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Abstract 11 

The global proliferation of harmful algal blooms poses an increasing threat to water resources, recreation 12 

and ecosystems. Predicting the occurrence of these blooms is therefore needed to assist water managers 13 

in making management decisions to mitigate their impact. Evaluation of the potential for forecasting of 14 

algal blooms using the phytoplankton community model PROTECH was undertaken in pseudo-real-time.  15 

This was achieved within a data assimilation scheme using the Ensemble Kalman Filter to allow 16 

uncertainties and model nonlinearities to be propagated to forecast outputs. Tests were made on two 17 

mesotrophic lakes in the English Lake District, which differ in depth and nutrient regime. Some forecasting 18 

success was shown for chlorophyll a, but not all forecasts were able to perform better than a persistence 19 

forecast. There was a general reduction in forecast skill with increasing forecasting period but forecasts 20 

for up to four or five days showed noticeably greater promise than those for longer periods. Associated 21 

mailto:t.page@lancaster.ac.uk


 

2 
 

forecasts of phytoplankton community structure were broadly consistent with observations but their 22 

translation to cyanobacteria forecasts was challenging owing to the interchangeability of simulated 23 

functional species.  24 

1 Introduction 25 

Algal blooms are a global problem affecting water resources, recreation and ecosystems (Carmichael, 26 

1992; Smith, 2003; World Health Organization, 1999). These problems are particularly acute when 27 

cyanobacterial species dominate because of the risk of toxin production that can cause adverse effects to 28 

humans and wildlife (Metcalf and Codd, 2009). In addition, water supply companies face associated 29 

problems such as poor taste and odour and, in extreme cases, high concentrations of algal-derived toxins 30 

which are costly to manage (Pretty et al., 2003; Dodds et al., 2009; Michalak, 2016). Costs associated with 31 

implementation of management strategies are growing because of increased bloom frequency (Ho and 32 

Michalak, 2015) and because of the effects of widespread nutrient enrichment and climate change (Paerl 33 

and Huisman, 2008; Brookes and Carey, 2011; Rigosi et al. 2014). As a result, there is an urgent need for 34 

reliable predictions of algal bloom formation to enable timely management interventions to be 35 

implemented. 36 

Forecasting algal blooms in lakes is relatively new (Kim et al., 2014) but is increasingly becoming a 37 

requirement for lake and reservoir managers (Huang et al., 2013; Recknagel et al. 2014; Xiao et al., 2017) 38 

to help inform decisions regarding timely and cost-effective management interventions. The fact that 39 

limmnology is rapidly becoming data-rich (Marcé et al., 2016; Xiao et al., 2014) means that effective real-40 

time forecasts are increasingly more feasible. However, forecast simulations will be inherently uncertain 41 

for a number of reasons including input data resolution and simplifications in model process 42 

representation. These uncertainties have implications for the accuracy and reliability of a forecast and 43 

therefore effort is required to allow for modelling uncertainty.  Data assimilation (DA) is one approach to 44 
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reducing forecast uncertainty but has, to date, received relatively little attention for forecasting 45 

phytoplankton community dynamics. There is hence a need to test different DA methodologies across 46 

different lake systems and different models. 47 

There are still relatively few studies for operational lake forecasting systems and various approaches have 48 

been taken such as using: Ensemble Kalman Filter (EnKF; Evensen, 1994) schemes and physically-based 49 

simulation models (e.g. Allen et al., 2003, Huang et al. 2013 and Kim et al, 2014); evolutionary 50 

computation (Recknagel et al., 2014; Ye et al., 2014); Lagrangian particle tracking model methods (Rowe 51 

et al., 2016); and a combination of wavelet analysis and neural networks (Luo et al., 2011; Xiao et al., 52 

2017).  The EnKF has been developed to deal with highly non-linear model dynamics which cannot be 53 

represented well using the traditional Kalman Filter. Phytoplankton population dynamics are highly non-54 

linear with multiple modes of behaviour that can respond rapidly to threshold-type effects and are prone 55 

to rapid changes in their physical and chemical environment (e.g. water temperature, light levels and 56 

available nutrients).  This makes the EnKF a suitable choice to exploring algal bloom forecasting when 57 

coupled with a phytoplankton community model.    58 

Here we assess our ability to make pseudo-real-time forecasts of phytoplankton communities in two lakes 59 

in the English Lake District in the north west of England, which are prone to cyanobacteria blooms during 60 

the summer.  Forecasts were made using a modified version of the phytoplankton community model 61 

PROTECH (Reynolds et al., 2001) within a DA scheme using the EnKF. The version of PROTECH employed 62 

is appropriate for this problem as it is intermediate in its complexity between physically-based coupled 3-63 

dimensional hydrodynamic-biochemical models and more simplistic “black box models” which have both 64 

been used in this context. More complex models are extremely computationally expensive in forecasting 65 

(Huang et al., 2012; Recknagel, et al., 2014), such that only a limited number of ensemble members can 66 

be used (Kim et al., 2014); simple black box models may not be able to represent phytoplankton 67 
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community dynamics driven by ecological strategies that are represented in phytoplankton community 68 

models such as PROTECH. 69 

We aimed to determine the efficacy of phytoplankton community forecast simulations, evaluate the EnKF 70 

as a DA strategy and investigate the ensemble size required for making consistent forecasts. Ultimately, 71 

success will rely on the modelling strategy being sufficiently effective to capture the necessary short-term 72 

phytoplankton community dynamics, given the available meteorological forecasts and limitations 73 

associated with driving data. Demonstrating the efficacy of the approach therefore requires a robust 74 

appraisal procedure with predictions tested qualitatively and quantitatively against appropriate 75 

benchmarks. This approach allows other pertinent questions to be investigated; namely, how does 76 

forecasting reliability diminish with time-scale of forecast and, most pertinently, what can be learnt from 77 

any forecasting failure regarding future model development and optimisation of monitoring strategies. 78 

2 Methods 79 

2.1 Study lakes  80 

This study considers two lakes in the English Lake District of North West England with differing depths and 81 

nutrient regimes (Table 1). The catchments associated with each of the lakes are predominantly hill land, 82 

rough-grazed by sheep throughout the year and contain towns and villages that are tourist destinations 83 

and are hence associated with seasonal increases in lake nutrient inputs. Windermere is England’s largest 84 

natural lake and comprises two basins connected at a shallow region approximately halfway along its main 85 

axis. The two basins are usually considered separately as they have different characteristics: both basins 86 

are monomictic and mesotrophic, but only the south basin was modelled in this study. Esthwaite Water 87 

is a small, generally monomictic and occasionally dimictic, lake that has been subject to eutrophication 88 

for many decades because of elevated phosphorus levels (Bennion et al., 2000; Dong et al., 2012): 89 

cyanobacterial blooms are common in the summer to early autumn. Previous work has shown that 90 
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internal sources from the lake sediment form an important component of the P budget of the lake (Hall 91 

et al. 2000; Heaney et al., 1992 and Mackay et al., 2014).   92 

2.2 Data 93 

2.2.1 Forcing inputs: meteorological forecasts 94 

The primary forcing inputs were meteorological forecasts provided by the European Centre for Medium-95 

term Weather Forecasts (ECMWF) Ensemble Prediction System. The 10-day-ahead forecasts include an 96 

ensemble of 50 simulations from perturbed initial states (at 32 km2 resolution) and stochastic 97 

perturbations of model parameters (see Buizza et al., 1999 and Ollinaho et al., 2016). The re-initialisation 98 

of model states in the ECMWF forecasting system is implemented using a higher resolution 3-hour 99 

forecast each day. As this re-initialisation is repeated each day, and as perturbations are random, there is 100 

no specific relationship between individual ensemble members in subsequent days. The forecast 101 

associated with each ensemble member was hence treated as independent from prior forecasts for this 102 

study. Daily averages of forecasts were used (i.e. the average of 3-hourly forecasts for days 1-6 and of 6-103 

hourly forecasts day 6-10) for consistency with the daily timestep of PROTECH. Historic forecasts were 104 

obtained for 2008, 2009 and 2010 and used in pseudo-real-time. Given the scale of the forecast grid, each 105 

forecast variable was “downscaled” to local data as described in the next section.   106 

2.2.2 Sampling meteorological forecasts 107 

Downscaling relationships were developed for air temperature, wind speed, precipitation, cloud cover, 108 

relative humidity and solar radiation (Table 2). For air temperature, a relationship was identified between 109 

forecasted temperatures and observed temperatures using linear regression.  Residuals from this initial 110 

analysis helped identify an additional hysteretic relationship between forecasted and observed 111 

temperatures, which was attributed to a lake thermal effect; this effect was implemented as an additional 112 
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correction for each day of the year. Similarly, wind speed was corrected using a linear correction factor 113 

coupled with an additional correction based upon wind direction; this was required owing to complex 114 

mountainous topography and lake-axis orientation. A wind-rose with sectors of 30 degrees was used to 115 

classify forecasted wind speeds and a sector-specific correction was applied. The uncertainty associated 116 

with the corrections was represented by fitting a gamma distribution to the data in each sector. All other 117 

variables (precipitation, cloud cover, relative humidity and solar radiation), were corrected using a 118 

correction multiplier identified using linear regression, without propagating the uncertainty in the 119 

relationship. The uncertain relationships for air temperature and wind speed were resampled as 120 

perturbations of the ensemble members allowing investigation of the effect of different ensemble sizes.  121 

2.2.3 Nutrient Inputs 122 

Knowledge of diffuse nutrient inputs for the study lakes is relatively poor. Observations available were 123 

from approximately monthly frequency routine monitoring and did not cover all river inputs.  Both lakes 124 

are also impacted by point sources from waste water treatment works (WwTW) and Esthwaite is subject 125 

to significant internal P fluxes (Mackay et al., 2014).  Diffuse nutrient inputs and WwTW inputs (where 126 

included) were treated as reported by Page et al. (2017) and these inputs were modified by a 127 

multiplicative parameter included in the EnKF scheme (Table 4). For Windermere, upstream lake inputs 128 

of nutrients (and chlorophyll a) were treated as reported by Page et al. (2017) but were not included in 129 

the EnKF scheme.  130 

 2.2.4 Data for assimilation and evaluation of forecasts 131 

Specific years where the observed data were of the highest frequency, were chosen to test the DA 132 

strategy. High frequency (4 minute) data from the automatic lake monitoring systems (Madgwick et. al., 133 

2006; Mackay et al., 2014) were available and were aggregated to daily values. The variables used for 134 

DA are listed in Table 3. The “observed” temperatures for the epilimnion (Te) and hypolimnion (Th) used 135 
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to compare with the modelled variables for these layers were calculated as volume-weighted averages 136 

of thermistor chain data, using the simulated epilimnetic depth to delineate the hypolimnion and 137 

epilimnion. The “observed” epilimnetic depth (De) was estimated using a density gradient method (e.g. 138 

see Read et al., 2011). In addition to the automatic monitoring, routine monitoring was carried out at 139 

the buoy location at a frequency of approximately every 14 days and included chlorophyll a, 140 

phytoplankton species “counts”, soluble reactive phosphorus (SRP), dissolved inorganic nitrogen (DIN) 141 

and silica (SiO2) (Table 3). These observations were derived from a water sample at the buoy location 142 

integrated over 0-7 m depth (Windermere) or 0-5 m depth (Esthwaite Water) (Maberly et al., 2010).   143 

2.3 Modelling methodology 144 

The modelling strategy employed was designed to represent the different facets of the forecasting system 145 

as simply as possible to reduce computational burden, whilst retaining the requirement to explicitly 146 

simulate phytoplankton community structure and, specifically, to estimate the likely concentrations of 147 

cyanobacteria given the simulated community structure. Thus, the catchment-lake system was simulated 148 

using a suite of models of differing complexity from purely data-based (statistically estimated) transfer 149 

function (TF) models and processed-based models which are consistent, in their complexity, with the 150 

available data. A schematic of how the models were combined in the forecasting system is presented in 151 

Figure 1 and each model is described in this section. The modelling system is structured around the 152 

rationale that epilimnetic depth must be estimated as accurately as possible so that the phytoplankton 153 

model, PROTECH, is more likely to provide good estimates of phytoplankton community structure.  In 154 

PROTECH, community structure is simulated using functional algal types as classified by Reynolds (1988) 155 

and as outlined in the next section. The simple conceptual model that estimates epilimnetic depth is a 156 

heat energy “balance” model that requires estimates of epilimnetic temperature and energy fluxes to the 157 

epilimnion, including those associated with river inflows and outflows.   158 
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The TF models, epilimnetic depth model and PROTECH are run sequentially; the TF and epilimnetic depth 159 

models provide forecast estimates of river flow, epilimnetic depth, epilimnetic temperature and 160 

hypolimnetic temperature as inputs to PROTECH. Data assimilation is employed for the two primary 161 

models (the epilimnetic depth model and PROTECH) using two separate EnKF schemes that assimilate 162 

observations at different intervals; the epilimnetic depth model scheme assimilates epilimnetic depth and 163 

epilimnetic temperature estimates as well as hypolimnetic temperature estimates on a daily basis and the 164 

scheme for PROTECH assimilates nutrient and chlorophyll a concentrations approximately every 14 days.  165 

2.3.1 The PROTECH model 166 

PROTECH (Reynolds et al., 2001) is a lake phytoplankton community model that runs on a daily time-step. 167 

It is a 1-dimensional model where the lake is represented by horizontal layers. In the model representation 168 

all layers are assumed to be fully mixed throughout the epilimnion. River inputs drive fluxes of diffuse 169 

nutrients as well as the flushing of phytoplankton. Upstream lake inputs are treated as river inputs but 170 

are given the phytoplankton concentrations associated with the upstream lake, where data are available.  171 

Underwater light for model layer i is calculated using: 172 

   𝑙𝑖 = 𝐼𝑠𝑢𝑟𝑓. 𝑒(−𝜀.𝑑𝑖)       (1) 173 

 174 

Where: Isurf is the daily surface light flux, d is the depth from the lake surface, ε is the light extinction 175 

coefficient resulting from the sum of lake-specific abiotic water attenuation (εb) and the extinction of light 176 

associated with the concentration of phytoplankton at each timestep multiplied by the parameter εa. In 177 

the layers from the surface to the epilimnetic depth, the available light is represented by the geometric 178 

mean of the epilimnetic layers and hence assumes that phytoplankton spend an equal time in each layer 179 

at each timestep.  Phytoplankton population dynamics are simulated using the following equation which 180 
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describes the change in chlorophyll a concentration (X) of each phytoplankton species selected to 181 

represent the algal community (Reynolds et al., 2001): 182 

  
𝑋

𝑡
= (𝑟′ − 𝑆 − 𝐺 − 𝐹). 𝑋       (2) 183 

where 𝑟′ is the growth rate, S is settling loss, G is a grazing loss and F is the loss due to flushing. The growth 184 

rate is defined for each layer using: 185 

  𝑟′ = min⁡{𝑟(𝜃)
′ , 𝑟(𝑃)

′ , 𝑟(𝑁)
′ , 𝑟(𝑆𝑖)

′ }⁡      (3) 186 

where r’(,I) is the growth rate at a given temperature () and daily photoperiod (I) and r’P, r’N, r’Si are the 187 

growth rates determined by phosphorus, nitrogen and silica concentrations. The final growth rate (r’cor(,l)) 188 

is a corrected rate allowing for dark respiration using equation 4. This is required as the model growth 189 

equations are net of basal metabolism but not dark respiration burden.    190 

  𝑟𝑐𝑜𝑟𝑟(𝜃,𝑙)
′ = 𝑅𝑑(𝜃). 𝑟(𝜃,𝑙)

′ − (1 − 𝑅𝑑(𝜃). ). 𝑟(𝜃,𝑙)
′      (4) 191 

Where 𝑅𝑑(𝜃) is the dark respiration rate at temperature .   192 

PROTECH simulates the dynamics of the species chosen to represent the phytoplankton community of a 193 

given lake. Species are represented by their morphology, nutrient requirements (i.e. silica requirement 194 

and nitrogen fixing ability) and their vertical movement strategies. The number of species simulated is 195 

nominally eight (although unlimited) and they are chosen to represent the dominant functional types of 196 

the system. Simulations hence represent the behaviour of the functional algal community rather than the 197 

dynamics of specific species. The C-S-R functional phytoplankton classification of Reynolds (1988) is used 198 

to classify phytoplankton into morphologically defined groups relating to broad ecological strategies. The 199 

primary groups are: C-types, which are invasive, ecological pioneers that are small with high surface-to-200 

volume ratios (e.g. Chlorella, and Plagioselmis); S-types which are ‘stress tolerators’ that tolerate relatively 201 
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low nutrient availability and strong stratification (e.g. Woronichinia, Microcystis and Oocystis); and R-types 202 

which can harvest sufficient light at low levels to be able to maintain growth and are hence tolerant of 203 

well-mixed, intermittently insolated environments (e.g. Asterionella, Aulacoseira and Planktothrix). Also 204 

present, but less important for the lake-years studied here, are CS-types, whose characteristics are 205 

intermediate between those of C and S species (e.g. Dolichospermum, Aphanizomenon and Ceratium) and 206 

CSR-types (e.g. Cryptomonas) that are intermediate between C-, S- and R-types. The eight phytoplankton 207 

used in each lake for this study are presented in Table Supp. 2. 208 

2.3.2 Epilimnetic depth model  209 

As a way of reducing computational burden, a simplified representation of lake thermal structure was 210 

employed to estimate epilimnetic depth (De). The simplified model works on the basis of independent 211 

estimates of epilimnetic temperature and lake heat energy fluxes. The estimate of epilimnetic 212 

temperature (Te) uses a TF model (see Section 2.3.3) with inputs of air temperature (Ta), solar radiation, 213 

wind speed (Ws) and De. Air temperature, solar radiation and wind speed are derived from the forecasts 214 

and De estimates are from the previous simulation timestep. The independent estimates of heat energy 215 

fluxes are calculated using the PROTECH energy flux function (see Reynolds et al., 2001) for each timestep 216 

using Te, river temperature and flow magnitude, day length, cloud cover, Ta, Relative Humidity and Ws.  217 

These two independent estimates are “balanced” to obtain hypolimnetic volume (𝑉ℎ) using: 218 

 𝑉ℎ =⁡
𝐸∆𝑇

∆𝑇.𝐶𝑤.𝜌𝑤
        (5) 219 

where, 𝐸∆𝑇 is the heat energy associated with ∆𝑇 (the difference between Te and the hypolimnetic 220 

temperature, Th), Cw is the specific heat capacity of water, 𝜌𝑤 is the density of water. Equation 5 is solved 221 

to find 𝑉ℎ where: ∆𝑇. Cw. 𝜌w . Vh   ≈ ⁡⁡𝐸∆𝑇. Subsequently, the epilimnetic volume (Ve) and hence epilimnetic 222 

depth (De) are estimated by difference: 223 
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𝑉𝑒⁡ =⁡𝑉𝑡⁡−⁡𝑉ℎ⁡        (6) 224 

where 𝑉𝑡   is the total lake volume. The requirement for ∆𝑇 is satisfied by calculating Th using: 225 

        𝑇ℎ =⁡
𝐸𝑡ℎ

𝐶𝑤.𝜌𝑤.𝑉𝑡⁡
        (7) 226 

where: Eth is the “background” heat energy in the lake (associated with Th and Vt, as defined by Eqn. 7). 227 

During the forecast period, Eth remains at its previous value until updated during the data assimilation 228 

step. This treatment of Eth neglects the explicit downward transfer of energy from 𝐸∆𝑇to Eth for forecasting 229 

and assumes that these are negligible over this timescale: energy is, however, explicitly transferred 230 

downwards each time temperatures are updated during data assimilation. The sequence of calculations 231 

for each forecast timestep is: 232 

1. Estimate lake surface temperature using TF model  233 

2. Update 𝐸∆𝑇 234 

I. Radiative energy fluxes  235 

II. River/upstream lake fluxes 236 

 Estimate river input volume using TF model 237 

 Estimate river temperature using TF model 238 

 Assume upstream lake temperature = modelled lake temperature 239 

III. If 𝐸∆𝑇 < 0 loose energy from Eh (minimum energy set to 0oC) 240 

3. Estimate Th from Eth 241 

4. If 𝐸∆𝑡 > 0 and If Te - Th is greater than a threshold parameter (nominally set to 1oC) estimate 242 

epilimnetic depth by solving for the volume of water required to match 𝐸∆𝑇 given ∆𝑇: 243 

subsequently estimate Ve and hence De by difference. 244 

5.  245 
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2.3.3 Transfer Function models 246 

Transfer Function (TF) models were used to estimate lake surface temperature, river temperature and 247 

river inflows and outflows. Each model is a discrete-time TF identified directly from the available data. 248 

Both the model structures and parameters were identified using the Refined Instrumental Variable (RIV) 249 

algorithm (Young, 2015) implemented within the CAPTAIN Toolbox for MatlabTM (Taylor et al., 2007). The 250 

resulting model structures and parameter values are presented in Section (Supp. 1) and are either single 251 

input- or multi-input, single-output first order models of the general form: 252 

𝑦𝑡 =⁡
𝐵1(𝑧−1)

𝐴(𝑧−1)
𝑈1 +

𝐵2(𝑧−1)

𝐴(𝑧−1)
𝑈2 +⋯

𝐵𝑛(𝑧−1)

𝐴(𝑧−1)
𝑈𝑛   (8) 253 

where, 𝑦𝑡 is the variable being estimated at time t, U1-n are model input vectors, 𝐴(𝑧 − 1) and 𝐵𝑛(𝑧 − 1) 254 

are the model coefficients (polynomials in the backward shift operator: defined by 𝑦𝑡𝑧
−1⁡=⁡⁡𝑦𝑡−1) that 255 

number 1 to 𝑛 in the case of 𝐵 but note that in this form for MISO (multi-input single-output) TF the 256 

denominator (𝐴) is common to all 𝑛 TF elements. 257 

2.3.4 The Ensemble Kalman Filter 258 

The EnKF is a sequential Monte Carlo method which uses a stochastic ensemble of model simulations, and 259 

stochastic forcing, to propagate estimates of model states and (or) parameter values between assimilation 260 

timesteps. As the ensemble of model simulations is used in place of the linear propagation of an error 261 

covariance matrix (as in the traditional Kalman Filter), non-linear model dynamics are retained during 262 

model evolution and uncertainties are represented by the variation of the ensemble. When observations 263 

are available, each ensemble member is updated individually using a linear update equation (Eqn. 9) which 264 

relies on the assumption that the relationship between states and parameters can be described by 265 

multivariate Gaussian distributions. Rather than resampling the posterior distributions of the updated 266 
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ensemble, the EnKF uses each updated ensemble member such that some of the non-Gaussian properties 267 

of the forecast are retained (Evenson, 2009). The procedure for the scheme is as follows:  268 

1. The EnKF is initialised with an N number ensemble size, sampling states and parameters from a priori 269 

specified distributions (see below for specific details of this study) and N simulations for the forecast 270 

period are carried out. Where parameters are varied as part of the EnKF scheme, they are appended to 271 

the state matrix to give a state-parameter matrix.   272 

2. When observed data are available for assimilation: 273 

I. Apply a linear covariance inflation factor (𝛪) to each of the 𝑖 states and parameters to reduce the 274 

tendency for low ensemble covariance and for spurious correlations associated with small 275 

ensemble size (Anderson, 2007; Anderson and Anderson, 1999; Evenson, 2009): 276 

 277 

𝜑𝑗,𝑖
𝑎⁡ = ⁡𝛪. (𝜑𝑗,𝑖

𝑎⁡ − 𝜑𝑖
𝑎⁡̅̅ ̅̅ ) +⁡𝜑𝑖

𝑎⁡̅̅ ̅̅       (9) 278 

 279 

II. Generate N perturbations of the observations⁡(𝑌); it is essential that the uncertainty associated 280 

with the observations is sampled from a distribution with mean equal to the observed value and 281 

covariance (𝑃𝑒) to avoid bias in the update (Evenson, 2009) and to reduce further the tendency 282 

for the updated ensemble to have very low covariance (Moradkhani et al., 2005).  283 

  284 

III. Update the model states and parameters individually for the jth ensemble member. This is done 285 

proportionally to the deviation of the states in the forecasted state-parameter matrix (𝜑𝑓)⁡from 286 

the vector of perturbed observation𝑠⁡and the Kalman gain matrix⁡(𝐾): note that the timestep 287 

suffix is omitted for clarity in the following equations: 288 

 289 
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𝜑𝑎 = ⁡𝜑𝑓 + (𝐾(𝑌) ⁡− 𝐻𝜑𝑓)     (10) 290 

where, 𝜑𝑎 is the vector of updated states/parameters and 𝐻 is a matrix that maps the model 291 

states to the observed sates. The appended parameters are updated using the cross-covariance 292 

between the predicted states and parameters. The Kalman gain matrix is calculated using: 293 

𝐾 =⁡𝑃𝜑
𝑓
⁡𝐻𝑇(𝐻(𝑃𝜑

𝑓
⁡)𝐻𝑇 + 𝑃𝑒)−1     (11) 294 

where, 𝑃𝜑
𝑓

 is the covariance matrix for the ensemble of forecasted state-parameter matrix.   295 

IV. Apply any constraints on states and (or) parameter distributions (e.g. to keep them within 296 

physically reasonable ranges). This was implemented using a resampling scheme where if any 297 

state/parameter violated specified constraints (Table 4), the ensemble was resampled using a 298 

truncated distribution for that state/parameter in conjunction with a Gaussian copula to retain 299 

the ensemble’s covariance structure. 300 

 301 

V. Make N number of simulations for the next forecast period using the updated state-parameter 302 

matrix. 303 

2.3.5 Ensemble Kalman Filter scheme: Epilimnetic model 304 

As the epilimnetic model is very simple, all the main model states were used in the EnKF scheme. The 305 

states Te, Th and De were updated using a daily assimilation frequency for the epilimnetic depth model. 306 

The “observed” values of these states are those estimated and described above. 307 

2.3.6 Ensemble Kalman Filter scheme: PROTECH 308 

The choice of states and parameters included in the PROTECH EnKF scheme was made based on 309 

uncertainty and sensitivity analyses reported by Page et al. (2017). The Page et al., study, which included 310 
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the lakes studied here, identified that the main challenges for forecasting were uncertainties associated 311 

with: representing phytoplankton exposure to light and nutrient inputs (particularly phosphorus).  The DA 312 

scheme was therefore defined to include the main model states, SRP, DIN, SiO2 and chlorophyll a, as well 313 

the parameters associated with modifying nutrient inputs and underwater light (Table 4). These were 314 

updated at an approximately 14-day frequency set by the monitoring data. For Windermere, both point 315 

source (WwTWf) and diffuse SRP inputs (Pfact) parameters were included in the DA scheme; for Esthwaite 316 

Water only the parameter modifying the diffuse SRP inputs was included as simulations which included a 317 

simplified representation of sediment-derived SRP inputs did not provide improved results (these results 318 

are not reported here).  319 

To investigate the effect of ensemble size and to determine an acceptable ensemble size for the current 320 

applications, ensemble member (EM) size was increased sequentially, using the scenarios EM50, EM100, 321 

EM200, EM300 and EM400 (where the suffix is the size of the ensemble), until the forecast simulations 322 

appeared consistent. These scenarios were generated by resampling the downscaled ECMWF forecast 323 

distributions as described above and were used to force the suite of models used. For each of the forecast 324 

scenarios, the error associated with the assimilated data and the variance inflation factors were 325 

“optimised” manually to provide the best results. For consistency, and in the spirit of the pseudo-real time 326 

treatment of the forecast simulations, the variance inflation factors were kept consistent across all lake-327 

years considered. For each of the assimilated variables, the variance was assumed to be proportional to 328 

the magnitude of the variable of interest using a percentage. Additionally, a minimum variance was 329 

applied to reduce the impact of very small observed values (e.g. where epilimnetic SRP values are 330 

observed to be very low or within the limit of detection) where the associated low variance would falsely 331 

indicate low uncertainty. 332 

2.3.7 Assessing forecast skill 333 
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Different studies have used different benchmarks to evaluate the goodness of fit of forecasts (forecast 334 

skill), which are often determined by their aims. Studies tend to use either some form of “reference” 335 

simulation or simulations that do not assimilate any observations (sometimes called “climatology”) which 336 

serve to quantify the DA effect (e.g. Allen et al., 2003 and Kim et al., 2014) or solely a measure of the 337 

goodness-of-fit to observations (e.g. the coefficient of determination, 𝑅𝑇
2). Here, as our aim was to assess 338 

the value of the model for operational forecasting, we used a more stringent persistence forecast (e.g. see 339 

Stumpf et al., 2009) which uses the most recent observations as the forecast for each forecast timestep 340 

until the next observation becomes available. In the sections below, forecast skill was assessed by 341 

comparing the simulated chlorophyll a forecast with a persistence forecast for the entire annual 342 

timeseries. The goodness of fit of the benchmark and the simulated chlorophyll a forecasts were 343 

determined using the root-mean-square error (RMSE) as a measure. For the epilimnetic depth model, and 344 

other sub-models (i.e. TF models), goodness of fit is discussed more generally by comparison with 345 

observations using the coefficient of determination (𝑅𝑇
2).  Assessment of the forecasts of phytoplankton 346 

community structure and cyanobacteria is made qualitatively as we have much lower confidence in the 347 

absolute value of the observations. A discussion of how the phytoplankton species “count” data are used 348 

and the associated uncertainties is provided in the relevant section below. 349 

3 Results and discussion 350 

3.1 TF model results  351 

Transfer function models were identified for epilimnetic temperature, river temperature and river inflows 352 

and outflows and all models provided good fits to the observed data during model identification: 𝑅𝑇
2 353 

values were between 0.86 and 0.98 (Supp. Table 1). Model identification was carried out for the entire 354 

period of data available (see Supp. 1) such that they were not year specific models. As detailed above, in 355 

each case the models were used to forecast their respective variable deterministically.  356 
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3.2 Forecasting epilimnetic depth and the phytoplankton community 357 

3.2.1 Epilimnetic depth forecasts 358 

Epilimnetic depth forecast estimates were made for 2008-2010 for Windermere and 2008 and 2009 for 359 

Esthwaite Water within the parallel EnKF scheme. Although very simplistic, the epilimnetic depth model 360 

provided reasonable forecasts of epilimnetic depth when compared to those estimated from 361 

observations. For both lakes, the forecasts were stable and consistent using the smallest ensemble size of 362 

50 using a variance inflation factor of 1.25. Simulations for Windermere were better than for Esthwaite 363 

Water (𝑅𝑇
2 of 0.85 and 0.75 respectively for a 10-day-ahead forecast; Figs. 2a and 2b) and there were short 364 

periods with significant deviations from the ‘observed’ depths in both cases. Simulation of the timing of 365 

temporary stratification events at the beginning of the year was problematic for both lakes and 366 

simulations tended towards overly rapid mixing during autumn turnover, particularly for Esthwaite Water. 367 

Where significant deviations exist, they have the potential to reduce the forecast skill and therefore need 368 

to be improved, although, importantly, epilimnetic depth estimates for much of the high cyanobacterial 369 

bloom risk periods (i.e. during periods of strongest stratification) are reasonable. Given these results, the 370 

epilimnetic depth estimates for Windermere appear to be adequate out to 10-days-ahead but for 371 

Esthwaite they appear to be adequate for a much shorter lead time; for example, the 3-day-ahead forecast 372 

is a much better fit with an improved 𝑅𝑇
2 of 0.81 (Fig. 2c). The adequacy of these estimates is assessed 373 

more formally in association with the Chlorophyll a forecasts in comparison to the persistence forecast in 374 

the next section. 375 

3.2.2 Chlorophyll a forecasts 376 

For all lake-years, multiple runs of the EM50 Forecasts gave inconsistent simulations and a higher EM size 377 

was required. Forecasts for Windermere tended towards stability between the EM100 and EM200 378 

scenarios (Fig. 3), which is an ensemble size consistent with previous work with relatively complex models 379 
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(e.g. Evensen, 1994 and Allen et al., 2003). For Esthwaite Water, however, a higher ensemble size 380 

appeared to be required with a size of around 400 giving consistent simulations (Fig. 4). Subsequently, in 381 

the following, results presented for Windermere and Esthwaite Water are associated with the EM200 and 382 

EM400 scenarios respectively. In all cases, the manually “optimised” variance inflation factor was kept 383 

consistent for all lake years at a value of 1.1. 384 

Although forecast simulations for Windermere appear to be relatively good visually (e.g. see Fig. 5), they 385 

were not always an improvement on the persistence forecasts (Fig. 3). For 2008, the persistence forecast 386 

was better than simulated forecasts for all lead times. Conversely, simulated forecasts were better than 387 

the persistence forecasts for all lead times for 2009. A lead time of approximately 6 days or less was an 388 

improvement on the persistence forecast for 2010 simulations.   389 

For Esthwaite Water, forecast simulations were not as good as those for Windermere (Fig. 5), which is 390 

consistent with previous work using PROTECH for these lakes (Page et al., 2017). The forecasts for 2008 391 

were, however, still better than the persistence forecast out to about 5 days ahead (Fig. 4a), but were 392 

always worse than the persistence forecast for 2009 (Fig. 4b). The poorer fits for Esthwaite Water are 393 

likely to be a result of the complex uncertainties associated with the timing and magnitude of SRP inputs 394 

as well as the poorer simulation of epilimnetic depth reported above. In Esthwaite Water, during the 395 

period where P limitation dominates phytoplankton growth, it is very difficult to represent SRP fluxes 396 

appropriately, even when a representation of sediment-derived SRP fluxes was included (the addition of 397 

representation of sediment-derived SRP did not improve forecasts owing to interaction between sources 398 

of P: this work is not reported here). The difficulties associated with representing SRP fluxes was helped 399 

to some degree by the DA, but remain problematic during times when very low concentrations were 400 

present in the epilimnion; at these times, the correlations within the Kalman gain matrix would need to 401 

be very well-represented to provide appropriate updates to both epilimnetic SRP concentrations and SRP 402 
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fluxes simultaneously. The difficulties associated with these updates are compounded by the relatively 403 

low frequency of assimilation timesteps. Subsequently, even with relatively large ensemble sizes, the 404 

correlations within the Kalman gain matrix have the potential to be spurious. This is not unexpected as 405 

the lake system is highly dynamic and non-linear and, perhaps most importantly, the relationships 406 

between the states (and parameters in some cases) are not always consistent (e.g. when the nutrient 407 

states are not limiting they may have no relationship with the phytoplankton state). The temporal 408 

evolution of the nutrient parameter values (modified within the DA scheme) that change SRP fluxes were 409 

consistent with these uncertainties and did not show any consistent structure. Given these difficulties, 410 

assimilation of higher resolution nutrient observations may be one of the most important ways of 411 

improving forecasts. Conversely, for both Windermere and Esthwaite Water, forecasts were improved by 412 

the modification of the background light extinction parameter, εb, within the DA scheme:  its evolution 413 

over the simulation periods was relatively consistent for each of the years considered (Fig. 6) and reflects 414 

known simulation artefacts previously reported by Page et al. (2017). 415 

3.2.3 Forecasting phytoplankton community structure 416 

Forecasts of species representing the phytoplankton community structure were made without direct 417 

constraint within the DA scheme. Simulations were, however, indirectly constrained by the assimilation 418 

of epilimnetic depth, chlorophyll a and nutrients and hence are reliant on the ability of PROTECH 419 

simulations to represent phytoplankton community structure where abiotic conditions for phytoplankton 420 

growth are simulated adequately. They are also reliant on whether or not the phytoplankton species 421 

chosen to represent the community are appropriate (Elliott, 2010, 2012; Page et al., 2017).  422 

Forecasts of community structure are assessed here using simulations of R- and CS- functional types. 423 

These functional types were used as they dominate our study lakes. The observations to which they are 424 

compared here are estimated from “counts” of algal species, which are classified into the same functional 425 
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groups.  The “count” data were converted to biovolume using microscope measurements (Centre for 426 

Ecology & Hydrology, unpublished data) and subsequently to Chlorophyll a using the relationships in 427 

Reynolds (1984). This chain of approximations means that the observed data are associated with 428 

significant uncertainty. Accordingly, we used the relative abundance of each functional type for each 429 

observation timestep to partition the observed chlorophyll a concentration as our final estimate and 430 

estimated the sampling/analytical error to be +/- 25% and the overall error to be +/- 50% in accordance 431 

with Page et al. (2017).   432 

A comparison of the uncertain observations of R- and CS- functional types are presented in Fig. 7 where 433 

it can be seen that for most lake-years the overall pattern of the simulations are consistent with the 434 

observations.  There are some periods where the simulations are not consistent, which are associated 435 

primarily with the period of transition between the early blooms of R-type species and succession by CS-436 

types (approximately between days 100 and 200).  This inconsistency can clearly be seen for Windemere 437 

2008 and 2009 (Figs 7a and 7d) and is most likely associated with inadequate representation of nutrient 438 

fluxes and subsequent periods of nutrient limitation (Page et al., 2017).  There are also some periods 439 

where the overly rapid mixing simulated by the epilimnetic depth model  made it difficult to simulate the 440 

relatively high observed biomass: this is particularly evident for CS-species in Esthwaite Water 2008 (Fig. 441 

7k) and R-species in Esthwaite Water 2009 (Fig. 7l); these inconsistencies are a direct result of the spurious 442 

deep mixing events simulated around days 220 and 250 for 2008 and 2009 respectively (see Fig. 2 b and 443 

c) and strengthen the requirement to improve the epilimnetic depth model. 444 

3.2.4 Forecasting cyanobacteria 445 

Observations of Cyanobacteria are estimated in the same way as functional species types discussed in the 446 

previous section and are associated with similar uncertainty (see Fig. 7). As PROTECH simulates the 447 

functional algal community using the dynamics of a number of selected individual species, the philosophy 448 
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behind this method means that the forecasts of individual species are not as robust as those for functional 449 

community structure and are hence more uncertain.  This is the case for forecasts of cyanobacteria where 450 

they are represented by more than one functional type: e.g. for Windermere cyanobacteria are 451 

represented by Planktothrix, an R-type species, together with Aphanizomenon flos-aquae and 452 

Dolichospermum which are CS-type species (see Table Supp. 2). In this situation, the interchangeability of 453 

species with similar functional behaviour, but which have differing species traits, requires additional 454 

interpretation for forecasts of cyanobacteria to be made.  For example, the simulations of the R-species 455 

Planktothrix for all lake-years for Windermere result in overestimations of cyanobacteria concentrations 456 

for the periods where Planktothrix proliferates (approximately between days 150 and 275: Figs 7c, 7f & 457 

7i). Cyanobacteria forecasts, made for this study, are also a spatial average for each lake, constrained 458 

using data collected at one point; they therefore do not necessarily correspond with the risk from near-459 

surface accumulations of cyanobacteria where significant spatial heterogeneity exists, as can be the case 460 

for wind-blown cyanobacterial species (e.g. George and Heaney, 1978). Extending point forecasts to 461 

spatial forecasts for species that have these characteristics is hence an additional challenge. However, 462 

forecasts may be presented as probabilistic or possibilistic risk estimates, such as the likelihood of a 463 

cyanobacterial concentration of greater than a given critical threshold: this will be the focus of further 464 

research.  465 

4 Conclusions 466 

We rigorously tested the ability of the phytoplankton community model PROTECH to make forecasts of 467 

phytoplankton community structure within a data assimilation scheme using the Ensemble Kalman Filter. 468 

Some forecasting success was shown for chlorophyll a, but not all forecasts were better than a persistence 469 

forecast. The results typically indicated a reduction in chlorophyll a forecast skill with length of forecasting 470 

period with forecasts for up to four or five days showing greater promise than those for longer time-471 
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scales. Associated forecasts of phytoplankton community composition, represented by functional algal 472 

types, were broadly consistent with observations.  Translation of forecasts of functional algal types to 473 

forecasts of cyanobacteria are challenging because of functional similarities between species which may 474 

or may not be cyanobacteria.  Improvements in forecasts are likely to come from higher frequency 475 

observations for both chlorophyll a and nutrient concentrations. Fluorescence-based field sensors for 476 

both chlorophyll and the cyanobacterial pigment phycocyanin exist and while they are not completely 477 

quantitative, they would permit patterns of change to be captured. While higher frequency observations 478 

for these variables should help improve forecasts, they will also simultaneously improve the persistence 479 

forecast. It, therefore, remains to be seen whether or not a modelled forecast driven with improved 480 

observations would provide a significant improvement over the associated persistence forecast and the 481 

potential to forecast algal blooms in this type of lake.   482 
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Supplementary information 619 

Supp. 1 Transfer Function models for forecasted inputs 620 

The epilimnetic depth model requires forecasts of epilimnetic temperature, river in/outflows and river 621 

temperature. Each TF model that provides these forecasts was identified (as outlined above) using the 622 

available timeseries data. The epilimnetic temperature (𝑇𝑒)⁡at day t is given by: 623 

𝑇𝑒(𝑡) = −𝑎. 𝑇𝑒⁡(𝑡−1)𝑏1. 𝑇𝑎(𝑡) + 𝑏2.𝑅𝑠𝑤(𝑡) + 𝑏3.
1

𝐷𝑒(𝑡−1)
+ 𝑏4. (𝑊𝑠(𝑡−1))

3
 624 

Where, Ta is the air temperature, Rsw is SW radiation, De is epilimnetic depth and 𝑊𝑠 is the wind speed. 625 

The model coefficients are denoted a, b1, b2 and b3 (see Table Supp. 1 for values). One model for each 626 

lake was identified from the available data (2008 to 2010 for Windermere and 2004 to 2009 for Esthwaite 627 

Water).  628 

The lake in/outflow TF model was identified as a 1st order model with a nonlinear rainfall filter (see Young 629 

and Beven, 1994) and took the form: 630 

 631 

 𝑄𝑟(𝑡) =⁡−𝑎. 𝑄𝑟(𝑡−1) + 𝑏. 𝑃(𝑡). 𝑄𝑟(𝑡−1)
𝛽 632 

 633 

where Qr is the river in/outflow, P is precipitation and a, b1 are TF model coefficients where 𝛽 is the 634 

nonlinear rainfall filter parameter. The model for Windermere was identified using Rainfall data from 635 

Ambleside and flow data from the Environment agency Gauge at Newby Bridge for the years 2008 to 2010 636 

(National River Flow Archive: http://www.ceh.ac.uk/data/nrfa/). 637 

River temperature (TQ) was estimated using observed data from Troutbeck (Windermere) for the years 638 

1997 to 2006: 639 

𝑇𝑄(𝑡) = −𝑎. 𝑇𝑄(𝑡−1) + 𝑏. 𝑇𝑎(𝑡) 640 

http://www.ceh.ac.uk/data/nrfa/
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 644 

   Table 1   Study Lakes and primary characteristics§ 645 

Name/location Mean 
Depth (m) 

Max. 
Depth (m) 

Max. 
Length (m) 

Volume 
(m3) 

Catchment 
Area (km2) 

Residence Time 
(days) 

Windermere (South Basin) 16.8 41 9300 1.06 x 108 230.5 100 

Esthwaite Water 6.4 15.5 2500 5.97 x 106 17.1 100 

    § Details from Ramsbottom (1976) 646 

 647 

Table 2   Forcing inputs and downscaling relationships 648 

Model Inputs Downscaling factor/relationship Uncertainty sampled 

Air Temp (Ta; K) 
 

Windermere: 0.095(Ta
§) + 279.75** 

Esthwaite Water: 0.013(Ta
§) + 280.16** 

Y (Regression) 

Solar Radiation (SR; Wm-2) 0.85 N 
Wind Speed (W; m s-1) 0.38¥ Y (Gamma Dist.) 
Relative Humidity (RH; %) 1 N 
Cloud Cover (Cc; eighths) 1.25 N 
Rainfall (R; mm) 3 N 
Nutrient Inputs (P; N; SiO2/ mg m-3) See section 2.2.3 Y (Gamma Dist.) 

Ta§ is the forecast air temperature (K); ** see Section 2.2.2 for additional lake-effect correction; ¥ see Section 2.2.2 for additional 649 
wind direction correction. 650 

 651 

Table 3   Observed data assimilated in the EnKF scheme 652 

Assimilated state Frequency Source 

Epilimnetic Temperature (oC) Daily buoy obs. 
Hypolimnetic Temperature (oC) Daily buoy obs. 
Epilimnetic depth (m) Daily buoy obs. 
Chllorophyll a (mg m-3) ≈14 days Monitoring 
Nutrient Inputs (SRP; N; SiO2 / mg m-3) ≈14 days Monitoring 

  653 

 654 

 655 

 656 
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Table 4.  States and parameters included in the ENKF scheme 657 
 658 

State/Parameter Acceptable range Observational 
error (%) 

Initial distributions (uniform)** 

Epilimnetic Temp. (Te, 
0C) 2-25 5 5.5-7 (W); 4-6(E) 

Hypolimnetic temp. (Th, 
0C) 2-25 10 5.5-7 (W); 4-6(E) 

Epilimnetic depth (De, m) 0.5-max. depth 5 41 (W); 15.5(E) 
Chlorophyll a (mg m-3) 1e-6-1e3 10 3-4.5 (W); -4.5-6 (E) 
Background light extinction (εb, m-1) 0.15-0.9 N/A 0.15-0.6(W); 0.45-0.75(E) 
Epilimnetic P conc. (Pe ,mg m-3) 1e-6-1e4 25 10-20(W); 8-15(E) 
Epilimnetic DIN conc. (Ne,mg m-3) 1e-6-1e4 25 400-700(W); 500-1100(E) 
Epilimnetic SiO2 conc. (Sie,mg m-3) 1e-6-1e4 25 1500-2500(W); 2000-2500(E) 
Diffuse P input multiplier (Pf, 
dimensionless) 

0.05-7 N/A 0.01-1.5 

Diffuse DIN input multiplier (Nf, 
dimensionless) 

0.1-3 N/A 0.5-1.2 

Diffuse SiO2 input multiplier (Sif, 
dimensionless) 

0.1-3 N/A 0.5-1.2 

Point source P input multiplier (WwTWf, 
dimensionless) 

0.01-2 N/A 0.1-1.4 

** Where distributions are different for each lake W = Windermere; E = Esthwaite Water 659 

 660 

 661 
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Figure 1. Schematic 662 

diagram of the forecasting system. The schematic shows sequential model input-output structure and 663 

DA strategy. De is epilimnetic depth; Te is epilimnetic temperature; Th is hypolimnetic temperature, Q is 664 

lake inflow/outflow and Chl and Cyano are the concentration of total phytoplankton chlorophyll a and 665 

cyanobacterial chlorophyll a respectively. 666 

 667 

 668 
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 669 

Figure 2. Simulated and measured epilimnetic depth. Results shown for (a) Windermere 2008-2010 10-670 

day-ahead, (b) Esthwaite Water 2008 and 2009 10-day-ahead and (c) Esthwaite Water 2008 and 2009 3-671 

day-ahead: “observed” epilimnetic depth (red line), 50th percentile of the ensemble of simulated 672 

epilimnetic depth (black line) and 5th and 95th percentiles (grey lines). 673 
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 674 

Figure 3. Chlorophyll a forecast skill for the differing ensemble size scenarios. Results are shown for (a) 675 

Windermere 2008, (b) Windermere 2009 and (c) Windermere 2010, compared to the benchmark 676 

persistence forecast. Note that lower ensemble sizes can give “randomly” better forecast performance 677 

(e.g. EM = 50 in pane (a)) 678 

 679 
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 680 

Figure 4. Chlorophyll a forecast skill for the differing ensemble size scenarios. Results are shown for (a) 681 

Esthwaite Water 2008 and (b) Esthwaite Water 2009, compared to the benchmark persistence forecast. 682 

 683 
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 684 

Figure 5. Measured and forecast phytoplankton chlorophyll a in the two lakes during 2008.  Results 685 

show concatenated forecasts for: (a) 10-day-ahead for Windermere 2008 for ensemble member sizes 686 

(EM) of 50, 100 and 200; (b) 5-day-ahead for Esthwaite Water 2008 for ensemble member sizes (EM) of 687 

50 and 400. Solid lines are 50th percentile of ensemble and dotted lines are 5th and 95th percentiles. 688 

The box and whisker symbols represent the analytical uncertainty and the total uncertainty of +/- 8% 689 

and +/- 25% (see Page et al, 2017). 690 
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 691 

Figure 6. The evolution of the background light extinction coefficient parameter (εb). Results are shown 692 

for (a) Windermere 2008, 2009 and 2010 and (b) Esthwaite Water 2008 and 2009. The three lines in 693 

each colour are the 5th, 50th and 95th percentiles of the EM200 (Windermere) and EM400 (Esthwaite 694 

Water) ensembles. 695 
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 696 

Figure 7. Concatenated five-day ahead forecasts of R-species, CS-species and cyanobacteria 697 

concentration for all lake years; black line is 50th percentile and grey shaded area represents the  5th 698 

and 95th percentiles of the ensemble: EM200 and EM400 for Windermere and Esthwaite respectively. 699 
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The box and whisker symbols represent the analytical uncertainty and the total uncertainty estimated 700 

by the project team. Note that 5-day ahead forecasts are presented as approximately this lead time 701 

provided the most consistently acceptable results. 702 

 703 

 704 

Table Supp.   1 Transfer Function parameters and goodness of fit (W = Windermere; E = Esthwaite Water) 705 

  a b1 (𝜷) b2 b3 b4 τ RT
2 

  W E W E W E W E W E W E W E 

Lake Surface 
Temperature 
(Ts) 

 

-0.9449 -0.899 0.055 0.093 0.0008 0.0025 0.0011 0.0022 -0.0007 -0.0012 [0,0,0,0] [0,1,1,0] 0.97 0.98 

River in/outflow 
(Qr) 

 

-0.7717 -0.829 
11.141 
(0.2) 

0.022 
(0.3) 

  - -   1 0 0.92 0.86 

River 
Temperature 
(TQ) 

 

-0.900 -0.900 0.1005 0.1005 - - - - - - 0 0 0.87 0.87 

 706 

Table Supp. 2. Species used to represent algal communities. Functional algal types and an indication of 707 
classification as cyanobacteria given are in parenthesis: functional types follow Reynolds (1988). 708 

Windermere Esthwaite Water  

Aphanizomenon flos-aquae (CS; Cyano) Asterionella (R) 

Aulacoseira (R) Aulacoseira - 2008 (R); Fragilaria crotonensis-(2009 (R) 

Asterionella (R) Aphanizomenon flos-aquae (CS; Cyano) 

Cryptomonas (CSR) Aphanothece clathrata (CS; Cyano) 

Dolichospermum (CS; Cyano) Cryptomonas (CSR) 

Monoraphidium (CS) Dictyosphaerium pulchellum (R) 

Paulschulzia tenera (S) Dolichospermum (CS; Cyano) 

Planktothrix (R; Cyano) Eudorina (S) 

  

 709 

 710 

 711 

 712 


