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Abstract  

Consumption of rice and rice products can be a significant exposure pathway to inorganic 

arsenic (iAs) which is a class 1 carcinogen to humans. The UK follows the current European 

Commission regulations so that iAs concentrations are <0.20 mg kg-1 in white (polished) rice 

and <0.25 mg kg-1 in brown (unpolished) rice. However, iAs concentration in rice used for 

infant food production or direct consumption has been set at a maximum of 0.1 mg kg-1. In 

this context, this study aimed to evaluate iAs concentrations in different types of rice sold in 

the UK and to quantify the health risks (carcinogenic and non-carcinogenic) to the UK 

population. Here, we evaluated 55 different types of rice purchased from a range of retail 

outlets. First, we analysed all rice types for total As (tAs) concentration from which 42 rice 

samples with tAs > 0.1 mg kg-1 were selected for As speciation using HPLC-ICP-MS. Based 

on the average concentration of iAs of our samples, we calculated values for the Lifetime 

Cancer Risk (LCR), Target Hazard Quotient (THQ; non-carcinogenic risk) and Margin of 

Exposure (MoE). We found a statistically significant difference between organically and non-

organically grown rice. We also found that brown rice contained a significantly higher 

concentration of iAs compared to white or wild rice. Notably, 28 rice samples exceeded the 

iAs lowest threshold limit stipulated by the EU (0.1 mg kg-1) with an average iAs 

concentration of 0.13 mg kg-1; therefore consumption of these rice types could be riskier for 

infants than adults. Based on the MoE, it was found that infants up to 1 year must be 

restricted to maximum 20 g per day for the 28 rice types to avoid carcinogenic risks. We 

believe that consumers could be better informed whether the marketed product is fit for 

infants and young children, via appropriate product labelling containing information about iAs 

concentration. 

Capsule: Nearly half of the 55 rice samples marketed in the UK are unfit for infant food 

purposes, whereas iAs levels pose a minimal health risk to adults. 
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1.0 Introduction 1 

Geogenic arsenic poses one of the most significant public health challenges, affecting 140 2 

million people across 70 countries in the world (WHO, 2018). In particular, inorganic arsenic 3 

(iAs) is a class 1 carcinogen as advised by the International Agency for Research on Cancer 4 

(IARC), and has been included in the list of top 10 chemicals, or group of chemicals, of 5 

significant public health concern by the World Health Organisation (WHO 2016). Arsenic 6 

exposure affects almost every organ in the human body and produces a range of health 7 

effects, including skin lesions, cancer, diabetes and lung diseases (NRC, 2014).  Risk 8 

assessment, therefore, requires a compressive understanding of absolute intake of arsenic 9 

from multiple sources such as food, water, soil, dust and air (Carlin et al., 2016), depending 10 

on the region. In particular, rice, the staple food for more than half of the world’s population, 11 

has been shown to accumulate iAs in more significant amounts than other cereals (Carey et 12 

al., 2019; Liao et al., 2018; Meharg et al., 2008; Nunes and Otero, 2017). In regions where 13 

arsenic exposure through drinking water is minimal, rice and other foods rich in iAs can 14 

contribute significantly to human arsenic intake (54-85%) as shown in a US-based study 15 

(Kurzius-Spencer et al., 2013). Similarly, in the UK, arsenic exposure through drinking water 16 

is not widely reported except in private water supplies in Cornwall (Middleton et al., 2016). 17 

However, in the UK, arsenic exposure through the consumption of rice and rice products can 18 

be significant. Up to 90% of households in the UK buy rice; consumption of rice has 19 

increased by 450% since the 1970s, probably due to the growing Asian ethnic population 20 

and food diversification  (Schenker 2012; Rice Association, n.d). The per capita rice 21 

consumption in the UK is about 5.6 kg per year (i.e., 0.015 kg d-1) which is slightly higher 22 

than across the European Union (4.9 kg per year) (OECD, 2015; Schenker, 2012); however, 23 

it varies significantly across the population. For example, Asian ethnic groups constitute 24 

7.5% of the total population in England and Wales, and according to National Diet and 25 

Nutrition Survey (NDNS Years 1-9, 2008/09-2016/17), 42-43% of the sampled UK 26 

population consumed rice over a 4 day period, while 73%-78% of the sampled sub-27 
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population of Asian or Asian British ethnicity consumed rice over a 4 day period. Across the 28 

sampled UK population who did consume rice, adults (16+ years of age) consumed 13.48 kg 29 

per year (0.036 kg d-1), while children and infants (0-15 years of age) consumed 8.01 kg per 30 

year (0.021 kg d-1). The adults of the sampled sub-population of Asian or Asian British 31 

ethnicity consumed 17.49 kg per year, (0.047 kg d-1), while children and infants of Asian or 32 

Asian British ethnicity consumed 10.27 kg per year (0.028 kg d-1) (NatCen Social Research, 33 

2019).   34 

Regardless of ethnicity, rice and rice-based products are widely used for weaning and as an 35 

infant food due to nutritional benefits and relatively low allergic potential (Signes-Pastor et 36 

al., 2016). Rice is also a preferred gluten-free choice for the Celiac disease affected 37 

population (one in every 100 people) in the UK (Munera-Picazo et al., 2014; National Health 38 

Service, 2020). Also, according to European Food Safety Authority (EFSA, 2014), children 39 

are 2-3 times more susceptible to arsenic risks than adults due to greater food and fluid 40 

consumption rates relative to their body weights (Guillod-Magnin et al., 2018). 41 

It is essential to reduce the risk of arsenic exposure to humans through rice consumption 42 

(Carlin et al., 2016; Islam et al., 2016). Total arsenic concentration (tAs) in food products 43 

includes comparatively highly toxic inorganic (iAs) forms (i.e., AsIII and AsV) as well as less 44 

toxic organic (oAs) forms (e.g., dimethylarsenic acid (DMA) and traces of 45 

monomethylarsonic acid (MMA)); all these arsenic species are commonly found in rice 46 

(Islam et al., 2016; Meharg et al., 2008; Norton et al., 2013). Rice is mainly grown under 47 

flooded soil conditions that are conducive to the reduction of AsV to AsIII The resulting lower-48 

valent species, arsenous acid (H3AsIIIO3; pKa 9.2), is soluble in flooded soil and readily 49 

bioavailable to rice for uptake in the plant parts including grains (Bakhat et al., 2017; Islam et 50 

al., 2016).   51 

The iAs risk is linked to the daily intake of arsenic through and US-EPA (2011) 52 

recommendations for oral intake rate of 1.5 mg kg-1 bw d-1 as the upper limit for lifetime 53 

cancer risk (LCR) with an acceptable LCR range of 10-4 -10-6  (0.01-0.0001%), representing 1 54 
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in 10, 000 or 1,000,000 chance of getting cancer in human life time, respectively (Jallad, 55 

2019). Furthermore, Joint Expert Committee on Food Additives (JECFA) with Food and 56 

Agricultural Organization (FAO) provided a Benchmark Dose Lower Confidence Limit 57 

(BMDL0.5) of iAs as 0.003 mg kg-1 bw d-1 (FAO, 2011) for various cancers and skin lesions, 58 

which replaced the previous Provisional Tolerable Weekly Intake (PTWI) of 0.015 mg kg-1 59 

bw d-1. The EFSA identified a range of BMDL0.1
 (i.e., dose needed for 0.1% increase of 60 

various cancers and skin lesions of iAs between 0.0003 and 0.008 mg kg-1 bw d-1 ( EFSA, 61 

2009 & 2014; Guillod-Magnin et al., 2018; Jallad, 2019; Rintala et al., 2014). Subsequently, 62 

the European Commission (EC, 2015) has set a maximum permissible limit of iAs in rice, 63 

which is currently followed in the UK. Based on this, the limits for iAs are 0.20 mg kg-1 in 64 

white or polished rice, and 0.25 mg kg-1 in parboiled or husked rice. However, rice destined 65 

to produce food for infants and young children must be <0.10 mg kg-1. Similarly, US Food 66 

and Drug Administration (US FDA, 2016) has limited the iAs concentration of 0.10 mg kg-1 in 67 

infant rice cereals. 68 

 69 

Rice imported and marketed in the UK include wild, white and brown rice, which can be 70 

organically or non-organically produced. Rice labels often contain additional information 71 

about the grain size classification (short, medium and long) set up by the UK government 72 

(HM Revenue & Customs, 2015) mainly for import and export purposes. The main aims of 73 

this research were to evaluate arsenic concentrations in various types of rice and to 74 

determine the arsenic exposure risk to the UK population from this source as there have 75 

been no previous studies that compared different rice types available in the UK retail outlets. 76 

The specific objectives of this investigation are listed below. 77 

1. To assess and compare arsenic (total and its different species) concentrations in rice 78 

marketed in the UK, based on rice cultivation methods (organic or non-organic) as 79 

well as rice types (wild, white or brown).  80 
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2. To determine the risk to the UK population (adult males and females, and infants), 81 

based on reported consumption rates.  82 

2.0 Methods 83 

2.1 Collection and processing of rice samples 84 

Fifty-five different rice types were purchased (0.5-1 kg packets) from various retailers such 85 

as major supermarket chains and online suppliers in the UK (the suppliers have been 86 

anonymised) during August-September 2018. Our sampling strategy was to obtain as many 87 

representative samples as possible from wild (n=6), white (n=36) and brown or unpolished 88 

(n=13) rice under organic (n=16) and non-organic (n=39) categories (Supplemental Table 1). 89 

Though technically not a member of the rice family, wild rice (Zizania sp.) was included in 90 

this study due to its increasing presence in the UK retail stores. Note that we did not include 91 

‘ready to eat’ rice brands or wild-white rice mixtures. Out of the 55 rice samples, 20 did not 92 

contain any specific information on their country of origin (Supplemental Table 1).  93 

The moisture content of rice samples was determined using a gravimetric method (65oC; up 94 

to 48 h); this was used to produce dry-weight based arsenic concentrations. For chemical 95 

analysis, approximately 150-200 g of rice was sampled and finely ground using a ball mill 96 

grinder (Retsch MM 200 Model Mixer Mill). Three sub-samples (~1-2 g) were taken for total 97 

arsenic analysis and arsenic speciation. To avoid cross-contamination, the grinding jars 98 

were cleaned thoroughly using acetone and ultrapure water (18.2 MΩ cm) and then left to 99 

dry before reuse. Three sub-samples were drawn from each of the ground rice samples 100 

(three replications) and stored air-tight in Eppendorf tubes for further laboratory analysis.   101 

2.2 Chemical analysis 102 

2.2.1 Total arsenic (tAs) concentration 103 

Samples (0.2 g dry weight) of rice powder were microwave-digested in 6 mL HNO3 104 

(Primar Plus grade, Fisher Scientific, U.K.) in perfluoroalkoxy (PFA) vessels (Multiwave; 105 

Anton Paar GmbH, St. Albans, U.K.). The digested samples were diluted to 20 mL, and 106 
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then 1-in-10 with ultrapure water (18.2 MΩ cm), immediately before elemental analysis by 107 

inductively coupled plasma mass spectrometry (ICP-MS).  Each digestion batch included 108 

operational blanks and certified reference material (NIST 1568b, rice flour) for quality 109 

assurance (QA) purposes. The average percentage recovery of tAs (0.285 mg kg-1) was 110 

104%. Multi-element analysis of diluted aliquots was undertaken by ICP-MS (Thermo-Fisher 111 

Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany).  112 

2.2.2 Arsenic speciation 113 

Based on tAs concentrations in 55 rice samples, 42 samples with tAs > 0.10 mg kg-1 were 114 

selected for further arsenic speciation analysis. On average, ~70% of the tAs in rice consists 115 

of the toxic iAs, and it rarely exceeds 85% mark (Islam et al., 2016). Thus, the benchmark of 116 

0.10 mg kg-1 tAs would be well within the current lowest regulatory limit for infants (0.1 mg 117 

kg-1 iAs) in Europe. In other words, tAs <0.10 mg kg-1 can be considered safe for the 118 

consumption for all age groups, including infants. The selected rice types in the speciation 119 

analysis included four wild, 13 brown and 25 white rice samples composed of both 120 

organically (n=9) and non-organically (n=33) grown categories.  121 

Based on the above criteria, the arsenic speciation was carried out using a separate 122 

extraction and analysis (from the total arsenic assay). Extraction of arsenic species from rice 123 

flour was undertaken using a method similar to that described by Huang et al. (2010). 124 

Approximately 1.5 g each of the 42 selected rice samples was suspended in 15 mL 2% nitric 125 

acid (Primar Plus grade, Fisher Scientific, U.K.) in polypropylene ‘DigiTubes’ (SCP 126 

Science, Quebec, Canada), and heated at 95˚C for 1.5 h on a Teflon-coated graphite block 127 

digester (Model A3, Analysco Ltd, U.K.). Cooled suspensions were made up to 50 mL with 128 

ultrapure water (18.2 MΩ cm), and an aliquot (c. 6 mL) was syringe-filtered to < 5 µm for the 129 

speciation analysis.  Arsenic speciation was undertaken using a coupled LC-ICP-MS (HPLC 130 

5000 series, Thermo Scientific) with a PRP-X100 anion exchange column (PS-131 

DVB/Trimethyl ammonium exchanger; 5 µm particle size; 4.6 mm ID; 250 mm length); the 132 

eluent was 20 mM NH4H2PO4 and (NH4)2HPO4 (analytical grade) at pH = 5.6, pumped at 1.5 133 
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mL min-1 in isocratic mode. Standards included 5.0 µg L-1 arsenite (AsIII) and arsenate (AsV) 134 

(Spex Certiprep, Stanmore, U.K.), and 5.0 µg L-1 dimethylarsinic acid (DMA) and 135 

monomethylarsonic acid (MMA) (purity >98%; Sigma/Merck, Darmstadt, Germany). 136 

Chromatography runtime was c. 13 min per sample. Based on the data obtained, we used 137 

concentrations of individual species to obtain the sum of inorganic (AsIII and AsV) and 138 

organic (DMA and MMA) species for the statistical analysis and presentation of data.  139 

2.3 Risk calculations 140 

The risk to humans from arsenic can be calculated using carcinogenic and non-carcinogenic 141 

risk parameters, both requiring estimated daily intake (EDI, mg kg-1 d-1) which was calculated 142 

using Eq. 1 (Liao et al., 2018; Weber et al., 2019): 143 

          (Eq. 1) 144 

where, AC is the average concentration of iAs in rice (mg kg-1), ADC is the average daily 145 

consumption rate of rice (kg d-1), and bw represents the average body weight of the local 146 

population (kg). For the UK, bw values for adult males, adult females and infants (1-year-old) 147 

were taken as 83.6, 70.2 and 9 kg, respectively (Office of National Statistics, 2018).  148 

The lifetime cancer risk (LCR) was calculated using EDI, and a slope factor (SF = 1.5 mg kg-149 

1 bw-1 d-1) established by the United States Environmental Protection Agency (US EPA, 150 

2011), which assumes daily exposure over an entire lifetime. The acceptable upper limit for 151 

LCR, set by the US EPA, is 1.0 × 10−4.  The LCR is given by Eq. 2: 152 

          (Eq. 2) 153 

The US EPA method for non-carcinogenic risk uses a target hazard quotient (THQ) 154 

calculated from EDI and a reference oral dose (RfD) (Eq. 3); a value of THQ less than one 155 

indicates no risk.  156 

        (Eq. 3) 157 
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The oral RfD for iAs set by the US EPA (0.0003 mg kg-1 d-1) (US EPA, 1988) was used for 158 

assessing the non-cancerous risk, although the RfD value is still under evaluation.  159 

The final assessment tool used in this study was the Margin of Exposure (MoE) (Guillod-160 

Magnin et al., 2018; Jallad, 2011; Rintala et al., 2014) which was calculated as follows: 161 

       (Eq. 4) 162 

Where, BMDL0.1 is Benchmark Dose Lower Confidence Limit and EDI is Estimated Daily 163 

intake as per Eq. 1. The BMDL0.1 is set at 0.0003 mg kg-1 bw d-1 for 0.1% increased 164 

incidence of various cancers as per EFSA, which is the same as RfD set by US EPA for 165 

THQ. In summary, the THQ is the inverse of MoE if BMDL0.1 is set at 0.0003 mg kg-1 bw d-1; 166 

hence the THQ values ideally be < 1, whereas the MoE >1, to avoid iAs health risks. 167 

Three different scenarios were tested to assess the risks to the UK population.  The first 168 

scenario was based on the per capita consumption rate of rice in the UK (i.e., 0.015 kg d-1) 169 

(Schenker, 2012) and the average iAs of 42 rice samples examined (0.13 mg kg-1).  In the 170 

second and third scenarios, we calculated the maximum permissible per capita consumption 171 

rates of rice for the above-mentioned age groups to avoid carcinogenic and non-172 

carcinogenic risks, respectively. 173 

2.4 Statistical analyses 174 

GraphPad Prism (v 8) software was used to perform the statistical analysis and prepare the 175 

figures. Non-parametric tests, including Mann-Whitney test and Kurkal-Wallis Analysis of 176 

Variance (ANOVA), were used in combination with Dunn’s multiple comparison test to 177 

compare different groups. In our presented graphs, statistical significance is presented as 178 

“ns” P> 0.05 (not significant), “*” for P ≤ 0.05, “**” for P ≤ 0.01, “***” for P ≤ 0.001 and “****” for P 179 

≤ 0.0001.  180 

3.0 Results 181 

3.1 Total arsenic concentration in rice 182 
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Total arsenic (tAs) in the 55 rice samples (Supplemental Table 1; rice selected for speciation 183 

are indicated using*) analysed ranged from 0.01 to 0.37 mg kg-1 with an average of 0.15 184 

(±0.07) mg kg-1. When we compared organic and non-organic rice cultivations for tAs in wild, 185 

brown and white rice types, the results showed no effect of rice cultivation method on tAs 186 

concentrations in wild rice (Figure 1). The high standard error for organic rice in Figure 1a 187 

was due to one wild rice sample included in this group. There was a significant difference 188 

observed in white rice (Figure 1b) and brown rice (Figure 1c) due to a change in the rice 189 

cultivation systems. In the case of white rice, non-organically grown rice contained a 190 

significantly higher concentration of tAs compared to organically grown white rice 191 

(P=0.0004), and organically grown brown rice contained significantly more tAs compared to 192 

non-organic ones (P=0.0189).  193 

When data from all rice types were pooled together (i.e., wild, white and brown), there was 194 

no statistically significant difference between organically and non-organically grown rice 195 

categories (Supplemental Figure 1a). Similarly, we statistically analysed the data using a 196 

non-parametric Kruskal- Wallis ANOVA test to compare wild, white and brown rice types 197 

irrespective of their cultivation methods. This analysis showed that rice type significantly 198 

influenced tAs levels (P <0.0001), as shown in Supplemental Figure 1b; the concentration of 199 

tAs in brown rice was almost double that of wild or white rice.  200 

3.2 Total inorganic and organic arsenic concentrations in rice 201 

The average concentrations of iAs and oAs in the 42 rice types analysed were 0.129±0.048 202 

(range: 0.065-0.286) and 0.047±0.034 (range: 0.009-0.203) mg kg-1, respectively. On 203 

average, the iAs concentration in the tested varieties was 73% (±1.2% SD) of tAs. Out of the 204 

42 samples, 14 samples were below the infant maximum limit for iAs (0.1 mg kg-1) with an 205 

average iAs concentration of 0.082 (±0.012) whereas the average iAs concentration of the 206 

remaining 28 samples was 0.152 (±0.041) mg kg-1.  207 
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We present iAs (sum of AsIII and AsV) and oAs (sum of DMA and MMA) concentrations when 208 

grown under two rice cultivation methods (Figure 2 a & b); results showed a statistically 209 

significant (P<0.0001) difference between the cultivation methods in the concentration of iAs 210 

but not oAs (P=0.355). We were unable to compare iAs in wild, brown and white types of 211 

rice under organic and non-organic types (i.e. similar to Figure 1) due to insufficient number 212 

of replicates. Both wild and brown rice types contained similar concentrations of iAs, which 213 

were different from the white rice (Figure 3a).  An opposite trend was found for the 214 

concentration of oAs, where the white rice contained the highest concentration of oAs 215 

(Figure 3b). Overall non-parametric ANOVA showed that rice type significantly influenced 216 

both iAs (P <0.0001) and oAs concentrations (P<0.0048). Comparison of these rice types 217 

showed that a significant difference was found between wild and white, and between white 218 

and brown rice for both iAs and oAs (Figure 3 a & b).  219 

3.3 Comparison of arsenic species (AsIII, AsV and DMA) in rice 220 

We compared concentrations of arsenic species (AsIII, AsV and DMA) under different rice 221 

cultivation methods (Figure 4), and between rice types (Figure 5). MMA was present in 222 

traces or not detected in most of the samples, and hence was not included in this 223 

comparison. The AsIII concentration of organically grown rice was significantly higher (P < 224 

0.0001) than that of non-organically grown rice (Figure 4a). However, the concentrations of 225 

AsV and DMA were similar under both cultivation methods (Figure 4 b-c), and the differences 226 

were not statistically significant.  227 

Different rice types significantly (P < 0.0001) influenced AsIII concentrations. Both wild and 228 

white rice types did not show any significant difference, but they were significantly lower in 229 

AsIII concentration than the brown rice (Figure 5 a). Rice types also significantly influenced 230 

Asv concentrations (P<0.0001) and, as shown in Figure 5b, wild rice showed the greatest 231 

concentration of AsV, followed by brown and white rice. The differences between these rice 232 

types were statistically significant. The concentration of DMA was also influenced by rice 233 

type (P = 0.0019), and average DMA concentrations followed the order white>brown> wild 234 
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rice with a significant difference between wild and white, as well as between white and 235 

brown rice (Figure 5c). The difference in DMA between wild and brown rice was not 236 

statistically significant. 237 

3.4 Relationship between total, inorganic and organic arsenic in rice 238 

On average, iAs constituted 73% of the total sum of all species (iAs+oAs), but the range was 239 

36-95% in the rice samples examined. The relationship between iAs and the total of all 240 

species (iAs+oAs) was linear and statistically significant (P<0.0001) in all cases for different 241 

types of rice (Supplemental Figure 2 a-e).  However, the R2 value for organically grown rice 242 

(0.92; 6a) was higher than for non-organically grown rice (R2 =0.68; 6b).  Similarly, R2 values 243 

for different rice types were also different (0.97 for brown, 0.88 for wild and 0.66 for white 244 

rice).  245 

3.5 Carcinogenic and non-carcinogenic risks 246 

We considered three scenarios for the human health risk assessment of rice arsenic, as 247 

described in Table 1. The first scenario was based on the reported per capita consumption 248 

rate of rice in the UK (i.e., 0.015 kg d-1) (Schenker, 2012) and the mean iAs concentration 249 

(0.13 mg kg-1) of the 42 rice samples examined. Accordingly, the lifetime cancer risks (LCR) 250 

for UK adult males, adult females and infants were 3.5x10-5 (i.e., 3.5 individuals per 100,000 251 

of male population), 4.17x10-5 (4.17 per 100,000 of female population) and 3.25 x10-4 (3.25 252 

per 10,000 of infant population), respectively. The corresponding non-carcinogenic target 253 

hazard quotients (THQs) were 0.08, 0.09 and 0.72, respectively. The MoE values were also 254 

>1 in all groups. The risk nearly doubled when we considered the maximum iAs 255 

concentration (0.29 mg kg-1 of a brown short-grained organic rice) found in the present 256 

study.  257 

However, to avoid carcinogenic risks (i.e., LCR < 1x10-4) for men, women and infants, the 258 

consumption rates must not exceed 0.043, 0.036 and 0.0046 kg d-1, respectively, as shown 259 

in the second scenario. These values correspond to a weekly maximum consumption rate of 260 
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0.301, 0.252 and 0.0322 kg for men, women and infants, respectively. This also produced a 261 

desirable THQ (0.22) and the MoE values ~4.5 for all groups.  262 

If we consider THQ or MoE, rice consumption rate must be <0.19, 0.16 and 0.02 kg d-1 for 263 

men, women and infants, respectively, to avoid any health risks (Scenario 3). However, at 264 

this rate of consumption, the LCR would increase by a factor of four for all groups. Note that 265 

ADCs used in this scenario for adults (Table 1) are well above the UK average rice 266 

consumption rate of 0.036 kg d-1 for >16 years old, established by the NDNS (see the 267 

introduction), and it is very close to the consumption rate of 0.021 kg d-1 for <16 year old 268 

population. This is also true for Asian population (consumption rate is 0.047 kg d-1 for >16 269 

years old. However, the rice consumption rate of <16 years old children from Asian 270 

communities is 0.028 kg d-1, which will produce a MoE value of 0.74, increasing the risk of 271 

arsenic exposure.   272 

4.0 Discussion 273 

This is the first study, which has quantified differences in human health risks from iAs using 274 

a substantial number of rice samples marketed in the UK. Even though our overall strategy 275 

was to obtain as many samples as we could, we were not able to obtain an equal number of 276 

samples from all rice types. This was because most supermarket chains and online retailers 277 

have similar product ranges mostly dominated by white and non-organic rice types in 278 

comparison to the others. To increase the sample size from organic types, we bought 279 

additional samples from a few organic health food online suppliers. Wild rice (pure without 280 

mixing with white rice) was only available through online retailers as they were not available 281 

in any major supermarket chains. Thus, our sample numbers also reflected the availability or 282 

popularity of various rice in the UK. The study could not successfully relate the risk to the 283 

origin of rice samples because 20 out of the 55 samples analysed did not contain this 284 

information on their packaging labels. Hence, we did not compare the regional influence on 285 

arsenic and its species. However, the origin could be an important factor, as demonstrated in 286 
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a recent study (Carey et al., 2019) where the authors reported that lowest iAs concentrations 287 

were found in rice sourced from East Africa and the Southern Indonesian islands. However, 288 

rice sourced from South American rice types were universally high in iAs. However, none of 289 

our samples originated from the above regions as per the information (Suppl. Table 1) 290 

available on the packaging.  291 

There are some recent studies that looked at rice and rice products, especially rice-based 292 

baby food products. For instance, Rintala et al (2014) investigated iAs in eight brands of long 293 

grain rice and 10 brands of baby food products in Finland, and found that range of iAs 294 

concentrations was 0.09-0.28 mg kg-1. Although not shown in this paper, we analysed the 295 

data based on the grain length (23 long; 4 medium and 15 short grains samples) and iAs 296 

range in long grain rice was 0.045-0.213 mg kg-1, fitting well with the findings by Rintala et al 297 

(2014). However, this study did not include baby food products; such studies have been 298 

conducted earlier (Signes-Pastor et al., 2016) in the UK.  299 

Investigations that compared organically and non-organically grown rice types for arsenic 300 

health risk assessment are rare. Our findings are similar to a market-based study conducted 301 

in Brazil by Segura et al. (2016) which showed no difference between tAs for organic or non-302 

organically (i.e., conventionally) grown rice; however, they found that iAs was 41-45% higher 303 

in organically produced husked or polished rice than the corresponding samples from 304 

conventionally produced rice. In contrast, a study conducted by Rahman et al (2014) in 305 

Australia found significantly higher tAs and iAs in organic brown rice compared to non-306 

organic brown rice, similar to our findings. Although we do not have details of the source or 307 

amount of organic matter (OM) added during cultivation of the rice samples analysed, the 308 

addition of OM in lowland rice may play a significant role in increasing arsenic mobility and 309 

plant uptake. Addition of OM can reduce the redox potential of rice soils, which can trigger 310 

arsenic dissolution as arsenite (AsIII) from adsorbed arsenate (AsV) forms in the soil (Islam et 311 

al., 2016; Rowland et al., 2009; Smedley and Kinniburgh, 2002). Based on this, we can 312 

expect to have more tAs and iAs when rice is grown organically. However, previous 313 
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experimental data have suggested the opposite conclusion (Ma et al., 2014; Norton et al., 314 

2013) and indicated an increase in oAs, which suggested that organically grown rice could 315 

be a healthier option for human consumption. Here we show that iAs increased significantly 316 

in organically grown rice, more specifically AsIII, which supports the recognised mechanisms 317 

of arsenic reduction, desorption and increased availability of iAs (AsIII and AsV) compared to 318 

the methylated forms (DMA and MMA) (Raab et al., 2007).  319 

Arsenic data on wild rice are sparse in the literature. The first study on wild rice examined 26 320 

rice types from Michigan state in the US (Nriagu and Lin, 1995) for arsenic (tAs) and other 321 

trace elements, and found that tAs ranged from 0.06-0.14 mg kg-1 with an average of 0.066 322 

mg kg-1. In our study, the tAs range was found to be 0.01-0.22 mg kg-1 with an average of 323 

0.11 (±0.078, n=18) mg kg-1. A study from Wisconsin, USA, reported a similar average tAs 324 

concentration in seeds of wild rice (Bennett et al., 2000). Two further studies investigated 325 

arsenic species in wild rice and reported concentrations of 0.08 mg kg-1 (Heitkemper et al., 326 

2001) and 0.01 mg kg-1 (Williams et al. 2005) of iAs compared to our average value of 0.15 327 

mg kg-1 iAs, which was significantly higher than white rice. More recently, a study from 328 

Valencia, Spain, did not detect any iAs in the wild rice examined (Torres-Escribano et al., 329 

2008).  330 

Regardless of the place of origin of rice, with reasonably large sample size, we have 331 

demonstrated that brown or unpolished rice contained significantly higher concentrations of 332 

tAs and iAs compared to white rice. Our findings are in agreement with previous 333 

observations (Batista et al., 2011; Islam et al., 2016; Meharg et al., 2008; Rahman et al., 334 

2014; Zhu et al., 2008). This is due to the presence of the bran in brown rice (Meharg et al., 335 

2008), although a US market-based study, which compared polished and unpolished 336 

(brown) rice, found no statistical difference in tAs concentration (Williams et al., 2007). In 337 

terms of arsenic speciation, brown rice accumulated more AsIII (Supplemental Fig. 2a) 338 

compared to wild or white rice whereas AsV concentrations were significantly higher in wild 339 
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rice compared to the others, which warrants further research on uptake mechanisms. In 340 

particular, concentrations of the less toxic DMA species were significantly lower in wild and 341 

brown rice, compared to white rice, suggesting that DMA accumulates more in the starchy 342 

interior part of the rice and less in the bran of brown or wild rice. Further studies on wild rice 343 

are required to understand the mechanisms behind the accumulation of higher 344 

concentrations of Asv in comparison to white and brown rice (Figure 5b). The findings from 345 

this study should be taken into consideration when advocating the consumption of brown 346 

rice for increased dietary fibre, minerals and B-vitamins in the bran (Schenker, 2012). 347 

In a recent review, Liao et al. (2018) demonstrated that only one-third (11 out of 30) of the 348 

reported studies on carcinogenic risk assessment of rice arsenic were based on measured 349 

concentrations of iAs. The rest of the studies estimated iAs based on either regression 350 

equations, or in most cases it was assumed that iAs was ~80% of tAs. Based on our data for 351 

42 rice types, on average, iAs constituted 73.46% (±11.91) of the sum of all species of 352 

arsenic. This could enable the saving of the substantial analytical costs involved in arsenic 353 

speciation, in a limited number of labs in the UK, by selecting rice types based on tAs 354 

>0.1mg kg-1 for speciation. In other words, rice types with tAs <0.1 mg kg-1 cannot be 355 

regarded as unsafe for consumption, especially for infants, and we found only 13 such 356 

samples out of 55. The linear regression equations developed in this study (Suppl. Figure 2 357 

a-e) could be used to predict iAs based on tAs concentrations for various groups of rice in 358 

regions where arsenic speciation facilities are not available or are unaffordable. 359 

This study found that the arsenic health risk posed by rice consumption in the UK and EU 360 

populations is very low compared to risks faced in countries such as Bangladesh: the LCR is 361 

50 in 10,000 in Bangladesh compared to 2 in 10,000 in the EU (Liao et al., 2018; Meharg et 362 

al., 2009; Nunes and Otero, 2017).  While an average UK citizen consumes ~100 g 363 

(uncooked) rice a week, this could be as high as 850 g (uncooked) rice per week for South 364 

Asian people (Khokhar et al., 2013) aggravating their LCR by a factor of 4.  365 



18 
 

We used three widely popular risk assessments (LCR, THQ and MoE), and using multiple 366 

assessments are often found to be useful in understanding the risks posed by iAs in different 367 

age groups. More recent papers used MoE (Guillod-Magnin et al., 2018; Rintala et al., 2014) 368 

whereas others used all three methods (e.g. Jallad, 2019).  Rintala et al (2014) used the 369 

worst case scenario for MoE using maximum iAs in long grain rice (0.28 mg kg-1) and baby 370 

products (0.21 mg kg-1), and used the lowest BMDL0.1 of 0.0003 mg kg-1 bw-1 d-1). They found 371 

MoE was ≤ 1 for adult men and women, and for children who consumed different rice in 372 

different forms (porridge or non-porridge products). However, their consumption rate was 4-5 373 

times higher than the average per capita rice consumption in the UK, and we used an 374 

average iAs concentrations in rice as opposed to maximum concentrations found in our 375 

study.  376 

 377 

Similarly, a recent comprehensive study based on rice and rice-based products (105 378 

samples) from Switzerland (Guillod-Magnin et al., 2018) found that the concentrations of tAs 379 

and iAs were significantly higher in brown rice compared to white rice samples. They 380 

calculated the MoE through iAs and DMA concentrations, and in several scenarios tested, 381 

iAs intake was found to be higher than EFSA’s BMDL0.1 lower limit of 0.0003 mg kg-1 bw d-1, 382 

suggestign that health risk by iAs for certain toddlers through the consumption of rice and 383 

rice products could not be excluded. Their findings are in agreement with our findings for the 384 

first scenario where we found infants are likely at risk from iAs exposure compared to adult 385 

male or female groups.  The MoE based on BMDL0.1 0.0003 mg kg-1 bw-1 d-1 is the most 386 

conservative assessment although if we use the upper limit of 0.008 mg kg-1 bw d-1, the MoE 387 

will increase dramatically; using this value, for example, in Scenario 1, MoE will rise to 342, 388 

288 and 36 for UK adult male, female and infants, respectively.  389 

We can conclude that out of 55 rice types studied, 28 exceeded the infant maximum limit for 390 

iAs stipulated by the European Commission, and are therefore unsuitable for the production 391 

of baby food products or direct feeding (Carey et al., 2018). Based on the MoE, we 392 

recommend the consumption of these 28 rice types may be restricted to ~20 g d-1 for infants 393 
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in order to minimise the risks. Therefore, it is appropriate that manufacturers and suppliers 394 

inform consumers about iAs concentrations in marketed rice and rice products made for 395 

infants and young children up to 5 years old. 396 

5.0 Conclusions 397 

This study examined arsenic concentrations in 55 rice types marketed in the UK in which we 398 

compared cultivation methods (organic or non-organically grown) and various types of rice 399 

(wild, white/polished and brown/unpolished). The total arsenic (tAs) concentrations in 400 

organic white rice were significantly lower than non-organic types, whereas the opposite was 401 

true for brown rice. However, inorganic arsenic (iAs) concentration of organically grown rice 402 

was significantly higher than non-organically produced rice. The order of accumulation of iAs 403 

in different rice types was brown> wild>white.  Out of 55 rice types studied, 28 exceeded 404 

infant iAs maximum limit stipulated by the European Commission as unsuitable for the 405 

production of baby food products or direct feeding. Our risk analysis showed that the risks 406 

due to rice arsenic consumption is confined mainly to infants in the UK. We recommend that 407 

cosumers could be informed whether rice and rice products are suitable for infants and 408 

young children up to 5 years in the product description labels.  409 
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Manuscript figure captions  585 
 586 
 587 
Figure 1 (a-c). Comparison of total As (tAs) in organically and non-organically grown wild (a), 588 
white (b) and brown rice (c). The error bars indicate standard error of means (SEM); n is the 589 
number of samples used in the analysis indicated on each bar.   590 
 591 
Figure 2 (a & b) Comparison of inorganic (iAs) and organic As (oAs) concentrations in 592 
organically (n = 9) and non-organically (n=33) grown rice as shown in in a and b, 593 
respectively. The error bars indicate standard error of means (SEM).  594 
 595 
Figure 3 (a & b) Comparison of wild (n=4), white (n=25) and brown (n=13) rice in their 596 
inorganic (iAs) and organic As (oAs) concentrations as shown in a and b, respectively. The 597 
error bars indicate standard error of means (SEM).  598 
 599 
Figure 4 (a-c). Comparison of AsIII, AsV and DMA concentrations in organically  (n =9) and 600 
non-organically (n=33) grown rice as shown in in a, b, and c respectively. The error bars 601 
indicate standard error of means (SEM).  602 
 603 
Figure 5 (a-c). Comparison of AsIII, AsV and DMA concentrations in wild (n=4), white (n=26) 604 
and brown (n=13) rice as shown in in a, b, and c respectively. The error bars indicate 605 
standard error of means (SEM).  606 

 607 
 608 

Supplementary Figure Captions 609 
 610 
Figure 1 (a & b). Total As (tAs) contents based on rice culture method (a), and type of rice 611 
(b). The error bars indicate standard error of means (SEM) and n is the number of samples 612 
used in the analysis.  613 
 614 

Figure 2 (a-e). Linear regression models established to predict iAs from tAs concentrations 615 
for various groups of rice. (a) all data combined; (b) organic rice; (c) non-organic rice; (d) 616 
brown rice; (e) white rice.  617 

618 
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Graphical abstract 619 

 620 

621 
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Highlights 622 

• Total As was determined in 55 rice types and 42 for As species. 623 

• Organic rice contained significantly more iAs compared to non-organic rice. 624 

• The concentration of iAs rice types was brown > wild > white. 625 

• 28 rice types were found to be unfit for infant food production or consumption. 626 

627 
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Figures 628 
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Fig. 1 630 

 631 

 632 

Fig. 2 633 

 634 
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Fig. 3 636 

637 



28 
 

 638 

 639 

Fig. 4 640 
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Fig. 5 643 
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Tables 645 

Table 1. Lifetime Cancer Risk (LCR), Target Hazard Quotient (THQ) and Margin of Exposure 646 

(MoE) under different scenarios. Key: AC =Average concentration of Asio in rice (mg kg-1); ADC = 647 

Average daily consumption rate of rice (kg); BW = Average body weight of the local population; 648 

and EDI = Estimated daily intake.  Scenario 1 is based on current per capital consumption rates 649 

of 0.015 kg day-1 in the UK. Scenario 2 is maximum ADC to avoid LCR. Scenario 3 is ADC based 650 

on THQ and MoE.  651 

Scenario 1. 652 

Target Population AC (As io) 

(mg kg-1) 

ADC 

(kg)  

BW  

(kg) 

EDI 

(mg kg-1 

day-1) 

LCR  
 

THQ MoE 

Adult Male 0.13 0.015 83.6 2.3x10-5 3.50x10-5 0.08 12.86 

Adult Female 0.13 0.015 70.2 2.8x10-5 4.17x10-5 0.09 10.80 

1 year old infant 0.13 0.015 9 2.2x10-4 3.25x10-4 0.72 1.38 

 653 

Scenario 2.  654 

Target Population AC (As io) 

(mg kg-1) 

ADC 

(kg)  

BW  

(kg) 

EDI 

(mg kg-1 

day-1) 

LCR  
 

THQ MoE 

Adult Male 0.13 0.043 83.6 6.6x10-5 1.0x10-4 0.22 4.5 

Adult Female 0.13 0.036 70.2 6.6x10-5 1.0x10-4 0.22 4.5 

1 year old infant 0.13 0.0046 9 6.6x10-5 1.0x10-4 0.22 4.5 

 655 

Scenario 3.  656 

Target Population AC (As io) 

(mg kg-1) 

ADC 

(kg)  

BW  

(kg) 

EDI 

(mg kg-1 

day-1) 

LCR  
 

THQ MoE 

Adult Male 0.13 0.192 83.6 3.1x10-4 4.47x10-4 1.0 1.00 

Adult Female 0.13 0.162 70.2 3.1x10-4 4.50x10-4 1.0 1.00 

1 year old infant 0.13 0.0208 9 3.0x10-4 4.50x10-4 1.0 1.00 

 657 

658 
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Supplementary figures 659 

 660 

Fig. S1 661 

 662 

 663 

Fig. S2 664 


