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Abstract — In this paper we present a tech-
nique for low-complexity decoding of Reed-
Solomon (RS) codes. We describe a method for
which the implementation complexity has been
estimated when compared to standard Viterbi
decoding over the minimal trellis. Finally we
present some computer simulation results for
decoding the (7, 5, 3) RS code.

I. INTRODUCTION

Trellis design techniques for linear block codes have
been under investigation since 1974 [1, 2, 3]. The prob-
lem returned to the public attention in 1988 when For-
ney [4] introduced the concepts of coset codes and coset
trellises. Muder [5] proved that these trellises are min-
1mal and that the number of states in the trellis di-
agram can be minimised by an appropriate reorder-
ing of symbols in the codeword. Such an optimum
reordering has been obtained for some particular bi-
nary codes, [4, 6, 7, 9, 15, 16]. However, the general
solution to this problem, as well as its extension for
the non-binary codes remains unsolved and represents
a complex analytical task. In this paper we introduce a
new technique which allows an efficient design of min-
imal coset trellises of RS codes based on the Shannon
product of trellises and propose a low- complexity trel-
lis decoding technique that makes the implementation
of the designed trellises feasible.

II. SHANNON ProDUCT OF TRELLISES

Shannon [17] described the product of two channels
which “corresponds to a situation where both channels
are used each unit of time”. We apply these results for
the trellis design of linear block codes, in particular RS
codes [18, 19].

Let N(t) = [Ny, N1,...,Nn.| be the state profile of
the trellis T, B(t) = [By, Bs,..., By.| be the branch
profile of the trellis [19] and L(t) = [l1,l2,...,Ix.] be
the label size profile of the trellis, where B; is a num-
ber of branches in the j-th depth of the trellis and /;
is the number of symbols being used for branch la-
belling at j-th depth. Given two trellises T and T”
with N, levels in each trellis, the Shannon product [18]
T T’ of these trellises is a trellis which at level # con-
sists of NyIN/ nodes labelled by pairs [Slm , S;(‘t)], where
i=12,...,N and j = 1,2,...,N/. Two nodes of
adjacent levels are connected by branches labelled as

Wi =, [5}"”, S]g“} +w; [5}“‘”, sl (1)

IFF trellis T has branch wt(SZ(-FU, 5;-1)) and trellis 7"
has branch w,’t(S;(t*l),S;(t)) (addition in (1) is over
GF(q)). Note, that from the definition we have the
following state and branch profiles:

Nsi = N(t)N'(t) (2)
Bsy, = B(t)B'(t) (3)

We define a sum C + C' of codes C' and C’ as a set
of |C| % |C'| all possible sums ¢ + ¢/, where ¢ and ¢
are codewords from C and C’; respectively: ¢ € C and
dec.

Proposition 1 (from [19]) Consider two codes C
and C" with the same codelength, n. Let T be a trellis
of the code C and T’ be a trellis of the code C'. The
Shannon product, Tsy, = T xT', of these trellises is the
trellis of the code C'sp, = C + C”.

III. CoseET TRELLISES FOr RS CoODES

A coset trellis represents a set of parallel sub-trellises,
each one corresponding to one of the cosets of the ba-
sic code [4]. In order to design a minimal coset trellis
we start with the calculation of the minimal number
of states for every possible splitting point of the trel-
lis [4]. At the next stage we choose the splitting points
which have similar numbers of states and represent the
generator matrix G in the following format:

G= =[G G» ... Gyoa] (4)

where G0 = 1,2,...
rows, and [; corresponds to the splitting points ob-
tained at the previous stage. Each row of G is used
to design the trellis diagram of the (n,1,d) code over
GF(q) and the overall trellis diagram can be obtained
as the Shannon product of k designed component trel-
lises.

,N. — 1, has l; columns and k

Theorem 2 The designed trellis 1s minimal coset trel-
lis.

Example 3 Let our aim be to design a coset trellis for
the (7, 8, 5) RS code with symbols taken from GF(23).

The generator matrix of the code is as follows:



Following the procedure described by Forney [4], the
state profile for every splitting point of the trellis can
be obtained as Neyna = [1,8,64,512,512,64,8,1]. It is
apparent that for a given (7, 3, 5) RS code one can
design a number of different (but isomorphic) minimal
trellises. One of these trellises may have 3 depths with
the following state and label size profiles:

Nt [1,8,8,1] (6)
L' = [1,51] (7)

while the other trellis may have 3 depths with the fol-
lowing state and label size profiles:

N' = [1,64,64,1] (8)
L' = [2,3,2] (9)

In our example we choose the latter trellis, thus the
generator matriz of the code we represent wn the fol-
lowing format:

G = [Gl Gy ... GNﬂfl]

[ a® 1 o® 1 0 0
0 o> a 1 «* 1 0 (10)
[ 0 0 o « 1 o 1 J

The overall trellis diagram, T, can be obtained as the
Shannon product of 3 trellises, T = Ty « To % T5, each
one pertaining to a (7, 1, 5) code, generated by its cor-
responding row of G. These trellises are presented in
Figure 1, and the overall trellis diagram is shown in
Figure 2. As follows from this figure, the minimal coset
trellis of the (7, 3, 5) RS code consists of 8 identical,
parallel sub-trellises that differ only in their labelling
and each such sub-trellis has 8 states and 3 depths.

IV. Two-StaGE TrELLIS DEcoDING For RS
CoODES

Although the designed coset trellises are isomorphic
to the minimal trellises, for long RS codes the trellis
becomes unfeasible due to its considerable complexity
and storage requirements. Recently the ftwo-stage
sub-optimum trellis decoding technique has been
proposed for low complexity trellis decoding of binary
codes [21, 22]. We propose a novel two-stage trellis
decoding algorithm applicable to RS codes which
allows the reduction of decoding complexity without
significant loss of the decoding performance. The
decoding procedure consists of two major steps:

1. Identify in which sub-trellis the maximum-
likelihood path lies.

N

Apply the Viterbi decoding algorithm only to the
sub-trellis indicated at step 1.

Fig. 2: Trellis Diagram of the (7, 8, 5) RS code.




With reference to Proposition 1, we define C' to be a
coset of the RS code, thus the codewords of C’ are
the coset leaders of the RS code Cg,. To identify in
which sub-trellis (coset) the maximum-likelihood path
lies we are unable to simply decode C’ over its trel-
lis, 17, since the received word also contains symbols
from C. Instead we decode each information symbol
in C’ separately. In general k recieved symbols are re-
quired to find an estimate of an information symbol
X, j = 1,2,...,k, since there are k unknowns (the
k information symbols). We thus form a set of inde-
pendent equations which are a weighted sum of upto
k symbols from the recieved word. By evaluating this
set of equations and choosing the most probable we
decode one information symbol. This is repeated for
all information symbols in C’. The set of decoded in-
formation symbols identifies the sub-trellis of Cs;, to
decode. Viterbi decoding of the chosen sub-trellis is
performed in the normal way. Since the prediction of
which sub-trellis to decode is itself subject to errors
we can improve the decoder performance by decoding
the best ¢, 2 = 1,2,... q%, sub-trellises. In this case
the chosen codeword is the one with highest confidence
from the output of stage 2.

The equations are evaluated by taking the hard-
decision value of each received symbol. If we attempt
to perform “soft” Galois Field operations by retaining
some of the soft-decision information then the perfor-
mance is further enhanced. Figure 3 shows the perfor-
mance of our algorithm compared with uncoded and
HDMLD. Note that decoding all 64 sub-trellises is
equivalent to SDMLD. Figure 4 is the corresponding
performance when the soft-decision data is incorpo-
rated into the GF operations.
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Fig. 3: Two-stage decoding performance for the
(7, 3, 5) RS code using a hard-decision
sub-trellis estimator.

We have estimated the decoder complexity (stage 1
using hard-decision values) for a system implemented
on AT & T’s DSP32C digital signal processor. This
uses the approximate number of mathematical oper-
ations and their relative cost in terms of the number
of CPU cycles required for their execution (see Table
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Fig. 4: Two-stage decoding performance for the
(7, 3, 5) RS code using a soft-decision
sub-trellis estimator.

1). Table 2 shows the complexity of the decoding al-
gorithm for various numbers of sub-trellises decoded.
The complexity of Viterbi decoding the full minimal
trellis is 64537 cycles.

+ | + (sco.p)! == | == (b.p.)?
float | 2 1 6 7
int |1 1 n/a | 3 4
GF | 1 1 5 | n/a n/a

Tab. 1: Relative complexity of algebraic operations.

Number of Complexity
sub-trellises | (CPU cycles)
8 15299

16 29835

24 44371

32 58907

40 73443

48 87979

56 102515

64 117051

Tab. 2: Complexity versus number of sub-
trellises decoded for the (7, 5, 3) RS

code.

V. CONCLUSION
We have shown a method by which the decoder com-
plexity can be reduced by taking advantage of the in-
herent regular structure of coset trellises. By varying
the number of sub-trellises decoded the system can be
made adaptive in response to the amount of channel
noise.

Taddition as part of a sum-of-products expression.
2comparisons whilst remembering the best path (used for
converging branches on the trellis).
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