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Abstract 

This thesis presents a series of studies into the electronic, thermal and thermoelectric 

properties of molecular junctions containing single organic molecules. The exploration 

and understanding the electronic and phononic characteristics of molecules connected to 

metallic leads is a vital part of nanoscience if molecular electronics is to have a future. 

This thesis documents a study for various families of organic and organometallic 

molecules, studied using a combination of density functional theory (DFT), which is 

implemented in the SIESTA code, and the Green’s function formalism of transport 

theory. The main results of this thesis are as follows: 

 

To elucidate the nature of the high and low conductance groups observed in break-junction 

measurements of single 4,4-bipyridine molecules, I present a combined experimental and 

theoretical study of the electrical conductance of a family of 4,4-bipyridine molecules, with a 

series of sterically-induced twist angles α between the two pyridyl rings. I show that their 

conductances are proportional to cos2(α), confirming that pi-pi overlap between adjacent rings 

plays a dominant role. Since both peaks exhibit a cos2(α) dependence of conductance on torsion 

angle, this is evidence that the high and low conductances correspond to molecular orientations 

within the junctions, in which the electrical current passes through the C-C bond linking the pi 

systems of the two rings. Furthermore, this result demonstrates that the Fermi energy is located 

within the HOMO-LUMO gap and not close to a transmission resonance. 

 

A theoretical investigation into the Seebeck coefficient in pi-stacked molecular 

junctions is performed using a first principles quantum transport method.  Using oligo 

(phenyleneethynylene) (OPE)-type molecules as a model system, I show that quantum 



 

interference produces anti-resonances in the gap between the HOMO and LUMO 

resonances and the stacking geometry can control the position of this quantum 

interference feature. The shifting of this resonance enhances the thermopower S is 

expected when the junction is tuned through a node in the transmission function. We 

found supramolecular π-π interactions between two molecules changed the sign of 

thermopower. 

 

I have investigated a family molecules with various side branched atoms to study the 

electron and phonon transport through nanoscale molecular junctions, with a view to 

understanding the performance thermoelectric materials. My calculations focus on the 

effect of heteroatoms formed from C, Si, Ge, and Sn on the thermal phonon 

conductance, electrical conductance, and Seebeck Coefficient. I also examine how the 

thermoelectric figure of merit is affected by side branched atoms, as the bond length and 

mass play an important role in determining the thermal phonon conductance of 

molecular wires. Due to the rigid nature of C-side branching, the thermal phonon 

conductance decreases monotonically with the bond length and mass, whereas thermal 

phonon conductance with Si-side branches increases with the length of the bond and 

mass. The low thermal conductance kel with S-bridging, combined with their higher 

thermopower and higher electrical conductance leads to a maximum thermoelectric 

figure of merit of ZT = 1.76, which is several orders of magnitude higher than that of 

bridges. 
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Chapter 1 

 

Introduction  
 

 

 
1.1 Molecular electronics 

Controlling individual molecules and their utilization is one of the scientific ambitions 

of our age. The realization of this ambition can open up broad prospects to a 

miniaturisation revolution in electronic devices. In recent decades, developments in 

nanofabrication techniques have made achievable the dream of contacting individual 

molecules to nano-electrodes and measuring their electronic transport characteristics 

[1]. Moreover, molecules are highly desirable as functional elements in nano-scale 

devices because of their ability to be chemically modified to tune their properties. 

Nowadays, these achievements have given rise to the field of Molecular Electronics.  

In the mid-1960s, Gordon Moore developed what was to become known as ‘Moore’s 

law,’ which stated that the number of transistors per unit area in practical applications 

would double approximately every two-years [2]. While it was expected that this trend 

might go on for just a 10 year period, the exponential growth continues over half a 

century later. The fact that it has proven to be much longer, is in part because the law 

has become self-fulfilling and became a directive for developments. Also, it was 

observed that the size of current silicon based transistors is approaching the tens of 
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nanometres length scale which is approaching the limit of this technology.  Therefore, 

molecular electronics gives a method to extending Moore's law as it offers the required 

minimization in size, flexibility in design and the probability of realistic single-

molecule electronics on the atomic scale. This is the ultimate aim for reducing the size 

of electronic circuits. The idea of using single molecules as molecular devices is not 

new, and the first theoretical work was carried out by Aviram and Ratner who proposed 

the first molecular rectifier in 1970s [3].  

This thesis will focus on single molecule electronics which has become a rapidly 

expanding and popular field for understanding quantum transport at the nanoscale level 

both from the theoretical and experimental viewpoint. In these studies, I will apply 

theory in understanding the properties of different types of molecules with the aim of 

designing new types of materials, which could offer a route to increasing computing 

power and also optimize thermoelectric materials. To do this, I will utilize cutting edge 

theoretical tools such as density functional theory (DFT), and molecular dynamics 

(MD) [4]. The field of molecular electronic sits on the boundary between physics and 

chemistry and the role that theory can play in advancing the knowledge of this area is 

twofold. First, theory has the ability to make predictions and survey the properties of a 

wide range of molecules, thereby identifying target molecules for chemical synthesis. 

Secondly, by modelling the experimental measurements of these structures helps to 

interpret, for example, break junction and STM measurements, which can show a wide 

distribution of measured values due to variations in the unknown geometry of the 

electrodes and contacting of the molecule. Here an understanding of the measurements 

will be obtained by a first principles quantum transport approach using a DFT method.  

Also, in the molecular electronics field, one of the most important roles is in the 

synthesis of new molecules and materials to study which so far has focused on typical 
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carbon based low-dimensional materials, for example fullerenes [5], carbon nanotubes 

[6-7], oligoynes [8] and graphene [9-11]. The main idea behind these efforts is to 

understand and control the electrical characteristics of a single-molecule, which can be 

incorporated into electronic devices. This has so far seen the following types of devices 

realized: molecular rectifiers [12], switches [13-14] and sensors [15].  

 

A likely future contribution of molecular electronics will be to solve the major 

challenge of waste heat, by developing new materials and device concepts by 

investigating nanoscale thermoelectricity, and contributing to design of new 

environmentally organic thermoelectric materials [16,17]. These materials will allow 

highly-efficient heat-to-electrical-energy conversion from otherwise wasted low-level 

heat sources and could have enormous impact on global energy consumption. These 

developments have been accelerated by recent measurements of single-molecule 

thermoelectricity, which have confirmed some underpinning strategies for enhancing 

their thermoelectric performance [18], which could lead to more efficient thermoelectric 

devices and materials [19, 20]. 

Nanoscale systems and especially nanoscale structures are very promising in this 

respect, due to the fact that transport takes place through discrete energy levels. The 

ability to measure thermopower in nanoscale junctions opens the way to developing 

fundamentally new strategies for enhancing the conversion of heat into electric energy 

[21]. The thermoelectric properties of such materials will be discussed in this thesis. 

In this thesis, I will strive to understand single-molecule devices by calculating the 

probability of an electron passing through a single molecule via two theoretical 

techniques [22]. The first is density functional theory (DFT), which is implemented in 

the SIESTA code [23], and the second is a non-equilibrium Green’s function formalism 

of transport theory, which is implemented in the GOLLUM code [22]. On the 
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experimental side, scanning tunnelling microscopy break junction (STM-BJ) [24-26], 

which have been used to study the transport properties of the single-molecules that are 

the subject of investigation.  In the course of this thesis, theoretical calculations will be 

compared with experimental studies of my collaborators on a range of organic and 

organometallic single-molecules. 

Beyond the molecules themselves, one might also consider the effect of varying the 

electrode material. Recently graphene has been suggested as a viable electrode material 

[27-33], but defects such as 5-7fold rings [34] lead to fluctuations in the density of 

states near the graphene edges, which hamper unequivocal identification of signatures 

of single-molecule transport. Platinum, palladium and iron [35,36] and even silicene 

[37,38] have been considered, but at the moment, gold remains the metal of choice, 

mainly because it is relatively free of contaminants and does not oxidise in air. For this 

reason, I shall use gold electrodes throughout this thesis 

 

1.2 Thesis Outline 

In this thesis, I will introduce a brief discussion of the electrical and thermoelectrical 

properties of families of single molecules. The second chapter describes density 

functional theory (DFT) and the SIESTA code, which will be used to calculate the 

electronic and thermal properties of single-molecule junctions. The third chapter 

contains the theory of quantum transport, which includes the Green's functions method 

that used for the quantum transport calculations. 

In the fourth, I will present a combined experimental and theoretical study of the 

electrical conductance of a family of 4,4-bipyridine molecules, with a series of 

sterically-induced twist angles α between the two pyridyl rings. In the fifth chapter, I 

will present a theoretical investigation into the Seebeck coefficient S in π-stacked oligo 
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(phenyleneethynylene) (OPE)-type molecular junctions, performed using a first 

principles quantum transport method to control quantum interference and sign of the 

thermopower.  

The sixth chapter will investigate a family of thiophene molecules that have various side 

branched atoms (C, Si, Ge, and Sn) to study electron and phonon transport through 

nanoscale molecular junctions, with a view to increasing the performance of 

thermoelectric materials. And finally, the seventh chapter presents conclusions and 

future works. 
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Chapter 2 

 

 

Density Functional Theory  

 

2.1. Introduction  

 

In an attempt to understand the behaviour of molecular electronics devices, it is 

desirable to have a reliable technique to determine the structural and electronic 

behaviour of organic molecules, which density function theory (DFT) provides. Also, it 

is important in understanding the electronic properties of the transport of electrons 

across molecular structures which are suspended between the metallic electrodes. In this 

chapter, I will give a brief overview of DFT and the SIESTA code (Spanish Initiative 

for Electronic Simulations with Thousands of Atoms) [1], which I have used 

extensively during my PhD studies as a theoretical tool to study the structures of 

molecules as well as calculating charge densities, band structures, and binding 

enerigies. SIESTA is an implementation of DFT which is used to perform calculations 

on molecular systems, and one of its main advantages is that it can perform calculations 

of large scale systems (thousands of atoms). 
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The physical theories that underpin the fundamental assertion of DFT were introduced 

by Hohenberg and Kohn [2] and then expanded by Kohan and Sham [3] to solve the 

intractable many-body problem of interacting electrons in a static external potential to a 

tractable problem of non-interacting electrons in an effective potential. This has led to 

DFT becoming one of the main tools in theoretical physics, molecular chemistry and 

biology [4]. In this chapter I present a short summary of the foundations and numerical 

applications of (DFT), however a much more detailed treatment of the theory can be 

found in the literature [5-6]. 

 

2.2. The many-body problem 

A long term goal in theoretical physics is to find a method to solve the many-body 

problem in quantum statistical mechanics [7]. To find the eigenvalues and eigenstates of 

the full Hamiltonian operator of a general system via solving the Schrodinger equation: 

  𝐻𝜓 = 𝐸𝜓                                                                        (2.1.1) 

where E is the energy eigenvalue, 𝜓 is the total wave function and H is the Hamiltonian 

described the system. The many-body Hamiltonian can be written as: 

𝐻 = −∑
ℏ2

2𝑚𝑒
∇𝑖
2

𝑖 +
1

8𝜋𝜀0
∑

𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗   

                 −∑
ℏ2

2𝑚𝑛
𝐼 ∇𝐼

2 +
1

8𝜋𝜀0
∑

𝑍𝐼𝑍𝐽𝑒
2

|𝑅𝐼−𝑅𝐽|
𝐼≠𝐽 −

1

4𝜋𝜀0
∑

𝑍𝐼𝑒
2

|𝑟𝑖−𝑅𝐼|
𝑖𝐼                        (2.1.2) 

 

where 𝑚𝐼, 𝑍𝐼  and 𝑅𝐼  are the mass, atomic number and position of the I-th nucleon in the 

solid respectively. The position of i-th electron is indicated by 𝑟𝑖  and 𝑚𝑒 is the mass of a 

single electron. The Hamiltonian of the many-body problem is divided into five parts; 

the first part is the electron kinetic energy, the second part is electron-electron 
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interactions, the third part is the nucleon kinetic energy, the forth part is nucleon-

nucleon interactions and the last part is electron-nucleon interactions.  

Finding the exact solution to the Schrödinger equation, apart from the hydrogen atom or 

a small number of electrons, is impossible due to the fact the interaction terms in the 

Hamiltonian cannot be directly uncoupled and independently solved. So an 

approximations is needed. Since the mass of nucleons is a few orders of magnitude 

higher than that of electrons, one can employ the Born-Oppenheimer approximation [8] 

to dissociate the wave-function of the electrons and the motion of the nuclei. Here, the 

Schrodinger equation is solved for the electron degrees of freedom only. Therefore, if 

we know the electronic structure of a molecular system, we can calculate forces on the 

nuclei and in addition minimize these forces to find the ground state geometry. With the 

Born-Oppenheimer approximation the assumption that the nucleon wave-function is 

independent of the electron the equation (2.1.2) can be rewritten: 

𝐻 = 𝑇𝑒 +𝑈𝑒−𝑒 + 𝑉𝑒−𝑛𝑢𝑐                                                                  (2.1.3) 

Here Te is defined the kinetic of all electrons which is written by; 

𝑇𝑒 =∑
ℏ2

2𝑚𝑒
𝑖

∇𝑖
2                                                                                 (2.1.4) 

 

The second part of equation (2.1.3) Ue-e is defined as the electron-electron interaction 

and sum of all potentials acting on a given electron position ri by all other electrons at 

position rj, which can be written by; 

𝑈𝑒−𝑒 = ∑
𝑒2

4𝜋𝜀0
𝑖,𝑗,𝑖≠𝑗

1

|𝑟𝑖 − 𝑟𝑗|
                                                                     (2.1.5) 
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And the last part of the equation (2.1.3) 𝑉𝑒−𝑛𝑢𝑐 describes the interaction between 

electrons and nuclei, and it depends on the positions of electrons ri , nuclei RI, the 

nuclear potential υnuc, which is given by; 

 

𝑉𝑒−𝑛𝑢𝑐 =∑∑𝑣𝑛𝑢𝑐(𝑟𝑖 − 𝑅𝐼)

𝑖𝐼

                                                                 (2.1.6) 

 

    Therefore, the corresponding time independent Schrödinger equation is given by: 

...),...,(...),...,( 2121 ii rrrErrrH                                          (2.1.7) 

Despite the Born-Oppenheimer approximation minimizing the size of the system, it is 

still difficult to solve equation (2.1.7), even on a modern supercomputer. Therefore, 

Density functional theory solves this problem by expressing the physical quantities in 

terms of the ground-state density.  

 

2.3. The Hohenberg-Kohen theorems 

The essential building blocks of Density Functional Theory began with two important 

theories by the pioneering work of Hohenberg and Kohn in 1964 [2]. From the first 

theorem, the external potential Vext(r) is uniquely defined via the ground state particle 

density n0 (r), except for a constant. To have a better understanding for the first theorem, 

it can be considered there are two Hamiltonians H1 and H2, which have the same 

ground-state density 𝜌0 (𝑟), but different external potentials 𝑉𝑒𝑥𝑡
(1)

 and 𝑉𝑒𝑥𝑡
(2)

. The 

wavefunctions of them could be obtained through solving the Schrodinger equation, and 
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for a non-degenerate system there is one solution of the Schrodinger equation that 

presents the ground state wave-functions  𝛹(1) and 𝛹(2). Since 𝛹(2)is not a ground state 

of Hamiltonian 𝐻(1), we have: 

𝐸(1) = 〈𝛹(1)|𝐻(1)|𝛹(1)〉 < 〈𝛹(2)|𝐻(1)|𝛹(2)〉                                       (2.1.9) 

Also,  

                  𝐸(2) = 〈𝛹(2)|𝐻(2)|𝛹(2)〉 < 〈𝛹(1)|𝐻(2)|𝛹(1)〉                                     (2.1.10) 

 

As assuming that, the ground states are not-degenerate [9-10], one can rewrite the 

equation (2.1.9) as below:     

〈𝛹(2)|𝐻(1)|𝛹(2)〉 = 〈𝛹(2)|𝐻(2)|𝛹(2)〉 + 〈𝛹(2)|𝐻(1) − 𝐻(2)|𝛹(2)〉

= 𝐸(2) +∫𝑑𝑟 (𝑉𝑒𝑥𝑡
(1)(𝑟) − 𝑉𝑒𝑥𝑡

(2)(𝑟)) 𝜌0(𝑟)                                   (2.1.11) 

 

 

And eqn. (2.1.10): 

 

< 〈𝛹(1)|𝐻(2)|𝛹(1)〉 =  𝐸(2) +∫𝑑𝑟 (𝑉𝑒𝑥𝑡
(2)(𝑟) − 𝑉𝑒𝑥𝑡

(1)(𝑟)) 𝜌0(𝑟)                (2.1.12) 

 

Adding together the two expressions (2.1.11) and (2.1.12) to obtain the equation as 

follows: 

 

𝐸(1) + 𝐸(2) < 𝐸(1) + 𝐸(2)                                                                                 (2.1.13) 
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This expression gives us a contradicting inequality, showing that there cannot be two 

external potentials differing by more than a constant which lead to the same non-

degenerate ground state density. The second theorem of the Hohenberg-Kohen states 

that a universal functional for the energy E[ρ] is defined in terms of the density. The 

ground state is exactly the global minimum value of this functional. Moreover, the 

external potential is uniquely determined by the density, and the potential in contrast 

uniquely determines the ground-state wave function, as well as all the other observables 

of the system (such as kinetic energy (T) of electrons) are uniquely determined. One 

could write the total energy E[ρ] of the system as a functional of the density as shown: 

 

𝐸[𝜌] = 𝑇[𝜌] + 𝐸𝑖𝑛𝑡[𝜌] + ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟)                                             (2.1.14) 

 

where the first terms are defined as the kinetic and internal interaction of the electrons 

which are usually added together as one functional FHK[ρ]=T[ρ]+Eint[ρ] because these 

are universal and depending on the charge density without influence of the environment.  

From the first theorem, the Hamiltonian of the system is determined by the ground-state 

density (𝜌0 ) for that system with external potential (Vext) and wavefunction (Ѱo). 

Therefore, for any density (ρ), wavefunction (Ψ), and other than the ground-state, we 

can find: 

 

𝐸0 = 〈𝛹0|𝐻|𝛹0〉 < 〈𝛹|𝐻|𝛹〉 = 𝐸                                                             (2.1.15) 

 

So, the ground state density (𝜌0 ) minimizes the functional (eqn (2.1.14)). 

Consequently, in the case that if we know the functional FHK[ρ], by minimizing 

equation (2.1.14), and we can obtain the ground-state of the system and can calculate all 

ground-state characteristics. 
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2.4. The Kohn-Sham Approach 

The Kohn–Sham equation [3] is the Schrödinger equation of a fictitious system of non-

interacting particles, which generate the same density as any given system of interacting 

particles [11]. As mentioned before, by obtaining the ground-state density, one could in 

principle calculate the ground-state energy. However, the exact form that is shown in 

equation (2.1.14) is not known. So, the first terms in the equation (2.1.14) T[ρ] and 

Eint[ρ] cannot generally be presented as functionals of the density. In 1965 there was a 

solution introduced by Kohn and Sham [3] to replace the original Hamiltonian of the 

system by an effective Hamiltonian of non-interacting particles in an effective external 

potential that has the same ground-state density as the original system [12-13].  

 

So, the energy functional is written: 

𝐸𝐾𝑆[𝜌] = 𝑇𝐾𝑆[𝜌] + ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟) + 𝐸𝐻[𝜌] + 𝐸𝑥𝑐[𝜌]                      (2.1.16) 

Hence, 𝑇𝐾𝑆  is the kinetic energy of the non-interacting system, where the kinetic energy 

(T) in the equation (2.1.14) has been used for the interacting system. This difference is 

due to the exchange correlation functional Exc, which will be explained later in the 

equation (2.1.18). Also, EH presents the Hartree function, and describes the electron-

electron interaction using the Hartree- Fock method [14-17] as given by:  

𝐸𝐻[𝜌] =
1

2
∬

𝜌(𝑟)𝜌(𝑟 ′)

|𝑟 − 𝑟 ′|
𝑑𝑟𝑑𝑟′                                                                      (2.1.17) 

 

The above equation represents an approximate version of internal interactions of the 

electrons Eint. So, the exchange correlation functional Exc describes the differences 

between the exact and approximated solutions to the kinetic energy and the electron-

electron interaction terms that defined as:  

𝐸𝑥𝑐[𝜌] = (𝐸𝑖𝑛𝑡[𝜌] − 𝐸𝐻[𝜌]) + (𝑇[𝜌] − 𝑇𝐾𝑆[𝜌])                                     (2.1.18) 

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Electronic_density
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The Kohn-Sham theorem reduces the problem of a complicated many-body system to a 

set of simple non-interacting equations exactly, if the exchange correlation functional is 

known. Only ground-state quantities are correctly calculated due to the formulation of 

the theory, such as the ground-state energy, ground-state density, the fictitious Kohn-

Sham eigenvalues and the ground-state electron geometry. In other words, DFT cannot 

be used to calculate higher energetic states correctly such as the lowest unoccupied 

orbital of a molecule, and consequently underestimates band gaps in semiconductors. It 

is worth mentioning that DFT remains an approximate technique of finding these 

ground state properties, as the exchange-correlation functional is not known precisely, 

therefore approximations have to be made. 

 

2.5. Functional of exchange and correlation 

Density functional theory reduces the quantum mechanical ground-state many-electron 

problem to self-consistent one-electron form, by the Kohn-Sham equations [18]. This 

method is formally precise, while for practical calculations, the exchange-correlation 

energy, 𝐸𝑥𝑐, as a functional of the density has to be approximated. To do that, the local 

density approximation (LDA) has long been the standard choice [19]. Despite its simple 

nature, the predictions made using LDA gives realistic descriptions of the atomic 

structure, elastic, and vibrational characteristics for a wide range of systems. Yet, LDA 

is generally not accurate enough to describe the energetics of chemical reactions (heats 

of reaction and activation energy barriers), which lead to an overestimate of the binding 

energies of molecules and solids. As well, there are numerous examples where the LDA 

puts molecular conformations or crystal bulk phases in an even qualitatively wrong 

energetic order [20,21]. Recently, generalized gradient approximations (GGA's) have 

overcome such deficiencies to a considerable extent [18,22], giving for example a more 

http://th.fhi-berlin.mpg.de/th/Meetings/trieste.html/fuchs2/node1.html#koh96a
http://th.fhi-berlin.mpg.de/th/Meetings/trieste.html/fuchs2/node1.html#zup98a
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realistic description of energy barriers in the dissociative adsorption of hydrogen on 

metal and semiconductor surfaces [23]. Gradient corrected (GGA) functionals depend 

on the local density and on the spatial variation of the density. So, the two most 

commonly functionals used approximations are LDA and GGA to the exchange and 

correlation energies in density functional theory. To give more information about the 

Local Density Approximation and the Generalized Gradient Approximation, the 

following section will briefly describe it. 

 

2.5.1. Local Density Approximation 

The LDA approximation assumes that the exchange-correlation functional depends only 

on the local density which was introduced by Kohn and Sham [3] and it therefore can be 

expected to give good predictions for systems where the density is relatively smooth 

locally. The functional of the approximation is 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] = ∫𝑑𝑟𝜌(𝑟) (∈𝑥

ℎ𝑜𝑚 (𝜌(𝑟)) +∈𝑐
ℎ𝑜𝑚 (𝜌(𝑟)))                                         (2.1.19) 

where the exchange and correlation for the homogeneous electron gas can be defined by 

terms  ∈𝑥
ℎ𝑜𝑚 and ∈𝑐

ℎ𝑜𝑚, respectively. Moreover, the analytical formula [5] of exchange 

energy ∈𝑥
ℎ𝑜𝑚 can be given by: 

 

∈𝑥
ℎ𝑜𝑚= −

3

4𝜋
√3𝜋2𝜌
3

                                                                                        (2.1.20) 

 

On the other hand, the numerical calculation of the correlation energy ∈𝑐
ℎ𝑜𝑚 that has 

been performed by Ceperley and Alder [24] using the quantum Monte-Carlo method.  

And then, Perdew and Zunger [25] fitted this numerical data to analytical expressions, 

as follows: 
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∈𝑐
ℎ𝑜𝑚

=

{
 

 
−0.048 + 0.031𝑙𝑛𝑟(𝑠) − 0.0116𝑟𝑠 + 0.002𝑟𝑠 ln(𝑟𝑠)      𝑟𝑠 < 1

−

−
0.1423

(1 + 1.9529√𝑟𝑠 + 0.3334𝑟𝑠)
                                            𝑟𝑠 > 1

                    (2.1.21) 

 

Hence, the term 𝑟𝑠 = (
3

4𝜋𝜌
)
1
3⁄

 represents the average electron radius of the 

homogeneous electron gas. Also, alternative parametrizations for the correlation energy 

exist. The functional suggested by Hedin and Lundquist [26], or the functional by 

Vosko, Wilk and Nusair [27], preceded the parameterization of Perdew and Zunger 

[28]. The resulting exchange correlation potential produces relatively precise findings 

for systems with well-behaved densities. 

However, LDA is in some sense the simplest form one can imagine for the exchange 

and correlation energies. It is a simple yet powerful functional and it is known to be 

accurate for graphene and carbon nanotubes or where the electron density is slowly 

changing. For instance, a large error is predicted for atoms that have d- and f-type 

orbitals, and it provides a very poor description for hydrogen bonding [29,30]. Also, 

difficulties emerge where it is not clear whether the LDA is applicable. For instance, 

despite the LDA performs well in bulk group-IV semiconductors it is not exactly clear 

how well it performs at surfaces of these materials [26-27].  

 

2.5.2.   Generalized gradient approximation 

As the LDA approximates the energy of the true density by the energy of a local 

constant density, it fails in situations where the density is subjected to rapid changes 

such as in molecules. Therefore, an improvement to this can be made by considering the 
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gradient of the electron density, the so-called Generalized Gradient Approximation 

(GGA). So, the GGA approximation extends the LDA by involving the derivatives of 

the density into the functional form of the exchange and correlation energies. In the 

GGA approximation, there is no closed form for the exchange term of the function, but 

it has been calculated along with the correlation contribution by using numerical 

methods. In other words, there are different parameterizations are used with the GGA 

approximation for the exchange and correlation energy [31-33]. Hence, we discuss in 

this section the functional form that was proposed by Perdew, Burke and Ernzherhof 

[23], the correlation energy is given by: 

 

𝐸𝑥𝑐
𝐺𝐺𝐴 = 𝐸𝑥

𝐺𝐺𝐴[𝜌] + 𝐸𝑐
𝐺𝐺𝐴[𝜌]                                                                    (2.1.22) 

 

And the the exchange part is 

 

𝐸𝑥
𝐺𝐺𝐴[𝜌] = ∫ ∈𝑥 (𝜌(𝑟)) 𝑉𝑥(𝜌(𝑟) ∇𝜌(𝑟))𝜌(𝑟)𝑑𝑟                                                (2.1.23) 

where,  

𝑉𝑥(𝜌, ∇ρ) = 1 + 𝑘 −
𝑘

1 +
𝜇𝑠2

𝑘

 

The values of k and μ parameters are 0.804 and 0.21951, respectively. The 

dimensionless density gradient is  𝑠 =
|∇𝜌|

2𝑘𝐹𝜌
  where kF is the Fermi wavelength, and 

𝑉𝑥(𝜌, 𝛻𝜌)  is the enhancement factor. Note that the correlation energy form is expressed 

as  
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𝐸𝑐
𝐺𝐺𝐴[𝜌] = ∫𝜌(𝑟)[∈𝑐 (𝜌(𝑟)) + 𝐹(𝜌(𝑟), ∇ρ(r))] 𝑑𝑟                                          (2.1.24) 

where, 

𝐹(𝜌, ∇𝜌) =
𝛾𝑒2

𝑎0
𝑙𝑛 [1 +

𝛽𝑡2

𝛾
(

1+𝐴𝑡2

1+𝐴𝑡2+𝐴2𝑡4
)],          𝐴 =

𝛽

𝛾

1

(𝑒−∈𝑐(𝜌)/𝛾−1)
 

Here, the parameters in the last equation are β = 0.066725, 𝛾 =
(1−𝑙𝑛2)

𝜋2
γ, 𝑎0 =

ℏ

𝑚2, and 

𝑠 =
|∇𝜌|

2𝑘𝑇𝐹𝜌
 is the dimensionless density gradient, where 𝐾𝑇𝐹 = √12/𝜋

3
√𝑟𝑠⁄   is 

representing the Thomas-Fermi screening wavelength and 𝑟𝑠 can be defined as the local 

Seitz radius. In general, the performance of GGA functional is a better approximation 

than LDA, and it has considerably influential in both performing actual calculations and 

as the basis for functionals including higher derivatives and exact exchange [34]. In this 

thesis, the GGA will be used in all the presented calculations.  

 

 

2.6. SIESTA 

The DFT electronic structure calculations have been performed using the SIESTA code 

[1]. One of the main features of SIESTA is that it is designed to perform efficient 

calculations on huge systems consisting of thousands of atoms, and it uses the standard 

Kohn-Sham self-consistent density function method. In addition, the functionals that are 

used in SIESTA are the Local Density Approximation (LDA) and the Generalized 

Gradient Approximation (GGA). In this section, we will explain briefly the important 

methods and how they are used to perform all DFT calculations.  
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2.6.1. The Pseudopotential Approximation 

In a system that has a large number of atoms containing complex potentials there is 

large computational expense for time and memory. One method to solve the 

computational problem is to reduce the number of electrons by introducing the 

pseudopotential approximation which was proposed by Fermi in 1934 [35-36]. This 

method, has developed from creating non-relativistic empirical pseudopotentials [37, 

38] to more realistic ab-initio pseudopotentials [39-41]. The idea of this concept that the 

electrons in an atom are split into two parts, the first is core and the second is valence, 

where core electrons lie within filled atomic shells as well as they are spatially localized 

around the nucleus. Whereas, the valence electrons are arranged in partially filled shells, 

and they are the ones contributing to the formation of molecular orbitals. Therefore, this 

reduces the number of the electrons in a system considerably. Moreover, in the SIESTA 

code a special kind of ab-initio pseudopotential which called the norm-conserving 

pseudopotential [39] is carried out.  

 

2.6.2. SIESTA Basis Sets 

One of the most important features of the SIESTA code is the kind of basis set used in 

the calculations. In order to find the ground state energy, the Hamiltonian of the system 

should be diagonalised. This step includes the inversion of a large matrix [1] whose 

computation time scales with the number of non-zero elements. To minimize the size of 

the Hamiltonian, SIESTA uses a linear combination of atomic orbital (LCAO) basis set 

which are constrained to be zero outside of a certain radius (cut-off radius). 

Furthermore, this generates the required sparse form for the Hamiltonian, and that 

reduces the overlap between basis functions. Therefore, a minimal size basis set can 
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produce characteristics which model that of the studied system. In addition, the simplest 

basis set for an atom is called a single-ζ basis which corresponds to a single basis 

function 𝛹𝑛𝑙𝑚(𝑟) per electron orbital (i.e. 1 for an s-orbital, 3 for a p-orbital, etc...). In 

this case, each basis function consists of a product of one radial wavefunction 𝜙𝑛𝑙
1 , and 

one spherical harmonic 𝑌𝑙𝑚: 

𝛹𝑛𝑙𝑚(𝑟) = 𝜙𝑛𝑙
1 (𝑟)𝑌𝑙𝑚(𝜑, 𝜗)                                                                        (2.1.25) 

The radial part (Eq. (2.1.25)) of the wavefunction is found by using the Sankey method 

[42], and by solving the Schrodinger equation for the atom placed inside a spherical 

box, as well as the radial wavefunction equals zero at the cut-off radius, 𝑟𝑐 . Therefore, 

this restriction generates an energy shift δE within the Schrödinger equation such that 

eigenfunction has a node at the cut-off radius, 𝑟𝑐 , as shown by: 

 

[−
𝑑2

𝑑𝑟2
+
𝑙(𝑙 + 1)

2𝑟2
+ 𝑉𝑛𝑙

𝑖𝑜𝑛(𝑟)]𝜙𝑛𝑙
1 (𝑟) = (∈𝑛𝑙+ 𝛿𝐸)𝜙𝑛𝑙

1 (𝑟)                   (2.1.26) 

 

Here, the radial wavefunction follows the previous constraint to disappear at a cut-off 

radius rcut. So, the energy shift δE is produced by this constraint within the Schrodinger 

equation for example the, the eigenfunction’s first node appears at rcut. Therefore, for 

higher accuracy basis sets (multiple-ζ), additional radial wavefunctions could be 

involved for each electron orbital. By using a split-valence method to calculate the 

additional radial wavefunctions 𝜙𝑛𝑙
𝑖 , for i > 1. This includes the defining a split-valence 

cut-off for each addition wavefunction 𝑟𝑠
𝑖. Therefore, from the function above 𝑟𝑠

𝑖 

represents a single- ζ function and below 𝑟𝑠
𝑖 represents a polynomial that has parameters 

calculated at 𝑟𝑠
𝑖. The wavefunction and its derivative are assumed continuous, and can 

be expressed in this formula: 
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𝜙𝑛𝑙
𝑖 (𝑟) = {

𝑟𝑙(𝑎𝑛𝑙 − 𝑏𝑛𝑙𝑟
2)          𝑟 > 𝑟𝑠

𝑖

−
𝜙𝑛𝑙
𝑖−1                  𝑟𝑠

𝑖 < 𝑟 < 𝑟𝑠
𝑖−1
                                         (2.1.27) 

Further accuracy (multiple- ζ polarised) can be obtained by including wavefunctions 

with different angular momenta corresponding to orbitals which are unoccupied in the 

atom. This is done by solving (2.1.26) in an electric fieldeld such that the orbital is 

polarised or deformed due to the field so a different radial function is obtained. This is 

now combined with the appropriate angular dependent spherical harmonic which 

increases the size of the basis. Table (2.1) shows the number of basis orbitals for a 

selected number of atoms for single-ζ (SZ), double-ζ (DZ), Single-ζ Polarised (SZP) 

and double-ζ polarized (DZP) 

 

Table 2.1: Example of the radial basis functions per atom as used within the SIESTA for 

different degrees of precisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atom/Valence 

configuration  

 

 

Single-ζ  

(SZ) 

 

 

Double-ζ 

(DZ) 

 

Single-ζ  

Polarised 

(SZP) 

 

 

Double-ζ  

Polarised 

(DZP) 

 

 

H1/(1s) 

 

1 

 

2 

 

4 

 

5 

 

C6/(2s2 2P2)  

 

 

 

4 

 

8 

 

9 

 

13 

N7/(2s2 2P3)  

 

 

S16/(3s2 2P4) 

 

4 

 

        

       4          

 

8 

 

 

8 

9 

 

 

9 

 

13 

 

 

13 

 

      Au79/(6s1 5d10) 

 

6 

 

12 

 

9 

 

       15 
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2.6.3 Calculating binding energy using the counter 

poise method  

 
To calculate the binding energy, I shall use the counter poise method. Calculations 

using DFT to compute the ground state energy of different molecules allows the 

calculation of binding energies as well as optimum geometries. However, these 

calculations are subject to errors, due to the use of localized basis sets that are focused 

on the nuclei. When atoms are close to each other, their basis functions will overlap 

which leads to strengthening of atomic interactions and this could affect the total energy 

of the system. In general, to solve this type of error, the Basis Set Superposition Error 

correction (BSSE) [43] or the counterpoise correction [44] must be performed in 

calculations when utilizing the linear combination of atomic orbitals. The energy of 

interaction of two systems a and b can be donated as: 

 

   ∆𝐸(𝑎𝑏) = 𝐸𝑎𝑏
𝑎𝑏 − (𝐸𝑎

𝑎 + 𝐸𝑏
𝑏)                                                                 (2.1.28) 

 

Here, 𝐸𝑎𝑏
𝑎𝑏 is the total energy for the dimer system a and b, and the 𝐸𝑎

𝑎 and 𝐸𝑏
𝑏

 are the 

total energy of the two isolated systems. So, to perform these correction inside SIESTA, 

I use ghost states to assess the total energy of segregated systems a or b in the dimer 

basis. 

∆𝐸(𝑎𝑏) = 𝐸𝑎𝑏
𝑎𝑏 − (𝐸𝑎

𝑎𝑏 + 𝐸𝑏
𝑎𝑏)   

Where 𝐸𝑎
𝑎𝑏  (𝐸𝑏

𝑎𝑏) is the energy of system a (b) evaluated in the basis of the dimer. This 

method is used in calculations in chapter 4 and 5, which provides the most accurate 

approach for these systems [45-47]. To implement these corrections within SIESTA, we 
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use ‘ghost’ states to evaluate the total energy of isolated systems a or b in the dimer 

basis. Ghost states mean keeping the basis of one part of a dimer on atomic centres and 

ignore its electrons and nuclear charge while keeping the other part of dimer without 

neglecting anything. This method provides accurate results for different systems [48-

50]. 

 

2.6.4. The Electron Hamiltonian 

The electron Hamiltonian that is generated by SIESTA follows the Kohn-Sham 

formalism and involves the local and non-local parts of pseudopotential: 

 

𝐻 = 𝑇̂ +∑𝑉𝑖
𝐾𝐵(𝑟)

𝑖

+∑𝑉𝑖
𝑙𝑜𝑐(𝑟)

𝑖

+ 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟)                               (2.1.29) 

 

 

Hence, 𝑇̂ denotes to the kinetic operator, 𝑉𝑖
𝑙𝑜𝑐 and 𝑉𝑖

𝐾𝐵 represent the local and non-local 

parts of the pseudopotential for atom i, as well as VH and Vxc are the Hartree and 

exchange-correlation potentials. Moreover, to calculate the first two parts of (Eq. 

(2.1.29)) by using two centre integrals in k-space, which are defined as follows: 

 

⟨𝛹1|𝑂̂|𝛹2⟩ = ∫𝛹1
∗(𝑘) 𝑂̂𝛹1(𝑘)𝑒

−𝑖𝑘.𝑅𝑑𝑘                                                        (2.1.30) 

 

From last equation, by taking a Fourier transforms in k-space with 𝛹𝛼 corresponding to 

either the basis orbitals (for 𝑂̂ = 𝑇̂) or the Kleinmann-Bylander pseudopotential 

projects (for 𝑂̂ = 𝑉𝑖
𝐾𝐵). The final three parts in (Eq. 2.1.29) that are calculated on a 

three-dimensional real space grid with a fineness ∆𝑥 controlled a grid cut-off energy ∈𝑐, 
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which is equivalent to a plane-wave cut-off  𝜖𝑐 =
𝜋2

2∆𝑥
 . Within of all calculations a cut-

off energy of 250 Ry has been used to provide adequate accuracy. 

 

2.7. Calculations in Practice 

To begin calculations, we have to start the computation. The first step is to build the 

atomic configuration of the system, and then the appropriate pseudopotentials are 

required for each component, which is distinctive for each exchange-correlation 

functional. Computationally, the main reason to choose an appropriate basis set for 

every element present in the calculation is in terms of time and memory. Therefore, as 

known that more accurate calculations need to more computationally expensive, thus it 

takes a longer time and uses a larger memory. 

The fineness and density of the k-points that are another input parameters which leads 

to move  precise calculations, on which the wavefunctions are evaluated or energy 

convergence tolerance, as well as the periodic system, the Brillouin zone sampling for 

the k-space integral. 

The next step is to generate the initial charge density, assuming there is no interaction 

between atoms. If the pseudopotentials are known, then this step is simple, and the total 

charge density could be the sum of the atomic densities. The self-consistent calculation 

begins by calculating the Hartree potential and exchange-correlation potential, as shown 

that in figure 2.1. 
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Figure 2.7.1: Schematic of the self-consistency process within SIESTA. 

 

Therefore, the density is represented in real space, the Hartree potential has been 

obtained by solving the Poisson equation with the multi-grid [51] or fast Fourier 

transform [51-52]. 

By solving the Kohn-Sham equations and obtaining a new density 𝜌(𝑟), the next 

iteration is started, as shown in figure 2.1, on which the end of iteration when the 
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necessary convergence criteria are reached. Thus, we get the ground state Kohn-Sham 

orbitals as well as the ground state energy for a given atomic configuration that are 

achieved. For geometric optimization, the step that mentioned above described is in 

another loop, which is controlled via conjugate gradient method [53-54] to obtain the 

minimal ground state and the corresponding atomic configuration. Finally, when the 

self-consistency is implemented, the Hamiltonian and overlap matrices could be 

extracted so that they can be used within a scattering calculation.  
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Chapter 3 

 

 

 Theory of Quantum Transport 

3.1. Introduction 

The goal of molecular electronics is to understand the electrical behaviour and 

characteristics of molecular junctions. One of the challenges is how to connect the 

molecular structures to bulk electrodes to investigate electronic properties. The contact 

strength between the molecule and the metallic electrodes is generally a significant part 

in determining the transport properties, due to scattering processes within a 

lead|molecule|lead framework. The main theoretical method to study scattering in these 

systems is through the Green’s function formalism.  

The aim of this chapter is to briefly introduce the Landauer formalism with a simple 

derivation. To introduce of the concept of Green’s functions, starting with a simple one-

dimensional chain before expanding to systems of arbitrarily complex geometry.  
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3.2. The Landauer Formula 

The standard theoretical model to describe transport phenomena in ballistic mesoscopic 

systems is the Landauer formula [1-2], which is an applicable method for phase 

coherent systems. To begin with, we assume that the system connects two large 

reservoirs with a scattering regain, as shown in figure 3.1.1, and in this case all inelastic 

relaxation processes are restricted to the reservoirs [3]. Therefore, the electron transport 

passing through the system is formed as a quantum mechanical scattering problem. The 

second important assumption is that this system is connected to external reservoirs by 

ideal quantum wires, which behave as waveguides for the electron waves. 

 

 

Figure 3.2.1: A mesoscopic scatterer connected to contacts by ballistic leads. The chemical 

potential in the contacts is μL and μR respectively. If an incident wave packet hits the scatterer 

from the left, it will be transmitted with probability T= tt* and reflected with probability R = rr*. 

Charge conservation requires T + R = 1. 

 

The mesoscopic scatter as shown in figure 3.2.1, is connected to two electron reservoirs, 

and these reservoirs have slightly different chemical potential 𝜇𝐿 − 𝜇𝑅 = 𝛿𝐸 > 0, and 

that leads to the movement of electrons from the left to the right reservoir. We will 

discuss the solution of one open channel for one electron: the incident electrical current 

δI that is generated by the chemical potential gradient, as given by: 
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𝛿𝐼 = 𝑒𝜐𝑔
𝜕𝑛

𝜕𝐸
𝛿𝐸 = 𝑒𝜐𝑔

𝜕𝑛

𝜕𝐸
(𝜇𝐿 − 𝜇𝑅)                                              (3.2.1) 

the electron charge is e, the group velocity is 𝜐𝑔, and 
𝜕𝑛

𝜕𝐸
  is density of states per unit 

length in the lead in the energy window that can be defined by the chemical potentials 

of the contacts: 

𝜕𝑛

𝜕𝐸
=
𝜕𝑛

𝜕𝑘

𝜕𝑘

𝜕𝐸
=
𝜕𝑛

𝜕𝑘

1

𝜐𝑔ℏ
                                                                   (3.2.2) 

As in one-dimension, after involving a factor of 2 for spin dependency 
𝜕𝑛

𝜕𝑘
=

1

𝜋
. When 

we substitute into Eq. 3.2.2, we will find that 
𝜕𝑛

𝜕𝐸
=

1

𝜐𝑔ℎ 
, which simplifies Eq. 3.2.1 to:  

𝛿𝐼 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝛿𝑉                                                        (3.2.3) 

where 𝛿𝑉 represents the voltage generated by the potential mismatch. According to Eq. 

3.2.3, the absence of a scattering region, the conductance of a quantum wire with one 

open channel is 
𝑒2

ℎ
 which is around 77.5 μS, or the resistance is 12.9 kΩ.  In other 

words, if we consider a scattering region, the current passing through the scatterer to the 

right lead will be: 

𝛿𝐼 =
2𝑒2

ℎ
T𝛿𝑉 ⇒

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
T                                                     (3.2.4) 

This equation is the Landauer formula, relating the conductance G of a mesoscopic 

scatter to the transmission probability T for electrons passing through it. Also, it 

describes the linear response conductance, here it only holds for small bias voltages 

ie. 𝛿𝑉 ≈ 0.  
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In the case where there is more than one open channel, the Landauer formula has been 

generalised by Büttiker [2], where the sum of all the transmission amplitudes leads, the 

formula to become: 

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
∑|𝑡𝑖,𝑗|

2

𝑖,𝑗

=
2𝑒2

ℎ
𝑇𝑟(𝑡𝑡† )                                             (3.2.5) 

 

Here, 𝑡𝑖,𝑗 represents the amplitude of transmission describing scattering from the jth 

channel of the left lead to ith channel of the right lead and G is the electrical 

conductance. According to the definition of transmission amplitudes, the reflection 

amplitudes 𝑟𝑖,𝑗 could be introduced to describe scattering processes where the particle is 

scattered back to the same lead as it came from it, here 𝑟𝑖,𝑗 characterizes the probability 

of a particle arriving in channel j is reflected to channel i of the same lead. By 

combination the amplitudes of transmission and reflection, we can produce the 

scattering matrix which we call the S matrix, which connects states coming from the left 

lead to the right and vice versa, as follows: 

𝑆 = (
𝑟               𝑡′

𝑡               𝑟′
)                                                                                  (3.2.6) 

In this equation, r and t represent the electrons transferring from the left, also r' and t' 

describe electrons coming from the right. When we go back to the equation (3.2.5), 

which suggests that r, t, r' and t' are matrices for more than one open channel, and in the 

presence of a magnetic field which can be complex. The S matrix is an important item 

in the scattering theory. In other words, it is useful not only in describing linear 

transport, but also in other problems such as adiabatic pumping [4]. 
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3.3. One Dimension 

To calculate the scattering matrix for a simple one-dimensional system, it is necessary 

to give an outline of the generalised methodology. In what follows, a Green’s function 

approach is used in the derivation of a simple one-dimension lattice (section 3.3.1), and 

following this a calculation of the scattering matrix of a one-dimension scatter (section 

3.3.2). 

 

3.3.1. Perfect One-Dimensional Lattice 

The form of the Green’s function for a simple one-dimensional lattice will be discussed 

with on-site energies ε0 and real hopping parameters -γ as shown in figure (3.3.1).  

 

Figure 3.3.1: One-dimensional periodic lattice tight-binding approximation with on-site 

energies ε0 and hopping parameters γ. 

 

The Schrödinger equation describes the system’s wavefunction with the Hamiltonian H, 

    Ĥ|𝜓⟩ = 𝐸|𝜓⟩                                                                            (3.3.1) 

The wavefunction 𝛹𝑧 is expanded in a one-dimensional orthogonal localized basis set 

|𝑧′⟩: 

|𝜓⟩ = ∑𝜓𝑧′ |𝑧
′⟩                                                                          (3.3.2)      
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Substituting (Eq. 3.3.2) in (Eq. 3.3.1) and multiplying the result by |𝑧⟩ yields: 

∑𝐻𝑧,𝑧′𝜓𝑧′ = 𝐸𝜓𝑧                                                                        (3.3.3) 

Hence,  

                      𝐻𝑧,𝑧′ = ⟨𝑧|Ĥ|𝑧′⟩   

The Hamiltonian matrix has the form,  

  𝐻 = [

⋱ 
−𝛾
0
0

−𝛾 
𝜀0
−𝛾
0

0
−𝛾
𝜀0
−𝛾

0 
0
−𝛾
⋱

]                                                                  (3.3.4) 

The Schrödinger equation at a lattice site z in terms of the energy and wavefunction 𝛹𝒵 

is given by (Eq. 3.3.6): 

(𝐸 − 𝐻)𝛹 = 0                                                                              (3.3.5) 

 

𝜀0𝛹𝑧 − 𝛾𝛹𝑧+1 − 𝛾𝛹𝑧−1 = 𝐸𝛹𝑧                                                  (3.3.6) 

By using the wavefunction as given by Block’s theorem for the perfect lattice chain 

which has the form 𝛹𝑧 =
1

√𝜐𝑔
𝑒𝑖𝑘𝑧, where −𝜋 ≤  𝑘 < 𝜋.  The Schrödinger equation 

(3.3.6) can be solved to give the dispersion relation: 

𝐸 = 𝜀0 − 2𝛾𝑐𝑜𝑠𝑘                                                                          (3.3.7) 

The group velocity can be normalized by  

                  𝜐𝑔 =
𝜕𝐸

𝜕𝑘
= 2𝛾 sin(𝑘)                                                                               (3.3.8) 

Hence, k is the wavenumber. It is clear that for a given energy we can see there are two 

wavefunctions that satisfy (Eq. 3.3.1), and their k and v have opposite signs.  

To calculate the retarded Green’s function 𝑔(𝑧, 𝑧′), which is closely related to the 

wavefunction, the following equation is solved: 
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(𝐸 − 𝐻)𝑔(𝑧, 𝑧′) = 𝛿𝑧, 𝑧′                                                                 (3.3.9) 

In general, the retarded Green’s function 𝑔(𝑧, 𝑧′) explains the response of a system at a 

point z because of an excitation (a source) at point 𝑧′. In reality, the excitation give rise 

to two waves, which travel outwards with amplitudes A and B in the directions shown 

in figure (3.3.2). 

 

Figure 3.3.2: Retarded Green’s function of an infinite one-dimensional lattice. The excitation at  z =  z′ 

causes waves to propagate left and right with amplitudes A and B respectively. 

 

The resulting waves can be presented as: 

             𝑔(𝑧′, 𝑧 ) = 𝐵𝑒𝑖𝑘𝒵                          𝑧 >  𝑧′ 

 𝑔(𝑧′, 𝑧 ) = 𝐴𝑒−𝑖𝑘𝒵                         𝑧 <  𝑧′                                           (3.3.10) 

 

In this equation, the solution satisfies (Eq. 3.3.9) at every point except 𝑧 =  𝑧′. To 

overcome this, the Green’s function must be continuous (Eq. 3.3.11), and therefore the 

two are equated at 𝑧 =  𝑧′:  

[𝑔(𝑧, 𝑧′)]𝑧=𝑧′ 𝑙𝑒𝑓𝑡 = [𝑔(𝑧, 𝑧′)]𝑧=𝑧′ 𝑟𝑖𝑔ℎ𝑡                                        (3.3.11) 

  𝐵𝑒𝑖𝑘𝑧
′
= 𝐴𝑒−𝑖𝑘𝑧

′
  ⟹    𝐴 =  𝐵𝑒2𝑖𝑘𝑧

′
                                                (3.3.12) 

By substituting (Eq. 3.3.12) into the Green’s function equation (3.3.10), we will find as 

shown: 

𝑔(𝑧′, 𝑧) = 𝐵𝑒𝑖𝑘𝑧                        = 𝐵𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘(𝑧−𝑧

′)           𝑧 ≥ 𝑧′ 
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𝑔(𝑧′, 𝑧) = 𝐵𝑒2𝑖𝑘𝑧
′
𝑒−𝑖𝑘𝑧          = 𝐵𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧

′−𝑧)           𝑧 ≤ 𝑧′                      (3.3.13) 

We can rewrite the equation (3.3.13) as:  

𝑔(𝑧, 𝑧′) = 𝐵𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘|𝑧−𝑧

′|                                                                   (3.3.14) 

To find the value of the constant B, we use equation (3.3.9) we use Eq. (3.3.6) which for 

𝑧 = 𝑧′ given: 

                       (𝜀𝑜 − 𝐸)𝐵 − 𝛾𝐵 𝑒𝑖𝑘 − 𝛾𝐵𝑒𝑖𝑘 = 1                                  (3.3.15) 

                                 𝛾𝐵(2𝑐𝑜𝑠𝑘 − 2𝑒𝑖𝑘) = 1    

                                𝐵 =
1

2𝑖𝛾𝑠𝑖𝑛𝑘
=

1

𝑖ℏ𝜐𝑔
 

where the group velocity, found from the dispersion relation equation (3.3.7), is: 

              𝜐𝑔 =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
=

2𝑖𝛾𝑠𝑖𝑛𝑘

ℏ
                                                      (3.3.16) 

We can rewrite the retarded Green’s function as shown: 

            𝑔𝑅(𝑧 − 𝑧′) =
1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘|𝑧−𝑧

′|                                            (3.3.17) 

The literature [5,6,7] shows a more thorough derivation. The next step is to introduce a 

defect into the lattice to create a scattering region and then a transmission coefficient 

can be calculated. 

 

3.3.2. One-Dimensional (1-D) Scattering 

In this section, I will obtain the Green’s function of a system that has two one-

dimensional tight binding semi-infinite leads, connected by a coupling element α. The 
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two leads have equal on-site potentials 𝜀0 and coupling elements −𝛾, as shown in figure 

3.3.3. 

 

Figure 3.3.3: Simple tight-binding model of a one-dimensional scatterer attached to one-

dimensional leads. 

 

To solve this problem, I will derive the transmission and reflection equations for a 

particle moving from the left lead to right lead through the scattering region. First, the 

Hamiltonian that takes the form of an infinite matrix, is given by: 

𝐻 =

(

 
 
 

⋱
−𝛾
0
0
0
0

−𝛾
𝜀0
−𝛾
0
0
0

0
−𝛾
𝜀0
𝛼
0
0

0
0
𝛼
𝜀0
−𝛾
0

0
0
0
−𝛾
𝜀0
−𝛾

0
0
0
0
−𝛾
⋱ )

 
 
 
= (

𝐻𝐿          

−
−

𝑉𝑐
†        

𝑉𝑐
−
−
𝐻𝑅

)                                        (3.3.18) 

Here, 𝐻𝐿 and 𝐻𝑅  are the Hamiltonians of the left lead and right lead, respectively. These 

leads are the semi-infinite equivalent of the Hamiltonian that is shown in (Eq. 3.3.4), 

and Vc is the coupling parameter connecting them. If γ is real, then the dispersion 

relation corresponding to the leads which is introduced above in (Eq. 3.3.7), and also 

the group velocity was written in (Eq. 3.3.16). By calculating the Green’s function of 

this problem, we can obtain the scattering amplitudes. So, the form for the solution of 

equation (3.3.9), which is given as: 

           𝐺 = (𝐸 − 𝐻)−1                                                     (3.3.19) 
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This equation can be singular if the energy E is equal to eigenvalues of the Hamiltonian 

H, to deal with this it is practical to consider the limit: 

     𝐺∓ = lim
𝜂→0

(𝐸 − 𝐻 ± 𝑖𝜂)−1                                           (3.3.20) 

 

Figure 3.3.4: shows the singularity behaviour of function (Eq 3.3.21). 

Hence, η denotes a positive number and G∓ represents the retarded (advanced) Green’s 

function. In what follows, the retarded Green’s function that has been used in, and the 

positive sign only has been chosen. For the infinite one- dimensional chain, the retarded 

Green’s function can be defined in (Eq. 3.3.17), which is given as: 

      𝑔𝑧𝑧′
∞ =

1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘|𝑧−𝑧′|                                                     (3.3.21) 

Hence, z and z’ denote the labels of the sites in the chain and sufficient boundary 

conditions, which are needed to give the Green’s function of a semi-infinite lead. The 

lattice is semi-infinite; therefore, the chain should be terminated at a given point 𝑧0. The 

boundary condition is achieved via adding a wavefunction to the Green’s function 
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equation to represent the mathematical part of this condition. So, the wavefunction for 

this case is given as: 

 

   𝛹𝑧,𝑧′
𝑧0 = −

𝑒𝑖𝑘(𝑧+𝑧′−2𝑧0)

𝑖ℏ𝜐𝑔
                                                   (3.3.22) 

 

Here, the labels of the sites of molecular chain at boundary conduction are 𝑧 = 𝑧′ =

𝑧0 − 1. Therefore, to obtain the Green’s function 𝑔𝑧𝑧′ = 𝑔𝑧𝑧′
∞ +𝛹𝑧,𝑧′

𝑧0   will have the 

simple form: 

     𝑔𝑧0−1,𝑧0−1 = −
𝑒𝑖𝑘

𝛾
                                               (3.3.23) 

 

In the case where there is no coupling between the molecule and the leads, α = 0, the 

Green’s function can be given as: 

 

                  𝑔 =

(

 
 
−

𝑒𝑖𝑘

𝛾

0
0
0

     0
0
0
0

0
0
0
0

0
0
0

−
𝑒𝑖𝑘

𝛾 )

 
 
= (

𝑔𝐿
0
0
0

     0
0
0
0

0
0
0
0

0
0
0
𝑔𝑅

)                    (3.3.24) 

 

If we consider a switch on of the interaction, then to obtain the Green’s function of the 

coupled leads of this system, Dyson’s equation is written: 

 

       𝐺−1 = (𝑔−1 − 𝑉)                                          (3.3.25) 
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where V is the operator that describes the interaction connecting the leads, which has the 

form: 

                    𝑉 = (

0
0
0
𝑉𝑐

†

     0
0
0
0

0
0
0
0

𝑉𝑐
0
0
0

) = (

0
0
0
−𝛼

     0
0
0
0

0
0
0
0

−𝛼
0
0
0

)                         (3.3.26) 

 

By solving the Dyson’s equation (3.3.25), we will obtain: 

 

                  𝐺 =
1

𝛼2−𝛾2𝑒−2𝑖𝑘
(

𝛾𝑒−𝑖𝑘

0
0
−𝛼

     0
0
0
0

0
0
0
0

−𝛼
0
0

𝛾𝑒−𝑖𝑘
)                           (3.3.27) 

 

Here, we can calculate the transmission (t) and the reflection (r) amplitudes from the 

Green’s function equation (3.3.27). This is obtained by using the Fisher-Lee relation [3, 

7], which relates the scattering amplitudes of a scattering problem to the Green’s 

function of the problem. The Fisher-Lee relations for our case is given: 

                                 𝐺1,1 =
1

𝑖ℏ𝜐𝑔
(1 + 𝑟) 

 

𝐺1,2 =
1

𝑖ℏ𝜐𝑔
𝑡𝑒𝑖𝑘                                          (3.3.28) 

𝑟 = 𝑖ℏ𝜐𝑔𝐺1,1 -1                                          (3.3.29) 

          and 

𝑡 = 𝑖ℏ𝜐𝑔𝐺 1,2𝑒
𝑖𝑘                                        (3.3.30) 
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Therefore, these amplitudes will be corresponded to particles incident from the left. On 

the other hand, particles are travelling from the right side, which means these 

expressions could be used for transmission tꞋ and reflection rꞋ amplitudes. 

According to these coefficients above, the probability can be defined: T = tt*,  R = rr*. 

Thus, the transmission probability for this case can be given as: 

 

                                         T=
σ2

(γ2−α2)2+σ2
                                      (3.3.31) 

 

The parameters in this equation are 𝜎 = 2𝛾𝛼𝑠𝑖𝑛𝑘, and if α = γ that means the 

transmission T=1. In the case when α is greater or smaller than γ, which leads to create 

scattering region, and could be resulted to the transmission T ≤ 1.  

Furthermore, we are now in the possession of the full scattering matrix, and the 

Landauer formula here can be used (Eqn. 3.2.4) to calculate the zero bias conductance.  

The procedures that are used in this analytical solution for the conductance G of a one-

dimensional scatterer could be generalized for more complex geometries.  

 

3.4. Generalization of the Scattering Formalism 

Following the Lambert’s derivation [8,9], I will show a generalized approach to 

transport calculations in this section. This approach has three parts; firstly, the surface 

Green’s function of crystalline leads is computed. Secondly, the technique of 

decimation is indicated to reduce the dimensionality of the scattering region. Finally, 

calculating the scattering amplitudes by using a generalization of the Fisher-Lee 

relation.  
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3.4.1 Hamiltonian and Green’s Function of the Leads 

To study the general semi-infinite crystalline lead of arbitrary complexity then the 

structure of the Hamiltonian is a generalization of the one-dimensional (1-D) lead 

Hamiltonian in (Eq. 3.3.4), as shown in figure 3.4.1. 

 

 

Figure 3.4.1: Schematic representation of a semi-infinite generalized lead. It shows that H0 and 

H1 are the Hamiltonians and hopping energies, respectively. The direction Z is defined to be 

parallel to the axis of the chain. 

 

 

As shown in figure 3.4.1, the general system topology, the total Hamiltonian whose 

structure can be written as an infinite block tridiagonal matrix form: 

      𝐻 =

(

    

⋱ 𝐻1
𝐻1

† 𝐻0

0 0
𝐻1 0

0 𝐻1
†

0 0

𝐻0 𝐻1
𝐻1

† ⋱

  

)

                                                          (3.4.1) 

Hence, 𝐻0 is the on-site energies of orbitals, and orbitals interactions between each 

other in the plane perpendicular through the direction of transport z-axis, and 𝐻1  is the 

coupling between the orbitals belonging to nearest neighbour slices. In addition, 𝐻0 and 

𝐻1 can be general complex matrices. By solving the Schrödinger equation, the spectrum 

of the Hamiltonian H has been calculated, and then the Schrödinger equation of this 

system can be taken the form: 
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  𝐸𝛹𝒵 = 𝐻0𝛹𝒵 + 𝐻1𝛹𝒵+1 + 𝐻1
†𝛹𝒵−1                                                   (3.4.2) 

Hence, the Here, 𝛹𝑧 presents the column vector whose elements identify the amplitude 

of the wavefunction on each degree of freedom within a slice located at point z along 

the Z-direction, and the main idea from equation (3.4.2) is satisfied for all values Z, and 

the assumption that the system is infinity periodic in the Z-axis only. Therefore, the on-

site wavefunction 𝛹𝑧 could be represented in the Block form, which consists of a 

product of a propagating plane wave and a wavefunction 𝜙𝑘 that is perpendicular to the 

transport Z-direction. If the dimensions of intra- Hamiltonian, 𝐻0, M × M (or consists of 

M site energies and their respective hopping elements), the perpendicular wavefunction 

𝜙𝑘, can have M degrees of freedom and take the form of a 1× M dimensional vector. 

Thus, the wavefunction 𝛹𝒵: 

        𝛹𝒵 = √𝑛𝑘 𝑒
𝑖𝑘𝒵𝜙𝑘                                                                 (3.4.3) 

Here, 𝑛𝑘 presents an arbitrary normalization parameter, when we substitute this 

equation into the Schrödinger equation (3.4.2), it will be given: 

                      (𝐻0 + 𝑒𝑖𝑘𝒵𝐻1 + 𝑒−𝑖𝑘𝒵𝐻1
† − 𝐸)𝜙𝑘 = 0                                 (3.4.4) 

Generally, to calculate the band structure for such a problem, one can select values of k 

and then calculate the eigenvalues at that point 𝐸 = 𝐸𝑙(𝑘), where l = 1,….. M. the 

parameter l indicates to the bond index. So, for each value of k, there could be M 

solutions to the eigenproblem, and thus M energy values. What following, by choosing 

multiple values for k, it is relatively simple to build up a band structure.  

Therefore, to obtain the value of k in the scattering problem. Firstly, we have to find the 

value of E, instead of finding the E values at a given k. Secondly, we get the values of k 

at a given E, and this is approaching the problem from the opposite direction. Moreover, 

to complete successfully this problem, there is a root-finding that is used to perform 
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this, however, an enormous numerical effort is required due to the wave numbers are in 

general complex. Furthermore, the eigenvalue for this problem can be written down and 

resulted from the energy is the input, and then the wave numbers are as the results: 

                𝑣𝑘 = 𝑒−𝑖𝑘𝒵𝜙𝑘                                                                      (3.4.5) 

By combining this equation with (Eq. 3.4.4): 

               (𝐻1
−1(𝐻0 − 𝐸) −𝐻1

−1𝐻1
†

𝐼 0
) (
𝜙𝑘

𝑣𝑘
) = 𝑒𝑖𝑘𝒵 (

𝜙𝑘

𝑣𝑘
)                              (3.4.6) 

For a layer Hamiltonian 𝐻0, the size of Hamiltonian matrix M × M, equation (3.4.6) will 

yield 2M eigenvalues, 𝑒𝑖𝑘𝑙𝒵 and eigenvectors 𝜙𝑘 of the size M. therefore, these states 

can be arranged to four parts depending on whether they are propagating or decaying, as 

well as whether they are left going or right going. For the case that is propagating, when 

it has a real number of  𝑘𝑙, and second case that is decay, if it has an imaginary part. 

That means, if the imaginary case of the wave number is positive and will be a left 

decay state. In contrast, if it has a negative imaginary part it is a right decaying state. 

Therefore, the propagating states are arranged according to the group velocity of the 

state: 

          𝑣𝑘𝑙 =
1

ℏ

𝜕𝐸𝑘,𝑙

𝜕𝑘
                                                        (3.4.7) 

 

If the group velocity 𝑣𝑘𝑙 of the state is positive, then there will be a right propagating 

state, while if it is negative, a left propagating state will be found.  
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Table 3.4.1: Sorting of the eigenstates into left and right propagating and decaying 

states according to the wave number and group velocity. 

 

 

 

 

 

 

To understand and distinguish between the left and right propagating/decaying state, we 

would refer 𝑘𝑙̅ to the left propagating/decaying set, and 𝑘𝑙 indicates to the right 

propagating/decaying set. For the wave function, 𝜙𝑘̅𝑙
 and 𝜙𝑘𝑙 are associated to a left and 

right states, respectively. In addition, for H1 case, if it is invertible, then there must be 

the same, M, of the left and right states. On other hand, if 𝐻1 is singular, then the matrix 

in equation (3.4.6) cannot be constructed, since it relies of the inversion of 𝐻1. 

Therefore, there are several methods which can be used to overcome this problem. The 

first method [10] which uses the decimation technique to create an effective non-

singular 𝐻1. There is other solution may be to populate a singular, 𝐻1, with small 

random numbers which introduces an explicit numerical error. Therefore, this method is 

reasonable as the introduced numerical error might be as small as the numerical error 

introduced by decimation. Furthermore, another solution is re-written equation (3.4.6) 

such as 𝐻1 need not be inverted: 

 

          (
𝐻0 − 𝐸 −𝐻1

†

𝐼  0
) (
𝜙𝑘

𝑣𝑘
) = 𝑒𝑖𝑘𝒵 (

𝐻1 0
0 𝐼

) (
𝜙𝑘

𝑣𝑘
)                          (3.4.8) 

    

  

Category 

  

Left 

  

  

Right 

  
Decaying 

  
Im (k

l
) > 0 

  
Im (k

l
) < 0 

  
Propagating 

  

  
Im (k

l
) = 0, 𝜗𝑘𝑙 < 0   

  
Im (k

l
) = 0, 𝜗𝑘𝑙 > 0   
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However, by solving this generalized eigenproblem is more computationally expensive, 

and the above-mentioned methods work reasonably in disrupting the problem of a 

singular H1 matrix. And that means the number of the matrix must be the same of the 

left and right going states, whether H1 is singular or not. Therefore, the solution of the 

equation (3.4.4) to the eigenproblem at a given energy E, there will not be exactly form 

an orthogonal set of states. And this is decisive because we might have to deal with non-

orthogonality at constructing the Green’s function, which is necessary to present the 

duals to 𝜙𝑘𝑙 and 𝜙𝑘̅𝑙
, which are given as: 

                                 𝜙𝑘𝑖
𝜙̃𝑘𝑗
† = 𝜙𝑘̅𝑖

𝜙̃𝑘̅𝑖

† = 𝛿𝑖𝑗                                        (3.4.9) 

And this yields the generalized completeness relation: 

 

           ∑ 𝜙̃𝑘𝑙
†𝑀

𝑙=1 𝜙𝑘𝑙 = ∑ 𝜙̃𝑘̅𝑙

†𝑀
𝑙=1 𝜙𝑘̅𝑙

= 𝐼                           (3.4.10)  

By calculating the Green’s function for the infinity system, and we are in possession of 

the whole set of eigenstates at a given energy and by satisfying the proper boundary 

conditions for the semi-infinite electrodes at their surface. At condition 𝒵 ≠ 𝒵′, the 

Green’s function satisfies the Schrödinger equation, and we will build up the Green’s 

function from the mixture of the eigenstates 𝜙𝑘𝑙 and 𝜙𝑘̅𝑙
. 

𝑔(𝑧, 𝑧′) =

{
 
 

 
 ∑ 𝜙𝑘𝑙𝑒

𝑖𝑘𝑙(𝑧− 𝑧
′)𝑤𝑘𝑙

†                                      𝑧 ≥  𝑧′𝑀
𝑙=1

𝑌
𝑌

∑ 𝜙𝑘̅𝑙
𝑒𝑖𝑘̅𝑙(𝑧− 𝑧

′)𝑤𝑘̅𝑙

†                                      𝑧 ≤  𝑧′𝑀
𝑙=1

                (3.4.11) 

 

Hence, the M-component vectors 𝑤𝑘𝑙 and 𝑤𝑘̅𝑙
 are to be determined, also there are 

similarities of structures between this equation and equation (3.3.10), as well as all the 

degrees of freedom in the transverse direction are involved in the vectors 𝜙𝑘 and 𝑤𝑘. 

So, the priority is to obtain the 𝑤 vectors. As mentioned in the section (3.3.1), the 
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equation (3.4.11) must be continuous when  𝑧 ≠ 𝑧′, and should achieve the Green’s 

function (Eq. 3.3.9). The first condition is given as:  

      ∑ 𝜙𝑘𝑙𝑤𝑘𝑙

†   =𝑀
𝑙=1 ∑ 𝜙𝑘̅𝑙𝑙 𝑤𝑘̅𝑙

†   
                                              (3.4.12) 

The second condition is: 

∑ [(𝐸 − 𝐻0)𝜙𝑘𝑙𝑤𝑘𝑙

† + 𝐻1𝜙𝑘𝑙𝑒
𝑖𝑘𝑙  𝑤𝑘𝑙

† + 𝐻1
†𝜙𝑘̅𝑙

𝑒−𝑖𝑘̅𝑙  𝑤𝑘̅𝑙

† ]𝑀
𝑙=1 = 𝐼      

 

And these two conditions employ the following equation: 

∑[(𝐸 − 𝐻0)𝜙𝑘𝑙𝑤𝑘𝑙

† + 𝐻1𝜙𝑘𝑙𝑒
𝑖𝑘𝑙  𝑤𝑘𝑙

† + 𝐻1
†𝜙𝑘̅𝑙

𝑒−𝑖𝑘̅𝑙  𝑤𝑘̅𝑙

† + 𝐻1
†𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙  𝑤𝑘𝑙

† 

𝑀

𝑙=1

+ 𝐻1
†𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙  𝑤𝑘𝑙

† ] = 𝐼 

∑[𝐻1
†𝜙−𝑘̅𝑙

𝑒−𝑖𝑘̅𝑙  𝑤𝑘̅𝑙

† + 𝐻1
†𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙  𝑤𝑘𝑙

† ]             

𝑀

𝑙=1

+∑[(𝐸 − 𝐻0) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

𝜙𝑘𝑙  𝑤𝑘𝑙

† = 𝐼              (3.4.13) 

 

From the Schrödinger equation (Eq. 3.4.4), it is known; 

∑ [(𝐸 − 𝐻0) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]𝑀
𝑙=1 = 𝜙𝑘𝑙 = 0                             (3.4.14) 

And this yields: 

∑ 𝐻1
† (𝜙𝑘̅𝑙

𝑒−𝑖𝑘̅𝑙  𝑤𝑘̅𝑙

† −𝜙𝑘𝑙𝑒
−𝑖𝑘𝑙  𝑤𝑘𝑙

† )𝑀
𝑙=1 = 𝐼                                     (3.4.15) 

 

By using dual vectors defined in Eq. (3.4.9), and multiplying Eq. (3.4.10) by 𝜙̃𝑘𝑝, which 

is given: 

              ∑ 𝜙̃𝑘𝑝
†𝑀

𝑙=1 𝜙𝑘̅𝑙
𝑤𝑘̅𝑙

† =  𝑤𝑘𝑝

†                                                        (3.4.16) 
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and similarly multiplying by 𝜙̃𝑘̅𝑙
 yields: 

         ∑ 𝜙̃𝑘̅𝑝

†𝑀
𝑙=1 𝜙𝑘𝑙𝑤𝑘𝑙

† =  𝑤𝑘̅𝑝

† 
                                                      (3.4.17) 

 

Also, utilizing the continuity Eq. (3..4.12),  Eq. (3.4.16),  Eq. (3.4.17), then the Green’s 

function 

 Eq. (3.4.15) becomes: 

 

∑ ∑ 𝐻1
† (𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙𝜙̃𝑘𝑙
† − 𝜙𝑘̅𝑙

𝑒−𝑖𝑘̅𝑙𝜙̃𝑘̅𝑙

† )𝜙𝑘̅𝑝
𝑀
𝑝=1

𝑀
𝑙=1 𝑤𝑘̅𝑝

† = 𝐼           (3.4.18) 

 

And what follows: 

 

∑ [𝐻1
† (𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙𝜙̃𝑘𝑙
† − 𝜙𝑘̅𝑙

𝑒−𝑖𝑘̅𝑙𝜙̃𝑘̅𝑙

† )]
−1

=𝑀
𝑙=1 ∑ 𝜙𝑘̅𝑝

𝑀
𝑝=1 𝑤𝑘̅𝑝

† = ∑ 𝜙𝑘𝑝
𝑀
𝑝=1 𝑤𝑘𝑝

† 
              

                                                                                                                   (3.4.19) 

 

This directly gives us an expression for 𝑤𝑘
† 

: 

                        𝑤𝑘
† = 𝜙̃𝑘

†𝑣−1                                                       (3.4.20) 

Hence, 𝑣 is defined as: 

𝑣 = ∑ 𝐻1
† (𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙𝜙̃𝑘𝑙
† −𝜙𝑘̅𝑙

𝑒−𝑖𝑘̅𝑙𝜙̃𝑘̅𝑙

† )𝑀
𝑙=1                                   (3.4.21) 

In the equation (3.4.20), the wave function denotes to both left and right states. By 

substituting Eq. (3.60) into Eq. (3.51), gives the Green’s function of an infinite system: 

 

𝑔𝑧,𝑧′ 
∞ =

{
 
 

 
 ∑ 𝜙𝑘𝑙𝑒

𝑖𝑘𝑙(𝑧− 𝑧
′)𝜙̃𝑘

†𝑣−1                                   𝑧 ≥  𝑧𝑀
𝑙=1

𝑌
𝑌

∑ 𝜙𝑘̅𝑙
𝑒𝑖𝑘̅𝑙(𝑧− 𝑧

′)𝜙̃𝑘̅
†𝑣−1                                   𝑧 ≤  𝑧′𝑀

𝑙=1

                       (3.4.22) 
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In addition, to get the Green’s function for a semi-infinite lead, a wave function can be 

added to the Green’s function, and the boundary conditions should satisfy at the edge of 

the lead, as with the one-dimensional (1-D) case. The boundary condition hence is that 

the Green’s function must disappear at a given place, 𝑧 = 𝑧0. Therefore, in order to 

perform that (𝑔 = 𝑔∞ + ∆) has been added to the Green’s function (Eq. 3.4.22). 

 

∆= ∑ 𝜙𝑘̅𝑙
𝑀
𝑙,𝑝=1 𝑒𝑖𝑘̅𝑙(𝑧− 𝑧)𝜙̃𝑘̅𝑙

† 𝜙𝑘𝑝𝑒
𝑖𝑘𝑝(𝑧− 𝑧0)𝜙̃𝑘𝑝

† 𝑣−1                          (3.4.23) 

For going left: 

                      𝑔𝐿 = (𝐼 − ∑ 𝜙𝑘̅𝑙𝑙,𝑝 𝑒−𝑖𝑘̅𝑙𝜙̃𝑘̅𝑙

† 𝜙𝑘𝑝𝑒
𝑖𝑘𝑝𝜙̃𝑘𝑝

† ) 𝑣−1                           (3.4.24) 

And for going right: 

      𝑔𝑅 = (𝐼 − ∑ 𝜙𝑘̅𝑙𝑙,𝑝 𝑒𝑖𝑘̅𝑙𝜙̃𝑘̅𝑙

† 𝜙𝑘𝑝𝑒
−𝑖𝑘𝑝𝜙̃𝑘𝑝

† ) 𝑣−1                           (3.4.25) 

 

Therefore, we have a versatile method for calculating the surface Green's functions Eqs. 

(3.4.24) and (3.4.25)) for a semi-infinite lead utilizing the numerical approach in Eq. 

(3.4.6). in summary of all that is to obtain the Hamiltonian of the scattering region, and 

using DFT and combine this with the surface Green’s function by Dyson’s equation. So, 

to obtain the total Green’s function, as shown: 

                    𝐺𝑇 = [𝑔−1 − 𝐻]−1                                                (3.4.26) 

Where, 

                      𝑔 = (
𝑔𝐿 0
0 𝑔𝑅

)                                                       (3.4.27) 

Here, gL and gR represent the surface Green's functions of left and right leads that are 

given in equations (3.4.24) and (3.4.24), respectively.  
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3.4.2 Scattering Matrix and the Transport coefficients 

To calculate the scattering amplitudes, and deposing on the generalization of the Fisher-

Lee relation [7,13,14], and it is assumed that states which are normalized to carry unit 

flux, which gives the transmission amplitude from the left to right lead, as shown:  

 

                            𝑡ℎ𝑙 = 𝜙̃𝑘ℎ
† 𝐺01𝑣𝐿 𝜙𝑘𝑙  √|

𝑣ℎ

𝑣𝑙
|                                           (3.4.28) 

 

Here, 𝜙𝑘ℎ represents a right moving state in the right lead, and 𝜙𝑘𝑙 is a right moving 

state in the left lead. As well as, 𝑣ℎ and 𝑣𝑙 express the corresponding group velocities. 

For the reflection amplitudes in the left lead, which is given as: 

 

   𝑟ℎ𝑙 = 𝜙̃𝑘̅ℎ

† (𝐺00𝑣𝐿 − 𝐼)𝜙𝑘𝑙  √|
𝑣ℎ

𝑣𝑙
|                                    (3.4.29) 

 

All the states in the left lead are shown, 𝜙𝑘̅ℎ
 is a left moving state, 𝜙𝑘𝑙 is a right moving 

state and 𝑣𝐿 is the v operator which mentioned in Eqn. (3.4.5) for the left lead. 

 

For the right lead, we can define the scattering amplitude of particles coming from this 

side, as shown: 

 

         𝑡ℎ𝑙
′ = 𝜙̃𝑘ℎ

† 𝐺10𝑣𝑅 𝜙𝑘̅𝑙
 √|

𝑣ℎ

𝑣𝑙
|                                   (3.4.30) 

 

And  

         𝑟ℎ𝑙
′ = 𝜙̃𝑘ℎ

† (𝐺11𝑣𝑅 − 𝐼)𝜙𝑘̅𝑙
 √|

𝑣ℎ

𝑣𝑙
|                          (3.4.31) 

 

The group velocities and state vectors can be defined similarly as for electrons moving 

from the left to right lead. Therefore, the scattering matrix can be defined as the 

collections of transmission and reflection amplitudes connecting propagating states.  
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Figure 3.4.2: A Schematic representation of a two terminal device, showing the leads connected 

to the extended molecule of the scattering region, this includes the molecule plus some layers of 

the leads. 

 

The total transmission can be calculated for the system by summing over all channels, 

which can be written in terms of the trace of the transmission matrix [15]. 

 

 

𝑇 =  ∑ |𝑡𝑙ℎ|
2𝑀

𝑖ℎ = ∑ 𝑡𝑙ℎ𝑙ℎ 𝑡ℎ𝑙
∗ = 𝑇𝑟 (𝑡𝑡†)                             (3.4.32)  

 

 

3.4.3. Effective Hamiltonian of the Scattering Region 

In section, I have shown in the last section a coupling matrix between the surface of the 

semi-infinite leads, and the Dyson equation (3.3.6) that can be utilized to calculate the 

Green’s function of the scatterer. Therefore, the scattering region is not usually 

described simply as a coupling matrix between surfaces. Thus, it is useful to use the 

decimation trichinae to reduce the Hamiltonian down to such a structure. Other methods 
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have been developed [11, 12]. The decimation trichinae has been used in this thesis. We 

re-write again the Schrödinger equation: 

            ∑ 𝐻𝑖𝑗𝛹𝑗 = 𝐸𝛹𝑖𝑗                                                    (3.4.33) 

If we separate the lth degree of freedom in the system:  

                         𝐻𝑖𝑙𝛹𝑙 + ∑ 𝐻𝑖𝑗𝛹𝑗 = 𝐸𝛹𝑖𝑗≠𝑙                                    𝑖 ≠ 𝑙       (3.4.34) 

 

                        𝐻𝑙𝑙𝛹𝑙 + ∑ 𝐻𝑙𝑗𝛹𝑗 = 𝐸𝛹𝑙𝑗≠𝑙                                    𝑖 = 𝑙        (3.4.35) 

From last equation, we can express 𝛹𝑙 as shown: 

           𝛹𝑙 = ∑
𝐻𝑙𝑗𝛹𝑗

𝐸−𝐻𝑙𝑙
𝑗≠𝑙                                                         (3.4.36) 

Now, if we substitute Eq. (3.4.29) into Eq. (3.4.27) yields: 

 

                       ∑ [𝐻𝑖𝑗𝛹𝑗 +
𝐻𝑖𝑙𝐻𝑙𝑗𝛹𝑗

𝐸−𝐻𝑙𝑙
] = 𝐸𝛹𝑖𝑗≠𝑙                         𝑖 ≠ 𝑙               (3.4.37) 

On other hand, equation (3.4.30) can be considered as an effective Schrödinger 

equation, where the number of degree of freedom is lowered by one compared to 

equation (3.66). Therefore, the new effective Hamiltonian, 𝐻′, as shown: 

      𝐻𝑖𝑗
′ = 𝐻𝑖𝑗 +

𝐻𝑖𝑙𝐻𝑙𝑗

𝐸−𝐻𝑙𝑙
                                                          (3.4.38) 

This Hamiltonian is the decimated Hamiltonian produced by simple Gaussian 

elimination. A notable characteristic of the decimated Hamiltonian is that is energy 

dependent, which suits the method presented in former section very well. Without the 

decimation method, the Hamiltonian describing the system in general would take the 

form, as given: 
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      𝐻 = (

𝐻𝐿 𝑉𝐿 0

𝑉𝐿
† 𝐻𝑠𝑐𝑎𝑡𝑡 𝑉𝑅

0 𝑉𝑅
† 𝐻𝑅

)                                               (3.4.39) 

Now, if we look to parameters in this equation, it can have defined as 𝐻𝐿 and 

𝐻𝑅 indicate to the semi-infinite leads, 𝐻𝑠𝑐𝑎𝑡𝑡 indicates the Hamiltonian of the scatterer, 

𝑉𝐿 and 𝑉𝑅 are the coupling Hamiltonians which couple the original scattering region to 

the leads. Therefore, an new effectively equivalent Hamiltonian has been produced after 

decimation.  

            𝐻 = (
𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

)                                                      (3.4.40) 

Hence, 𝑉𝑐 indicates an effective coupling Hamiltonian, which now describes the whole 

scattering process.  Now the same steps as with the one-dimensional case can be 

applied; using Dyson’s equation (3.3.26). Hence, the Green’s function for the whole 

system is described by the surface Green’s function (Eqns. 3.64 and 3.65), and the 

effective coupling Hamiltonian from equation (3.4.33). 

 

  𝐺 = (
𝑔𝐿
−1 𝑉𝑐

𝑉𝑐
† 𝑔𝑅

−1
)

−1

= (
𝐺00 𝐺01
𝐺10 𝐺11

)                                   (3.4.41) 

 

3.5. Thermoelectric coefficients 

The thermoelectric effect in a system can be defined as conversion between thermal and 

electric energies, when there is a temperature difference Δ𝑇 and voltage difference Δ𝑉 

across it. This leads to an electric current I and heat current 𝑄̇   passing through a 

device. Therefore, the linear response for both currents (electric and heat) are related to 

the temperature Δ𝑇 and voltage Δ𝑉 differences through the thermoelectric coefficients 

G, L, and K [16-17]. 
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      (
𝐼
𝑄̇ 
) =

1

ℎ
 (
𝑒2𝐿0       

𝑒

𝑇
𝐿1

𝑒𝐿1         
1

𝑇
 𝐿2

)(
∆𝑉
∆𝑇

)                                           (3.5.1) 

Here, T represents the reference temperature, also at room temperature the transport 

through single-molecules is phase-coherent, with moments 𝐿𝑛 = 𝐿𝑛
↑ + 𝐿𝑛

↓  (n=0,1,2), 

where Ln is written as: 

 𝐿𝑛
𝜎 = ∫ (𝐸 − 𝐸𝐹)

𝑛𝑇𝜎(𝐸) (−
𝜕𝑓(𝐸,𝑇)

𝜕𝐸
) 𝑑𝐸

∞

−∞
                                 (3.5.2) 

where 𝑇𝜎(𝐸) is the transmission coefficient, and σ represents spin [↑, ↓] of transport of 

electrons passing through the single-molecule from one electrode to another [18], f 

(E,T) is the Fermi distribution function that is defined 𝑓(𝐸, 𝑇) = [𝑒(𝐸−𝐸𝐹) 𝑘𝐵𝑇⁄ + 1]−1 

where kB is Boltzmain’s constant. We can rewrite equation (3.5.2) in the terms of the 

electrical conductance (G), thermopower (S), Peltier coefficient (П), and the electronic 

contribution to the thermal conductance (ke), as shown: 

 

           (
∆𝑉
𝑄̇ 
) = (

1 𝐺⁄      𝑆
   Π        𝑘𝑒

) (
𝐼
Δ𝑇

)                                               (3.5.1) 

The electrical conductance, G is given by the Landauer formula: 

                   𝐺 =
2𝑒2

ℎ
𝐿0                                                                   (3.5.2) 

Here, h is Planck’s constant. The thermopower in this case is given:  

                     𝑆 = −
Δ𝑉

Δ𝑇
=

1

𝑒𝑇

𝐿1

𝐿0
                                                         (3.5.3) 

 The Peltier coefficient (П), 

 

                    Π =
1

𝑒

𝐿1

𝐿0
                                                                          (3.5.4) 
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And the electronic contribution to the thermal conductance (κe) is given: 

 

                     𝑘𝑒 =
1

ℎ𝑇
(𝐿2 −

𝐿1
2

𝐿0
)                                                          (3.5.5) 

 

From the above equations, the figure of merit 𝑍𝑇𝑒 = 𝑆2𝐺𝑇 𝑘𝑒⁄  [17-20] can be written 

as: 

 

                     𝑍𝑇𝑒 =
1

𝐿0𝐿2

𝐿1
2 −1

                                                                  (3.5.6) 

We can see the figure of merit ZT determines the efficiency of conversion heat into 

electricity. In the case when E is closed to Fermi energy, EF, then if transmission, T(E), 

changes slowly with, E, on the of scale KBT, and then the equations of conductance and 

thermopower take the form of the well-known formula20,21:                   

                   𝐺(𝑇) ≈ (
2𝑒2

ℎ
)𝑇(𝐸𝐹)                                                        (3.5.7) 

 

                   𝑆(𝑇) ≈ −∝ 𝑒𝑇 (
𝑑 𝑙𝑛𝑇(𝐸)

𝑑𝐸
)
𝐸=𝐸𝐹

                                          (3.5.8) 

where ∝= (
𝐾𝐵

ℎ
)
2 𝜋2

3
 is the Lorentz number. Therefore, from Eq. (3.5.7) it is seen that the 

thermopower S is enhanced by increasing the slope of lnT(E) close to E=EF. 

 

3.6 Phonon Thermal Conductance 

To calculate the thermal conductance of a system for different vibrational modes 

through a molecular junction, the xyz-coordinates of the molecule were relaxed, and 

these coordinates were displaced for each atom in this system in positive and negative 
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directions by force δq′ = 0.01 Å. The forces were then calculated in three directions qi = 

(xi, yi, zi) for each atom by using the siesta implementation DFT method without 

geometry relaxation. Thus, to construct the dynamical matrix from the values is 

constructed of the forces  𝐹𝑖
𝑞 = (𝐹𝑖

𝑥, 𝐹𝑖
𝑦
, 𝐹𝑖

𝑧) by using the formula: 

                           𝐷𝑖𝑗 =
𝐾𝑖𝑗
𝑞𝑞′

√𝑀𝑖 𝑀𝑗
                                                               (3.6.1) 

where 𝐾𝑖𝑗
𝑞𝑞′𝑖 ≠ 𝑗 is the interatomic force constant that is obtained from the second 

derivation of total energy, i and j are label atomic sides, q and q’ are Cartesian 

coordinates, 𝑀𝑖 is the mass of labelled atom. We can obtain  𝐾𝑖𝑗
𝑞𝑞′

 from the finite 

difference of the forces on atoms i and j from: 

 

                    𝐾𝑖𝑗
𝑞𝑞′

=
𝐹𝑖
𝑞
(𝛿𝑞𝑗

′)−𝐹𝑗
𝑞
(𝛿𝑞𝑗

′)

2𝛿𝑞𝑗
′                                                (3.6.2) 

Here, 𝛿𝑞𝑗
′  is displacement of atom j in the directions q’. So, the mass matrix M can be 

written   M = (MiMj)
1/2. To satisfy the conservation of momentum, the K for i = j 

(diagonal terms) is calculated from 𝐾𝑖𝑖 = −∑ 𝐾𝑖𝑗𝑖≠𝑗 . Therefore, the phonon thermal 

conductance κph at room temperature T can be calculated from the formula as given22: 

 

           𝑘𝑝ℎ(𝑇) =
1

2𝜋
∫ ℏ𝜔𝑇𝑝ℎ(𝜔)

𝜕𝑓𝐵𝐸(𝜔,𝑇)

𝜕𝑇

∞

0
𝑑𝜔                                   (3.6.3) 

 

Here,  𝑓𝐵𝐸(𝜔, 𝑇) = (𝑒
ℏ𝜔

𝑘𝐵𝑇 − 1)−1 is Bose−Einstein distribution function, ℏ is reduced 

Planck’s constant, as well as kB = 8.6 × 10−5 eV/K is Boltzmann’s constant. 
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Chapter 4 

 

 

Effect of substituent and inter-ring 

torsion in 4,4’-bipyridine molecular 

junctions 

 

In this chapter, the effect of substituent and torsion angle between two rings of 4,4’-

bipyridine molecular junction on electrical conductance, will be examined both 

theoretically and experimentally. Here, I demonstrate that varying the chemical groups 

of bipyridine leads to different torsion angle between phenyl rings. 

This study is a collaborative work and the experiment has been carried out in the 

Liverpool University (Prof. Richard J. Nichols group). 
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4.1 Introduction 

The transport characteristics of molecular scale circuits and the fundamental 

understanding of their structure-property relationships are key to the future design and 

implementation of molecular-scale electronics. Measurements of electronic properties 

of single-molecules have demonstrated that the conductance of a molecular junction is 

sensitive to the electrode structure, molecule-metal contact geometry, conformation of 

the molecular backbone [1-3], presence of dopants [4-7] and/or solvents [8-10], 

electrochemical potential [11-13], UV or visible illumination [14-17], temperature [18-

19], and many others. In the last decade, a series of experimental [14-17] and theoretical 

[21-22] studies performed on substituted 1,1’-biphenyl-4,4’-dithiols single-molecule 

junctions showed that the conductance of Au/molecule/Au junctions follows a simple 

cos2α dependence, where α is the inter-ring torsional angle. The same effect was also 

found in substituted benzidines (1,1’-biphenyl-4,4’-diamine) [23], confirming that the 

phenomenon is not ascribable to the nature of the molecule-metal contact and/or 

electrode structure. Instead, it is a general rule, which arises from the varying degree of 

π-electron delocalization (in the molecular backbone) with α, and a fully broken 

conjugation (reduced π overlap) for α ≈ 90º suppresses the conductance by roughly 2 

orders of magnitude, while locking the two phenyl rings in a coplanar conformation 

resulted in a little increase in conductance. This rule was also found to be valid in the 

case of 3,3’-substituted 5,5’-bis(methylthio)-2,2’-bithiophenes, where the ring-locking 

resulted in a conductance increase, and ring staggering resulted in its decrease [3]. Since 

the rule only applies when the Fermi energy of the gold electrodes lies within the 

HOMO-LUMO gap [22], these studies confirm that electron transport in these 

molecules takes place via off-resonance tunneling.  
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Therefore, in this chapter, I will present the switching behavior of substituted bipyridine 

attached to gold, which could form the basis of a new kind of single-molecule switch. 

The chemical structure of the molecules being investigated can be seen in figure 4.1. 

 

Figure 4.1: Family of molecular wires discussed in this chapter.  
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4.2. Theoretical Methods 

4.2.1 Geometry of molecules and angles between the two rings 

The DFT code (SIESTA) was employed to obtain fully relaxed geometries of the 

isolated molecules (figure 4.1) 4,4’-bipyridine (4a), 3,3’-dibromo-4,4’-bipyridine 

(4b), 3,3’,5,5’-tetrachloro-4,4’-bipyridine (4c), 3,3’,5,5’-tetramethyl-4,4’-bipyridine 

(4d), tert-butyl phosphabipy (4e) and phenyl phosphabipy (4f), and their torsion angles 

as shown in figures 4.2.1-4.2.4 (right).  It is well known that DFT is not able to 

distinguish between the local minima and global minima, which means that a typical 

relaxation calculation stops at the first total minima energy whether it is local or global. 

To find the global minima I fixed one of the rings and rotated the other with 360o 

degrees around the molecule axis, and at each angle I calculated the ground state 

energy. After finding the global minima (the lowest energy), I let the molecules to be 

fully relaxed around the global minima angle so that I can obtain the most accurate 

torsion angle of the molecule. 

I am going to start with 4a (4,4’-bipyridyl), where literature [2, 24-25] approximates the 

angle between the two rings to be around 34o. In my DFT calculations I find the global 

minima energy to be at 40o. For 4b (3,3’-dibromo-4,4’-bipyridine) my calculations of 

torsion angle is 78.5o, 4c (3,3’,5,5’-tetrachloro-4,4’-bipyridine) the global minima 

energy at 83.7o. Same as in 4c there are local and global minima, the global one at 

83.7o.  For 4d (3,3’,5,5’-tetramethyl-4,4’-bipyridine) torsion angle is 86.5o, all torsion 

angles are shown in figures 4.2.1-4.2.4 (left). The increase in the torsion angle is related 

to the steric effects induced by the bulky substituents. Furthermore, for 4e and 4f the 

angle between the two rings is zero due to a bridging atom (4e and 4f molecules) 

between two phenyl rings in these molecules, as shown in figure 4.1.  
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Figure 4.2.1:  illustrates the fully optimised geometry of the isolated molecule with the 

right angle 40o for 4,4’-bipyridine (4a) on the right of figure, and the global minimum 

energy. 

  

 

Figure 4.2.2:  illustrates the fully optimised geometry of the isolated molecule with the 

right angle 78.5o for 3,3’-dibromo-4,4’-bipyridine (4b) on the right of figure, and the 

global minimum energy. 
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Figure 4.2.3:  illustrates the fully optimised geometry of the isolated molecule with the 

right angle 83.7o for 3,3’,5,5’-tetrachloro-4,4’-bipyridine (4c) on the right of figure, and 

the global minimum energy. 

 

 

 

Figure 4.2.4:  illustrates the fully optimised geometry of the isolated molecule with the 

right angle 86.5o for 3,3’,5,5’-tetramethyl-4,4’-bipyridine (4d) on the right of figure, and 

the global minimum energy. 

 



Chapter 4: Effect of substituent and inter-ring torsion in 4,4’-bipyridine molecular 

junctions 
 

69 

 

4.2.2. Frontier Orbitals    

In this section, I present the electronic structures of 4a-4f molecules to help understand 

the electrical behavior of the junctions which have been investigated by using (DFT) 

SIESTA code. The electronic structures 4a-4f were carried out at the GAUSSIAN 09W 

using B3LYP function [26] with the 6-31G** [27] basis set used to appear the effect of 

various side groups, and torsion angle for each molecule on the distribution of the 

frontier molecular orbitals. Plots of the HOMOs and LUMOs are given in figure 4.2.5 

of all molecules (4a-4f). It is clear that the frontier orbitals are distributed almost evenly 

across the molecular backbone, and this delocalization means there is a π-conjugated 

pathway between the two rings. 

 

                           HOMO                                                                   LUMO 

                                      

 

                                       

 

 

 

                        

4a 

4b 
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                          HOMO                                                            LUMO      

                                                       

                                        

                         

                                         

 

Figure 4.2.5: Plots of the HOMO and LUMO of 4a, 4b, 4c, 4d, 4e, and 4f left panel are 

HOMOs and right are LUMOs. 
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4.2.3 Binding distance of 4,4’-bipyridine on a gold surface 

To calculate the optimum distance for 4,4’-bipyridine between two gold electrodes 

surfaces, I used DFT with a Generalized Gradient Approximation (GGA)–PBE 

functional [29-30] and the counterpoise method described in chapter 2. The binding 

distance 𝑑 is defined as the distance between the gold surface and the nitrogen atom of 

the pyridyl group. Here 4,4’-bipyridine (4a) molecule is defined as entity A and the gold 

electrodes as entity B. The ground state energy of the total system is calculated using 

SIESTA and is denoted 𝐸𝐴𝐵
𝐴𝐵. Here the gold leads consist of 3 layers of 25 atoms. The 

energy of each entity is then calculated in a fixed basis, which is achieved through the 

use of ghost atoms in SIESTA. Hence the energy of the individual 4a molecule in the 

presence of the fixed basis is defined as 𝐸𝐴
𝐴𝐵 and for the gold as 𝐸𝐵

𝐴𝐵. The binding 

energy is then calculated using the following equation: 

Figure 4.2.6 shows that for the optimum binding distance 𝑑 is 2.3 Å for 4a and the 

binding energy is approximately -0.42 (eV).    

      

 

 

 

 

 

 

 

 

 Binding Energy = 𝐸𝐴𝐵
𝐴𝐵 − 𝐸𝐴

𝐴𝐵 − 𝐸𝐵
𝐴𝐵 

  

(4.1) 
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Figure 4.2.6. Left panel: Orientation of the 4a with respect to the gold leads. (Right) 

illustrates binding energy of 4,4’-bipyridine (4a) on a gold surface.  

 

 

4.2.4 Transmission coefficient T(E) 

To calculate the electronic properties of family of 4,4’-bipyridine’s molecules, I used 

the DFT-based GOLLUM code to compute T(E) [31].  Geometrical optimizations that 

have carried out using DFT SIESTA [28] code, as well as a Generalized Gradient 

Approximation (GGA)–PBE functional, double-ξ polarized basis set, and mesh cutoff 

250 Ry. All molecules that have been studied in this chapter were freely relaxed in 

isolation to yield optimized geometries, which are presented in figure 4.1. For each 

molecular structure, the transmission coefficient of electrons T(E), which describes the 

propagation of energy of electrons from one electrode to the other was calculated by 

first calculating the Hamiltonian from SIESTA code, and then using GOLLUM code 

[31] to compute T(E), and I calculated electrical conductance at room temperature using 

the formula: 

𝐺 = 𝐺0 ∫ dE T(𝐸) (−
𝑑𝑓(𝐸)

𝑑𝐸
) 

∞

−∞
                                      (4.2)  

d = 2.3 Å 



Chapter 4: Effect of substituent and inter-ring torsion in 4,4’-bipyridine molecular 

junctions 
 

73 

 

where 𝑓(𝐸) = [𝑒𝛽(𝐸−𝐸𝐹) + 1]
−1

 is the Fermi function with 𝛽 =
1

𝑘𝛽𝑇
, EF is the Fermi 

energy, 𝐺0 =
2𝑒2

ℎ
  is the quantum of conductance. To investigate the conductance in 

more detail, I performed DFT simulations to examine how the conductance of 

molecules 4a, 4b, 4c, 4d, 4e and 4f depend on three angles, the first one is torsion angle 

which defines the angle between two rings shown in figure 4.2.8(a), the second one is θ, 

which defines the tilt angle of the molecule away from normal, and the last one is ϕ, 

which defines the rotation of the whole molecule about its long axis. As an example, 

figure 4.2.8(a) shows the case α= 40o, θ=180o and ϕ=0o, where the end phenyl ring is 

oriented perpendicular to the tip gold surface, and figure 4.2.8(b) shows the case α= 40o, 

θ=145o and ϕ=50o in which the end phenyl ring is oriented parallel to a surface of the 

gold tip. 

 

 

 

 

 

 

 

 

 

Figure 4.2.7: Molecular geometries of family of 4,4’-Bipridine molecules between two gold 

electrodes at various torsion angles and at θ =180o and ϕ=0o. 
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Figure 4.2.8: Examples geometries of 4,4’-Bipridine (4a) between two electrodes:  a) α = 0o-

90o, θ =180o, ϕ=0o. b) α = 40o, θ =145o, ϕ=50o. 

 

Before performing transport calculations, the isolated molecules were first fully relaxed, 

and then a further relaxation step was performed after placing the molecules in the 

electrode-molecule-electrode junctions. The transmission coefficient T(E) for the 

geometries discussed in figure 4.2.8 are shown in figure 4.2.9. For the first case, when 

the bipyridine molecule is normal to the gold surface with a tilt angle of θ=180o, I 

calculate T(E) for a range of values of ϕ between 0 and 90° and find that the conductance 

does not vary with ϕ and has a value of approximately 3*10-4G0 at the Fermi energy (E-

EF=-0.4eV). The conductance is unchanged because the coupling strength between the 

molecule and the gold is constant [32] when the molecule rotates about its axis. In 

contrast, when the molecule is tilted to an angle of θ =145° the behaviour changes 

significantly as shown in the transmission coefficients in figures 4.2.9(b). Here the 

conductance at E-EF=-0.4eV varies between 10-4G0 and 10-3G0 as ϕ is varied, which is 

due to the interaction between the end phenyl-ring π systems and the electrode surfaces 

 

a 

α  

b

  

ϕ 

θ 
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changing [33-34], depending on the geometry this can increase or decrease the coupling 

between nitrogen and the electrodes [32].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.9: Transmission coefficient and orientation of 4,4’-Bipridine (4a) between two 

electrodes conducts at:  a) θ =180o, ϕ=5o-80o and α=40o. b) θ =145o, ϕ=5o-80o and α=40o. 
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Next, I investigate that the dependence of conductance on the torsion angle α (0o-90o), 

to do this I continuously varied α for molecule 4a (fixing θ=180 ϕ=0o) and computed the 

transmission T(E) versus Fermi energy as shown in figure 4.2.10. This shows that a 

cos2α dependence is obtained over a wide range of Fermi energies within the HOMO-

LUMO gap, shown in figure 4.2.10(a). 

 

 

 

 

 

  

                            

 

 

 

 

 

 

 

                         

Figure 4.2.10: (a) DFT results for transmission coefficient as a function of Fermi energy 

. b) )o0=ϕ and o=180 θ, o90-o0 (α =angles torsion bipyridine 4a at various -for 4,4’

, θ o90-o(α) at various torsion angles (α = 02electrical conductance as a function of cos
o=0ϕand o 180= 

a 

b 
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While the behavior holds in the HOMO-LUMO gap, the DFT-predicted Fermi energy 

EF
DFT (corresponding to EF-EF

DFT =0 eV in fig 4.2.10) lies close to the LUMO transport 

resonance (a well-known property of molecules with pyridine anchor groups) [1, 10, 20-

21]. Therefore, at this energy the predicted conductance does not follow a cos2α 

dependence [20] and are significantly higher than the measured values. However, by 

shifting the Fermi energy away from the LUMO to EF-EF
DFT = -0.4 (eV) gives the 

correct trend and I justify this shift by comparing to the experimental measurements 

(seen in section 4.3) which at this energy gives excellent agreement between theory and 

experiment.  The next step is to see if the torsion angle dependence holds for the 

individual series 4a-f where the angle α is fixed by steric hindrance (The data for these 

molecules can be found in table 1). Figure 4.2.11 shows the resulting values of 

transmission coefficients versus Fermi energy for all six molecules. Again, taking the 

values at (E-EF=-0.4 eV) the conductance follows a cos2α dependence at a tilt angle of 

θ=180°, showing that the transport is unaffected by the chemical substituents which 

produce the steric effects. 
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Figure 4.2.11: a) The transmission coefficient as a function of energy of election for series of 

molecules at their respective torsion angles α (θ=180o and ϕ=0o). b) Electrical conductance as 

a function of cos2(α) for series of molecules at various torsion angles α (θ =180o and ϕ=0o) 

 

a 

b 
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I now repeat the calculations for the series 4b-4f, varying α and θ in the same way as 

was carried out for 4a. The resulting transmission coefficients can be seen in figures 

4.2.12-4.2.17. These molecules show the same behavior as molecule 4a with the tilt 

angle of θ=180° showing no dependence on α (left panels labelled a) whereas for the 

tilted geometry θ=145° the value of T(E) at E-EF=-0.4eV shows a strong dependence on 

torsion angle α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.12: Transmission coefficient as a function of electron energy of 3,3’-dibromo-

Bipridine -4,4’ (4b) at: a) θ =180o, ϕ=5o-80o and α=78.5o. b) θ =145o, ϕ=5o-80o and α=78.5o. 

b 

 a 
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   Figure 4.2.13: Transmission coefficient as a function of electron energy of 3,3’,5,5’-

tetrachloro-4,4’-bipyridine (4c) at: a) θ =180o, ϕ=5o-80o and α=83.7o. b) θ =145o, ϕ=5o-80o 

and α=83.7o. 

 

 

 b  

a  
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   Figure 4.2.14: Transmission coefficient as a function of electron energy of 3,3’,5,5’-

tetramethyl-4,4’-bipyridine (4d) at: a) θ =180o, ϕ=5o-80o and α=86.5o. b) θ =145o, ϕ=5o-80o 

and α=86.5o. 
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   Figure 4.2.15: Transmission coefficient as a function of electron energy of tert-Butyl-

phospho-4,4’-bipyridine (4e) at: a) θ =180o, ϕ=5o-80o and α=0o. b) θ =145o, ϕ=5o-80o and 

α=0o. 

 

a 

b  
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Figure 4.2.16: Transmission coefficient as a function of electron energy of phospho-4,4’-

bipyridine (4f) at: a) θ =180o, ϕ=5o-80o and α=0o. b) θ =145o, ϕ=5o-80o and α=0o. 

 

To understand how the value of α can change the variation in conductance, I plot the 

extracted conductance at (E-EF=-0.4eV) for each of the different torsion angles shown 

in Figures 4.2.17. This is again done for the two different tilt angles θ =180o (left panel 

a) and   θ =145o (right panel b). Here the individual circles represent a different value of 

b 

a  
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α between 0 and 90°. These two figures show that for the elongated junction (a) where 

there is no tilt angle, the conductance is largely unaffected, and it also has a value lower 

than the compressed junction (b) where the molecule is tilted. Figure 4.2.17 also shows 

the distribution of conductance values is strongly dependent on torsion angle when the 

molecule is tilted. For molecules which have a large torsion angle (4b, 4c and 4d), 

varying α causes the conductance to change by approximately a factor of 2. Whereas, 

for 4e and 4f where the torsion angle is 0° the conductance can change by almost an 

order of magnitude. This behaviour can be explained by the coupling between the 

terminal pyridine rings and the tips of the gold electrodes; when the molecule is tilted 

the π-system of the molecule interacts with the gold enhancing the coupling strength 

which explains the larger conductance for the tilted systems. The parameter α controls 

the amount of overlap between the π-system and gold and therefore for molecules with 

a torsion angle of 0, symmetry means that coupling to both electrodes is identical. For 

molecules with a large torsion angle, this symmetry is broken so that if the coupling is 

strong at one side it will be weak at the other meaning that they produce a much smaller 

range of conductance values as seen in Figure 4.2.17. 

 

 

 

 



Chapter 4: Effect of substituent and inter-ring torsion in 4,4’-bipyridine molecular 

junctions 
 

85 

 

 

Figure 4.2.17: Shows Junction conductance of all molecules at: a) θ =180o, ϕ=5o-80o. b) θ 

=145o, ϕ=5o-80o. 
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4.3. Experimental methods and measurements 

Having performed a detailed theoretical study of the geometry parameters controlling 

this series of molecule I now compare the results to experiment. These were performed 

at the University of Liverpool and used the STM-Break Junction technique [24]. The 

transport characteristics were measured in solution at room temperature, this method 

was first described in 2003 [35]. In this technique, a gold STM tip is pushed into a gold 

substrate under constant bias, and then retracted while the current flowing between the 

two electrodes is measured. Interestingly, 4,4’-bipyridine and 4-pyridyl terminated 

molecular wire generally show two conductance states depending on the contact 

geometry [32], the consensus being that a high conductance value is measured with the 

molecule tilted between the two electrodes, with electrons injected directly into the ring 

π-system, and a lower conductance is measured when the molecule is sitting upright in 

the junction, with electron injected into the N-end of the pyridyl ring. Furthermore, 

mechanical control of electrode separation allows cycling between the two 

conductance’s states [32].  

Being able to introduce substituents in such positions allows control of the inter-ring 

torsional angle, and therefore to further test the validity of the cos2α dependence. We 

applied these recent synthetic findings to prepare and characterize a series of 4,4’-

bipyridines with α varying from 0 to ≈ 90º. In our study, we found that, while the cos2α 

dependence found in the biphenyl system is still valid for the 4,4’-bipyridines, locking 

the two rings in a coplanar geometry (α = 0) results in the suppression of one of the two 

conductance states. Moreover, the cos2α dependence suggests that the bridged 

bipyridyls sit in the junction in the low (upright) conductance state, greatly increased in 

its conductance value by inter-ring locking.  



Chapter 4: Effect of substituent and inter-ring torsion in 4,4’-bipyridine molecular 

junctions 
 

87 

 

Brominated 4,4’-bipyridines were synthesized by using copper [33] or iodine [34] 

catalyzed coupling of brominated 4-lithiopyridine, prepared by treating the appropriate 

pyridine with LDA at -94º C. This allowed our collaborator group to prepare 3,3’-

dibromo- and 3,3’,5,5’-tetrabromo-4,4’-bipyridine, that can be further functionalized by 

lithium-halogen exchange (with nBuLi or tBuLi) and subsequent quench with an 

electrophile to give the compounds presented in figure 4.1.  

The compounds were characterized by H NMR [1], C NMR [15] and mass 

spectrometry, and their purity assessed by CHN microanalysis. The conductances were 

measured (as current /voltage) using the STM-BJ technique. In this method, Au-Au 

point contacts were repeatedly formed and broken by moving the STM Au tip in and out 

of contact with a Au substrate. In the presence of a mesitylene (1,3,5-trimethylbenzene) 

1 mM solution of the desired molecular wire, under constant bias (100 mV). Thousands 

of current-distance traces are recorded while moving the tip, and these were then 

compiled in histograms, bearing a statistical distribution of conductance values, and 2d 

“density” plots, showing the distribution of conductance values as a function of 

electrodes separation. Conductance is given as a function of G0 (quantum of 

conductance, 77.48 µS). All the non-bridged compounds showed two distinct 

conductance values (two separate peaks in the histograms), ascribed to the possibility of 

high- and low-conductance geometry in the Au/molecule/Au junction, and the values 

follow indeed the general cos2α rule. In contrast the two bridged (α locked to 0º, orange 

and blue trace in figure 4.3.1a) bipyridyls showed only one sharp peak. A comparison 

between theoretical and experimental results of conductance and torsion angle (α) are 

shown in table1.  
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Figure 4.3.1: a) Semilogarithmic conductance histogram of the molecular wires presented in 

this study. 100 mV bias voltage, normalized to counts / trace. * is an artifact introduced by the 

channel switch in the STM preamplifier used in this study. b) Cos2α dependence of conductance. 

 

 

Figure 4.3.2:  Theoretical (black and green) and experimental (red and blue) results for high 

and low conductances as a function of cos2α. 
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Table 1 | Measured and theoretical properties of six molecules with their structures. 

No. 

Molecules 

Structure        Conductance (nS) 

        Measured          Calculated  

Torsion angle (α) 

                                             

                                             

 

                                                                

                                              

 

                                             

                                                                            

 

 

As shown in Table 1, molecules 4a, 4b, 4c, and 4d that have torsion angles as 40o, 78.5o, 

83.7o and 86.5o, respectively. Furthermore, when these torsion angles are used to plot 

their conductances versus cos2α, both theory and experiment confirm the cos2α rule. 

Figure 4.3.2 shows a plot of the above experimental and theoretical results for the low 

and high conductance groups. 

 

4f 

 

4e 

4a 
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4d 

 

 

60.0  35.33  0o 

 

31.0  36.5  0o 

14.0  23.02  40o 

4.4  6.43  78.5o 

 

4.3  4.751  83.7o 

 

3.4  3.132  86.5o 
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4.5 Conclusions 

We have studied the transport properties of a family of 4,4-bipyridine molecules, with a 

series of sterically-induced twist angles α between the two pyridyl rings. Experiment 

reveals the presence of high and low conductance peaks, which are attributed to 

different molecule orientations within the junctions. Both experimental measurements 

using the using the STM-BJ technique and DFT-based theory calculations reveal that 

their conductances are proportional to cos2(α) confirming that for both geometries (tilted 

and non-tilted), the electrical current flows through the C-C bond linking the pi systems 

of the two rings. In common with many calculations of electron transport through 

pyridyl-terminated molecules, DFT predicts that the Fermi energy of the gold electrodes 

lies close to the LUMO transmission peak, in which case there would be no cos2(α) 

dependence. However, shifting this to lower energies corrects this error and confirms 

that the Fermi energy of gold lies within the HOMO-LUMO gap. The fact that no high 

conductance values are measured for the α=0° can be theoretically attributed to the large 

spread of conductance values these systems produce meaning they may be difficult to 

measure.  
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Chapter 5   

Oscillating Seebeck coefficient in  

π-stacked molecular junctions 

 

In this chapter, I perform a theoretical investigation into the Seebeck coefficient S of π-

stacked molecular junctions using a first principles quantum transport method.  Using 

oligo (phenyleneethynylene) (OPE)-type molecules as a model system, I have showed 

that quantum interference produces antiresonances in the gap between the HOMO and 

LUMO resonances and the stacking geometry can control the position of these 

destructive interference features. The shifting of this antiresonance leads to an 

enhancement of the thermopower S when the geometry of the stacking is altered. The 

sign of S also oscillates with the overlap of the two molecules. This behaviour is 

dependent on the connectivity of the molecule as a meta-connected molecule produces a 

destructive QI feature which dominates and reduces the sensitivity to destructive 

interference through the pi-stacking geometry. 
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5.1 Introduction 

Measurement of the Seebeck coefficient S in single-molecule junctions [1-9] has opened 

up the possibility of utilizing such devices in novel thermoelectric materials. A wide 

variety of molecules have been measured and the value of S is typically low in single 

molecules with values much less than 100μV/K [9]. One important property of S is that 

it helps to determine the nature of the transport in the HOMO-LUMO gap of the 

molecule; with a positive S determining the position of the Fermi energy is close to the 

HOMO resonance and a negative S means it is closer to the LUMO. In addition, 

molecules have been shown to display bi-thermoelectric behaviour and this has been 

attributed to both geometric changes [10] and the application of pressure [11]. In both 

these cases, the sign change in S changes due to shifting positions of the molecular 

resonances.  Another important property in single molecule transport is quantum 

interference which has shown great promise in the control of quantum transport through 

design of the molecular structure [12-19]. The increase and decrease in conductance 

(i.e. constructive or destructive interference) is due to multiple transmission paths that 

an electron can take through a molecule.  

One type of molecular junction that has shown quantum interference is stacked 

molecules [20-23] where the molecules bridge the gap between the electrodes by 

attaching one anchor at each end and the electron path from one electrode to the other is 

through the overlap π-orbitals of the molecules overlap. In this scenario the junction 

shows destructive interference at certain geometries due to the different transmission 

paths. Experimental evidence that such junctions form can be seen in situations where 

molecules only have one anchor group [20,22], but also improved methods of analyzing 

conductance data [24] show they may occur in any junction with molecules that has a 
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preference to stack through their π-systems. In this work we analyze the importance that 

π-stacked junctions may have on future thermoelectric materials with the aim of 

maximising S. The efficiency of a device is usually calculated from the dimensionless 

figure of merit [25, 26] ZT = S2Gτ/𝑘, where G is the electrical conductance, k is the 

thermal conductance, and τ the temperature. S is squared in the numerator so controlling 

this term is a possible route to improving performance. We also show that careful 

consideration should be taken into the measurement of S, especially where a molecule 

displays both positive and negative S as this could simply be attributed to transport 

through multiple molecules and quantum interference. And the aim in maximising S, is 

because there is now a world-wide race to develop molecular materials with a high 

thermoelectric efficiency [25]. 

 

 

 

 

 

 

Figure 5.1: (Left) Molecular structures for oligophenyleneethynylene (OPE) molecules with 

thiol achor groups connected in the para (1) and meta (2) position. (Left) Example stacking 

geometries for 1 and 2 connected between gold electrodes determined by the parameters X and 

D which is the overlap and separation respectively. 
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5.2 Theoretical Methods 

To calculate the electronic transport properties of OPE π-conjugated molecules shown 

in figure 5.1, I use a combination of the density functional SIESTA code [27] and the 

quantum transport code GOLLUM [28]. The optimum geometry was calculated for 

molecules 1 and 2 by relaxing them to a force tolerance of 0.01eV/Å using Troullier–

Martins pseudopotentials to represent the potentials of the atomic cores [29], a 

generalized gradient approximation (GGA–PBE) functional to describe the exchange 

correlation [30, 31], double-ξ polarized basis set, and a real-space grid was defined with 

an energy cutoff 250 Rydbergs.  

The optimal stacking geometry for both molecules was calculated by minimizing the 

ground state energy by altering the overlap length X, and the displacement distance D of 

identical molecules as shown in figure 5.1. I define X to be the distance between the 

sulfur atoms along the axis of the molecule, i.e. when X = 0 nm the overlap of the 

molecules is a maximum and X = L (L is the length of the molecule which for 1= 0.01 

nm and 2 = 0.02 nm) is the minimum. D is the distance between the molecules in the 

stacking direction in the case of both OPEs 1 and 2 the values found are X=0.161 nm 

and D=0.33 nm, and this configuration has a binding energy of -0.77 eV (see fig. 5.4). 

Each molecule is then attached to one gold electrode as shown in figure 5.1. The lead 

consists of 6 layers of (111) gold each containing 25 gold atoms which is terminated by 

a pyramid of gold atoms. The terminating sulfur atom of the thiol group loses it 

hydrogen atom and the gold-sulfur binding distance is optimized to 2.4 Å. The 

hydrogen atom of the unattached thiol group remains. The zero-bias transmission 

coefficient T(E), which is the probability for an electron of energy E of electrons to 

transfer from left-to-right of electrodes was calculated by extracting a Hamiltonian 

using the SIESTA code, and then using GOLLUM to compute T(E). The transmission 
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coefficient was then utilized to compute the Seebeck coefficient S which has been 

shown to depend on the magnitude and derivative of the transmission at the Fermi level 

of the electrodes [32]. 

 

   𝑆 =  
𝜋2 𝑘𝐵

2  𝜏

3𝑒

𝑑𝑙𝑛𝑇(𝐸)

𝑑𝐸
|

𝐸=𝐸𝐹

                                 (5.1)  

where kB is the Boltzmann constant, τ is the temperature of the junction and e is the 

electron charge. 

 

5.3 Results and discussion 

Taking the optimum molecule separation D = 0.33 nm, we vary the overlap length of 

the molecule X from 0 to L (figure 5.1) and calculate the transmission coefficient T(E). 

Figure 5.2 shows the results for X varying between (0 nm to 0.09 nm) for the para 

connected molecule 1, (transmission data for a larger range of X can be seen in Figure 

5.3). At a value of X = 0.1610 nm (which is the optimum stacking geometry see in fig. 

5.4) the Fermi energy (E-EF=0 eV) lies close to the HOMO resonance, and there is an 

antiresonance feature (E-EF = 0.5 eV) in the gap between the HOMO and LUMO 

resonances. This destructive interference is attributed to the multiple transport paths 

through the stacked molecule (Fabry-Perot type behaviour) and suggests that by altering 

the overlap length X the interference behaviour should change.  
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    Figure 5.2: (a) Zero bias transmission coefficient T(E) against electron energy E for different 

overlap lengths X and fixed separation D = 0.33nm. (b) Seebeck coefficient S as  

a function of overlap length X (D=0.33 nm). 

 

 

Figure 5.2 shows that as the value of X is increased the antiresonance moves towards 

the LUMO resonance and at value of X=0.09 nm the minimum sits at E-EF = 1.6 eV. 

The transmission data also shows the HOMO-LUMO gap increasing as the overlap 

length is increased, this is due to the splitting between the two LUMO resonances of the 

a 

b 
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individual molecules decreasing because the coupling between the two molecules 

becomes weaker.  

 

                

   

      

  

  

Figure 5.3:  Illustrates moving of transmission coefficient with displacements (X = 0 - 0.4 nm) 

of π- π stacked S-OPE3-S molecules at various distances at Fermi energy (EF). 
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Figure 5.4. Binding energy of molecule 1 as a function of parameters X and D. 

 

 

When an anti-resonance passes through the Fermi Energy the gradient of T(E) changes 

sign, which suggests that the Seebeck coefficient S is sensitive to the stacking geometry. 

Figure 5.2 shows the calculated value of S at room temperature, for a Fermi energy of 

E-EF=0.5eV and a separation of D=0.33nm for values of X between 0 and 0.4nm. At 

X=0 nm the sign of S is negative and has a magnitude of -100 μV/K as the overlap 

length X is increased the sign of S is switched and at a value of S at X=0.02 nm is 100 

μV/K. The antiresonance then moves away from the Fermi energy and S remains 

positive with a value of approximately 25μV/K. At further separations the sign of S 

oscillates. 
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Figure 5.5: (a) Zero bias transmission coefficient T(E) for molecule 2 for different overlap 

lengths X and fixed separation D = 0.33nm. (b) Seebeck coefficient S as a function  

of overlap length X (D=0.33nm) 

 

The calculation is then repeated for the meta-connected molecule 2 and the results can 

be seen on figure 5.5 (the separation D=0.33 nm and the overlap X is varied between 0 

and 0.09nm). Here the transmission T(E), shows an antiresonance at 0.3 eV which does 

a 

b 
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not move across the HOMO-LUMO gap as the overlap length X is increased. The value 

of the Seebeck coefficient is therefore positive for all values of X between 0nm and 

0.4nm. This suggests that the interference due to the meta-connectivity of the molecule 

dominates and the additional destructive interference from the stacked geometry is 

negligible. 

 

5.4 Conclusion 

I have shown theoretically that the transmission through molecules which are π-stacked 

leads to destructive quantum interference. The role it plays in determining the sign of 

the Seebeck coefficient is then dependent on the connectivity of the individual 

molecules. In para-connected systems, the shifting of this resonance can lead to 

molecules displaying both signs of S whereas for meta-connected molecules the 

oscillation of the sign does not occur. This novel behaviour may have important 

consequences in the design of SAM based thermoelectric materials and in the role of 

single molecule measurements where a molecule may show a measured S with both 

signs. 
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Chapter 6 

 

 

Designing thermoelectric materials 

 

In chapter 5 I looked at a simple OPE molecule system to further investigate the 

thermopower in single molecule junctions. In this chapter, I will present theoretical 

work that is aimed at designing new types of thermoelectric materials. Here, I have 

investigated a set of molecules that have varying types of side branches attached to the 

main backbone and I study the electron and phonon transport through these nanoscale 

molecular junctions with the aim of developing high performance thermoelectric 

materials. 

This study is a collaborative work with Marjan Famili (PhD student in Colin’s group) 

who calculated the phonon properties, and the experiment were carried out at the 

University of Liverpool (Prof. Richard J. Nichols group). 
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6.1 Introduction  

Recent studies of electron transport through molecular junctions have been underpinned 

by substantial improvements in electrical contacting techniques [1-4], which have 

identified a range of fundamental characteristics involving switching [5], and organic-

based devices [6]. Molecular electronics has received great attention in investigating 

nanoscale thermoelectricity, with the hope that it will contribute to the design of new 

environmentally organic thermoelectric materials [7-8] through the use of individual 

molecular structures which as function electronics devices [9-10]. Therefore, the design 

of new organic thermoelectric materials for converting waste heat directly into 

electricity is a global challenge [11]. 

There are various strategies to improve the thermoelectric properties of inorganic [12] 

and organic materials [13-14], which yield quantum confinement of electrons and 

phonons [15]. Due to the attractive characteristics of single molecules, research groups 

have begun to measure and calculate the thermoelectric properties. Moreover, it is 

highly desirable to design new materials and build devices suitable for applications [7]. 

Therefore, the transport properties of single metal-molecule-metal junction is one of 

fundamental importance to develop functional nanoscale and organic-based devices [6, 

16-17].  There are various features of these systems to control, including the chemical 

linking compounds [16, 18-23] and the contact geometry they form [24-25], which are 

important to study the electronic and phononic properties [1, 7] with nanoelectrode 

contacts.  

When describing the electron transport properties through single-molecules which is 

controlled by the energy level alignment with the Fermi energy of the electrode, the 

conductance will be calculated for both electrons and phonon. The thermopower will 
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also be studied by calculation of the Seebeck coefficient. To investigate high-

performance thermoelectric materials, which will eventually inform the design and 

synthesis of molecular structures [1, 26], a series of molecules have been studied to 

understand the factors which may govern the sign and magnitude of their thermopower. 

On such as the length of conjugated molecules and the kind of terminal group [16, 27]. 

In this work I examine a series of thiophene molecules where the bridging atoms vary: 

silicon, germanium, carbon, and tin. Thiophene-based molecules are π-conjugated 

compounds, which have been proven to give sensitive platforms in organic materials 

chemistry [28]. Linking systems with Si, Ge, C and Sn unit is interesting due to the 

interaction between the σ orbital of the linked-bridges and the π orbital of the molecule, 

which results in interesting properties such as enhanced conjugation [29-30].  

Previous studies [31-33] have focused on calculating the electrical conductance and 

thermopower of single molecules only, which provided fundamental knowledge 

required to understand and enhance structures at the molecular scale. However, in this 

chapter I will study both the electronic and phononic properties. The efficiency of a 

thermoelectric device for power generation is characterized by the figure of merit ZT = 

GS2τ/k, where G is the electrical conductance, S is the Seebeck coefficient, τ is 

temperature, and κ (κe+ κph) is the thermal conductance of the electronic and phonon 

contributions [27, 34]. The aim is to then produce thermoelectric organic materials that 

might be an attractive alternative to inorganic materials (i.e. have a higher ZT). To help 

increase ZT and overcome the limiting factors concerning organic materials, there have 

been recent studies into the behaviour of single organics at room temperature [8, 26, 

35]. One possibility, is by utilizing the weak interaction between two parts of the 

molecule such as π-π stacking [36-37], which leads to a reduction of the thermal 

conductance (k) in molecular junctions (which should enhance efficiency because it is 
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in the denominator of ZT). In what follows, we present the comparative theoretical 

study of varying linked-bridge thiophenes, whose chemical structure is shown in figure 

6.1. 

 

Figure 6.1: Chemical structure of thiophene molecules with terminal group SMe with varying 

bridge-link atoms (Si, Ge, Sn, and C). 

 

 

6.2 Theoretical Method 

 

The geometry of each structure of thiophene consisting of the gold electrodes and a 

single-molecule, which was relaxed to a force tolerance of 0.01 (eV Å−1), SIESTA [38] 

implementation of density functional theory (DFT), with a double-ζ polarized basis set 

(DZP), as well as the Generalized Gradient Approximation (GGA) functional [39, 40], 

with Perdew− Burke−Ernzerhof (PBE) parametrization. The Hamiltonian and overlap 

matrices are calculated on a real-space grid defined by a plane-wave cut-off of 250 Ry.  

To calculate the phononic thermal conductance for each structure, we use the harmonic 

approximation method discussed in chapter three (3.6), to build the dynamical matrix D 

for each molecule (shown in figure 6.1) contacted to gold electrodes. GOLLUM [41] is 
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then used to calculate Tph(ω) which is the transport probability of a phonon. The phonon 

thermal conductance κph at room temperature τ can be calculated from the formula: 

                       𝑘𝑝ℎ(𝜏) =
1

2𝜋
∫ ℏ𝜔𝑇𝑝ℎ(𝜔)

𝜕𝑓𝐵𝐸(𝜔,𝜏)

𝜕𝜏

∞

0
𝑑𝜔                     (6.1) 

Here,  𝑓𝐵𝐸(𝜔, 𝜏) = (𝑒
ℏ𝜔

𝑘𝐵𝜏 − 1)−1 is Bose−Einstein distribution function, ℏ is reduced 

Planck’s constant, as well as kB = 8.6 × 10−5 eV/K is Boltzmann’s constant. 

To calculate the transport of electrons through the molecule, contacted to gold 

electrodes, we take the electronic Hamiltonian from the converged DFT calculation, and 

again use GOLLUM to produce the transmission coefficient Tel (E) of electrons. The 

transmission coefficient can then be utilized to compute the Seebeck coefficient which 

has been shown to depend on the magnitude and derivative of the transmission at the 

Fermi level of the electrodes [42]. 

                              𝑆 =  
𝜋 𝑘𝐵

2  𝜏

3𝑒

𝑑𝑙𝑛𝑇(𝐸)

𝑑𝐸
|

𝐸=𝐸𝐹

                          (6.2)  

where kB is the Boltzmann constant, τ is the temperature of the junction and e is the 

electron charge. The electrical conductance at room temperature is evaluated using the 

formula: 

 𝐺 = 𝐺0 ∫ dE T(𝐸) (−
𝑑𝑓(𝐸)

𝑑𝐸
)

∞

−∞
                                     (6.3)  

Here, 𝑓(𝐸) = [𝑒(𝐸−𝐸𝐹) 𝑘𝐵𝜏⁄ + 1]
−1

 is the Fermi function, EF is the Fermi energy, 𝐺0 =

2𝑒2

ℎ
  is the quantum of conductance, τ is the temperature, and h is the Planck’s constant. 

I now have all the parameters to compute ZT for these molecules.  
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6.3 Results and discussion 

The compounds of thiophene that are shown in figure 6.1 were chosen to explore the 

behaviour of the varying side bridges to the molecules. The main influences are the 

mass of bridged atoms, and the resulting bond length between the backbone of molecule 

and the molecular bridge (C, Si, Ge, and Sn). First, the electronic structure of the 

molecules was calculated in the gas phase, including their Ionization Potential (IP) and 

the Electron Affinity (EA) which can give a more accurate calculation of the HOMO 

and LUMO energy levels. Here I calculate IP=E(N-1)-E(N) and EA=E(N)-E(N+1) 

where E(N) is the ground state energy of the neutral molecule, E(N-1) is the energy 

with one electron removed and E(N+1) is the energy with one electron added. The 

results can be seen in table 1, and show that the bridging atom only slightly affects the 

IP and EA. I also plot the frontier orbitals of the individual molecules in figure 6.4.2 

which shows that the structure of the HOMO and LUMO wave functions are unaltered 

by changing the bridging atom. 

Next, after connecting the molecules to gold electrodes via the SME anchor groups, I 

compute the electron transmission coefficient Tel(E), where the binding distance 

between the gold tip and sulphur atom was calculated to be 0.24 nm. The results are 

shown in figure 6.4.3. 

Table 1: Variation of the Ionization Potential (IP) and Electron Affinity (EA) with 

central atom of molecules a-d in figure 6.4.2. 

Central atom IP (eV) EA (eV) 

C 5.850395 -0.076025 

Si 5.919914 0.134342 

Ge 5.833446 0.128631 

Sn 5.727306 0.034381 
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Figure 6.4.2: Plots of the HOMO and LUMO of a, b, c, and d left panel are HOMOs and right 

are LUMOs. 

  

 

 

 

 

 

 

 

 

 

 

Figure 6.4.3: (left) Electron Transmission coefficient as a function of electron energy at varied 

central bridge Si (red), Ge (blue), Sn (green) and C (black) of thiophene molecule. (right) 

Conductance versus Fermi energy evaluated at room temperature. 
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The electron transmission shows that the DFT predicted Fermi energy (E-EF=0eV) lies 

close to the LUMO resonances. The HOMO resonance for Sn (tin) sits at the highest 

energy and causes the value of the transmission T(EF) to be highest, whereas the Si 

(silicon) is at the lowest energy and has the lowest transmission in the gap. This 

behaviour directly relates to the calculated IP-EA gap. I can then use this transmission 

coefficient to evaluate the conductance and Seebeck coefficient using equations 6.2 and 

6.3 at room temperature. The resulting values evaluated at the DFT predicted Fermi 

Energy can be seen in Figure 6.4.4. 

 

 

 

 

 

 

 

Figure 6.4.4: (a) electrical conductance and (b) Seebeck coefficient as a function of Fermi 

energy (EF) for the thiophene series at room temperature for varying link atom (C, Si, Ge, and 

Sn). 
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In this work, we have demonstrated that introducing side bridged to molecules 

decreases the phonon conductance. This occurs due to appearance of antiresonances in 

the phonon transmission function when the frequency of incoming phonons happens to 

resonate with vibrational modes of the side branch. The four introduced molecules in 

figure 6.1, have side bridges of different shape and mass attached to the molecule 

backbone. These side branches are expected to lower the phonon conductance. 

Table 2: Mass of central atoms and bond length with Carbon in molecules a-d in figure 

1 

 

Central atom Side branches mass Bond length with 

carbon X-C 

Colour in plots 

C 12.0107 1.53 Å black 

Si 28.0855 1.89 Å red 

Ge 72.64 1.98 Å blue 

Sn 118.71 2.18 Å green 

  

 

Therefore, we expect more scattering from the heavy atom and therefore lower 

conductance. While molecule with Si, Ge and Sn follow this trend, the molecule with 

the lightest central atom shows the lowest phonon conductance. This as explained in 

table 2, could be due to the fact that molecule a has the stiffest backbone. This can be 

understood by comparing the C-C bond length to C-Si, C-Ge, and C-Sn. 

To study the electron and phonon thermal properties, we present contribution to the 

comparative theoretical study of the side-branched dependent of the thiophene 

molecule, which contains contributions from both electrons and phonons. The main 

unpredicted result from our study is that thermal conductance of Si-bridged atom is 
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higher than C-bridged (see fig. 6.4.5) due to each bridged atom in this molecule controls 

the thermal phonon conductance by the relatively weak coupling between this bridged 

atom and the backbone of molecule. We have found the bond length of Si-bridged atom 

is more floppy than C-bridge because the high-mass value of Si-bridge unit is higher 

than C-bridged atom, as shown in table 2. All these parameters that are demonstrated 

above lead to a change in the thermal phonon conductance. 

                

 

    Figure 6.4.5: Electron and phonon conductance (k) versus Temperature for molecules a (C, 

black), b (Si, red), c (Ge, blue), d (Sn, green) of figure 6.1. 



Chapter 6: Designing thermoelectric materials 

118 
 

To compare the potential of these series of molecules for thermoelectricity, the 

electrical conductance and thermopower were calculated. The electrical conductance of 

Si-bridged atom is the lowest, while we have found its thermopower is the highest (see 

figs. 6.4.3 and 6.4.4(b)), this is because dependance on the Ionization Potential of Si-

atom is lower (see table 1) and the width of HOMO-LUMO gap of Si-atom leads to low 

electrical conductance. Our results also show that the thermopower provides valuable 

information about the relative alignment between the molecular energy levels and the 

electrode Fermi energy.  

We explore SMe-Au linked molecules that are predicted to conduct through the lowest 

unoccupied molecular orbital (LUMO) [44-46].  In addition, the Fermi energy lies in the 

tail of the LUMO resonance, and depending on the terminal group (see fig. 6.4.3) the 

value of the slope of transmission coefficient Tel(E) of Si-bridged atom at Fermi energy 

(EF=0 eV) is higher, which leads to higher thermopower.  

In summary, we find the thermopower is negative for SMe-Au linked LUMO-

conducting junctions.  
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In contrast, the highest conductance and the lowest thermopower is obtained with C-

bridging.  Therefore, the resulting combination of low electrical conductance, and high 

thermopower lead to a high value of ZT that is 1.77 shown in figure 6.4.6 , and make 

Si-bridging attractive for thermoelectric devices.              

                                        

 

 

Figure 6.4.6: shows electronic contribution to the figure of merit ZTel at Fermi energy at room 

temperature for each central atom (C, Si, Ge, and Sn). 
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6.4 Conclusion  

Understanding electron transport and phonon through molecular junctions formed from 

single molecules attached to two electrodes is critical to the development of high-

performance thermoelectric materials in nanoscale devices. In this chapter, we have 

studied the electronic and phononic properties in thiophene molecules that have various 

bridge atoms (C, Si, Ge, and Sn), and we find the thermal phonon conductance 

decreases monotonically with decreases bond length and mass for each bridged atom 

such that the C-bridged phonon thermal conductance is the lowest than other bridges, 

due to rigid nature of this bridge. In contrast, the thermal conductance of Si-bridged 

thiophenes increases with bond length and mass. For electrical properties, various 

results of conductance and thermopower were calculated for different bridges, which 

leads to variations in the value of figure of merit ZTel, where Si-bridging has the highest 

value of ZTel equal 1.77. Therefore, the Si-central unit is an attractive candidate for 

high-performance thermoelectric energy conversion. 
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7.1. Conclusions 

I have studied the electronic and thermoelectric properties of 12 different organic 

molecules, using density functional theory DFT, and the Green’s function formalism 

which are reported in chapters 2 and 3, respectively. 

Chapter 4 presents studies of the charge transport of 4,4-bipyridine molecules, with a 

series of sterically-induced twist angles α between the two pyridyl rings. Experiment 

reveals the presence of high and low conductance peaks, which are attributed to 

different molecule orientations within the junctions. Both experimental measurements 

using the STM-BJ technique and DFT-based theory reveal that their conductances are 

proportional to cos2(α), confirming that for both geometries, the electrical current flows 

through the C-C bond linking the pi systems of the two rings. In common with many 

calculations of electron transport through pyridyl-terminated molecules, DFT predicts 

that the Fermi energy of the gold electrodes lies close to the LUMO transmission peak, 

in which case there would be no cos2(α) dependence. Shifting this to lower energies 
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corrects this error and confirms that the Fermi energy of gold lies within the HOMO-

LUMO gap. 

 

Chapter 5 demonstrated that the electronic properties and thermopower of π -stacked 

molecules are enhanced by increasing π-stacking length. Intermolecular π- π stacking 

between (OPE)-type molecules has a strong effect on thermopower and can change both 

the magnitude and sign of the Seebeck coefficient. The increase of the conjugation 

length of the system is predicted to enhance the thermoelectric response. In the case of 

fully identical of OPE-molecules, the coupling between two molecules results in the 

appearance of destructive interference features, which results in lower transmission 

which leads to an increase in the thermopower. However, dislocated molecules yield 

higher transmission, because such interference effects disappear. The displacements of 

two molecules relative each another yield to change the behaviour of transmission 

curves, and leads to oscillations in the Seebeck coefficient, and furthermore this 

behaviour can be switched on or off.  

 

Chapter 6 presented theoretical studies of electron and phonon transport through 

molecular junctions formed from single molecules attached to two electrodes, which 

could be critical to the development of high-performance thermoelectric materials in 

nanoscale devices. In this chapter, we studied electronic and phononic properties in 

thiophene-based molecules that contain various bridges (C, Si, Ge, and Sn), and found 

that the thermal phonon conductance decreased monotonically with decrease of bond 

length and mass for each bridge atom. The phonon thermal conductance with a C-

bridging atom is lower than other bridges, due to the rigid nature of this bridge. 

Whereas, the thermal conductance with Si-bridges increases with bond length and mass. 
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For electrical properties, various results of conductance and thermopower that are 

calculated at different bridges due to variation in the central atom, which leads to 

variations in the value of the figure of merit ZTel, with Si-bridges possessing the highest 

value of ZTel equal 1.76. Therefore, thiophenes with a Si-central bridge are attractive 

candidates for high-performance thermoelectric energy conversion. 

 

7.2. Future Works 

In this thesis, it would be of interest to investigate the electrical conductance of 

molecular wires attached to gold electrodes. For the future, one can conceive of a 

number of possibilities for extending this work in new directions. First, it would be 

interesting to examine how results change when 4,4-bipyridine molecules are 

terminated by other anchor group [1-5], as well as the examined effect of different 

torsion angles between phenyl rings with different connectivities (para and meta) to the 

terminal groups [6], which is known to control electrical conductance and may also be a 

useful method of controlling thermoelectricity [7]. Secondly, it would be interesting to 

examine the conductance of bipyridine and thiophene derivatives [8] with torsion angle 

by using the same side groups. Also, the varied bridged atoms of thiophene molecules 

may lead to new features and change the behaviour of electrical conductances. It would 

also be of interest to study the effect of varying the electrode material using alternative 

materials such as graphene [9], silicene [10, 11], platinum, palladium [12], or even 

superconducting electrodes [13,14], which introduce their own novel interference 

effects. 
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