclusion of this first-order differential means that the 

exchange-correlation functional will additionally consider how the electron density ρ at 

every point is locally changing (gradient).55 Resultantly, the GGA functionals’ 

overestimation of the correlation energy (over binding energy) is far less significant 

than that of the LDA functionals.65 However there is still a self-interaction parameter 

that results in a higher degree of binding energy than expected.76 The GGA functionals 

in this project include the PBE and BLYP functionals. The general expansion for a GGA 

functional is shown in equation 20.  

𝐸𝐺GA
XC [𝜌(𝒓)] = ∫𝜌(𝑟)𝜀XC[𝜌(𝒓),𝛻(𝒓)] 𝑑𝒓 (20) 

Staroverov and Scuseria). Such functionals follow from the GGAs first-order gradient 

corrections by introducing a second-order gradient correction parameter- the Laplacian 

of the electron density via the kinetic energy gradient τ.77 The expansion for a general 

meta-GGA is shown in equation 21. 
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𝐸mGGA
XC [𝜌(𝒓)] = ∫𝜌(𝒓)𝜀XC[𝜌(𝒓), 𝛻(𝒓), 𝛻2(𝝉)] 𝑑𝒓 (21) 

Meta-GGA functionals provide a convincing approach to further reduce the over 

binding energy of the GGA functionals. Specifically, it does so by correcting the self-

interaction parameter that the GGA correlation functionals still exhibit.78 Although an 

improvement over most GGA functionals, meta-GGAs are typically considered not as 

effective as hybrid-GGA functionals.76,79 

Hybrid functionals (e.g. PBE0,80 B3LYP,73–75,81–83 BHHLYP,73–75,81 TPSSh84,85) were 

first proposed by Becke in 1993 as a new and improve method to calculate the 

exchange-correlation energy.65,86 The intuition lies in ‘hybridising’ the GGA exchange 

with exact orbital exchange that is calculated using the Hartree-Fock exchange energy 

expression. With hybrid-GGAs, the exchange-correlation energy 𝐸𝑋𝐶  is now a sum of 

the DFT exchange energy 𝐸𝐷𝐹𝑇
𝑋𝐶  and the Hartree-Fock exchange energy 𝐸𝐻𝐹

𝑋 , still with 

full DFT correlation. Equation 22 shows a generalised expansion of the exchange-

correlation energy for a conventional hybrid functional, where the value of α determines 

the ratio of DFT/HF exchange energy.  

𝐸hybrid
XC [𝜌(𝒓)] = ⍺𝐸HF

X [𝜌(𝒓)] + (1 − ⍺)𝐸DFT
X [𝜌(𝒓)] + EDFT

C [𝜌(𝒓)] (22) 

The exact ratios of HF-exchange and DFT-exchange used in a hybrid functional are 

characteristic of that specific XC-functional.57,70 For example, the PBE0 functional 

combines the standard Perdew-Burke-Ernzerhof (PBE) GGA exchange to Hartree-Fock 

exchange in a 3:1 ratio; additionally it includes the PBE correlation, this is shown in 

equation 23.80  

E XC
PBE0[𝜌(𝒓)] =

1

4
𝐸HF

X [𝜌(𝒓)] +
3

4
𝐸PBE

X [𝜌(𝒓)] + E PBE
C [𝜌(𝒓)] (23) 

The hybridisation of GGAs with exact orbital exchange typically improves the 

simulation of various molecular properties including bond lengths, atomisation energies 

and vibrational frequencies.86 B3LYP is another common hybrid functional. 

Characteristically, for the exchange parameter, B3LYP blends the Becke8873 (B88X) 
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gradient correction local spin density functional (LSD) exchange and exact orbital 

exchange; then for the correlation parameter it uses the ‘LYP’ correlation functional 

proposed by Lee, Yang and Parr.73,74 Equation 24 shows the expansion of the B3LYP 

functional, where  E HF
X

 is the exact HF-exchange functional, E B88X
X

 is the exchange term 

from the becke88 functional, E LSDA
X  is the LSDA exchange and correlation functionals, 

E LYP
C

 is the correlation functional proposed by Lee, Yang and Parr. B3LYP’s credibility 

and popularity has been outstandingly cemented through the years, proving to be one 

of the more robust and reliable functionals. Evidenced by it being the most cited 

functional in DFT methodology. 87,88 

E XC
B3LYP= 0.2E HF

X
 + 0.8(E LSDA

X + 0.9E B88X
X )+ 0.81E LYP

C
+ 0.19E LSDA

C (24) 

Meta-GGA hybrid functionals, much as the name suggests are hybridised versions of 

meta-GGAs. The TPSSh functional is the only meta-hybrid considered in this project.   

Returning to table 2.3, the influence magnitudes are consistently overestimated 

compared to the experimental data. The BHHLYP functional gives the closest results 

to the experimental influence magnitude (only overestimating by 0.4%). Additionally, 

the BHHLYP trans-bond distance is also the closest to the experimental value 

compared to the other functionals (differing by around +1.5%). The cis-bond distance 

however is most accurately predicted by PBE0. A plot of the data from table 2.3 is 

shown in figure 2.2, where the values for each functional are plotted as deviations from 

the experimental idealised bond distances that would give the correct influence 

magnitude.  Figure 2.2 further clarifies the ability of the BHHLYP functional to most 

accurately predict the trans-bond distance; the PBE0 functionals ability to most closely 

predict the cis-bond length compared to experimental data. Comparing to the previously 

simulated data from Kaltsoyannis et al,8 differently to the experimental data, all 

functionals under-predict the ITI. The PBE0 functional appears to reside in a desirable 

middle ground between the simulated and experimental data, as does the B3LYP in 

terms of just the ITI magnitude.  
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Figure 2.2. plot of the optimised bond length data for the [UOCl5]− system using different XC-functionals. The dotted line denotes 

the ‘idealised’ cis/trans lengths to obtain the ITI magnitude value of 0.959, taken from experimental data (Denning, 1992), the 

dashed line shows the same but for simulated data (Kalsoyannis and O’grady, 2002).  

 

In total, we acknowledge that the XC-functionals tested all perform fairly similarly, 

with little incentive to choose one over the other. In addition, we consider that more 

applied levels of computational chemistry would be assessed beyond just geometry 

optimisations at the ground state (excited state chemistry, topological approaches in 

the ground state). Therefore, it was decided that the B3LYP XC-functional would 

offer the most robust and reliable DFT-implementation. Its high regard in various 
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cited molecular systems6,88–90 provides an assurance that our results will be 

consistently well-modelled.  

2.2.4 Further Modelling Parameters  

In chemistry, inter- and intra van der Waal forces (London dispersion forces + dipole-

diploe forces) play a large role in the majority of chemical systems.2 The 

TURBOMOLE61 program (of which the DFT-calculations are performed on in this 

project) has factored in these parameters by using a general empirical dispersion 

correction parameter for DFT calculations (DFT-D),first proposed in 200464 followed 

by two subsequent refinements:DFT-D2 and DFT-D3.64 The most recent model (DFT-

D3, proposed in 2010) boasted a higher specification and lower empiricism computed 

from more first-principle approaches, it was also suggested that this would probably be 

the limit of the DFT-D method.91 Although the systems in this project exist as isolated 

molecules with zero intermolecular interactions, their highly ionic nature would exhibit 

different intramolecular interactions. Grimme et al91  cites the DFT-D3 approach an 

easily-programable, robust method for force calculation that has been shown to 

accurately model the entire periodic table as well as several different types of systems 

(including heavier systems). Considering this, the DFT-D3 correction parameter was 

also used throughout this project. 

When a solute is immersed in a solvent, its charge distributions can interact with that 

solvent. The computational answer to this phenomenon, is to represent the solvent as 

continuous medium that is characteristic of its dielectric constant (𝜀); different media 

will have different values of 𝜀.  The continuum involves averaging the theoretical 

solvent’s charge distribution, at its thermal equilibrium, and modelling it as a 

continuous electric field over all degrees of freedom.1 The region of this continuum 

occupied by the molecule is called the reaction field. Using a continuum model naturally 

allows more specificity to likening computer simulations to the real-world physical 

processes taking place; typically, they are used extensively in the computational sectors 

of biochemistry, biophysics and medicinal chemistry, amongst other key areas in 

industry.92 In the case of this project, a conductor-like screening model (COSMO) was 

attempted. Here, the dielectric constant of the medium is given the value of infinity, 

essentially reducing any electric potential at the reaction field to zero.93 Details of the 
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molecular cavities are given in the computational details section. The COSMO model 

was carried forward through the QTAIM and NBO sections but was found to be a 

limiting factor in the excited state TD-DFT sections; therefore, the COSMO parameter 

was removed (and the NBO and QTAIM analysis was rerun). Conveniently, a paper94 

was recently published suggesting that for certain actinide complexes, the inclusion of 

COSMO in simulations (specifically pertaining to QTAIM analysis), is unnecessary; 

that overall, the environmental effects of including this parameter are in fact minor and 

do not account for the differences between computational and experimental values.94 

Table 2.4 presents the bond lengths of some trial simulations of the [UOCl5]
− complex 

with and without the parameters outlined above.  

Table 2.4. Trial simulations of the [UOCl5]− complex (functional: B3LYP) showing the effects different additional parameters 

(solvation and dispersion) has on bond lengths pm, as well as the ITI magnitude, the experimental values for the complex are also 

presented from Denning.7  The final model chemistry used involved just the dispersion parameters, and is presented in bold.  

 DU-Cl (cis) 

 / pm 

DU-Cl (trans) 

/ pm 
Influence magnitude  

Experimental 253.6 243.3 0.959 

Standard 257.8 251.7 0.976 

Solvation 257.4 250.0 0.971 

Dispersion  257.5 251.5 0.976 

Solvation + dispersion 257.2 249.8 0.971 

 

As shown in Table 2.4, the effects on the bond distances are minimal; the low 

programmability of the dispersion parameter convinces us that it is a worthwhile 

addition, as for the COSMO model, efforts to include the solvation parameter in the 

excited state optimisations are suggested as further work in the conclusion section.  
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2.3 Computational Details 

We present here an overview of the model chemistry, and details of the computational 

software used in this project. All DFT calculations (including escf95 and egrad96,97) 

were performed using version 6.6 of the TURBOMOLE software package.61 Several 

exchange-correlation functionals were considered including PBE,72 PBE0,80 BLYP,73–

75 BHHLYP,73–75,81 B3LYP,73–75,81–83 TPSS,98 and TPSSh,84,85 of which the hybrid-

GGA B3LYP73–75,81–83 functional was selected on account of its versatility and 

suitability to these systems. A DFT-D3 dispersion correction was also used.91 

Several basis sets were tested, including the cc-pVDZ through to cc-pVQZ (plus their 

augmented versions) for the for the main group (O + F),62,99 Cl,100 and Br101 species, 

as well as the def2-SVP102 and def2-TZVP103 basis sets from the TURBOMOLE 

library. It was decided that Dunning + co-workers’ augmented triple-ζ polarised 

correlation consistent basis set, aug-cc-pVTZ99–101 would be the best suited. For the U 

species, sixty core-electrons were replaced with the small-core pseudo-potentials of 

Dolg and co-workers,104,105 employed alongside the corresponding electron basis set 

of polarised triple-ζ quality.106 For the Mo and W species, twenty-eight and sixty core-

electrons (respectively) were replaced with small-core pseudo-potentials,107 employed 

with the corresponding electron basis set of quadruple-ζ quality.108  

The bond orbitals in the [MOX5]
− species were assessed via a Natural Bond Orbital 

analysis (NBO), computed with the software package of the same name.109 The 

topological analysis of the [MOX5]
− bonding was evaluated using the Quantum 

Theory of Atoms in Molecules (QTAIM) approach,110 via the AIMAll software 

package.111 Any details relating to molecular orbital information, as well as any 

diagrams of molecular orbitals presented in this project were obtained using version 

3.6 of Multiwfn.112 
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2.4 Theory behind the Ground State Analyses  

The ground state characterisation of complexes I – IX  (from figure 1.3) proceeds 

through three analyses: bond length, topological, and bonding-orbital NBO. We present 

in this section a brief overview of the theory behind the latter two metrics, Quantum 

Theory of Atoms in Molecules (QTAIM), and Natural Bond Orbitals (NBO).  

2.4.1 Quantum Theory of Atoms in Molecules  

QTAIM is a unique form of molecular modelling that relies on the topological 

expressions of the electron density, ρ(r), to be indicative of the electronic and molecular 

structure. QTAIM is not the only density-based approach to exist, other examples 

include electron localisation function analysis (ELF),113,114 Hirshfeld115 and natural 

bond order (NBO),116 the latter of which is also used in this project (section 3.4). 

However, in recent years QTAIMs ability to deliver numerous different methods for 

bonding characterisations in a coherent and rigorous context has earned itself a 

formidable reputation.3,36,94 Some of these methods include analysis of bond critical 

points (BCP), delocalisation indices (DI), natural atomic charges and atomic volumes. 

Due to the unique valence regions pertaining to the bonding in f-block chemistry, the 

different analysis methods of QTAIM are ideal as they provide a multitude of qualitative 

information to compare to other QTAIM structures, there are various literature 

pertaining to QTAIM analysis and f-block chemistry.3,36,41,94,117–119 

In this project, the software AIMAll111 was used to perform qualitative and visual 

QTAIM calculations (the latter using the accompanying AIMStudio package). A 

QTAIM approach to the ITI and the TI is intuitive as ideally, it would give quantitative 

data relating to the different intrinsic properties of the cis- and trans-bonds respectively. 

ITI-exhibiting f-block molecules have previously been evaluated using QTAIM 

analysis, including molecules of the UAn2
2+ (An = O, N, CH2)

3,34 and the tetravalent 

analogous to molecules (I-III): UOX4 (X = F, Cl, Br).6 

The QTAIM analytical approach was chiefly developed by Bader and his research 

group at McMaster University.110,120 Fundamentally, QTAIM partitions a molecular 



Chapter 2  2.4 Theory Behind the Ground State Analysis  

 

43 

system into chemically distinguishable, contiguous, space-filling atomic basins. Each 

atomic basin can be defined by a zero-flux condition presented in equation 25, where 

ρ(r) is the electron density and n(r) is a unit vector normal to the surface at point r.36  

∇𝜌(𝒓) ∙ n(r) = 0 (25) 

Figure 2.3 illustratively shows the topological partitioning of the [UOCl5]
− complex 

(molecule II in figure 1.3) into atomic basins, disseminated from its electron density.  

 

 

 

 

 

 

 

Figure 2.3: a 2-dimensional GradRho ∇𝜌(𝒓) contour map of the [UOCl5]− species (where the plane lies in the z-plane encompassing 

the O-U-Cltrans moiety), showing the topological partitioning of a QTAIM molecule into its atomic basins.  

Partitioning a molecular system into these  ‘topological atoms’120 allows properties such 

as atomic sizes, atomic density, and nuclei positioning to be described by comparable 

quantum expectation values.121 Considering an interatomic region between two nuclei 

in a molecule (in QTAIM, what is typically considered a ‘bond’ is called a bond path), 

the bond path follows a gradient path of steepest ascent that terminates at ∇𝜌(𝒓) = 0, 

signifying a nucleus; this nucleic terminus is called an nuclear critical point 

(NCP).110,120 Considering a bond path between two nuclei, following a gradient path of 

𝜌(𝒓) with the steepest descent will yield a point of minimal 𝜌(𝒓) before reaching the 

adjacent nuclei,122 this is called a bond critical point (BCP). Essentially, the BCP is a 
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saddle-point region of minimal electron density,120 where direction of the ‘saddle’ 

follows a gradient path of increasing 𝜌(𝒓) towards two different NCP. In accordance to 

this, there are two other types of critical points: ring critical points (RCP) and cage 

critical points (CCP). A simple overview to critical points can be mathematically 

illustrated by equation 26, where The Laplacian of the electron density (gradient path 

along a bond path) goes to the zero vector only at a critical point.123  

∇𝜌 = i
𝑑𝜌

𝑑𝑥
+  j

𝑑𝜌

𝑑𝑦
+ k

𝑑𝜌

𝑑𝑧
→ {

= 0⃗       (At critical points)                  

  Generally ≠ 0⃗    (At all other points)
 (26) 

The difference between the four critical points can be inferred by finding the second 

derivatives or the Laplacian of the electron density, ∇2𝜌(𝒓); then verifying if the 𝜌(𝒓) 

either rises or falls in each of the three spatial dimensions, equation 27 provides an 

overview of this,124 where 𝜆𝑖 represents the curvatures of all three spatial dimensions.124 

∇2𝜌(𝒓) at BCP = 𝜆1 + 𝜆2 + 𝜆3 (27)  

The critical points are then defined with the following characteristics: NCP - where 

𝜌(𝒓) decreases in all three perpendicular directions (3, -3), BCP, ρ(r) decreases in two 

perpendicular directions (3, -1), RCP, 𝜌(𝒓) decreases in one direction of space; 

increasing in the remaining two perpendicular to each other (3, +1), 𝜌(𝒓) is a local 

minimum and increases in all spatial directions (3, 3+).3,11 BCPs are of most relevance 

in this project; they are used to analyse and further quantify the differences in the cis- 

and trans-bonding regions in complexes exhibiting the TI and ITI. In this project, two 

conventional approaches are used to probe the BCPs: assessing the electron density, 

𝜌(𝒓), at the BCP, and assessing the Laplacian of the electron density, ∇2𝜌(𝒓), at the 

BCP. We quantify these metrics numerically in the QTAIM analysis (section 3.3.1).  

 

The delocalisation indices, 𝛿(A, B), in non-polarised bonds are considered analogous 

to the classical idea of bond order.123 It provides a quantitative account of the number 

of electrons shared between two atoms (A, B) by integrating the electron exchange 

density of all occupied orbitals within the atomic basins. For a closed-shell system this 
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can be defined in equation 28, where 𝑆𝑖𝑗(Ω) = 𝑆𝑗𝑖(Ω) represent two atomic basins.123 

Similarly, a localisation index 𝜆(A), can also be evaluated.123 

𝛿(A, B) = −∑∑𝑆𝑖𝑗(A)𝑆𝑗𝑖(B)

𝑗𝑖

(28) 

With N being the total number of electrons in the system, QTAIM methodically 

partitions the molecular space as a sum of the localisation 𝜆(A), delocalisation indices, 

𝛿(A, B) to equate to N, as shown in equation 29.123 

𝑁(A) =
1

2
∑ 𝛿(A, B)

𝐴≠𝐵

+ 𝜆(A) (29) 

BCP and 𝛿(A, B) metrics both provide detailed information on the bonding between 

two atomic basins in a QTAIM molecule. Considering a molecular orbital description 

of the bonding between a metal M and a ligand L, the degree of covalency between two 

species in a bond can be considered to be proportional to the spatial overlap of the 

species orbitals, and inversely proportional to their differences in energy.125–127 

Considering this, Kerridge36 shows that the mixing of a metal-based orbital 𝜙M(𝒓) and 

a ligand-based orbital 𝜙L(𝒓) in a bonding region can be described in terms of a mixing 

parameter γ, where a large value signifies pronounced covalency.36 Equation 30 shows 

the mixing parameter γ, where 𝐻ML is the Hamiltonian matrix element between the two 

orbitals, and ∆𝐸ML is the energy difference between them.36 

γ =  
𝐻ML

∆𝐸ML

(30) 

Equation 30 implies that there are two mechanisms of which the γ value can be large 

(representing significant bond covalency): energy-driven (small values of ∆𝐸ML), and 

overlap-driven (large values of 𝐻ML); where we would expect only the latter of these 

types to contribute to the thermodynamic stability of the bonds. Kerridge36 gives an 

excellent account of the differences between these covalency types. In terms of QTAIM 

analysis, only the BCP metrics provide insights to the overlap-driven covalency 

mechanism, whereas the 𝛿(A, B) metrics in general characterise both overlap-driven 

and energy-driven covalency. 
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Describing a molecular system in terms of topological atomic-like regions as a function 

of the electronic density, 𝜌(𝒓), implies a level of ‘fluidity’ to the electronic structure. 

Considering a polarised covalent bonding interaction, typically, involves two atomic 

regions sharing electron density. In the case of being polar, one of the atomic regions 

(the more electronegative region) would dominate the shared regions, ‘pulling’ 

electronic energy relatively closer to it. As such, ionic species in a molecule will have 

different formal charges to the same ionic species but in an isolated system. QTAIM 

skilfully present the atomic charge as a quantum expectation value of an open system.121 

These values are susceptible to change under conditions such as permanent molecular 

moments or external field polarisation.121 In a molecular system, the individual QTAIM 

charges on each atomic partition of the offers an insightful assessment of the overall 

charge distribution. In conjunction with quantum expectation values for atomic charge, 

QTAIM also offers similar considerations for atomic volume.128 Typically, removing 

electronic energy from an ionic species in a molecule would result in a contraction of 

the overall atomic basis volume (greater overall nuclear attraction on the valence 

electrons); ionic partitions gaining electronic energy would result in an increase of 

atomic volume.129 Atomic volumes and atomic charges calculated via QTAIM should 

typically agree.  

2.4.2 Natural Bond Orbitals 

The natural bond orbital (NBO) approach presents a molecular species as a set of NBOs, 

completely orthonormal sets of localised, computed bonding-orbitals that can 

effectively describe any feature of their likened wavefunction, 𝜙. NBO starts by 

assigning a Lewis-like structure to the atomic components in a molecule, and then 

prescribes integer-restricted bonding-orbitals that typically, are more localised than the 

canonical s, p, d, and f orbitals.125 With this, we are able to characterise what type of 

bonding is present (low s-orbital and highly dominant p-orbital contributions implies π-

bonding for example), and of that bonding, what the significant orbital contributions 

are.  In the case of two Lewis structures bonding with each other, NBO provides the 

percentage that each species contributions into the bond; these are interpretable as 

degrees of covalency.125 
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Chapter 3 

Results & Discussion at the Ground State 

 

3.1 Geometries of the [MOX5]− Complexes 

After defining the model chemistry (basis sets, functionals, dispersion forces), DFT 

geometry optimisations were conducted for remaining complexes (II − IX). Table 3.1 

presents the optimised bond distances for complexes (I − IX) as well as crystallographic 

data bond distances for complexes II, V, (VII – IX). The influence magnitudes in table 

3.1 are calculated using equation 1. A reminder that this equation provides a deviation 

value from an ‘idealised’ value of 1, (where a value of 1 signifies the cis- and trans-

bond distances are equal). A value above 1, shown in TI-exhibiting species, is 

representative of the trans-bond lengths being greater than the cis-bond lengths (the 

higher the value, the more significant the length differences are). A value below 1, 

shown in ITI-exhibiting complexes is representative of the trans-bond lengths being 

shorter than the cis-bond lengths. Applying equation 1a to all f-block systems in this 

project exhibiting an inverse trans-influence, molecules I – III, as well literary-obtained 

crystallographic data,7 the ITI magnitudes typically fall between 0.95 and 0.98. 

Similarly, applying equation 1a to the d-block complexes exhibiting the trans-

influence, molecules IV – IX, as well as their corresponding crystal data,130–134 yields 

TI-magnitudes between 1.01 and 1.10.  
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Table 3.1. DFT- optimised bond distances in the gas-phase are presented in bold. Crystallographic data is presented below the 

simulated bond distances in italics; previously simulated data is presented in parentheses (for the f-block species, the previously 

simulated data was obtained from Kaltsoyannis et al,8 using the following model chemistry: ‘an uncontracted double-ζ Slater-type 

orbital valence basis set supplemented with a d-polarisation function- ADF Type III for the halogen and oxygen atoms, as well as 

a triple-zeta without polarisation- ADF Type IV for the actinide species’8 + an LDA XC-functional for the DFT calculations8).  

Complex 
DU-Cl (cis) 

/ pm 

DU-Cl (trans) 

/ pm 

DU-O  

/ pm 
Influence Magnitude  

[UOF5]− 

210.45 204.07 180.97 0.970 

- - - - 

(208.7) (204.0) (183.0) 0.977 

[UOCl5]− 

257.53 251.46 177.8 0.976 

253.60 243.30 176.1 0.959 

(253.2) (249.2) (179.9) 0.984 

[UOBr5]− 

274.16 268.58 177.35 0.980 

- - - - 

(269.4) (265.9) (179.4) 0.987 

     

[MoOF5]− 

185.76 194.99 178.82 1.050 

- - - - 

- - - - 

[MoOCl5]− 

237.46 249.38 167.74 1.050 

238.78 264.5 165.86 1.108 

- - - - 

[MoOBr5]− 

255.19 268.35 167.33 1.052 

- - - - 

- - - - 

     

[WOF5]− 

190.29 198.32 172.37 1.042 

- - - - 

- - - - 

[WOCl5]− 

237.87 250.85 170.71 1.055 

231.92 257.67 174.5 1.111 

- - - - 

[WOBr5]− 

255.32 269.89 170.27 1.057 

253.75 261.00 163.00 1.029 

- - - - 
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3.1.1 Comparing Simulated Complexes to Experimental  

Looking first at the f-block [UOX5]
−, complexes; [UOCl5]

−, [UOBr5]
−, [UOF5]

−: the 

[UOCl5]
− species was the only structure for which experimental data existed in 

literature;7 it was obtained from x-ray crystallography of the solid-state (PPh4)UOCl5 

complex.7 Comparing the simulated data to the experimental for the [UOCl5]
− species, 

the simulated bond distances were overestimated, the cis-distance by 3.93 pm (+1.5% 

deviation from the experimental) and the trans-distance by 8.16 pm (+3.4%). This 

difference in cis- and trans-bond ratios for the simulated complexes resultantly 

manifests as a lesser ITI than that observed experimentally,7 which is signified by a 

higher value (closer to 1): 0.976 for the simulated, 0.959 for the experimental. The 

modelled U-O bond distance of the [UOCl5]
− species however, closely agreed with the 

experimental, with only a small overestimation of 1.70 pm (deviation of 1.0%). We 

acknowledge that typically, gas-phase modelling differs from solid-state structures for 

a number of factors.8,90,135 Using an LDA functional, Kaltsoyannis et al8 previously 

simulated the [UOCl5]
− complexes; the data are presented in table 3.1 in parentheses, 

along with the details of the model chemistry used. Comparing these data to the 

experimental provided by Denning,7 the cis-bond distances are well-modelled 

(underestimating by only 0.40 pm, 0.2%);  the axial trans-bond distance however, is 

overestimated (5.90 pm, 2.4%), similar to our simulations. Although the data size is 

small, it does loosely suggest that the trans-bond distance would inherently be over-

estimated when modelling the [UOCl5]
− complex.  

No experimental data is available for the remaining f-block [UOX5]
− complexes (X = 

F, Br).  However, previously simulated data (also from Kaltsoyannis et al8) can be used 

for comparison, and are shown in parentheses in table 3.1. Considering the [UOF5]
− 

complex, overall, the bond distances are similar, our cis-bond distances were 1.75 pm 

less than those in ref 88 (-0.8%) and the trans-bond distances only 0.07 pm less (0.03%), 

this slight difference yields an ITI value of 0.977 for our complexes, just slightly higher 

(therefore lower in ITI magnitude) than Kaltsoyannis’ 0.970.8 Similar observations are 

made when comparing the [UOBr5]
− and [UOCl5]

− complexes to previously simulated 

data,8 overall our data appear to mostly underestimate bond distances. The differences 

between our simulations and previous work8 are accounted due to different model 
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chemistries being used, qualitatively however, they demonstrate a generally similar 

difference in the cis- and trans-bonds distances, where the latter is modelled to be 

shorter; overall, manifesting as similar ITIs.  

Experimental data for d-block species [MoOX5]
− and [WOX5]

− (X = F, Cl, Br) is only 

available for the [WOX5]
− (X = Cl,131,132,136 Br130) and [MoOCl5]

− complexes, they are 

represented in italics in table 3.1. For the [WOX5]
− complexes, the experimental 

[WOCl5]
− bond distances given in table 3.1 are an average of three separately sourced 

crystallographic bond distances;131,132,136 compared to experimental, our gas-phase 

simulated [WOCl5]
− complex gave a greater cis-bond distance (5.95 pm, +2.57%), a 

shorter trans-bond distance (6.82 pm, -2.65%) and a shorter W-O distance (3.79 pm, 

2.18%), resultantly affording a notably lower TI (1.111 crystal, 1.055 simulated), 

indicative of a lower magnitude. The cis-bond distances for the gas-phase [WOBr5]
− 

complex generally agree with the experimentally resolved data130 (overestimating by 

only 1.57 pm, 0.62%). The W-O bond distance, however, was overestimated by a larger 

amount (7.27 pm, 4.46%); the trans-bond distance by an even greater amount (8.89 pm, 

3.40%). This manifested as a greater TI value than the crystal data (1.029 crystal, 1.057 

simulated).  

 

Considering the [MoOX5]
− complexes, for the [MoOF5]

− species, the gas-modelled cis-

bond distances mostly agreed with crystal bond distances (underestimating by only 1.32 

pm, −0.56%), the Mo-O bond distance was underestimated by 1.88 pm (−1.12%); the 

trans-bond distance was greatly underestimated (15.12 pm, −5.72%). Typically, when 

modelling these d-block complexes in the gas-phase, it appears that the trans-bond 

distance shows the most deviation (relative to other bond distances) to the 

experimentally resolved data.   
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3.1.2 Comparing the f- and d-block Optimised Bond Lengths 

Comparing the influence magnitudes of the two d-block metals (Mo and W) and their 

respective halogens: For X = Cl, and Br, the [WOX5]
− complexes have greater TIs than 

the [MoOX5]
− complexes, for X = F however, the [MoOF5]

− complex has a greater TI 

than the [WOF5]
− complex. Comparing the ITI and TI, understanding the influence 

magnitudes as deviations from an idealised value of 1, we see that for the X = F 

complexes, the deviations (difference between cis- and trans-bond lengths) are greatest 

in the [MoOF5]
− species, followed by the [WOF5]

− species, and then [UOF5]
−  with the 

lowest, suggesting that irrespective of a formal TI or ITI definition, the magnitudes of 

the influences are greatest in the [MoOF5]
− followed by the [WOF5]

− and then the 

[UOF5]
− species. Following suit, for the X = Cl complexes, the difference between the 

cis- and trans-bonds is again greatest in the [WOCl5]
−  complexes, followed by the 

[MoOCl5]
− variants, and then the [UOCl5]

− complexes. The same trend is shown for the 

X = Br complexes, [WOBr5]
−  with the greatest deviation, then [MoOBr5]

−
 and then 

[UOBr5]
− with the least. Conclusively, for all halogen derivatives, the TI in the d-block 

species has a greater magnitude than the ITI in the f-block species;  

3.1.3 ITI and TI as a function of Ligand X 

For the f-block [UOX5]
− species, the trans-bonds are 3.03%, 2.36%, and 2.03% shorter 

than the cis-bonds for the F, Cl, and Br complexes respectively (with ITIs of 0.970, 

0.977, and 0.984, table 3.1). This tells us that in the U-based complexes, the ITI is 

greatest in the F species, followed by the Cl and then the Br, with the lowest ITI. For 

the d-block [MoOX5]
− species, the trans-bonds are 4.97%, 5.02%, and 5.16% longer 

than the cis-bonds for the F, Cl, and Br complexes respectively (with TIs of 1.050, 

1.042, and 1.055, table 3.1). Therefore, in the [MoOX5]
− complexes, the TI is greatest 

in the Br species, followed by the F and then the Cl, with the lowest TI magnitude. For 

the [WOX5]
− species, the trans-bonds are 4.22%, 5.45%, and 5.70% longer than the 

cis-bonds for the F, Cl, and Br derivatives respectively (TIs of 1.042, 1.055, and 1.057, 

table 3.1). Therefore, in the [WOX5]
− species, opposite to the halogens ITI trend in the 

[UOX5]
− species, the TI is greatest in the Br species, followed by the Cl, and then the F 

species with the lowest TI magnitude. To summarise, when comparing the [MOX5]
− 
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species as a function of halogen X, the order for increasing influence magnitude goes F 

> Cl > Br  for the [UOCl5]
− complex (agreeing with previous literature8), Br > F > Cl 

for the [MoOCl5]
− complexes, and Br > Cl > F for the [WOCl5]

− complex.  

The differences amongst the halogen ligands could superficially be accounted for by 

the intrinsic properties of the X ligands such as the increasing van der Waal radii of the 

species (147, 175, 185 pm for F, Cl, and Br respectively)137 causing greater repulsion, 

directly influencing the cis- and trans-bond ratios. Or the difference in 

electronegativities (decreasing going down group 17) reflecting a change in metal-

ligand covalency.8   Typically, a larger species of ligand would imply less defined px 

and py orbitals to participate in pseudo-π-bonding for the equatorial ligands (pseudo as 

the halogen-metal bonds are typically considered to be singly bonded); additionally, the 

larger ligand radii could infer that steric interactions/repulsions may occur more 

prominently. Concerning the f-block species, Kaltsoyannis8 et al suggest that the lower 

ITI magnitude of the bromine-type, (relative to the chlorine and fluorine) could be a 

result of weaker π-bonding between the cis-halogens and the metal,8 or a stronger σ-

bond between the trans-halogen and the metal,8 or both. 

However, as the d-block and f-block complexes have the opposite trends upon 

increasing halogen number, this suggests that the difference is not necessarily an 

intrinsic property of the ligands, but of the different interactions the metals have with 

the ligands. To clarify this, increasing the halogen number results in the ITI decreasing 

(cis-bonds decrease, trans-bonds increase), and the TI  increasing (also, cis-bonds 

decrease, trans-bonds increase). i.e. the same effects concerning the cis- and trans-

bonds are seen for the f- and d-block species when increasing the halogen number, it 

simply manifests differently in terms of the ITI and TI.  

Concerning the [UOX5]
− species, Kaltsoyannis et al8 have previously identified the 

presence of a U-Xtrans antibonding orbital that is highly present in the bonding 

characterisation of the bromine species, and decreases in presence when moving up the 

halogen group (Cl, F). They also report a U-Xcis antibonding molecular orbital that 

follows the opposite trend, prominent in the fluorine species, but less so in the bromine. 

Interpretably, this would decrease the M-Xtrans distance whilst increasing a M-Xcis 
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distance moving from the fluorine to the bromine species. The ideal situation would be 

if the opposite is apparent in the d-block complexes, a closer consideration of molecular 

orbitals is considered in this project. 

3.1.4 ITI and TI as a Function of the M-O Bond 

A key aspect of the ITI and TIs that is highlighted in table 3.1, is that its magnitude 

directly correlates with the M-O bond distance. As shown, any complex exhibiting a 

greater ITI/TI (greater deviation from and influence value of 1) is accompanied by a 

shorter M-O bond distance. For example, in the [WOCl5]
− complex, the W-O bond 

distance is 170.71 pm and has a trans-influence of 1.055. Whereas the [WOF5]
− 

complex has a greater W-O bond distance (172.37 pm) with a relatively lower trans-

influence of 1.042. This implies that the σ-donor (O ligand) distance is relatable to the 

influence magnitudes (irrespective of being the ITI or TI). This can be justified using 

Denning’s perturbation model.7 As previously detailed in section 1.3.4, the model 

describes the TI/ITI in terms of a core-polarisation induced by a strong σ-donor, the 

result of which causes a dipolar (TI) or quadrupolar (ITI) effect, depending on the 

relative parities of the HOMO and LUMO orbitals.2 Within this framework, one can 

assume that the closer the anionic ligand is to the metal, the greater the degree of core-

polarisation (manifesting as a greater degree of ITI/TI appropriately). Lam et al14 report 

this polarisation effect in imide complexes where the strongly anionic ligand is a 

nitrogen atom.14 Using the optimised bond distances from seven different XC-

functionals (see section 2.2.3, table 2.3), a qualitative plot of the U-O bond distance 

against the influence percentage was made. This is shown for both the [UOCl5]
− and the 

[MoOCl5]
− complexes in figures 3.1 and 3.2 respectively. 
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Figures 3.1 (left) and 3.2 (right). An illustrative plot comparing the influence magnitude (%) against M-O bond distance pm for 

[UOCl5]− (left) and [MoOCl5]− (right). Data were obtained from seven different functionals (PBE0, PBE, B3LYP, BHLYP, TPSS, 

TPSSH, BLYP, see section 2.2.3 for further details) 

Figures 3.1 and 3.2 illustrate how the ITI and TI depend on the distance of the O-ligand 

from the metal centre. For the ITI (figure 3.1), increasing the U-O bond distance 

increases the ITI value (representative of the cis- and trans-bonds become more ‘like’), 

signifying a decrease in the ITI. For the TI, (figure 3.2), increasing the Mo-O bond 

distance decreases the TI value. In both cases, it is a result of the trans/cis-bond 

distances likening to each other. This was further tested by ‘freezing’ the M-O bond 

length at various distances and allowing the remainder of the structure to relax. For 

example, the [UOCl5]
− complex, the U-O bond distance was incremented between 

170.0 pm and 190.0 pm, in increments of 1.0 pm; the same procedure was carried out 

for the [MoOCl5]
− under the same constraints (in this case however the Mo-O bond 

distance ranged from 162 – 178 pm). Each calculation was performed with the B3LYP 

XC-functional. Both the cis- and trans-bond distances obtained are plotted against the 

increasing M-O bond distance, as well as the influence magnitudes as shown in figures 

3.4 and 3.5 for [UOCl5]
−  and [MoOCl5]

− respectively.  
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Figures 3.4 (top) + 3.5 (bottom). Plot of the [UOCl5]−  (top, fig. 3.4) and the [MoOCl5]−  (bottom, fig, 3.5) complexes showing the 

DM-Cl (cis) and DM-Cl (trans) bond distances pm vary against an increasing DM-O bond distance pm. In addition, the ITI and TI 

magnitude values are plotted. 
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Figure 3.4 qualitatively confirms that the ITI decreases (increasing magnitude value) 

with increasing U-O bond distance, the ITI being a result of cis-bond elongation and 

trans-bond contraction.8 Interestingly, figure 3.4 also seems to illustrates that the 

shortening the U-O distance (increasing the ITI), causes the cis-bond distances increase 

more rapidly than the trans-bonds decrease. This seems to imply that the ITI is more a 

result of a cis-bond elongation, than a trans-bond contraction. However, considering 

the steric effects of moving the O-ligand closer to the equatorial cis-ligands, this would 

probably be expected. Figure 3.5 shows how the TI decreases with decreasing Mo-O 

bond distance. Differently to figure 3.4 however, figure 3.5 shows how the TI appears 

to be mostly a result of a trans-bond elongation rather than a cis-bond contraction. In 

fact, the slight increase of the cis-bond distances could be accounted for simply by the 

steric interactions from the nearing O-ligand; in which case this would provide further 

evidence for the cis-bond elongation in the ITI (figure 3.4) being the dominant 

contribution to the inverse trans-influence. To summarise, the TI in the d-block species 

is mainly a result of the trans-bond increasing relative to the cis-bonds. The ITI 

contrarily is a result of both the cis- and trans-bond distances increasing, with the former 

being most pronounced.  
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3.2 Geometries of the MX6 Complexes 

Previous work138 that pertains to the DFT-characterisation of the ITI/TI in [MOX5]
− (M 

= U, Mo and X = Cl, Br) complexes, provide an illustration of the descension of 

symmetry from an Oh (each molecules MX6 structural analogous) to C4v (the [MOX5]
− 

complexes). Similarly, in this project, the MX6 equivalents to molecules I – IX are 

characterised by DFT simulations using the exact same methodology provided in 

previous sections, illustrations of these complexes are shown in figure 3.5 (molecules 

X – XVIII).  

All MX6 complexes were modelled using the exact same model chemistry described in 

previous sections, they possess 0h symmetry; octahedral geometry and have a formal 

oxidation state of (IV) for their metal species, with zero unpaired electrons. The purpose 

of simulating the MX6 species (figure 5a, molecules X – XVIII) was to provide 

‘standardised’ bond lengths of which the [MOX5]
− complexes could be compared too. 

Analysing both structure sets in this fashion would provide an insight as to how far the 

cis/trans-bond lengths of the [MOX5]
− deviate from the ‘normal’ MX6 bond lengths. 

Table 3.2 shows bond length data for the optimised molecules (X – XVIII), as well as 

the bond lengths of the previously optimised [MOX5]
− complexes (I – IX, first 

presented in table 3.1). 
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Figure 3.5. an illustration of the MX6 complexes. The top row, in left-to-right order shows complexes X, XI and XII ([UF6], 

[UCl6], and [UBr6] respectively). The middle row shows complexes  XIII, XIV and XV ([MoF6], [MoCl6], and [MoBr6]). The 

bottom row shows complexes XVI, XVII and XVIII ([WF6], [WCl6], and [WBr6]).  
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Table 3.2. The geometrically optimised bond distances, D, for the MX6
 complexes (molecules X – XVIII) are presented in bold. 

The corresponding [MOX5]− bond distances, D, both cis- and trans-bonds are also presented, where the former are shown italicised 

(this ordering is demonstrated in the top left box).  

M(VI) DM-F / pm DM-Cl / pm DM-Br / pm 

UX6 200.75 247.27 264.10 

cis - [UOX5]− 210.45 257.53 274.16 

trans - [UOX5]− 204.07 251.46 268.58 

Mo 

183.34 231.36 249.86 

185.76 237.46 255.19 

194.99 249.38 268.35 

W 

185.29 232.34 250.52 

190.29 237.87 255.32 

198.32 250.85 269.89 

 

3.2.1 Comparing Bond Lengths of the MX6 and the [MOX5]
− Complexes  

Definitively, all bond lengths of the [MOX5]
− species are greater than the corresponding 

MX6
 species. This seems reasonable as we would typically expect the steric effects of 

an O ligand to cause a ‘total expansion’ of the molecule; in addition, the electronic 

consequences of including a highly electronegative O species, as well as the [MOX5]
− 

being singularly anionic compared to the neutral MX6 structures would no doubt cause 

differences.  

Considering just the f-block complexes: modelling the [UOX5]
− complexes as a 

deviation from their UX6 counterparts, there is a cis-bond lengthening of 9.70 pm 

(increased by 4.8% from the UX6 complex), 10.26 pm (4.2%) and 10.06 pm (3.8%) 

respectively for X = F, Cl, Br; correspondingly, there is trans-bond lengthening of 3.32 

pm, 4.19 pm, and 4.48 pm (all with a percentage increase of 1.7%) in the same order. 

We would generally expect different halogens to give different bond distances on 

account of their different ionic size and chemistries, and looking at the percentage 

differences this appears to be the case, however, in upon closer inspection, it seems that 

the cis-bonds of the [UOX5]
− complexes all increase by a uniform distance of 10 pm, 

irrespective of the halogen substituent. The trans-bond expansions appear uniformly 

correlated with increasing halogen size, in the order of F < Cl < Br (ionic radii: 119 pm, 

167 pm, and 182 pm for the F, Cl, and Br respectively139).  
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Considering the d-block complexes: comparing the [MoOX5]
− species to their 

corresponding MoX6 counterparts, in the same order of increasing halogen number (F, 

Cl, Br), there is a cis-bond lengthening of 2.42 pm (1.3%), 6.10 pm (2.6%) and 5.33 pm 

(2.1%); correspondingly, there is trans-bond lengthening of 11.65 pm (6.4%), 18.02 pm 

(7.8%) and 18.49 pm (7.4%) in the same order. The data for the Mo-Cl and Mo-Br 

complexes generally agree, the Cl-type causing a slightly greater degree of total bond 

expansion. The order for increasing deviations for both cis- and trans-bonds goes Cl > 

Br > F. Comparing the [WOX5]
− complexes to their corresponding WX6 counterparts, 

in the same order of increasing halogen number (F, Cl, Br): there is a cis-bond 

lengthening of 5.00 pm (2.7%), 5.53 pm (2.4%) and 4.80 pm (1.9%); correspondingly, 

there is trans-bond lengthening of 13.03 pm (7.0%), 18.51 pm (8.0%) and 19.37 pm 

(7.7%) in the same order. The order for increasing deviations (concerning the cis-bonds) 

is F > Cl > Br; interestingly the order for increasing deviations (concerning the trans-

bonds is the opposite: Cl > Br > F. 
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3.3 QTAIM Analysis  

Up until this point, the discussion of the ITI and TI in the [MOX5]
− systems has 

considered optimised bond distances. In this section, a topological discussion of the 

electron density 𝜌, using QTAIM methodologies is presented; within this, the intrinsic 

electronic properties of the trans- and inverse trans-influences, as a function of the 

cationic-centre and ligand-type are discussed. We focus specifically on bond critical 

points (electron density 𝜌b, and the Laplacian of the electron density ∇2𝜌b), and 

delocalisation indices, 𝛿(X, Y), we also briefly discuss other integrated metrics 

including atomic charges 𝑞, and atomic volumes 𝑣𝑥.  

As previously described in section 2.4.1 (in particular, equation 30), covalency has two 

mechanisms: overlap-driven and energy-driven. Overlap-driven covalency, measured 

exclusively using BCP metrics, manifests from the near-degeneracy of atomic 

wavefunctions, and is a measure of the charge accumulation at the BCP. Energy-driven 

covalency, on the other hand, manifests from the near-degeneracy of energy levels, it is 

measured in this project using 𝛿(X, Y) values, although it should be noted that these 

values typically measure both types of covalency; therefore, 𝛿(X, Y) values can be large 

even with low charge accumulation at the BCP (absence of significant overlap-driven 

covalency). Of the two covalency types, we would only expect overlap-driven to 

stabilise the bonding interaction thermodynamically.36  

For each [MOX5]
− complex, the topological analysis for its corresponding MX6 

complex will also be provided; the MX6 data itself will come in two forms: The first 

form, the MX6 complexes are geometrically optimised in the same fashion as the 

[MOX5]
− complexes in previous sections (the bond lengths are provided in table 3.2). 

The second form, the MX6 complexes are geometrically-constrained, where each of the 

M-X bond distances is ‘fixed’ to the M-Xcis bond distance of the corresponding 

[MOX5]
− complex. When referring to the bond constrained MX6 complexes, we 

differentiate with an asterisk preceding it (e.g. *MX6).    
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3.3.1 Bond Critical Points  

We first turn our attention to the BCP metrics that typically, are concerned with overlap-

driven covalency. BCPs can be probed to obtain values for the electron density at the 

BCP, 𝜌b, and the Laplacian of the electron density at the BCP, ∇2𝜌b, the latter of which 

provides insights to the degree of charge depletion at the BCP.3,94,140 Zhang et al141 

propose the following descriptive framework: large values of 𝜌b (typically > 0.2 au) 

and large negative values of ∇2𝜌b characterise conventionally covalent bonds, whereas 

small values of 𝜌b (typically < 0.1 au) and large positive values of ∇2𝜌b more 

appropriately characterise closed-shell interactions such as ionic, hydrogen, σ-hole 

halogen or van der waal bonding.94 Considering the Laplacian of the electron density, 

∇2𝜌b, a large positive value is characteristic of a charge depletion at the BCP, which 

implies a predominantly ionic interaction, whereas a negative value implies a charge 

accumulation at the BCP, indicative of covalent bonding.94 For example, a 

conventionally covalent species such as H2 has a 𝜌b  of 0.27 au and a ∇2𝜌b value of 

−1.39 au.141 Whereas a typically more ionically-bonded diatomic such as LiF has a 𝜌b  

of 0.07 au and a ∇2𝜌b value of +0.62 au.141 Table 3.3 presents the BCP data for the f-

block [UOX5]
− complexes (X = F, Cl, Br) as well as their corresponding UX6 

counterparts (both optimised and constrained). 

Table 3.3. QTAIM data concerning BCP metrics of the [UOX5]− complexes, as well as their UX6 counterparts (both optimised and 

*constrained). The value of the electron density at each BCP 𝜌b is provided, along with the value of the Laplacian of the density, 

∇2𝜌b, (of which is presented below in italics). All data is in atomic units au 

 

X                              Bond Critical Point (BCP) 

 [UOX5]
− *[UX6] [UX6] 

  U-O U-Xcis U-Xtrans *U-X U-X 

F 
𝜌b 0.282 0.122 0.142 0.127 0.156 

∇2𝜌b 0.302 0.430 0.417 0.379 0.459 

Cl 
𝜌b 0.301 0.080 0.095 0.083 0.099 

∇2𝜌b 0.311 0.140 0.120 0.118 0.146 

Br 
𝜌b 0.306 0.068 0.078 0.071 0.084 

∇2𝜌b 0.318 0.093 0.076 0.078 0.096 
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The 𝜌b values of the U-X bonds in the [UOX5]
− species (where X = Cl and Br) are less 

than 0.1 au, whereas in the [UOF5]
− species, the ρb values fall between 0.1 and 0.2 au. 

Applying the outlined framework141 for relating 𝜌b to bond characterisation, the 

[UOF5]
− have a higher degree of covalency in the U-X bonds relative to the [UOCl5]

− 

and [UOBr5]
− complexes (both of which would typically be considered to bond 

ionically considering their 𝜌b values are < 0.1 au). Of the [UOBr5]
− and [UOCl5]

− 

complexes, the 𝜌b values show that the U-Br bonding shows a slightly lower degree of 

covalency (more ionic) than the U-Cl bonds (both cis- and trans-). To quantify, in the 

[UOBr5]
− complex, the U-Br bonds have 𝜌b values of 0.068 au and 0.078 au for the cis- 

and trans-bonds respectively. In the [UOCl5]
− complex, the U-Cl bonds have 𝜌b values 

of 0.080 au and 0.095 au (which is 17.6% and 21.8% greater than the U-Br bonds). In 

the [UOF5]
− complex, the U-F bonds have 𝜌b values of 0.122 and 0.142 (52.5% and 

49.5% higher than the U-Cl bonds). Overall, on account of the 𝜌b values, the order for 

increasing covalency goes F >> Cl > Br, where the Cl and Br are fairly similar. The 

same trend in bond covalency is shown in the UX6 complexes (both optimised and 

constrained), where the U-F bonds in the UF6 species have the highest 𝜌b followed by 

the U-Cl and then the U-Br (from the UCl6 and UBr6 species respectively); this implies 

the high 𝜌b  values are intrinsic to the F-ligand. Furthermore, experimental studies142 

pertaining to the U-F bonds in hexafluoride (UF6) complexes have validated the higher 

orders of covalency in the U-F bonds.   

We can justify the F-ligands increased affinity to bond covalently by considering a hard 

and soft Lewis acids and bases (HSAB) approach. First introduced by Pearson,143 

HSAB theory is a quantitative predictive model that can be can be used to assess the 

strength of an interaction between two species. It does this by classifying each species 

in an interaction (also called a Lewis adduct in HSAB) as either a Lewis acid or base, 

with assigned levels of ‘hardness’ or ‘softness’ based on a multitude of parameters. 

Lewis acids are defined as electron pair acceptors, and Lewis bases, electron pair 

donors.144,145 The criteria for a typical hard species includes high electronegativity, 

small ionic radii and weak polarizability. The criteria for a soft species is predictably 

the opposite, lower electronegativity, expanded ionic radii, and more substantial 

polarizability.129,146 Under this framework, the rules then state that soft bases will bond 

more favourably with soft acids, and hard bases will bond favourable with hard acids.129 
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Applying the HSAB model to our molecular systems, the U(VI) species would be 

considered a hard Lewis acid, on account of its small ionic radius and low 

polarizability; the halogen species, would be the Lewis bases. The fluorine, with a 

relatively small ionic radius (119 pm)139 and high electronegativity would typically be 

described as the hardest, followed by chlorine (167 pm),139  and then bromine (182 

pm)139  as the softest. Considering this, it seems expected that the F-ligands, being the 

hardest would bond most effectively with the hard U(VI) species, followed by the Cl-

ligands, and then the Br-ligands, which being the softest, would bond the least 

efficiently (manifesting as decreased bond covalency).  

As a brief side note, the ionic radii quoted are obtained from crystal data.139 A key 

feature of QTAIM, is that atomic species are not conventionally spherical in molecules; 

therefore an ionic radius cannot be defined so easily. However, integrated QTAIM 

atomic volumes can be obtained, and are presented in table 3.4. Ultimately, we see that 

the QTAIM atomic volumes 𝑣𝑥 scale similarly to the crystal-obtained ionic radii,139  

with the F-species (atomic radii: 147 pm) exhibiting the smallest QTAIM volume 𝑣𝑥 in 

both the cis- and trans-positions (129.2 au, and 123.0 au respectively), followed by the 

Cl (atomic radii: 175 pm, 𝑣𝑥 = 245.5 au, and 234.0 au) and then the Br (atomic radii: 

185 pm, 𝑣𝑥 = 298.6 au, and 287.2 au). The trend in ionic radii 𝑞 and QTAIM integrated 

volumes 𝑣𝑥 (table 3.4) appears to match that of the trend in bond covalency, defined by 

the 𝜌b values (table 3.3), where the difference between the [UOBr5]
−  and [UOCl5]

−  is 

small but [UOCl5]
−  and [UOf5]

−  is significant.  

Figure 3.6 shows a plot of the 𝜌b  and of ∇2𝜌b values for the U-X bonds in the [UOX5]
− 

complexes (both cis- and trans-), as well as the U-X bonds in the UX6 complexes 

(optimised and constrained) against their respective bond lengths (bond length data is 

taken from tables 3.1 and 3.2).  With the exception of the U-O bonds, figure 3.6 shows 

that the 𝜌b values appear to scale inversely to bond lengths, which has been previously 

reported in literature.147 For example, the bond lengths of the optimised U-X bonds are 

all around 10 pm less than the corresponding constrained *U-X bonds, and 

correspondingly, the 𝜌b values of the U-X bonds are greater than the *U-X bonds. In 

addition, we see that the cis-bonds in all [UOX5]
— complexes, which are 

characteristically greater than the trans-bonds (in accordance to the ITI), all have 
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relatively lower 𝜌b values. This trend is broken however when comparing the 

constrained U-X bonds to the U-Xcis bonds (from the [UOX5]
− complexes), where 

despite having the same bond lengths, the constrained *U-X bonds have slightly higher 

𝜌b values than the U-Xcis bonds. Therefore we conject that although 𝜌b values mostly 

scale inversely with bond length,147 there must also be other determining factors that 

come into play. 
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Table 3.4. For each atomic partition in the [UOX5]− complexes (M = U, Mo, W and X = F, Cl, Br), the integrated QTAIM data 

concerning the atomic charges 𝑞 (au) and volumes 𝑣𝑥  (au) are shown (the latter is shown in italics). The atomic charges of a species 

can provide indications of bonding character, with decreased charge (and charge separation) associated with covalency.125 The 

QTAIM atomic volumes are correlated with the atomic charges, where due to the differing nuclear charge felt by the valence 

electrons, a decrease in the atomic charge causes a volume contraction, and an increase in charge causes a volume expansion.35 

 

 

 

 

 

 

M X [MOX5]
−  

U 

 O M Xcis Xtrans 

F −0.87 +3.33 −0.70 −0.65 

 137.2 97.1 129.2 123.0 

Cl −0.84 +2.78 −0.60 −0.51 

 130.4 108.6 245.5 234.0 

Br −0.84 +2.58 −0.56 −0.48 

 129.3 117.6 298.6 287.2 

      

Mo 

     

F −0.79 +3.14 −0.66 −0.72 

 133.0 56.6 118.7 124.3 

Cl −0.68 +2.45 −0.51 −0.74 

 123.0 71.3 228.6 250.9 

Br −0.69 +2.19 −0.47 −0.64 

 123.2 80.5 281.0 293.9 

      

W 

     

F −0.94 +3.46 −0.69 −0.75 

 136.7 58.0 119.4 124.7 

Cl −0.82 +3.46 −0.56 −0.69 

 128.3 72.7 230.9 244.9 

Br −0.81 +2.46 −0.50 −0.67 

 127.1 81.8 281.1 295.3 
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Figure 3.6. plots of the 𝜌b, ∇2𝜌b values, au, (left axis) and bond lengths, pm, (right axis) for the [UOX5]− bonds (cis- and trans- 

and U-O).  The optimised UX6 bonds, and the constrained *UX6 bonds are also provided. X = F in the top graph (3.6a), Cl in the 

middle graph (3.6b) and Br in the bottom graph (3.6c) 
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Considering the ∇2𝜌b values, under the quantitative framework first outlined,141 the 

large positive values of ∇2𝜌b (for both the cis- and trans-bonds in the f-block 

complexes) suggests that the f-block complexes predominantly show conventionally 

ionic bonding; the [UOF5]
− species exhibiting the highest level of ionic bonding in the 

U-F bonds, disagreeing with the ρb metrics. Zhang et al141 report a similar puzzlement 

over a homonuclear, and traditionally covalently-bonded fluorine species (F2), 

observing high 𝜌b and large positive ∇2𝜌b values that typically don’t agree with the 

covalency criteria (or even ionic bonding).141 Berryman et al125 provide elucidation on 

this matter however, by considering formally covalent-driven M-O bonds (where M = 

Ti, Hf, Th, Zr, Ce, and U), they notice that the Laplacian values, ∇2𝜌b, are far more 

positive than expected, similar to what we are seeing. They rationalise this anomaly as 

a consequence of the high polarisation of the M-O bonds; furthermore, they conject that 

a more polarised covalent bond will have a higher ∇2𝜌b value. The U-F bonds (of which 

the 𝜌b metrics suggest are the most covalent driven relative to the other halogens) have 

highly polarised bonds, on account of the high electronegativities of the F-species; 

therefore, the high, positive values of ∇2𝜌b would not be unexpected. If the ∇2𝜌b values 

truly are dependent on the bond polarisation, this justifies the U-O bonds having the 

next highest ∇2𝜌b values after the U-F bonds (O being the second most polarising 

atomic species after F), followed by the U-Cl bonds, then the U-Br bonds.  

 

As shown in figure 3.6 the ∇2𝜌b values, dissimilar to the ρb values, do not necessarily 

scale with bond length. Which is interesting considering the we notice that the cis-bonds 

have higher ∇2𝜌b values than the trans-bonds, implying a higher degree of polarisation. 

Overall, the data in table 3.3  and figure 3.6 imply that out of the metal-halogen bonds, 

the U-F (both cis- and trans-) have the highest degree of covalency and bond 

polarization, followed by the U-Cl and then the U-Br. Furthermore, the cis-bonds in the 

[MOX5]
− complexes have lower degrees of covalency than their respective trans-bonds, 

and higher orders of bond polarisation.  
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Comparing the *UX6 and the [UOX5]
− complexes, figure 3.6 shows that the 𝜌b  values 

for the constrained *U-X bonds are greater than the U-Xcis values (by 0.005 au, 0.003 

au, 0.003 au for X = F, Cl, Br), and lower than the U-Xtrans values (by 0.015 au, 0.012 

au, and 0.007 au in the same order). This suggests that the replacement of a halogen 

ligand X with an O atom in the constrained *UX6 complexes, causes an increase in 

charge accumulation at BCP of the trans-bond and a decrease in charge accumulation 

at the cis-bonds, characteristic of an increase in covalency in the trans-bonds, and 

decrease in the cis-bonds (although this is not quantitatively exact as the trans-bond 

lengths are all greater than the *U-X bonds). 

Comparing the cis- and trans-bonds in each respective [UOX5]
− species, we see that 

that the cis-bonds have lower 𝜌b  and higher ∇2𝜌b values, indicative of a decreased 

degree of overlap-driven covalency and increased degree of bond polarisation relative 

to the trans-bonds; this is probably expected considering their greater bond lengths. In 

terms of bond strength, Gibbs et al140 state that the strength of a bond is proportional to 

the value of 𝜌b, which results in the bonds shortening. Berryman125 however, conjects 

that bond strength and bond covalency are in fact not synonymous.125 We conclude that 

only by comparisons of like species, such as the cis- and trans-bonds in the same 

[UOX5]
− complex, can we infer ideas of covalency and bond strength, measurable by 

higher 𝜌b values and bond lengths.148  Considering this, on account of the shorter bond 

lengths and higher 𝜌b values, we propose that the trans-bonds in the [UOX5]
− 

complexes have an increased bond strength relative to the cis-bonds.  

 

Table 3.5 presents the BCP metric data for the d-block [MOX5]
− complexes (M = Mo, 

W and X = F, Cl, Br), as well as their corresponding MX6 counterparts (both optimised 

and constrained).  
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Table 3.5. QTAIM data concerning BCP metrics of the d-block [MOX5]− complexes, as well as their MX6 counterparts (both 

optimised and *constrained), where M = Mo, and W. The value of the electron density at each BCP 𝜌b is provided, along with the 

value of the Laplacian of the density, ∇2
𝜌

b
, (of which is presented below in italics). All data is in atomic units au 

M X Bond Critical Point (BCP) 

  [MOX5]
− *[MX6] [MX6] 

  M-O M-Xcis M-Xtrans *M-X M-X 

Mo 

F 0.267 0.147 0.120 0.158 0.172 

 0.986 0.670 0.577 0.670 0.748 

Cl 0.284 0.090 0.056 0.090 0.100 

 0.917 0.171 0.138 0.168 0.196 

Br 0.286 0.073 0.053 0.073 0.080 

 0.920 0.106 0.109 0.120 0.137 

W 

F 0.249 0.144 0.119 0.146 0.164 

 0.929 0.647 0.576 0.660 0.772 

Cl 0.261 0.091 0.067 0.093 0.102 

 0.929 0.156 0.158 0.157 0.185 

Br 0.264 0.077 0.055 0.077 0.083 

 0.928 0.091 0.103 0.106 0.121 

 

Perhaps the first thing to note, is that table 3.5 and the bond length data (tables 3.1 and 

3.2) for the d-block [MOX5]
− and MX6 complexes confirm that the 𝜌b values scale 

inversely with bond length147 i.e. shorter bonds have higher 𝜌b  values, as first implied 

in the f-block complexes. Typically, the d-block, [MOX5]
− species appear to follow a 

similar trend to the f-block species, where the halogen bonds in the [MOF5]
− species 

have 𝜌b
 values between 0.1 and 0.2 au, and the analogous M-X bonds in the [MOCl5]

− 

and the [MOBr5]
− species have 𝜌b

 values less than 0.1 au (M-Br with the lowest). This 

tells us that much like the f-block species, the M-F bonds have the highest charge 

accumulation relative to the other halogen bonds, indicative of the greatest degree of 

overlap-covalency.  

Considering the Laplacian of the electron density ∇2𝜌b, the U-F bonds have the largest 

positive values of ∇2𝜌b (Mo-F: 0.577, 0.670 for the cis- and trans-bonds, W-F: 0.576, 

0.067), suggesting that similarly to the f-block species, the M-F bonds have the greatest 
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bond polarisations relative to the other halides. The HSAB framework prescribed for 

the f-block complexes, as well as the reasoning of the F-species being the most 

electronegative can be applied to validate these results.  

We notice that the trans-ligand bonds in the [MoOX5]
− and [WOX5]

− complexes have 

lower 𝜌b and ∇2𝜌b values relative to the cis-ligand bonds, suggesting that the trans-

ligand bonds have a decreased charge accumulation at the BCP (manifesting as a 

decreased degree of covalency), and an increased order of bond polarisation, relative to 

the cis-ligand bonds. In addition, the QTAIM integrated data in table 3.4 shows that the 

cis-bonds in the d-block [MOX5]
− complexes have lower atomic volumes and greater 

charge depletions than the trans-bonds, also indicative of a greater degree of electron 

sharing. The opposite was the case for the f-block species and considering the formal 

definition of species exhibiting an TI, this seems expected.  

Comparing each of the d-block [MOX5]
− complexes (where M = Mo, and W), for the X 

= Cl and Br, the 𝜌b values of the M-X bonds are greater in the [WOX5]
− species than 

in the [MoOX5]
− species. For X = F however, the 𝜌b values of the M-F bonds are lower 

in the [WOX5]
− species than in the [MoOX5]

− species. Additionally, the 𝜌b values of 

the M-O bonds are lower in the [WOX5]
− species compared to that of the [MoOX5]

− 

species. Effectively this tells us that the Cl- and Br-ligands in the [WOX5]
− complexes, 

are bonded more covalently than the Cl- and Br-ligands in the [MoOX5]
− complexes. 

Whereas the F- and the O-ligands are bonded more covalently in the [MoOX5]
− than in 

the [WOX5]
− species. The same is the case of the MX6 complexes (both optimised and 

constrained), when X = Cl and Br, the W-X bonds have higher degrees of bond 

covalency than the Mo-X bonds (for the WX6 and MoX6 species respectively), but 

when X = F, the Mo-X bonds have higher covalency characters than the W-X bonds. 

Applying the HSAB framework, we propose that the Mo(VI) species are ‘harder’ than 

the W(IV) species, as evidenced by Mo having a slightly smaller ionic radius (73 pm139)  

than the W (74 pm139); furthermore, the QTAIM atomic volumes in table 3.4 confirm 

this size difference. The F and O species have similar ionic radii (119 pm, and 126 pm 

respectively139), as well as similar electronegativities (O being the second most 

electronegative element). Considering this, the O- and F-ligands would being classed 

as harder Lewis bases relative to the Cl- and Br-ligands, and so we would expect them 
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to have a stronger bonding interaction with the harder Lewis acid of the two d-block 

metals, Mo. On the other hand, the Cl and the Br, being relatively softer Lewis acids 

would have a stronger bonding interaction with the softer Lewis acid, W.   

In total, BCP analysis of both TI and ITI-exhibiting complexes, yields that for the 

former, the trans-bonds are less covalent than the cis-bonds, and in the case of the latter, 

the trans-bonds are more covalent than the cis-bonds (where covalency in this case is 

pertaining to the overlap-driven type). This trend matches that of the bond length data, 

where TI-exhibiting species have relative longer trans-bonds, and the ITI-exhibiting 

species have relatively shorter trans-bonds. Furthermore, on account of the ∇2𝜌b 

metrics measuring bond polarisation,125 the trans-bonds in the ITI-exhibiting species 

are less polarised than the cis-bonds, but in the TI-exhibiting species the reverse is the 

case: the trans-bonds are more polarised than the cis-bonds. Assuming that for like-

bonds, a shorter length would indicate an increased bond strength,140 the BCPs provide 

rationalisation, where shorter bonds (such as the trans-bonds in ITI-exhibiting 

complexes) have higher values of 𝜌b, which can typically be considered to relate to 

higher thermodynamic stabilities of the bonds. We now turn our attention to the 

delocalisation indices afforded by QTAIM.36 
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3.3.2 Delocalisation indices  

Delocalisation indices 𝛿(A, B) measure the degree of electron sharing between two 

atomic basins, A and B (of which do not necessarily have to be ‘formally bonded’).36 In 

unpolarised bonds, 𝛿(A, B) values can be considered analogous to the classical notion 

of bond order. Higher values of 𝛿(A, B) typically imply higher degrees of electron 

sharing. For example, LiH, one of the more definitive examples of an idealised ionic 

bond, has been shown to have a 𝛿(Li, H) value of 0.20 au;149,150 LF, another example 

has a 𝛿(Li, F) value of 0.18 au.150,151 Whereas more covalently bonded species, such as 

the O-Br bond in HOBr, that would generally be considered to have a greater degree of 

electron sharing, has a higher 𝛿(O, Br) value of 1.05 au.124 In addition, delocalisation 

indices have been shown to infer the polarity of the bond.152 Along with BCP analysis, 

𝛿(A, B) values provide further characterisation to the bonding region between two 

species, differently to BCP metrics however, 𝛿(A, B) values measure both overlap-

driven and energy-driven covalency (BCPs are only concerned with the former). 

Therefore, a bonding region with a high 𝛿(A, B) value but a low 𝜌b value suggests that 

the energy-driven covalency type dominates. Table 3.6 presents the 𝛿(A, B) values for 

the d- and f-block, [MOX5]
− complexes, as well as the optimised MX6 and constrained 

*MX6 complexes.  
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Table 3.6. QTAIM data for the delocalisation indices (DI) of the f- and d-block [MOX5]− complexes, as well as their MX6 

counterparts (both optimised and *constrained).  

 

When modelled with a suitable model chemistry, 𝛿(A, B) values will generally scale to 

zero with the stretching of a bond length i.e. they scale inversely with bond length. This 

is reflected when comparing the f-block UX6 and *UX6 bond lengths and 𝛿(U, X) values 

(the former has bond lengths of 200.8 pm, 247.3 pm , and 264.1 pm for X = F, Cl, Br; 

the latter has bond lengths of 210.45 pm, 257.53 pm, and 274.16 pm, same order), 

clearly the optimised U-X bonds, have longer bond lengths, which are accompanied by 

lower 𝛿(U, X) values (roughly 0.025 au less). However, this is not necessarily the case 

for the d-block species, where the optimised MX6 complexes, for the most part, despite 

having shorter bonds, in some cases (MoF6, and all of the WX6 species) actually have 

lower δ(M, X) values, relative to the constrained *MX6 complexes. 

Comparing the δ(M, X) values of the cis- and trans-ligand bonds for all [MOX5]
− 

species, we see that in the f-block [UOX5]
− complexes, the 𝛿(𝑈,𝑋𝑡𝑟𝑎𝑛𝑠) values are 

greater than the 𝛿(𝑈, 𝑋𝑐𝑖𝑠)  values, whereas in the d-block [MOX5]
− complexes, we see 

the opposite is the case, the δ(U, trans-X) values are lower than the 𝛿(𝑈, 𝑋𝑐𝑖𝑠); this is 

expected considering the relative bond lengths. This tells us that in the f-block species, 

the degree of electron sharing is greatest in the trans-bond relative to the cis-bonds, and 

M X [MOX5]
−  MX6 *MX6 

  𝛿(U, O) 𝛿(U, X𝑐𝑖𝑠) 𝛿(U, X𝑡𝑟𝑎𝑛𝑠) 𝛿(U, X) *𝛿(U, X) 

U 

F 1.951 0.752 0.840 0.961 0.935 

Cl 2.004 0.826 0.986 1.088 1.062 

Br 2.031 0.863 0.991 1.129 1.103 

       

Mo 

F 1.779 0.676 0.529 0.815 0.816 

Cl 1.935 0.795 0.443 0.949 0.947 

Br 1.950 0.810 0.575 0.985 0.984 

       

W 

F 1.632 0.639 0.497 0.743 0.744 

Cl 1.788 0.748 0.524 0.906 0.907 

Br 1.835 0.795 0.542 0.956 0.957 
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in the d-block species, the degree of electron sharing is greatest in the cis-bonds relative 

to the trans-bonds, which conclusively follows a similar trend as BCP metric data.  

Considering the f-block [UOX5]
− species as a function of halogen X, the U-Br bonds 

(both the cis- and trans-bonds, from the [UOBr5]
− complex) have the highest 𝛿(U, X) 

values, followed by the [UOCl5]
− and then the [UOF5]

− complexes, suggesting the 

degree of electron sharing in the U-X bonds is greatest when X = Br, and lowest when 

X = F. The opposite trend was shown in the charge accumulation metrics 𝜌b, where the 

U-F bonds in the [UOF5]
− species have the greatest 𝜌b values, indicative of the highest 

charge accumulation, followed by the U-Cl, and then the U-Br bonds. Effectively, these 

two opposing trends imply that in the case of the U-X bonds in the f-block species, the 

overlap-driven covalency (measurable by 𝜌b metrics) and energy-driven covalency 

(indicative from both 𝛿(A, B) and 𝜌b values) appear to scale opposingly, where the 

orbital-driven type is greatest in the U-F bonds and lowest in the U-Br bonds, and the 

energy-driven type, is lowest in the U-F bonds but greatest in the U-Br bonds. Table 

3.5 and 3.6 also show that this trend is the same for both of the d-block [MOX5]
− species 

(M = Mo, W), where the 𝛿(M, X) values and 𝜌b metrics scale opposingly. The [MOF5]
− 

species have the highest values 𝜌b  values and the lowest values 𝛿(M,Br), and the 

[MOBr5]
− species have the lowest 𝜌b values but the highest values of 𝛿(M,Br).  

Comparing the M-X bonds in the d-block [MoOX5]
− and [WOX5]

− complexes, table 

3.6 shows that the 𝛿(𝐌𝐨, X) values are typically greater than the 𝛿(𝐖,X)  values (both 

cis- and trans-), suggesting a higher degree of electron-sharing in the bonds (however 

as they are constituted from different bonding species and exhibit different bond 

lengths, we can determine this qualitatively). Furthermore, table 3.5 shows the 𝜌b 

values of the Mo-X bonds are also greater than the W-X bonds, suggest that the M-X 

bonds in the  [MoOX5]
− species have higher degrees of overlap-driven covalency 

relative to the W-X bonds in the [WOX5]
− species. As DIs typically acknowledge both 

types of covalency, it seems possible, that the slightly higher 𝛿(𝐌𝐨, X) values (relative 

to the 𝛿(𝐖,X) values) are also due to this increase in orbital-driven covalency, whilst 

perhaps the energy-driven covalency in the [MoOX5]
− and  [WOX5]

− species’ M-X 

bonds are similar (or scaling slightly with the bond length differences).   



Chapter 3  3.3 QTAIM Analysis 

 

76 

Comparing the f-block U-X bonds’ 𝛿(𝐔, X)  values (in the [UOX5]
− complex, both cis- 

and trans-) to their corresponding U-X bonds from the UX6
 counterparts, we see that 

the 𝛿(𝐔, X) values of the former are lower than the 𝛿(𝐔,𝑋) values of the latter, 

suggesting the U-X bonds in the [UOX5]
− complex have lower degrees of electron-

sharing than of that in the UX6 complex. As the 𝛿(𝑈, 𝑋𝑐𝑖𝑠)   values are lower than the 

𝛿(𝑈, 𝑋𝑡𝑟𝑎𝑛𝑠)   values in the [UOX5]
− complex, this suggests that replacing a ligand X 

with a strong σ-donor (O-ligand) in the UX6 complexes causes the 𝛿(𝐔, axial-𝑋) to 

decrease by 19.0%, 24.1%, and 23.6% (forming the trans-bond) and the 

𝛿(𝐔, equatorial-𝑋) by 12.6%, 9.4%, and 12.2% (forming the cis-bonds) for the F, Cl, 

and Br ligands respectively.  

In the d-block complexes (M = Mo, W), a similar trend is shown when comparing the 

M-X bonds’ 𝛿(𝐌, X)  values in the [MOX5]
− complexes to that of the corresponding 

MX6 complexes. Both the 𝛿(𝑀, 𝑋𝑐𝑖𝑠) and 𝛿(𝑀, 𝑋trans)    values (from the [MOX5]
− 

complexes) than the MX6 complexes, with the 𝛿(𝐌, trans-𝑋) values being lower than 

the 𝛿(𝑀, 𝑋𝑐𝑖𝑠). Therefore replacing a ligand X with an O species in the MX6 complexes 

causes the electron-sharing in the bonds to decrease in both the axial and equatorial 

directions (with the latter being most significant).  
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3.4. Natural Bond Orbitals Analysis  

Following the QTAIM topological approach, where we provided clarification into the 

energy-driven and overlap-driven covalencies established in the M-X bonds in the 

[MOX5]
− complexes, we now turn our attention to an alternative orbital-based approach 

to assess bonding covalency, natural bond orbital analysis (NBO).  

3.4.1. NBO Analysis of the f-block Species  

As discussed in section 2.4.2, NBO assigns each atomic species in a molecule a Lewis 

structure, as well as a set of orthonormal, localised, bonding orbitals akin to the conical 

s, p, d, and f. Furthermore, in the case of a formal bond between two Lewis structures, 

NBO details each species’ contributions into the bond, providing insights to the degree 

of covalency and bond polarisation in terms of bond orbitals. Figure 3.7 shows the 

NBO data of the f-block species’ U-X σ-bonds, where the individual bond orbital 

percentages of the cis- and trans-bonds, from each species are scaled to the species 

contribution to the bond. Additionally, the NBO data for the corresponding U-X σ-

bonds from the optimised UX6 complexes are also presented. The data presented in 

figure 3.7 is provided in the supplementary section (section 7, table 7.1).  

Firstly, it would be useful to give an illustrative example, to clarify what we mean by 

the bond contribution percentages and ‘scaled up’ bond orbital percentages. Typically, 

a ‘perfectly’ covalent metal-halogen bond would have a 50% bond contribution from 

each bonding species. The degree of covalency increases with the metal contribution 

percentage, as the metal species becomes more ‘involved’ with the bonding. As for the 

natural bond orbitals, NBO provides a break-down of the species’ contribution to a bond 

in terms of percentages of s, p, d, and f-bond orbital character. We ‘scale’ these bond 

orbital percentage (by multiplying it by the species bond contribution percentage), so 

as to obtain the exact percentage of bond orbital from that species in the overall bond. 

In the case of the [UOX5]
− complexes, the in U-X bonds are a result of around 10-20% 

uranium contribution, and 90-80% halogen contribution. A higher U-contribution 

(accompanied by a lower X-contribution) would signify a greater shared element to 

the U-X bonding, characteristic of being more covalent.  
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Perhaps the first thing to note from figure 3.7 is that as the halogen atomic number 

increases (moving from F to Br), the degree of covalency increases for both the cis- and 

trans-bonds, as indicated by the higher U (and lower X) contributions to the U-X bonds 

(and this is the case for both the [UOX5]
− and the UX6 complexes). Resultantly, this 

tells us, that by NBO classification, the lowest degree of bond polarisation and highest 

degree of bond covalency resides in the U-Br bonds, followed by the U-Cl, and then the 

U-F bonds are the least covalent-like and polarised. We note that this trend in covalency 

agrees with the QTAIM 𝛿(U, X) values (shown in table 3.6) but disagrees with the 

QTAIM 𝜌b values (table 3.3), where the former classifies both overlap-driven and 

energy-driven, and the latter classifies overlap-driven exclusively. This suggests that 

the NBO covalency characterisations are predominantly focused on the elucidation of 

energy-driven covalency, and not necessarily overlap-driven. Furthermore, the NBO 

trend in bond polarisations matches that of the QTAIM ∇2𝜌b metrics, whereby the U-F 

species have the most positive values (indicative of a more polarised bond). 
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Figure 3.7. NBO data for the U-X σ-bonds for the [UOX5]− and UX6 complexes, where X = F (left trio), Cl (middle), and Br (right). 

The top part of the graph shows the U-contributions to the bond (%); the bottom half shows the halogen X-contributions to the 

bond (%). Within each of the groupings, the left and right columns represent the cis-bonds and trans-bonds in the [UOX5]− species; 

the middle column represents the U-X bonds in the corresponding UX6 complexes. For each bond contribution, a percentage for 

the constituent bonding orbitals are provided (s, p, d, and f in the colours red, blue, green and yellow respectively).  
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It is interesting to see the significance of the f-bonding orbitals from the U species in 

the U-X bonds, reminding us that the general FEUDAL34,38 bonding model, (f's 

essentially unaffected, d's accommodate ligands) breaks down in the case of the ITI 

exhibiting complexes, as previously shown by Berryman.37 However, the fact that the 

UX6 complexes, that do not exhibit an ITI, also show dominant f-orbital contributions, 

suggests the FEUDAL model may not be apparent in NBO analysis. Notable, is that 

there are no p-orbital contributions from the U, which is surprising considering that the 

pseudo-core 6p-orbital plays an integral role in the polarisation model of the ITI.7 

However, if we recall, the model describes how the 6p-orbital effectively lowers the 

energy of adjacent orbitals, allowing for more significant overlap of those orbitals. 

Furthermore, this suggests that the 6p-orbital plays more of an indirect role in the ITI, 

and therefore it is probably expected to be absent in the NBO analysis of the bonding.   

By modelling the [UOX5]
− complexes as a ‘deviations’ from the UX6 complex: for X = 

Cl and Br, we see that the replacement of a ligand X with a ligand O in the UX6 causes 

the equatorial bonds (that go on to become the cis-bonds in the [UOX5]
− complex) to 

decrease in covalency, on account of lower U-contributions (0.4% and 0.8% decrease 

for the Cl and Br variants respectively); the axial bonds (that become the trans-bonds) 

increase in covalency, on account of greater U-contributions (1.4% increase for both 

Cl and Br variants). For the [UOCl5]
−  species, the decreased covalency in the cis-bonds 

compared to the UCl6 complexes appears to be mediated by a decrease in both d- and 

f-orbital constituents (0.3% for both), and an increase in the s-orbital (0.2%). For the 

[UOBr5]
−  species, the decrease covalency is also mediated by a decrease in d-orbital 

(0.2%) and increase in s-orbital (0.2%), but alternatively, an increase in the f-orbital 

(0.5%). However, comparing U-X bonds in the UBr6 and UCl6 species, we see the 

former has a more significant p-orbital character, which may affect the change in f-

orbital character when compared to the [UOBr5]
−  species. The increased covalency, 

of the trans-bonds in the [UOX5]
− complex (X = Cl, Br) compared to the UX6 bonds, 

appears to be driven by a simultaneous increase in d-orbital (2.6% for the U-Cltrans and 

2.9% for the U-Brtrans) and s-orbital (1.1%, and 1.3%, same order), subsidised by a 

decrease in f-orbital character (2.0% and 1.5%, same order).  



Chapter 3  3.4 Natural Bond Orbitals Analysis 

 

81 

As for X = F species, replacing a ligand F in the UF6 species with an O ligand causes 

the U contributions in both axial (trans-) and equatorial (cis-) U-F bonds to decrease, 

indicative of a decrease in the degree of bond covalency, with the latter being more 

significant. The decrease in covalency of the cis- and trans-bonds compared to the UF6 

bonds is primarily driven by an decrease in f-orbital character (1.7% for the cis-bonds, 

2.4% for the trans-bonds), as was the case for just the trans-bonds in the [UOCl5]
− and 

[UOBr5]
− species (but in these cases, the cis-bonds’ orbital constituents remained 

relatively uniform with the UX6 orbital constituents). What is interesting is that the d-

orbitals contributions increase in the trans-bonds (4.8% in the UF6  to the 5.3% in the 

U-Ftrans bonds) but decrease in the cis-bonds (4.8% to 3.5% in the U-Fcis bonds). This 

overall implies that the increased covalency of the trans-bond can be traced to an 

increased d-bond orbital character. 

Comparing the cis- and trans-bonds in terms of X- and U-contributions to the bond, we 

see that the cis-bonds have lower U and higher X contributions than the trans-bonds. 

This describes the U species as being less ‘involved’ in the U-Xcis bonds relative to the 

U-Xtrans bonds; suggests a decreased bond covalency in the cis-bonds relative to the 

trans-bonds, agreeing with both the bond length and topological analysis. Furthermore, 

the increased covalency in the trans-bond, relative to the cis-bond, appears to be driven 

by a greater s-orbital (0.2%, 0.9%, and 1.1% for the X = F, Cl, Br respectively), and d-

orbital constituents (1.8%, 2.9%, and 3.1%, same order), whilst subsidised by a lower 

f-orbital constituent (0.7%, 1.7%, and 2.0%, same order). Overall, this suggests that the 

shortened and relatively more covalent trans-bonds (as characterised by bond 

optimisations and QTAIM) in ITI-exhibiting molecules, can be accounted for due to an 

increase in d- and s-orbital, and a decrease in d-orbital constituents by NBO definitions.  
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3.4.2. NBO Analysis of the d-block Species  

 

We have attempted to assess the d-block [MOX5]
− (M = Mo, W) species with NBO. 

However, it was found that the d-block species did not ‘conform’ to Lewis-like 

structures as easily as the f-block species. Using the $CHOOSE function in the NBO 

software,109 we were able to manually assign Lewis-structures to the [MoOX5]
− species 

(where X = Cl, and Br), but puzzlingly, not the [WOX5]
− or [MoOF5]

− species. Figure 

3.8 presents the NBO data of the [MoOCl5]
− and [MoOBr5]

− species, along with their 

analogous MoCl6 and MoBr6 complexes. The data presented in figure 3.8 is provided 

in the supplementary section (section 7, table 7.2).  

Figure 3.8 shows that for the d-block [MoOX5]
− species, the trans-bonds have a lower 

Mo-contribution percentage (17.0% and 17.9% for X = Cl, and Br respectively) than 

the cis-bonds (26.1% and 24.6%, same order), suggesting a decrease degree of 

covalency for the former. Considering the f-block [UOX5]
− species showed the opposite 

trend via NBO analysis (the trans-bonds had greater U-contribution than the cis-

bonds), and considering our characterisation of the ITI and TI in both the bond length 

and QTAIM sections showed the trans-bonds had increased covalency in ITI-

exhibiting species, and decreased covalency in TI-exhibiting species, this trend 

between the d-block cis- and trans-bonds, via bond-orbital analysis seems expected.  

Comparing the [MoOX5]
− species to their MoX6 counterparts, we see a similar trend as 

was shown between the [UOF5]
− and UF6 species, where both the cis- and trans-bonds 

(of the [MoOX5]
− complex) have lower metal contribution percentages than the Mo-X 

in the MoX6 complexes. In terms of the bonding orbital characters, we see that the 

relative decrease in Mo-contribution is mediated by a decrease in both s- (6.0% for Cl, 

7.1% for Br) and d-orbital (4.9% and 7.7%) constituents. For the cis-bonds, we see that 

Mo-contributions in the Mo-Clcis bonds (from the [MoOCl5]
− complex) have similar 

orbital constituents to the Mo-Cl bonds from the MoCl6 complex (differing by around 

1% for both s- and d-orbitals). whereas in the Br-based derivative, the Mo-Brcis
 bonding 

has significantly lower s-orbital character (4.5%) from the Mo-contribution than in the 

Mo-Br bonds in the MoBr6 complex.  
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Figure 3.8. NBO data for the Mo-X σ-bonds in the [MoOX5]− and MoX6 complexes, where X = F (left trio), Cl (middle), and Br 

(right). The top part of the graph shows the Mo-contributions to the bond (%); the bottom half shows the halogen X-contributions 

to the bond (%). Within each of the groupings, the left and right columns represent the cis-bonds and trans-bonds in the [MoOX5]− 

species; the middle column represents the Mo-X bonds in the corresponding UX6 complexes.  
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Figure 3.8 unexpectedly seems to imply that for the d-block [MoOX5]
− complexes, X 

= F, Br, the cis-bonds are more polarised than the trans-bonds, and furthermore, less 

covalent in character. Considering our definitions and interpretations of the TI up to this 

point, this is puzzling. The NBO data for [MoOCl5]
− seems to model the TI as we would 

expect, where the trans-bonds are typically more polarised and more ionic (less 

covalent) than the cis-bonds. Furthermore, figure 3.8 shows that in the [MoOCl5]
− 

species, the cis-bonds are relatively uniform to the Mo-Cl bonds in the MoCl6 complex, 

whereas the trans-bond decrease covalency character, a result of their lower s- and d-

orbital contributions (the latter being more significant). Interestingly, in the f-block 

[UOCl5]
− species, the cis-bonds are also relatively uniform with the UCl6

 bonds, whilst 

the trans-bonds increase in covalency, on account of an increase in d-orbital character.  
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Chapter 4 

Results & Discussions at the Excited States 

4.1 Overview of the Excited States  

Following on from our characterisation of the ITI/TI in the ground state, our aim here 

in the excited state sections, is to find specific electronic transitions between molecular 

orbitals (MO) that could effectively remove, decrease or increase the ITI/TI. This was 

considered by identifying, and then exciting out of (or into) ‘interesting’ MOs found at 

the ground state; then allowing the structure to relax under a geometry optimisation at 

this new excited state. Our conjecture was that if these particular MOs had contributory 

roles to the ITI or TI, depopulating (or populating) would yield characteristic 

differences influencing the extent of the ITI or TI.  

We define ‘MOs of interest’ as any MOs around the UV/Vis region that would 

characteristically affect the linear O-M-Xtrans moiety in the [MOX5]
− complexes 

differently to the axial cis-ligands; effectively causing a shift in the magnitudes of ITI 

or TI. MOs pertaining to the linear O-M-Xtrans moiety are A1 in symmetry. The excited 

state section is separated into two parts: assessment of the excited states in the ITI 

exclusively (which only include the f-block species, complexes I – III, figure 1.3), and 

assessment of the excited states pertaining to both the ITI and the TI (which involves 

all complexes in figure 1.3  ̧I – IX). The excited state properties of each of the d- and 

f-block complexes I – IX were investigated using a time-dependant density functional 

theory approach (TD-DFT), implemented with the ESCF program153 from the 

TURBOMOLE61 software package. The calculations use the same basis sets (aug-cc-

pVTZ for the main group elements) and electronic structure method, B3LYP detailed 

in previous sections. TD-DFT is the generalisation of the methodology provided by 

DFT to the excited states, it is formally based around the Runge-Gross (RG) theorem, 

essentially a time-dependant analogue of the Hohenberg-Kohn (HK) theorem.154  

Complexes I – IX are all C4v symmetry, with 8 symmetry operations: E (the identity 

operation), a C4 rotational axis (±90° rotations), a coincident C2 axis, together with 2σv 

and 2σd mirror planes. The principle C4 axis coincides with the O-M-Xtrans moiety.  



Chapter 4  4.2 Excitations Exclusive to the ITI 
 

 

 

86 

4.2 Excitations Exclusive to the ITI 

 The intuition behind considering how excitation could affect the ITI came from a 

paper published by Kaltsoyannis et al.8 They showed that by considering the MOs of 

differently substituted [UOX5]
− complexes, where X = F, Cl, and Br (the same used in 

this project), one could rationalise the different ITI magnitudes. To elaborate, a 

species exhibiting lower magnitudes of ITI, are shown to exhibit higher antibonding 

character in the M-Xtrans  position (for example the bromine f-block complex), whereas 

species exhibiting higher levels of ITI magnitudes (such as the fluorine types) have 

lower antibonding character in the in the M-Xtrans position.8 A rationalisation of this is 

afforded using Denning’s7 polarisation model (a reminder that this is critically 

dependant of the relative parities of the metal’s HOMO and LUMOs, as detailed in the 

introduction). Higher antibonding character in the M-Xtrans static interaction causes a 

greater polarisation of the metal’s core electrons, resulting in an increase in dipolar 

character and increase in the trans-bond length (decreasing the ITI). Our work follows 

on from here, detailing what happens to the structure when electrons are excited out 

of certain orbitals and into non-bonding orbitals (effectively reducing or increasing 

their bonding contributions), as far as we are aware this is the first documentation of 

attempting to remove the ITI via excitation. Figure 4.1 presents a flow chart for the 

methodology in this section. 

 

 

 

 

Figure 4.1. flow chart of the methodology behind the excited state calculations exclusive to the f-block species.  

Considering tasks 1 and 2 in figure 4.1, for each halide derivative of the [UOX5]
− 

complexes, we have characterised two types of ‘interesting’ MOs exclusively in the f-

block species, that have similar energies and quantitative characteristics. Both of the 

MOs definably have U-fz3 character. The first type shows formal bonding between the 

O-2pz and trans-Cl-2pz  of which we label from now on as the σu MO (on account of 

their approximate parity symmetries resembling that of a formal σu interaction). The 
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second type is the antibonding counterpart to the σu MO, which we define here as the 

σu* MO. Figure 4.2 shows depictions of these MOs for each halogen type as well as 

their energies in eV. All MOs in figure 4.2 span the A1 irreducible representation; their 

similar qualitative representations lead us to believe they are comparable. Henceforth, 

when referring to these molecular orbitals, we will use the code MX-μa1, whereby M is 

the metal, X is the ligand, and μ describes the a1 MO. For example, the top left MO in 

figure 4.2 would be UF-14a1.  

Figure 4.3a, shows the non-bonding U species’ fδ virtual orbital, where the electrons 

from the σu MOs (figure 4.2a) will be excited into, an illustration of this movement of 

electronic energy is shown in figure 4.4a, we henceforth title this non-bonding orbital 

δU. The δU MOs are highly desirable for exciting into due to their symmetric and 

uranium-centric nature. Typically, exciting into these non-bonded virtual orbitals would 

cause the U(VI) cation to increase in electronic charge, lowering its oxidation state; 

reducing its effective nuclear pull, which resultantly, we would expect would lower the 

interactions between the U and the ligands. The advantage, however, is that all U-X 

bonds would be affected in the same way, with no directionality to the changes.  
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 [UOF5]− [UOCl5]− [UOBr5]− 

σu 

 

14a1 (−4.90 eV) 19a1 (−6.06 eV) 28a1 (−5.63 eV) 

σu* 

 

16a1 (2.45 eV) 21a1 (0.82 eV) 

 

 

 

Figure 4.2a (top) + 4.2b (bottom) depictions of the f-block σu and σu* molecular orbitals for each halogen type, as well as their 

a1-type classification and orbital energy in parenthesis.  

 

 

Figure 4.3a (left) + 4.3b (right). MO depictions for the orbitals we excite into (left) and out of (right). These depictions are taken 

from the [UOCl5]− complex. The δU non-bonding orbital (left) has the following energies and classifications for each halogen type:  

0.087 eV (3b1), −0.803 eV (4b1), and −0.922 eV (8b1) for the F, Cl, and Br-types respectively. The cis-px/y non-bonding occupied 

orbitals (right) have the following energies and classifications for each halogen type: −7.47 eV (2b1), −5.98 (3b1), and −5.50 eV 

(7b1) for the F, Cl, and Br-types respectively.  

 

 

 

δU virtual cis-px/y occupied 

 

 

30a1 (0.49 eV) 
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Figure 4.3b shows the occupied cis-px/y non-bonding MOs, of which their electrons 

will be excited out of, and into the antibonding σu* MOs (figure 4.2b), an illustration 

of this movement of electronic energy is shown in figure 4.4b. Differently to excitations 

involving the δU orbital, we would expect excitations involving the cis-px/y orbital to 

affect the cis-ligands differently to the trans-ligands as the MO is highly directional in 

the position of the former. As clearly shown in figure 4.3b, the density is concentrated 

only on the equatorial ligands and not the axial ligands; we speculate that exciting from 

this orbital would cause the cis-ligands to decrease in electron density slightly more so 

than the trans-ligands. If this is the case, we might expect the interaction between the 

U and the cis-ligands to decrease slightly more so than that of the U and the trans-

ligands (manifesting as a greater bond length elongation).  

  

 

 

 

 

 

 

 

 

Figure 4.4a (top) + 4.4b (bottom). The top illustration shows the excitation involving the σu MOs (fig. 4.2a) being excited to the 

δU MOs (fig. 4.3a). The bottom illustration shows the excitation involving the σu* MOs (fig. 4.2b) being populated from electrons 

from the cis-px/y MOs (fig. 4.3b). 
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The first 20 singlet excitations in the B1 state were considered for the [UOX5]
− 

complexes, of these 20, specific excitations that predominantly involved the desired 

MO transitions (illustrated in figure 4.4) were identified. Table 4.1 summarises the 

relevant transitions at the ground state geometry, including their dominant orbital 

transition contributions, alongside their excitation number (respective of the ground 

state vertical excitation) and the excitation energy. When referring to excitation, we use 

the capitalised ∑ symbol to distinguish which excitation is pertaining to which MO, for 

example, excitations involving a transition out of the σu MO will be referred to as ∑u 

excitations, and excitations involving transition into the σu* MOs will be referred to as 

∑u* excitations.  

Table 4.1. The Σu and Σu* excitations at the ground state geometry, of which predominantly involve the σu and σu* MOs 

respectively (shown in bold) are presented as a sum of the dominant contributions and excitation energies (Ex. Energy) in eV.  

 

 

Figures 4.5(a-c) show transition diagrams for the [UOX5]
− complexes (X = F, Cl, and 

Br), the middle columns display the vertical excitations at the ground state geometry, 

the green lines represent the Σu excitations, the red lines represent the Σu* excitations, 

and the yellow lines represent excitations concerning the metal’s dz2 MO (which is 

discussed further in section 4.3). Following the identification of these excited states of 

Excitation Complex B1 vector Ex. energy / eV Contributions  │Coeff.│2 × 102 

F-Σu [UOF5]
−
 6 4.627 

14a1 → 3b1 89.4 

10e → 12e 4.2 

Cl-Σu [UOCl5]
−
 7 3.013 

19a1 → 4b1 48.7 

14e → 16e 28.0 

13e → 16e 10.7 

20a1 → 4b1 4.8 

Br-Σu [UOBr5]
−
 7 2.651 

28a1 → 8b1 44.5 

24e → 27e 30.2 

25e → 27e 13.2 

25a1 → 28b1 8.1 

F-Σu* [UOF5]
− 16 6.410 2b1 → 16a1 99.9 

Cl-Σu* [UOCl5]
− 15 4.511 

3b1 → 21a1 84.8 

11e → 16e 9.8 

Br-Σu* [UOBr5]
− 14 4.088 

7b1 → 30a1 49.2 

26a1 → 8b1 29.6 

22e → 27e 17.9 
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interest, the molecular structure of each of these states was optimised (tasks 3 + 4 in 

figure 4.1). The transitions at the replaced σu
 focussed geometry (from the Σu excitation) 

are shown in the right-hand column; the transitions at the replaced σu* focused geometry 

(from the Σu* excitation) are shown in the left-hand column. In both cases, at the excited 

state geometries, the ground state energy is increased, and the energy of the MO of 

interest is decreased (relative to the ground state geometries).  

Considering the data in the top section of table 4.1, we acknowledge that the desired 

transitions for the [UOX5]
− complexes where X = Cl, and Br, have low contribution 

percentages (48.7% and 44.5% for the Cl, Br respectively). The [UOF5]
− species on the 

other hand, has a far more definitive contribution amount from the desired transition 

(89.4%). Nevertheless, the fact that both species have inherently similar contributions 

and energies tells us that these excitations must be analogous and comparable. 
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Figures 4.5a, b, and c (top to bottom). Transition diagrams for B1 vertical singlet excitations in the [UOX5]− complexes, where X 

= F (top. Fig. 4.5a), X = Cl (middle, fig 4.5b), and X = Br (bottom, fig 4.5c). The middle columns show the vertical excitation 

energy in the ground state geometry, the left-hand columns show vertical excitation  energies when optimised to the Σu* state’s 

corresponding geometry; the right-hand columns show the energies when optimised to the Σu excited state geometry. 
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4.2.1. Optimising the Σu Excited State 

Figure 4.6 shows a plot of the bond distances in picometres (pm) for all f-block 

[UOX5]
− species at the ground state geometries, alongside the Σu and Σu* excited state 

geometries (green and red plot points respectively). The numerical data for this graph 

is presented in section 6, table 6.12. There is an ‘idealised’ line (grey, dashed) that 

represents a ‘perfect’ bond ratio value of 1, where the cis- and trans-bonds are equal. If 

the plot points go over this line from the ground state, then it signifies a reversal of the 

influence (ITI species now exhibiting a TI for example). Alongside this, the excited 

state bond lengths are presented as a percentage increase from the ground state bond 

lengths for the Σu excited state (fig 4.7), and the Σu* excited states (fig 4.8).   

 

Both figures 4.6 (b + c) and 4.7 show that the [UOCl5]
− and [UOBr5]

− complexes 

behave similarly when optimising at the respective UCl-Σu and UBr-Σu excitations. For 

the X = Cl complex, the cis-bond lengths increase by 2.7% relative to their original 

ground state value (from 257.7 pm to 264.5 pm); the trans-bond length increases by 

7.3% (251.5 pm to 269.8 pm), and the U-O bond length increases by 1.2% (177.8 pm 

to 179.9 pm). For the X = Br complex, the cis-bond lengths are increased by 2.4% (274.2 

pm in the ground state to 280.6 pm in the excited), the trans-bond is lengthened by 6.1% 

(268.6 pm to 285.1 pm), and the U-O bond length increases by 0.9% (177.4 pm to 179.0 

pm). The ITI magnitude for the [UOCl5]
− complex changes from 0.977 in the ground 

state, to 1.020 in the excited state, and for the [UOBr5]
− complex, 0.98 to 1.016. The 

values now being greater than 1, signifies a reversal of the ITI into a trans-influence, 

on account of their trans-bond lengths being greater than the cis-bond lengths in the 

excited state geometries.  
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Figure 4.6a-c. Plot of the cis- (x-axis) and trans-bond (y-axis) distances (in pm) of the [UOX5]− complexes at the ground 

(colourless), ∑u (green) and ∑u* (red) excited state geometries where X = F (top, fig 4.6a), Cl (middle, fig 4.6b), and Br (bottom, 

fig 4.6c). An idealised line with a cis/trans bond ratio of 1 is plotted (dashed grey line). Numerical data for these plots is shown in 

table 6.12 (section 6).  
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Complex ITI (gs) ITI (∑u) 
 

   

[UOF5]
− 0.970 0.928 

   

[UOCl5]
− 0.977 1.020 

   

[UOBr5]
− 0.980 1.016 

   

   

 

Figure 4.7. Graph showing the ∑u excited state bond lengths for the [UOX5]− complexes (X = F, Cl, Br) as a percenatge increase 

from the ground state bond lengths, where the red bars represent the U-Xcis bonds, the blue bars represnet the U-Xtrans bonds, and 

the green bars represent the U-O bonds. In addition, the magnitudes of the ITI at the gound state (gs) are shown in the far left 

coulmn, and at the ∑u excited state in the second column.  

 

As shown in figures 4.6a + 4.7, the geometry of the [UOF5]
− complex in the ∑u state 

does not follow the same deformation pattern as the [UOCl5]
− and [UOBr5]

− complexes. 

This is quite surprising as throughout the ground state characterisation, both QTAIM 

and NBO detailed how the [UOF5]
− complexes typically mirrored the [UOCl5]

− and 

[UOBr5]
− complexes’ behaviour qualitatively. Differently (in fact opposite to the 

[UOCl5]
− and [UOBr5]

− complexes), the corresponding excitation in the [UOF5]
− 

results in the cis-bonds elongating far more significantly than the trans-bonds 

(manifesting as an increase in the ITI). Specifically, the U-F cis-bonds lengthen by 

5.0% (210.5 pm in the ground state, 221.0 pm in the excited); the trans-bond is only 

lengthened by 0.5% (204.1 pm to 205.0 pm), the U-O bond lengthens by 2.4% (which 

is also more significant than what is observed for the UCl-∑u and UBr-∑u excited 

geometries).  
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The bond length changes cause the magnitude of the ITI value in the excited state 

geometries to deviate further from the idealised value of 1 (from 0.970 to 0.928), of 

which implies an increase in the ITI magnitude.  

Referring back to the σu orbital depictions for the [UOX5]
− complexes (orbitals: UF-

14a1, UCl-19a1, UBr-28a1, fig. 4.2a), we can make reasonable assumptions as to why 

exciting from these orbitals’ manifests with the bond length changes shown in figures 

4.6 and 4.7. Considering the ∑u excitations for the [UOCl5]
−  and [UOBr5]

− complexes 

(concerning MOs UCl-19a1, UBr-28a1 respectively), there is a clear bonding interaction 

between the uranium’s fz3 lower lobe, and trans-ligands’ pz orbital. Whereas in the 

[UOF5]
− complexes’ UF-14a1 MO, there is clear non-bonding interaction between the 

same orbital components. Resultantly, exciting from the bonding interaction between 

the U metal and the trans-ligand in the UCl-19a1 and UBr-28a1 MOs yields an increase 

in the bond length, whereas in the [UOF5]
−  complex, there is no interaction to excite 

from; therefore, there is little change in the trans-bond length. Correspondingly, the cis-

F ligands (in the UF-14a1 MO) have a more substantial pz orbital character, relative to 

the UCl-19a1 and the UBr-28a1 MO (the latter’s contribution being almost negligible). 

We see that this follows the trend where exciting out of the UBr-28a1 MO (for the 

[UOBr5]
− complex) has the least significant effect in cis-bond lengths, followed by the 

[UOCl5]
− complex, and then the [UOF5]

− with the most significant change in cis-bond 

lengths. Alongside this, we point out that the cis-ligands’ pz orbitals in the [UOCl5]
−  

and [UOBr5]
− complexes actually have inverted parity to the cis-ligands in the [UOF5]

− 

complex, and so this may affect the excitation character. 

With the same reasoning, the bonding character between the lower lobe of the U-fz3  MO 

component and O-2pz lobe is more substantial in the UF-14a1 MO, relative to that of 

the UCl-19a1 and UBr-28a1 MOs. Similarly to the trans-ligand interaction trend 

between the F, Cl and Br-complexes, the more significant U-O bonding interaction, this 

time, is in UF-14a1 MO, and resultantly yields a more substantial increase in the bond 

distance relative to that of the UCl-19a1, UBr-28a1 MOs. 
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We draw focus to the small elongation of the trans-bond in the UF-∑u* geometry, and 

propose two scenarios to rationalise this: the first, excitation out of the UF-14a1 MO 

(fig. 4.2a) via the F-∑u excitation has no differential effect on the trans-bond, in which 

case the slight increase in bond length is a result of the ‘total expansion’ previously 

described when populating the δU non-bonding orbital. The second, that optimising at 

the UF-∑u excitation actually causes a decrease in the U-Ftrans bond length which is 

counteracted by the population of the δU MO.  

Figure 4.8 shows illustrations of the difference in electron densities between the ground 

state and the excited state for each [UOX5]
−, at both the ground state geometries (left-

hand side), and the excited state geometries (right-hand side). These plots were obtained 

using the egrad96,97 function in TURBOMOLE61 and plotted using the multiWFN112 

visualisation software.  

For the [UOF5]
− complexes, the density difference plots at both the ground and ∑u 

excited state geometries (fig 4.8, top row) have a large focus in the cis-ligand positions. 

Comparing both geometries’ density differences, the density plots in the cis-positions 

are uniform at both geometries, whereas in the trans-positions, there is a slight change 

in character at the excited geometry. As for the density difference plots of the [UOCl5]
−  

and [UOBr5]
− complexes (fig 4.8 second and third rows), in the ground state geometries 

(LHS), compared to the [UOF5]
− complex, the densities are more heavily focused in the 

linear U-O-Xtrans component, relative to the equatorial cis-plane (with [UOBr5]
− being 

more significant in this respect). Alongside this, the density difference plots at the 

excited state geometries show a further reduction in the equatorial (cis-bond) plane, 

accompanied by a reduction of character in the U-O bonding region.  
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Complex Ground State Geometry  ∑u Excited State Geometry  

[UOF5]− 

 

 

[UOCl5]
− 

 

 

[UOBr5]− 

 

 

 

Figure 4.8. density difference plots for between ground and ∑u excited state densities for the [UOX5]− complexes (top to bottom, 

X = F, Cl, Br), where the left-hand side shows the density differences at the ground state geometry; the right-hand side shows the 

density differences at the excited state geometry.  

4.2.2. Optimising the Σu* excited state 

The Σu* transitions characteristically involve exciting from cis-px/y non-bonding MOs 

(fig 4.3b) and populating the σu* MOs (fig 4.2b). The constituent transitions of these 

excitations are shown in the bottom half of table 4.1; the left columns in figures 4.5(a-

c) show these transitions at the new excited state geometries post-optimisation. 

Considering the data in table 4.1, the Σu* excitations typically have more dominant 

contributions of the desired σu* MOs than the Σu excitations (99.9%, 84.8% for the F, 

and Cl), with the exception of the [UOBr5]
− complex (49.2%). Referring back to figure 

4.6, the bond lengths in picometres (pm) for Σu* excited state geometries of all f-block 
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complexes are plotted against the ground state bond lengths; additionally, figure 4.9 

shows the Σu* bond lengths as a percentage increase from the ground state bond lengths.  

 

Figure 4.9. Graph showing the ∑u* excited state bond lengths for the [UOX5]− complexes (X = F, Cl, Br) as a percenatge increase 

from the ground state bond lengths, where the red bars represent the cis-bonds, the blue bars represnet the trans-bonds, and the 

green bars represent the U-O bonds. In addition, the ITI influence magnitudes at the gound state (gs) are shown in the far left 

column, and the new ITI magnitude values at the ∑u excited state in the column to the right of it.  

 

Figure 4.6 shows that for the ∑u* geometries of all [UOX5]
− complexes, both the cis- 

and trans-bond lengths increase relative to the ground state bond lengths, and that the 

trans-bond increase being more significant than the cis-bond increase. Figure 4.9 shows 

that relative to the ground state geometry, the increase in both cis- and trans-bond 

lengths is most significant in the UF-∑u* geometry (6.6% and 7.9% increase for the cis- 

and trans-bonds), followed by the UCl-∑u* geometry (4.8%, 5.6%) and then the UBr-

∑u*geometry (2.8%, 5.7%). This trend appears to match that of the σu* →  U-δ 

transitions’ contribution percentages the overall ∑u* excitation, as shown in table 4.1, 

where the percentage is greatest in the UF-∑u* excitation (99.9%), and lowest in the Br-

∑u* excitation (49.2%). 

Complex ITI (gs) ITI (∑u*) 
 

   

[UOF5]
− 

 

 

0.970 

 

0.982 

   

[UOCl5]
− 0.977 0.984 

   

[UOBr5]
− 0.980 1.007 

   

   

U-Xcis 

U-Xtrans 

U-O 
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Figure 4.9 shows that for the [UOF5]
− and [UOCl5]

− complexes, the difference between 

the cis- and trans-bond increase percentages is 1.3% and 0.8%, suggesting that they 

increase at a fairly similar rate. This slight change in cis- and trans-bond ratios (where 

the trans-bond becomes more cis-like), results in the magnitude of the ITI moving 

closer to a value of 1, which implies a formal decrease in the ITI relative to the ground 

state (0.970 to 0.982 for the UF-∑u*and 0.977 to 0.984 for the UCl-∑u*). 

As for the [UOBr5]
− complex, figure 4.6c shows in the UBr-∑u* optimised geometry, 

the trans-bonds lengthen almost three times the amount that the cis-bonds lengthen from 

the ground state (trans-bonds: +6.1%, cis-bonds: +2.3%). The more significantly shifted 

ratio of cis- and trans-bond lengths (relative to the UF-∑u* and UCl- F-∑u* geometries) 

results in the U-Brtrans bond length now being greater than the U-Brcis (274.2 pm, 268.6 

for the cis- and trans-bonds in the ground state, 277.0 pm, 282.4 pm in the UBr-∑u* 

geometry). Consequently, as shown in figure 4.6c, the UBr-∑u* geometry is redefined 

to exhibit a TI (on account of the plot point ascending over the idealised line). We 

rationalise the difference in the UBr-∑u* geometry being a result of the different MO 

transition contributions and magnitudes shown in table 4.1.  
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4.3. Excitations Invoking the TI and the ITI 

After considering the f-block species, and by extension, the ITI exclusively, we go on 

to compare the f-block excitations to d-block excitations, and further, the ITI to the TI. 

We begin with a hypothesis that the ITI and TI originate from the same electronic 

effects, such that exciting from analogous MOs in the d-block species as were 

considered in the f-block, should therefore show a reverse or at least an interpretably 

opposing effect. In accordance to this, figure 4.10 shows a revised flow chart. 

 

 

 

 

Figure 4.10. flow chart of the methodology behind the excited state calculations involving the f-block and the d-block species.  

Considering tasks one and two in figure 4.10, the previously characterised MOs for the 

f-block species (σu and σu*) are unsuitable, as the d-block species do not contain 

analogous occupied fz3 orbitals. Therefore, we expand our definition of ‘interesting 

orbitals’ so as to include MOs present in both the f-block and d-block species. The most 

apt comparable orbital for both the f- and d-block species that incorporate the linear O-

M-Xtrans feature, are the MOs centred around the metal-dz2 atomic orbitals (6dz2 for the 

U, 4dz2 for the Mo; 5dz2 for the W). Figure 4.11 shows these identified MOs of the a1-

type for the d-block and f-block species, as well as their orbital energies (eV). These 

MOs will henceforth be referred to as the σg MOs, in accordance with their relative 

approximate parities (no inversion centre and so no formal parity classifications).  
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 F Cl Br 

[UOX5]
−
 

12a1 (−8.40 eV) 17a1 (−7.60 eV) 26a1 (−7.54 eV) 

[MoOX5]
−
 

9a1 (−9.29 eV) 14a1 (−8.84 eV) 23a1 (−8.91 eV) 

[WOX5]
−
 

9a1 (−8.07 eV) 14a1 (−8.84 eV) 23a1 (−8.55 eV) 

 

Figure 4.11. Depictions of the dz2-focused MO’s for both the f-block uranium species (top row) and the d-block molybdenum and 

tungsten species (second and third rows respectively). The illustrations were generated using the multiWFN software package.112 

Note that the top row f-block species are highlighted in yellow, as transitions containing these MOs were previously identified in 

figure 4.5.  

 

Figure 4.11 illustratively shows how the σg MOs in the f-block species (top row) in fact 

exhibit a mix of the dz2 and fz3 atomic orbitals (the former being dominant), presumably 

due to the similar energies and symmetry of those AOs. We also note a similar 

qualitative trend of both the d- and f-block σg MOs compared to the σu MOs (figure 

4.2a), where the involvement of the cis-X orbitals appears to be lessened when moving 

from X = F to X = Cl, with the cis-Br ligands having essentially no contribution to the 

MO, this is evident in both the f-block and d-block species.  
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For the transitions involving the f-block species (depopulating the σg MOs), the same 

virtual δU MOs (figure 4.3a) previously utilised in the ∑u excitations are used again 

here. As for the d-block species, we identify a similar non-bonding MO to take part in 

these excitations; this orbital is illustrated in figure 4.12. Due to its similarity to the dxy 

atomic orbital, we will refer to this MO as the dxy MO for the remainder of this project.  

 

 

 

 

Figure 4.12. The non-bonding dxy MO, a virtual orbital that becomes occupied upon excitation out of the d-block σg MOs.  

 

Similarly to the comments made about the non-bonding cis-px/y MOs used for the ∑u* 

excitations (fig. 4.3b), the non-bonding dxy orbital (fig. 4.12) has contributions from the 

cis-ligands but not from the trans-ligand. We would expect that populating this MO 

would increase the electronic charge on the equatorial ligands unequally compared to 

the axial ligands, likely resulting a slight uneven lengthening of the cis-bonds relative 

to the trans-bonds.  

The first 20 b1 vertical excitations in each [MOX5]
− complex were considered; the 

desired Σg excitations involving the MO transitions σg → δU (for the f-block species) 

and σg → dxy (for the d-block species) were identified, table 4.2 shows the results.   
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Table 4.2. the Σg excitations at the ground state geometry that predominantly involve depopulating the σg MOs (shown in bold) 

are presented as a sum of the dominant contributions and excitation energies.  

 

Using the same optimisation procedure outlined in the f-block exclusive section, figure 

4.13 shows the cis- and trans-bond lengths (in pm) at both the ground state, and ∑g 

excited state geometries of the [UOX5]
− complexes, where X = F (fig. 4.13a), Cl (fig. 

4.13b), and Br (fig. 4.13c). The shaded region signifies species exhibiting a ITI; the 

non-shaded region signifies a species exhibiting a TI. The numerical data for these plots 

is provided in the supplementary information, section 7, table 7.3. Additionally, figure 

4.14 presents the excited state bond lengths as percentage changes from the ground state 

bond lengths.  

 

Excitation Complex B1 vector Ex. energy / eV Contributions  │Coeff.│2 × 102 

UF-Σg [UOF5]
−
 6 4.627 

14a1 → 3b1 89.4 

10e → 12e 4.2 

UCl-Σg [UOCl5]
−
 7 3.013 

19a1 → 4b1 48.7 

14e → 16e 28.0 

13e → 16e 10.7 

20a1 → 4b1 4.8 

UBr-Σg [UOBr5]
−
 7 2.651 

28a1 → 8b1 44.5 

24e → 27e 30.2 

25e → 27e 13.2 

25e → 28e 8.1 

MoF-Σg [MoOF5]
−
 16 6.85 

9a1 → 2b1 73.7 

10a1 → 2b1 12.4 

4e → 9e 12.2 

MoCl-Σg [MoOCl5]
−
 9 5.024 

14a1 → 3b1 72.3 

9e → 14e 26.9 

MoBr-Σg [MoOBr5]
− 9 4.591 

23a1 → 7b1 63.8 

20e → 25e 35.6 

WF-Σg [WOF5]
−
 8 7.575 9a1 → 2b1 92.8 

WCl-Σg [WOCl5]
−
 9 5.573 

14a1 → 3b1 79.7 

9e →145e 11.1 

WBr-Σg [WOBr5]
− 9 5.074 

23a1 → 7b1 82.5 

20e → 25e 14.5 
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Figure 4.13a-c. Plot of the cis- (x-axis) and trans-bond (y-axis) lengths in pm of the [MOX5]− complexes at both the ground (square 

markers) and ∑g (triangle markers), where X = F (top, fig 4.6a), Cl (middle, fig 4.6b), and Br (bottom, fig 4.6c), M = U (yellow), 

Mo (purple), W (blue).  
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Figure 4.14. Graph showing the ∑g excited state bond lengths for the [MOX5]− complexes (X = F, Cl, Br and M = U, Mo, W) as a 

percenatge increase from the ground state bond lengths, where the red bars represent the cis-bonds, the blue bars represent the 

trans-bonds, and the green bars represent the U-O bonds. In addition, the influence percentages of the gound state are shown in the 

far left coulmn, and the new influence percentages at the ∑g excited state are shown in the column to the right.  

 

Complex ITI/TI (gs) ITI/TI (∑g) 

 

[UOF5]
− 0.970 1.022 

   

[UOCl5]
− 0.977 1.017 

   

[UOBr5]
− 0.980 1.019 

   

[MoOF5]
− 1.055 1.013 

   

[MoOCl5]
− 1.050 1.040 

   

[MoOBr5]
− 1.052 1.047 

 
  

[WOF5]
− 1.042 0.995 

   

[WOCl5]
− 1.055 1.018 

   

[WOBr5]
− 1.057 1.046 
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A point to note, the TI, as previously defined is an elongation of the bond opposite a 

strong σ-donor relative to the remaining cis-ligands, characteristic in d-block 

complexes.1 The ITI is the opposite, a shortening of the trans-bond opposite a σ-donor, 

typically only observed in f-block complexes.7 For this section, we loosen these 

definitions slightly so that they are not exclusive to their particular element block in the 

periodic table. This effectively positions the ITI and TI on a dynamical scale, where the 

ITI is dominates when the trans-bond lengths are shorter than the cis-bond lengths, and 

the TI dominates when the trans-bond lengths are longer than the cis-bond lengths, 

irrespective of the central cation’s location on the periodic table.  

4.3.1. ∑g Optimizations for the X = F Complexes  

For the [MOF5]
− complexes (M = U, Mo, W), considering the f-block [UOF5]

− species, 

figures 4.13a and 4.14 show that optimising at the UF-∑g excitation (characteristically 

exciting out of the UF-σg MO and into the δU MO) results in a reversal of the ITI on 

account of the lengths of the trans-bonds now being greater than the cis-bonds (218.4 

pm, and 223.3 pm, increasing by 3.8% and 9.4% respectively from the ground state, fig. 

4.14). Interestingly, in the d-block [WOF5]
− complex, optimising the analogous ∑g 

excitation concerning the WF-σg → dxy
 transition, results in a reversal of the TI on 

account of the cis-bond lengths now being greater than the trans-bond lengths (202.1 

pm and 201.1 pm, increasing by 6.2% and 1.4% from the ground state). Therefore, 

optimising the geometry after exciting out of the σg MO for the [UOF5]
− redefines the 

structure as exhibiting a TI, whereas the analogous excited state in the d-block [WOF5]
− 

species redefines the structure as exhibiting an ITI.  

The analogous excited state geometry for the d-block [MoOF5]
− species is qualitatively 

similar to the [WOF5]
− species, where the TI is reduced from 1.055 to 1.013, on account 

of the cis-bond lengths increasing by 3.8% (185.8 pm to 192.8 pm), and the trans-bonds 

lengths staying relatively uniform; only increasing by 0.2% (195.0 pm to 195.4 pm). 

Differently to the WF-∑g geometry however, the change in bond length ratio is not 

enough to classify the structure as now exhibiting an ITI, as shown in figure 4.13a, the 

WF-∑g geometry is plotted in the shaded region, whereas the MoF-∑g geometry is not, 

and stays on the TI-side of the plot. 
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The slight increase in the trans-bond lengths could be considered a result of populating 

the metal-centred non-bonding dxy MO (fig. 4.12); in which case we could argue that 

optimising at the ∑g excitation for the [MoOF5]
− species has either no effect of the 

trans-bond lengths, or the trans-bond lengths are actually decreased from the ground 

state (which is counteracted by the expansion caused from populating the dxy MO). A 

similar reasoning may be applied for optimising at the ∑g excitation for the [WOF5]
− 

species, but not for the f-block [UOF5]
− complex (UF-∑g excitation) due to the more 

significant change in trans-bond length, suggesting a more deliberate effect.  

4.3.2. ∑g Optimizations of the X = Cl and Br Complexes  

Turning our attention to the [MOCl5]
− complexes, where M = U, Mo, and W. For the 

[UOCl5]
− complex, optimising at the UCl-∑g  excitation, similarly to the UF-∑g  

analogue, results in the ITI decreasing and resultantly switching to a TI (as shown in 

figure 4.13b), a manifestation of the trans-bond elongating more significantly than the 

cis-bonds. Specifically, the trans-bond length increases by 15.0 pm (6.0% increase from 

the ground state trans-bond), and the cis-bonds lengthen by a less pronounced 4.5 pm 

(1.8% from the ground state geometry); this ratio-shift results in the ground state ITI 

magnitude value ascending over the idealised value of 1, from 0.977 to 1.017; 

redefining the structure as TI-exhibiting.  

For the d-block [MoOCl5]
− and [WOCl5]

− species, optimising the analogous ∑g 

excitations (concerning the σg → dxy MO transitions) results in a decrease of the TI. 

For the MoCl-∑g  geometry, the trans-bond length remains similar to the ground state 

bond length (only lengthening by only 0.7 pm), whilst the cis-bond lengths lengthen 

more significantly (increasing by 4.0 pm, or 1.70% from the ground state). Resultantly, 

this causes the TI of the [MoOCl5]
− species to reduce from 1.050 to 1.040.  

A similar (but more prominent) trend is shown in the [WOCl5]
− complex, the cis-bonds 

lengthen by 7.0 pm (3.0% increase from the ground state), and remarkably, the trans-

bond actually shortens by 1.5 pm (−0.6% decrease from ground state trans-bond). 

Overall, this results in the TI magnitude value of the [WOCl5]
− complex reducing from 

its ground state value of 1.055, to the excited state geometry value of 1.018.  



Chapter 4  4.3. Excitations Invoking the TI and the ITI 

 

109 

As previously mentioned, when populating a non-bonding orbital such as the dxy MO 

(fig. 4.12), we would expect a ‘total expansion’ of the molecules bond length 

(directional in the cis-bonds). This suggests that the trans-bond length actually 

decreasing when optimising the WCl-∑g excitation in the [WOCl5]
− complex (out of the 

WCl-σg and into the dxy MO), is most likely competing with this ‘total expansion.’ 

Furthermore, this implies that exciting to the WCl-∑g  state and optimising may actually 

result in the trans-bond contracting more significantly than what is shown in figures 

4.13b and 4.14. 

Figures 4.13c and 4.14 show that the ∑g excited state geometries of the [MOBr5]
− 

complexes closely match that of the [MOCl5]
− complexes. For example, in the f-block 

species, similar to the UCl-∑g optimisation, optimising at the UBr-∑g state causes a 

reversal of the ITI into a TI (0.980 in the ground state, 1.019 in the excited state), a 

result from the trans-bonds lengthening more significantly (5.1% increase from the 

ground state lengths) than the cis-bonds (1.0% increase). In the d-block [MOBr5]
− 

species (M = Mo, W), the magnitudes of the TI decreases (1.052 to 1.047 for the Mo; 

1.057 to 1.046 for the W), pushing them closer in the ITI direction, although not as 

significantly as the changes in the [MOCl5]
− complexes. We also point out that similar 

to the [WOCl5]
− complex, the trans-bond in the [WOBr5]

− complex shortens relative 

to the ground state geometry (by a much less significant 0.03% however).  

4.3.3. ∑g Optimizations and the M-O bond  

Considering figure 4.14, for the [UOX5]
− and [MoOX5]

− species, we note that the 

percentage increase (from the ground state bond length) of the M-O bond length is 

opposite in magnitude to the percentage increase of the trans- and cis-bond lengths. The 

cis-bonds can be rationalised if we consider the steric and repulsive effects of moving 

an O-ligand closer to the metal centre. As for trans-bonds, we have previously 

mentioned the dependence of the TI and ITI on the M-O bond lengths. Typically, for 

the ITI-exhibiting [UOX5]
− complexes, a shorter U-O bond is accompanied by a shorter 

trans-bond, and resultantly, greater ITI (defied by a magnitude value). We see from 

figure 4.14 that this is not the case here, a shorter U-O bond length results in a greater 

trans-bond length and less prominent (closer to 1) ITI. For TI-exhibiting [MOX5]
− 
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complexes (M = Mo, W), in the ground state, a shorter M-O bond distance results in a 

lengthened trans-bond, that manifests as an increase TI magnitude; clearly this is still 

the case in the ∑g excited state geometries.  

To summarise, for all halogen types in the f-block species, exciting out of the σg MOs 

results in the trans-bonds lengthening more significantly than the cis-bond lengths; 

ultimately redefining the excited state structure to exhibit a regular trans-influence. As 

for the d-block species, exciting out of the analogous σg MOs results in cis-bonds 

lengthening more significantly than the trans-bonds (in the case of the [WOCl5]
− 

complex, the trans-bond actually contracts slightly). Overall this results in a decrease 

of the TI from the typical ground state values of 1.05 to the excited state values of 1.01; 

particular attention is drawn to the [WOF5]
− complex, where in the excited state, the 

cis- and trans-bond ratio is calculated to be 0.995, implying the species now marginally 

exhibits an ITI (instead of a TI). 
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Chapter 5  

Conclusions + Further work 

5.1 Conclusions at the Ground State  

The research in this project aimed to elucidate the conventional ITI and TI in a series of 

several complexes, of the form [MOX5]
− (where M = U, Mo, W and X = F, Cl, and Br). 

It also considers the impact of electronic excitation on the magnitude and nature of these 

influences. 

 

For the ground state, based on DFT calculations, three separate analyses were used to 

characterise the TI and ITIs in the [MOX5]
− complexes: bond length (via geometry 

optimisations), QTAIM, and NBO, all of which mostly agreed with each other. Through 

bond length analysis, we confirm that the ITI in the f-block [UOX5]
− species manifests 

as the U-Xtrans (opposite to the O-ligand) shortening, typically by around 2.9% relative 

to the U-Xcis bonds. For the TI, we show that in the d-block [MOX5]
− species (M = Mo, 

W), the M-Xtrans bond is lengthened by around 5.0% for the [MoOX5]
− species, and 

5.1% for the [WOX5]
− complexes, relative to the M-Xcis bonds. We treat the bond length 

differences as a ratio, which provides a generalised measure of the magnitude of the 

influences, where greater deviations above (TI) or below (ITI) an idealised value of 1 

indicate a greater magnitude. Considering this measure with the f-block [UOX5]
− 

complexes, the [UOF5]
− species have the greatest magnitudes, followed by the 

[UOCl5]
− and the [UOBr5]

− species. For the d-block [MoOX5]
− complexes, the 

[MoOF5]
− species have the greatest magnitudes, followed by the [MoOCl5]

− and then 

the [MoOBr5]
− species (the same ordering as the f-block), and for the d-block [WOX5]

− 

complexes, the [MoOCl5]
− species have the greatest magnitudes, followed by the 

[MoOF5]
− and then the [MoOBr5]

− species.  

In all cases, the [MOBr5]
− species have the least differential between the cis- and trans-

bond lengths. Additionally, using the optimised ground state complexes, we rationalise 

the TI and ITI magnitudes as a function of the M-O bond, finding that the ITI and TI 

magnitudes scale inversely with the length of the M-O bond.  
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Intrinsic properties, most of which relate to the degree of covalency in the cis- and trans-

bonds, are discussed using two approaches: a topological QTAIM approach, and bond-

orbital NBO approach. Considering the first approach: Charactering the ITI-exhibiting 

[UOX5]
− complexes using BCP metrics, we show that the relative shortening of the 

trans-bond (compared to the cis-bonds) is accompanied by an increased degree of 

overlap-driven covalency, on account of the higher 𝜌b values. Using integrated DI 

metrics, we observe that the degree of electron-sharing in the trans-bond is greater than 

the cis-bonds (on account of higher δ(U, Br𝑡𝑟𝑎𝑛𝑠) values relative to the 𝛿(U, Br𝑐𝑖𝑠) 

values). This suggests that the increased covalency in the trans-bonds relative to the 

cis-bonds for the [UOX5]
− complexes (X = F, Cl, Br), is predominantly overlap-driven 

in nature. Correspondingly, QTAIM characterisation of the analogous d-block, TI-

exhibiting [MOX5]
− complexes (M = Mo, W) afforded qualitatively similar results. The 

lengthened trans-bonds had both lower 𝜌b and δ(𝑀, 𝑋𝑡𝑟𝑎𝑛𝑠) values relative to the cis-

bonds. This suggests a lower degree of overlap-driven covalency and electron-sharing 

in the M-Xtrans bonds relative to the M-Xcis bonds, the opposite of what is shown in the 

ITI-exhibiting [UOX5]
− species.  

For the Laplacian of the BCP electron density ∇2𝜌b, we opt to use an interpretation125 

where the higher values imply higher bond polarisation. With this in mind, we see that 

in the f-block [UOX5]
− complexes, the U-F bond(s) are the most polarised, followed by 

the U-O, U-Cl, and then the U-Br bonds, which matches the trends of electronegativity. 

For the d-block [MOX5]
− complexes, the M-O bonds are most polarised, followed by 

the M-F, M-Cl and M-Br. We provide a rationalisation for this using HSAB 

principles.143,146 

Considering the [MOX5]
− species as a function of ligand X, QTAIM analysis showed 

that for both f- and d-block, the degree of overlap-driven covalency (measured by the 

𝜌b metric), was greatest in the [MOF5]
− species, followed by the [MOCl5]

− and then the 

[MOBr5]
− species (with the latter two being similar). However, analysis of the δ(𝑀, X) 

values showed the reverse trend, where the δ(𝑀,𝐁𝐫) was greatest, followed by 

δ(𝑀, 𝐂𝐥), and δ(𝑀, 𝐅). This suggests that the overlap-driven covalencies, on account of 

the 𝜌b values, and energy-driven covalencies on account of the δ(𝑀, X) values, scale 

opposingly for increasing halogen number (F to Br). To clarify, the M-F bonds (from 
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the d- and f-block [MOF5]
− complexes) have the highest order of overlap-driven, but 

lowest order of energy-driven covalency, and the M-Br bonds (from the [MOBr5]
− 

complex) have the lowest order of overlap-driven, but highest order of energy-driven 

covalency.  

Using NBO analysis, we have characterised the U-O, U-Xcis and U-Xtrans bonds in terms 

of ligand X and U-metal contributions for each of the ITI-exhibiting [UOX5]
−

 

complexes. On account of greater contribution from the cation, the order of covalency 

in the U-X goes Br > Cl > F. This agrees with the δ(𝑈, X) metrics from the QTAIM 

analysis but disagrees with the 𝜌b values (that showed the overlap-driven covalency 

increased in the order of F > Cl > Br). This suggested that the NBO characterisation 

was more akin to measuring the energy-driven covalency than the overlap-driven.  

Comparing the U-Xcis and U-Xtrans  bonds defined by NBO for all halogen derivatives, 

the trans-bonds have a higher order of bond covalency relative to the cis-bonds. 

Furthermore, analysis of the bond orbitals of the U’s contributions tells us that the 

greater covalency in the trans-bonds, compared to the cis-bonds is motivated 

predominantly, by an increase in d- and s-orbital (with a simultaneous but lesser 

decrease in f-orbital) characters. The [UOX5]
−

 complexes were compared to their 

analogous UX6 complexes. The NBO data for the cis-bonds in the [UOX5]
−

 complexes, 

where X = Cl, and Br, shows similarities to the corresponding UX6 bonding, whereas 

the trans-bonds show increased U-contribution, mediated by an increase in d- and s-

orbital, and decrease in f-orbital character. For X = F however, the cis- and trans-bonds 

in the [UOF5]
−

 complex both had lower U-contributions than the U-F bonds in UF6 

complex, but with the cis-bonds being significantly lower.  

 

Overall, in terms of NBO characterisation in the [UOX5]
−

 complexes, for X = F, Cl, and 

Br, the change in covalency of the trans-bond (in accordance to the ITI, and 

characterised by QTAIM) can be accounted for by increased d- and s- orbital 

contributions, and decreased f-orbital contributions from the U-species.  
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The NBO analysis of the d-block [WOX5]
− species was inconclusive. It was found that 

the structures did not conform to the Lewis arrangements required by NBO as expected. 

For the [MoOX5]
− complexes, only the X = Br and Cl derivatives could be 

characterised. In the [MoOCl5]
− and [MoOBr5]

− complexes, expectantly for the TI, the 

NBO analysis characterised the trans-bonds as being less covalent than the cis-bonds, 

on account of lower Mo-contributions. Interestingly, the decrease in trans-bond 

covalency was shown to be motivated by a decrease in the s- and d-orbital character. 

Therefore, we conclude that the increase in trans-bond covalency in the ITI-exhibiting 

[UOCl5]
− complexes is driven by an increase in d- and s-orbital characters (as well as 

a decrease in f-orbital character), and the decrease in trans-bond covalency in the d-

block [MoOX5]
− complexes (X = Cl, Br), is appropriately driven by a decrease in d- 

and s-orbital characters.  

To summarise the ground state analysis, we have shown that for the [MOX5]
− 

complexes, the M-X bond lengths typically scale inversely with covalency, where 

shorter bonds have higher degrees of overlap-driven covalency and lower degrees of 

bond polarisation. This applies directly to the relative shortenings/lengthening of the 

trans-bond in the ITI/TI-exhibiting [MOX5]
− complexes. We show that in all of the 

[MOX5]
− complexes considered, the X = F species have the highest magnitudes of TI 

(for the d-block species) and ITI (for the f-block species), which can be rationalised by 

the higher orders of overlap-driven covalency in the M-F bonds relative to the other 

halogens (despite having lower orders of energy-driven covalency, characterised by 

QTAIM delocalisation indices).  
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5.2 Conclusions from the Excited states  

The influence of electronic excitation (using TD-DFT) was considered for the d- and f-

block [MOX5]
− complexes, with the intent to identify key molecular orbitals (MO) that 

have contributory or defining roles in the TI and ITI. The excited state analysis was 

divided into two parts: excited states of the ITI in the f-block [UOX5]
− species, and 

excited states of both the ITI and the TI across the d- and f-block [MOX5]
− species. The 

former primarily focused on transitions involving MOs with U-fz3 character (that we 

label as σu MOs), whose occupation is exclusive to the f-block complexes; the latter 

focused on transitions involving MOs with M-dz2  character (for M = U, Mo , and W, 

that we label σg), which are occupied in both d- and f-block species. For the [MOX5]
− 

complexes, with C4v symmetry, low-lying transitions pertaining to the desired MOs 

were identified from the first 20 B1 singlet vertical excitations in the relevant excited 

states. Following this, the complexes were optimised geometrically, and the structural 

effect (pertaining to the ITI/TI) of populating or depopulating the selected MOs was 

assessed.  

The excited state analysis of the f-block exclusive excitations was also subdivided based 

on the character of the transition: the first involved depopulating the σu MOs, and the 

second involved populating the analogous σu* antibonding orbital. For the former, 

optimising the [UOX5]
− geometries post-excitation (where X = Cl, and Br) resulted in 

the trans-bond lengths increasing by roughly 7.0% relative to the ground state, and the 

cis-bond lengths increasing by around 2.5%. Resultantly, at the excited state geometries 

(for the [UOCl5]
− and [UOBr5]

− complexes), the trans-bond lengths were now greater 

than the cis-bonds, which effectively redefined the structures as exhibiting a TI at the 

excited state geometries. Differently for the [UOF5]
− species, the cis-bonds lengthened 

more significantly (5.0% from the ground state) than the trans-bonds (0.5%), this shift 

in bond ratios resulted in an increase in the ITI. We provide elucidation into the 

variances between the [UOF5]
− species and the [UOX5]

− species (where X = Cl, Br), 

suggesting they arise from the differences in the character of the MO. Specifically the 

trans-ligand’s pz orbital component in the [UOF5]
− complex, relative to the X = Cl, and 

Br derivatives, has less significant interaction with the U-fz3 orbital component. In 

addition, in the [UOF5]
− species, the cis-ligand’s pz orbital components have inverted 
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polarities compared to the same components in the [UOCl5]
− and [UOBr5]

− species, 

which provides some justification to their opposite behaviour when depopulated.  

Exciting into the σu* antibonding orbital (that has strong U-fz3 antibonding character), 

involved depopulating a non-bonding, occupied MO centred around the U-species. 

Post-excitation, the geometries of the three halide derivatives of the [UOX5]
− species 

were qualitatively the same, where the cis- and trans-bond lengths both increased 

relative to the ground state; the latter of which was more significant. The cis-bond 

elongation was greatest in the [UOF5]
− complex, followed by the [UOCl5]

− and 

[UOBr5]
− complex; the trans-bond elongation was greatest in the [UOF5]

− complex, 

followed by [UOBr5]
− and [UOCl5]

− (which had near-identical bond increase 

percentages). We rationalise the bond length increase percentages by referring to the 

percentage contributions the specific orbital transitions make to the overall excitation, 

where the  [UOF5]
− complex has the highest contribution from its σu* transition (over 

99%), followed by the [UOCl5]
− (85%) and the [UOBr5]

− (49%). Overall, this change 

in bond length ratios manifested as a decrease in the ITI; the [UOBr5]
− complex was 

the only species in which the trans-bonds were elongated significantly enough so that 

they were greater than the cis-bonds, causing a reversal of the ITI into a TI.  

Overall for the f-block species exclusively, depopulating the σu MO in the f-block 

[UOX5]
− species (where X = Cl, and Br) resulted in a reversal of the ITI, redefining the 

structure to exhibit a TI, and for the X = F species, the ITI was increased. Populating 

the corresponding σu* antibonding orbitals similarly resulted in the ITI changing to a 

TI; this was the case across all halide derivatives. 

Considering the excited state analysis of both the d- and f-block species, for the f-block 

[UOX5]
− complexes, the considered transitions involved depopulating the σg MO, and 

populating the U-centred non-bonding U∆ virtual. The analogous transition for the d-

block [MOX5]
− complexes (M = Mo, and W), the transitions involved populating a M-

centred non-bonding orbital that resembled the dxy atomic orbital. Comparing the f-

block [UOX5]
− excited state geometries to the ground state geometries, we found that 

for all halide derivatives, there was an increase of both the cis- and trans-bond lengths; 

the latter being more significant, enough so that the trans-bond lengths became longer 
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than the cis-bond lengths at the excited state geometries, thereby switching to exhibit a 

TI. In terms of this effect as a function of ligand, the U-F bonds (both cis- and trans-) 

in the [UOF5]
− complex are elongated most substantially, followed by the U-Cl and U-

Br (in the [UOCl5]
− and [UOBr5]

− complexes respectively); additionally, the 

magnitudes of these new ‘TIs’ also follow in this order, where the [UOF5]
− complex 

has the most pronounced magnitude of the TI, and the [UOBr5]
− the least pronounced.  

For the analogous excitation in the d-block [MOX5]
− species (M = Mo, W), the 

geometries at the excited states were qualitatively the same for all d-block complexes, 

where the cis-bonds elongated to a greater extent than the trans-bonds (opposite to what 

was shown in the f-block excitations). This shift in bond ratios resulted in a decrease 

of the TI magnitude. The [WOX5]
− complex was the only species where the trans-bond 

lengthening was significant enough that it became greater than the cis-bonds in length, 

redefining the structures as ITI-exhibiting. For both d-block species, the cis-bond 

elongation was greatest in the F-based complexes, and lowest in the Br-based 

complexes. As for the trans-bonds, in the [MoOX5]
− complexes, the trans-bond 

elongation was greatest in the [MoOCl5]
− species, followed by [MoOBr5]

− and 

[MoOF5]
− species. In the [WOX5]

− species, the trans-bond elongate from the ground 

state for the [WOF5]
− species, but in the [WOCl5]

− and [WOCl5]
− species, we found 

that they actually decrease from the ground state bond lengths (by 0.6% and 0.05% for 

X = Cl, and Br respectively). This decrease seems to suggest that a trans-bond 

contraction is intrinsic to the optimisations at this excited state in the [WOX5]
− species 

(X = Cl, Br). 

Excitations involving the σg MO showed comparable trends in the d- and f-block 

species, where optimising in the excited states resulted in the cis- and trans-bond 

lengths becoming more alike for both the d- and f-block species. Comparing the excited 

geometries to the ground state geometries, in the f-block complexes, the trans-bond 

lengthened more significantly than the cis-bonds, which reversed the ITI, whereas in 

the d-block species, the cis-bonds lengthened more significantly than the trans-bonds, 

lessening the TI.  
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Revisiting Denning’s7 polarisation model, whereby the σ-donor’s polarisation of the 

metal centre, manifests in two ways: dipolar, where charge build-up occurs in the trans-

bond, causing it to lengthen (TI, d-block species), and quadrupolar, where charge build-

up occurs in the cis-bonds, causing them to lengthen (ITI, f-block species). The 

manifestations of these effects are shown to be reversed upon excitation out of the σg 

MOs identified in both the d- and f-block species. In the TI-exhibiting d-block species, 

upon excitation, the cis-bonds are lengthened relative to the trans-bonds, similar to a 

quadrupolar effect. In the ITI-exhibiting f-block species, upon excitation, the trans-

bonds are lengthened relative to the cis-bonds, similar to a dipolar effect.  

 

Of the two main MO types considered here, the σg MOs appear to have a more useful 

and clear-cut implementation into reversing the relative influences than the σu MOs. 

Not only are these MOs occupied in both the d- and f-block species, allowing for this 

comparison to be made, but our results showed that upon excitation, there is a 

distinctively conversing trend in the d- and f-block species, where the cis- and trans-

bond length ratios move closer to a value of 1, but by opposite means (for the d-block 

species, the cis-bonds stretch; for the f-block species the trans-bonds stretch).  
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5.3 Final Remarks and Further work  

Based on the limitations in this project, our immediate suggestions for further work 

would be to find a way to analyse the [WOX5]
− complexes using a bond-orbital 

approach (as well as the [MoOF5]
− complex). As well considering the excited state 

analysis whilst implementing a solvation model, something that was not achieved in 

this project. In terms of expanding upon the theory and implications of this project, 

considering the ITI in species beyond the [UOX5]
− complexes would be a good 

approach, providing insights to the differences and similarities between ITI-exhibiting 

complexes, much like the work in this project comparing the TI-exhibiting [MoOX5]
− 

and [WOX5]
− species.  

In summary, we show that in the ground state of ITI/TI-exhibiting [MOX5]
− complexes, 

the bond opposite (trans-) to a strong σ-donor, compared to the cis-bonds, is shorter 

with a greater degree of covalency in the f-block species, and longer with a lower degree 

of covalency in the d-block species. For both the d- and f-block, the difference in cis- 

and trans-bond lengths is greatest in the X = F complexes, and lowest in the X = Br 

complexes. Correspondingly, the M-F bonds have the greatest degree of overlap-driven 

covalency, and lowest degree of energy-driven and the M-Br bonds have the lowest 

degree of overlap-driven covalency, and greatest degree of energy-driven covalency.  

In the excited states, we have successfully identified several occupied molecular orbitals 

exclusive to the f-block [UOX5]
− complexes, that upon excitation, yields a reversal of 

the ITI to a TI (whereby the trans-ligand bond lengths are then greater than the 

remaining cis-ligand bond lengths). But perhaps more significantly, we have identified 

a molecular orbital (with high dz2 character) occupied in both d- and f-block species, 

that upon excitation, yields a decrease in the TI for the former species, and a decrease 

of the ITI (whereby it is switched to a TI) for the latter.  
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Chapter 7 

Supplementary Data 

Table 7.1. NBO data for the f-block [UOX5]− complexes, showing each species’ contribution % to the bond , and of that 

contribution, the percentages of constituent bonding orbitals (s, p, d, and f) that make it up. The data in figure 3.7 is obtained by 

multiplying the contribution percentages by the bonding orbital percentages 

 

 

Table 7.12. NBO data for the d-block [MoOX5]− complexes (X = Cl, and Br), showing each species’ contribution % to the bond, 

and of that contribution, the percentages of constituent bonding orbitals (s, p, d, and f) that make it up. The data in figure 3.8 is 

obtained by multiplying the contribution percentages by the bonding orbital percentages 

 

 

 

 

 Species in the U-

X bond 

Contribution to 

the bond / % 
s-orbital p-orbital d-orbital f-orbital 

[UOF5]
− 

U-Fcis (F) 89.0% 34.3% 65.6% 0.1% 0.0% 

U-Fcis (U) 11.0% 18.5% 0.1% 32.1% 49.1% 

U-Ftrans (F) 87.7% 30.9% 69.0% 0.1% 0.0% 

U-Ftrans (U) 12.3% 18.2% 0.1% 43.1% 38.3% 

      

[UOCl5]
− 

U-Clcis (Cl) 81.1% 30.3% 69.5% 0.2% 0.0% 

U-Clcis (U) 19.0% 18.3% 0.1% 33.3% 48.3% 

U-Cltrans (Cl) 78.9% 26.1% 73.6% 0.3% 0.0% 

U-Cltrans (U) 21.1% 20.9% 0.3% 43.7% 35.0% 

      

[UOBr5]
− 

U-Br cis (Br) 78.8% 25.3% 74.4% 0.3% 0.0% 

U-Br cis (U) 21.2% 18.3% 0.2% 33.4% 48.1% 

U-Br trans (F) 76.4% 21.4% 78.3% 0.3% 0.0% 

U-Br trans (U) 23.6% 21.4% 0.5% 43.5% 34.6% 

 
  

 Contribution to 

the bond / % 
s-orbital p-orbital d-orbital f-orbital 

[MoOCl5]
− 

Mo-Cl cis (Cl) 73.8% 19.1% 80.3% 0.5% 0.1% 

Mo-Cl cis (U) 26.2% 33.0% 0.4% 66.4% 0.1% 

Mo-Cl trans (Cl) 83.1% 24.9% 74.7% 0.3% 0.0% 

Mo-Cl trans (U) 16.9% 31.7% 0.8% 67.3% 0.2% 

      

[MoOBr5]
− 

Mo-Br cis (Br) 82.9% 13.8% 85.7% 0.4% 0.1% 

Mo-Br cis (U) 17.1% 14.6% 42.3% 39.1% 4.1% 

Mo-Br trans (Br) 82.1% 19.3% 80.4% 0.3% 0.0% 

Mo-Br trans (U) 17.9% 33.3% 1.4% 65.3% 0.1% 
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Table 7.3. Bond length data in picometers (pm) for the [MOX5]− complexes (M = U, Mo, W, and X = F, Cl, Br) at the excited states 

∑u, ∑u*, and ∑g, of which are defined in section 4.3. A plot of this data is provided in the main text (figures 4.6 and 4.13, section 

4.2 and 4.3 respectively) 

 

Excited state 

geometry 
 DU-X (cis)  

/ pm 

DU-X (trans)  

/ pm 

DU-O 

/ pm 
Influence 

magnitude  

∑u 

[UOF5]− 221.03 205.02 185.21 0.928 

[UOCl5]− 264.50 269.83 179.89 1.020 

[UOBr5]− 280.60 285.1 179.02 1.016 

      

∑u* 

[UOF5]− 224.36 220.21 187.41 0.982 

[UOCl5]− 269.77 265.55 185.30 0.984 

[UOBr5]− 281.80 283.83 187.86 1.007 

      

∑g 

[UOF5]− 218.42 223.20 184.38 1.022 

[UOCl5]− 261.97 266.5 190.05 1.017 

[UOBr5]− 277.03 282.38 192.95 1.019 

     

[MoOF5]− 192.78 195.38 181.64 1.013 

[MoOCl5]− 241.54 251.11 181.35 1.040 

[MoOBr5]− 257.05 269.02 185.00 1.047 

     

[WOF5]− 202.12 201.06 174.09 0.995 

[WOCl5]− 244.88 249.40 179.20 1.018 

[WOBr5]− 258.05 269.81 183.89 1.046 


