

Challenging Software Developers
Dialectic as a Foundation for Security Assurance Techniques

Charles Weir,
Security Lancaster1

Lancaster University, UK
c.weir1@lancaster.ac.uk

Awais Rashid
Bristol Cyber Security Group

University of Bristol, UK
awais.rashid@bristol.ac.uk

James Noble
School of Engineering and Computer Science

Victoria University
Wellington, NZ

kjx@ecs.vuw.ac.nz

1 © 2020 Charles Weir, Security Lancaster, InfoLab21, Lancaster University, Lancaster LA1 4WA, United Kingdom

2

Abstract	
Development teams are increasingly expected to deliver secure code, but how can they best achieve this? Traditional
security practice, which emphasises ‘telling developers what to do’ using checklists, processes and errors to avoid,
has proved difficult to introduce. From analysis of industry interviews with a dozen experts in app development
security, we find that secure development requires ‘dialectic’: a challenging dialog between the developers and a
range of counterparties, continued throughout the development cycle. Analysing a further survey of sixteen industry
developer security advocates, we identify the six assurance techniques that are most effective at achieving this
dialectic in existing development teams, and conclude that the introduction of these techniques is best driven by the
developers themselves. Concentrating on these six assurance techniques, and the dialectical interactions they
involve, has the potential to increase the security of development activities and thus improve software security for
everyone.

3

1 Introduction

Software security and privacy are becoming major issues: almost every week we hear that yet another
organisation’s software systems have been compromised [18]. While there are many aspects to an
organisation’s security and privacy, the software used clearly has a significant impact on whether such
breaches happen. Therefore, the effectiveness of developers at creating secure software is vital2.
Unfortunately, there is evidence that the developers are not delivering this security. A recent report from
Veracode [50] concluded that “more than 85 percent of all applications have at least one vulnerability in
them; more than 13 percent of applications have at least one very high severity flaw”. A report from
Microsoft [34] analysed storage and collaboration Software as a Service applications, and found a wide
range of issues, including 28% of storage apps not supporting data encryption. The Ponemon Institute
carried out a IBM-funded survey in 2015 of 640 individuals from organizations developing mobile apps
in the US [42], and found that 77% believed that securing mobile apps was ‘very hard’, and that 73%
believed that developer lack of understanding of security issues was a major contributor to the problem.
All these surveys suggest that many errors were avoidable; developers could have made choices that would
have prevented the issues. These studies demonstrate that existing industry practices are insufficient to
provide the application security and privacy we need.
To address this problem, we could have looked for improvements to environments and APIs; we could
have looked at tools to automate security improvements; or we could look at ways in which we can help
programmers themselves to improve security given existing constraints. All are valuable approaches; we
chose the third option. In this article, therefore, we investigate programmers’ security practices, using
expert surveys to find out what works in practice.

1.1 First Phase: App Security Expert Interviews
Faced with a broad range of diverse kinds of developer, we initially limited our scope to mobile app
development. The initial research question we formulated during the work was therefore:

What techniques and ideas lead to the development of better secure app software?
To answer this question, we needed an understanding of what works in the real world. We therefore
conducted a Constructivist Grounded Theory [12] study, involving face-to-face interviews with a dozen
experts whose cumulative experience totalled well over 100 years of secure app development. Our early
analysis of the interviews [54,55] found a wide range of difference between interviewees, and concluded
that there was little consensus in the industry.
Further analysis identified that the most important and successful secure development techniques share a
quality we call ‘dialectic,’ meaning learning by challenging. Dialectic techniques use dialog with a range
of counterparties to achieve security in an effective and economical way. The increase in security comes
from the developers’ continued interaction with the resulting challenges, not from passive learning. This
suggests that we need developers to actively seek out arguments and challenges in order to improve
software security.

2 Throughout this paper we use ‘secure’ and ‘security’ to refer to the security and privacy aspects of software development; and ‘developers’

to refer to all those involved with creating software: programmers, analysts, designers, testers, and managers.

4

1.2 Second Phase: Intervention Expert Interviews
Given the suggestion that dialectic techniques increase security, we wanted to find ways to introduce such
techniques to development teams who were not yet using them. We observed that none of the techniques,
nor the dialectic concept, appeared specific to mobile app development. Indeed, though we had chosen
the first survey’s participants for their experience with app security, in discussing the questions most had
cited experience with a far wider range of software domains. We therefore conducted a second survey to
find ways to induce teams to adopt dialectic techniques, extending our scope to cover professional
software development in general.
Our research question for this next step, therefore, was:
What interventions can change the environment for members of a development team to achieve good
security?
In addressing this question, we considered motivational factors, choice of tools, supporting processes and
potential blockers, culture, awareness, training and skills. We observed that previous research in software
security has concentrated on the negative: identifying vulnerabilities and making checklists of issues to
avoid (see Section 2.2). Yet developers are motivated by positive aspects of their work such as building
and helping others [9], so we chose instead to concentrate on positive approaches to improving security.
Using the same Grounded Theory approach as the first phase, we accordingly interviewed sixteen
specialists in developer software security, asking them about these topics. These specialists ranged from
senior experts in the major multinational online service providers to solo consultants.
From our interviews, we identified a consistent perception of the developer as an active agent in their own
right, whose decisions could be influenced by security experts but not controlled by them. More
specifically, we identified six assurance techniques preferred by the experts, and a range of counterparties
with whom the dialectic takes part. We analyse these in detail in this paper, highlighting the dialectic
effect on security.

1.3 Contribution and Overview
The contribution of this work is a new perspective upon the introduction and improvement of security in
software development teams. This paper provides:

• A theory, ‘Dialectical Security,’ to provide a basis for analysis of developer security techniques;

• Identification of six assurance techniques preferred by industry experts;

• Analysis of each of these assurance techniques in terms of its dialectic counterparties; and

• Examples and approaches for introducing the techniques.
In the rest of this paper, Section 2 explores existing work; Section 3 explains the methodology in more
detail and describes the research participants; Section 4 describes the results of the surveys, introducing
dialectic and analysing how it applies in each of six assurance techniques; Section 5 discusses the research
as a whole; Section 6 explores threats to validity; and Section 7 provides a conclusion and suggests
approaches for future work.

2 Background and Related Work

We looked for related work in three areas:

• How and why programmers learn security,
• Resources to help programmers improve security, and
• Techniques to help teams improve

5

2.1 How Programmers Learn Security
There is relatively little literature on how programmers learn, whether about novices or professional
programmers. Johnson and Senges [27] studied how programmers learned to function in a complicated
organisation, Google. They concluded that the majority of programmer learning there was peer learning,
facilitated by strong corporate standards and culture; obviously the results are limited to that organisation.
Enes and Conradi [17] used interviews to discover how professionals, including a few programmers,
acquired their expert knowledge. It concludes that the preferred learning mechanisms are all informal
ones: especially on-the job training and personal interaction. Murphy-Hill et al. explored how developers
find new software tools [35]; the research was more wide-ranging and included both an initial survey and
a larger scale, 79 participant, diary-based survey. They concluded the event is relatively rare, and happens
more through joint working than recommendations
Balebako et al. surveyed and interviewed over 200 app developers, and concluded that most approached
security issues using web search, or by consulting peers [6]. A survey by Acar et al. reached similar
conclusions; and they also determined experimentally the surprising result that programmers using digital
books achieved better security than those using web search [1]. Yskout et al. tested experimentally the
effect of using security patterns in server design; the results suggested a benefit but were statistically
inconclusive [61].
Xie et al. [59], interviewed programmers to investigate why they believed they made security errors; they
found a consistent tendency to treat security as ‘someone else’s problem’. Though the results are limited
in scope to highly experienced developers in US companies, it seems reasonable to conclude that the
conclusions may apply more widely.
Votipka et al. [51] compared the approaches of professional penetration testers with those of developer
testers, concluding that their approaches are similar; the experience of the pen testers leads to better
security findings; but the closeness of developer testers to programmers can lead to better outcomes. They
therefore recommended that penetration testers work directly with programmers.

2.2 Resources to Help Programmers
Turning to resources, one might expect that an effective contribution to app security would be books
explaining how to do secure development. The recently-published book, Bell et al.’s Agile Application
Security [10] does this, explaining security techniques to application development, and agile and
programming concepts to security experts, and providing a good deal of practical information, though it
is not yet widely read3.
Few other resources seem to be helpful to developers at a higher level than code. There are many good
works describing the theory and practice of software security, such as Gollman’s ‘Computer Security’
[21], Schneier’s ‘Secrets and Lies’ [44] and Anderson’s ‘Security Engineering’ [3]; these are particularly
valuable for introducing the concepts of ‘whole system security’, but all work at a level that isn’t helpful
as anything but background reference for a software developer.
Instead, the most useful learning books for software developers tend to be those that convey information
in a relatively terse and readable form, and in manageable chunks. A good example is Howard et al.’s ‘24
Deadly Sins of Software Security’ [24]. An online version is the community-written OWASP Top Ten
Risks sites [39], a widely accessed4 resource detailing specific programming issues and how to avoid them,
which has versions for a variety of platforms. Their authority and availability make them effective, though
they consider few ‘whole system security’ issues. Acar et al. [2] surveyed a range of web-based software

3 Based on Amazon.com rankings as at January 2018
4 Based on Google rankings in February 2016

6

security resources available for developers, concluding that there are distinct gaps in the coverage, and
that not much of it was suitable for developer learning.
Other books and sites are targeted specifically at particular platforms. Book examples include ‘Android
Security Internals’, ‘Learning iOS Security’ [7]; or Core Security Patterns for J2EE [46]; web resources
include Apple’s for iOS [4], Google’s for Android [22] and Microsoft’s [32].
Some of the most popular5 security books are the ones with a platform-specific ‘Black Hat’ (attacker)
approach. For example the Android Hacker’s Handbook [16], and its corresponding versions for iOS and
web apps, contain a good deal about exploits against the operating system, a certain amount about
analysing existing software, but little about how to guard against exploits as a developer.
Most programmers tend to use web search and discussion sites such as Stack Overflow as their primary
source of information on security [1]. Unfortunately these lack overview discussions [8], making them
valuable in helping programmers sort out problems they know they have, but does not point out problems
that they do not know they may have; most security problems are likely to be of this second type.
Discussion sites have a second problem related to security: their answers on security matters tend to be of
questionable accuracy especially when they quote code. Acar et al. [1] analysed answers on Stack
Overflow to app security questions, worryingly finding around 50% of solutions to a set of security
questions to contain insecure code snippets.

2.3 Techniques to Help Teams Improve
One approach to helping teams with security is providing code analysis tools: seven research groups
[15,28,36,37,43,45,58] have created security defect detection tools to help developers improve code, using
feedback via IDEs or elsewhere. Xie et al. [60] explored the impact of their IDE-based security analysis
tool for web applications on a sample of 21 students and 6 professionals and found:
Even when creating secure code is relatively easy … users still need to be motivated to make the needed
changes.
One might expect the most effective approach to be a prescriptive set of instructions telling programmers
what to do, a ‘Secure Software Development Lifecycle’ (SSDL) such as those promoted by Microsoft [33]
and others. However Conradi and Dyba [13], among others, identified that programmers have difficulty
with, and resist learning from, formal written routines, and this appears to have been the experience with
SSDLs in practice [19]. So, since about 2010 several of the SSDLs have been replaced by ‘Security
Capability Maturity Models’ [31,40], to allow management influence on software security at a corporate
level based on measurements using checklists of processes used to improve security. These are effective
[30] at defining what development teams should achieve, but provide little help to developers on how best
to achieve it.
Some research teams have explored the impact of training and external involvement on teams’ delivery
of secure software. Türpe et al. [49] explored ethnographically the effect of a penetration testing session
and workshop on 37 members of a large geographically-dispersed project, concluding that it failed mainly
because the workshop consultant highlighted problems without offering solutions. Poller et al. [41]
followed an attempt to improve long term security practices in an agile development team of about 15
people, which failed because pressure to add functionality meant that attention was not given to security
issues., and because their normal work procedures did not support goals such as security improvement.
The authors concluded that successful interventions would need “to investigate the potential business
value of security, thus making it a more tangible development goal;” and that security is best promoted as
a team, not individual, effort.

5 Based on Amazon.com rankings as at January 2016

7

Work by Ashenden and Lawrence [5] took a different approach. They used an Action Research method
to investigate and improve the relationships between security professionals and software developers in a
single company, and found the approach effective in improving communication. Lopez et al. [29] used
discussion workshops based on ethnographic studies to encourage similar communication. No evidence
is yet available of longer-term impact from either intervention.
Another approach is to investigate the economics of different software assurance techniques. Such et al.
[48] surveyed 150 security specialists to analyse the economics of different software assurance techniques
related to security. The survey asked about twenty pre-defined assurance techniques, finding Public
Review and (tool-based) Static Analysis to be the most cost-effective, and Formal Verification and
Cryptographic Validation to be the least. Interestingly the researchers also identified frequently-used
combinations of techniques, finding that the combination Architectural Review, Configuration Review,
(manual) Penetration Test and (automated, web-based) Vulnerability Scan was seen as most cost-
effective.

2.4 Limitations of Existing Literature
Consistent in all this literature, is a lack of knowledge and theory as to how successful industry
development teams achieve software security. This article addresses that lack.

3 Methodology

This section explains our choice of methodology, Grounded Theory, and introduces the two sets of
research participants.

3.1 Choice of Methodology
Since there was little existing theory on developers and app security, we had no basis for an experimental
approach; although we had a target – improving developer security – we had no theory to test. Written or
email surveys could be useful to find out current practice from a list of options but are unsuitable for the
kinds of open question that generates theory.
Our purpose in the research was to generate knowledge about good approaches to achieve secure
development. Two perceptions drove the choice of research approach:

• We had found few resources discussing how to tackle app development security.

• Existing literature tended to be negative in approach, listing things the developer must not do; this
contrasts with the kinds of books preferred by developers, which we had observed to be positive in
outlook.

Since our aim was to generate a novel theory, we chose Grounded Theory as our primary research method.
Our studies used semi-structured interviews with industry experts. We chose interviewees
opportunistically; our connections in industry provided introductions to a number of successful, and
mostly senior, practitioners with considerable experience of helping teams achieve software security.
The first ‘App Security Expert’ phase of interviews took six months, and involved 12 such experts; the
second, ‘Intervention Expert’ phase took a similar period, and involved 15 interviews with 16 experts.
The Appendix contains the protocols used for each set of interviews.
Both studies were separately approved by the Lancaster University Faculty of Science and Technology
Research Ethics committee.

8

3.2 Grounded Theory
Grounded Theory (GT) [20] uses textual analysis of unstructured text to make theory generation into a
dependable process. It requires line-by-line analysis of everything relevant that is available to the
researcher: interview transcripts, relevant research literature, field notes from observation and anything
else that can reduce to text form. The process is iterative, with analysis of initial findings from interviews
or similar leading to changes in the research thrust and direction.
We used the Constructivist GT variant [12], acknowledging the effects of the researcher on the results.
We followed the principles for software engineering GT described by Stol et al. [47]. The interviews
consulted the participants as experts rather than as subjects, addressing what each had found to be most
successful in their experience in secure software development. To encourage positivity, we used elements
of Appreciative Inquiry [14] in our questioning: the ‘Discovery’ of best practice and the ‘Dream’ of ideal
practice. Questions avoided discussion on what does not work and concentrated on the most effective
practice known to each interviewee.
We recorded interviews and transcribed them manually; organisation of the data used the commercial tool
NVivo; coding, memo creation and sorting were all by the lead author.
The Grounded Theory analysis involved scanning each text line-by-line, highlighting points of interest.
One or more codes are then assigned to each point of interest, with new codes created as required to
identify the ideas and concepts involved. Codes were reused across documents, so that a given code
represents the same idea throughout the research. During that process, the coder also ‘memoed’ ideas and
thoughts about how the terms may be interrelated. Gradually, as codes were assigned, the coder merged
codes with similar meaning, and organised the resulting codes into groups called ‘categories’.
The coding process for both surveys generated a total of 2,140 coding entries to 340 distinct codes,
grouped into 12 high-level categories.
The Grounded Theory methodology derives from social science, and in contrast to many computer science
methodologies, dual coding is not a GT practice [12]. Therefore, inter-rater agreement calculations are not
applicable. Instead researcher interaction takes the form of discussion of the codes, findings and outcomes,
and in this case was based around the writing of papers.
In GT analysis, the aim is to find a single overarching Core Category: the category which covers the most
interesting features in the data. Data gathering is considered complete when further data received does not
lead to significant new concepts, a situation termed ‘theoretical saturation’. The Core Category then forms
a basis from which to construct theory. Section 4 presents the theory of the core category we found:
Dialectical Security.
Finally, we sent a detailed report describing the findings from each survey to each of the interviewees in
that survey.

3.3 Research Participants
Interviewees were recruited opportunistically; connections in industry and academia provided
introductions to successful, and mostly senior, practitioners with considerable experience of helping teams
achieve software security.

9

Figure 1 introduces the participants: those in the first ‘App Expert’ survey have IDs starting P; those in
the second ‘Intervention Expert’ survey have IDs starting with Q. The horizontal axis indicates their
organisation size: Small for consultants and up to 10 people; Medium up to 1000 people, else Large or
Government. The vertical axis provides a subjective estimate of the ‘secure software capability maturity’
[26] of the software teams they work with, as follows:
Low Little or no awareness or activity related to software security
Medium Aware of and addressing security issues, typically including some developers with good

security knowledge.
High Experts at software security, within an organisational culture that assigns it a high priority.
To show further the range of participants involved, Figure 2 summarises the recruitment process. We
approached various people; the horizontal axis indicates how long we had known the people approached.
Some we interviewed directly, and these are shown closest to the axis. Professional and personal contacts
are shown above the axis, and contacts from academia—mostly encountered at industry-academic
workshops—below. In other cases, the contacts we approached referred us to others, and the resulting
interviewees are shown further from the axis.
Most of the participants were based in the UK other than P11, Q5 based in the USA; Q7 in Sweden; and
Q10, Q13 in Germany. All UK interviews were face-to-face; others used video conferencing.
Only one person was interviewed in both surveys (P6 Q2, shown together); the requirement in the second
survey for a wider remit than app development discouraged other repeat interviews. Each participant was
in a different organisation, other than P3/P11, Q14/Q15 and Q12/Q16 – the latter two who were
interviewed together. Table 1 in Section 4.2 has the participant job roles and the company descriptions.
We chose experts in secure software development; many were therefore predominantly developers first
and security experts second. As Table 1 shows, only fourteen of the twenty-seven had job titles or
company missions specifically related to security. Their qualification as experts was based on their
reputations, either directly from the researchers’ knowledge; or as validated by the people who referred
them to us.
In the following sections, quotations from the interviewees are in italics. We have edited them to protect
confidentiality and indicate context: square brackets show additions and replacements; ellipses show
removals.

Figure 1: Organisation Size and Security Capability Figure 2: Recruitment Method

Small

High

P1 P2

P3

P4

P10
P11

P12

P9

P7

P6 Q2

P5

P8Medium

Low
Large GovernmentMedium

Q1 Q5

Q4

Q10

Q11

Q12

Q9

Q7

Q6
Q3

Q8

Q15
Q14

Q16

Q13
Se

cu
rit

y

 M
at

ur
ity

Profess-
ional

P3

P4

P10

P11 P12

P9

P7

P6 Q2

P5

P8

Academic

Q1
Q5Q4

Q10

Q11

Q12

Q9

Q7

Q6
Q3

Q8

Q15
Q14

Q16

Q13

1990 2000 2010 Now

Referral
by
professional

P1 P2

Referral
by
academic

10

4 Analysis

4.1 Introducing Dialectic
The Core Category that emerged from the Grounded Theory analysis of the first ‘App Security’ phase of
interviews was the nature of the developer’s interaction with external parties: a friendly adversarial
interaction. The word ‘dialectic’ had surfaced in our earlier work [54], and we realised it was the common
theme to all these interactions. ‘Dialectic’ is the finding out of knowledge, especially logical
inconsistencies, through one person questioning another6.

I think part of the good practice guide is embedding questioning. How, why, what, where, when. It is
almost asking developers to ask the questions that begin with those words and thinking of a set of
questions that begins with those words. What if we did that? How would we do that? When could we do
this? (P5)

If there is something in the application that is a particularly sensitive area… you probably want a
security guy to come and sit for a few days and have a look at it: someone who can work with the
develop team but who hasn’t been part of that development team, in a way. So, somebody who can ask
the stupid question - I think that is really important, to bring in an external person. (Q11)
Dialectic surfaced as the Grounded Theory ‘Core Category’ with the observation that many of the
techniques used for security depended on someone or something ‘surprising’ and ‘questioning’
developers:

There is a separate Security Review system for, so if you are doing code that impacts security in your
judgement, it goes to people who are security experts who will do the security review and they find stuff.
(P3)

Every production change has to go through the Change Advisory Board, … [with] a really good cross
section… of developers, system administrators, database administrators, QA, business security …, and
everything gets a fair, and good critique. (Q16)

If you open [a security code review tool, you might see] “Now you are 8 out of 10, okay. Nice work,
but oh, but you have failed the security mis-configuration.” It explains what security misconfiguration
is, … it gives me external resources, … and a sharing knowledge base, where you get can more
information on what to fix, and how to remediate it. (Q7)

Normally the way the [Penetration Testing] report would be dealt with is we would sit down in a
sprint planning meeting and we would go through the report: us, the client, sometimes the tester… and
we would discuss the findings and produce work that would be added to the next sprint to address what
had been found. (Q1)
Dialectic first appeared as the technique used by the Greek philosopher Socrates [57]. Dialectic addresses
a particular weakness in much existing secure development research, namely that emphasis on code level
security often misses possible exploits based on the functionality and system design – or may prove
unnecessarily costly:

So implicit in [conventional thinking] is the notion that programmers decide what they are doing
[only] in code … being told to put something in place without them understanding the greater
implication. (P9)

6 Although the ‘Dialectic’ concept came from the first phase analysis, the interviews in the second phase confirmed it, and some of the

quotations in this section come from those interviews.

11

Instead, developers need to think about the approaches an attacker might use to gain benefit from the
system they are producing, and then to decide how to thwart those approaches.

Yes, the question is ‘who is the attacker, who is the bad guy, who is the threat model you are dealing
with?’ (P3)
This is a significantly different approach from ‘normal programming’, as it requires developers to think
in unfamiliar ways.

They are very devious. There are exploits that they have realised which are, well, you wouldn’t really
think like that if you were an engineer (P2)
It was not difficult to work out why our experts should view dialectic as a solution. Unlike other forms of
software quality such as performance or reliability, security involves the idea of an attacker who will use
remarkably different thinking. To deal with such threats, a developer needs to think ‘outside the box;’ the
easiest way to achieve that is with challenges from others.
The dialectic continues throughout the development cycle; and in each case, it is always two-way: the
experts state that the increase in security comes from active interaction with the challenges, not from a
passive understanding of the challenge.
Our theory does not suggest necessarily that dialectic provides the best techniques for achieving security;
it does suggest, however, that dialectic is associated with effective software security.

4.2 Assurance Techniques
From the second ‘Intervention Expert’ phase of interviews, we derived further theory identifying six
software assurance techniques as the most effective7. These exclude training and motivation activities, and
are as follows:
Threat Assessment Identifying and ranking the threats to computer software, a component, or

an IT system.
Stakeholder Negotiation Discussion and negotiation with stakeholders, such as product managers, on

security choices
Configuration Review A review of the way a system or its software has been configured to see if

this leads to known vulnerabilities, using manual checking software versions
or automated build review scanners.

Vulnerability Scan The process of using an automated scanner on a web application or
network to identify vulnerabilities.

Source Code Review The manual examination of source code to discover faults that were
introduced during the software development process.

Penetration Test A simulated attack on a component or system, carried out by a security
expert using similar techniques to that of a real- world malicious attacker.

For consistency with other literature, the definitions above are taken from Such et al. [48], except for
Stakeholder Negotiation, which was not discussed in that paper. Note that the coder was not aware of that
paper at the time of coding, and the assurance technique names derived from the Grounded Theory
analysis were different.

7 The ‘most effective’ criterion came from the second phase interviews; both sets of interviewees discussed assurance techniques and some

of the quotations in this section come from the first phase.

12

Table 1: Interviewee Discussion of Assurance Techniques
 ID Organisation Type Main Role Vuln-

erability
Scan

Source
Code
Review

Stake-
holder
Neg.

Penet-
ration
testing

Threat
Assess-
ment

Config-
uration
Review

P1 Bespoke app
developer

Developing apps for
business clients

P2 Mobile phone
manufacturer

Leading large security
team

 2 2
P3 Operating system

supplier
Developing user-facing
web services

 4 2
P4 Smart card specialists Developing smart card

software

P5 Security-related
SAAS supplier

Promoting a secure
service

 2 1 1
P6* Security consultant Consultant 1 1
P7 Mobile phone

manufacturer
Architecting OS
services

 2 2

P8 Telecoms service
provider

Architecting web
services

 1 1 5
P9 Bank Protecting web-based

services
 1 8 1

P10 Secure app tech.
provider

Architecting and app
technologies

 1 3
P11 Operating system

supplier
OS security
enhancements

 9 7
P12 Bespoke app

developer
Developing apps for
business clients

 2 3
Q1 Outsourced software

developer
CEO 5 9 2 18 13

Q2* Security consultant Consultant 5 1
Q3 Security and military

supplier
Team leader 10 9 3 2

Q4 Research
organisation

Research and support 3 2 1

Q5 Operating System
Supplier

Security team leader 5 3 4 8 2
Q6 Security and military

supplier
Security expert 1 4 8 1

Q7 Software security tool
supplier

CEO 19 1

Q8 Telecommunications
provider

Security expert 7 2 1 1 1

Q9 Security consultant Consultant 5 6 8 4 1
Q10 Software package

supplier
Security expert 4 1 5 2

Q11 Software security
service supplier

Training and
consultancy 10 4 3 8 1

Q12 Telecoms service
provider

Security expert

 16 3 3

Q13 Research
organisation

Research and
consultant 11 2 1 5

Q14 Outsourced software
developer

Principal engineer 7

Q15 Outsourced software
developer

Security expert 16 6 1

Q16 Telecoms service
provider

Team lead 4 9 1

13

4.3 Participant Discussion of Assurance Techniques
Table 1 shows the participants’ discussion of these techniques in both phases. The numbers indicate the
percentage of participant words coded to each assurance technique: the share of the discussion devoted to
that technique within that interview. Cells are highlighted based on their values. The most discussed
techniques are on the left; less discussed ones towards the right8.
The table shows the substantial difference in results we saw according to the questions asked of experts.
Some of the difference between the groups can be attributed to the difference in coding: in the second
phase we were explicitly coding for ‘interventions,’ which include the assessment techniques. However,
we observe a surprising lack of reference to forms of Vulnerability Scan and Stakeholder Negotiation in
the first survey.

4.4 Dialectic Counterparties
The theory also identifies specific counterparty roles for this dialectic interaction:

• Members of the developer’s team
• Stakeholders, such as product managers
• Automated code analysis tools
• Security experts
• Penetration test experts
• Other development teams
• End users and operations staff.

Note that these interactions are not limited to human forms of questioning; tools for automated code
analysis also provide dialectic challenge.
Sections 4.5 to 4.10 explore in detail how dialectic applies in each assurance technique, discussing the
counterparties for each. Each section discusses the context of the problem, and outlines how the technique
solves it, exploring how the interviewees use the technique, backing the discussion with quotations from
interview participants

4.5 Threat Assessment
Threat Assessment is the activity of identifying and ranking the threats to computer software, a software
component, or an IT system as a whole [48].
4.5.1 Context
Any system can be broken with sufficient determination, ingenuity, and resources.

Every security system can be broken. Period. There are even ways of getting the certificates off a
phone, by freezing the phone and reading the memory. There is nothing you can do to stop a truly
determined person to getting in, short of dropping it into a nuclear furnace. The best you can do is make
it difficult enough for them, that they will lose interest – that it’s not worth the trouble. (P7)

I quickly realised that no system is ever unbreakable (P9)
As a result, secure development is not a matter of making a completely secure system. Instead, it becomes
a question of which defences to implement: where one should spend the time and effort defending the

8 As previously discussed, the asterisked P6 and Q2 were different interviews of the same expert.

14

system to deter the largest and most damaging potential exploits. Making those choices requires an
understanding of the potential attackers:

I think it is actually very important to understand the motivations behind why somebody is hacking the
system. We try to address the motivations of the attackers, versus the technical aspects - just locking it
down for the sake of locking it down. (P11)

There are clear reasons why someone would want to attack a bank, but actually the real reasons for
attacking a bank are very seldom to do with trying to get financial rewards. It is much more around
what information you can get about people. Banks hold information about people. So [it might be] a
private investigator who is trying to track someone, or a hostage situation, where people might have
done things, or simply learning more about behaviour. (P9)
4.5.2 Solution
To address this, security experts use ‘Threat Modelling’ techniques: identifying the causes or motives and
possible scenarios for a full range of threats to the systems in question.

Your answer to any kind of security question anywhere should almost always start with a threat
model. (Q9)

I think the things that are the most challenging around security really are trying to understand the
threat landscape and trying to understand how threats are realised. (P2).
Several interviewees indicated that developers must drive the threat modelling process.

You need developers to do threat models, but you need developers to understand how the attackers
brain works, what is the methodology, the way I know how to do that is to make them do the steps, make
them ask the questions. (Q11)
4.5.3 Execution and Counterparties
The counterparties discussed for Threat Assessment included other developers:

Threat modelling: what I see as the big benefit here is, is that it is not that you are coming up with a
list of issues that product of the team has, it is more putting the team into the perspective, to think about
the functionality from a different aspect, from a different point of view, that that brings up a list of
issues, no doubt about that, but it also fosters the understanding to see the coding from a different side,
to also to think about it when you create code: what else can there be? (Q10)
Some experts emphasized the importance of including more senior stakeholders:

If [the developers] don’t know what a threat model is, then tell them what a threat model is, and the
simplest explanation in the world is ‘who is going to attack you, and where is the gold?’ ‘Where’s the
gold’ answers need to come from managers, and company owners. Not from developers because their
answers will be totally wrong. And actually that is a big learning that you can give to any company
when you go in. Whatever the CEO’s threat model is, explain it to all of the devs and go ‘if you don’t
know what the worst nightmare is for your CEO, then how can you be expected not to make that cock
up’ (Q9)
And the Security Experts themselves:

I was involved in a lot of conversations about trying to think about doing really evil things, so I think
in order to protect people from harm we have to think about how harm can be done. So, brain-storming
bad intent is part of the life, really. (P5)

15

And Penetration Test Experts:
One of the things I like to do with the [penetration testing] guys is if you sit down and say, “what are

all the different ways you could subvert this system.” It is quite common to come up with 20, 30, 40, 50
in five or ten minutes of brainstorming. I bet you, you wouldn’t think of half of them. (P2)
Particularly with development teams using agile approaches, this Threat Assessment process continues
informally throughout the initial development project, and into the subsequent deployment and later
lifetime of the product. The most security-capable teams incorporated attacks and motivations found
throughout the software product lifecycle.

The other thing is … [to] reward proactive thinking and this is two levels of that: trying to think what
could happen next, how could it go wrong, what am I missing, but then the next level of reward, is
rewarding people for research. And thinking about how to do harm. Actively encourage them to think
like a hacker. (P5)

4.6 Stakeholder Negotiation
Stakeholder Negotiation is the activity of discussion and negotiation with stakeholders, such as product
managers, on security choices.
4.6.1 Context
Merely identifying the possible attackers and exploits does not itself deliver software security. The need
is to prevent them from causing damage to users, stakeholders or others.

For businesses it is a risk-based approach which they need to understand and neither [management
nor programmers] should be caring about actual nitty gritty details of coding which is just an artefact of
the whole thing. (P6)
Given the Threat Assessment, a development team can take the list of possible attacks, and work out
possible mitigations for each. These mitigations will each have costs in development time, commitment,
finance, and sometimes usability. The team can estimate financial and other costs for each. How, though,
do they make the decision which to implement?
Similarly, there is a major challenge for products after the end of the initial development project:

Like many things that get delivered in a project, the project ends, and interest dies with it.
Unfortunately. And I think you lead into a significant challenge in securing things on an operational
basis. (P8)
The decision of what aspects of security to implement is a commercial one. Implied in every decision
about software security is a trade-off of the cost of the security against the benefit received. Every security
enhancement needs to be weighed against other uses of the investment—financial, time, usability—
required.
4.6.2 Solution
The solution is for development teams and security experts to express risk and costs to stakeholders
(project managers, senior management, customers) in terms they can understand and use to question about
security concerns against other organisation and project needs.

[Costly development approaches aren’t] suitable for a lot of start-ups. And the same goes for security.
You’re going to have to make a security decision upfront… [When I started] a project I’d go back and
ask [my customer] … “You do realise this [information] can be seen.” It goes from there: ‘how secure
do you want it to be?’ You have to show that there’s a problem first I think” (P1)

16

4.6.3 Execution and Counterparties
The primary stakeholders are those who prioritise development tasks, such as product managers.
Evaluating and expressing the threat in business terms requires discussion and experience, so other Team
Members and Security Experts are also important:

The teams take a risk management approach, full stop. For every risk, we try and weight it on two
axis – one is the severity, if it happens. So, ignore the likelihood, how bad is it if it happens? And the
other is the likelihood, how likely is it to happen… so, the project teams will plan their work, and come
up with an end date, and the project manager will make sure that they add enough capacity to the
project for the weighted risks to happen. (Q14)
Many of our interviewees made the point that ‘security is not an absolute,’ but that security is what the
users and stakeholders need for a particular situation at a particular time. For such stakeholders to make a
good decision on what security to implement requires particularly effective communication. The
stakeholders will be making cost benefit trade-offs comparing various business risks.

You’ve got to put a weighting on the threat. You’ve got a level of threat, and you’ve got to put the
appropriate level of security against that. (P4)
There are techniques available to give objective assessment of security risks, such as work by ben
Othmane et al. [38]. Vitally—and several interviewees stressed this—the cost-benefit trade-offs mean that
perfect security, even if possible, would rarely be a good business decision:

And actually the way this works, in practice is you have to do less than a perfect job, in order to have
a measurable degree of failure or fraud or whatever, so that you can adjust your investment and say ‘I
am managing this to an economically viable level’ because if it is zero, you have invested too much. (P6)
For simpler projects and systems, there may not be sufficient engagement from stakeholders to be able to
do this kind of trade-off; in that case, it becomes the responsibility of the development team:

[Often it’s impossible to get signoff on security in a big company and so the decision is usually down
the developer because you can’t get the signoff. And in a small company may just be the same].
Customers often don’t have a view. The important thing is making the decision. (P1)
Given that each mitigation now has a cost and benefit, the decision on whether to do it becomes part of
standard project management process. It is outside the scope of this technique – and indeed of the topic of
software security – to explore how to make these decisions in general; the balancing of risk cost and
reward is a well-understood aspect of business life.

And it has to be a bit of a trade off as well in terms of business. You’ve got to make the trade off as to
what’s good for getting a solution available now, and having one available in a year’s time, which no
one will buy, because everyone’s gone with one which doesn’t even consider security at all. (P12)

4.7 Configuration Review
Configuration Review is a review of the way a system or its software has been configured to see if this
leads to known vulnerabilities, using manual checking software versions or automated build review
scanners [48].

17

4.7.1 Context
Using an insecure component automatically makes a developed system insecure, regardless of the quality
of the code developed by the team:

WordPress plug-ins are an enormous liability. Anyone can write one, most of them are rubbish.
Anyone can get them put up on the plug-in directly, which gives them this air of authenticity, and quality
that they don’t deserve, frankly. (Q1)
So, a ‘low hanging fruit’ for development is to use only components (including frameworks and
toolchains) that are well written and securely implemented. This is non-trivial, given the wide range of
components available.
4.7.2 Solution
Configuration Review is the activity of reviewing the codebase to evaluate the components used for
security: using public repositories of security vulnerabilities to assess well-known components; avoiding
little-known components where possible; and using Source Code Review and Penetration Test to evaluate
such components if they must be used.
4.7.3 Execution and Counterparties
For some development systems there are corresponding web sites with security reviews of plug-ins; cross
referencing with these sites is a powerful security technique. This may use automated analysis tools:

[Our tool chain] also queries Wpvulndb for the plug-in that you are expecting, and tells you if there
have been any published vulnerabilities in it. (Q1)
Where such sites are unavailable, or for new plug-ins, there is a value to Source Code Reviews (Section
4.8) to establish the likely security attributes of a given plug-in. This does however have a significant cost
to development teams since it takes effort, however much automation may be involved, and restricts the
plug-ins that that developers can use.

And so that is one of the things you end up sitting down with developers going “I’m sorry, but I know
this is actually going to slow you down”. And we are desperately normally trying to avoid that, I’m
trying to make your lives as easy as possible. … But you have to say “well, no, you can’t just add
[components] – you have to review them. You don’t have to do the most detailed review in the world, but
if you think it looks worrying, then … don’t put it in your code”. (Q9)
A second issue is that, since plug-ins are widely shared, any weakness in a plug-in becomes known to
attackers, and therefore it is important to keep plug-ins upgraded to the latest versions in which defects
have been corrected.

We keep track of all the patches and everything for all our systems. (Q7)
Since Penetration Testing tests a whole system, it will also find vulnerabilities in components, so testing
is another way to assess components:

[When Penetration Testing] you’ll find the OWASP Top 10 in one [component] alone! (Q9)

4.8 Source Code Review
Source Code Review is the manual examination of source code to discover faults that may have been
introduced during the software development process [48].

18

4.8.1 Context
It is notoriously difficult to spot one’s own errors. This is especially true when the errors are faults in
complex reasoning or are due to misunderstandings. Thus, a programmer working solo is likely to create
avoidable security problems, just because they can naturally have only one point of view.

So, it is very easy when you are trying to deliver something yourself, as a developer, to pass over the
bit that you are not doing (P5)
This problem extends to programming teams. A team will always suffer to some extent from ‘groupthink;’
the need to generate a shared understanding brings with it the danger that that understanding may include
misunderstandings and blind spots. This is particularly important with software security, since such blind
spots often lead to vulnerabilities in the developed software.
4.8.2 Solution
In Source Code Review, development teams to provide a counterpart who reviews the security and privacy
aspect of assumptions, decisions, and code. Several interviewees stressed the importance of this being a
dialectic, questioning, process for security reviews:

What is our most successful technique for secure software? In terms of what I have seen, certainly
talking amongst the developers, the code reviews have been very useful. (Q16)
4.8.3 Execution and Counterparties
The reviewer is typically another developer from the same team.

Code review is what we do endlessly. We certainly do not let any form of code out the door, without
an independent review and that is eyeballs on the code and that is discussion about the code. (P5)
If a Security Expert is available, however, they can often provide more security-relevant questioning than
development team members:

The most successful technique has to be review by [a security] expert—you can’t really beat that—an
actual conversational review by an expert, because someone who is an expert in security might not be
an expert in the domain. (P3)
[We have] ‘software pen testing,’ where you have some Subject Matter Experts who take a piece of code
and review that in detail, and work with the developers in tandem, looking at the code and saying, “we
think this is really high risk, we really want to look at this.” And then somebody goes through that code
with the mindset of “how do I exploit the code” (Q5)
Section 4.7 discusses Source Code Reviews of components developed externally; this might not be a
detailed review, but a lightweight check, possibly backed up by forms of Vulnerability Scan (Section 4.9)

We have a tool that we wrote … for checking … plug-ins, which is intended to make code reviews of
plug-ins more focused. It looks for things that are indications of badness and you go and review that list
of things, rather than sitting down and reviewing the entire plug-in. (Q1)
Another approach to Source Code Review is providing dialectic questioning to a developer via pair
programming, where the code is written by two developers sharing one computer:

Two heads are better than one, more eyes on the problem. (P7)
Cheaper possible alternatives are ‘Rubber Duck Debugging’ [25] and ‘Cardboard Consultant’ [53], where
the developer explains their thought processes to an anthropomorphized object.

19

And the heavyweight approach is a formal review process, with separate review meetings delivering lists
of defects for a developer to fix.

It is in the culture. We do reviews; we always have to do reviews. We set things up – and it is not
regarded as a second class. (Q6)

4.9 Vulnerability Scan
Vulnerability Scan is the process of using an automated scanner on an application or network to identify
vulnerabilities [48].
4.9.1 Context
It is a poor use of expensive resources to find problems that are cheap to find in other ways. Source Code
Review, Configuration Review and Penetration Testing are all expensive in terms of human effort.

[There are] things that big organisations seem to not want to do, like … automated testing, code
inspection – things that were always considered too expensive (P5)
Indeed experts’ assessment of cost—cheap, moderate or expensive—for these three techniques, taking the
modal choice in Such et al.’s survey, are that Source Code Review and Penetration Testing are expensive;
Configuration Review is moderate [48].
4.9.2 Solution
Vulnerability Scan uses automated tools to look for possible security flaws in the written code. Tools to
do this are sometimes called ‘lint’ checkers, after a UNIX tool that does extra checking for C code.

“[The most successful technique I have found is] to use various types of Lint checkers” (P7)
The experts’ assessment was that Vulnerability Scan is cheap [48]. Indeed, automated tools can be used
as an extension to the compilation process of the code, and many interviewees saw them as valuable in
automating the removal of certain classes of security bugs.

We use excellent tooling from the Alassian stack, the Crucible Tool … We do a lot of static analysis.
We review for security, we certainly do, but the point is, is that we will try to automate the removal of
whole classes of problem from that. (Q3)
4.9.3 Execution and Counterparties
In this the dialectic counterparty is the tool or tool suite itself. There are now many such tools, some
produced by commercial companies, supporting different languages and purposes. They work similarly
to compilers, and generally use analysis techniques developed for compilers. Since codebases vary
enormously in their style, requirements, and ways of using code, such tools often require significant work
to configure:

We use something called Sonar which is a code inspection tool. We’d written templates and guides for
our coding standards and certain patterns we are looking for in a code and we are looking for changes
in the code that are greater than a certain percentage, and there are specific bits of the code we are
looking for any change that should never happen. (P5)
Such tools typically generate large numbers of ‘false positive’ warnings. So, developers need to use them
as questions (‘is this piece of code OK’) rather than as notifications of changes to be made. Hence in this
paper we regard them as a dialectic counterparty, rather than merely an error detector.

Pay attention to the warnings, pay attention to the Link errors. [So it is not just the automated checks.
It is the attitude towards those automated checks, taking them really seriously] Use them, don’t forget
them. (P7)

20

Some interviewees, however, had found the time cost of analysing the responses to be too great:
If you mean static analysis type tools, the answer is no [we do not use them]. Two teams I have

worked with have used them. One gave up entirely, because they looked at the amount of time that they
were spending on it, versus the reward that they were getting, and then looked at what happened in the
first pen test that they had, where they just got completely pwned. (Q9)

4.10 Penetration Testing
A Penetration Test is a simulated attack on a component or system, carried out by a security expert using
similar techniques to that of a real-world malicious attacker [48].
4.10.1 Context
All the assurance techniques discussed so far (Sections 4.5 to 4.9) need access to the development team
or source code. Yet the delivered system is what the attackers see and where the privacy issues occur.

I teach … the application security or hackers’ mindset: ‘okay, I have got this application in front of
me. How would I go about finding flaws, what are the assumptions they are making, how do we go about
testing the assumptions?’ (P11)
So, there are situations where none of the other assurance techniques will help.
4.10.2 Solution
In Penetration Testing an external ‘white hat’ security team simulates what an attacker would do to attempt
to gain access or disable the service. The team then feeds back any ‘successful’ exploits they have found
to the development and operations teams.

[Ensuring software security] tends to get handed off, in most companies I’ve worked with, to a white-
hat hacking team. (P7)

[The most successful intervention technique we have found] comes down to using security experts. We
… have Penetration tests. (Q5)

If the team have developed something new… and it is a significant change, we might get it externally
pen tested, if we think that we can’t test it ourselves. (Q12)
4.10.3 Execution and Counterparties
The single dialectic counterparty is a Penetration Test Expert. Few developers have more than basic skill
at Penetration Testing, so it would be unusual for a development team member to take the role. The
developers take the results of the Penetration Test and use them to plan future security enhancements.

Normally the way the report would be dealt with, we would sit down in a sprint planning meeting and
we would go through the report: us, the client, sometimes the tester, … and we would discuss the
findings and produce work that would be added to the next sprint to address what had been found. (Q1)
At the operating system level, one can also Penetration Test a mobile operating system using software on
the device:

I think the one [approach to testing our phones] that has been, arguably, most useful has been using
specialist external consultancy around security. Not for training, but “can you just come in and
penetration test this device?” (P2)

21

Some interviewees have success extending the Penetration Testing to involve direct discussion (dialectic)
with the developers:

So, the idea is the penetration tester is testing the web application, and the developer is sitting with
the penetration tester. That is very effective. A developer will not surely not know more about the
application and will see – I am not such a good pen tester, but I do not claim to be able to find all the
vulnerabilities in the application – there may be something though that is too arcane for me in 5 days or
3 days to understand from a black box perspectives, but if you are sitting with a developer they are part
of the process and they tell you ‘ah, you know that request you have just intercepted in Burp - I’ll
change it to that!’ (Q11)

4.11 Summary of Assurance Techniques and Dialectic Counterparties
Table 2 summarises the Dialectical Security theory, showing which counterparties provide the dialectic
questioning for each of the assurance techniques discussed in Sections 4.5 to 4.10.

Table 2: Dialectic Security Assurance Techniques and their Counterparties

Note that end users and operations staff were not mentioned in the context of any of the Assurance
Techniques; they are omitted from the table.

5 Discussion

5.1 Differences between the Two Surveys
Section 4.3 shows remarkable differences between the two surveys. Even P6/Q2 (one person) discussed
Vulnerability Scan in the second interview and not in the first. We suggest these are attributable mainly
to the different questions asked (see Appendix). It appears that when experts review developer security in
general, they tend to focus on Threat Assessment and Configuration Review; when they come to consider
aspects of development security in more detail they then focus more on other techniques, especially
Vulnerability Scan.
It is interesting that many of the second survey’s participants emphasised Stakeholder Negotiation, even
though the nearest that survey’s interview protocol came to mentioning it was ‘Security coordination with
other teams’ (where the survey designers had in mind security experts and other developers). That, and
the lack of emphasis on it in the first survey, suggest that Stakeholder Negotiation is an important
‘emergent requirement’ for software development security when practitioners consider the practical detail
of implementing interventions.

M
em

be
rs

 o
f

D
ev

el
op

m
en

t
Te

am

St
ak

eh
ol

de
rs

,
e.

g.
 P

ro
du

ct

M
an

ag
er

s

Au
to

m
at

ed

C
od

e
An

al
ys

is

To
ol

s
Se

cu
rit

y
Ex

pe
rts

Pe
ne

tra
tio

n
Te

st
 E

xp
er

ts

O
th

er
 D

ev
.

Te
am

s

Threat Assessment 1 1 1 1 0
Stakeholder Negotiation* 1 1 1 0
Configuration Review 1 1
Source Code Review 1 1 1
Vulnerability Scan 1
Penetration Test 0 1

22

5.2 Choosing Assurance Techniques
We observe that the list of key assurance techniques derived in Section 4.2 is nevertheless a small subset
of the 20 techniques identified by Such et al. [48]: the explicit focus that experts placed on them is
therefore important.
Based on Table 2 and the expert cost estimates from Such et al., we can further characterise the assurance
techniques in terms of two important practical considerations: their cost and their need for security
expertise.
Figure 3 shows this characterisation, using the modal estimate of cost for each technique, and assigning
‘cheap’ to Product Negotiation, since it in incorporated into activities already carried out by a development
team. Source Code Review, Threat Assessment and to a lesser extent Product Negotiation, are more
effective with the involvement of security experts, but can take place without them; Penetration Testing
requires security expertise, whether in-house or outsourced.
Based on this, we deduce that the most widely applicable assurance techniques are Threat Assessment,
Product Negotiation, Configuration Review and Vulnerability Scan; and that teams with greater resources
will benefit from adding Source Code Review and Penetration Testing.

5.3 Incorporating the Assurance Techniques into the Development Cycle
The ordering of the assurance techniques in Section 4.2 is roughly chronological within a development
cycle. Figure 4 illustrates how they might be incorporated into an iterative cycle. Threat Assessment and
Product Negotiation affect what functionality is produced, so apply to the planning element; Configuration
Review and Vulnerability Scan can be automated into a product build; Source Code Review needs a
candidate complete implementation, so is typically done at the release stage; and Penetration Testing
applies to an installed system, so comes in the test phase.
Section 4.11 discusses the dialectic counterparties involved in each assurance technique, and observes that
end users and operations staff were not mentioned. We speculate that this reflects the difficulty of
involving them, or possibly that it represents an opportunity not yet realised by the security specialists we
interviewed.

Figure 3: Characterising the Assurance Techniques

Threat
Assessment

Configuration
Review

Vulnerability
Scan

Source Code
Review

Penetration
Testing

Product
Negotiation

Cheap

Requires Security ExpertsTeam Only

Expensive

23

5.4 Improvements on Existing Practice
Considering the assurance techniques, past improvements to developer based security have often been
based purely on the intervener proving the inadequacy of existing security using Penetration Testing, an
approach that often proved ineffective in the longer term (see Section 2.3). Dialectical Security suggests
an alternative way of approaching security improvement: regarding it as an interactive dialog with the
developers, where all the techniques, from Threat Assessment through to Penetration Testing, are
regarded as generating challenges for the developers to debate, discuss and address. The surveys
described in this article demonstrate that expert opinion considers this approach to be more successful.

5.5 Relationship to Existing Work
Comparing the existing work on developers and security, Section 2.1 discussed research on current
practice by developers such as that by Balebako et al. [6]; this work goes further by identifying approaches
for better practice.
Considering the assurance techniques themselves, we suggest that all but Stakeholder Negotiation are
reasonably well understood [48]. There has been, however, little work on the human interactions required
to achieve the techniques, a gap filled by this article.
The work of Such et al. [48] provides a taxonomy and cost basis for assurance techniques and identifies
the set of Architectural Review, Configuration Review, Penetration Testing and Vulnerability Scan as the
most cost effective. By deeper and more intensive questioning of the subjects, this article reaches a similar
but slightly different conclusion, that the subset Threat Assessment, Product Negotiation, Configuration
Review, Vulnerability Scan, Source Code Review and Penetration Testing is likely to be the most
effective.
As discussed in Section 2.3, there has been a good deal of work on ‘Secure Software Development
Lifecycle’, but prescriptive SSDLs have not been successful with development teams. This work identifies
a set of assurance techniques that has been successful. It also, by doing so, provides a basis for future work
finding the most effective ways to introduce those techniques to teams that are not yet using them.
The work by Ashenden and Lawrence [5] provides valuable suggestions how to improve the effectiveness
of the relationships between security professionals and software developers; Dialectical Security goes
further by proposing ways to leverage such improved communication to improve the deliverables from
software developers.

Figure 4: Assurance Techniques within the Development Cycle

Threat
Assessment

Configuration
Review

Vulnerability
Scan

Source Code
Review

Penetration
Testing

Product
Negotiation

Plan

Te
st

Code

Release

24

5.6 Possible Future Work on Dialectic
The importance of dialectic in secure development justifies further research into ways best to use human
and team interactions to improve security. Future research might ask research questions such as:

• What quantitative evidence can we find that dialectic techniques lead to better security outcomes?

• What are the most effective ways to generate understanding of attackers and potential exploits?

• How best do we represent security questions in business terms?

• What forms of cross-team interaction are most effective to ensure app security?
There are several possible approaches to this research. An ethnographic approach might follow the
progress of a development team, identifying where the major security mitigations were identified and how
the negotiations took place in practice. Alternatively, a survey approach might ask the questions of a
variety of developers and stakeholders to produce a possible consensus.
A different and potentially rewarding area of research is in further dialectic techniques for software
security. For example, De Bono [11] has defined a variety of ‘Lateral Thinking’ techniques to help teams
and individuals to challenge their thinking; these might be effective in Threat Assessment. Such research
might also investigate techniques to use other counterparties such as operations staff and end users, which
are apparently not widely used currently (see Section 4.11).

6 Threats to Validity

How certain can we be that this analysis accurately reflects reality? We approach this question by
analysing threats to validity.
Considering first Conclusion Validity, do the research data justify the conclusions? Grounded Theory’s
rigorous process of line-by-line coding, categorization, and core category generation leads to a theory that
does reflect the interview data. The use of extensive quotations ensures that this can be at least partially
checked.
In terms of Construct Validity, do the Dialectical Security theory and the descriptions of assurance
techniques represent actual practice? Grounded Theory handles this primarily in terms of ‘theoretical
saturation,’ reached when new interviews do not add substantially to the theory. Guest [23] suggests that
a dozen interviews are often sufficient for this; in this case as researchers we believe we have reached
theoretical saturation with regard to the list of techniques, but not with regard to all the potential detail to
be uncovered within each technique.
In terms of External Validity, can the results be generalized to a wider scope? Grounded Theory’s
conclusions are always limited to the specific scope studied [12]. We therefore selected interviewees from
a wide range of industry roles (see Figure 1 and Table 1), via a range of mechanisms (see Figure 2), and
used completely open questions (see Appendix). We conclude that the results are likely to be generalisable
to development teams similar to those we interviewed, specifically to teams in the UK, Germany and the
USA.

25

7 Conclusion

From a rigorous study using interviews of experts in secure app development, this article derives a theory,
Dialectical Security, to provide a basis for analysis of developer assurance techniques. Specifically, it
concludes that:

• Developer security depends on dialectic: friendly challenges to developer thinking by a variety of
counterparties; and

• Six assurance techniques, a small subset of the many in use in industry, are sufficient to provide
this dialectic and to deliver software development security.

This is important for modern software development ecosystems in two ways. Identifying the need for
dialectic means that addressing security can move from being about formal processes, artefacts and
reports, to being about the developers’ interactions with counterparties (including each other) and how
best to leverage those interactions. And the identification of a small number of preferred assurance
techniques makes it realistic for teams to introduce these techniques with a minimum of support from
security experts.
Based on the insights in these surveys, then, what needs to be done is to find practical ways to help
development teams to adopt these assurance techniques, and to incorporate the techniques’ dialectic into
normal development. Initially this can be through direct training or consultancy-style involvement
between researchers and development teams, such as that described in Weir et al. [52]. Later, to gain a
wider impact, there are approaches we have previously proposed [56] to encourage adoption by a large
population of developers, such as educational online games for developers to play; storytelling, through
blogs or even TV; and massively online courses or TED-style video.
Focussing on Dialectical Security’s six assurance techniques and the interaction they promote will, we
believe, enhance the security of software as it is developed, and lead to better privacy and safety for all of
us.

References

[1] Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L., and Stransky, C. You Get Where You’re Looking
For: The Impact of Information Sources on Code Security. IEEE Symposium on Security and Privacy,
(2016), 289–305.

[2] Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M.L., and Fahl, S. Developers Need Support, Too:
A Survey of Security Advice for Software Developers. IEEE Secure Development Conference, (2017), 22–
26.

[3] Anderson, R. Security Engineering: A Guide to Building Dependable Distributed Systems. John Wiley &
Sons, 2008.

[4] Apple. Introduction to Secure Coding Guide.
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introducti
on.html.

[5] Ashenden, D. and Lawrence, D. Security Dialogues: Building Better Relationships between Security and
Business. IEEE Security & Privacy 14, 3 (2016), 82–87.

[6] Balebako, R., Marsh, A., Lin, J., Hong, J., and Cranor, L. The Privacy and Security Behaviors of
Smartphone App Developers. Internet Society, October (2014).

[7] Banks, A. and Edge, C.S. Learning iOS Security. Packt Publishing, Birmingham, UK, 2015.

26

[8] Barua, A., Thomas, S.W., and Hassan, A.E. What Are Developers Talking About? An Analysis of Topics and
Trends in Stack Overflow. 2012.

[9] Beecham, S., Baddoo, N., and Hall, T. Motivation in Software Engineering: A Systematic Literature
Review. Information and Software Technology 50, 9 (2008), 860–878.

[10] Bell, L., Brunton-Spall, M., Smith, R., and Bird, J. Agile Application Security: Enabling Security in a
Continuous Delivery Pipeline. O’Reilly, Sebastopol, CA, 2017.

[11] De Bono, E. Lateral Thinking: Creativity Step by Step. Harper & Row, 1970.

[12] Charmaz, K. Constructing Grounded Theory. Sage, London, 2014.

[13] Conradi, R. and Dybå, T. An Empirical Study on the Utility of Formal Routines to Transfer Knowledge and
Experience. ACM SIGSOFT Software Engineering Notes 26, 5 (2001), 268–276.

[14] Cooperrider, D.L. and Whitney, D. Appreciative Inquiry: A Positive Revolution in Change.
ReadHowYouWant, 2005.

[15] Do, L.N.Q., Ali, K., Livshits, B., Bodden, E., Smith, J., and Murphy-Hill, E. Just-in-time Static Analysis.
26th ACM SIGSOFT International Symposium on Software Testing and Analysis, (2017), 307–317.

[16] Drake, J.J., Lanier, Z., Mulliner, C., Fora, P.O., Ridley, S.A., and Wicherski, G. Android Hacker’s
Handbook. John Wiley & Sons, Indianapolis, 2014.

[17] Enes, P. and Conradi, R. Acquiring and Sharing Expert Knowledge. 2005.
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2005/aanes-fordyp05.pdf.

[18] Forbes. Top 2016 Cybersecurity Reports Out From AT&T, Cisco, Dell, Google, IBM, McAfee, Symantec
And Verizon. Forbes, 2017. https://www.forbes.com/sites/stevemorgan/2016/05/09/top-2016-cybersecurity-
reports-out-from-att-cisco-dell-google-ibm-mcafee-symantec-and-verizon/.

[19] Geer, D. Are Companies Actually Using Secure Development Life Cycles? IEEE Computer June, 2010, 12–
16.

[20] Glaser, B.G. and Strauss, A.L. The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine Transaction, Chicago, 1973.

[21] Gollmann, D. Computer Security. Chichester : Wiley, 2011.

[22] Google. Android Security Tips. http://developer.android.com/training/articles/security-tips.html.

[23] Guest, G., Bunce, A., and Johnson, L. How Many Interviews are Enough? An Experiment with Data
Saturation and Variability. Field methods 18, 1 (2006), 59–82.

[24] Howard, M., LeBlanc, D., and Viega, J. 24 Deadly Sins of Software Security: Programming Flaws and How
to Fix Them. McGraw-Hill, Inc., 2009.

[25] Hunt, A. and Thomas, D. The Pragmatic Programmer : From Journeyman to Master. Addison-Wesley,
2000.

[26] ISO/IEC. ISO/IEC 21827:2008 - Systems Security Engineering - Capability Maturity Model. 2008, (2008),
144.

[27] Johnson, M. and Senges, M. Learning to Be a Programmer in a Complex Organization. Journal of
Workplace Learning 22, 3 (2010), 180–194.

[28] Lerch, J., Hermann, B., Bodden, E., and Mezini, M. FlowTwist: Efficient Context-sensitive Inside-out Taint
Analysis for Large Codebases. Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (2014), 98–108.

27

[29] Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., and Nuseibeh, B. Talking about Security with
Professional Developers. 7th International Workshop Series on Conducting Empirical Studies in Industry
(CESSER-IP), IEEE Computer Society (2019).

[30] McGraw, G. Four Software Security Findings. Computer 49, 1 (2016), 84–87.

[31] McGraw, G., Migues, S., and West, J. Building Security In Maturity Model (BSIMM7). 2016.

[32] Microsoft. Learning Security - MSDN. https://msdn.microsoft.com/en-us/security/aa570420.aspx.

[33] Microsoft. Microsoft Secure Development Lifecycle. https://www.microsoft.com/en-us/sdl/.

[34] Microsoft. Microsoft Security Intelligence Report, Volume 23. Redmond, WA, 2018.

[35] Murphy-Hill, E., Lee, D.Y., Murphy, G.C., and McGrenere, J. How Do Users Discover New Tools in
Software Development and Beyond? Computer Supported Cooperative Work (CSCW) 24, 5 (2015), 389–
422.

[36] Near, J.P. and Jackson, D. Finding Security Bugs in Web Applications Using a Catalog of Access Control
Patterns. Proceedings of the 38th International Conference on Software Engineering, ACM (2016), 947–
958.

[37] Nguyen, D.C., Wermke, D., Backes, M., Weir, C., and Fahl, S. A Stitch in Time: Supporting Android
Developers in Writing Secure Code. ACM SIGSAC Conference on Computer & Communications Security,
ACM (2017).

[38] Ben Othmane, L., Ranchal, R., Fernando, R., Bhargava, B., and Bodden, E. Incorporating Attacker
Capabilities in Risk Estimation and Mitigation. Computers & Security 51, (2015), 41–61.

[39] OWASP. Mobile Security Project - Top Ten Mobile Risks.
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks.

[40] OWASP. Software Assurance Maturity Model Project.
https://www.owasp.org/index.php/OWASP_SAMM_Project.

[41] Poller, A., Kocksch, L., Türpe, S., Epp, F.A., and Kinder-Kurlanda, K. Can Security Become a Routine? A
Study of Organizational Change in an Agile Software Development Group. ACM Conference on Computer
Supported Cooperative Work, (2017), 2489–2503.

[42] Ponemon Institute. The State of Mobile Application Insecurity. 2015.

[43] Pribik, I. and Felfernig, A. Towards Persuasive Technology for Software Development Environments: An
Empirical Study. International Conference on Persuasive Technology, Springer (2012), 227–238.

[44] Schneier, B. Secrets and Lies: Digital Security in a Networked World. John Wiley & Sons, 2011.

[45] Smeets, Y.R. Improving the Adoption of Dynamic Web Security Vulnerability Scanners. 2015.

[46] Steel, C., Nagappan, R., and Lai, R. Core Security Patterns. Prentice Hall, 2006.

[47] Stol, K., Ralph, P., and Fitzgerald, B. Grounded Theory in Software Engineering Research: A Critical
Review and Guidelines. 38th International Conference on Software Engineering, ACM (2015), 120–131.

[48] Such, J.M., Gouglidis, A., Knowles, W., Misra, G., and Rashid, A. Information Assurance Techniques:
Perceived Cost Effectiveness. Computers and Security 60, (2016), 117–133.

[49] Türpe, S., Kocksch, L., and Poller, A. Penetration Tests a Turning Point in Security Practices?
Organizational Challenges and Implications in a Software Development Team. Second Workshop on
Security Information Workers, Twelfth Symposium on Usable Privacy and Security (SOUPS 2016),
USENIX Association (2016).

[50] Veracode. State of Software Security Report Volume 9. 2018.

28

[51] Votipka, D., Stevens, R., Redmiles, E., Hu, J., and Mazurek, M. Hackers vs. Testers: A Comparison of
Software Vulnerability Discovery Processes. 2018 IEEE Symposium on Security and Privacy (SP), IEEE
(2018), 374–391.

[52] Weir, C., Blair, L., Becker, I., Sasse, M.A., and Noble, J. Light-touch Interventions to Improve Software
Development Security. IEEE Cybersecurity Development Conference, IEEE Computer Society (2018), 12.

[53] Weir, C. and Noble, J. Process Patterns for Personal Practice. Proceedings of the 4th European Conference
on Pattern Languages of Programming, UVK - Universitaetsverlag Konstanz (1999), 413–424.

[54] Weir, C., Rashid, A., and Noble, J. How to Improve the Security Skills of Mobile App Developers:
Comparing and Contrasting Expert Views. Twelfth Symposium on Usable Privacy and Security (SOUPS
2016): Workshop on Security Information Workers, USENIX Association (2016).

[55] Weir, C., Rashid, A., and Noble, J. Early Report: How to Improve Programmers’ Expertise at App Security?
1st International Workshop on Innovations in Mobile Privacy and Security co-located with the International
Symposium on Engineering Secure Software and Systems (ESSoS 2016), CEUR-WS.org (2016), 49–50.

[56] Weir, C., Rashid, A., and Noble, J. Reaching the Masses: A New Subdiscipline of App Programmer
Education. FSE’16: 24nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering Proceedings: Visions and Reflections, ACM (2016).

[57] Wikipedia. Dialectic. https://en.wikipedia.org/wiki/Dialectic.

[58] Xie, J., Chu, B., Lipford, H.R., and Melton, J.T. ASIDE: IDE Support for Web Application Security. 27th
Annual Computer Security Applications Conference, (2011), 267.

[59] Xie, J., Lipford, H.R., and Chu, B. Why Do Programmers Make Security Errors? IEEE Symposium on
Visual Languages and Human Centric Computing, (2011), 161–164.

[60] Xie, J., Lipford, H.R., and Chu, B.B.-T. Evaluating Interactive Support for Secure Programming. SIGCHI
Conference on Human Factors in Computing Systems, ACM (2012), 2707–2716.

[61] Yskout, K., Scandariato, R., and Joosen, W. Do Security Patterns Really Help Designers? 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, (2015), 292–302.

29

Appendix: Interview Protocols

First Phase Protocol: App Security Expert Interview Questions

Introduction – establish context

• Please could you tell me something of your own background?
• What is your current role, and what do you find yourself doing day-to-day?
• How did you first get involved with developing secure software?
Exploration

• Can you think of a particular triumph in your work? How did you achieve the security aspects of
that?

• Please could you give examples of a secure system that has gone well? Or not gone well and been
fixed?

• How did you initially learn about adding security to software development?
• How do you learn more now?
• What aspects of your team (your work) made them particularly good at secure software?
• What is the most successful technique you have found?
• What advantages are there in the development of the app end (browser or mobile) over the server

end?
Clarification

• You mentioned [specific technique]. Can you tell me a little more about that?

30

Second Phase Protocol: Intervention Expert Interview

Introduction – establish context

• What is your current role, and what do you find yourself doing day-to-day? Tell me about a typical
day at work?

• Briefly, how did you first get involved with secure software development?

Exploration

• What’s your interest in security? What do you do about it, and how do you deal with it day-to-day?
• What do you want to achieve when you’re helping a team improve software security? How do you

define and measure success?
• What is the most successful intervention technique you’ve found? Where do you concentrate your

efforts?
• Can you think of a particular triumph in your work – where you’ve worked with a team that has

improved their security? How did you achieve that?
• Have any of your teams used code checking tools? How happy were you with their effectiveness at

finding problems; and their ease of use?
• What do you find effective as motivation for secure development?
• How do you frighten developers into security, or emphasise the positive aspects?
• To what extent are laws and standards helpful in getting teams to be effective at software security?

How do you find out about them and keep up to date?
• When new people join an existing team, how do you motivate them and how do they learn what’s

required? Do you encourage double checking of contributions from new people or treat them “as
usual”?

• What are the best ways you’ve found to get teams to tackle specific things:
o Security coordination with other teams;
o Reviews and penetration testing;
o Designing to get feedback from the users?
o What else?

• Have you had a nightmare scenario? Or consider this nightmare scenario. You’re working with a
team that’s just learned they have a security flaw in a website that’s very heavily used. Have you
even had a situation like that (no details required)? What did or would you do to help the team tackle
it?

Vision
Let’s imaging we’re a few years in the future, and the problem of getting teams up to speed with app
security has been licked; it’s now a part of everyday software development life.
• How was it done?
• What were the first small steps?

Clarification (as appropriate)

• And how did you achieve that?
• Oh I see. Could you give an example?

