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Abstract 26 

This study investigated core components of an extreme value methodology for the estimation 27 

of high-flow frequencies from agricultural surface water run-off. The Generalized Pareto 28 

distribution (GPD) was used to model excesses in time-series data that resulted from the 29 

‘Peaks Over Threshold’ (POT) method. First, the performance of eight different GPD 30 

parameter estimators was evaluated through a Monte Carlo experiment. Second, building on 31 

the estimator comparison, two existing automated GPD threshold selection methods were 32 

evaluated against a proposed approach that automates the threshold stability plots. For this 33 

second experiment, methods were applied to discharge measured at a highly-instrumented 34 

agricultural research facility in the UK. By averaging fine-resolution 15-minute data to hourly, 35 

6-hourly and daily scales, we were also able to determine the effect of scale on threshold 36 

selection, as well as the performance of each method. The results demonstrate the 37 

advantages of the proposed threshold selection method over two commonly applied 38 

methods, while at the same time providing useful insights into the effect of the choice of the 39 

scale of measurement on threshold selection. The results can be generalized to similar water 40 

monitoring schemes and are important for improved characterizations of flood events and 41 

the design of associated disaster management protocols. 42 

Keywords: Generalized Pareto Distribution; Peaks over threshold; Threshold selection; Flood 43 

Frequency Analysis; Scale effects; Grassland agriculture.  44 
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1. Introduction  45 

The magnitude and frequency of floods is likely to increase as a result of climate change (Bates 46 

et al., 2008; Field et al., 2012; Kundzewicz et al., 2007) and this could push ecosystems beyond 47 

the threshold of normal disturbance resulting in negative impacts that may be irreversible 48 

(e.g. Thibault & Brown, 2008). Floods increase surface run-off, intensify erosion and introduce 49 

more soil, organic matter and pollutants into water courses. Floods in areas of steep and 50 

unstable slopes increase the possibility of landslides (Clarke & Rendell, 2006). Moreover, 51 

increased runoff and flooding generally result in higher sediments and nutrient losses that 52 

can lead to soil degradation (Bouraoui et al., 2004). They can have severe impacts on key 53 

ecosystem services, such as those of support (e.g. water, nutrient cycling and soil protection), 54 

regulation (e.g. climate) and culture (e.g. scenic recreation) (MA, 2005). 55 

Flood Frequency Analysis (FFA) is a classic method to analyze the relationship between flood 56 

magnitude and the corresponding frequency of occurrence. Reliable estimation and 57 

prediction of high flow quantiles require extrapolation beyond the observed range of events, 58 

commonly using parametric probability distributions. There are two main approaches for 59 

defining extreme events in stationary time-series. The first is the block (usually annual) 60 

maxima (AM) method where the dataset is divided into contiguous blocks of equal size and 61 

the maximum values in each segment are considered. According to the Fisher-Tippet theorem 62 

(Fisher & Tippett, 1928), these identically, independently distributed (iid) random variables 63 

asymptotically follow a Generalized Extreme Value (GEV) distribution (Coles, 2001; Jenkinson, 64 

1955). The second approach is known as the peaks-over threshold (POT) method, which 65 

considers the values 𝑋 that exceed a fixed high threshold 𝑢. The distribution function of the 66 

excess values 𝑋 − 𝑢, conditional on 𝑋 > 𝑢, is a Generalized Pareto Distribution (GPD) 67 
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(Pickands, 1975). The case study we consider, contains six years of fine resolution (15-minute) 68 

flow measurements, which is insufficient for effective fitting of the GEV distribution. 69 

Therefore, only the POT method with the GDP was investigated. 70 

The above two families of distributions have fundamental differences, but also theoretical 71 

links (see Langousis et al., 2016). The GEV distribution is usually best fitted to annual maxima 72 

samples and for this reason long historic records are required. This restriction does not apply 73 

to the POT method since it includes all the peaks above a certain threshold allowing for 74 

greater flexibility. The threshold must be large enough for the excesses to follow a GPD, but 75 

an over-estimated threshold leads to reduced sample size and increases the variance of the 76 

estimates. A smaller threshold increases the sample size but also the bias of the estimates as 77 

the empirical distribution deviates from a perfect GPD model (Scarrott and MacDonald, 2012). 78 

Clearly, GPD threshold selection is of key importance and there is no universally recognized 79 

best performing method although various techniques have been proposed (see e.g. Langousis 80 

et al. 2016 and Scarrott & MacDonald, 2012). Among them are probabilistic-based techniques 81 

(Beirlant et al., 1996, 2006; Choulakian & Stephens, 2001; Deidda & Puliga, 2006; Goegebeur 82 

et al., 2008; Hill, 1975), computational approaches (Beirlant et al., 2005; Danielsson et al. 83 

2001; Hall, 1990; Thompson et al., 2009; Zoglat et al., 2014) and mixture models (Behrens et 84 

al., 2004; Eastoe & Tawn, 2010; Solari & Losada, 2012). Graphical methods (Das & Ghosh, 85 

2013; Deidda, 2010; Lang et al., 1999; Tanaka & Takara, 2010), such as the Mean Residual Life 86 

(MRL) plot (Coles 2001; Beguería, 2005; Davison & Smith, 1990) are used commonly for the 87 

selection of an optimal threshold, but have been criticized for the difficulty and subjectivity 88 

of their interpretation (Scarrott & MacDonald 2012; Yang et al., 2018). Alternatively, 89 

analytical methods have the advantage that they can be automated, and the associated 90 
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uncertainty can be quantified. Solari et al. (2017) proposed an automated threshold selection 91 

method based on AD goodness of fit test. The application of their technique on long records 92 

of precipitation and flow resulted in estimated thresholds that were within the stability 93 

regions of the shape and modified scale parameters. Durocher et al. (2018) compared several 94 

automatic methods and proposed a hybrid one where consistency with shape stability was 95 

found for most of the considered sites. 96 

In this study, we propose an empirical automated method for threshold determination, based 97 

on threshold stability, which is evaluated against two commonly applied analytical methods, 98 

together with eight alternatives for GDP parameter estimation. Furthermore, by averaging 99 

the case study’s 15-minute flow data to hourly, 6-hourly and daily supports, we determine 100 

the effects of temporal measurement scale on threshold selection, as well as the performance 101 

of each method. 102 

The remainder of this paper is organized as follows. Section 2 presents the methods for GPD 103 

parameter estimation, two analytical threshold selection techniques, this study’s proposed 104 

automated threshold stability method, and model evaluation diagnostics and indices. Section 105 

3 describes the case study site and flow data, together with the simulation experiment design 106 

used to evaluate the performance of the different GDP parameter estimators. Results are 107 

presented in Section 4, which includes an investigation of scale effects through a series of 108 

flow data integrations. Sections 5 and 6 discuss and conclude the study, respectively. 109 

2. Methodology 110 

The cumulative distribution function (CDF) of the iid excesses over an appropriate threshold 111 

𝑢 for the GPD is: 112 
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𝐺(𝑥) = Pr(𝑋 − 𝑢 < 𝑥|𝑋 > 𝑢) =

{
 

 
1 − (1 +

𝜉(𝑥 − 𝑢)

𝜎
)

−
1
𝜉

, 𝜉 ≠ 0

1 − 𝑒(−
𝑥−𝑢
𝜎
), 𝜉 = 0

 113 

where 𝑥, for this study, is the extreme flow in m3s-1, 𝑢 is the location parameter, 𝜎 is the scale 114 

parameter and 𝜉 is the shape parameter. The value of the shape parameter defines the type 115 

of distribution from the GPD family, that is, 𝜉 = 0 refers to the exponential distribution, for 116 

𝜉 > 0 the corresponding distribution has a heavy upper tail that behaves like a power 117 

function with exponent −1/𝜉 and for 𝜉 = 1 the distribution is uniform. The Pareto 118 

distribution is obtained when 𝜉 < 0.  119 

2.1 GPD parameter estimators 120 

The excesses above a suitable threshold are modelled by the GPD and the parameters of the 121 

distribution can be estimated by competing methods, where the Maximum Likelihood 122 

estimator (MLE) is the most commonly used (Prescott & Walden, 1980, 1983; Smith, 1985). 123 

Hosking and Wallis (1987) showed that MLE provides greater variance and bias for small 124 

samples compared to the Probability Weighted Moment (PWM) (Greenwood et al., 1979; 125 

Landwehr et al., 1979) and the Method of Moments (MOM) estimators. Coles and Dixon 126 

(1999) proposed a modified MLE which contains a penalty function for the shape parameter 127 

(i.e. the Maximum Penalized Likelihood estimator (MPLE). Zhang (2007) presented a hybrid 128 

Likelihood Moment estimator (LME) which provides feasible estimates and has high 129 

asymptotic efficiency. All of these methods are evaluated in this study, together with that 130 

suggested by Pickands (1975) and a maximum goodness-of-fit (MGF) estimator (e.g. Luceño, 131 

2006). Estimator performance has been found to depend significantly on sample size and the 132 

value of the GPD shape parameter (Ashkar & Tatsambon, 2007; de Zea Bermudez & Kotz, 133 
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2010; Hosking & Wallis, 1987), and the choice of the estimator should be made based on the 134 

specifics of the situation. The equations for the above estimators can be found in Appendix 135 

A: Equations of the estimators. 136 

2.2 Threshold selection methods 137 

The selection of the threshold 𝑢 is a crucial step in GDP extreme value analysis. On the one 138 

hand, a small threshold results in a large sample that makes statistical inference more 139 

effective, but can lead to biased estimates due to deviations of the empirical distributions 140 

from the GPD model (e.g. Beirlant et al., 2005). On the other hand, when considering large 141 

thresholds and consequently small samples, parameter estimates have a smaller expected 142 

bias, but a larger variance that can be highly dependent on the estimation method. The two 143 

main approaches for threshold selection are graphical methods, such as the MRL plot, and 144 

analytical methods that can be automated.  145 

An important assumption for the application of the POT method is that the extracted peaks 146 

are independent. A commonly applied method is to use no more than 2-3 peaks per year 147 

(Madsen et al., 1997; Todorovic, 1978) but it has been criticised for lack of flexibility. Another 148 

solution is to consider a minimum separation interval between successive peaks (Cunnane, 149 

1979; Lang et al., 1999). This minimum separation interval accords to the scale and nature of 150 

the measured process, but for daily flow data, an interval of a few days commonly ensures 151 

that the peaks are generated from different events (Engeland et al., 2004). The 152 

autocorrelation function is a popular choice for the investigation of serial dependence in a 153 

time series. However, this approach assumes normally distributed variables, which is not the 154 

case for peak discharges, so other independence tests should be implemented (e.g. Ledford 155 

and Tawn, 2003; Reiss and Thomas, 2007). In this study, and through prior experimentation, 156 



 

8 

 

maximum peaks separated by a minimum of three days were considered and their 157 

independence was tested using Kendall’s 𝜏 test (Claps and Laio, 2003; Ferguson et al., 2000).  158 

 Graphical methods: MRL plots 159 

The most popular graphical method is the MRL plot (Coles, 2001; Davison & Smith, 1990). If 160 

the scaled excesses 𝑋𝑢∗ = [𝑋 − 𝑢
∗|𝑋 > 𝑢∗] above a threshold 𝑢∗ are Generalized Pareto (GP) 161 

distributed, then for every 𝑢 ≥ 𝑢∗, the scaled excesses 𝑋𝑢 = [𝑋 − 𝑢|𝑋 > 𝑢] are similarly GP 162 

distributed with the same shape parameter 𝜉, a scale parameter 𝜎𝑢 = 𝜎𝑢∗ + 𝜉(𝑢 − 𝑢
∗) and 163 

a mean value: 164 

�̅�(𝑢) = 𝐸[𝑋− 𝑢|𝑋 > 𝑢] =
𝜎𝑢
1 − 𝜉

=
𝜎𝑢∗ + 𝜉(𝑢 − 𝑢

∗)

1 − 𝜉
= 𝐴𝑢 + 𝐵 165 

where 𝐴 = 𝜉/(1 − 𝜉) and 𝐵 = (𝜎𝑢∗ − 𝜉𝑢
∗)/(1 − 𝜉) are the respective slope and intercept 166 

of the linear relation. The sample estimates of the mean excesses are then plotted for 167 

different values of the threshold and the most appropriate is considered to be the one after 168 

which the mean excesses follow a straight line (e.g. Das & Ghosh, 2013).  169 

Another graphical technique is to plot the estimated shape and/or modified scale parameters 170 

for different threshold candidates and select the one above which the estimates are constant 171 

(Brodin & Rootzén, 2009; Bommier, 2014; Sigauke & Bere, 2017). The main criticism of 172 

graphical methods is that the interpretation of the plot can be ambiguous or subjective as it 173 

is usually unclear which part of the curve is linear (Scarrott & MacDonald, 2012). In this 174 

respect, attempts have been made to automate (Langousis et al., 2016) and estimate the 175 

uncertainty (Liang et al., 2019) of the graphical methods. 176 



 

9 

 

 Analytical methods: Square Error and Normality of Differences 177 

The Square Error (SE) method was developed by Zoglat et al. (2014) following the work of 178 

Beirlant et al. (2005), and is implemented as follows. Let 𝑢1, 𝑢2, … , 𝑢𝑛 be 𝑛 equally spaced 179 

increasing threshold candidates. For each of these thresholds, estimate the scale 𝜎𝑢𝑗 and 180 

shape 𝜉𝑢𝑗  parameters for 𝑗 = 1,… , 𝑛. Find 𝑁𝑢𝑗  the exceedances that correspond to each 181 

threshold 𝑢𝑗  and simulate 𝑚 independent samples of size 𝑁𝑢𝑗  from the GPD with parameters 182 

𝜎𝑢𝑗 and 𝜉𝑢𝑗 . For each probability 𝑎 ∈ 𝐴 = {0.05, 0.1, … ,0.95} and each 𝑖 = 1, … ,𝑚 calculate 183 

the quantiles 𝑞𝑎,𝑢𝑗
𝑖  and compute 𝑞𝑎,𝑢𝑗

𝑠𝑖𝑚 =
1

𝑚
∑ 𝑞𝑎,𝑢𝑗

𝑖𝑚
𝑖=1 . The optimal threshold is the one for 184 

which the square error 𝑆𝐸𝑢𝑗 = ∑ (𝑞𝑎,𝑢𝑗
𝑠𝑖𝑚/𝑞𝑎,𝑢𝑗

𝑜𝑏𝑠 )
2

𝑎∈𝐴  between the simulated and the observed 185 

quantiles is minimum. The selection of the threshold candidates 𝑢𝑗  can be defined by the user 186 

or as an automated process. For example, the smallest threshold can be set as zero or the 187 

median and the maximum threshold set as a high percentile of the data.  188 

An alternative analytical method for threshold selection was proposed by Thompson et al. 189 

(2009). Again, let 𝑢1, 𝑢2, … , 𝑢𝑛 be 𝑛 equally spaced increasing threshold candidates. For the 190 

excesses above the threshold 𝑢𝑗 , �̂�𝑢𝑗 and 𝜉𝑢𝑗  are the MLEs of the scale and shape parameters, 191 

respectively, for 𝑗 = 1, … , 𝑛. If 𝑢 ≤ 𝑢𝑗−1 < 𝑢𝑗 is an appropriate threshold then according to 192 

Coles (2001), 𝜎𝑢𝑗−1 = 𝜎𝑢 + 𝜉(𝑢𝑗−1 − 𝑢) and 𝜎𝑢𝑗 = 𝜎𝑢 + 𝜉(𝑢𝑗 − 𝑢). Consequently, 𝜎𝑢𝑗 −193 

𝜎𝑢𝑗−1 = 𝜉(𝑢𝑗 − 𝑢𝑗−1) and from standard maximum likelihood theory we have that 𝐸[�̂�𝑢𝑗] ≈194 

𝜎𝑢𝑗 and 𝐸 [𝜉𝑢𝑗] = 𝜉 for any 𝑗 such that 𝑢𝑗 > 𝑢. Respectively, 𝐸 [𝜏𝑢𝑗 − 𝜏𝑢𝑗−1] ≈ 0, 𝑗 =195 

2, … , 𝑛 for 𝜏𝑢𝑗 = �̂�𝑢𝑗 − 𝜉𝑢𝑗𝑢𝑗 , 𝑗 = 1, … , 𝑛. It follows that 𝜏𝑢𝑗 − 𝜏𝑢𝑗−1 approximately follows 196 

a normal distribution. Thompson et al. (2009) suggest Pearson’s Chi-square test to examine 197 

the null hypothesis of normality. However, this test has been criticised for having inferior 198 
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power properties (Moore, 1986). For this reason, we also applied the Anderson-Darling, 199 

Cramer-von Mises, Kolmogorov-Smirnov and Shapiro-Francia normality tests (Thode, 2002). 200 

Regardless of which of the five normality tests are used, we refer to this method as the 201 

‘Normality of Differences’ method. According to this approach, a suitable threshold 𝑢 ≤202 

𝑢𝑗−1 < 𝑢𝑗 is the one for which all the differences 𝜏𝑢𝑗 − 𝜏𝑢𝑗−1 are approximately normally 203 

distributed. We selected the appropriate threshold as the one for which the p-value of 𝜏𝑢𝑗 −204 

𝜏𝑢𝑗−1 , 𝑗 = 2,… , 𝑛 is above 0.05. A smaller threshold would be selected for a smaller p-value 205 

(e.g. 0.01). 206 

 Proposed method based on Threshold Stability 207 

For this study, we propose an automated threshold selection method based on stability plots 208 

(Coles, 2001; Scarrott & MacDonald 2012). If the GPD is an appropriate model for the excesses 209 

above a threshold 𝑢, then for all larger thresholds 𝑢∗ > 𝑢 it will also be suitable with the shape 210 

parameter being relatively constant. In other words, it is the approximately linear horizontal 211 

part on the shape parameters versus thresholds plot. This does not apply for the scale 212 

parameter 𝜎𝑢∗ , as it changes with the threshold 𝜎𝑢∗ = 𝜎𝑢 + 𝜉(𝑢
∗ − 𝑢). However, the 213 

modified scale parameter 𝜎1 = 𝜎𝑢∗ − 𝜉𝑢 remains relatively constant. Therefore, we fit a cubic 214 

smoothing spline to this plot and calculate the rate of change at each of 𝑚 consecutive steps. 215 

The cubic smoothing spline estimate 𝑓 of a function 𝑓 in the model 𝑌𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖, is defined 216 

as the minimizer of ∑ {𝑌𝑖 − 𝑓(𝑥𝑖)}
2𝑛

𝑖=1 + 𝜆∫ 𝑓′′(𝑥)2𝑑𝑥 , where 𝜆 is the smoothing parameter. 217 

The minimum change rate locates the part of the plot where the shape and the modified scale 218 

parameters reach a plateau.  219 
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A preliminary analysis showed that a smoothing parameter value of 𝜆 = 0.4 of the cubic spline 220 

function was the most appropriate to avoid both over- and under-fitting. A total of 𝑛 =221 

1000 threshold candidates were used in each case and a cubic spline was fitted to the 222 

corresponding estimated shape and modified scale parameters. The numbers of the 223 

consecutive steps for which the minimum change rate was calculated, were 𝑚 =224 

25, 50, 75 and 100 which corresponds to 2.5%, 5%, 7.5% and 10%, respectively, of the total 225 

number of fitted values, that is, the total threshold candidates 𝑛. 226 

2.3 Evaluation procedure 227 

Quantile-Quantile (Q-Q) plots are commonly used to investigate the efficiency of the 228 

statistical inference of the fitted GPD models. To quantify the difference between the 229 

theoretical and empirical quantiles for probabilities 𝑎 ∈ 𝐴 = {0.95, 0.951,… ,0.999}, various 230 

error and agreement diagnostics were calculated. Specifically, we calculated the Mean Square 231 

Error (MSE) (e.g. Turan and Yurdusev, 2009), the Normalized Root Mean Square Error 232 

(NRMSE) (e.g. Sheta and El-Sherif, 1999) and the Relative Index of Agreement (𝑅𝐷 ∈ [0,1]) 233 

(Krause et al., 2005; Willmott, 1981). For ideal model performance, both MSE and NRMSE 234 

should tend to zero, while RD should tend to unity. The NRMSE was obtained by dividing the 235 

root MSE with the difference between minimum and maximum values and, thus, was less 236 

sensitive to very large values and provided a more robust diagnostic than MSE.  237 

3. Study site and datasets 238 

3.1 Study site 239 

Flow discharge data come from a single sub-catchment of the North Wyke Farm Platform 240 

(NWFP). The NWFP is a farm-scale experiment established in 2011 in the southwest of 241 
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England (50°46'10"N, 3°54'05"W) for research into sustainable grassland livestock systems 242 

(Orr et al., 2016; Takahashi et al., 2018). The platform is located at an altitude in the range of 243 

120-180 m above sea level. The platform’s fields have a declining slope at the west towards 244 

the River Taw and to the east, to one of its tributaries, the Cocktree stream. The soil texture 245 

consists of a slightly stony clay loam topsoil (approximately 36% clay) above a mottled stony 246 

clay (approximately 60% clay). The subsoil is impermeable to water and during rain events 247 

most of the excess water moves by surface and sub-surface lateral flow towards the drainage 248 

system described below. 249 

 250 

Each of the 15 NWFP sub-catchments are hydrologically isolated through a combination of 251 

topography and a network of French drains (800 mm deep trenches), which ensure that the 252 

total runoff is channeled to instrumented flumes, measuring 15-minute water discharge and 253 

water chemistry from October 2012. The discharge from each sub-catchment is measured 254 

through a combination of primary and secondary flow devices (Liu et al., 2018). The primary 255 

devices are H-type flumes (TRACOM Inc., Georgia, USA) with capacity designed for a 1-in-50 256 

year storm event. The specific design of the H-type flume facilitates the accurate 257 

measurement of both low and high flows and is relatively self-cleaning since it allows the 258 

ready passage of sediment and particulate matter. A secondary flow measurement device 259 

(OTT hydromet, Loveland, CO., USA) is used to measure the water height within the flume 260 

and convert it to discharge rate using flume-specific formulas which depend on water height. 261 

The flow is generated only from rainfall as the fields are not irrigated. At each sub-catchment, 262 

15-minute precipitation and soil moisture are also monitored. (Figure 1). 263 
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 264 

Figure 1: The three farmlets and the 15 sub-catchments of the North Wyke Farm Platform, with: (i) 265 

‘blue’ farmlet a mixture of white clover and high sugar perennial ryegrass; (ii) ‘red’ farmlet high 266 

sugar perennial ryegrass only and (iii) ‘green’ farmlet permanent pasture (“business as usual”). 267 

3.2 Measured data 268 

For this study, we used the flow discharge measured at sub-catchment 3 of the NWFP, which 269 

is part of the ‘red’ farmlet (Figure 1) and 6.84 ha in size. Given this is a methodological-based 270 

study, we chose to use data from this sub-catchment as it has one of the smallest number of 271 

missing values (approximately 1%) for the six-year period (2012-2018). Imputation of the 272 

missing values was performed using a regularized iterative Principal Components Analysis 273 

(PCA impute) model (Josse & Husson, 2013). The largest imputed value was approximately 20 274 
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l s-1 which is smaller than any threshold suggested (see below) and, therefore, is not 275 

considered as a peak flow and does not affect the subsequent analysis. It should be noted 276 

that, compared with measurements from many river or stream monitoring systems, the flow 277 

data (Figure 2) are highly discontinuous with many zeros, as non-zero measurements occur 278 

only after rainfall events. 279 

 280 

Figure 2: Flow (l s-1) measurements at sub-catchment 3 (2012 to 2018). 281 

3.3 Simulated data 282 

As a precursor to the empirical study, the performance of the eight GDP parameter estimators 283 

was assessed through a Monte Carlo experiment. We generated random time-series of 284 

different sample sizes (𝑛 = 25, 50, 100, 250, 500, 1000) from a GPD distribution with a 285 

known shape parameter (𝜉 = -0.5, -0.25, 0, 0.25 and 0.5). For each combination, 10,000 286 

random samples were generated. The performance of the estimators was evaluated using: 287 

(a) bar plots for MSE values and (b) boxplots for estimated 𝜉. Here the “error” in MSE is the 288 

difference between the actual (or known) 𝜉 and that estimated, where MSE incorporates both 289 
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the variance and the bias of the estimators. Outcomes were used to guide the analyses with 290 

the measured NWFP flow data. 291 

4. Results 292 

4.1 Monte Carlo study for Performance of GPD estimators 293 

Our simulated data analysis showed that the performance of the GPD parameter estimators 294 

depends on both the sample size 𝑛 (see performance plots in Figure 3 for a shape parameter 295 

of 𝜉 = 0 only) and the value of the shape parameter 𝜉 (see supplementary material for 296 

performance plots with 𝜉 = -0.5, -0.25, 0.25 and 0.5), which accords with previous studies (e.g. 297 

Gharib et al., 2017; Mackay et al., 2011). On viewing all plots, the maximum likelihood (MLE 298 

and MPLE) estimators were both negatively biased for small sample sizes for any value of the 299 

shape parameter and their performance increased in terms of bias and variance as sample 300 

size increased. The MLE outperformed the other estimators for large sample sizes for all 301 

values of the shape parameter. The unbiased and biased probability weighted moments, 302 

PWMU and PWMB respectively, were consistently the least biased amongst all estimators 303 

and provided a small variance, which was less sensitive to sample size compared to the 304 

likelihood estimators. According to the MSE, the PWM estimators were most appropriate for 305 

small sample sizes and positive shape parameters. The MOM estimator had a similar behavior 306 

to the PWMs when 𝜉 ≤ 0 but had a negative bias for 𝜉 > 0 and the bias increased as the 307 

value of the shape parameter and the sample size increased. Pickland’s estimator (‘Pick’) and 308 

the MGF estimators produced a large variance and the least accurate estimates of the shape 309 

parameter, through the whole range of the examined values. LME was among the best 310 

performing estimators regarding accuracy and bias, except for the very short tails (𝜉 = 0.5, 311 
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see supplementary material), when the estimates deviated greatly from the rest of the 312 

estimators and the predefined value of the shape parameter. In summary, the MLE/MPLE, 313 

PWMU/PWMB and the LME were considered the most unbiased and precise estimators and 314 

so we select only from this reduced group of estimators in subsequent analyses using the 315 

measured data. 316 

 317 

 318 

Figure 3: Performance of GPD estimators for shape parameter 𝜉 = 0 and for six different sample sizes 319 

(𝑛 = 25, 50, 100, 250, 500, 1000). 320 
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4.2 Empirical study for Threshold Selection 321 

 Preliminary effects of data aggregation 322 

Initially, the flow (l s-1) time-series of 15-minute resolution was averaged to time-series data 323 

of 30 minutes, hourly, 3-hourly, 6-hourly, 12-hourly and daily resolutions. Figure 4 shows the 324 

behavior of the MLE-estimated shape parameters for a range of thresholds for the differently 325 

aggregated flow data. The range of thresholds was set from the median to the maximum for 326 

which daily flow can be fitted efficiently. The shape parameter is in the range of 0.5 to almost 327 

2 for the minimum threshold, has a decreasing trend as the threshold increases and can 328 

become negative for the largest thresholds. The similar shape characteristics could be an 329 

indication that the shape parameter describes an inherent feature of the process and that 330 

changes of scale, which affect the size or variability of the observed values of the process, do 331 

not substantially change the shape characteristics of these observations. For the remainder 332 

of this study, results from the 30-minute, 3-hourly and 12-hourly aggregations are not 333 

reported as retained aggregations (hourly, 6-hourly and daily) communicate all key outcomes 334 

adequately. 335 

Kendall’s 𝜏 test showed that the maximum peaks separated by a minimum of three days were 336 

reasonably independent (Figure 5). The statistics 𝜏 are large for the lowest thresholds where 337 

the peaks are numerous and autocorrelated. With an increasing threshold, the values of the 338 

𝜏 decrease rapidly and are below the 95% acceptance limits which supports the null 339 

hypothesis of independence of the peaks.  340 
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 341 

Figure 4: Shape parameter characteristics of measured (15-minute) and a series of averaged (30-342 

minute to daily) flow rates. 343 

 344 

Figure 5: Kendall’s test statistic 𝜏 (solid lines) along with the 95% acceptance limits of the test 345 

(dashed lines). 346 
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 Automated Threshold Stability plots 347 

The choice of estimators for the shape and modified scale parameters was guided by the 348 

results of the Monte Carlo experiment (Section 4.1). For example, for thresholds 𝑢𝑗 = 1,2,… ,5 349 

of the 15-minute flow data, the number of exceedances was 𝑁𝑢𝑗 > 300 and the shape 350 

parameter 𝜉𝑢𝑗  between 0.5 and 0.25. For this combination, MLE, MPLE, PWMU, PWMB and 351 

LME were the best performing estimators. Thus, for our empirical study, we choose LME due 352 

to its consistently precise and unbiased estimates of positive shape parameters for a large 353 

sample size. Increasing the thresholds 𝑢𝑗 resulted in a reduced sample size (100 < 𝑁𝑢𝑗 <354 

250) and negative values of the shape parameter. In this case, we choose MPLE for our 355 

empirical work. In all the other cases, the PWMU estimator was preferred as it provided 356 

unbiased estimates with small variance.  357 

Stability plots are given in Figure 6 for different flow aggregations, where results reveal our 358 

‘Automated Threshold Stability’ (ATS) extension to be reasonably robust, since changes in the 359 

number of consecutive steps 𝑚 had a very small impact on the selected threshold and usually 360 

resulted in over-lapping regions from which the threshold was considered. The peak flows at 361 

15 minutes and hourly resolution did not provide many regions that could be considered as a 362 

plateau, so the number of consecutive steps was set to 𝑚 = 50 (5% of the total) to also capture 363 

the smaller approximately linear horizontal parts. Interestingly, for each aggregation, fitting 364 

the same cubic spline functions to both the estimated shape and modified scale parameters, 365 

resulted in almost identical suggested thresholds. 366 
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a)367 

 368 

b)369 

370 
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c)371 

 372 

d)373 

 374 

Figure 6: Automated Threshold Stability (ATS) method: Selected threshold (that between the vertical 375 

green lines) of a) 15 minutes, b) hourly, c) 6 hourly and d) daily flow based on smoothing splines. 376 
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 Analytical threshold selection methods: Square Error and Normality of Differences 377 

The choice of GDP estimators for the simulation of the quantiles for the SE method was 378 

performed using a similar procedure as described in Section 4.2.2, while the approach based 379 

on the Normality of Differences test is based on assumptions of maximum likelihood theory, 380 

and consequently the shape parameter was estimated by the MLE. The number 𝑛 of the 381 

considered thresholds 𝑢𝑛 plays an important role in the results. Thompson et al. (2009) 382 

suggested 𝑛 = 100 and reported that for 𝑛 < 100, less reliable results were obtained. We 383 

similarly specified 𝑛 = 100 but also found the thresholds to be over-estimated for 𝑛 > 100. 384 

Our results indicated little consistency in the selection of thresholds where a specific part of 385 

the MRL plot could be considered approximately linear. The thresholds of the 15-minute peak 386 

flow estimated by the SE method and the Normality of Differences tests (Figure 7a) are 387 

considerably larger than that based on this study’s ATS method (Figure 6a) at around 40 to 50 388 

l/s and 20 to 30 l/s, respectively. Only for the daily flow data (Figure 7d), the threshold 389 

estimated by the SE method was smaller than those estimated from the Normality of 390 

Differences tests and relatively close to the threshold estimated by ATS (Figure 6d). For hourly 391 

flow data (Figure 6b and Figure 7b), ATS and Pearson’s chi square test (for Normality of 392 

Differences) provided almost identical estimates, while all other methods suggested much 393 

larger thresholds. Noticeably, the hourly thresholds estimated by the SE method and the 394 

Shapiro-Francia test are very close at 44.68 l/s and 45.33 l/s, respectively (Figure 7b), but 395 

result in considerably different shape parameters (Table 1). Figure 6b reveals hourly 396 

thresholds to be in the region where the shape characteristics show large fluctuations due to 397 

the small sample size that results in an inefficient fit of the GPD and likely spurious estimates 398 

of the shape parameter.  399 
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The performance of the Normality of Differences method depended greatly on both the given 400 

normality test and on data resolution. For the 15-minute flow data, all normality tests 401 

provided relatively similar threshold selections (Figure 7a), which was not the case for the 402 

hourly and 6-hourly flow data (Figure 7b and Figure 7c). For the daily flow data (Figure 7d), 403 

thresholds were estimated too large and consequently result in too few values for efficient 404 

statistical inference. In general, the smaller the selected threshold, given that the excesses 405 

are satisfactorily modelled by the GPD, the lower the uncertainty and consequently the lower 406 

the variance in the parameter estimates due to larger sample sizes. 407 

a)408 

409 

b)410 
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411 

c)412 

 413 
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d)414 

 415 

Figure 7: MLR plots: Mean excesses and their 95% confidence intervals plotted against threshold for 416 

the a) 15 minutes, b) hourly, c) 6 hourly and d) daily flow data. The threshold selected using the SE 417 

method is shown by the vertical solid line and the thresholds selected by the Normality of 418 

Differences tests are shown by the dashed vertical lines. 419 

 Parameter and fit comparisons 420 

In summary, the estimated shape parameters showed little consistency across the four data 421 

resolutions and across the threshold selection techniques investigated (Table 1). The 15-422 

minute extreme flows are characterized by: (i) an exponential tail (Pearson’s chi square, 423 

Anderson Darling and Kolmogorov-Smirnov tests) as the shape parameter takes values close 424 

to zero, (ii) heavy tails (SE method, Shapiro-Francia and Cramer-von Mises tests) and (iii) short 425 

tails (𝜉 < 0) (ATS method). ATS and Normality of Differences methods resulted in short tail 426 

distributions for both the hourly and 6-hourly flow data, whereas the SE method resulted in 427 

a heavier tail, similar to that found across all flow data scales. The ATS and the SE methods 428 
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provided heavy tails for the daily flow, and the Normality of Differences tests tended to short 429 

tails. 430 

Table 1: Estimated thresholds and shape parameters for four flow resolutions and three core 431 

threshold selection methods. 432 

  

ATS SE 

Normality of Differences tests 

 

 

Pearson's 
chi square 

Anderson-
Darling 

Cramer-
von Mises 

Kolmogorov-
Smirnov 

Shapiro-
Francia 

15 mins 
Threshold 22.2 46.8 39.7 51.8 45.5 42.6 53.5 

Shape Parameter -0.14 0.33 0.01 0.07 0.26 0.06 0.10 

Hourly 
Threshold 9.7 44.7 9.6 66.9 70.7 80.1 45.3 

Shape Parameter -0.09 0.17 -0.09 -0.58 -0.44 -0.48 -0.35 

6 hours 
Threshold 6.6 28.1 8.5 24.3 24.3 21.5 24.9 

Shape Parameter -0.01 0.20 -0.05 -0.23 -0.23 -0.34 -0.23 

Daily 
Threshold 3.1 5.6 17.3 17.8 18.4 19.3 17.1 

Shape Parameter 0.17 0.22 -0.17 -0.10 -0.08 0.10 -0.20 

 433 

Table 2: MSE between the empirical and theoretical quantiles for different threshold selection 434 

methods at four flow resolutions. 435 

MSE Threshold 
Stability 

SE 
Normality of Differences tests 

Pearson's 
chi square 

Anderson-
Darling 

Cramer-
von Mises 

Kolmogorov-
Smirnov 

Shapiro-
Francia 

15 mins 252.4 8248.8 123.7 2157.8 6034.9 1242.3 2828.2 

Hourly 130.9 2654.1 24.1 14.5 13.6 10.5 28.0 

6 hourly 72.1 150.8 61.0 34.0 34.0 12.7 34.8 

Daily 38.2 81.9 8.3 10.7 12.6 32.4 7.6 

 436 

The MSE (Table 2) seems to be an inappropriate diagnostic for deviations between very large 437 

theoretical and empirical quantiles as it depends greatly on the shape parameter. Peak flows 438 

with very short finite tails will show minimum MSEs, which increase by orders of magnitude 439 
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as the shape parameter increases. Conversely, the NRMSE does provide a comparative 440 

diagnostic since it is normalized by accounting for very large values that are associated with 441 

heavy tails. Thus, NRMSE values are reported in Table 3 where compared to the SE and 442 

Normality of Differences methods, this study’s ATS method gives the smallest NRMSE for flow 443 

data of any resolution, except for the Normality of Differences test for the hourly flow. 444 

Table 3: NRMSE between the empirical and theoretical quantiles for different threshold selection 445 

methods at four flow resolutions. 446 

NRMSE ATS SE 
Normality of Differences tests 

Pearson's 
chi square 

Anderson-
Darling 

Cramer-
von Mises 

Kolmogorov-
Smirnov 

Shapiro-
Francia 

15 mins 102.6 1017.9 308.0 571.6 866.6 391.4 697.5 

Hourly 38.8 244.4 37.7 30.9 29.9 38.2 27.0 

6 hourly 51.8 184.2 67.6 87.4 87.4 53.4 88.5 

Daily 44.5 69.3 52.6 59.5 72.0 115.3 50.2 

 447 

The relative index of agreement (Figure 8) is also an efficient measure of proximity between 448 

observed and simulated peak flows (Krause et al., 2005). For this diagnostic, the GPD was 449 

consistently best fitted to empirical peak flows at all scales when their thresholds were chosen 450 

using this study’s ATS method. Here, the SE method was the poorest method, especially at 451 

the 15-minute data scale. Interestingly, results at the hourly scale behaved very differently to 452 

those found at the three other scales. We speculate that this was likely due to the hourly data 453 

being at, or close to, the natural water run-off integration rate to the sub-catchment’s water 454 

flume following a rainfall event (see Discussion). 455 
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 456 

Figure 8: Index of agreement between theoretical and empirical peak flow of different resolutions. 457 

The threshold selection methods are Automated Threshold Stability (ATS), Square Error (SE) and the 458 

various tests of the Normality of Differences method, the Pearson’s chi-square (P), Anderson-Darling 459 

(AD), Cramer-von Mises (CvM), Kolmogorov-Smirnov (KS) and Shapiro-Francia (SF). 460 

Figure 9 presents the Q-Q plots of the 15-minute extreme flows for the threshold selection 461 

methods that gave the smallest (ATS) and the largest (SE) NRMSE values (Table 3). The Q-Q 462 

plots show that an over-estimated threshold results in a sample size that can be too small for 463 

efficient statistical inference and results in increased uncertainty. The Q-Q plots also emphasis 464 

the superiority of this study’s ATS method given its Q-Q plot falls relatively close to the 45o 465 

line. 466 
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 467 

Figure 9: Q-Q plots of the 15-minute peak flows estimated by the ATS (left) and SE (right) methods. 468 

 469 

Clear differences in the estimated Return Level / Return Period plots for the ATS and 470 

Normality of Difference (Kolmogorov-Smirnov test only) methods (Figure 10) indicate that the 471 

combined effects of data scale, the GPD estimator and the threshold selection method - each 472 

have a significant impact on the characteristics of the final model that attempts to explain the 473 

flow process with the consideration of extremes. This is critically important in cases where 474 

reliably informed actions need to be taken or infrastructure needs to be built to mitigate the 475 

impacts of future peak flows and likely flood events. 476 
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 477 

Figure 10: Return level plots of the daily peak flows estimated by the ATS (left) and Normality of 478 

Difference Kolmogorov-Smirnov (right) methods. 479 

5. Discussion 480 

In agreement with previous studies (e.g. Bermudez & Kotz, 2010; Engeland et al., 2004), we 481 

found that the performance of the GPD parameter estimators examined through a Monte 482 

Carlo experiment, depended significantly on the sample size and the value of the shape 483 

parameter. The MLE/MPLE, PWMU/PWMB and the LME were consistently the most unbiased 484 

and precise estimators and so we chose only from this group in our subsequent analyses. 485 

More specifically, for the application of the SE and AST threshold selection methods, a 486 

different GPD estimator was used each time according to its strengths. For example, the LME 487 

was preferred for positive shape parameters and large sample size.  488 

This study’s Automated Threshold Stability (ATS) method was tested against existing SE and 489 

Normality of Differences methods. Methods were applied to flow discharge measurements 490 

of 15-minute resolution, as well as to the same data aggregated to coarser resolutions of 491 
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hourly, 6-hourly and daily, to examine scale effects. The Normality of Differences method 492 

depended on the normality test applied and resulted in short, exponential and heavy tailed 493 

distributions even at the same scale (e.g. shape parameters of 𝜉 = −0.2 for the daily flow 494 

according to Shapiro-Francia and 𝜉 = 0.1 according to the Kolmogorov-Smirnov test). Similar 495 

results for the value of the shape parameter were obtained from the ATS method, unlike the 496 

SE method which always resulted in positive 𝜉.  497 

Threshold stability plots were discussed in Scarrott and MacDonald (2012) and Solari and 498 

Losada (2012), but these studies did not perform an analytical approximation, as done here 499 

with ATS, although Langousis et al. (2016) suggested an automated technique based on the 500 

assumption of linearity of the MRL plot and applied it to rainfall data. Our proposed ATS 501 

method provided more robust estimates of the threshold compared to: (a) the SE method as 502 

it was less sensitive to the resolution of the data and (b) the Normality of Differences method 503 

as it was less sensitive to the sample size of the threshold candidates. It also resulted in the 504 

smallest errors and the largest agreement indices between the simulated and the empirical 505 

quantiles.  506 

Specific to the case study, error and agreement indices indicated that the GPD provided the 507 

best fit to the hourly peak flow data relative to 15-minute, 6-hourly and daily peak flow data. 508 

For all the applied threshold selection methods, the modelled peak flow at the hourly 509 

resolution was consistently the closest to the empirical one, compared to three other scales. 510 

These results cannot be attributed to the value of the shape parameter (e.g. short finite tails 511 

result in greater agreement between theoretical and empirical quantiles) since the SE method 512 

gives a positive 𝜉. An inspection of the plots and a comparison across various scales does not 513 

reveal any pattern that would justify this behavior. A possible explanation could be that the 514 
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hourly peak flow best captures the signal of the process and integrates more efficiently the 515 

way the 6.84 ha sub-catchment (of two pasture fields) transforms intensive rainfall into high 516 

discharge flows. It should be noted that the data aggregation was not done at equal intervals. 517 

For example, the hourly flow resulted from averaging four 15-minute measurements, 518 

whereas the 6-hourly and the daily flow are the averages of 24 and 96 observations, 519 

respectively. This does not affect the results but should be borne in mind when interpreting 520 

the plots.  521 

An advantage of using fine resolution flow data is that they result in larger sample sizes that 522 

can make the statistical inference more efficient even for records of short periods for which 523 

a GEV/AM extreme value methodology is not applicable. However, this study showed that for 524 

data of the same resolution, the value of the GDP shape parameter varies according to the 525 

selected thresholds. This has serious practical implications since the models are commonly 526 

extrapolated beyond observed values for forecasting and engineering design purposes to 527 

mitigate against future flooding. On one hand, an under-estimated threshold and shape 528 

parameter of the extreme flow can result in failure of hydrological infrastructure (e.g. dams, 529 

flood protection works) due to higher peak flows than expected. On the other hand, over-530 

estimation of the high flows can lead to over-pricing and mis-use of resources.  531 

6. Conclusions 532 

In this study, we examined the effect of statistical estimators, data resolution, and threshold 533 

selection on fitting the Generalized Pareto distribution to peak hydrological flows that 534 

resulted from the ‘Peaks Over Threshold’ method. Through a simulation study, the 535 

performance of the estimators depended greatly on the sample size and the shape parameter 536 
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where the only most accurate and unbiased estimators were used for the selection of 537 

thresholds in subsequent empirical evaluations. Here an automated threshold selection 538 

method based on the stability of the shape and modified scale parameters was empirically 539 

demonstrated to provide more robust estimates compared to two commonly applied 540 

alternatives. The proposed method provided the smallest error and the greatest agreement 541 

indices between the empirical and theoretical quantiles across all the scales of the case study 542 

flow data. 543 

The study results can be generalized to similar water monitoring schemes for improved 544 

characterization of likely flood events. However, the study highlights that the combined effect 545 

of data scale, threshold selection method and statistical estimator, significantly affects the 546 

shape parameter and, as a consequence, the nature of the Generalized Pareto distribution. 547 

Such linked effects need to be acknowledged and assessed as they have clear implications for 548 

the reliable forecasting of extreme flow events, and the consequences thereof. 549 
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Appendix A: Equations of the estimators 757 

The estimators used in this study can be formally defined as follows: 758 

1. MLE method:  759 

𝐿 = −𝑛log𝜎 + (
1

𝜉
− 1)∑log (1 −

𝜉𝑥𝑖
𝜎
)

𝑛

𝑖=1

,    𝜉 ≠ 0 760 

𝐿 = −𝑛logσ −
1

𝜎
∑𝑥𝑖

𝑛

𝑖=1

,    𝜉 = 0 761 

where 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛) are the order statistics of a random sample 𝑥1, … , 𝑥𝑛 from the 762 

GPD. The estimated parameters are obtained when the log-likelihood function 𝐿 is 763 

maximized. 764 

2. MPLE method: 765 

𝑃(𝜉) =

{
 

 

 

1 𝜉 ≤ 0

exp{−𝜆 (
1

1 − 𝜉
− 1)

𝑎

} 0 < 𝜉 < 1

0 𝜉 ≥ 1

 766 

where 𝑎 and 𝜆 are the penalizing non-negative constants. The corresponding penalized 767 

likelihood function is 𝐿𝑝𝑒𝑛 = 𝐿 × 𝑃. 768 

3. LME is a combination of both likelihood and moment estimators and is derived from: 769 

1

𝑛
∑ (1 − 𝜃𝑥𝑖)

𝑃
𝑛

𝑖=1
−

1

1 − 𝑟
= 0, 𝜃 < 𝑥(𝑛)′

−1  770 

where 𝜃 = 𝜉/𝜎 and 𝑃 = −
𝑟𝑛

∑ log(1−𝜃𝑥𝑖)
𝑛
𝑖=1

. The parameter 𝑟 < 1, 𝑟 ≠ 0 must be pre-defined 771 

before the estimation and either be set as 𝜉 if there is an initial estimate of it or taken as 772 

𝑟 = −1/2.  773 
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4. MOM estimators (Hosking & Wallis, 1987) of the scale 𝜎 and shape 𝜉 parameters of the 774 

GPD distribution are given by: 775 

�̂� =
1

2
�̅� (

�̅�

𝑠2
+ 1) ,  𝜉 =

1

2
(
�̅�2

𝑠2
− 1) 776 

where �̅� and 𝑠2 are the sample mean and variance.  777 

5. PWM estimators provide estimates with smaller bias and variance than MLE when the 778 

sample size is less than 500 (Hosking & Wallis 1987). The PWM’s of the random variable 779 

X with a distribution function 𝐺 ≡ 𝐺(𝑥) = 𝑃(𝑋 ≤ 𝑥) is defined as: 780 

𝑀𝑙,𝑗,𝑘 = 𝐸[𝑋𝑙𝐹𝑗(1 − 𝐹)𝑘] = ∫[𝑥(𝐹)]𝑙𝐹𝑙(1 − 𝐹)𝑘𝑑𝐹

1

0

 781 

where 𝑙, 𝑗 and 𝑘 are real numbers. For 𝑗 = 𝑘 = 0 and l a nonnegative integer, 𝑀𝑙,0,0 is the 782 

classical moment of order 𝑙. 783 

6. The estimator suggested by Pickands (1975) (referred to as ‘Pick’) is based on the 784 

ascending order statistics 𝑋1,𝑛 ≤ 𝑋2,𝑛 ≤ ⋯ ≤ 𝑋𝑛,𝑛 from an independent sample of size 𝑛 785 

and is defined as: 786 

𝜉𝑛,𝑘
𝑃𝑖𝑐𝑘 =

1

𝑙𝑜𝑔2
log (

𝑋𝑛−𝑘+1,𝑛−𝑋𝑛−2𝑘+1,𝑛

𝑋𝑛−2𝑘+1,𝑛−𝑋𝑛−4𝑘+1,𝑛
), for 𝑘 = 1,… , [𝑛/4] 787 

This estimator is largely dependent on 𝑘 and provides a large asymptotic variance (e.g. 788 

(Dekkers & Haan, 1989; Segers, 2005; Yun, 2002). 789 

7. There are many MGF statistics that can be used for GPD parameter estimation, such as 790 

Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling (see Luceño, 2006). 791 
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