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Abstract
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alter the monetary policy transmission mechanism and insure against liquidity traps.
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fective rate of return on assets, the inflationary output gap and credit spreads. Such
unique link operates via a working-capital cost channel, and affords the policy maker
an additional degree of freedom in stabilizing the economy. Optimal policy calls for
lowering (increasing) asset taxation following adverse financial (demand) shocks. Se-
vere financial contractions, nonetheless, warrant a more limited tax cut to minimize
the occurrence of unintended liquidity traps induced by (otherwise optimal) large fiscal
subsidies.
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1 Introduction

A central question in macroeconomics is how (and whether) taxes should vary according to business
and financial cycles and in response to various shocks? In the context of a standard neoclassical
model with complete markets, Chari, Christiano and Kehoe (1994) established that the short-term
tax rate on private assets should fluctuate a great deal in order to absorb most shocks inflicted on
the government budget constraint. More recently, during the Great Recession, Barro (2009) and
Feldstein (2009) advocated for tax cuts on capital income, with Fernández-Villaverde (2010) showing
that lowering such a tax can indeed yield positive multipliers in a model with financial frictions
à la Bernanke, Gertler and Gilchrist (1999). In contrast, within a simple New Keynesian model
without capital accumulation, Eggertsson (2011) demonstrated that asset tax cuts could actually
be contractionary, especially when the economy is stuck in a liquidity trap. Despite the importance
of these contributions, the literature remains quiet about the welfare implications of optimal state-
contingent asset tax policies following financial and demand shocks, and especially about their
possible interactions with conventional monetary policy and the degree of credit frictions. Our
paper aims to fill this gap, and to shed new positive and normative insights to the ongoing debate
around the role of unconventional fiscal policy in an economy subject to both financial frictions
and occasional liquidity traps.

Motivated by the topical relevance of financial market imperfections in explaining business cycle
fluctuations, and the various unconventional policy stimulus plans undertaken by many governments
and central banks in advanced economies over the last ten years to spur the economy, this paper
tackles the following questions: i) what are the macroeconomic and welfare implications of time-
varying private asset income taxation in a model with endogenous credit spreads?; ii) how should
the tax rate on asset income optimally adjust in the face of financial and demand shocks that
occasionally constrain the policy rate and credit spreads to their lower bound?; iii) how do financial
frictions and the existence of the lower bound alter the transmission mechanisms of asset income
taxation and monetary policy, as well as their possible interactions?

To answer these questions, we present a Dynamic Stochastic General Equilibrium (DSGE) model
with nominal price rigidities and a credit cost channel, where firms have to borrow in advance to
finance their working-capital needs, as in Ravenna and Walsh (2006).1 Compared to their model,
the loan rate at which firms borrow from the commercial bank not only depends on the nominal
policy rate set by the central bank, but also on an endogenous finance premium charged by the
lender. We prove that credit default risk, the risk premium and consequently the lending rate
are positively related to the inflationary marginal production costs proxied by output, which, in
turn, is negatively linked to the effective savings rate due to a standard intertemporal substitution
channel. The effective real savings rate, which also represents the effective real rate of return on
households financial assets (deposits), is a decreasing function of the tax on interest earnings accrued
from savings.2 Therefore, endogenous credit spreads, that depend directly on output, provide an

1On the importance of the working-capital (credit) cost channel in explaining business cycle fluctuations, and
the ‘missing deflation’phenomenon observed during the Great Recession, see Christiano, Eichenbaum and Trabandt
(2015).

2 In this model, deposits serve as the households sole financial asset that is saved at the commercial bank and
which is then used to provide working-capital loans to intermediate good firms. Therefore, households private assets
/ deposits / capital / savings, or (private) asset / deposit / capital / savings taxation, are used interchangeably
throughout the text. In this sense, deposits act as household’s private capital which facilitates the firm’s production
via the financial intermediary (the bank). See also Eggertsson (2011) and Fernández-Villaverde (2010), who refer to
savings and deposits as capital without explicitly modeling physical capital accumulation by households.
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additional policy lever through which the policy maker can influence real economic activity by
adjusting capital taxation.3

We identify various transmission channels through which capital income taxation can impact
the real economy, as well as modify the optimal nominal policy rate setting behaviour. We first
show that a capital tax cut acts as a subsidy to the banking system, thereby raising the effective
deposit rate faced by households. A higher rate of return on private assets alters the intertemporal
consumption-savings decision of the representative household, and triggers a fall in output and
in price inflation. Second, we demonstrate that a decline in GDP exerts downward pressure on
the cost of borrowing, which, in turn, offsets to a degree the fall in output, while bringing about
an additional reduction in the price level via the credit cost channel. The effect of lower capital
taxation on inflation is therefore negative, whereas the impact of this policy on output is ambiguous,
and depends crucially on the optimal interaction between taxation and standard monetary policy.

Specifically, following negative financial shocks that drive output and inflation in opposite di-
rections, as was also observed at the start of the financial crisis (see Gilchrist, Schoenle, Sim and
Zakrajsek (2017)), lowering asset taxation, all else equal, mitigates the spike in credit spreads and
curbs inflationary pressures. This outcome, nonetheless, comes at the expense of a larger fall in
output associated with higher effective asset returns. Given the tax cut, optimal monetary policy
warrants a slash in the nominal policy rate so the contraction in output is considerably dampened,
albeit now at the cost of limited deflationary pressures resulting from the cost channel mechanism.
Therefore, subsidizing households asset income together with a sharp nominal policy rate cut is
optimal and essential to achieve overall macroeconomic stability when the policy rate is away from
the zero lower bound (ZLB). Nevertheless, and more importantly, once such an expansionary policy
combination is automatically implemented in the face of credit shocks, then a more severe distur-
bance can send the policy rate to the ZLB. Such a scenario prevents the policy maker from further
adjusting the policy rate, leading to potentially large output drops, and requiring a relatively muted
subsidy to capital income to minimize the risk of entering a liquidity trap. As a result, the size of
the financial shock and the presence of the lower bound impede upon the merits of an otherwise
optimal monetary-fiscal policy mix.

Following sizeable adverse demand shocks that push prices and output in the same direction,
thereby driving the policy rate and credit spreads directly to their lower bound, we find that an
optimal rise in the capital income tax rate (equivalent to a tax on the banking sector) delivers
significant welfare gains. In particular, an optimal automatic stabilizer-type tax policy that lowers
the effective savings rate can completely insure against a liquidity trap, and minimize inflation
and output volatilities. We argue that the risk premium channel, endogenously driven by output,
renders the policy maker an extra degree of freedom to use asset income taxation in order to
minimize economic fluctuations, as well as to release the policy rate and credit spreads from the
lower bound territory. The recent attempts by the European Central Bank (ECB) to lower deposit
rates by paying negative rates on bank reserves, are not inconsistent with the implications of a
higher tax on deposits that we advocate for in this model when the ZLB is occasionally binding.
Put differently, a tax on households financial wealth serves as a general banking tax tool that is
aimed at adjusting the effective return on savings as well as credit spreads against the backdrop of
deflationary demand shocks.4

3We abstract from the fact that there are typically two different agencies, the government and the central bank,
in charge of fiscal and monetary policy, respectively. Instead, we assume that the “central bank”, also referred to as
the “policy maker”, chooses both fiscal and monetary policy instruments.

4Conti, Neri and Nobili (2016) find that adverse aggregate demand shocks have been the most important contrib-
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It is worth mentioning that in our New Keynesian framework, a positive relationship arises
between working-capital loans, output (a proxy for the marginal cost) and credit spreads, all else
equal. Intuitively, periods of high productivity are associated with an increase in marginal costs,
higher levels of debt, and consequently inflated borrowing costs (as measured by the finance pre-
mium). Nevertheless, as alluded to above, the response of credit spreads is determined by the
nature of the shock hitting the economy. For financial shocks, credit spreads are countercyclical
with respect to GDP, whereas for demand (preference) shocks, they are procyclical.5 A procycli-
cal reaction of spreads following certain types of shocks is not inconsistent with the models of
Carlstrom and Fuerst (1997), Gomes, Yaron and Zhang (2003), and De Fiore and Tristani (2013),
among others. Moreover, Christensen and Dib (2008) show that a preference shock produces a
positive co-movement between output and the finance premium, while De Graeve (2008) finds that
historically the premium tends to rise prior to a recession, with the movement of the premium
crucially depending on the source of the shock. That being said, recent evidence suggest an overall
negative relationship between credit spreads and output (see Gilchrist and Zakrajsek (2012)). Our
model, however, can easily generate countercyclical spreads for a combination of large financial,
demand and technology shocks. Admittedly, the focus of this theoretical paper is on the optimal
response of state-contingent asset taxation following independent financial and demand shocks as
opposed to combined disturbances.

Our model benefits from nesting the three-equation New Keynesian model as a particular case,
and from a tractable introduction of asset income taxation, credit risk, an explicit banking sector
and occasionally binding lower bound constraints to an otherwise standard Ravenna and Walsh
(2006)-type cost channel setup. This stylized framework enables us to provide analytical solutions
to inflation and output, and to examine the normative and positive properties of unconventional
optimal taxation policies, as well as their interactions with monetary policy rules. Goodfriend
and McCallum (2007) and Cúrdia and Woodford (2016), for example, also develop simple, yet
insightful, New Keynesian models with financial frictions, but posit a reduced-form intermediation
technology to justify the existence of credit spreads. This modeling choice is in contrast to our
paper, where borrowing costs are endogenous. More closely related to our paper are those of
Demiral (2009) and De Fiore and Tristani (2013), who also derive a micro-founded risk premium,
yet focus solely on optimal monetary policy away from liquidity traps. In our paper, we concentrate
on the transmission mechanisms of financial and demand shocks accounting for imperfect credit
markets and the lower bound, and aim to provide a deeper understanding on how unconventional
financial tax policies should react to such disturbances.

Our paper also relates to the literature investigating the effects of various fiscal policies in the
presence of financial frictions and the ZLB. Christiano, Eichenbaum and Rebelo (2011), Eggerts-
son (2011) and Woodford (2011) show that increasing government spending yields a high fiscal
multiplier, thus enabling the policy maker to effectively release the economy from a liquidity trap.
Carrillo and Poilly (2013) reinforce this point by proving that credit market imperfections consider-
ably magnify the government spending multiplier during a spell in a liquidity trap. Away from the
ZLB and in the context of a financial accelerator-type model, Fernández-Villaverde (2010) shows
that an exogenous rise in government spending or a capital tax cut produces positive effects on
output. In contrast, Uhlig (2010) and Drautzburg and Uhlig (2015) provide a more pessimistic
assessment regarding the values of the public spending and tax cut multipliers relative to the pre-

utors to the dis-inflation and the lower real GDP growth experienced in the Eurozone since 2014.
5Although not specifically examined, a supply shock also generates countercyclical credit spreads in our model.
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vious studies. In comparison to these papers, we take a normative stance on optimal asset taxation
policies and welfare rather than on the positive aspects of fiscal policy multipliers. We quantify the
welfare gains from state-contingent optimal taxation policies following inflationary (deflationary)
financial (demand) shocks, and derive analytically the optimal dynamic tax equation that should
be set in response to these disturbances. Similar to Mertens and Ravn (2014), we conclude that
optimal taxation policies are state-contingent, and depend crucially on the type of shock that drives
the economy into a recession in the first place. Unlike their paper, however, our focus is placed on
the optimality of asset income taxation in a model with financial frictions and the lower bound,
rather than on labour income taxation cut multipliers in a setup featuring expectations driven
liquidity traps.

Another strand of literature related to our work nests the analysis of joint optimal monetary
and taxation policies in New Keynesian models. Correia, Farhi, Nicolini and Teles (2013) show
that distortionary labour and consumption taxes can substitute for adjusting the policy rate, and
can circumvent the zero bound problem. Eggertsson and Woodford (2006) also illustrate how
consumption taxation can be used to partially offset the adverse effects of the policy rate reaching
the ZLB. We also emphasize the need for tax flexibility to neutralize various shocks, although our
motivation is different. First, our focus is on the short-run cyclical properties of financial asset
taxation as opposed to more conventional labour and consumption taxes. Unlike Correia, Farhi,
Nicolini and Teles (2013), we establish that one tax instrument can insulate the economy from the
ZLB, as opposed to two instruments that must be jointly determined in their paper. Second, we
highlight the interconnection between private asset taxation, financial frictions and credit spreads,
a relationship absent from the aforementioned papers and which proves to be imperative in our
paper.6 As private asset taxation in our model can be generalized to any unconventional financial
instrument that either taxes or subsidizes the banking sector depending on the nature of the shock,
our paper is thus also affi liated with the literature studying joint optimal plans for monetary and
macroprudential policies (see Collard, Dellas, Diba and Loisel (2017) and De Paoli and Paustian
(2017), among others). However, these papers abstract from the lower bound, implying different
state-contingent policy implications in relation to ours. To the best of our knowledge, the welfare
and business cycle implications of time-varying optimal asset tax policies, and their interactions
with monetary policy rules during normal and abnormal times, have not been fully addressed in
the literature; especially regarding the impact of this unconventional fiscal policy instrument on
the banking sector’s multiple interest rates decisions within a simple and tractable three-equation
New Keynesian setup.

The remainder of the paper proceeds as follows. Section 2 describes the model and its equilib-
rium properties. Section 3 details the main transmission mechanisms linking asset income taxation,
financial frictions and aggregate macro variables in an analytically tractable way. In Section 4 we
explain the parameterization of the model and the solution strategy. Section 5 examines the dy-
namics and welfare implications of state-contingent optimal policies following financial and demand
shocks. Section 6 concludes.

6Nakata (2016) examines optimal fiscal and monetary policy in a fully non-linear model with uncertainty and the
lower bound imposed on the policy rate. However, his paper does not account for financial frictions as we do here,
while his focus is on optimal government spending rather than on optimal asset taxation.
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2 The Model

The model economy is populated by households, a final good (FG) firm, a continuum of intermediate
good (IG) firms, a competitive commercial bank (the bank), and a benevolent central bank that is
responsible for both monetary and fiscal policies. At the beginning of the period and following the
realization of aggregate shocks, households lend their deposits (private assets / capital / savings)
to the bank, and are paid the nominal deposit rate that also represents the risk-free policy rate.
The central bank sets a tax on net deposit returns which serves as an additional stabilization policy
instrument in the model. The bank uses households deposits and a central bank cash injection in
order to supply working-capital loans to IG firms, and sets the loan rate as an endogenous finance
premium over the policy rate. For the given loan rate, monopolistic IG firms decide on the level of
employment, prices and the demand for loans. Using a standard Dixit-Stiglitz (1977) technology,
the FG firm combines all intermediate goods to produce a homogeneous final good used only for
consumption purposes. We now turn to a more detailed exposition of the economic environment
and equilibrium properties.

2.1 The Real Economy

Households have identical preferences over consumption (Ct) and labour (Ht). The objective of the
representative household is to maximize,

Ut = Et
∞∑
t=0

βtϑt

{
C1−ς
t

1− ς −
H1+γ
t

1 + γ

}
, (1)

where Et is the expectations operator, β ∈ (0, 1) is the discount factor, ς is the inverse of the
intertemporal elasticity of substitution in consumption, and γ is the inverse of the Frisch elasticity
of labour supply. A demand shock (ϑt) is added to capture exogenous changes in the household’s
intertemporal preferences and can therefore also be referred to as a taste shock. This demand
disturbance follows an AR(1) process,

ϑt = (ϑ)1−ρϑ (ϑt−1)ρϑ exp
(
s.d(αϑ) · αϑt

)
, (2)

where ϑ is the steady state value of the discount factor shock, ρϑ is the degree of persistence, and
αϑt is a random shock distributed as standard normal with a constant standard deviation given by
s.d(αϑ).7

Households enter period t with real cash holdings of Mt. They receive their wage bill WtHt

paid as cash at the start of the period, with Wt denoting real wages. This cash is then used
to make deposits Dt at the bank. The households remaining cash balances of Mt + WtHt − Dt

become available to purchase consumption goods (Ct), subject to a cash-in-advance constraint,
Ct ≤Mt +WtHt−Dt. This constraint represents the implicit cost of holding intra-period deposits
that yield interest but that cannot be used for transaction services. At the end of the period,
households receive all real profit income from financial intermediation (JFIt ), the IG firms (

∫ 1
0 J

IG
j,t dj)

and a lump-sum transfer from the central bank (Tt).8 Furthermore, households earn the after-tax

7Steady state values are denoted by dropping the time subscript.
8Households also receive profits from the final good firm, but these profits are equal to zero in equilibrium.
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interest payments on their private assets,
(
1 +

(
RDt − 1

) (
1− τDt

))
Dt, with RDt representing the

gross deposit (policy) rate, and τDt the tax rate on net capital returns.9 The real value of cash
carried over to period t+ 1 is,

Mt+1
Pt+1

Pt
= Mt +WtHt −Dt − Ct +

(
1 +

(
RDt − 1

) (
1− τDt

))
Dt + JFIt +

∫ 1

0
JIGj,t dj + Tt. (3)

With a positive deposit rate, RDt > 1, and taking real wages (Wt), prices (Pt) and taxes (τDt )
as given, the first-order conditions of the household’s problem with respect to Ct, Dt and Ht can
be summarized as,

C−ςt = β
(
1 +

(
RDt − 1

) (
1− τDt

))
Et
(
C−ςt+1

ϑt+1

ϑt

Pt
Pt+1

)
, (4)

Hγ
t C

ς
t = Wt. (5)

Equation (4) represents the Euler equation with respect to deposits. Notice that capital income
taxation directly impacts the effective rate of return on financial assets and therefore distorts the
households’intertemporal consumption-savings decision. Moreover, with households deposits used
to facilitate working-capital loans provided by the bank, a tax on net deposit returns can also be
treated as a tax / subsidy on bank liquidity. Equation (5) defines the optimal labour supply.

Each IG firm j ∈ (0, 1) faces the following linear production function,

Yj,t = εj,tHj,t, (6)

where Hj,t is employment by firm j in period t, and εj,t represents an idiosyncratic shock with a
constant variance distributed uniformly over the interval (ε, ε̄).10 The IG firm must borrow from
the bank in order to pay households wages in advance. Let Lj,t be the amount borrowed by firm j,
so the demand for loans is,

Lj,t = WtHt. (7)

In each period, a fraction χt of the IG firm’s expected output value (Yj,t) must be pledged as
collateral in order to secure working-capital loans from the commercial bank. Moreover, we assume
that the IG firm (borrower) has the option to ‘run away’and default on its debt. In the good states
of nature, each IG firm pays back the bank principal plus interest on credit, with the gross lending
rate denoted by RLt . The firm decides to default if its value after non-payment is greater than its
expected value after repaying back the loan in full. Specifically,

(1− χt)Yj,t > Yj,t −RLt Lj,t, (8)

with (1− χt)Yj,t denoting the expected value of the IG firm after ‘running away’, and χtYj,t repre-
senting the share of expected collateralized output the bank is able to retain in case of firm default.

9The qualitative results and policy implications derived in this paper follow through also when the tax rate is
applied to the gross capital returns, i.e.,

(
1− τDt

)
RDt Dt.

10We use the uniform distribution in order to generate plausible data-consistent steady state credit spreads as
explained in the parameterization section. This simple distribution also enables a closed-form expression for credit
risk. See also Faia and Monacelli (2007) who adopt a similar approach.
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It is further assumed that χt follows the AR(1) shock process,

χt = (χ)1−ρχ
(
χt−1

)ρχ exp (s.d (αχ) · αχt ) , (9)

where χ ∈ (0, 1) is the steady state value of this fraction, ρχ is the degree of persistence, and α
χ
t is

a random shock with a normal distribution and a constant standard deviation denoted by s.d (αχ).
A shock to the probability of collateral recovery (χt) represents a financial (credit) shock in this
model, as it directly impacts credit risk at the firm level as well as bank credit spreads, as shown
below.11 Using (6) and (7), and re-arranging (8) results in the threshold value (εMj,t) below which
the IG firm defaults,

εMj,t =
RLt Wt

χt
. (10)

Therefore, the cut-off point is related to aggregate credit shocks, the funding costs and real wages,
and is identical across all IG firms (as in Agénor and Aizenman (1998)).12 Given the uniform
properties of εt, the closed-form expression for the probability of default is,

Φt =

∫ εMt

ε
f(εt)dεt =

εMt − ε
ε̄− ε . (11)

Finally, the pricing decision during period t takes place in two stages. In the first stage, each IG
producer minimizes the cost of employing labour, taking its effective costs (RLt Wt) as given. This
minimization problem yields the real marginal cost,13

mct =
RLt Wt

εj,t
. (12)

In the second stage, each IG producer chooses the optimal price for its good. Here Calvo (1983)-
type contracts are employed, where a portion of ω firms keep their prices fixed while a portion of
1 − ω firms adjust prices optimally given the going marginal cost and the loan rate. Solving the
standard IG firm’s problem yields the familiar form of the log-linear New Keynesian Phillips Curve
(NKPC): π̂t = βEtπ̂t+1 + kpm̂ct, with kp ≡ (1− ω)(1− ωβ)/ω.14

2.2 Financial Intermediation

The bank raises Dt funds via the households at the gross deposit rate (RDt ) and also receives a
liquidity injection (Xt) from the central bank, which is also remunerated at the same risk-free policy
rate.15 All funds are used to finance the working-capital needs of IG firms and thus act as liabilities

11Tayler and Zilberman (2016) also motivate a similar type of financial / credit / collateral / risk shock that directly
hits borrowing costs.
12As we solve explicitly for the risk of default using a threshold condition, the collateral constraint in this model,

from which we derive the cut-off point, is always binding.
13Below we show that the bank sets the loan rate based on the IG firm’s default decision and threshold default

value. Therefore, the risk of default has also a direct effect on the IG firms marginal cost through its endogenous
impact on the cost of borrowing. In other words, firms internalize the possibility of default in their optimal pricing
behaviour once they borrow at the going lending rate.
14Log-linear variables are denoted by ‘̂ ’.
15 Introducing a liquidity injection (Xt) is simply to allow the markets to clear (as in Ravenna and Walsh (2006)).

In the model, the bank is indifferent between borrowing deposits from households and receiving a central bank loan
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to the households and to the central bank. The bank’s balance sheet in real terms reads as,

Lt = Dt +Xt. (13)

The loan rate is set at the beginning of the period, before firms engage in their production
activity and prior to their labour demand and pricing decisions. The bank breaks-even from its
intermediation activity, such that the expected income from lending to a continuum of IG firms is
equal to the total costs of borrowing these funds. The lending bank’s expected intra-period zero
profit condition from lending to firm j is,∫ ε̄

εMj,t

RLt Lj,tf(εj,t)dεj,t +

∫ εMj,t

ε
χtYj,tf(εj,t)dεj,t = (Dt +Xt)R

D
t , (14)

where f(εj,t) is the probability density function of εj,t. The first element on the left hand side is the
expected repayment to the bank in the non-default states, while the second element is the expected
return in the default states, measured in terms of collateralized output (χtYj,t). The terms DtR

D
t

and XtR
D
t are the total costs of deposits and central bank liquidity, respectively. To derive the

lending rate, we use the balance sheet equation (13), constraint (10) for χtε
M
j,tHj,t = RLt Lj,t, divide

by Lj,t and substitute the production function (6), such that (14) boils down to,

RLt −
∫ εMj,t

ε
(εMj,t − εj,t)χt

Hj,t

Lj,t
f(εj,t)dεj,t = RDt . (15)

To find an explicit expression for the risk premium and the loan rate, we use the uniform
distribution properties of the idiosyncratic shock. Specifically, the probability density of εj,t is
1/(ε̄ − ε) and its mean is µε = (ε̄ + ε)/2. Using this information and re-substituting (10) in (15)
yields the loan rate equation,16

RLt = νtR
D
t , (16)

with νt ≡
[
1−

(
ε̄−ε
2εMt

)
Φ2
t

]−1
> 1 defined as the risk premium, and Φt =

∫ εMt
ε f(εt)dεt =

εMt −ε
ε̄−ε

representing the probability of default. The loan rate is therefore set as an endogenous premium
over the policy rate due to the possibility of firm default.

2.3 Monetary Policy and Asset Income Taxation

The central bank sets the nominal interest rate on deposits according to the following Taylor (1993)
rule,

RDt = max(RD,NOTt , 1), (17)

with RD,NOTt denoting the desired (or notional) gross policy rate,

RD,NOTt =
(
RD,NOT

)(1−φ)
(
RD,NOTt−1

)φ (πt
π

)(1−φ)φπ
. (18)

such that the loan rate pricing decision is unaffected.
16The cut-off value εMj,t depends on the state of the economy and hence it is identical across all IG firms. Similarly,

real wages and labour employed by each IG firm are identical such that the volume of loans supplied by the lending
bank is also the same. Thus, the subscript j is dropped in what follows.
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The term φ ∈ (0, 1) is the degree of interest rate smoothing, φπ > 0 is the policy coeffi cient
measuring the relative weight on inflation from its steady state, and RD,NOT = β−1 is the long-run
value of the nominal gross policy rate.17 The central bank sets RDt = RD,NOTt if and only if the
policy rate reaction implies a non-zero nominal net interest rate.

Delegating financial stability considerations to the policy maker may require additional policy
tools beyond conventional Taylor rules that target price stability, especially when the nominal
policy rate strikes the ZLB and becomes largely ineffective. In this model, we consider capital
income taxation (τDt ) as an extra policy instrument available to the benevolent central bank,
and which is chosen optimally to minimize households welfare losses following various shocks. In
particular, we explore the stabilization roles and welfare implications of this policy instrument
within our framework, which also allows for various financial frictions such as the credit cost
channel, endogenous credit spreads and the lower bound for the nominal policy rate and credit
spreads.

2.4 Equilibrium

We assume that the size of the liquidity injection from the central bank is Xt = Mt+1
Pt+1
Pt
−Mt.

Following the financial intermediation process, the central bank receives RDt Xt = JFIt , while tax
revenues are given by Tt = τDt

(
RDt − 1

)
Dt. Both the financial intermediation profits and tax

revenues are paid back to households as a lump-sum.18 In a symmetric equilibrium, we substitute
the IG firms profits, total profits from the financial intermediation process, the equilibrium condition
in the market for loans (WtHt = Dt + Xt), lump-sum taxes and the size of the liquidity injection
in identity (3) to obtain the goods market clearing condition, Yt = Ct.

To solve the model, we log-linearize the behavioral equations and the resource constraint around
the non-stochastic, zero inflation (π = 1) steady state. Using the log-linear versions of (5), (12)
and Ŷt = Ĉt allows us to write the NKPC as,

π̂t = βEtπ̂t+1 + kp (ς + γ) Ŷt + kpR̂
L
t , (19)

with kp ≡ (1− ω)(1− ωβ)/ω.
The Euler equation (4) in log-linear form is,

Ŷt = EtŶt+1 − ς−1

[ (
1− τD

)
RD

1 + (RD − 1) (1− τD)
R̂Dt −

τD
(
RD − 1

)
1 + (RD − 1) (1− τD)

τ̂Dt − Etπ̂t+1 − r̂et

]
, (20)

where r̂et ≡ Et
(
ϑ̂t − ϑ̂t+1

)
is a function of the taste shock. The aggregate level of lending is

procured from the log-linear versions of (5), (6), (7) and Ŷt = Ĉt, and is given by,

L̂t = (1 + ς + γ) Ŷt. (21)

Turning now to derive the loan rate, we first log-linearize equations (6), (10), (11) and (12) to

17We ignore a response to output in the Taylor rule as we find that reacting to this variable adds only negligible
welfare gains. This allows us also to clearly establish the relationship between inflation targeting monetary policy
rules and optimal state-contingent asset income taxation policies.
18The bank is perfectly competitive and therefore earns zero profits.
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obtain the log-linearized risk of default,

Φ̂t =
εM

εM − ε

[
R̂Lt + (ς + γ) Ŷt − χ̂t

]
. (22)

By log-linearizing (16) and using (22), the equation determining credit spreads can be written as,

R̂Lt − R̂Dt =

(
Ψ

1−Ψ

)[
R̂Dt + (ς + γ) Ŷt − χ̂t

]
, (23)

with Ψ ≡ (εM+ε)(εM−ε)
[2εM (ε̄−ε)−(εM−ε)2]

∈ (0, 1) . The term εM = (pm)−1 (χ)−1 µε is the steady state reduced-

form threshold value below which the IG firm defaults, where pm ≡ λ/ (λ− 1) denotes the price
mark-up resulting from monopolistic competition in the goods market, and λ captures the constant
elasticity of substitution between intermediate goods. The steady state risk of default is therefore

Φ =
[(pm)−1µε/χ]−ε

ε̄−ε while the long-run loan rate is RL = νRD, with ν ≡
[
1−

( ε̄−ε
2εM

)
Φ2
]−1

and

RD = β−1−1
(1−τD)

+ 1. Therefore, in the long-run, a positive τD > 0 acts as a banking sector tax

incurring a higher lending rate (RL) passed on to IG firms. The steady state level of output is

given by Y =
(

(pm)−1µε
RL

) 1
γ+ς

so a higher τD in the long-run lowers the steady state level of aggregate

demand. This outcome is a manifestation of the Chamley (1986) and Judd (1985) results, who show
that assets should not be taxed in the long-run.

Notice that from (23) and (21), credit spreads can be directly and positively related to the
level of outstanding working-capital debt. Contributing to Cúrdia and Woodford (2010, 2016)
and Woodford (2011), who employ a reduced-form credit spread function, the positive relationship
between loans and credit spreads in our setup is micro-founded, and does not hamper upon the
analytical tractability of the model. In fact, substituting (23) in (19), and re-writing the policy rate
rule (18) in a log-linearized form, the model can be expressed in terms of three equations involving
inflation (the AS curve), output (the AD curve), and the policy rate. Specifically,

π̂t = βEtπ̂t+1 + kp

(
1

1−Ψ

)[
R̂Dt + (ς + γ) Ŷt −Ψχ̂t

]
, (24)

Ŷt = EtŶt+1 − ς−1

[ (
1− τD

)
RD

1 + (RD − 1) (1− τD)
R̂Dt −

τD
(
RD − 1

)
1 + (RD − 1) (1− τD)

τ̂Dt − Etπ̂t+1 − r̂et

]
, (25)

R̂Dt = max(φR̂Dt−1 + (1− φ)φππ̂t, 0). (26)

The stochastic process for τ̂Dt and the AR(1) processes for the financial and demand shocks close
the model.

The competitive approximate equilibrium can now be defined as a collection of real allocations{
Ŷt

}∞
t=0

, prices {π̂t}∞t=0, interest rates
{
R̂Dt

}∞
t=0

and private asset income tax policies
{
τ̂Dt
}∞
t=0

such that for a given sequence of exogenous shock processes
{
ϑ̂t, χ̂t

}∞
t=0

, equations (24), (25) and

(26) are satisfied.
A novel aspect of our model is that the finance premium and consequently the loan rate are

driven primarily by the elements of the marginal cost (see equations (22) and (23)). Therefore,
output or debt, both of which are proxies for the marginal cost, largely determine credit spreads,
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and provide an additional channel through which monetary policy as well as state-contingent capital
income tax policies alter borrowing costs and the economic activity. To fix ideas, we will refer to
this mechanism as the risk premium channel that operates through the wider credit cost channel
linking the loan rate to inflation and output. The term that measures the degree of financial market
imperfections and that quantifies the risk-adjusted credit cost channel is given by Ψ or (1−Ψ)−1 ,
which are negatively correlated to the fraction of collateralized output received in case of default
(χ). Indeed, note that our model nests the standard cost channel framework of Ravenna and Walsh
(2006) by setting Ψ = 0 and τD = 0, as well as the standard textbook New Keynesian setup by
ignoring the term kp (1−Ψ)−1 R̂Dt in equation (24) and setting again Ψ = 0 and τD = 0.

3 The Transmission Channels of Asset Income Taxation

Before turning to optimal state-contingent taxation policy, in this section we provide an analytical
solution to the model, and examine the role of financial frictions in explaining the effectiveness of
taxation on asset returns in normal times and in a liquidity trap. We closely follow the solution
strategy of Eggertsson (2011), albeit with a focus on the impact of the credit cost channel and
financial risk on the capital taxation transmission mechanism.

To facilitate the derivation of the analytical results with a positive nominal policy rate, the
model is simplified by setting φ = 0, ς = 1 and by ignoring the taste shock (r̂et = 0). Hence, we first
focus on the inflationary adverse financial shock to credit spreads (χ̂t) such that the ZLB initially
does not bind (see equations (23), (24) and (26)).

In particular, consider a temporary negative credit shock, χ̂t < χ, that persists with probability
p and returns back to its long-run level (χ) with a probability of 1 − p every period. We set
p = ρχ so the persistence of the shock is comparable with the probability of the disturbance being
away from its steady state value. It is also assumed that the central bank activates the tax policy
instrument (τ̂Dt 6= 0) when the economy is hit by a financial shock, and sets τ̂Dt = 0 otherwise. In
the steady state, deviations in inflation and output are zero (π̂t = Ŷt = 0) and τD = 0.32. The term
p therefore also denotes the probability of the tax rate differing from its long-run rate, associated
with output and inflation deviating from their steady state values. Under this shock specification,
and with RD = β−1−1

(1−τD)
+ 1 and R̂Dt > 0, the AS and AD curves (equations (24) and (25)) can be

respectively written as,

π̂t =
kp

(
1

1−Ψ

)
[
(1− βp)− kp

(
1

1−Ψ

)
φπ

] [(1 + γ) Ŷt −Ψχ̂t

]
, (27)

and,

Ŷt =
(1− β)

(1− p)

{
−
[(

1− βτD
)
φπ − p

]
(1− β)

π̂t +
τD

(1− τD)
τ̂Dt

}
. (28)

Solving (27) and (28) results in the following solutions for inflation and output as functions of the
model parameters, the tax rate on net private asset returns and the financial shock,

π̂t =
kp

(
1

1−Ψ

)
(1− p)

Υ

[
−Ψχ̂t +

(1 + γ) (1− β)

(1− p)
τD

(1− τD)
τ̂Dt

]
, (29)
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and,

Ŷt =
kp

(
1

1−Ψ

) [(
1− βτD

)
φπ − p

]
Υ

Ψχ̂t +
(1− β)

(
(1− βp)− kp

(
1

1−Ψ

)
φπ

)
kp

(
1

1−Ψ

)
[(1− βτD)φπ − p]

τD

(1− τD)
τ̂Dt

 ,
(30)

where the denominator Υ is defined as,

Υ ≡ (1− p) (1− βp) + (1 + γ) kp

(
1

1−Ψ

)[(
γ + p

1 + γ
− βτD

)
φπ − p

]
> 0. (31)

Following a negative financial shock, credit spreads increase, which through the credit cost
channel, induce a rise in the marginal cost and price inflation. With φπ > 1, the central bank raises
the policy rate, thereby generating a fall in output and hence giving rise to a trade-off between
inflation and output stabilization following financial shocks (see also Gilchrist, Schoenle, Sim and
Zakrajsek (2017)). The presence of financial frictions, as captured by Ψ and (1−Ψ)−1 > 1,
amplifies the surge in inflation and the drop in output. Intuitively, a higher degree of financial
market imperfections (as also measured by a lower steady state collateral recovery rate, χ) intensifies
the hike in the risk premium and borrowing costs. This upshot leads to a more pronounced increase
in inflation, and therefore to a stronger policy rate reaction that accelerates the contraction in GDP.
At the same time, the decline in output dampens the rise in credit spreads and inflation via both
the standard demand channel of monetary policy as well as the credit cost channel. This mitigation
effect is captured by the second term on the right hand side of (31), but does not reverse the direct
inflationary impact of a spike in borrowing costs that stems from the exogenous deterioration in
collateral recovery.

Suppose the policy maker decides to cut capital income taxation in reaction to the negative
collateral shock with the aim to facilitate liquidity to the banking sector. Cutting this tax rate, all
else equal, raises the effective savings rate faced by households, thereby increasing the incentives
to save with the bank, and lowering current demand through an intertemporal substitution effect
(see also Eggertsson (2011)).19 A reduction in capital taxation may therefore further depress the
economic activity in the short-run, but also translate to dis-inflationary pressures through the
NKPC. The degree of financial market imperfections, (1−Ψ)−1 > 1, contributes to an additional
fall in inflation following the tax cut. Intuitively, the lower output and dis-inflation stemming
from the liquidity tax stimulus place downward pressure on credit risk and borrowing costs, both
of which intensify the drop in prices and prompt the central bank to lower the policy rate more
aggressively. The more substantial policy rate cut that follows the capital tax reduction may, on
the one hand, magnify the descend in inflation through the credit cost channel, but on the other,
may cushion the drop in output and inflation expectations via an intertemporal substitution effect.
Hence, away from the ZLB and with an active credit cost channel, cutting the tax on capital income
may conflict with standard monetary policy. It is therefore imperative to study how such policy
tools interact with one another. This analysis requires simulation methods that are performed in

19The effective deposit rate that accounts for changes in deposit income taxation is equal to,(
1− τD

)
RD

1 + (RD − 1) (1− τD)
R̂Dt −

τD
(
RD − 1

)
1 + (RD − 1) (1− τD)

τ̂Dt .
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the next sections.
How do imperfect financial markets affect the transmission of capital income taxation when the

economy enters a liquidity trap? Consider a large temporary demand shock, r̂et < re, that persists
with probability p and returns back to its steady state (re) with a probability of 1−p every period.
We assume that the central bank sets τ̂D,Zt 6= 0 in the lower bound, and τ̂Dt = 0 in the absence of
the negative demand shock and/or in the long-run.

Denoting π̂Zt and Ŷ
Z
t as the values of inflation and output in a liquidity trap, and using the

above characteristics of the preference shock while setting χ̂t = 0, then solving equations (24) and
(25) for inflation and output in the ZLB yields,

π̂Zt =
kp

(
1

1−Ψ

)
(1 + γ) (1− β)[

(1− βp) (1− p)− (1 + γ) kp

(
1

1−Ψ

)
p
] [ 1

(1− β)
r̂et +

τD

(1− τD)
τ̂D,Zt

]
, (32)

and,

Ŷ Z
t =

(1− βp) (1− β)[
(1− βp) (1− p)− (1 + γ) kp

(
1

1−Ψ

)
p
] [ 1

(1− β)
r̂et +

τD

(1− τD)
τ̂D,Zt

]
. (33)

Compared to the existing New Keynesian literature that largely abstracts from the role of credit
frictions in explaining the effectiveness of various taxation policies in a liquidity trap, the term
(1−Ψ)−1 > 1 exacerbates the decline in inflation and output following a negative shock to r̂et , and
also has a meaningful impact on the effi cacy of asset income taxation in stimulating the economy.

To start with, following a large adverse demand shock, output, the marginal cost and prices
plummet. Beyond this direct effect, the dip in the marginal cost places downward pressure on
credit risk, which, in turn, lowers the lending rate via the risk premium channel. Through the
credit cost channel, the fall in credit spreads magnifies the deflationary impact of the shock and
deepens the economic recession. Similar to De Fiore and Tristani (2013), without credit or supply
side shocks that lead to a rise in borrowing costs, demand shocks generate a procyclical lending
rate. In our model, this relationship can be detrimental to the economic activity when the policy
rate is constrained to the ZLB. In other words, by amplifying the slump in prices, falling credit
spreads keep the real policy rate elevated such that the economic activity remains depressed.

Given the positive relationship between output, inflation and the tax on private asset returns,
then a rise in the latter can be an effective tool in stimulating the economy and in restoring the
target levels of output and inflation. This banking tax policy is particularly useful following adverse
disturbances moving output and inflation in the same negative direction (such as preference shocks).
Furthermore, we find that a lower fraction of output received in case of default (χ) increases Ψ,
raises (1−Ψ)−1 > 1, inflates the steady state values of default risk and credit spreads, and hence
accentuates the relative improvement in inflation and output following an increase in τ̂Dt . Intuitively,
with a lower collateral recovery rate (χ), and given the procyclical relationship between credit
spreads and output (in the absence of credit shocks), the immediate output rise that follows the
tax hike places upward pressure on credit spreads, which, in turn, generate an additional relative
advancement in prices. The credit cost channel mechanism reinforces the standard demand channel,
implying that financial market imperfections and credit risk considerably magnify the expansionary
outcome of a capital income tax increase in a liquidity trap.20 As we also demonstrate in the
simulations section below, if the economy faces a liquidity trap, and/or when the loan rate is an

20Similarly, Eggertsson (2011) finds that a capital tax increase in a liquidity trap can produce expansionary out-
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endogenous mark-up over the risk-free policy rate, varying capital taxation provides the policy
maker an extra degree of freedom to stabilize the economy following various shocks.

4 Parameterization and Solution Strategy

The baseline parameterization used to simulate the model is summarized in Table 1. Most para-
meters are standard in the literature and are chosen to match observed ratios and interest rate
spreads in the U.S.

Table 1: Benchmark Parameterization

Parameter Value Description
β 0.99 Discount factor
ς 1.00 Inverse of elasticity of intertemporal substitution
γ 0.50 Inverse of the Frisch elasticity of labour supply
ϑ 1.00 Average taste shock value
λ 6.00 Elasticity of demand for intermediate goods
ωp 0.82 Degree of price stickiness
ε̄ 1.20 Idiosyncratic productivity shock upper range
ε 0.80 Idiosyncratic productivity shock lower range
χ 0.97 Fraction of collateral seized in default states
τD 0.32 Asset income tax rate in steady state
φ 0.00 Degree of persistence in monetary policy rule
φπ 2.00 Response of policy rate to inflation deviations
ρϑ= p 0.88 Degree of persistence - Demand shock
ρχ= p 0.88 Degree of persistence - Financial shock

s.d(αϑ) 0.009 Standard deviation - Demand shock
s.d(αχ) 0.06 Standard deviation - Financial shock

Elaborating on some of the unique parameters to this model. The subjective discount factor is
set to β = 0.99, while the deposit income tax rate in steady state is τD = 0.32 (as in Fernández-
Villaverde (2010)). These values imply a risk-free interest rate of 4 percent. The idiosyncratic
productivity range is set between (0.8, 1.2), which together with the fraction of output received in
case of default pinned to χ = 0.97, and a price mark-up of 20 percent, yields an annual credit spread
of 2.04 percent and a loan to GDP ratio of 81.7 percent. All these estimates roughly correspond
with the long-run U.S. data.

The Taylor (1993) rule parameters are given by φπ = 2 and φ = 0. We set the smoothing
parameter in the interest rate rule to zero in favour of a tractable model solution and a more
transparent illustration of our analytical results, as presented above and also below.21 As for the
main shocks examined in our paper, we fix the persistence parameters governing the evolution of
financial and demand shocks, ρχ = p and ρϑ = p, both to 0.88, while the standard deviations

comes. However, in this model we account for meaningful financial frictions, and examine explicitly the transmission
channels and welfare implications of capital income taxation following financial and demand shocks, including the
corresponding state-contingent optimal policy and interactions with standard monetary policy.
21Nevertheless, adding persistence to the Taylor rule does not qualitatively alter our optimal policy implications

presented below.
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associated with these shocks are s.d(αχ) = 0.06 and s.d(αϑ) = 0.009, respectively. These numbers
are fairly consistent and within range of the calibrated values obtained in Benes and Kumhof
(2015), Christiano, Motto and Rostagno (2014) - for financial shocks; and Eggertsson (2011),
Denes, Eggertsson and Gilbukh (2013) - for demand shocks.

Finally, to quantitatively solve the model with occasionally binding constraints, we implement
the methodology developed in Guerrieri and Iacoviello (2015), who propose a piecewise-linear ap-
proach that: i) combines multiple regimes of the same model; and ii) solves for the model-implied
expected future prices. Specifically, in our setup we define two regimes: the first when the lower
bound binds and the second when it does not. The combination of the two different regimes gener-
ates strong non-linearities in the model variables, and constructs a piecewise-linear approximation
to the original non-linear model. This approximation is then applied to determine the duration and
probability of procuring the ZLB, both of which endogenously impact the dynamics and moments
of key variables.22

5 Optimal State-Contingent Taxation Policy and Welfare

In this section, we calculate optimal tax policies in response to inflationary financial shocks and
deflationary demand shocks that can push the economy towards a liquidity trap. The central bank’s
objective function is given by a second-order approximation of the household’s ex-ante expected
utility,23

∞∑
t=0

βtUt ≈ U −
1

2
E0

∞∑
t=0

βt
[(

λ

κp

)
π̂2
t + (1 + γ) Ŷ 2

t

]
. (34)

We measure the welfare gain of policy j as a fraction of the consumption path under the bench-
mark case (defined below for each shock and denoted by I) that must be given up in order to

obtain the benefits of welfare associated with the various optimal policies: Et
∞∑
t=0

βtUt

(
Cjt , H

j
t

)
=

Et
∞∑
t=0

βtUt
(
(1− Λ)CIt , H

I
t

)
, where Λ is a measure of welfare gain in units of steady state con-

sumption. Given the utility function adopted and with ς = 1, the expression for the consumption
equivalent (Λ) in percentage terms is,

Λ =
{

1− exp
[
(1− β)

(
Wj
t −WI

t

)]}
× 100,

withWj
t = Et

∞∑
t=0

βtUt

(
Cjt , H

j
t

)
representing the unconditional expectation of lifetime utility under

Policy j, andWI
t = Et

∞∑
t=0

βtUt
(
CIt , H

I
t

)
the welfare associated with the benchmark policy. A higher

22 In the context of a perfect foresight setup, as in this model, using either the Guerrieri and Iacoviello (2015) solution
method or Holden’s (2016) algorithm, produces the exact same results. In general, Holden’s (2016) algorithm can
be applied to higher order pruned perturbations (thereby providing higher accuracy results) and account for future
uncertainty, all of which are absent from the Guerrieri and Iacoviello (2015) method.
23The richer borrowing cost channel, featuring default risk and capital taxation, therefore does not change the

structure of the loss function compared to standard New Keynesian models with just a monetary policy cost channel
(see also Ravenna and Walsh (2006)). The detailed derivation of the loss function is provided in the Appendix.
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positive Λ implies a larger welfare gain and hence indicates that the policy is more desirable from
a welfare perspective.

5.1 Financial Shocks

For financial shocks, we compare between the following policies: Policy I (benchmark case) - a
standard Taylor rule policy where the central bank sets φπ = 2, and a constant capital income rate
(τD = 0.32 and τ̂Dt = 0). Policy II - central bank optimally varying the capital income tax rate
given a standard Taylor rule (adjusting optimally τ̂Dt for a given φπ = 2). Policy III - central bank
optimally reacting to inflation in the Taylor rule, and optimally adjusting capital taxation (φπ and
τ̂Dt optimized). For the purpose of Policy III, the optimal φπ is grid-searched within the range
φπ = [1 : 100] with step of 0.01.24

Table 2 reports the simulated standard deviations (measured in annual percentage terms) of
key variables following a 1 standard deviation shock to χt, and the welfare gain (Λ) of the various
optimal policy combinations relative to benchmark Policy I,

Table 2: Optimal Policy and Welfare - Financial Shock

Policy I Policy II Policy III

φπ= 2.0 φπ= 2.0 φπ= 86.1
τ̂D= 0.0 τ̂D optimized τ̂D optimized
Λ = − Λ = 0.0490 Λ = 0.0596

s.d (π̂t) = 1.066

s.d(Ŷt) = 1.080

s.d (π̂t) = 0.022

s.d(Ŷt) = 1.196

s.d (π̂t) = 0.083

s.d(Ŷt) = 0.036

The optimal capital income tax rate in Policies II and III which maximizes welfare is obtained
by maximizing (34) subject to (29) and (30) with respect to τ̂Dt . For a given φπ, this problem yields
the following optimal tax rate that should be set following credit shocks,

τ̂Dt =
kp

(
Ψ

1−Ψ

){
λ
(

1
1−Ψ

)
(1− p)−

[
(1− βp)− kp

(
1

1−Ψ

)
φπ

] [(
1− βτD

)
φπ − p

]}
(1− β)

{
(1 + γ)λkp

(
1

1−Ψ

)2
+
[
(1− βp)− kp

(
1

1−Ψ

)
φπ

]2
} (

1− τD
)

τD
χ̂t.

(35)
For our benchmark calibration with φπ = 2, the coeffi cient multiplying χ̂t in (35) is equal to

2.38. That is, an adverse financial shock (χ̂t < 0) requires the policy maker to significantly cut
the capital income tax rate to minimize welfare losses.25 Figure 1 depicts the impulse response

24We find that the optimal φπ always lies between [1 : 100] for various parameter configurations Hence, our
unbounded results for φπ and corresponding simulations are in line with Ramsey monetary optimal policy. In this
paper, nonetheless, we opt to focus on the interactions between optimal taxation and optimal monetary policy rules.
See also Christiano, Eichenbaum and Rebelo (2011), who calculate optimal government spending for a given Taylor
(1993) rule.
25 It is worth noting that from (29) and (34), the policy maker can achieve full price stability (π̂2t = 0) by setting

the tax rate to,

τ̂Dt =
(1− p)

(1− β) (1 + γ)

(
1− τD

)
τD

Ψχ̂t.

17



functions associated with the different policies examined in Table 2, with the optimal tax rate in
Policies II and III determined by (35).

Figure 1 - Adverse Financial Shock
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i) Figure 1 compares between Policy I (Standard Taylor Rule, ‘STR’), Policy II
(Standard Taylor Rule + Optimal Tax Policy, ‘STR+Opt Tax’), and Policy III

(Optimal Taylor Rule + Optimal Tax Policy, ‘OTR+Opt Tax’). ( ii) Interest rates,
inflation and the capital income tax rate are measured in annualized percentage point
deviations from steady state. Output is measured in annualized percentage deviations.

In benchmark Policy I, an adverse collateral shock raises the risk premium and the lending rate,
and results in an immediate rise in price inflation. With φπ > 1, the policy rate increases, which, in
turn, raises the effective real savings rate and therefore discourages aggregate demand. As explained

Using our benchmark parameter values, the coeffi cient multiplying χ̂t in the above tax equation is equal to 2.44, a
larger value than the one obtained in (35) for the tax rate that maximizes overall welfare. Put differently, while a
larger cut in capital taxation can promote full price stability, the more substantial decline in output associated with
such a policy would result in a more accute economic recession and higher welfare losses compared to Policy II.
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earlier, and similar to Gilchrist, Schoenle, Sim and Zakrajsek (2017), a negative financial shock in
this model is inflationary, and gives rise to a trade-off between inflation and output stabilization.26

Examining Policy II, optimal taxation policy calls for a decrease in the capital income tax
rate in the face of adverse financial shocks, intrinsic in higher borrowing costs and deteriorating
lending conditions. Upon impact, cutting the capital income tax rate by around 5 percentage points
(from the benchmark case of 32 percent) increases the effective savings rate faced by households,
and consequently generates an exaggerated decline in output. At the same time, with a reduced
tax rate, the bank can afford to charge a lower loan rate due to the positive impact that capital
taxation inflicts on output and the risk premium. This outcome propagates the dis-inflationary
effects emanating from the initial fall in GDP. More specifically, the demand-pull dis-inflation,
linked with the higher effective savings rate, results in a lower nominal policy rate and in an easing
of borrowing cost pressures. The latter, in turn, reinforces the fall in prices and contributes further
to price stability. While this effect may potentially promote an improvement in output, the higher
effective savings rate required to curb inflationary pressures results in a more severe slump in
output. Hence, despite the higher volatility and welfare costs associated with a larger fall in GDP,
the far less pronounced rise in inflation translates into an overall and relevant welfare enhancement
of 0.0490 percent with a micro-founded welfare loss function.

In Policy III, we ask how does optimal taxation alter the optimal transmission mechanism of
monetary policy and vice versa? We find that a policy mix of subsidizing capital income and
a stronger feedback from inflation to the monetary policy rule attains the highest welfare gain.
Due to the demand-pull dis-inflation inherent in the fall in taxes, the central bank can react more
aggressively to prices in the Taylor rule, resulting in a lower nominal policy rate and an additional
fall in borrowing costs. In turn, this cost-push dis-inflation subdues the descend in aggregate
demand, and prompts a shorter and less persistent recession. While Policy III implies larger
volatility in prices (compared to Policy II), the significant relative improvement in GDP yields
an overall welfare gain of 0.0596 percent compared to Policy I. Moreover, increasing φπ from its
standard level to its optimal value, raises the coeffi cient multiplying χ̂t in (35) from 2.38 to 20.59.
Hence, a more hawkish type Taylor rule must be coordinated with a much larger subsidy to holding
private assets with the bank. Put differently, if the large subsidy to the banking system is not
coordinated with a significant policy rate cut, then the risks of greater dis-inflation outweigh the
gains from moderating the fall in output.

However, note that the optimal tax rate drives the policy rate close to the ZLB territory under
our benchmark parameterization (see the behaviour of the nominal policy rate falling just shy of 3.5
percentage points annually). Suppose the size of the financial shock is now of scale 1.5 × s.d(αχ),
with s.d(αχ) = 0.06 remaining constant. In this case, the optimal policy combination described
in Policy III would send the economy to a liquidity trap, impeding upon the ability of the central
bank to further lower the nominal policy rate. In turn, at the ZLB and for R̂Dt = 0 or φπ = 0, the

26For a discussion on risk premium shocks that initially produce a co-movement between output and inflation,
thereby pushing the nominal refinance rate towards the ZLB, see Amano and Shukayev (2012), and Carrillo and
Poilly (2013). These models do not feature a credit cost channel as in our model, but do include investment and
physical capital.
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welfare-maximizing tax rate becomes,

τ̂D,Zt =
kp

(
Ψ

1−Ψ

) [
λ
(

1
1−Ψ

)
(1− p) + p (1− βp)

]
(1− β)

[
(1 + γ)λkp

(
1

1−Ψ

)2
+ (1− βp)2

] (1− τD)
τD

χ̂t, (36)

with the coeffi cient now multiplying χ̂t equal to 2.67. That is, the required drop in the tax rate
following an adverse credit shock, and in the face of a liquidity trap must be of a smaller magnitude
in order to offset the deflationary impact resulting from the rise in the effective real deposit rate
and the plummet in borrowing costs. The exacerbated decline in GDP is driven by the inability of
the nominal policy to optimally adjust. Figure 2 plots the impulse response functions following a
large adverse financial shock of magnitude 1.5 × s.d(αχ), and with the tax rate set to its optimal
level away from and at the ZLB. Specifically, we compare between the following three regimes: i)
Regime I (‘Old Opt Tax - Linear’) - the tax rate following (35) and φπ = 86.1, disregarding the
ZLB; ii) Regime II (‘Old Opt Tax - Piecewise-Linear (PL)’) - the tax rate still set according to
(35) and φπ = 86.1, but with the nominal policy rate occasionally hitting the ZLB; iii) Regime III
- (‘New Opt Tax - Piecewise-Linear (PL)’) - the tax rate following (36) and the policy rate allowed
to reach the ZLB.
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Figure 2 - Adverse Financial Shock - Optimal Policy and the ZLB
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Figure 2 compares between Regime I (‘Old Opt Tax - Linear’), Regime II (‘Old Opt
Tax - Piecewise-Linear (PL)’), and Regime III (‘New Opt Tax - Piecewise-Linear
(PL)’). ii) Interest rates, inflation and the capital income tax rate are measured in
annualized percentage point deviations from steady state. Output is measured in

annualized percentage deviations.

Once the policy rate hits the ZLB and becomes impotent in mitigating the fall in output in-
duced by the subsidy to private asset income, the decline in output and inflation is considerably
amplified due to the rise in the effective real deposit rate and the fall in credit spreads. From
our discussion above and away from the lower bound, a subsidy to private asset income together
with an expansionary monetary policy is crucial to achieve combined inflation and output stability.
However, in a liquidity trap, the collapse in inflation and output is accentuated, thereby hindering
upon the neutralizing effects of the otherwise optimal fiscal-monetary policy combination. Inter-
estingly, to shield the economy from the ZLB, optimal policy calls for a muted decline in the asset
income tax rate, associated with a more significant short-run slump in output, but with deflationary
pressures essentially being subdued. While the short-run decline in output becomes more severe,
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such an optimal policy as described in Regime III minimizes the asymptotic standard deviations
in inflation and GDP, as well reduces the long-run risk of entering a liquidity trap to zero. Table 3
summarizes the above discussion, and quantifies the welfare losses from Regimes II and III relative
to the unconstrained Regime I. This table also shows the asymptotic standard deviations in key
variables and the probability of reaching the ZLB under the different policy regimes.

Table 3: Optimal policy, standard deviations and welfare costs at the ZLB

Regime I Regime II Regime III

s.d (π̂t) = 0.083

s.d(Ŷt) = 0.036

s.d (π̂t) = 1.862

s.d(Ŷt) = 2.488

s.d (π̂t) = 1.1× 10−3

s.d(Ŷt) = 1.183

Probability of hitting ZLB (percent) − 23.90 0
Welfare Cost/Gain − −0.2061 −0.0101

Notes: i) The standard deviations of key variables are represented in annualized rates.
ii) The welfare cost is the percentage consumption equivalent, measured relative to Regime I - ‘Linear’model.

To conclude, the policy implications of our model following a negative financial shock are fairly
consistent with what may have been in the minds of policy makers during the peak of the financial
crisis in 2008, when liquidity injections to the banking system and unconventional expansionary
fiscal policies became operative, and the federal funds rate was lowered substantially. While this
model does not explicitly account for liquidity injections, central bank’s balance sheet policies or
the interest payment on reserves, all of which facilitate bank liquidity, a tax cut on capital income
in this framework is in line with such operations. The policy rate pushed closer towards the
ZLB is quantitatively also supported by this model. Our counterfactual analysis suggests that the
interaction between unconventional banking taxation (or subsidy) policies and standard monetary
policy is crucial and can be utilized to counteract the welfare detrimental effects of an inflationary
financial shock, at least when the policy rate is away from its lower bound. However, and most
importantly, following larger financial shocks, the optimal fiscal-monetary policy mix can send the
economy to a liquidity trap, which then requires a more moderated fall in the savings income
tax rate in order to prevent the occurrence of the ZLB. Our model therefore suggests that the
uncertainty regarding the size of the shock can hamper the effectiveness of an otherwise optimal
fiscal-monetary expansionary policy combination. In fact, such policy can significantly increase the
risk of entering an unintended liquidity trap if the policy maker miscalculates the magnitude of the
credit shock.

5.2 Demand Shocks

We now turn to examine the implications of the lower bound on the dynamics and standard devia-
tions of key variables, as well as the stabilization properties of optimal capital taxation in a liquidity
trap environment generated by a large negative preference shock. In studying the dynamics of key
variables following a sizeable adverse demand shock, we also restrict credit spreads from falling
below zero so R̂Lt ≥ R̂Dt or R̂Lt − R̂Dt = max(R̂Lt − R̂Dt , 0). Hence, we solve the model with two
occasionally binding constraints, one for the main policy rate and the other for credit spreads.
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The optimal ZLB capital income tax rate is obtained from the optimization of (34) subject to
(32) and (33) with respect to τ̂D,Zt . This problem yields,

τ̂D,Zt = −
(
1− τD

)
τD

(1− β)−1 r̂et . (37)

Therefore, the optimal tax rate is independent of φπ, and can completely minimize welfare losses
following preference shocks. Optimal policy calls for increasing the tax rate in the face of an adverse
demand disturbance (r̂et < 0) that drives the economy into a liquidity trap.

To illustrate the intuition behind this result, we study the effects of a sizeable adverse preference
shock that creates a negative co-movement between inflation and output, such that the central bank
lowers the policy rate until the ZLB constraint becomes binding. For this purpose, we examine
a preference shock with a magnitude of 5 × s.d(αϑ), with s.d(αϑ) = 0.009 remaining constant.
The multiplicative scale of the shock is set to cause the economy to reach a liquidity trap upon
impact, and stay there for 6 periods (under a benchmark monetary policy rule: φπ = 2 and φ = 0).
Admittedly, the duration of the ZLB on the policy rate in our model is shorter than the one observed
for the United States and the Eurozone for nearly a decade (see also Carrillo and Poilly (2013)).
Nevertheless, given our parameterization choices and with s.d(αϑ) = 0.009, our model attains the
ZLB with a frequency of 9 percent, consistent with long-run empirical evidence.

Figure 3 shows the response of key variables to a negative unexpected large preference shock that
drags the economy into a liquidity trap. The figure compares between three different scenarios:
i) Scenario I (‘Linear’) - a standard Taylor rule (φπ = 2) that disregards the lower bound; ii)
Scenario II (‘Piecewise (PL)’) - a piecewise-linear solution where the policy rate and credit spreads
are occasionally struck by their lower bound; iii) Scenario III (‘Piecewise (PL)+Optimal Tax Policy
(Opt Tax)’) - a piecewise-linear solution where the lower bound may be occasionally binding, the
refinance rate follows a standard rule, and the tax rate set according to (37).
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Figure 3 - Adverse Preference Shock - Liquidity Trap
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Figure 3 compares between Scenario I (linear model - ‘Linear’), Scenario II
(piecewise-linear model - ‘PL’), and Scenario III (piecewise-linear model with optimal
capital taxation - ‘PL+Opt Tax’). ii) Interest rates, credit spreads, inflation and the
capital income tax rate are measured in annualized percentage point deviations from

steady state. Output is measured in annualized percentage deviations.

In Scenario I, an adverse demand shock delivers a direct dip in GDP, which leads to a plummet
in prices through a standard demand channel affecting the NKPC, and also to a decline in the
risk premium. The fall in the latter acts to lower credit spreads and therefore exacerbate price
deflation via the credit cost channel. In response to the falling price level, and without the lower
bound being imposed on the policy rate and credit spreads, the central bank lowers the (shadow)
policy rate, giving rise to two conflicting effects on the economic activity. On the one hand, a more
drastic cut in the nominal policy rate amplifies deflation due to the direct monetary policy cost
channel mechanism. On the other, such an expansionary monetary policy cushions the drop in
output and hence in inflation. Given our standard parameterization, the direct demand effect of
GDP on inflation dominates such that output declines, prices decrease and the main interest rates
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are lowered. Therefore, following a preference shock, credit spreads are procyclical with respect to
output, as opposed to the consequences arising from a financial shock.27

As is evident from Figure 3, there is a striking difference in the behaviour of macro and financial
variables implied by the piecewise-linear Scenario II compared to the linear Scenario I. The fall in
inflation and output is more pronounced when the policy rate and credit spreads are constrained
by their lower bound and are thus unable to further adjust in order to mitigate the slump in
output. Because the demand channel of monetary policy dominates its cost channel mechanism,
the central bank would find it welfare-enhancing to cut the refinance rate more substantially despite
the deflationary effects linked with the monetary policy cost channel. However, as the central bank
cannot accommodate for the decline in output and inflation using the policy rate alone, the effective
real policy rate increases, thereby generating a prolonged and aggravated economic recession.

Under the piecewise-linear Scenario III, we find that a liquidity trap can be prevented with the
implementation of an optimal contractionary tax policy. Intuitively, taxation on households wealth
renders the policy maker an extra degree of freedom in seeking its primary objectives via the risk
premium component of the credit cost channel (see also (23), (24), (25)). Commitment to a higher
tax rate over the course of the shock encourages an expansion in output and a rise in the loan rate,
two mechanisms that contribute to restoring the target level of inflation. As a result, the rise in
prices also averts the policy rate from tumbling into the ZLB, consequently inducing downward
pressure on the effective real policy rate faced by households and reinforcing the improvement in
the economic activity. In this way, an automatic increase in capital taxation that counteracts a
negative demand shock (as implied by (37)) releases the policy rate and credit spreads from the
lower bound territory, and insulates the economy from the repercussions of a liquidity trap both
in the short and long-run. Hence, the optimal tax policy can be considered also as a banking
sector tax instrument that is aimed at bringing down the effective real policy rate and increasing
borrowing costs against the backdrop of deflationary pressures.

The differences between the three various scenarios are further reflected in Table 4. This table
shows the simulated standard deviations in key variables, the probability of attaining the ZLB, and
the relative welfare cost/gain of the piecewise-linear model without and with optimal tax policy
compared to the unconstrained linear case. Interestingly, a significant rise in the tax on net deposit
returns of around 37 percentage points following a 5× s.d(αϑ) shock completely insures against a
liquidity trap, minimizes the standard deviations in key macro variables, and achieves a meaningful
welfare benefit of 0.1234 percent.

Table 4: Standard deviations and welfare gains from optimal policy at the lower bound

Linear Piecewise-Linear Piecewise-Linear - Optimal Tax

s.d (π̂t) = 1.672

s.d(Ŷt) = 0.186

s.d (π̂t) = 1.712

s.d(Ŷt) = 0.387

s.d (π̂t) = 0

s.d(Ŷt) = 0

Probability of hitting ZLB (percent) − 9.00 0
Welfare Cost/Gain − −0.0083 0.1234

Notes: i) The standard deviations of key variables are represented in annualized rates.
ii) The welfare cost / gain is the percentage consumption equivalent, measured relative to the ‘Linear’scenario.

27De Fiore and Tristani (2013) also find that following some shocks, the risk premium and the cost of borrowing
are procyclical with respect to GDP.
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While this model does not explicitly account for the bank reserves market, the recent implemen-
tation of the negative interest on reserves policy by the ECB is equivalent to taxing the banking
sector or lowering the effective savings rate faced by households. Therefore, increasing the tax rate
on private asset returns in a liquidity trap, as we advocate for in this model, is not inconsistent
with the recent attempts taken by the ECB to lower deposit rates and to increase credit spreads in
light of the persistent low inflation experienced in the Eurozone. We show that such a policy can
be achieved by varying the tax rate on net asset returns.

5.3 Welfare Gains from Dynamic Tax Regimes

The analysis so far has explored the welfare improving properties of optimal state-contingent private
asset taxation in a stochastic environment. However, as mentioned earlier in the equilibrium section,
a positive tax in steady state, τD > 0, induces a lending rate above the level that would prevail
with τD = 0. Such tax is then passed on to IG firms and generates an ineffi cient long-run level of
output and thus lower welfare. Therefore, the optimal policy in steady state would be to set a zero
capital tax rate.

This section analyses more broadly the welfare costs and benefits from the optimal dynamic
behaviour of asset taxation, as discussed in the previous sections, against a regime where τDt = 0
for all t. In a deterministic environment, the regime absent of savings taxation is always preferred
due the mitigated distortions transmitted from the lending rate to output. In a stochastic en-
vironment, nonetheless, the relative welfare gains of state-contingent asset taxation, used as an
additional instrument to smooth the business cycle and to mitigate welfare losses, depend on the
type and volatility of the shock hitting the economy. As shock volatilities increase, so do the
relative welfare gains from the additional degree of freedom arising from the implementation of
unconventional dynamic taxation. In other words, the welfare gains from applying state-contingent
taxation overcomes the steady state welfare losses induced by setting τDt 6= 0.
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Figure 4 - Shock Volatilities, Dynamic Taxation and Welfare
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Figure 4 indeed confirms that for financial shocks with volatilities above 0.045, and for prefer-
ence shock with volatilities higher than 0.004, the welfare gains from varying private asset taxation
are strictly positive. These standard deviations thresholds are significantly lower than empirical
estimates found in Christiano, Motto and Rostagno (2014), and Denes, Eggertsson and Gilbukh
(2013), among others. Therefore, we advocate for tax flexibility, associated with higher tax volatil-
ity, to shield the economy from the repercussions of volatile shocks that can result in liquidity trap
episodes and significant welfare losses. Contributing to Eggertsson (2011), who mainly focuses on
fiscal policy multipliers, we quantify the welfare gains of unconventional optimal taxation policies
and find the optimal capital tax rate that can be used as an automatic stabilizer in the presence of
both financial and demand shocks.

6 Concluding Remarks

By employing a standard three-equation New Keynesian model modified for a credit cost channel,
endogenous financial risk, a banking sector and the lower bound, we shed new insights on the
welfare implications, stabilization properties and transmission mechanisms of optimal private asset
taxation. We show that varying capital taxation according to the state of the business and financial
cycles has meaningful effects on the behaviour of macroeconomic and financial variables, and alters
the transmission of standard monetary policy. The distinctive risk premium channel highlighted
in our model presents an additional motivation for applying state-contingent capital taxation by
affording the policy maker an extra degree of freedom to pursue its primary mandates. Our model
supports the use of state-contingent capital taxation policies and specifically the implementation of
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subsidies to the banking sector following inflationary financial shocks, and taxing households liquid
private assets against the backdrop of deflationary demand shocks.

This paper also advances an alternative answer to the highly topical question: how can a
liquidity trap be avoided, and which optimal policies can help to achieve this goal? Blanchard,
Dell’Ariccia and Mauro (2010) propose increasing the inflation target, as well as argue for a better
integration between monetary and fiscal policy. Nakov (2008) suggests to change the monetary
policy strategy such that in times of low inflation the central bank promises to raise inflation to
its target level. Finally, Adam and Billi (2007) put forward the idea to increase the aggressiveness
of monetary policy in order to reduce the probability of hitting the ZLB. Contributing to this
literature, we advocate for cyclically adjusting the tax on asset returns based on the nature and scale
of the shock hitting the economy, and show how financial frictions, liquidity traps and monetary
policy modify the behaviour of such unconventional taxation policy.

Like Correia, Farhi, Nicolini, and Teles (2013), our state-contingent policy recommendations
require taxes to be flexible and rather volatile. It is well known that fiscal policy tools are not
as flexible as monetary policy instruments, and require a long legislative process until they can
actually be executed. The recent Great Recession, however, has led to somewhat more flexibility in
terms of implementing fiscal and financial policies, despite the main focus still placed on government
spending since the American Recovery and Reinvestment Act (ARRA) of 2009, and countercyclical
regulation associated with the gradual imposition of Basel III. Either way, we make a normative
point that taxes (or financial policies) should be at least as flexible as monetary policy, so long as
the policy maker can correctly identify the source and the size of the shock distorting the economy.
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7 Appendix - Welfare Function Derivation (Not for publication)

The derivation of the loss function as presented in the paper strictly follows Woodford (2003) and
Ravenna and Walsh (2006, online appendix).

To derive a second-order approximation of the representative utility function, it is first necessary
to clarify some additional notation. For any variable Xt, let X be its steady state value, Xet be its
effi cient level, X̃t = Xt−X be the deviation of Xt around its steady state, and finally X̂t = log(Xt/X)
be the log-deviation of Xt around its correspondent steady state. Using a second order Taylor
approximation, the variables X̃t and X̂ can be related using the following equation,

Xt
X

= 1 + log

(
Xt
X

)
+

1

2

[
log

(
Xt
X

)]2

= 1 + X̂t +
1

2
X̂2
t . (38)

As we can write X̃t = X
(Xt
X − 1

)
, it follows that X̃t ≈ X

(
X̂t + 1

2 X̂
2
t

)
.

Utility is assumed to be separable in consumption and leisure,

Ut = Et
∞∑
t=0

βt

{
ϑtC

1−ς
t

1− ς −
ϑtH

1+γ
t

1 + γ

}
. (39)

We start by approximating the utility from consumption. With the steady state value of the
discount factor shock (ϑ) equal to 1, the second order expansion for U(Ct, ϑt) yields,

U(Ct, ϑt) ≈ U(C, 1) + UC(C, 1)C̃t +
1

2
UCC(C, 1)C̃2

t +

Uϑ(C, 1)ϑ̃t +
1

2
Uϑ,ϑϑ̃

2

t + UC,ϑϑ̃tC̃t, (40)

which according to our utility function (39) results in,

U(Ct, ϑt) ≈ U(C, 1) + UC(C, 1)C̃t +
1

2
UCC(C, 1)C̃2

t +

Uϑ(C, 1)ϑ̃t +
1

2
Uϑ,ϑϑ̃

2

t + UC,ϑϑ̃tC̃t,

using ϑ̃t ≈ ϑ̂t and UC,ϑ = UC(C, 1), the above becomes,

U(Ct, ϑt) ≈ U(C, 1) + UC(C, 1)C

(
Ĉt +

1

2
Ĉ2
t

)
− 1

2
ςUC(C, 1)C

(
Ĉt +

1

2
Ĉ2
t

)2

+

+Uϑ(C, 1)ϑ̂t +
1

2
Uϑ,ϑϑ̂

2

t + UC(C, 1)Cϑ̂t

(
Ĉt +

1

2
Ĉ2
t

)
,

ignoring the terms Xi for i > 2 yields,

U(Ct, ϑt) ≈ U(C, 1) + UC(C, 1)C

[(
1 + ϑ̂t

)
Ĉt +

1

2
(1− ς) Ĉ2

t

]
+

+Uϑ(C, 1)ϑ̂t +
1

2
Uϑ,ϑϑ̂

2

t , (41)
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We next derive an expression for the disutility from labour. The Taylor expansion for V (Ht, ϑt)
gives,

V (Ht, ϑt) ≈ V (H, 1) + VH(H, 1)H̃t +
1

2
VHH(H, 1)H̃2

t +

+Vϑ(C, 1)ϑ̃t +
1

2
Vϑ,ϑϑ̃

2

t + VC,ϑϑ̃tH̃t, (42)

where aggregate employment is,

H̃t =

1∫
0

H̃j,tdj,

and employment at firm j,

H̃j,t ≈ H
[
Ĥj,t +

1

2
Ĥ2
j,t

]
.

For the purpose of calculating the ex-ante loss function, we ignore the effects of the idiosyncratic
shock that takes place at the end of the period such that ε̂j,t = 0. We therefore only examine the
ex-ante uniform properties of this shock to calculate welfare. Using this assumption, each firm faces
the following technology function,

Ĥj,t = Ŷj,t.

Thus, we can define employment as,

Ĥt = H

 1∫
0

Ŷj,tdj +
1

2

1∫
0

Ŷ 2
j,tdj

 . (43)

Substituting (43) into (42) and using H = Y results in,

V (Ht, ϑt) ≈ V (Y, 1) + VH(Y, 1)Y

 1∫
0

Ŷj,tdj +
1

2

1∫
0

Ŷ 2
j,tdj

+

+
1

2
VHH(Y, 1)Y 2

 1∫
0

Ŷj,tdj

2

+ Vϑ(C, 1)

(
ϑ̂t +

1

2
ϑ̂

2

t

)
+

+
1

2
Vϑ,ϑ

(
ϑ̂t +

1

2
ϑ̂

2

t

)2

+

+VH,ϑY

(
ϑ̂t +

1

2
ϑ̂

2

t

) 1∫
0

Ŷj,tdj +
1

2

1∫
0

Ŷ 2
j,tdj

 .
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ignoring terms of Xi for i > 2 yields,

V (Ht, ϑt) ≈ V (Y, 1) + VH(Y, 1)Y

 1∫
0

Ŷj,tdj +
1

2

1∫
0

Ŷ 2
j,tdj

+

+
1

2
VHH(Y, 1)Y 2

 1∫
0

Ŷj,tdj

2

+

+Vϑ(Y, 1)ϑ̂t +
1

2
Vϑ,ϑϑ̂

2

t + VH,ϑY ϑ̂t

1∫
0

Ŷj,tdj. (44)

Given the demand function of each firm j, aggregate output is approximated by,

Ŷt =

1∫
0

Ŷj,tdj +
1

2

(
λ− 1

λ

)
varj Ŷj,t,

hence,  1∫
0

Ŷj,tdj

2

=

[
Ŷt −

1

2

(
λ− 1

λ

)
varj Ŷj,t

]2

≈ Ŷ 2
t ,

and,
1∫

0

Ŷ 2
j,tdj =

 1∫
0

Ŷj,tdj

2

+ varj Ŷj,t.

Therefore,
1∫

0

Ŷ 2
j,tdj ≈ Ŷ 2

t + varj Ŷj,t,

and,
1∫

0

Ŷj,tdj ≈ Ŷt.

Using VH,ϑ = VH(Y, 1) and the above results, (44) becomes,

V (Ht, ϑt) ≈ V (Y, 1) + VH(Y, 1)Y

{(
1 + ϑ̂t

)
Ŷt +

1

2

(
1

λ

)
varj Ŷj,t +

1

2
(1 + γ) Ŷ 2

t

}
+ (45)

+Vϑ(Y, 1)ϑ̂t +
1

2
Vϑ,ϑϑ̂

2

t
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To determine total utility we subtract (45) from (41) to obtain,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1) + UC(C, 1)C

[(
1 + ϑ̂t

)
Ĉt +

1

2
(1− ς) Ĉ2

t

]
−

−VH(Y, 1)Y

{(
1 + ϑ̂t

)
Ŷt +

1

2

(
1

λ

)
varj Ŷj,t +

1

2
(1 + γ) Ŷ 2

t

}
+ (Uϑ(C, 1)− Vϑ(Y, 1)) ϑ̂t +

1

2
(Uϑ,ϑ − Vϑ,ϑ) ϑ̂

2

t . (46)

Note that the steady state labour market equilibrium condition is VHUC = W = µε
(pm)RL

, where µε = 1

is the average of the idiosyncratic shock, and pm ≡ λ
(λ−1) is the price mark-up. We define Ξ such

that,

1− Ξ ≡ 1

(pm)RL
.

Then VH(H, 1)Y can be written as UC (C, 1)Y (1−Ξ). As in Ravenna and Walsh (2006), given that
the Ξ is small, terms such as (1− Ξ)Ŷ 2 simply boil down to Ŷ 2

t .
28 With these assumption we can

now rewrite equation (46) as,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1) + UC(C, 1)C

[(
1 + ϑ̂t

)
Ĉt +

1

2
(1− ς) Ĉ2

t

]
−

−UC (C, 1)Y (1− Ξ)

[ (
1 + ϑ̂t

)
Ŷt+

+1
2

(
1
λ

)
varj Ŷj,t + 1

2 (1 + γ) Ŷ 2
t

]
+

+ (Uϑ(C, 1)− Vϑ(Y, 1)) ϑ̂t +
1

2
(Uϑ,ϑ − Vϑ,ϑ) ϑ̂

2

t . (47)

Using C = Y and collecting terms,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1)

+UC(C, 1)Y

{ (
1 + ϑ̂t

) [
Ĉt − (1− Ξ)Ŷt

]
+

+1
2 (1− ς) Ĉ2

t − 1
2 (1 + γ) Ŷ 2

t

}

−1

2
UC(C, 1)Y

(
1

λ

)
varj Ŷj,t +

+ (Uϑ(C, 1)− Vϑ(Y, 1)) ϑ̂t +
1

2
(Uϑ,ϑ − Vϑ,ϑ) ϑ̂

2

t

28Note that like Ravenna and Walsh (2006), the value of Ξ is increasing with the price markup and the loan rate,
which in our model is larger due to the presence of the various financial frictions.
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Substituting the log-linear representation of consumption, Ĉt = Ŷt, gives,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1)

+UC(C, 1)Y

{ (
1 + ϑ̂t

)
ΞŶt+

1
2 (1− ς) Ŷ 2

t − 1
2 (1 + γ) Ŷ 2

t

}

−1

2
UC(C, 1)Y

(
1

λ

)
varj Ŷj,t +

+ (Uϑ(C, 1)− Vϑ(Y, 1)) ϑ̂t +
1

2
(Uϑ,ϑ − Vϑ,ϑ) ϑ̂

2

t ,

or,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1)

+
1

2
UC(C, 1)Y

{
[(1− ς)− (1 + γ)] Ŷ 2

t + 2
(

1 + ϑ̂t

)
ΞŶt

}
−1

2
UC(C, 1)Y

(
1

λ

)
varj Ŷj,t +

+ (Uϑ(C, 1)− Vϑ(Y, 1)) ϑ̂t +
1

2
(Uϑ,ϑ − Vϑ,ϑ) ϑ̂

2

t ,

collecting terms,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1)

+
1

2
UC(C, 1)Y

{
− (ς + γ)

[
Ŷ 2
t − 2

Ξ

(ς + γ)

(
1 + ϑ̂t

)
Ŷt

]}
−1

2
UC(C, 1)Y

(
1

λ

)
varj Ŷj,t +

+ (Uϑ(C, 1)− Vϑ(Y, 1)) ϑ̂t +
1

2
(Uϑ,ϑ − Vϑ,ϑ) ϑ̂

2

t ,

or,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1)

+
1

2
UC(C, 1)Y

{
− (ς + γ)

[(
Ŷt −

Ξ

(ς + γ)

(
1 + ϑ̂t

))2

−
(

Ξ

− (ς + γ)

)2 (
1 + ϑ̂t

)2
]}

−1

2
UC(C, 1)Y

(
1

λ

)
varj Ŷj,t + (Uϑ(C, 1)− Vϑ(Y, 1)) ϑ̂t +

1

2
(Uϑ,ϑ − Vϑ,ϑ) ϑ̂

2

t .

Collecting all terms that are independent of policy stabilization and denoting them as tip results
in,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1)

+
1

2
UC(C, 1)Y

 − (ς + γ)

[(
Ŷt − Ξ

(ς+γ)

)2
+
(

Ξ
(ς+γ)

)2
]

−
(

1
λ

)
varj Ŷj,t

+ tip.
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Assuming that the term Ξ
(ς+γ) is a small constant, the above boils down to,

U(Ct, ϑt)− V (Ht, ϑt) = U(C, 1)− V (Y, 1)

+
1

2
UC(C, 1)Y

{
− (ς + γ) Ŷ 2

t −
(

1

λ

)
varj Ŷj,t

}
+ tip. (48)

Given the demand function for each intermediate good, Yj,t = Yt

(
Pj,t
Pt

)−λ
, we have,

log Yj,t = log Yt − λ (logPj,t − logPt) ,

so,
varj log Yj,t = λ2varj logPj,t.

Note the price adjustment mechanism involves a randomly chosen fraction (1− ω) of all firms acting
optimally by adjusting prices in each period. Defining ∆t ≡ varj logPj,t then Woodford (2003, pp.
694-696) shows that,

∆t ≈ ω∆t−1 +

(
ω

1− ω

)
π̂2
t .

Assuming ∆t−1 is the initial degree of price dispersion, then,

∞∑
t=0

βtt∆t =

[
ω

(1− ω) (1− ωβ)

] ∞∑
t=0

βtπ̂2
t + tip. (49)

Combining (49) with (48), the present discounted value of the representative household welfare is,

Wt≡
∞∑
t=0

βtUt ≈ U −
∞∑
t=0

βtLt,

where the associated losses from welfare are given by,

∞∑
t=0

βtLt =
1

2
UC(C, 1)Y E0

∞∑
t=0

βt
[(

λ

κp

)
π̂2
t + (ς + γ) Ŷ 2

t

]
, (50)

with κp = (1−ω)(1−ωβ)
ω . With ς = 1 and Y = C, (50) boils down to,

∞∑
t=0

βtLt =
1

2
E0

∞∑
t=0

βt
[(

λ

κp

)
π̂2
t + (1 + γ) Ŷ 2

t

]
. (51)

Welfare Measure
In considering optimal taxation policies, we measure the welfare benefit of a particular optimal

policy j as a fraction of the consumption path under the benchmark case (Policy I) that must be
given up in order to obtain the benefits of welfare associated with the various optimal policies;

Et
∞∑
t=0

βtUt

(
Cjt , H

j
t

)
= Et

∞∑
t=0

βtUt
(
(1− Λ)CIt , H

I
t

)
, where superscript j refers to Policies II and

III and superscript I refers to Policy I. Given the utility function adopted and with ς = 1, the
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expression for Λ in percentage terms is,

Λ =
{

1− exp
[
(1− β)

(
Wj
t −WI

t

)]}
× 100,

whereWj
t = Et

∞∑
t=0

βtUt

(
Cjt , H

j
t

)
represents the unconditional expectation of lifetime utility under

policy j = II, III, and WI
t = Et

∞∑
t=0

βtUt
(
CIt , H

I
t

)
is the welfare associated with the benchmark

Policy I. Converting the loss function to the welfare measure gives,

Wt≡U −
1

2

UCC

(1− β)

[(
λ

κp

)
var(π̂t) + (1 + γ) var

(
Ŷt

)]
.
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