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A m t - A  new approach to real-time joint classification 
and classifier design is proposed in this paper. It is based on the 
recently developed evolving fuzzy s y s t m  (EFS) method and is 
applied to mobile robotics. The approach s t m  from subtractive 
clustering method and its on-line evolving extension called 
eclustering. A new formula for data potential (spatial density) 
determination based on the participatory learning and data 
scatter concepts is introduced in the paper that is 
computationally simpler and more intuitive. An EFS-based 
self-organking classifier (eClass) is designed by automatic 
labding the landmarks that are detected in real-time The 
proposed approach makes possible fully autonomous and 
unsupervised joint landmark detection and recognition without 
the use of absolute coordinates, any communication link or any 
pr&raining. The proposed algorithm is recursive, nowiterative, 
one pass and thus cornputationally inexpensive and suitable for 
real-time applications. Extensive simulations as well as real-life 
tests has b m  carried out in an indoor environment (an office 
located at InfoLab21, Lancmter University) using Pioneer3 DX 
mobile robotic platform equipped with sonar and motion sensors 
and on-board PC. The results indicate superior rates of 
recognition, flexibility, and computational demands of the 
proposed approach comparing with the previously published 
similar methods. Further investigations will be directed towards 
development of a cooperative scheme, tests in a realistic outdoor 
environment, and the presence of moving obstacles. 

I. INTRODUCTION 

C LASSIFICATION has been around for quite some time [13]. 
Most ofthe approaches assume off-line (batch) treatment 

of the data. Once generated and trained the classifier can then 
be applied in on-line mode to new data. Validation on 
different data set however is normally done in off-line mode 
and on the assumption that statistical characteristics of the 
validation data set are similar to that of the training data set. 
Thus, a change in the data pattern o r  unexpected data can not, 
by definition, be taken into account by an off-line trained 
classifier [13]. 

In some application domains [19,24,26,27,29], however, it 
is vitally important to have the ability to adapt the classifier to 
new data patterns (non-stationary data streams, unpredictable 
and possibly hostile environment etc.). Adaptive classifiers 
have been reported that are based on Bayesian estimation [17] 
or the use of genetic algorithms [9]. The adaptation in the 
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former [17], however, concern the statistical properties of the 
data and not the structure of the classifier; the latter [9], called 
also 'evolving' (from evolutionary algorithms [XI), are 
computationally expensive (they operate over a population of 
candidate solutions) and are thus prohibitive for real-time 
applications. Additionally, both groups o f  approaches include 
supervision. It should be noted that classification, by 
definition [13], assumes supervisiodlabeling which is a 
serious obstacle in designing autonomous and flexible 
adaptive systems. 

An alternative is presented by the self-organizing maps 
(SOM), introduced originally by T. Kohonen in 1987 for 
unsupervised learning (clustering) [22]. They are 
computationally less expensive and has been developed 
further into eSOM (evolving SOM) for the case when the 
cluster centers 'evolve' [20]. However, they, as well as a 
number of other evolving and self-organizing neural networks 
such as growing cell structures [14], adaptive resonance 
theory mapping [ l l ] ,  generalized growing and pruning 
radial-basis function networks [16], evolving fuzzy neural 
networks [20], dynamic evolving neuron-fuzzy inference 
systems [21], resource allocation networks [30] and their 
applications [IS-19,23-29,3 23 do not take into account data 
density and thus are prone to generating too many clusters. 
Thus, pruning is needed which reduces the quantity of the 
clusters that are formed [16]. All these approaches are not 
prototype-based in the sense that the centre of the clusters is 
not necessarily and is ofien not located at a feasible point in 
the data space. It is usually located at the mean or its location 
is aresult ofthe adaptation. Thus, its location in the dataspace 
is an abstraction and may not be a feasible data point. 
Additional disadvantage of these approaches is that new data 
point is compared to the cluster centers only because the 
real-time nature precludes memorizing the datahistory. 

Recently, anovel approach to real-time data clustering was 
proposed [5] that stems fiom the well known subtractive 
clustering [12] and Mountain clustering approaches [34]. This 
method is fully unsupervised (according to the definition 
given in [15]) in the sense that number of clusters are also not 
pre-defined but determined based on the data density. This 
approach [5], called eclustering (from evolving Clustering) 
has been used for real-time data partitioning and was 
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combined with an extended version of the recursive least 
squares estimation for real-time generation of Takagi-Sugeno 
type fuzzy rules from data [2]-[4]. 

In this paper, the concept of spatial density measured by the 
potential used in subtractive and eclustering is used as a basis 
for landmark recognition in mobile robotics. An alternative 
formula for potential (data spatial proximity) calculation is 
introduced in the paper that is using the concept of 
participatory learning [31,33] combined with the concept of 
data scatter [3]. In an inverse (to eclustering) fashion, the data 
points that have very Low potential are treated as 'landmarks' 
in exploring a new environment by a mobile robot using only 
its on-board sensors and computational device and having no 
any pre-training, pre-installed knowledge, and no 
communication link or device (such as GPS, for example). 
Such situation may occur ifthe communication link is lost or 
deliberately ceased. 

Landmarks are automatically labeled and further data are 
classified in real-time into classes associated to the landmarks 
detected so far or to a default class corresponding to the 
normal/routine behavior. The number of classes (respectively 
landmarks) is not pre-specified. Instead it evolves starting 
'from scratch' with the very first landmark detected while 
exploring previously unseen environment. 

The EFS-based classifier (eClass) proposed in this paper is 
formed by real-time detection of landmarks and labeling them. 
eClass is then used to classify in real-time the data produced 
by the sonar and motion sensors mounted on amobile robotic 
platform Pioneer3-DX. In the experiment carried out in an 
indoor office environment (office B-69, InfoLab21, South 
Drive, Lmcaster, UK) a robot performed simple 'wall 
following' behavior [24,26,27] exploring the unknown 
environment. The landmarks in an empty office are associated 
with the corners ofthat oofce. Each corner differs by its type 
(convex or concave) and relative position. The result of this 
experiment was compared with the result of a similar 
experiment reported in [28] where a SOM classifier 
pre-trained in off-line (batch) mode having a fured structure 
was used. The results illustrate the superiority of the proposed 
approach in t m s  of computational efficiency, precision and 
flexibility. 

Future investigations will be directed towards development 
of a co-operative scheme, tests in a realistic outdoor 
environment, and in the presence of (moving) obstacles. 

I. LANDMARK RECOGNITION IN MOBILE ROBOTICS 

As the robot travels in previously unseen environment it 
generates a stream of data from its sensors (sonar, motion, 
etc.). The ability to differentiate between common sensory 
readings and patterns never met before which is called 
'novelty detection', is a very useful competence for a mobile 
robot operating in a real dynamic unexplored environment 
[26,29]. Using such ability the robot can select which aspects 
of the environment are unusual, differ from the contextual 
background and use them as 'landmarks'. Landmarks are 

vitally important for self-localization and navigation of 
mobile robots (autonomous agents) when operating in 
previously unseen (possibly hostile) environment [10,26,27]. 
By differ from 'dead reckoning', which is prone to drifiing 
errors [24,28-291, landmark-based navigation does not suffer 
from this disadvantage [27l. Thus it can effectively be used for 
adaptive navigation and route planning. 

At the same time the limited computational resources 
available to an autonomous mobile robot often present 
challenge for applications that demand real-time processing of 
large amounts of sensory data, therefore, arecursive algorithm 
is highly desirable to cope with the memory and time 
limitations. This is especially important for designing agile 
compact autonomous devices [lo] where the computational 
and energy requirements are usually very restrictive. 

The proposed EFS-based classifier, eClass is an efficient 
solution that is addressing the problem of real-time joint 
landmark recognition and classifier generation. It is fully 
autonomous in the sense that it does not require any 
pre-training, any pre-installed knowledge or any human 
intervention can start 'from scratch'. It is also computationally 
very efficient (it is recursive, one pass, non-iterative, and has 
very low memory requirements) which makes possible 
real-time applications [lo]. 

A. eC'kass genemtzo pz from. data 

The eClass method (as the name suggests) assumes an 
unspecified number of classes that gradually evolve. Their 
labels are automatically assigned using integer numbers 
('1','2',. . . ). The approach also assumes joint classification 
and classifier generation similarly to the joint adaptation and 
prediction used in conventional (linear) adaptive systems [ 7 ] .  

The eClass starts with a single class labeled '0' which 
corresponds to the nomallroutine behavior and empty 
rule-base (all data are assumed to be described by the 
routinelnormal behavior until a landmatk is detected). The 
data is read incrementally sample by sample. Each data 
sample is described by a vector that can be represented as a 

2 
data point in the data space, X, = [XL , X, ,. . ., X L ] ~  where k is 

the current time instant (in areal-time application the time is 
open-ended and stops when astop condition that is external to 
this algorithm is reached, thus k=1,2, ). For the mobile 
robotic application considered in this paper the n-dimensional 
data vector includes the sensor readings that are available at 
given time instant k. For example, rotation, 4 and the distance 
to the nearest obstacle, d etc. 

eClass, similarly to eclustering, is based on the concept of 
dataspatial density measured by so called potential [l-51. This 
concept stems from the mountain function [35] modified later 
into potential in the subtractive clustering method [12], where 
a Gaussian exponential is used to describe the potential. A 
computationally simpler Cauchy function is used in [2,4,5] 
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and the so-calledscatter is used in [3]. An alternative formula 
that combine the concept of participatory learning, proposed 
by Yager [31,33], and the concept ofscatter can be given by: 

auxiliary variables only (the scalar, bk-l and the 

T 
n-dimensional vector-column /, = k,/i,. ..,j;l) ) One can 

where P, denotes the potential of the k'h data point xk; 

1141 denotes the Euclidean distance. 

The potential formulated in this way has the meaning of 
compatibility of the new information compared with the 
information that already exists [31,33]. The potential is a 
monotonic, normal function (OQ_ll), that is inversely 
proportional to the sum ofthe (Euclidean) distances between a 
point in the data space and all other data points. This is the 
main difference between eclustering and eclass from one side, 
and other clustering and classification approaches used for 
data space partitioning in self-organized neuro-fuzzy models 
[11,14,16,18-21,23-30,32,34] all of  which ignore the data 
spatial density-related information. 

Note that the expression for the potential (1) is suitable 
for off-line (batch) calculation since the summation over all 
previous data points is needed to determine the data density. 
To use potential in a real-time algorithm where memorizing 
the previous history is prohibitive, axcurszve version of (1) is 
needed. One can derive such expressing the projections ofthe 
squared distances on axes [O;x'j fiom (1) in an explicit form: 

By reorganizing (la)  one gets: 

If  use the following notations: 

the recursive formula for potential calculation is 
transformed into: 

Values 4 and represent accumulated projections on 

each dimension of the data space, [O;x') and can be calculated 
based on the availability ofthe current datapoint (set of sensor 

readings),~, only. The values bk and $ require accumulation 

recursively update these n values by: 

In this way, using (1c)-(lf) the spatial density of each new 
data point, Pk in respect to all previous data points can be 
recumveky calculated using n accumulated values in the two 

auxiliary variables (b ,  a n d g  ) only. This makes possible 

real-time applications o f  the algorithm while keeping the 
information of spatial data density regarding the whole 
previous history which is the distinctive feature of the 
proposed algorithm. 

B. Landmark classzjier generahon 

Based on the sensory readings, a data point with low 
potential is a distinctive (specific) point in the data space that 
can be  used as a landmark. Thus, low value of the potential 
will indicate the need to introduce a n e w  landmark: 

Pr < P  (2) 

where f is apositive threshold (if the value of f is too high 

too many landmarks are generated; if the value of f is 

close to zero some landmark may be missed) 

The very first data point that satisfies equation (2) is 
assumed to be the first landmark that is automatically assigned 
label '1': 

x,, t x, when P <  f (3) 

Once the Class I is formed a fuzzy rule ( R I )  is also 
generated. The premise (antecedent) part of this rule is formed 
around the cluster centre, while the consequence is considered 
to be crisp (non-fuzzy): 

4 : IF (xk .is ckose to 4) AND. .. (4) 

AND (4 is ckose to 4) AND . . . 

. .AND (4 is close to 4) THEN(Clms is 1) 
The algorithm continues with reading the next data point 

and calculating its potential. By definition, the potential is an 
accumulated quantity that represents the density of the data 
and thus it gives information 'on average'. That is, single 
points may still be close to each other and their potential can 
be low iffor the majority ofthe datathe distances to these data 
points are large. T o  avoid ambiguity a landmark should be 
distinct 'on average' and 'in particular'. That means, there 
should be no indistinguishable, ambiguous landmarks. 
Therefore, the additional condition that the new candidate 
landmarks should not be in the vicinity of already existing 
ones is also introduced. The parameter r used as a threshold 
determines the zone of influence of aparticular landmark (its 
uniqueness): 

of past information. This can, however, be stored in two 
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where % denotes Ifh class centre (landmark); 

N is the total number of classes (landmarks) 

If  condition (5) is violated while condition (2) is satisfied 
then the new data point replaces the nearest landmark: 

q +%when -%I1 4r/2 Rnd P<_P ( 5 4  

Remember that if condition (2) is sati&ed a new landmark 
is detected regardless of condition (5). The new class is 
labeled with the next integer numeric symbol and a n e w  fuzzy 
rule is added to the rule-base of eelass. 

R2 : IF (x; is close to d 2 )  ANB.. ( 4 4  

AND (xi is close to d2 )  AND .. . 

..AND (4 is close fo Z2) THEN (Chss is 2) 
In this way, an EFS-based classifier is generated in 

real-time with a recursive, non-iterative, incremental (one 
pass) algorithm that is based on the data spatial density 
(potential). 

C. Landmark recognzhon (real-tune clasxjfca hen) 

At each time instant a classification (landmark recognition) 
takes place simultaneously with generating and evolution of 
the classifier. For the particular application (mobile robot 
exploring an unknown environment) two general states can be 
defined : 

A. normal routine operation (exploring the environment 
through 'wall following', 'random walk' or  following 
certain navigation goal); this correspond to the default 
Class 0; 

B. novelty detection and landmark recognition (classify 
the data into one of the existing classes: Classl, , 
ClassN or create a new Q a s ~ ~ + ~ ) .  Note the new class 
may replace one of the existing classes. 

During the normal, routine operation (further we assume 
without limiting the concept 'wall following' to be the 
normal/routine behavior) certain variation in the data takes 
place. The datapattern, however, is largely the same. Once a 
distinct data point is detected (based on condition (2)) a 
landmark is generated. Following that instant the further data 
will fall into one of the two cases described above (A or B). 
Therefore, the task is in real-time to classify the data into A or 
B. Note that in case of B different landmarks may exist and the 
task is to classify the data into the particular class or to 
generate a new class (detect a new landmark). Note, that the 
new landmark can also replace apreviously existing landmark 
if condition (5a) is satisfied. The default case (normal/routine 
behavior) is given with an ELSE construct: 

4 : IF (4 is close to 4 j AND.. . (4b) 

. . AArB (4 is cbse fo 4) 
THEN(Clcss is 1) ELSE (Chss is 0) 

Obviously, this process starts once the first class and the 
respective fuzzy rule has been generated. Before that all data 
points are classified to be  o f  Class 0. 

The overall classification in eClass is performed based on 
the so called 'wznner take all' principle [33], which 
corresponds to the MAX t-co-norm used to produce a 
de-fuzzification. It is interesting to note that the same 
de-fuzzification operator is also used in Mamdani type fuzzy 
models and therefore the fuzzy rule-based classifier eelass 
can be considered either as zero order Takagi-Sugeno type or 
as simplified Mamdani type (because the consequent part is 
crisp, consisting of non-fuzzy singletons): 

where y,, represents the wznner class (landmark) r N 

1 = 1  
is the normalized firing level 

of the jth fuzzy rule, j=1,2,. . .N. 
The activation level, T ,  can be defined as a Cartesian 

product or conjunction (t-norm) o f  respective fuzzy sets for 
this rule [33]: 

~ = 1  

where ,q: is the membership value of the jh input, 

X' (j=1,2, ,n) to the respective fuzzy set for the z f h  fuzzy rule 
(~=1 ,2  ,...,lq 

The membership function value represents the degree to 
which the fuzzy set 'is close to' is satis5ed in respect to the 
closeness to the landmark that is used to form the respective 
fuzzy set. In this study we use triangular membership 
functions without limiting the concept: 

where y J  is the radius of the zone of influence of the tfh 
landmark in itsfh dimension. 

Note that one can define different radius for different input 
1 2  

variables, x , x ,. . ., xn (sensory data streams) and different 

landmarks, $;i=g. ..p emphasizing their relative 

importance/weight. Also note that for the routine, behavior all 
of the membership functions describing closeness to a 

landmark will have value zero (that is P ; ( x ~ )  = 0 thus 
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Flg. 1. Membership functlon of the jth fuzzy set '1s close to' of the 
ith fuzzy rule formed around ith landmark. 

N 

t! = 0 a n d I = l  forYj=I ,2 ,  nandr=f,2,  ,@. 
! = I  

By using eelass, atransparent, compact and accurate fuzzy 
rule-based classifier can be evolved in real-time in parallel 
with its use based on experimental dataonly. It is interesting to 
note that the rate of generating new classes and fuzzy rules 
representing a distinct landmark does not lead to an 
excessively large rule base. The reason for this is that the 
condition (2) is practically very strong for it concerns all 
previously seen data Additionally, the possible proximity of a 
candidate center to the already existing landmarks (condition 
(5)) leads to just areplacement of the existing landmark, i.e. 
modification of its coordinates without enlarging the rule-base 
size. 

D. Procedure ojfeClass 

To summarize, the algorithm starts with an empty fuzzy 
rule-based classifier. The first data point (a n-dimensional 
vector of sensor readings at an instant of time) is read in 
real-time. Itspotenhal (data spatial density) is assumed to be 
equal to one (the worst possible value if assume normalized 

data), P(x , )  t 1 and the data point is assigned to Qass # 

(routine behavior). Starting with the next data point its 
potential is calculated recursively using (1c)-(lf). Two 
auxiliary variables (the one dimensional scalar b and the 
n-dimensional vector jj are accumulated according to 
(1e)-(10. Once a data point has been used it is discarded and 
not stored in the memory (the algorithm is one-pass) which 
allows computational efficiency and real-time application. 
During the routine, normal behavior (we consider simple 'wall 
following' realized by afuzzy logic controller) no landmarks 
were detected and no classes were formed, while first corner is 
met. Thus the winning class is the default (Class 0). 

The first data point that satisfies equation (2) is used to form 
the f i s t  class: 

X, t ~ , N t l  (9 )  

A label '1' is assigned to this class and afuzzy rule oftype 
(4b) is generated. For each new data point: 

1) its potential is calculated recursively using 

(lc)-(lf]; 
2) conditions (2) and (5) are checked; 

3) based on the comparison made at the previous step 
one of the following actions are taken: 

a) IT ((5a) holds) THEN (replace a cluster centre 

that is closer to the new data point t 4 ) ;  

b) ELSEIF ((2) holds) THEN (form a new 

cluster around the new data point t % ) ;  

assign a n e w  l a b d  N t N + l ;  form anew fuzzy 
rule of type (4a)-(4b)); 

N 

c) ELSEIF ( 8, < r; $dk -41; = a r p &  -%I)) 
>=I 

THEN (assign the new data point to the Class j) 

d) ELSE (classify the behavior as routine (assign 
the datapoint to Class 0) and do no t  change the 
classifier structure). 

These basic steps are repeated for the next data point (set of 
sensorreadings) (k+k+I) until there is no more available data 
or until a requirement to stop the process is received. 

The formal Procedure can be summarized with the 
following pseudo-code: 

Begin eclass 
I n i t i a l i z e :  
Read XI; 

s e t  ~i t l ; ~ t l ; ~ ( x ~ ) t 1 ; 4  +O;E t o  ; 
DO f o r  k + k + l  

Read xk+l; 

Calc u l a t e  P, r e c u r s i v e l y  u s i n g  ( l c j  - ( l f j  ; 
Accumulate v a l u e s  b and  f u s i n g  ( 1 e ) -  ( l f )  ; 

Compare  Pk w i t h  f and  c o n d i t i o n  (5)  ; 

IF ( ( 5 a )  h o l d s )  
THEN (replace a  c l u s t e r  c e n t r e  t h a t  i s  c l o s e r  

t o  t h e  new d a t a  p o i n t  % 6%) ; 

E L S E I F  ( ( 2 )  h o l d s )  
THEN ( f o r m  a  new c l u s t e r  a r o u n d  t h e  new d a t a  

p o i n t  (%+$) ; a s s i g n  a  new labe l  N+H+1; 
form a  new fuzzy r u l e  o f  t y p e  ( 4 a ) - ( 4 b ) )  

N 

ELSEIF t 6, < r  6, = X ,  - x k ;  y =argrrndlx, -x,lI)) 
! =1 

THEN (assign xh to the Class ; 

ELSE (classify t h e  b e h a v i o r  a s  r o u t i n e  (ClassO)  
and do not change t h e  c l a s s i f i e r  st r u c t u r e j  ; 

END 
/*assign t h e  d a t a  sample  t o  t h e  n e a r e s t  c l a s s  
u s i n g  'winner  t a k e s  a l l '  s t r a t e g y  (6)  */ 

END DO 
E n d  (eClass) 

111. EXPERIMENTAL RESULTS 

This experimental test illustrates the application of the 
proposed algorithm eClass for landmark recognition by a 
mobile robot exploring a completely unknown environment 
without using GPS, global coordinates, any communication 
link and any pre-training. Operational data fiom back sonar 
sensor and rotation data are processed in real-time by the 
on-board computer mounted on the mobile robotic platform. 

A. The mobzle robotzc pkat$orm used 

The autonomous mobile robot Pioneer-3DX [36], produced 
by Activrnedia, USA, (Fig. 2) has on-board computer 
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(Pentium 111 CPU, 256 MB RAM), camera, digital compass, 
sonar and bumper sensors, wireless connection for 
transmission of data to a desktop or laptop in real time. The 
robot can be controlled from the on-board computer in a 
client-server mode using embedded microprocessor ARCOS 
[6] and pre-programmed behaviors, such as 'random 
wandering', 'obstacle avoidance', etc. The fully autonomous 
behaviour of 'detection novelties and landmark recognition' 
was realized as an ARIA subroutine that runs on the ARCOS 
[6]. ARIA is a set of C-based foundation classes for control of 
the Active Media robots [36]. 

ioint landmark detection and recoinition 
- 

B. Experimental settings 

Extensive experiments were conducted in a real indoor 
environment (an empty office, B-69 located at InfoLab21, 
Lancaster, UIC). As a first step, the same environment as the 
one used in [28] was re-created to make possible correct 
comparison of the results. It comprise a rectangular shaped 
empty office room with 8 corners (6 concave and 2 convex), as 
sketched in Fig.3. 

Fig 3 Expenmental enclosure 1 (Test office, B-69, 
TnfoLab21, Lancaster) same as the one used In [28] 

The basic objective ofthe experiment is to enable the robot 
to autonomously identify all landmarks in that office (that is to 
identify each corner) in real-time while exploring this 
completely unknown environment using a routine 'wall 
following' behaviour starting with no prior knowledge about 
the office shape, specifics, corner description, any rules or 
model nor any global coordinates. Tt should be noted that in 
[28] a similar experiment was conducted but pre-training of a 
SOM neural network was assumed and the network had a 

fixed structure consisting of 50 neurons (that is a maximum 
number of 50 novelties was imposed). The pre-training 
reported in [28] was done off-line by a supervisor (teacher) 
walking the robot and showing the landmarks. 

The inputs (Fig. 4) include rotation, @(measured in degrees 
normalized by 360" counterclockwise from the direction 
opposite to the heading) and the distance to the nearest 
obstacle detected by the back sonar of the robot, d (measured 
in m and normalized by M),  where M is the range of the sonar 
(in this experiment M=lOm). In this way, heading straight 
corresponds to value @ =%; turning 90" (left) in respect to the 
heading corresponds to 4=%; turning -90" (right) in respect to 
the heading corresponds to ?h and turn back corresponds to 
&I.  Note that the inputs are normalized into the range [O;]]. 

Thus the input vector can be given as: 
x=  [@;dl. (10) 
These readings are taken in real-time while performing a 

routine 'wall following' behavior [35]. It should be mentioned 
that the features that are selected for the input vector are 
critical to the result. Experiments were conducted with 
between 2 and 5 features [35]. Generally, including more 
features leads to a more refined detection and eventually to a 
better result, but requires more computing power. 

Finally, each landmark can easily be labeled to represent a 
distinctive class using for example integer numbers (' 1 ', 
'2','3',. . .). Thus, the generated classes are closely related to 
the corners. For example, if we have 8 corners in the office, 
ideally, there should be 8 landmarks and, respectively, 8 
classes corresponding to each corner, (apart from the default 
Class 0). 

Fig. 4 eClass as a neuro-fuzzy system 

C. Results and analysis 

Once the input vector, xk is read by the eClass the algorithm 
returns as an output the class label ('O', 'l ', '2', ...) and 
updates the rule-base (adds a new landmark and a new class 
respective to a new corner, replaces an existing landmark 
(class) or makes no change to the fuzzy rule-base structure). In 
this way, an EFS-based classifier has evolved in real-time to 
the following fuzzy rule-base: 

R,: IF (4 is close to %) AND (d is close to 0.3000) (1 1)  
THEN (Corner is 1) 
R,: IF (4 is close to %) AND (d is close to 0.1268) 
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THEN (Corner is 2 ) 
R3: IF ($ is close to !A) AND (d is close to 0.0648) 
THEN (Corner is 3 ) 
Rq: IF ($ is close to 34) AND (d is close to 0.2357) 
THEN (Corner is 4 ) 
R5: IF ($ is close to %) AND (d is close to 0.0792) 
THEN (Corner is 5) 
R6: IF ($ is close to !A) AND (d is close to 0.1744) 
THEN (Corner is 6) 
R,: IF ($ is close to %) AND (d is close to 0.0371) 
THEN (Corner is 8) 

After the robot makes one full run in an anti-clockwise 
direction it was able to recognize successfully 7 out of 8 
corners [35] with the remaining corner ('7') incorrectly 
classified as ('1') due to the close similarity between 
description of corners '1' and '7'. This result is better 
compared with the result reported earlier in [28] where in the 
similar experiment Only 5 out of 8 corners were recognized 
correctly with 5 features selected as inputs. 

FOR LANDMARI. 

I \.: 

8 2  0 3  0 4  0 5  0 6  0 7  0 8  0 9  
Normallred Turn~ng Angle (O 25 - 90 degree r~ght, 0 75 - 90 degree eft) 

Fig. 5 Landmaks detected after three rounds in the office represent 7 
out of the 8 existing comers (zones of influence are marked by a 
dashed line) 

Using eClass algorithm described in the previous section 
fuzzy rule-based classifier is generated in real-time that 
classify the current sensor reahngs as: 

a) Routine behaviour (in h s  work 'wall following 
algorithm is used) that is the default Class 0; 

b) One of the previously visited landmark (corner of the 
office) - Class I- ClassN, 

c) New landmark (corner) that has not been visited so far; 
then fuzzy rule-based classifier evolves its structure as 
described in the previous section. 

Landmarks labelled automatically as Classes and the 
correspondmg fuzzy rules practically reflect a comer of the 
empty office (there are no other landmarks available in this 
simplified experiment). The number of landmarks 
(respectively classes and fuzzy rules) is not pre-determined; it 
emerges as a result of the real-time live experiment and is 
based on the data alone. 

Applyng eClass, as described above, a fuzzy rule base was 

generated in real-time 'on the fly' whle performing the 
routine environment exploration starhng %om scratch' based 
on the rotation and odometer sensor readmgs only. Seven 
classes where formed during the first circle around the empty 
unexplored previously office that corresponded to seven (out 
of eight) really existing corners (Fig. 4). When a landmark 
(corner) was visited for second time the classifier was able to 
recognize tlus fact and information was &splayed on the 
screen of the on-board computer of the mobile robot whch  
can optionally be send wirelessly to another robot or to a 
monitoring desk-top workstation. 

The performance of the proposed approach is then 
compared to the previously published results [ 2 8 ] [ 3 5 ]  and 
presented in Table I.  

The proposed approach demonstrates superiority in several 
aspects: hgher recognition rate; lugher degree of autonomy; 
hgher flexibility (eClass structure is not fixed and can 
accommodate more classes if the environment has changed) 

TABLE I 
PERFORMANCE COMPARASION 

40 , Do, 
4-1 . D-I. 

behaviors 
No Yes Yes Yes 

need to be 

No. of 
features 
correctly 
detected 
over labeled 
miss labeled 

Where D denotes the distance between two landmarks. 
"Over labelled" means more than 1 class was formed for 1 corner. 
"Miss labeled" means no specific class wasfomedfor  the corner. 

and hgher computational efficiency. 
Additional important advantage of the proposed approach 

is that the information extracted from the raw sensor readings 
and stored in the rule-base is fully linguistically transparent 
and interpretable. 

This 
paper 

2 

7 / ( 8 )  

0 
1 

IV. CONCLUSION 

A new approach to real-time joint classification and 
classifier design is proposed i n  this paper. It is based on the 
recently developed evolving fuzzy systems (EFS) method and 
is applied to mobile robotics. The approach stems from 
subtractive clustering method and its on-line evolving 
extension called eclustering. A new formula for data potential 
(spatial density) determination based on the parbcipatory 
learning and data scatter concepts is introduced in the paper 
that is computationally simpler and more intuitive. An 
EFS-based self-organized classifier (eClass) is designed by 
automatic labeling the landmarks that are detected in real-time. 
The true power of the proposed approach is in its role of an 
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engine that can generate interpretable rule-bases from data in 
real-time that has been realized in the evolvable classifier 
(eclass). 

The proposed approach makes possible fully autonomous 
and unsupervised landmark detection and recognition without 
the use of absolute coordinates, any communication link or 
any pre-training. The proposed algorithm is computationally 
inexpensive (it is recursive, non-iterative, one pass) and runs 
in real-time on the on-board computer of the mobile robot. 
Extensive simulations as well as real-life tests has been carried 
out in an indoor environment (an office located at InfoLab21, 
Lancaster University) using Pioneer-3 DX mobile robotic 
platform equipped with sonar and motion sensors and 
on-board PC. The results indicate superior rates of recognition, 
flexibility, and computational demands of the proposed 
approach comparing with the previously published similar 
methods. Further investigations will be directed towards 
development of a cooperative scheme, tests in a realistic 
outdoor environment, and complicating the problem with 
moving obstacles. 
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