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Abstract

This thesis presents a series of studies into the electronic, thermal and thermoelectric
properties of molecular junctions containing single organic molecules. The exploration
and understanding the electronic and phononic characteristics of molecules connected to
metallic leads is a vital part of nanoscience if molecular electronics is to have a future.
This thesis documents a study for various families of organic and organometallic
molecules, studied using a combination of density functional theory (DFT), which is
implemented in the SIESTA code, and the Green’s function formalism of transport

theory. The main results of this thesis are as follows:

To elucidate the nature of the high and low conductance groups observed in break-junction
measurements of single 4,4-bipyridine molecules, | present a combined experimental and
theoretical study of the electrical conductance of a family of 4,4-bipyridine molecules, with a
series of sterically-induced twist angles o between the two pyridyl rings. | show that their
conductances are proportional to cos2(a), confirming that pi-pi overlap between adjacent rings
plays a dominant role. Since both peaks exhibit a cos?(c)) dependence of conductance on torsion
angle, this is evidence that the high and low conductances correspond to molecular orientations
within the junctions, in which the electrical current passes through the C-C bond linking the pi
systems of the two rings. Furthermore, this result demonstrates that the Fermi energy is located

within the HOMO-LUMO gap and not close to a transmission resonance.

A theoretical investigation into the Seebeck coefficient in pi-stacked molecular
junctions is performed using a first principles quantum transport method. Using oligo

(phenyleneethynylene) (OPE)-type molecules as a model system, | show that quantum



interference produces anti-resonances in the gap between the HOMO and LUMO
resonances and the stacking geometry can control the position of this quantum
interference feature. The shifting of this resonance enhances the thermopower S is
expected when the junction is tuned through a node in the transmission function. We
found supramolecular n-7 interactions between two molecules changed the sign of

thermopower.

I have investigated a family molecules with various side branched atoms to study the
electron and phonon transport through nanoscale molecular junctions, with a view to
understanding the performance thermoelectric materials. My calculations focus on the
effect of heteroatoms formed from C, Si, Ge, and Sn on the thermal phonon
conductance, electrical conductance, and Seebeck Coefficient. | also examine how the
thermoelectric figure of merit is affected by side branched atoms, as the bond length and
mass play an important role in determining the thermal phonon conductance of
molecular wires. Due to the rigid nature of C-side branching, the thermal phonon
conductance decreases monotonically with the bond length and mass, whereas thermal
phonon conductance with Si-side branches increases with the length of the bond and
mass. The low thermal conductance ke with S-bridging, combined with their higher
thermopower and higher electrical conductance leads to a maximum thermoelectric
figure of merit of ZT = 1.76, which is several orders of magnitude higher than that of

bridges.
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Chapter 1: Introduction

Chapter 1

Introduction

1.1 Molecular electronics

Controlling individual molecules and their utilization is one of the scientific ambitions
of our age. The realization of this ambition can open up broad prospects to a
miniaturisation revolution in electronic devices. In recent decades, developments in
nanofabrication techniques have made achievable the dream of contacting individual
molecules to nano-electrodes and measuring their electronic transport characteristics
[1]. Moreover, molecules are highly desirable as functional elements in nano-scale
devices because of their ability to be chemically modified to tune their properties.
Nowadays, these achievements have given rise to the field of Molecular Electronics.

In the mid-1960s, Gordon Moore developed what was to become known as ‘Moore’s
law,” which stated that the number of transistors per unit area in practical applications
would double approximately every two-years [2]. While it was expected that this trend
might go on for just a 10 year period, the exponential growth continues over half a
century later. The fact that it has proven to be much longer, is in part because the law
has become self-fulfilling and became a directive for developments. Also, it was

observed that the size of current silicon based transistors is approaching the tens of
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nanometres length scale which is approaching the limit of this technology. Therefore,
molecular electronics gives a method to extending Moore's law as it offers the required
minimization in size, flexibility in design and the probability of realistic single-
molecule electronics on the atomic scale. This is the ultimate aim for reducing the size
of electronic circuits. The idea of using single molecules as molecular devices is not
new, and the first theoretical work was carried out by Aviram and Ratner who proposed
the first molecular rectifier in 1970s [3].

This thesis will focus on single molecule electronics which has become a rapidly
expanding and popular field for understanding quantum transport at the nanoscale level
both from the theoretical and experimental viewpoint. In these studies, | will apply
theory in understanding the properties of different types of molecules with the aim of
designing new types of materials, which could offer a route to increasing computing
power and also optimize thermoelectric materials. To do this, I will utilize cutting edge
theoretical tools such as density functional theory (DFT), and molecular dynamics
(MD) [4]. The field of molecular electronic sits on the boundary between physics and
chemistry and the role that theory can play in advancing the knowledge of this area is
twofold. First, theory has the ability to make predictions and survey the properties of a
wide range of molecules, thereby identifying target molecules for chemical synthesis.
Secondly, by modelling the experimental measurements of these structures helps to
interpret, for example, break junction and STM measurements, which can show a wide
distribution of measured values due to variations in the unknown geometry of the
electrodes and contacting of the molecule. Here an understanding of the measurements
will be obtained by a first principles quantum transport approach using a DFT method.
Also, in the molecular electronics field, one of the most important roles is in the

synthesis of new molecules and materials to study which so far has focused on typical
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carbon based low-dimensional materials, for example fullerenes [5], carbon nanotubes
[6-7], oligoynes [8] and graphene [9-11]. The main idea behind these efforts is to
understand and control the electrical characteristics of a single-molecule, which can be
incorporated into electronic devices. This has so far seen the following types of devices

realized: molecular rectifiers [12], switches [13-14] and sensors [15].

A likely future contribution of molecular electronics will be to solve the major
challenge of waste heat, by developing new materials and device concepts by
investigating nanoscale thermoelectricity, and contributing to design of new
environmentally organic thermoelectric materials [16,17]. These materials will allow
highly-efficient heat-to-electrical-energy conversion from otherwise wasted low-level
heat sources and could have enormous impact on global energy consumption. These
developments have been accelerated by recent measurements of single-molecule
thermoelectricity, which have confirmed some underpinning strategies for enhancing
their thermoelectric performance [18], which could lead to more efficient thermoelectric
devices and materials [19, 20].

Nanoscale systems and especially nanoscale structures are very promising in this
respect, due to the fact that transport takes place through discrete energy levels. The
ability to measure thermopower in nanoscale junctions opens the way to developing
fundamentally new strategies for enhancing the conversion of heat into electric energy
[21]. The thermoelectric properties of such materials will be discussed in this thesis.

In this thesis, | will strive to understand single-molecule devices by calculating the
probability of an electron passing through a single molecule via two theoretical
techniques [22]. The first is density functional theory (DFT), which is implemented in
the SIESTA code [23], and the second is a non-equilibrium Green’s function formalism

of transport theory, which is implemented in the GOLLUM code [22]. On the
3
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experimental side, scanning tunnelling microscopy break junction (STM-BJ) [24-26],
which have been used to study the transport properties of the single-molecules that are
the subject of investigation. In the course of this thesis, theoretical calculations will be
compared with experimental studies of my collaborators on a range of organic and
organometallic single-molecules.

Beyond the molecules themselves, one might also consider the effect of varying the
electrode material. Recently graphene has been suggested as a viable electrode material
[27-33], but defects such as 5-7fold rings [34] lead to fluctuations in the density of
states near the graphene edges, which hamper unequivocal identification of signatures
of single-molecule transport. Platinum, palladium and iron [35,36] and even silicene
[37,38] have been considered, but at the moment, gold remains the metal of choice,
mainly because it is relatively free of contaminants and does not oxidise in air. For this

reason, | shall use gold electrodes throughout this thesis

1.2 Thesis Outline

In this thesis, | will introduce a brief discussion of the electrical and thermoelectrical
properties of families of single molecules. The second chapter describes density
functional theory (DFT) and the SIESTA code, which will be used to calculate the
electronic and thermal properties of single-molecule junctions. The third chapter
contains the theory of quantum transport, which includes the Green's functions method
that used for the quantum transport calculations.

In the fourth, I will present a combined experimental and theoretical study of the
electrical conductance of a family of 4,4-bipyridine molecules, with a series of
sterically-induced twist angles o between the two pyridyl rings. In the fifth chapter, |

will present a theoretical investigation into the Seebeck coefficient S in n-stacked oligo

4



Chapter 1: Introduction

(phenyleneethynylene) (OPE)-type molecular junctions, performed using a first
principles quantum transport method to control quantum interference and sign of the
thermopower.

The sixth chapter will investigate a family of thiophene molecules that have various side
branched atoms (C, Si, Ge, and Sn) to study electron and phonon transport through
nanoscale molecular junctions, with a view to increasing the performance of
thermoelectric materials. And finally, the seventh chapter presents conclusions and

future works.



Chapter 1: Introduction
Bibliography

[1] Kiguchi, Manabu, ed. Single-Molecule Electronics: An Introduction to Synthesis,
Measurement and Theory. Springer, 2016.

[2] Moore, G. "Cramming more components onto integrated circuits', Electronics, vol. 38, no.
8." (1965).
[3] A. Aviram and M. A. Ratner, Chem. Phys. Lett 29 (1974).

[4] Musa, Sarhan M., ed. Computational Nanotechnology: Modeling and Applications with
MATLAB®. CRC Press, 2011.

[5] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162
(1985).

[6] lijima, Sumio. "Helical microtubules of graphitic carbon.” nature 354, no. 6348 (1991): 56-
58.

[7] S. lijima and T. Ichimashi, Nature 363, 603 (1993).

[8] Wang, Changsheng, Andrei S. Batsanov, Martin R. Bryce, Santiago Martin, Richard J.
Nichols, Simon J. Higgins, Victor M. Garcia-Suarez, and Colin J. Lambert. "Oligoyne single
molecule wires." Journal of the American Chemical Society 131, no. 43 (2009): 15647-15654.

[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,
S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

[11] Sparks, Rachel Elizabeth. "Mechanical and electrical control of transport through single
molecules.” PhD diss., Lancaster University, 2012.

[12] Ashwell, Geoffrey J., Barbara Urasinska, and Wayne D. Tyrrell. "Molecules that mimic
Schottky diodes.” Physical Chemistry Chemical Physics 8, no. 28 (2006): 3314-33109.

[13] Collier, Charles P., Gunter Mattersteig, Eric W. Wong, Yi Luo, Kristen Beverly, José
Sampaio, Francisco M. Raymo, J. Fraser Stoddart, and James R. Heath. "A [2] catenane-based
solid state electronically reconfigurable switch.” Science 289, no. 5482 (2000): 1172-1175.

[14] Li, Yonghai, Masoud Baghernejad, Q. Al-Galiby, D. Manrique, Guanxin Zhang, Joseph
Hamill, Yongchun Fu et al. "A Three State NDI Switch: Integration of Pendant Redox Unit for
Conductance Tuning." arXiv preprint arXiv:1611.02725 (2016).

[15] Leary, Edmund, H. Hdbenreich, Simon J. Higgins, H. Van Zalinge, Wolfgang Haiss,
Richard J. Nichols, C. M. Finch et al. "Single-molecule solvation-shell sensing." Physical
review letters 102, no. 8 (2009): 086801.

[16] Rincon-Garcia, L. et al. Molecular design and control of fullerene-based bi-thermoelectric
materials. NATURE MATERIALS, 2016, 15, pp. 289- 294,



Chapter 1: Introduction

[17] Zhang, Q.; Sun, Y.; Xu, W.; and Zhu, D. Organic thermoelectric materials: Emerging green
energy materials converting heat to electricity directly and efficiently. Adv. Mater. 2014, 26, pp.
6829-6851.

[18] Lambert, Colin J., Hatef Sadeghi, and Qusiy H. Al-Galiby. "Quantum-interference-
enhanced thermoelectricity in single molecules and molecular films." Comptes Rendus
Physique 17, no. 10 (2016): 1084-1095.

[19] Sadeghi, Hatef, Sara Sangtarash, and Colin J. Lambert. "Oligoyne molecular junctions for
efficient room temperature thermoelectric power generation.” Nano letters 15, no. 11 (2015):
7467-7472.

[20] Al-Galiby, Qusiy H., Hatef Sadeghi, Laith A. Algharagholy, lain Grace, and Colin
Lambert. "Tuning the thermoelectric properties of metallo-porphyrins.” Nanoscale 8, no. 4
(2016): 2428-2433.

[21] Algharagholy, Laith A., Qusiy Al-Galiby, Haider A. Marhoon, Hatef Sadeghi, Hayder M.
Abduljalil, and Colin J. Lambert. "Tuning thermoelectric properties of graphene/boron nitride
heterostructures.” Nanotechnology 26, no. 47 (2015): 475401.

[22] Ratner, Mark. "A brief history of molecular electronics."” Nature nanotechnology 8, no. 6
(2013): 378-381.

[23] Soler, José M., Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo
Ordejon, and Daniel Sanchez-Portal. "The SIESTA method for ab initio order-N materials
simulation." Journal of Physics: Condensed Matter 14, no. 11 (2002): 2745.

[24] Ferrer, Jaime, Colin J. Lambert, Victor Manuel Garcia-Suarez, D. Zs Manrique, D.
Visontai, L. Oroszlany, Rubén Rodriguez-Ferradas et al. "GOLLUM: a next-generation
simulation tool for electron, thermal and spin transport.” New Journal of Physics 16, no. 9
(2014): 093029.

[25] Manrique, David Zsolt, Cancan Huang, Masoud Baghernejad, Xiaotao Zhao, Oday A. Al-
Owaedi, Hatef Sadeghi, Veerabhadrarao Kaliginedi et al. "A quantum circuit rule for
interference effects in single-molecule electrical junctions." arXiv preprint arXiv:1509.00990
(2015).

[26] Ismael, Ali Khalid, Kun Wang, Andrea Vezzoli, Mohsin K. Al-Khaykanee, Harry E.
Gallagher, lain M. Grace, Colin J. Lambert, Binggian Xu, Richard J. Nichols, and Simon J.
Higgins. "Side Group-Mediated Mechanical Conductance Switching in Molecular Junctions."
Angewandte Chemie (2017).

[27] H Sadeghi, S Sangtarash, C Lambert, “Robust molecular anchoring to graphene
electrodes.” Nano letters 17 (8), (2017): 4611-4618

[28] Pascal Gehring, Jakub K Sowa, Jonathan Cremers, Qingging Wu, Hatef Sadeghi, Yuewen
Sheng, Jamie H Warner, Colin J Lambert, G Andrew D Briggs, Jan A Mol, “Distinguishing lead
and molecule states in graphene-based single-electron transistors.” ACS Nano 11 (3) (2017):
3404 -3412



Chapter 1: Introduction

[29] Pascal Gehring, Hatef Sadeghi, Sara Sangtarash, Chit S. Lau, Junjie Liu, Arzhang Ardavan,
Jamie H. Warner, Colin J. Lambert, G. Andrew. D. Briggs, Jan A. Mol, “Quantum interference
in graphene nanoconstrictions,” Nano Letters 16 (7), (2016): 4210-4216

[30] Haoxue Han, Yong Zhang, Zainelabideen Y Mijbil, Hatef Sadeghi, Yuxiang Ni, Shiyun
Xiong, Kimmo Saaskilahti, Steven Bailey, Yuriy A Kosevich, Johan Liu, Colin J Lambert,
Sebastian Volz, “Functionalization mediates heat transport in graphene nanoflakes,” Nature
Communications 7 (2016): 11281

[31] Chit Siong Lau, Hatef Sadeghi, Gregory Rogers, Sara Sangtarash, Panagiotis Dallas,
Kyriakos Porfyrakis, Jamie H Warner, Colin J Lambert, G Andrew D Briggs, Jan Mol, “Redox-
dependent Franck-Condon blockade and avalanche transport in a graphene-fullerene single-
molecule transistor,” Nano Letters 16, (2016): 170-176

[32] H Sadeghi, S Sangtarash, CJ Lambert, “Enhancing the thermoelectric figure of merit in
engineered graphene nanoribbons,” Beilstein Journal of Nanotechnology 6 (1), (2015): 1176-
1182 4

[33] H Sadeghi, JA Mol, CS Lau, GAD Briggs, J Warner, CJ Lambert,” Conductance
enlargement in picoscale electroburnt graphene nanojunctions.” Proceedings of the National
Academy of Sciences 112 (9), (2015): 2658-2663

[34] CJ Lambert, DL Weaire, “Theory of the arrangement of cells in a network.” Metallography
14 (4), (1981): 307-318

[35] VM Garcia-Suarez, AR Rocha, SW Bailey, CJ Lambert, S Sanvito, J Ferrer, “Single-
channel conductance of H 2 molecules attached to platinum or palladium electrodes.” Physical
Review B 72 (4), (2005): 045437

[36] VM Garcia-Suarez, CM Newman, CJ Lambert, JM Pruneda, J Ferrer, “Optimized basis
sets for the collinear and non-collinear phases of iron.” Journal of Physics: Condensed Matter
16 (30), (2004): 5453

[37], H Sadeghi, S Bailey, CJ Lambert, “Silicene-based DNA nucleobase sensing” Applied
Physics Letters 104 (10), (2014): 103104

[38] Sadeghi, H.; S. Sangtarash, S.; Lambert, C. J., “Enhanced Thermoelectric Efficiency of
Porous Silicene Nanoribbons,” Scientific Reports 5, (2015): 9514



Chapter 2: Density Functional Theory

Chapter 2

Density Functional Theory

2.1. Introduction

In an attempt to understand the behaviour of molecular electronics devices, it is
desirable to have a reliable technique to determine the structural and electronic
behaviour of organic molecules, which density function theory (DFT) provides. Also, it
is important in understanding the electronic properties of the transport of electrons
across molecular structures which are suspended between the metallic electrodes. In this
chapter, I will give a brief overview of DFT and the SIESTA code (Spanish Initiative
for Electronic Simulations with Thousands of Atoms) [1], which | have used
extensively during my PhD studies as a theoretical tool to study the structures of
molecules as well as calculating charge densities, band structures, and binding
enerigies. SIESTA is an implementation of DFT which is used to perform calculations
on molecular systems, and one of its main advantages is that it can perform calculations

of large scale systems (thousands of atoms).
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The physical theories that underpin the fundamental assertion of DFT were introduced
by Hohenberg and Kohn [2] and then expanded by Kohan and Sham [3] to solve the
intractable many-body problem of interacting electrons in a static external potential to a
tractable problem of non-interacting electrons in an effective potential. This has led to
DFT becoming one of the main tools in theoretical physics, molecular chemistry and
biology [4]. In this chapter | present a short summary of the foundations and numerical
applications of (DFT), however a much more detailed treatment of the theory can be

found in the literature [5-6].

2.2. The many-body problem

A long term goal in theoretical physics is to find a method to solve the many-body

problem in quantum statistical mechanics [7]. To find the eigenvalues and eigenstates of

the full Hamiltonian operator of a general system via solving the Schrodinger equation:
Hy = Ey (2.1.1)

where E is the energy eigenvalue, ¥ is the total wave function and H is the Hamiltonian

described the system. The many-body Hamiltonian can be written as:

_ h2 2 1 e?
H = Zi 2m, Vi + P— Zi:tj |7'i—7'j|

ZZje? 1 ¥ Ze?
|R1—R]| 4—7'[80 i |T'i—R1|

h? 1
_ZIEVIZ + p— 21# (2.1.2)

where m;, Z; and R, are the mass, atomic number and position of the I-th nucleon in the
solid respectively. The position of i-th electron is indicated by r; and m,, is the mass of a
single electron. The Hamiltonian of the many-body problem is divided into five parts;
the first part is the electron kinetic energy, the second part is electron-electron

10
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interactions, the third part is the nucleon kinetic energy, the forth part is nucleon-

nucleon interactions and the last part is electron-nucleon interactions.

Finding the exact solution to the Schrodinger equation, apart from the hydrogen atom or
a small number of electrons, is impossible due to the fact the interaction terms in the
Hamiltonian cannot be directly uncoupled and independently solved. So an
approximations is needed. Since the mass of nucleons is a few orders of magnitude
higher than that of electrons, one can employ the Born-Oppenheimer approximation [8]
to dissociate the wave-function of the electrons and the motion of the nuclei. Here, the
Schrodinger equation is solved for the electron degrees of freedom only. Therefore, if
we know the electronic structure of a molecular system, we can calculate forces on the
nuclei and in addition minimize these forces to find the ground state geometry. With the
Born-Oppenheimer approximation the assumption that the nucleon wave-function is
independent of the electron the equation (2.1.2) can be rewritten:

H=T,+Upo+ Vo_pue (2.1.3)
Here Te is defined the kinetic of all electrons which is written by;

hZ

T. =
¢ — 2,
l

v? (2.1.4)

The second part of equation (2.1.3) Ue is defined as the electron-electron interaction
and sum of all potentials acting on a given electron position r; by all other electrons at

position rj, which can be written by;

e? 1
U,_, = 2 — (2.1.5)

11
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And the last part of the equation (2.1.3) V,_,,. describes the interaction between
electrons and nuclei, and it depends on the positions of electrons ri , nuclei R, the

nuclear potential vrue, Which is given by;

Ve—nuc = Z z Unuc(ri - RI) (2-1'6)
I i

Therefore, the corresponding time independent Schrodinger equation is given by:

HY(r,r,,..r,..) =E¥Y(r,,,...1,...) (2.1.7)

Despite the Born-Oppenheimer approximation minimizing the size of the system, it is
still difficult to solve equation (2.1.7), even on a modern supercomputer. Therefore,
Density functional theory solves this problem by expressing the physical quantities in

terms of the ground-state density.

2.3. The Hohenberg-Kohen theorems

The essential building blocks of Density Functional Theory began with two important
theories by the pioneering work of Hohenberg and Kohn in 1964 [2]. From the first
theorem, the external potential Vex(r) is uniquely defined via the ground state particle
density no (r), except for a constant. To have a better understanding for the first theorem,

it can be considered there are two Hamiltonians Hi1 and H», which have the same

ground-state density p, (-, but different external potentials v and V2. The

ext ext "

wavefunctions of them could be obtained through solving the Schrodinger equation, and

12
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for a non-degenerate system there is one solution of the Schrodinger equation that
presents the ground state wave-functions ¥ and ¥, Since ¥ @is not a ground state

of Hamiltonian H®, we have:
E@ — (lp(l)lH(l)lqj(l)) < (Lp(Z)lH(l)lqj(Z)) (2.1.9)
Also,

E® = (@ |gD|p@) < (pW|g@D|p W) (2.1.10)
As assuming that, the ground states are not-degenerate [9-10], one can rewrite the

equation (2.1.9) as below:

(lp(Z)lH(l)|lp(2)) = (lp(Z)lH(Z)llp(Z)) + (lp(Z)lH(l) — H(Z)llp(Z))

= 5@+ [ ar (R0 - VR ) o) (2111)

And eqn. (2.1.10):

< (@O|H@|pW) = @ 4 f dr (V@)(r) - V(l)(r)) po(r) (2.1.12)

ext ext

Adding together the two expressions (2.1.11) and (2.1.12) to obtain the equation as

follows:

EW 4+ F@ <« FO 4 F@) (2.1.13)
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This expression gives us a contradicting inequality, showing that there cannot be two
external potentials differing by more than a constant which lead to the same non-
degenerate ground state density. The second theorem of the Hohenberg-Kohen states
that a universal functional for the energy E[p] is defined in terms of the density. The
ground state is exactly the global minimum value of this functional. Moreover, the
external potential is uniquely determined by the density, and the potential in contrast
uniquely determines the ground-state wave function, as well as all the other observables
of the system (such as kinetic energy (T) of electrons) are uniquely determined. One

could write the total energy E[p] of the system as a functional of the density as shown:

Elp] = Tlp] + Evnelo] + f A1Vt (F)P(7) 2.1.14)

where the first terms are defined as the kinetic and internal interaction of the electrons
which are usually added together as one functional Fuk[p]=T[p]+Eint[p] because these
are universal and depending on the charge density without influence of the environment.
From the first theorem, the Hamiltonian of the system is determined by the ground-state
density (p, ) for that system with external potential (Vex)) and wavefunction (o).
Therefore, for any density (p), wavefunction (¥), and other than the ground-state, we

can find:
Eo = (¥olH|¥o) <(VIHI¥)=E (2.1.15)

So, the ground state density (p, ) minimizes the functional (eqn (2.1.14)).
Consequently, in the case that if we know the functional Fuk[p], by minimizing
equation (2.1.14), and we can obtain the ground-state of the system and can calculate all

ground-state characteristics.

14
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2.4. The Kohn-Sham Approach

The Kohn-Sham equation [3] is the Schrddinger equation of a fictitious system of non-
interacting particles, which generate the same density as any given system of interacting
particles [11]. As mentioned before, by obtaining the ground-state density, one could in
principle calculate the ground-state energy. However, the exact form that is shown in
equation (2.1.14) is not known. So, the first terms in the equation (2.1.14) T[p] and
Eint[p] cannot generally be presented as functionals of the density. In 1965 there was a
solution introduced by Kohn and Sham [3] to replace the original Hamiltonian of the
system by an effective Hamiltonian of non-interacting particles in an effective external

potential that has the same ground-state density as the original system [12-13].

So, the energy functional is written:

Exslp]l = Tkslp] + J ArVext(Mp(r) + Eylp] + Exclp] (2.1.16)

Hence, Tk is the Kinetic energy of the non-interacting system, where the kinetic energy
(T) in the equation (2.1.14) has been used for the interacting system. This difference is
due to the exchange correlation functional Exc, which will be explained later in the
equation (2.1.18). Also, En presents the Hartree function, and describes the electron-

electron interaction using the Hartree- Fock method [14-17] as given by:

ﬂ PWIP() 4 gy (2.1.17)

lr —r']
The above equation represents an approximate version of internal interactions of the
electrons Eint. So, the exchange correlation functional Exc describes the differences
between the exact and approximated solutions to the kinetic energy and the electron-

electron interaction terms that defined as:
Exclpl = (Einelpl — Enlp]) + (Tlp] — TkslpD) (2.1.18)
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The Kohn-Sham theorem reduces the problem of a complicated many-body system to a
set of simple non-interacting equations exactly, if the exchange correlation functional is
known. Only ground-state quantities are correctly calculated due to the formulation of
the theory, such as the ground-state energy, ground-state density, the fictitious Kohn-
Sham eigenvalues and the ground-state electron geometry. In other words, DFT cannot
be used to calculate higher energetic states correctly such as the lowest unoccupied
orbital of a molecule, and consequently underestimates band gaps in semiconductors. It
is worth mentioning that DFT remains an approximate technique of finding these
ground state properties, as the exchange-correlation functional is not known precisely,

therefore approximations have to be made.

2.5. Functional of exchange and correlation

Density functional theory reduces the quantum mechanical ground-state many-electron
problem to self-consistent one-electron form, by the Kohn-Sham equations [18]. This
method is formally precise, while for practical calculations, the exchange-correlation
energy, E,., as a functional of the density has to be approximated. To do that, the local
density approximation (LDA) has long been the standard choice [19]. Despite its simple
nature, the predictions made using LDA gives realistic descriptions of the atomic
structure, elastic, and vibrational characteristics for a wide range of systems. Yet, LDA
is generally not accurate enough to describe the energetics of chemical reactions (heats
of reaction and activation energy barriers), which lead to an overestimate of the binding
energies of molecules and solids. As well, there are numerous examples where the LDA
puts molecular conformations or crystal bulk phases in an even qualitatively wrong
energetic order [20,21]. Recently, generalized gradient approximations (GGA's) have

overcome such deficiencies to a considerable extent [18,22], giving for example a more
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realistic description of energy barriers in the dissociative adsorption of hydrogen on
metal and semiconductor surfaces [23]. Gradient corrected (GGA) functionals depend
on the local density and on the spatial variation of the density. So, the two most
commonly functionals used approximations are LDA and GGA to the exchange and
correlation energies in density functional theory. To give more information about the
Local Density Approximation and the Generalized Gradient Approximation, the

following section will briefly describe it.

2.5.1. Local Density Approximation

The LDA approximation assumes that the exchange-correlation functional depends only
on the local density which was introduced by Kohn and Sham [3] and it therefore can be
expected to give good predictions for systems where the density is relatively smooth

locally. The functional of the approximation is

E2Ap) = [ drp() (€M (p(1)) +elom (o)) (21.19)
where the exchange and correlation for the homogeneous electron gas can be defined by
terms €™ and €P°™ respectively. Moreover, the analytical formula [5] of exchange
energy €°™ can be given by:

3
ghom=— —53 3m2p (2.1.20)

On the other hand, the numerical calculation of the correlation energy €7°™ that has
been performed by Ceperley and Alder [24] using the quantum Monte-Carlo method.
And then, Perdew and Zunger [25] fitted this numerical data to analytical expressions,

as follows:
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E?om

—0.048 + 0.031inr (5 — 0.01167; + 0.0027; In(r;) 7, < 1

= 0.1423 o1 (2.1.21)
— T
U (1 +1.9529,/r; +0.3334r,) :

1
Hence, the term rsz(%) 3 represents the average electron radius of the

homogeneous electron gas. Also, alternative parametrizations for the correlation energy
exist. The functional suggested by Hedin and Lundquist [26], or the functional by
Vosko, Wilk and Nusair [27], preceded the parameterization of Perdew and Zunger
[28]. The resulting exchange correlation potential produces relatively precise findings
for systems with well-behaved densities.

However, LDA is in some sense the simplest form one can imagine for the exchange
and correlation energies. It is a simple yet powerful functional and it is known to be
accurate for graphene and carbon nanotubes or where the electron density is slowly
changing. For instance, a large error is predicted for atoms that have d- and f-type
orbitals, and it provides a very poor description for hydrogen bonding [29,30]. Also,
difficulties emerge where it is not clear whether the LDA is applicable. For instance,
despite the LDA performs well in bulk group-1V semiconductors it is not exactly clear

how well it performs at surfaces of these materials [26-27].

2.5.2. Generalized gradient approximation

As the LDA approximates the energy of the true density by the energy of a local
constant density, it fails in situations where the density is subjected to rapid changes

such as in molecules. Therefore, an improvement to this can be made by considering the
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gradient of the electron density, the so-called Generalized Gradient Approximation
(GGA). So, the GGA approximation extends the LDA by involving the derivatives of
the density into the functional form of the exchange and correlation energies. In the
GGA approximation, there is no closed form for the exchange term of the function, but
it has been calculated along with the correlation contribution by using numerical
methods. In other words, there are different parameterizations are used with the GGA
approximation for the exchange and correlation energy [31-33]. Hence, we discuss in
this section the functional form that was proposed by Perdew, Burke and Ernzherhof

[23], the correlation energy is given by:
EZE4 = EZS4[p] + ES%4[p] (2.1.22)

And the the exchange part is

B0 = [ € (p)) Vo) T ()p(r)dr (2123)

where,

Velp,Vp) =1+k - 157
T+

The values of k and x parameters are 0.804 and 0.21951, respectively. The

i ; : L v
dimensionless density gradient is s = Z'k—p'

5 where kr is the Fermi wavelength, and
F

V. (p,Vp) is the enhancement factor. Note that the correlation energy form is expressed

as
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B0 = [ p()lec (p(r)) + Flp(r), Vo] dr (2.124)
where,

_ye? Bt* 1+At? B 1
Fp,Vp) = ao In [1 5 (1+At2+A2t4)]’ A= y (e=€ctP)/¥-1)

. . _ (1-1n2) h
Here, the parameters in the last equation are p = 0.066725, y = — 1, Qo = —, and
s = % is the dimensionless density gradient, where Kpp = 3/12/m/\[r; s
TF

representing the Thomas-Fermi screening wavelength and r; can be defined as the local
Seitz radius. In general, the performance of GGA functional is a better approximation
than LDA, and it has considerably influential in both performing actual calculations and
as the basis for functionals including higher derivatives and exact exchange [34]. In this

thesis, the GGA will be used in all the presented calculations.

2.6. SIESTA

The DFT electronic structure calculations have been performed using the SIESTA code
[1]. One of the main features of SIESTA is that it is designed to perform efficient
calculations on huge systems consisting of thousands of atoms, and it uses the standard
Kohn-Sham self-consistent density function method. In addition, the functionals that are
used in SIESTA are the Local Density Approximation (LDA) and the Generalized
Gradient Approximation (GGA). In this section, we will explain briefly the important

methods and how they are used to perform all DFT calculations.
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2.6.1. The Pseudopotential Approximation

In a system that has a large number of atoms containing complex potentials there is
large computational expense for time and memory. One method to solve the
computational problem is to reduce the number of electrons by introducing the
pseudopotential approximation which was proposed by Fermi in 1934 [35-36]. This
method, has developed from creating non-relativistic empirical pseudopotentials [37,
38] to more realistic ab-initio pseudopotentials [39-41]. The idea of this concept that the
electrons in an atom are split into two parts, the first is core and the second is valence,
where core electrons lie within filled atomic shells as well as they are spatially localized
around the nucleus. Whereas, the valence electrons are arranged in partially filled shells,
and they are the ones contributing to the formation of molecular orbitals. Therefore, this
reduces the number of the electrons in a system considerably. Moreover, in the SIESTA
code a special kind of ab-initio pseudopotential which called the norm-conserving

pseudopotential [39] is carried out.

2.6.2. SIESTA Basis Sets

One of the most important features of the SIESTA code is the kind of basis set used in
the calculations. In order to find the ground state energy, the Hamiltonian of the system
should be diagonalised. This step includes the inversion of a large matrix [1] whose
computation time scales with the number of non-zero elements. To minimize the size of
the Hamiltonian, SIESTA uses a linear combination of atomic orbital (LCAO) basis set
which are constrained to be zero outside of a certain radius (cut-off radius).
Furthermore, this generates the required sparse form for the Hamiltonian, and that

reduces the overlap between basis functions. Therefore, a minimal size basis set can
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produce characteristics which model that of the studied system. In addition, the simplest
basis set for an atom is called a single-{ basis which corresponds to a single basis
function ¥,,;,,(r) per electron orbital (i.e. 1 for an s-orbital, 3 for a p-orbital, etc...). In
this case, each basis function consists of a product of one radial wavefunction ¢3,, and

one spherical harmonic Yy,,,:
Pim (1) = b3y (1) Vi (0, 9) (2.1.25)

The radial part (Eq. (2.1.25)) of the wavefunction is found by using the Sankey method
[42], and by solving the Schrodinger equation for the atom placed inside a spherical
box, as well as the radial wavefunction equals zero at the cut-off radius, r,. . Therefore,
this restriction generates an energy shift 6 within the Schrodinger equation such that

eigenfunction has a node at the cut-off radius, 7., as shown by:

> I(l+1
Ll+D

— Tt Vel ()| () = (Ent SE) b (r) (2.1.26)

Here, the radial wavefunction follows the previous constraint to disappear at a cut-off
radius reut. SO, the energy shift oE is produced by this constraint within the Schrodinger
equation for example the, the eigenfunction’s first node appears at rcut. Therefore, for
higher accuracy basis sets (multiple-{), additional radial wavefunctions could be
involved for each electron orbital. By using a split-valence method to calculate the
additional radial wavefunctions ¢!, for i > 1. This includes the defining a split-valence
cut-off for each addition wavefunction r}. Therefore, from the function above 7!
represents a single- ¢ function and below 7 represents a polynomial that has parameters
calculated at r!. The wavefunction and its derivative are assumed continuous, and can

be expressed in this formula:
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. rl(anl - bnlrz) r> 7:9i
Pru() =4 ' . (2.1.27)
11 rt<r<rit

nl
Further accuracy (multiple- ¢ polarised) can be obtained by including wavefunctions
with different angular momenta corresponding to orbitals which are unoccupied in the
atom. This is done by solving (2.1.26) in an electric fieldeld such that the orbital is
polarised or deformed due to the field so a different radial function is obtained. This is
now combined with the appropriate angular dependent spherical harmonic which
increases the size of the basis. Table (2.1) shows the number of basis orbitals for a

selected number of atoms for single-{ (SZ), double-{ (DZ), Single-C Polarised (SZP)

and double-{ polarized (DZP)

Table 2.1: Example of the radial basis functions per atom as used within the SIESTA for

different degrees of precisions.

Atom/Valence Single-{ | Double-{ | Single-{ | Double-C
configuration (S2) (D2) Polarised | Polarised
(SZP) (DZP)
HY/(1s) 1 2 4 5
Cb/(2s? 2P?) 4 8 9 13
N’/(2s? 2P3) 4 8 9 13
S™6/(3s2 2P%) 4 8 9 13
Au’®/(6s! 5d'9) 6 12 9 15
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2.6.3 Calculating binding energy using the counter
poise method

To calculate the binding energy, | shall use the counter poise method. Calculations
using DFT to compute the ground state energy of different molecules allows the
calculation of binding energies as well as optimum geometries. However, these
calculations are subject to errors, due to the use of localized basis sets that are focused
on the nuclei. When atoms are close to each other, their basis functions will overlap
which leads to strengthening of atomic interactions and this could affect the total energy
of the system. In general, to solve this type of error, the Basis Set Superposition Error
correction (BSSE) [43] or the counterpoise correction [44] must be performed in
calculations when utilizing the linear combination of atomic orbitals. The energy of

interaction of two systems a and b can be donated as:

AE(ab) = EX — (E¢ + ED) (2.1.28)

Here, EZL is the total energy for the dimer system a and b, and the E¢ and E? are the
total energy of the two isolated systems. So, to perform these correction inside SIESTA,
| use ghost states to assess the total energy of segregated systems a or b in the dimer
basis.

AE(ab) = Egp — (E" + E§”)
Where EZP (EZP) is the energy of system a (b) evaluated in the basis of the dimer. This
method is used in calculations in chapter 4 and 5, which provides the most accurate

approach for these systems [45-47]. To implement these corrections within SIESTA, we
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use ‘ghost’ states to evaluate the total energy of isolated systems a or b in the dimer
basis. Ghost states mean keeping the basis of one part of a dimer on atomic centres and
ignore its electrons and nuclear charge while keeping the other part of dimer without
neglecting anything. This method provides accurate results for different systems [48-

50].

2.6.4. The Electron Hamiltonian

The electron Hamiltonian that is generated by SIESTA follows the Kohn-Sham

formalism and involves the local and non-local parts of pseudopotential:

H=T+ Z VFE(r) + Z VI (r) + Vy(r) + Vi (1) (2.1.29)

Hence, T denotes to the kinetic operator, V;"°¢ and V;XE represent the local and non-local
parts of the pseudopotential for atom i, as well as Vy and Vyc are the Hartree and
exchange-correlation potentials. Moreover, to calculate the first two parts of (Eq.

(2.1.29)) by using two centre integrals in k-space, which are defined as follows:
(wy|0|w,) = f pr(k) 0¥, (k)e *Rdk (2.1.30)

From last equation, by taking a Fourier transforms in k-space with ¥, corresponding to
either the basis orbitals (for 0 = T) or the Kleinmann-Bylander pseudopotential
projects (for O = VXB). The final three parts in (Eq. 2.1.29) that are calculated on a

three-dimensional real space grid with a fineness Ax controlled a grid cut-off energy €.,
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2
which is equivalent to a plane-wave cut-off ¢, = Z"A—x. Within of all calculations a cut-

off energy of 250 Ry has been used to provide adequate accuracy.

2.7. Calculations in Practice

To begin calculations, we have to start the computation. The first step is to build the
atomic configuration of the system, and then the appropriate pseudopotentials are
required for each component, which is distinctive for each exchange-correlation
functional. Computationally, the main reason to choose an appropriate basis set for
every element present in the calculation is in terms of time and memory. Therefore, as
known that more accurate calculations need to more computationally expensive, thus it
takes a longer time and uses a larger memory.

The fineness and density of the k-points that are another input parameters which leads
to move precise calculations, on which the wavefunctions are evaluated or energy
convergence tolerance, as well as the periodic system, the Brillouin zone sampling for
the k-space integral.

The next step is to generate the initial charge density, assuming there is no interaction
between atoms. If the pseudopotentials are known, then this step is simple, and the total
charge density could be the sum of the atomic densities. The self-consistent calculation
begins by calculating the Hartree potential and exchange-correlation potential, as shown

that in figure 2.1.
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Initial guess
n(r)

Calculate effective potential

Verr (1) = Voye (X (n)+V . (1)

y

Solve K-S equations

(—% v+ V{r)) P, (1) = eapy(r)

|

Calculate electron density

n) = Y f W@
i

|

r Self-consistent?

no

Compute energy, forces , stresses

Figure 2.7.1: Schematic of the self-consistency process within SIESTA.

Therefore, the density is represented in real space, the Hartree potential has been
obtained by solving the Poisson equation with the multi-grid [51] or fast Fourier
transform [51-52].

By solving the Kohn-Sham equations and obtaining a new density p(r), the next

iteration is started, as shown in figure 2.1, on which the end of iteration when the
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necessary convergence criteria are reached. Thus, we get the ground state Kohn-Sham
orbitals as well as the ground state energy for a given atomic configuration that are
achieved. For geometric optimization, the step that mentioned above described is in
another loop, which is controlled via conjugate gradient method [53-54] to obtain the
minimal ground state and the corresponding atomic configuration. Finally, when the
self-consistency is implemented, the Hamiltonian and overlap matrices could be

extracted so that they can be used within a scattering calculation.
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Chapter 3

Theory of Quantum Transport

3.1. Introduction

The goal of molecular electronics is to understand the electrical behaviour and
characteristics of molecular junctions. One of the challenges is how to connect the
molecular structures to bulk electrodes to investigate electronic properties. The contact
strength between the molecule and the metallic electrodes is generally a significant part
in determining the transport properties, due to scattering processes within a
lead|molecule|lead framework. The main theoretical method to study scattering in these

systems is through the Green’s function formalism.

The aim of this chapter is to briefly introduce the Landauer formalism with a simple
derivation. To introduce of the concept of Green’s functions, starting with a simple one-

dimensional chain before expanding to systems of arbitrarily complex geometry.
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3.2. The Landauer Formula

The standard theoretical model to describe transport phenomena in ballistic mesoscopic
systems is the Landauer formula [1-2], which is an applicable method for phase
coherent systems. To begin with, we assume that the system connects two large
reservoirs with a scattering regain, as shown in figure 3.1.1, and in this case all inelastic
relaxation processes are restricted to the reservoirs [3]. Therefore, the electron transport
passing through the system is formed as a quantum mechanical scattering problem. The
second important assumption is that this system is connected to external reservoirs by

ideal quantum wires, which behave as waveguides for the electron waves.

Left contact Left lead Scatterer 1 Right lead Right contact

My MR

Figure 3.2.1: A mesoscopic scatterer connected to contacts by ballistic leads. The chemical
potential in the contacts is . and ur respectively. If an incident wave packet hits the scatterer
from the left, it will be transmitted with probability T= tt" and reflected with probability R = rr”.
Charge conservation requires T + R = 1.

The mesoscopic scatter as shown in figure 3.2.1, is connected to two electron reservoirs,
and these reservoirs have slightly different chemical potential u;, — uz = 6E > 0, and
that leads to the movement of electrons from the left to the right reservoir. We will

discuss the solution of one open channel for one electron: the incident electrical current

ol that is generated by the chemical potential gradient, as given by:
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on on
6l = evgﬁSE = evgﬁ(m — Ugr) (3.2.1)

the electron charge is e, the group velocity is vg, and Z—Z is density of states per unit
length in the lead in the energy window that can be defined by the chemical potentials

of the contacts:

on o0ndk on 1

As in one-dimension, after involving a factor of 2 for spin dependency ‘;—Z = % When

we substitute into Eq. 3.2.2, we will find that Z—Z = ﬁ which simplifies Eq. 3.2.1 to:
g

2e 2e
ol = 7 (,LLL - ,LLR) = T5V (323)

where 8V represents the voltage generated by the potential mismatch. According to Eq.

3.2.3, the absence of a scattering region, the conductance of a quantum wire with one

2
open channel is % which is around 77.5 uS, or the resistance is 12.9 kQ. In other

words, if we consider a scattering region, the current passing through the scatterer to the

right lead will be:
51 =275 =8 = g =27 (3.2.4)
h % h

This equation is the Landauer formula, relating the conductance G of a mesoscopic
scatter to the transmission probability J for electrons passing through it. Also, it
describes the linear response conductance, here it only holds for small bias voltages

ie. 6V = 0.
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In the case where there is more than one open channel, the Landauer formula has been
generalised by Blttiker [2], where the sum of all the transmission amplitudes leads, the

formula to become:

61—0—2822|t |2—262T(tt*) 3.2.5
sv - U T T LW T (3.2.2)
iJj

Here, ¢; ;represents the amplitude of transmission describing scattering from the j™
channel of the left lead to i channel of the right lead and G is the electrical
conductance. According to the definition of transmission amplitudes, the reflection
amplitudes r; ; could be introduced to describe scattering processes where the particle is
scattered back to the same lead as it came from it, here 7; ; characterizes the probability
of a particle arriving in channel j is reflected to channel i of the same lead. By
combination the amplitudes of transmission and reflection, we can produce the
scattering matrix which we call the S matrix, which connects states coming from the left

lead to the right and vice versa, as follows:

(T t' 5
S 520

In this equation, r and t represent the electrons transferring from the left, also r' and t'
describe electrons coming from the right. When we go back to the equation (3.2.5),
which suggests that r, t, r and t' are matrices for more than one open channel, and in the
presence of a magnetic field which can be complex. The S matrix is an important item
in the scattering theory. In other words, it is useful not only in describing linear

transport, but also in other problems such as adiabatic pumping [4].
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3.3. One Dimension

To calculate the scattering matrix for a simple one-dimensional system, it is necessary
to give an outline of the generalised methodology. In what follows, a Green’s function
approach is used in the derivation of a simple one-dimension lattice (section 3.3.1), and
following this a calculation of the scattering matrix of a one-dimension scatter (section

3.3.2).

3.3.1. Perfect One-Dimensional Lattice

The form of the Green’s function for a simple one-dimensional lattice will be discussed

with on-site energies &o and real hopping parameters -y as shown in figure (3.3.1).

— — — — — —Y
-9 000000+
& & & &€ & & &

(o] o} o} (o] (o] (o] (o]

Z-1 Z Z+1

Figure 3.3.1: One-dimensional periodic lattice tight-binding approximation with on-site
energies g and hopping parameters y.

The Schrodinger equation describes the system’s wavefunction with the Hamiltonian H,

Hlyp) = E|p) (3.3.1)

The wavefunction ¥, is expanded in a one-dimensional orthogonal localized basis set
|z"):

) =X, |z') (3.3.2)
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Substituting (Eg. 3.3.2) in (Eg. 3.3.1) and multiplying the result by |z) yields:

ZHZ,ZIIPZ’ =EY, (3.3.3)

Hence,

A

Hypr = (Z|H|Z’)
The Hamiltonian matrix has the form,

~ =y 00

—Y & —vO0

H = 3.34
0, (334)
0 0 —y-.

The Schrodinger equation at a lattice site Z in terms of the energy and wavefunction ¥
is given by (Eg. 3.3.6):

(E—H)¥ =0 (3.3.5)

eV, —Y¥241 —VY¥,-1 = EY, (336)
By using the wavefunction as given by Block’s theorem for the perfect lattice chain

which has the form ¥, = — etkz where -t < k <. The Schrédinger equation

Ner
(3.3.6) can be solved to give the dispersion relation:
E =&y — 2ycosk (3.3.7)

The group velocity can be normalized by

Vg = Z—i = 2y sin(k) (3.3.8)
Hence, k is the wavenumber. It is clear that for a given energy we can see there are two
wavefunctions that satisfy (Eg. 3.3.1), and their k and v have opposite signs.
To calculate the retarded Green’s function g(z,z"), which is closely related to the

wavefunction, the following equation is solved:
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(E—H)g(z,2') =6, » (3.3.9)

In general, the retarded Green’s function g(z,z") explains the response of a system at a
point z because of an excitation (a source) at point z'. In reality, the excitation give rise

to two waves, which travel outwards with amplitudes A and B in the directions shown

in figure (3.3.2).

> Z

Figure 3.3.2: Retarded Green’s function of an infinite one-dimensional lattice. The excitation at z = z’
causes waves to propagate left and right with amplitudes A and B respectively.

The resulting waves can be presented as:

g(z',z) = Be*® z> 7'

g(z',z) = Ae 2 z< 7' (3.3.10)

In this equation, the solution satisfies (Eq. 3.3.9) at every point except z = z'. To
overcome this, the Green’s function must be continuous (Eg. 3.3.11), and therefore the
two are equated at z = z':

[g(zizl)]zzz’ left — [g(Z'Z,)]zzz’right (3.3.11)

Beikz' — ge-ik?' — 4 = Be2ik?’ (3.3.12)

By substituting (Eq. 3.3.12) into the Green’s function equation (3.3.10), we will find as
shown:
g(Z’,Z) — Beikz — Beikzleik(Z—Z’) z>7z
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g(z',z) = Be?ikz' g-ikz = Beik?' gik(z'~2) z< 7z (3.3.13)

We can rewrite the equation (3.3.13) as:
g(Z,Z’) — Beikz'eik|z—z'| (3.3.14)

To find the value of the constant B, we use equation (3.3.9) we use Eq. (3.3.6) which for

z =7 given:
(¢, — E)B—yBe* —yBe* =1 (3.3.15)

yB(2cosk — 2e™*) =1

11

- 2iysink - ihug

where the group velocity, found from the dispersion relation equation (3.3.7), is:

__10E(k) _ 2iysink

Ug =T, - (3.3.16)
We can rewrite the retarded Green’s function as shown:
gR(z —2') = —eiklz—7'| (3.3.17)

lhvg

The literature [5,6,7] shows a more thorough derivation. The next step is to introduce a
defect into the lattice to create a scattering region and then a transmission coefficient

can be calculated.

3.3.2. One-Dimensional (1-D) Scattering

In this section, | will obtain the Green’s function of a system that has two one-

dimensional tight binding semi-infinite leads, connected by a coupling element o. The
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two leads have equal on-site potentials £, and coupling elements —y, as shown in figure

3.3.3.

Scattering Region

________________

r" Y
! i
—Y “Yai"Y a~Yia—Y Y
-0~ 0— 00— 0000~
So 80 Soi‘ so So ,E 80 so So

----------------

Figure 3.3.3: Simple tight-binding model of a one-dimensional scatterer attached to one-
dimensional leads.

To solve this problem, | will derive the transmission and reflection equations for a
particle moving from the left lead to right lead through the scattering region. First, the
Hamiltonian that takes the form of an infinite matrix, is given by:
~—=y0 000
/_VSO_VO 0 0\‘ H, T,
szg Oyf;;_oyg = (3.3.18)

00 O—yso—y/ V' Hpg
000 O0-y-

Here, H, and Hy are the Hamiltonians of the left lead and right lead, respectively. These
leads are the semi-infinite equivalent of the Hamiltonian that is shown in (Eq. 3.3.4),
and V¢ is the coupling parameter connecting them. If y is real, then the dispersion
relation corresponding to the leads which is introduced above in (Eqg. 3.3.7), and also
the group velocity was written in (Eq. 3.3.16). By calculating the Green’s function of
this problem, we can obtain the scattering amplitudes. So, the form for the solution of

equation (3.3.9), which is given as:

G=(E—H)! (3.3.19)
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This equation can be singular if the energy E is equal to eigenvalues of the Hamiltonian

H, to deal with this it is practical to consider the limit:

Gy = lim(E — H + i)™ (3.3.20)
n-
00
A
=
S
E L
v
—00

Figure 3.3.4: shows the singularity behaviour of function (Eq 3.3.21).

Hence, # denotes a positive number and G+ represents the retarded (advanced) Green’s
function. In what follows, the retarded Green’s function that has been used in, and the
positive sign only has been chosen. For the infinite one- dimensional chain, the retarded

Green’s function can be defined in (Eq. 3.3.17), which is given as:

g%, = ——eikle=zl (3.3.21)

ihvg

Hence, z and z’ denote the labels of the sites in the chain and sufficient boundary
conditions, which are needed to give the Green’s function of a semi-infinite lead. The
lattice is semi-infinite; therefore, the chain should be terminated at a given point z,. The

boundary condition is achieved via adding a wavefunction to the Green’s function
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equation to represent the mathematical part of this condition. So, the wavefunction for

this case is given as:

eik(z+zl—zzo)

Yoo =—

Zz,z!

(3.3.22)

ihug

Here, the labels of the sites of molecular chain at boundary conduction are z = z' =
zy — 1. Therefore, to obtain the Green’s function g,,, = g,q + w;g, will have the

simple form:

Gzo-1291 = — — (3.3.23)

In the case where there is no coupling between the molecule and the leads, o = 0, the

Green’s function can be given as:

( \
g= | = (3.3.24)
k o ) .

If we consider a switch on of the interaction, then to obtain the Green’s function of the

coupled leads of this system, Dyson’s equation is written:

Gl=(gt-V) (3.3.25)
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where V is the operator that describes the interaction connecting the leads, which has the

form:

V= = (3.3.26)

By solving the Dyson’s equation (3.3.25), we will obtain:

ye—ik -

G=——1 (3.3.27)

—a ye

Here, we can calculate the transmission (t) and the reflection (r) amplitudes from the
Green’s function equation (3.3.27). This is obtained by using the Fisher-Lee relation [3,
7], which relates the scattering amplitudes of a scattering problem to the Green’s

function of the problem. The Fisher-Lee relations for our case is given:

1
61,1 = E(l + T)

Gp = @te“‘ (3.3.28)

r = ihvuyGy, -1 (3.3.29)
and

t = ihv,G e (3.3.30)
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Therefore, these amplitudes will be corresponded to particles incident from the left. On
the other hand, particles are travelling from the right side, which means these

expressions could be used for transmission ¢/ and reflection »/ amplitudes.

According to these coefficients above, the probability can be defined: 7 = ##, R = rr*.
Thus, the transmission probability for this case can be given as:

0.2

= Gi—aDirer (3.3.31)
The parameters in this equation are ¢ = 2yasink, and if o = y that means the
transmission T=1. In the case when a is greater or smaller than y, which leads to create

scattering region, and could be resulted to the transmission T < 1.

Furthermore, we are now in the possession of the full scattering matrix, and the
Landauer formula here can be used (Eqgn. 3.2.4) to calculate the zero bias conductance.
The procedures that are used in this analytical solution for the conductance G of a one-

dimensional scatterer could be generalized for more complex geometries.

3.4. Generalization of the Scattering Formalism

Following the Lambert’s derivation [8,9], I will show a generalized approach to
transport calculations in this section. This approach has three parts; firstly, the surface
Green’s function of crystalline leads is computed. Secondly, the technique of
decimation is indicated to reduce the dimensionality of the scattering region. Finally,
calculating the scattering amplitudes by using a generalization of the Fisher-Lee

relation.
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3.4.1 Hamiltonian and Green’s Function of the Leads

To study the general semi-infinite crystalline lead of arbitrary complexity then the
structure of the Hamiltonian is a generalization of the one-dimensional (1-D) lead

Hamiltonian in (Eq. 3.3.4), as shown in figure 3.4.1.

>

Figure 3.4.1: Schematic representation of a semi-infinite generalized lead. It shows that HO and
H1 are the Hamiltonians and hopping energies, respectively. The direction Z is defined to be
parallel to the axis of the chain.

As shown in figure 3.4.1, the general system topology, the total Hamiltonian whose

structure can be written as an infinite block tridiagonal matrix form:

. Hl 0 0
H H, H; 0
H= 1 70 3.4.1
0 Hf Ho H (3.4.)
0 0 H

Hence, H, is the on-site energies of orbitals, and orbitals interactions between each
other in the plane perpendicular through the direction of transport z-axis, and H, is the
coupling between the orbitals belonging to nearest neighbour slices. In addition, H, and
H, can be general complex matrices. By solving the Schrddinger equation, the spectrum
of the Hamiltonian H has been calculated, and then the Schrddinger equation of this

system can be taken the form:
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EWZ = HOLIIZ + qujz+1 + HIlPZ—l (342)

Hence, the Here, ¥, presents the column vector whose elements identify the amplitude
of the wavefunction on each degree of freedom within a slice located at point z along
the Z-direction, and the main idea from equation (3.4.2) is satisfied for all values Z, and
the assumption that the system is infinity periodic in the Z-axis only. Therefore, the on-
site wavefunction ¥, could be represented in the Block form, which consists of a
product of a propagating plane wave and a wavefunction ¢, that is perpendicular to the
transport Z-direction. If the dimensions of intra- Hamiltonian, Hy, M x M (or consists of
M site energies and their respective hopping elements), the perpendicular wavefunction
¢, can have M degrees of freedom and take the form of a 1x M dimensional vector.
Thus, the wavefunction ¥y

Wy = g e*Z ¢y (3.4.3)
Here, n; presents an arbitrary normalization parameter, when we substitute this
equation into the Schrédinger equation (3.4.2), it will be given:

(Ho + e**Hy + e "2 H! —E)¢p,, = 0 (3.4.4)
Generally, to calculate the band structure for such a problem, one can select values of k
and then calculate the eigenvalues at that point E = E;(k), where | = 1,..... M. the
parameter | indicates to the bond index. So, for each value of k, there could be M
solutions to the eigenproblem, and thus M energy values. What following, by choosing

multiple values for k, it is relatively simple to build up a band structure.

Therefore, to obtain the value of k in the scattering problem. Firstly, we have to find the
value of E, instead of finding the E values at a given k. Secondly, we get the values of k
at a given E, and this is approaching the problem from the opposite direction. Moreover,

to complete successfully this problem, there is a root-finding that is used to perform
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this, however, an enormous numerical effort is required due to the wave numbers are in
general complex. Furthermore, the eigenvalue for this problem can be written down and

resulted from the energy is the input, and then the wave numbers are as the results:
v, = e K2, (3.4.5)

By combining this equation with (Eq. 3.4.4):

(H;l(Ho —E) —Hf 1HI) <¢k) = pikz <¢k> (3.4.6)

I 0 Vg Vg

For a layer Hamiltonian H,, the size of Hamiltonian matrix M x M, equation (3.4.6) will
yield 2M eigenvalues, e*1? and eigenvectors ¢, of the size M. therefore, these states
can be arranged to four parts depending on whether they are propagating or decaying, as
well as whether they are left going or right going. For the case that is propagating, when
it has a real number of k;, and second case that is decay, if it has an imaginary part.
That means, if the imaginary case of the wave number is positive and will be a left
decay state. In contrast, if it has a negative imaginary part it is a right decaying state.
Therefore, the propagating states are arranged according to the group velocity of the

state:

1 aEk'l

LT T ok (3.4.7)

If the group velocity vy, of the state is positive, then there will be a right propagating

state, while if it is negative, a left propagating state will be found.
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Table 3.4.1: Sorting of the eigenstates into left and right propagating and decaying
states according to the wave number and group velocity.

Decaying Im (k,) > 0 Im (k) <0

Propagating Im (k) =0, 9, <0 Im (k)) =0, 9, >0

To understand and distinguish between the left and right propagating/decaying state, we
would refer k; to the left propagating/decaying set, and k; indicates to the right
propagating/decaying set. For the wave function, ¢z, and ¢y, are associated to a left and
right states, respectively. In addition, for Hy case, if it is invertible, then there must be
the same, M, of the left and right states. On other hand, if H, is singular, then the matrix
in equation (3.4.6) cannot be constructed, since it relies of the inversion of H;.
Therefore, there are several methods which can be used to overcome this problem. The
first method [10] which uses the decimation technique to create an effective non-
singular H;. There is other solution may be to populate a singular, H;, with small
random numbers which introduces an explicit numerical error. Therefore, this method is
reasonable as the introduced numerical error might be as small as the numerical error
introduced by decimation. Furthermore, another solution is re-written equation (3.4.6)

such as H; need not be inverted:

(orF e ) s
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However, by solving this generalized eigenproblem is more computationally expensive,
and the above-mentioned methods work reasonably in disrupting the problem of a
singular H1 matrix. And that means the number of the matrix must be the same of the
left and right going states, whether H; is singular or not. Therefore, the solution of the
equation (3.4.4) to the eigenproblem at a given energy E, there will not be exactly form
an orthogonal set of states. And this is decisive because we might have to deal with non-
orthogonality at constructing the Green’s function, which is necessary to present the

duals to ¢, and ¢x,, which are given as:
S Pr, = PP, = 8y (3.4.9)

And this yields the generalized completeness relation:

My b, = il L dr, =1 (3.4.10)
By calculating the Green’s function for the infinity system, and we are in possession of
the whole set of eigenstates at a given energy and by satisfying the proper boundary
conditions for the semi-infinite electrodes at their surface. At condition Z # Z', the
Green’s function satisfies the Schrédinger equation, and we will build up the Green’s
function from the mixture of the eigenstates ¢, and ¢,

M ik)(z— 2z’
(B pree™ ], 22 7

g(z,z") = ! (3.4.11)

T /
M, ¢kle”‘l(2_z )ng z< 7'

Hence, the M-component vectors wy, and wy, are to be determined, also there are
similarities of structures between this equation and equation (3.3.10), as well as all the
degrees of freedom in the transverse direction are involved in the vectors ¢, and wy,.

So, the priority is to obtain the w vectors. As mentioned in the section (3.3.1), the
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equation (3.4.11) must be continuous when z # z', and should achieve the Green’s

function (Eq. 3.3.9). The first condition is given as:
S biwi, =Zidr vy, (34.12)
The second condition is:

M [(E — Ho)pie Wi, + Hipr,e™ wl + Hf ¢y e~k ng] =

And these two conditions employ the following equation:

M
D B = Hdpuow], + Hugre™ w), + Bl e ™ wh + HI et w,
=1

+ Hi ¢y et W,;rl] =]
M
Z [Hfd)_kze_ikl ng + H;rd)kle_ikl W’jl]
=1

+ > [(E —Hp) + Hie™t + Hie™ 1] ¢y, wl =1 (3.4.13)

s

From the Schrodinger equation (Eq. 3.4.4), it is known;
M. [(E - Hy) + Hieti + Hfem#] = ¢, = 0 (3.4.14)
And this yields:

Mgt (d)kle‘”_“ wi = etk W,jl) =1 (3.4.15)

By using dual vectors defined in Eq. (3.4.9), and multiplying Eqg. (3.4.10) by gEkp, which
IS given:

Lt b = Wi (3.4.16)
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and similarly multiplying by {5;1 yields:

Lidf diwil, = wi (3.4.17)

Also, utilizing the continuity Eq. (3..4.12), Eq. (3.4.16), Eq. (3.4.17), then the Green’s
function

Eq. (3.4.15) becomes:
S H (e ™ Bl — pre™ ™l Y, wi =1 (3418)
And what follows:

_ -1
t ik 7t ikt \]7Y b t
it [H1 (¢kle lkld’kl — $r,e lqu")kz)] _Zgzl ¢Rp Wiy = pM=1 ¢kp Wiy

(3.4.19)
This directly gives us an expression for w,f :
w = ¢fvt (3.4.20)
Hence, v is defined as:
v =3, B (pre "], — pre ™)) (3.4.21)

In the equation (3.4.20), the wave function denotes to both left and right states. By

substituting Eq. (3.60) into Eq. (3.51), gives the Green’s function of an infinite system:

PN ¢kleikl(z_ ZI)‘I-';;V_l zZ>z
9%, = (3.4.22)
\ 2Ly g el ) glv z< 7
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In addition, to get the Green’s function for a semi-infinite lead, a wave function can be
added to the Green’s function, and the boundary conditions should satisfy at the edge of
the lead, as with the one-dimensional (1-D) case. The boundary condition hence is that
the Green’s function must disappear at a given place, z = z,. Therefore, in order to

perform that (g = g® + A) has been added to the Green’s function (Eq. 3.4.22).

A= 2{‘:’p=1 d)kl eikl(z— z) $£l¢kpeikp(z— Zo)(ﬁll—pv—l (3423)
For going left:
9= (1= Zup b, 6L b ™0 @] ) vt (3.4.24)

And for going right:

gr = (1= Zip br, e ™S pre,e ™l Yot (3.4.25)

Therefore, we have a versatile method for calculating the surface Green's functions Egs.
(3.4.24) and (3.4.25)) for a semi-infinite lead utilizing the numerical approach in Eq.
(3.4.6). in summary of all that is to obtain the Hamiltonian of the scattering region, and
using DFT and combine this with the surface Green’s function by Dyson’s equation. So,

to obtain the total Green’s function, as shown:

Gr= [g7"—H]™" (3.4.26)
Where,
g O )
= 3.4.27
g ( 0 gr ( )

Here, gL and gr represent the surface Green's functions of left and right leads that are

given in equations (3.4.24) and (3.4.24), respectively.
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3.4.2 Scattering Matrix and the Transport coefficients

To calculate the scattering amplitudes, and deposing on the generalization of the Fisher-
Lee relation [7,13,14], and it is assumed that states which are normalized to carry unit

flux, which gives the transmission amplitude from the left to right lead, as shown:

th = dzthoﬂL Pk, (3.4.28)

Vh
vi

Here, ¢y, represents a right moving state in the right lead, and ¢, is a right moving

state in the left lead. As well as, v;, and v; express the corresponding group velocities.

For the reflection amplitudes in the left lead, which is given as:

i = B (Goovr — Dby, (3.4.29)

Vh
v

All the states in the left lead are shown, ¢r, is a left moving state, ¢y, is a right moving
state and v, is the v operator which mentioned in Egn. (3.4.5) for the left lead.

For the right lead, we can define the scattering amplitude of particles coming from this
side, as shown:

th = é;hG1OVR ¢r, (3.4.30)

(40
2]

And
(3.4.31)

= @5 (Gvg — Dy,

Vh
v

The group velocities and state vectors can be defined similarly as for electrons moving
from the left to right lead. Therefore, the scattering matrix can be defined as the

collections of transmission and reflection amplitudes connecting propagating states.
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Figure 3.4.2: A Schematic representation of a two terminal device, showing the leads connected
to the extended molecule of the scattering region, this includes the molecule plus some layers of
the leads.

The total transmission can be calculated for the system by summing over all channels,

which can be written in terms of the trace of the transmission matrix [15].

T = Yiltml? = Yt try = Tr (tt1) (3.4.32)

3.4.3. Effective Hamiltonian of the Scattering Region

In section, | have shown in the last section a coupling matrix between the surface of the
semi-infinite leads, and the Dyson equation (3.3.6) that can be utilized to calculate the
Green’s function of the scatterer. Therefore, the scattering region is not usually
described simply as a coupling matrix between surfaces. Thus, it is useful to use the

decimation trichinae to reduce the Hamiltonian down to such a structure. Other methods
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have been developed [11, 12]. The decimation trichinae has been used in this thesis. We
re-write again the Schrodinger equation:

If we separate the Ith degree of freedom in the system:

Hy¥, + Y. Hij¥ = EY; i+l (3.4.34)

Hlllzul + Zj#:l Hl]lzuj - ElIIl l == l (3435)

From last equation, we can express ¥; as shown:

Vo=Djzig g, (3.4.36)
Now, if we substitute Eq. (3.4.29) into Eq. (3.4.27) yields:
%o |[Hip) + %ZZ’J] = EY, i1 (3.4.37)

On other hand, equation (3.4.30) can be considered as an effective Schrddinger
equation, where the number of degree of freedom is lowered by one compared to

equation (3.66). Therefore, the new effective Hamiltonian, H', as shown:

HjHyj
E-Hy

This Hamiltonian is the decimated Hamiltonian produced by simple Gaussian
elimination. A notable characteristic of the decimated Hamiltonian is that is energy
dependent, which suits the method presented in former section very well. Without the

decimation method, the Hamiltonian describing the system in general would take the

form, as given:
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H VvV, 0
H= VLT Hscatt VR (3439)
0 Vi Hg

Now, if we look to parameters in this equation, it can have defined as H; and
Hpy indicate to the semi-infinite leads, H,.,:; indicates the Hamiltonian of the scatterer,
V, and Vy are the coupling Hamiltonians which couple the original scattering region to
the leads. Therefore, an new effectively equivalent Hamiltonian has been produced after

decimation.

HoV,
H = 4.4
(V; HR) (3.4.40)

Hence, V. indicates an effective coupling Hamiltonian, which now describes the whole
scattering process. Now the same steps as with the one-dimensional case can be
applied; using Dyson’s equation (3.3.26). Hence, the Green’s function for the whole
system is described by the surface Green’s function (Eqns. 3.64 and 3.65), and the

effective coupling Hamiltonian from equation (3.4.33).
-1 v -1 G G
G = <‘9LT _Cl) = ( 00 01) (3.4.41)
V. 9r Gio G11

3.5. Thermoelectric coefficients

The thermoelectric effect in a system can be defined as conversion between thermal and
electric energies, when there is a temperature difference AT and voltage difference AV
across it. This leads to an electric current | and heat current Q passing through a
device. Therefore, the linear response for both currents (electric and heat) are related to
the temperature AT and voltage AV differences through the thermoelectric coefficients
G, L, and K [16-17].
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2

Iy 1 e’Lo 7L\ ay

( ) =1 ! (AT) (35.1)
T

Here, T represents the reference temperature, also at room temperature the transport
through single-molecules is phase-coherent, with moments L,, = L + L}, (n=0,1,2),

where Ln is written as:

15 = % (& - E)"To(B) (- LED) 4 (35.2)

where T (E) is the transmission coefficient, and ¢ represents spin [T, 1] of transport of
electrons passing through the single-molecule from one electrode to another [18], f
(E,T) is the Fermi distribution function that is defined f(E,T) = [eE~EF)/ksT 4 1]~1
where kg is Boltzmain’s constant. We can rewrite equation (3.5.2) in the terms of the
electrical conductance (G), thermopower (S), Peltier coefficient (/7), and the electronic

contribution to the thermal conductance (ke), as shown:

AV _ (1/G S I
( Q > B ( I ke> (AT) (3.5.1)
The electrical conductance, G is given by the Landauer formula:

2 2
G = %LO (3.5.2)

Here, h is Planck’s constant. The thermopower in this case is given:

AV 1L

S=——= (3.5.3)
AT  eT Lg
The Peltier coefficient (I1),
1L
Mn=-= (3.5.4)
e LO
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And the electronic contribution to the thermal conductance (ike) is given:
k, = —(L2 - —) (3.5.5)

From the above equations, the figure of merit ZT, = S2GT /k, [17-20] can be written

as:

1
ZTe = m (3.5.6)

Lz
We can see the figure of merit ZT determines the efficiency of conversion heat into
electricity. In the case when E is closed to Fermi energy, Er, then if transmission, T(E),
changes slowly with, E, on the of scale KgT, and then the equations of conductance and

thermopower take the form of the well-known formula?®?*:

G(T) ~ (%) T(Ey) (3.5.7)
S(T) ~ — eT (‘”Z—TE(E))EzE (3.5.8)

2.2
where o= (KTB) % is the Lorentz number. Therefore, from Eq. (3.5.7) it is seen that the

thermopower S is enhanced by increasing the slope of InT(E) close to E=Er.

3.6 Phonon Thermal Conductance

To calculate the thermal conductance of a system for different vibrational modes
through a molecular junction, the xyz-coordinates of the molecule were relaxed, and

these coordinates were displaced for each atom in this system in positive and negative
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directions by force 8q’ = 0.01 A. The forces were then calculated in three directions gi =
(xi, Vi, zi) for each atom by using the siesta implementation DFT method without

geometry relaxation. Thus, to construct the dynamical matrix from the values is

constructed of the forces F! = (F7,F)’, F#) by using the formula:

l
aq
Kij

M;M;
where Ki‘j.q’i # j is the interatomic force constant that is obtained from the second
derivation of total energy, i and j are label atomic sides, q and ¢’ are Cartesian

coordinates, M: is the mass of labelled atom. We can obtain Kf]’.q’ from the finite

difference of the forces on atoms i and j from:

qq' _ ' 6a)-F/ (64
) 284;

(3.6.2)

Here, 8q; is displacement of atom j in the directions ¢’. So, the mass matrix M can be

written M = (MiM))¥2. To satisfy the conservation of momentum, the K for i = j
(diagonal terms) is calculated from K;; = — ), K;;. Therefore, the phonon thermal

conductance kph at room temperature T can be calculated from the formula as given?2:

1 ,oo d ,T
kpn(T) = = J, thph(w)%dw (3.6.3)

hw

Here, fzr(w,T) = (e*s™ — 1)~ is Bose—Einstein distribution function, # is reduced

Planck’s constant, as well as ks = 8.6 x 10° eV/K is Boltzmann’s constant.
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Chapter 4

Effect of substituent and inter-ring
torsion in 4,4’-bipyridine molecular

junctions

In this chapter, the effect of substituent and torsion angle between two rings of 4,4’-
bipyridine molecular junction on electrical conductance, will be examined both
theoretically and experimentally. Here, | demonstrate that varying the chemical groups

of bipyridine leads to different torsion angle between phenyl rings.

This study is a collaborative work and the experiment has been carried out in the

Liverpool University (Prof. Richard J. Nichols group).
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4.1 Introduction

The transport characteristics of molecular scale circuits and the fundamental
understanding of their structure-property relationships are key to the future design and
implementation of molecular-scale electronics. Measurements of electronic properties
of single-molecules have demonstrated that the conductance of a molecular junction is
sensitive to the electrode structure, molecule-metal contact geometry, conformation of
the molecular backbone [1-3], presence of dopants [4-7] and/or solvents [8-10],
electrochemical potential [11-13], UV or visible illumination [14-17], temperature [18-
19], and many others. In the last decade, a series of experimental [14-17] and theoretical
[21-22] studies performed on substituted 1,1’-biphenyl-4,4’-dithiols single-molecule
junctions showed that the conductance of Au/molecule/Au junctions follows a simple
cos?a dependence, where a is the inter-ring torsional angle. The same effect was also
found in substituted benzidines (1,1’-biphenyl-4,4’-diamine) [23], confirming that the
phenomenon is not ascribable to the nature of the molecule-metal contact and/or
electrode structure. Instead, it is a general rule, which arises from the varying degree of
n-electron delocalization (in the molecular backbone) with o, and a fully broken
conjugation (reduced 7 overlap) for a =~ 90° suppresses the conductance by roughly 2
orders of magnitude, while locking the two phenyl rings in a coplanar conformation
resulted in a little increase in conductance. This rule was also found to be valid in the
case of 3,3’-substituted 5,5’-bis(methylthio)-2,2’-bithiophenes, where the ring-locking
resulted in a conductance increase, and ring staggering resulted in its decrease [3]. Since
the rule only applies when the Fermi energy of the gold electrodes lies within the
HOMO-LUMO gap [22], these studies confirm that electron transport in these

molecules takes place via off-resonance tunneling.
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junctions

Therefore, in this chapter, | will present the switching behavior of substituted bipyridine

attached to gold, which could form the basis of a new kind of single-molecule switch.

The chemical structure of the molecules being investigated can be seen in figure 4.1.

da

de

4d

W

P
NN\ J N

Af

Figure 4.1: Family of molecular wires discussed in this chapter.
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4.2. Theoretical Methods

4.2.1 Geometry of molecules and angles between the two rings
The DFT code (SIESTA) was employed to obtain fully relaxed geometries of the

isolated molecules (figure 4.1) 4,4’-bipyridine (4a), 3,3’-dibromo-4,4’-bipyridine
(4b), 3.,3’,5,5’-tetrachloro-4,4’-bipyridine (4c), 3,3’,5,5’-tetramethyl-4,4’-bipyridine
(4d), tert-butyl phosphabipy (4e) and phenyl phosphabipy (4f), and their torsion angles
as shown in figures 4.2.1-4.2.4 (right). It is well known that DFT is not able to
distinguish between the local minima and global minima, which means that a typical
relaxation calculation stops at the first total minima energy whether it is local or global.
To find the global minima | fixed one of the rings and rotated the other with 360°
degrees around the molecule axis, and at each angle | calculated the ground state
energy. After finding the global minima (the lowest energy), | let the molecules to be
fully relaxed around the global minima angle so that | can obtain the most accurate

torsion angle of the molecule.

| am going to start with 4a (4,4’-bipyridyl), where literature [2, 24-25] approximates the
angle between the two rings to be around 34°. In my DFT calculations I find the global
minima energy to be at 40°. For 4b (3,3’-dibromo-4,4’-bipyridine) my calculations of
torsion angle is 78.5° 4c (3,3’,5,5’-tetrachloro-4,4’-bipyridine) the global minima
energy at 83.7°. Same as in 4c there are local and global minima, the global one at
83.7°. For 4d (3,3°,5,5’-tetramethyl-4,4’-bipyridine) torsion angle is 86.5°, all torsion
angles are shown in figures 4.2.1-4.2.4 (left). The increase in the torsion angle is related
to the steric effects induced by the bulky substituents. Furthermore, for 4e and 4f the
angle between the two rings is zero due to a bridging atom (4e and 4f molecules)

between two phenyl rings in these molecules, as shown in figure 4.1.
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Figure 4.2.1: illustrates the fully optimised geometry of the isolated molecule with the
right angle 40° for 4,4 -bipyridine (4a) on the right of figure, and the global minimum

energy.
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Figure 4.2.2: illustrates the fully optimised geometry of the isolated molecule with the
right angle 78.5°for 3,3 -dibromo-4,4 -bipyridine (4b) on the right of figure, and the
global minimum energy.
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Figure 4.2.3: illustrates the fully optimised geometry of the isolated molecule with the
right angle 83.7° for 3,3°,5,5 -tetrachloro-4,4 -bipyridine (4c) on the right of figure, and
the global minimum energy.
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Figure 4.2.4: illustrates the fully optimised geometry of the isolated molecule with the
right angle 86.5° for 3,3,5,5 -tetramethyl-4, 4 -bipyridine (4d) on the right of figure, and
the global minimum energy.

68



Chapter 4: Effect of substituent and inter-ring torsion in 4,4’-bipyridine molecular
junctions

4.2.2. Frontier Orbitals

In this section, | present the electronic structures of 4a-4f molecules to help understand
the electrical behavior of the junctions which have been investigated by using (DFT)
SIESTA code. The electronic structures 4a-4f were carried out at the GAUSSIAN 09W
using B3LYP function [26] with the 6-31G™ [27] basis set used to appear the effect of
various side groups, and torsion angle for each molecule on the distribution of the
frontier molecular orbitals. Plots of the HOMOs and LUMOs are given in figure 4.2.5
of all molecules (4a-4f). It is clear that the frontier orbitals are distributed almost evenly
across the molecular backbone, and this delocalization means there is a n-conjugated

pathway between the two rings.

HOMO LUMO
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HOMO LUMO

Figure 4.2.5: Plots of the HOMO and LUMO of 4a, 4b, 4c, 4d, 4e, and 4f left panel are
HOMOs and right are LUMOs.
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4.2.3 Binding distance of 4,4’-bipyridine on a gold surface

To calculate the optimum distance for 4,4’-bipyridine between two gold electrodes
surfaces, I used DFT with a Generalized Gradient Approximation (GGA)-PBE
functional [29-30] and the counterpoise method described in chapter 2. The binding
distance d is defined as the distance between the gold surface and the nitrogen atom of
the pyridyl group. Here 4,4’-bipyridine (4a) molecule is defined as entity A and the gold
electrodes as entity B. The ground state energy of the total system is calculated using
SIESTA and is denoted E£F. Here the gold leads consist of 3 layers of 25 atoms. The
energy of each entity is then calculated in a fixed basis, which is achieved through the
use of ghost atoms in SIESTA. Hence the energy of the individual 4a molecule in the
presence of the fixed basis is defined as E4? and for the gold as E4Z. The binding

energy is then calculated using the following equation:

Binding Energy = EAP — EAB — E4B 4.1)

Figure 4.2.6 shows that for the optimum binding distance d is 2.3 A for 4a and the
binding energy is approximately -0.42 (eV).
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Figure 4.2.6. Left panel: Orientation of the 4a with respect to the gold leads. (Right)
illustrates binding energy of 4,4 -bipyridine (4a) on a gold surface.

4.2.4 Transmission coefficient T(E)

To calculate the electronic properties of family of 4,4’-bipyridine’s molecules, | used
the DFT-based GOLLUM code to compute T(E) [31]. Geometrical optimizations that
have carried out using DFT SIESTA [28] code, as well as a Generalized Gradient
Approximation (GGA)-PBE functional, double-§ polarized basis set, and mesh cutoff
250 Ry. All molecules that have been studied in this chapter were freely relaxed in
isolation to yield optimized geometries, which are presented in figure 4.1. For each
molecular structure, the transmission coefficient of electrons T(E), which describes the
propagation of energy of electrons from one electrode to the other was calculated by
first calculating the Hamiltonian from SIESTA code, and then using GOLLUM code
[31] to compute T(E), and I calculated electrical conductance at room temperature using

the formula:

G =Gy [” dET(E) (— %’”) (4.2)
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where f(E) = [eFE=Er) 4+ 1] is the Fermi function with g = ﬁ Er is the Fermi
;

2
energy, Gy = 2% is the quantum of conductance. To investigate the conductance in

more detail, | performed DFT simulations to examine how the conductance of
molecules 4a, 4b, 4c, 4d, 4e and 4f depend on three angles, the first one is torsion angle
which defines the angle between two rings shown in figure 4.2.8(a), the second one is 9,
which defines the tilt angle of the molecule away from normal, and the last one is ¢,
which defines the rotation of the whole molecule about its long axis. As an example,
figure 4.2.8(a) shows the case a= 40° 6=180° and $=0°, where the end phenyl ring is
oriented perpendicular to the tip gold surface, and figure 4.2.8(b) shows the case o= 40°,
0=145° and ¢$=50° in which the end phenyl ring is oriented parallel to a surface of the

gold tip.

Figure 4.2.7: Molecular geometries of family of 4,4 -Bipridine molecules between two gold
electrodes at various torsion angles and at 6 =180° and ¢=0°.
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T T TN S 4

Figure 4.2.8: Examples geometries of 4,4 -Bipridine (4a) between two electrodes: a) o = 0°-
90° 0 =180°, $=0°. b) a = 40°, O =145°, $=50°.

Before performing transport calculations, the isolated molecules were first fully relaxed,
and then a further relaxation step was performed after placing the molecules in the
electrode-molecule-electrode junctions. The transmission coefficient T(E) for the
geometries discussed in figure 4.2.8 are shown in figure 4.2.9. For the first case, when
the bipyridine molecule is normal to the gold surface with a tilt angle of 6=180°, |
calculate T(E) for a range of values of ¢ between 0 and 90° and find that the conductance
does not vary with ¢ and has a value of approximately 3*10“Go at the Fermi energy (E-
Er=-0.4eV). The conductance is unchanged because the coupling strength between the
molecule and the gold is constant [32] when the molecule rotates about its axis. In
contrast, when the molecule is tilted to an angle of 6 =145° the behaviour changes
significantly as shown in the transmission coefficients in figures 4.2.9(b). Here the
conductance at E-Er=-0.4eV varies between 10*Go and 103Gy as ¢ is varied, which is

due to the interaction between the end phenyl-ring = systems and the electrode surfaces
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changing [33-34], depending on the geometry this can increase or decrease the coupling

between nitrogen and the electrodes [32].

m)
-
32 28 24 -2 16 12 -08 -04 0 04
E-E(eV)
m)
—

Figure 4.2.9: Transmission coefficient and orientation of 4,4’ -Bipridine (4a) between two
electrodes conducts at: a) 0 =180°, $=5°-80° and a=40°. b) 0 =145°, $=5°-80° and a=40".
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Next, | investigate that the dependence of conductance on the torsion angle o (0°-90°),
to do this | continuously varied o for molecule 4a (fixing 6=180 $=0°) and computed the
transmission T(E) versus Fermi energy as shown in figure 4.2.10. This shows that a
cos?a dependence is obtained over a wide range of Fermi energies within the HOMO-

LUMO gap, shown in figure 4.2.10(a).
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0 0.15 0.3 0.45 0.6 0.75 0.9 1.05
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Figure 4.2.10: (a) DFT results for transmission coefficient as a function of Fermi energy
for 4,4 -bipyridine 4a at various torsion angles (a = 0°-90°, 8 =180° and #=0°). b)
electrical conductance as a function of cos®(a) at various torsion angles (o = 0°-90°, 0
=180°and ¢=0°
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While the behavior holds in the HOMO-LUMO gap, the DFT-predicted Fermi energy
ErPFT (corresponding to E-EFPFT =0 eV in fig 4.2.10) lies close to the LUMO transport
resonance (a well-known property of molecules with pyridine anchor groups) [1, 10, 20-
21]. Therefore, at this energy the predicted conductance does not follow a cos?a
dependence [20] and are significantly higher than the measured values. However, by
shifting the Fermi energy away from the LUMO to Er-EfPFT = -0.4 (eV) gives the
correct trend and 1 justify this shift by comparing to the experimental measurements
(seen in section 4.3) which at this energy gives excellent agreement between theory and
experiment. The next step is to see if the torsion angle dependence holds for the
individual series 4a-f where the angle o is fixed by steric hindrance (The data for these
molecules can be found in table 1). Figure 4.2.11 shows the resulting values of
transmission coefficients versus Fermi energy for all six molecules. Again, taking the
values at (E-Er=-0.4 eV) the conductance follows a cos?a dependence at a tilt angle of
0=180°, showing that the transport is unaffected by the chemical substituents which

produce the steric effects.
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Figure 4.2.11: a) The transmission coefficient as a function of energy of election for series of
molecules at their respective torsion angles o (#=180° and $=0°). b) Electrical conductance as
a function of cos?(a) for series of molecules at various torsion angles « (9 =180°and $=0°)
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I now repeat the calculations for the series 4b-4f, varying o and 6 in the same way as
was carried out for 4a. The resulting transmission coefficients can be seen in figures
4.2.12-4.2.17. These molecules show the same behavior as molecule 4a with the tilt
angle of 6=180° showing no dependence on o (left panels labelled a) whereas for the

tilted geometry 6=145° the value of T(E) at E-EF=-0.4eV shows a strong dependence on

torsion angle «.
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Figure 4.2.12: Transmission coefficient as a function of electron energy of 3,3 -dibromo-
Bipridine -4,4" (4b) at: @) 6 =180°, $=5°-80° and a=78.5°. b) 6 =145°, $=5°-80° and a=78.5°.
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Figure 4.2.13: Transmission coefficient as a function of electron energy of 3,3°,5,5 -
tetrachloro-4,4 -bipyridine (4c) at: a) 6 =180°, $=5°-80° and a=83.7°. b) 6 =145°, $=5°-80°
and a=83.7°.
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Figure 4.2.14: Transmission coefficient as a function of electron energy of 3,3°,5,5 -
tetramethyl-4,4 -bipyridine (4d) at: a) 6 =180°, $=5°-80° and a=86.5°. b) 0 =145°, $=5°-80°
and a=86.5°.
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Figure 4.2.15: Transmission coefficient as a function of electron energy of tert-Butyl-
phospho-4,4 -bipyridine (4e) at: a) 0 =180°, $=5°-80° and a=0°. b) § =145°, $=5°-80° and

a=0°.
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Figure 4.2.16: Transmission coefficient as a function of electron energy of phospho-4,4 -
bipyridine (4f) at: a) 8 =180°, $=5°-80° and a=0°. b) 6 =145°, $=5°-80° and a=0".
To understand how the value of a can change the variation in conductance, I plot the
extracted conductance at (E-Er=-0.4eV) for each of the different torsion angles shown
in Figures 4.2.17. This is again done for the two different tilt angles 6 =180° (left panel
a)and 0 =145° (right panel b). Here the individual circles represent a different value of
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a between 0 and 90°. These two figures show that for the elongated junction (a) where
there is no tilt angle, the conductance is largely unaffected, and it also has a value lower
than the compressed junction (b) where the molecule is tilted. Figure 4.2.17 also shows
the distribution of conductance values is strongly dependent on torsion angle when the
molecule is tilted. For molecules which have a large torsion angle (4b, 4c and 4d),
varying a causes the conductance to change by approximately a factor of 2. Whereas,
for 4e and 4f where the torsion angle is 0° the conductance can change by almost an
order of magnitude. This behaviour can be explained by the coupling between the
terminal pyridine rings and the tips of the gold electrodes; when the molecule is tilted
the m-system of the molecule interacts with the gold enhancing the coupling strength
which explains the larger conductance for the tilted systems. The parameter a controls
the amount of overlap between the n-system and gold and therefore for molecules with
a torsion angle of 0, symmetry means that coupling to both electrodes is identical. For
molecules with a large torsion angle, this symmetry is broken so that if the coupling is
strong at one side it will be weak at the other meaning that they produce a much smaller

range of conductance values as seen in Figure 4.2.17.
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Figure 4.2.17: Shows Junction conductance of all molecules at: a) & =180°, $=5°-80°. b) 0
=145°, ¢=5°-80°.
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4.3. Experimental methods and measurements

Having performed a detailed theoretical study of the geometry parameters controlling
this series of molecule I now compare the results to experiment. These were performed
at the University of Liverpool and used the STM-Break Junction technique [24]. The
transport characteristics were measured in solution at room temperature, this method
was first described in 2003 [35]. In this technique, a gold STM tip is pushed into a gold
substrate under constant bias, and then retracted while the current flowing between the
two electrodes is measured. Interestingly, 4,4’-bipyridine and 4-pyridyl terminated
molecular wire generally show two conductance states depending on the contact
geometry [32], the consensus being that a high conductance value is measured with the
molecule tilted between the two electrodes, with electrons injected directly into the ring
n-system, and a lower conductance is measured when the molecule is sitting upright in
the junction, with electron injected into the N-end of the pyridyl ring. Furthermore,
mechanical control of electrode separation allows cycling between the two

conductance’s states [32].

Being able to introduce substituents in such positions allows control of the inter-ring
torsional angle, and therefore to further test the validity of the cos?« dependence. We
applied these recent synthetic findings to prepare and characterize a series of 4,4’-
bipyridines with a varying from 0 to = 90°. In our study, we found that, while the cos?a
dependence found in the biphenyl system is still valid for the 4,4’-bipyridines, locking
the two rings in a coplanar geometry (a = 0) results in the suppression of one of the two
conductance states. Moreover, the cos?a dependence suggests that the bridged
bipyridyls sit in the junction in the low (upright) conductance state, greatly increased in

its conductance value by inter-ring locking.
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Brominated 4,4’-bipyridines were synthesized by using copper [33] or iodine [34]
catalyzed coupling of brominated 4-lithiopyridine, prepared by treating the appropriate
pyridine with LDA at -94° C. This allowed our collaborator group to prepare 3,3’-
dibromo- and 3,3°,5,5’-tetrabromo-4,4’-bipyridine, that can be further functionalized by
lithium-halogen exchange (with "BuLi or 'BuLi) and subsequent quench with an

electrophile to give the compounds presented in figure 4.1.

The compounds were characterized by H NMR [1], C NMR [15] and mass
spectrometry, and their purity assessed by CHN microanalysis. The conductances were
measured (as current /voltage) using the STM-BJ technique. In this method, Au-Au
point contacts were repeatedly formed and broken by moving the STM Au tip in and out
of contact with a Au substrate. In the presence of a mesitylene (1,3,5-trimethylbenzene)
1 mM solution of the desired molecular wire, under constant bias (100 mV). Thousands
of current-distance traces are recorded while moving the tip, and these were then
compiled in histograms, bearing a statistical distribution of conductance values, and 2d
“density” plots, showing the distribution of conductance values as a function of
electrodes separation. Conductance is given as a function of Go (quantum of
conductance, 77.48 uS). All the non-bridged compounds showed two distinct
conductance values (two separate peaks in the histograms), ascribed to the possibility of
high- and low-conductance geometry in the Au/molecule/Au junction, and the values
follow indeed the general cos?a rule. In contrast the two bridged (a locked to 0°, orange
and blue trace in figure 4.3.1a) bipyridyls showed only one sharp peak. A comparison
between theoretical and experimental results of conductance and torsion angle (a) are

shown in tablel.
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Figure 4.3.1: a) Semilogarithmic conductance histogram of the molecular wires presented in
this study. 100 mV bias voltage, normalized to counts / trace. * is an artifact introduced by the
channel switch in the STM preamplifier used in this study. b) Cos’a dependence of conductance.
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Figure 4.3.2: Theoretical (black and green) and experimental (red and blue) results for high
and low conductances as a function of cos?a.
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Table 1 | Measured and theoretical properties of six molecules with their structures.

No. Structure Conductance (nS) Torsion angle (o)
Molecules Measured Calculated
Q\;
4f LN 60.0 35.33 0°
N W ) N
O\\
31.0 36.5 0°
4e N \ /i N
4a ND—@N 14.0 23.02 400
Br
4b NMN 4.4 6.43 78.50
Br
CICI
Ac NQ—CN 43 4.751 83.70
CICI
4d 3.4 3.132 86.5°

As shown in Table 1, molecules 4a, 4b, 4c, and 4d that have torsion angles as 40°, 78.5°,

83.7° and 86.5°, respectively. Furthermore, when these torsion angles are used to plot

their conductances versus cos?a, both theory and experiment confirm the cos?o rule.

Figure 4.3.2 shows a plot of the above experimental and theoretical results for the low

and high conductance groups.
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4.5 Conclusions

We have studied the transport properties of a family of 4,4-bipyridine molecules, with a
series of sterically-induced twist angles o between the two pyridyl rings. Experiment
reveals the presence of high and low conductance peaks, which are attributed to
different molecule orientations within the junctions. Both experimental measurements
using the using the STM-BJ technique and DFT-based theory calculations reveal that
their conductances are proportional to cos?(a)) confirming that for both geometries (tilted
and non-tilted), the electrical current flows through the C-C bond linking the pi systems
of the two rings. In common with many calculations of electron transport through
pyridyl-terminated molecules, DFT predicts that the Fermi energy of the gold electrodes
lies close to the LUMO transmission peak, in which case there would be no cos?(a)
dependence. However, shifting this to lower energies corrects this error and confirms
that the Fermi energy of gold lies within the HOMO-LUMO gap. The fact that no high
conductance values are measured for the a=0° can be theoretically attributed to the large
spread of conductance values these systems produce meaning they may be difficult to

measure.
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Chapter 5

Oscillating Seebeck coefficient in

n-stacked molecular junctions

In this chapter, | perform a theoretical investigation into the Seebeck coefficient S of -
stacked molecular junctions using a first principles quantum transport method. Using
oligo (phenyleneethynylene) (OPE)-type molecules as a model system, | have showed
that quantum interference produces antiresonances in the gap between the HOMO and
LUMO resonances and the stacking geometry can control the position of these
destructive interference features. The shifting of this antiresonance leads to an
enhancement of the thermopower S when the geometry of the stacking is altered. The
sign of S also oscillates with the overlap of the two molecules. This behaviour is
dependent on the connectivity of the molecule as a meta-connected molecule produces a
destructive QI feature which dominates and reduces the sensitivity to destructive

interference through the pi-stacking geometry.
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5.1 Introduction

Measurement of the Seebeck coefficient S in single-molecule junctions [1-9] has opened
up the possibility of utilizing such devices in novel thermoelectric materials. A wide
variety of molecules have been measured and the value of S is typically low in single
molecules with values much less than 100uV/K [9]. One important property of S is that
it helps to determine the nature of the transport in the HOMO-LUMO gap of the
molecule; with a positive S determining the position of the Fermi energy is close to the
HOMO resonance and a negative S means it is closer to the LUMO. In addition,
molecules have been shown to display bi-thermoelectric behaviour and this has been
attributed to both geometric changes [10] and the application of pressure [11]. In both
these cases, the sign change in S changes due to shifting positions of the molecular
resonances. Another important property in single molecule transport is quantum
interference which has shown great promise in the control of quantum transport through
design of the molecular structure [12-19]. The increase and decrease in conductance
(i.e. constructive or destructive interference) is due to multiple transmission paths that

an electron can take through a molecule.

One type of molecular junction that has shown quantum interference is stacked
molecules [20-23] where the molecules bridge the gap between the electrodes by
attaching one anchor at each end and the electron path from one electrode to the other is
through the overlap m-orbitals of the molecules overlap. In this scenario the junction
shows destructive interference at certain geometries due to the different transmission
paths. Experimental evidence that such junctions form can be seen in situations where
molecules only have one anchor group [20,22], but also improved methods of analyzing

conductance data [24] show they may occur in any junction with molecules that has a
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preference to stack through their n-systems. In this work we analyze the importance that
n-stacked junctions may have on future thermoelectric materials with the aim of
maximising S. The efficiency of a device is usually calculated from the dimensionless
figure of merit [25, 26] ZT = S?Gu/k, where G is the electrical conductance, k is the
thermal conductance, and 7 the temperature. S is squared in the numerator so controlling
this term is a possible route to improving performance. We also show that careful
consideration should be taken into the measurement of S, especially where a molecule
displays both positive and negative S as this could simply be attributed to transport
through multiple molecules and quantum interference. And the aim in maximising S, is
because there is now a world-wide race to develop molecular materials with a high

thermoelectric efficiency [25].

Figure 5.1: (Left) Molecular structures for oligophenyleneethynylene (OPE) molecules with
thiol achor groups connected in the para (1) and meta (2) position. (Left) Example stacking
geometries for 1 and 2 connected between gold electrodes determined by the parameters X and
D which is the overlap and separation respectively.
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5.2 Theoretical Methods

To calculate the electronic transport properties of OPE n-conjugated molecules shown
in figure 5.1, | use a combination of the density functional SIESTA code [27] and the
quantum transport code GOLLUM [28]. The optimum geometry was calculated for
molecules 1 and 2 by relaxing them to a force tolerance of 0.01eV/A using Troullier—
Martins pseudopotentials to represent the potentials of the atomic cores [29], a
generalized gradient approximation (GGA-PBE) functional to describe the exchange
correlation [30, 31], double-§ polarized basis set, and a real-space grid was defined with
an energy cutoff 250 Rydbergs.

The optimal stacking geometry for both molecules was calculated by minimizing the
ground state energy by altering the overlap length X, and the displacement distance D of
identical molecules as shown in figure 5.1. | define X to be the distance between the
sulfur atoms along the axis of the molecule, i.e. when X = 0 nm the overlap of the
molecules is a maximum and X = L (L is the length of the molecule which for 1= 0.01
nm and 2 = 0.02 nm) is the minimum. D is the distance between the molecules in the
stacking direction in the case of both OPEs 1 and 2 the values found are X=0.161 nm
and D=0.33 nm, and this configuration has a binding energy of -0.77 eV (see fig. 5.4).
Each molecule is then attached to one gold electrode as shown in figure 5.1. The lead
consists of 6 layers of (111) gold each containing 25 gold atoms which is terminated by
a pyramid of gold atoms. The terminating sulfur atom of the thiol group loses it
hydrogen atom and the gold-sulfur binding distance is optimized to 2.4 A. The
hydrogen atom of the unattached thiol group remains. The zero-bias transmission
coefficient T(E), which is the probability for an electron of energy E of electrons to
transfer from left-to-right of electrodes was calculated by extracting a Hamiltonian

using the SIESTA code, and then using GOLLUM to compute T(E). The transmission
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coefficient was then utilized to compute the Seebeck coefficient S which has been
shown to depend on the magnitude and derivative of the transmission at the Fermi level
of the electrodes [32].

n? k% T dInT (E)
3e dE E=Ep

S =

(5.1)

where kg is the Boltzmann constant, 7 is the temperature of the junction and e is the
electron charge.

5.3 Results and discussion

Taking the optimum molecule separation D = 0.33 nm, we vary the overlap length of
the molecule X from 0 to L (figure 5.1) and calculate the transmission coefficient T(E).
Figure 5.2 shows the results for X varying between (0 nm to 0.09 nm) for the para
connected molecule 1, (transmission data for a larger range of X can be seen in Figure
5.3). At a value of X = 0.1610 nm (which is the optimum stacking geometry see in fig.
5.4) the Fermi energy (E-ErF=0 eV) lies close to the HOMO resonance, and there is an
antiresonance feature (E-Er = 0.5 eV) in the gap between the HOMO and LUMO
resonances. This destructive interference is attributed to the multiple transport paths
through the stacked molecule (Fabry-Perot type behaviour) and suggests that by altering

the overlap length X the interference behaviour should change.

98



Chapter 5: Oscillating Seebeck coefficient in m-stacked molecular junction

10°
107 |
1073
104 |
105 |
10 |

E —— X=0nm X=0.05 nm || |"
[ X=0.01 nm —— X=0.06 nm
1 0-7 L X=0.02 nm —— X=0.07 nm /

E —= X=0.03 nm ===== X=0.08 nm
F —-— X=0.04 nm —— X=0.09 nm

108 |
0.6 -015 03 075 12 1.65 2.1

T(E)

150 -
100 r
50
ol _
-50 1
-100 .

50 L
0 04081216 2 24 28 3.2 36 4
X (A)

S (LVIK)

Figure 5.2: (a) Zero bias transmission coefficient T(E) against electron energy E for different
overlap lengths X and fixed separation D = 0.33nm. (b) Seebeck coefficient S as
a function of overlap length X (D=0.33 nm).

Figure 5.2 shows that as the value of X is increased the antiresonance moves towards
the LUMO resonance and at value of X=0.09 nm the minimum sits at E-Er = 1.6 eV.
The transmission data also shows the HOMO-LUMO gap increasing as the overlap

length is increased, this is due to the splitting between the two LUMO resonances of the
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individual molecules decreasing because the coupling between the two molecules

becomes weaker.
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Figure 5.3: Illlustrates moving of transmission coefficient with displacements (X = 0 - 0.4 nm)
of m- & stacked S-OPE3-S molecules at various distances at Fermi energy (Eg).
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Figure 5.4. Binding energy of molecule 1 as a function of parameters X and D.

When an anti-resonance passes through the Fermi Energy the gradient of T(E) changes
sign, which suggests that the Seebeck coefficient S is sensitive to the stacking geometry.
Figure 5.2 shows the calculated value of S at room temperature, for a Fermi energy of
E-EF=0.5eV and a separation of D=0.33nm for values of X between 0 and 0.4nm. At
X=0 nm the sign of S is negative and has a magnitude of -100 uV/K as the overlap
length X is increased the sign of S is switched and at a value of S at X=0.02 nm is 100
uV/K. The antiresonance then moves away from the Fermi energy and S remains
positive with a value of approximately 25uV/K. At further separations the sign of S

oscillates.

101



Chapter 5: Oscillating Seebeck coefficient in m-stacked molecular junction

10°
10" |
102 |
103 L4
104 |
105 |
10 |
107 |
108 |

1(E)

10°

10710 |
10-11 i

= X=0.01 nm —— X=0.06 nm
X=0.02 nm =—-- X=0.07 nm

== X=0.03 nm —— X=0.08 nm
3 — X=0.04 nm —— X=0.09 nm

-0.5 0 0.5 1 1.5

0.0012

0.001

0.0008

0.0006

S (VIK)

0.0004

0.0002

E-Ep(eV)

0 0.5 1 1.5 25 3 3.5 4

2
X(A)

Figure 5.5: (a) Zero bias transmission coefficient T(E) for molecule 2 for different overlap
lengths X and fixed separation D = 0.33nm. (b) Seebeck coefficient S as a function

The calculation is

of overlap length X (D=0.33nm)

then repeated for the meta-connected molecule 2 and the results can

be seen on figure 5.5 (the separation D=0.33 nm and the overlap X is varied between 0

and 0.09nm). Here the transmission T(E), shows an antiresonance at 0.3 eV which does
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not move across the HOMO-LUMO gap as the overlap length X is increased. The value
of the Seebeck coefficient is therefore positive for all values of X between Onm and
0.4nm. This suggests that the interference due to the meta-connectivity of the molecule
dominates and the additional destructive interference from the stacked geometry is

negligible.

5.4 Conclusion

I have shown theoretically that the transmission through molecules which are n-stacked
leads to destructive quantum interference. The role it plays in determining the sign of
the Seebeck coefficient is then dependent on the connectivity of the individual
molecules. In para-connected systems, the shifting of this resonance can lead to
molecules displaying both signs of S whereas for meta-connected molecules the
oscillation of the sign does not occur. This novel behaviour may have important
consequences in the design of SAM based thermoelectric materials and in the role of
single molecule measurements where a molecule may show a measured S with both

signs.
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Chapter 6

Designing thermoelectric materials

In chapter 5 | looked at a simple OPE molecule system to further investigate the
thermopower in single molecule junctions. In this chapter, | will present theoretical
work that is aimed at designing new types of thermoelectric materials. Here, | have
investigated a set of molecules that have varying types of side branches attached to the
main backbone and | study the electron and phonon transport through these nanoscale
molecular junctions with the aim of developing high performance thermoelectric

materials.

This study is a collaborative work with Marjan Famili (PhD student in Colin’s group)
who calculated the phonon properties, and the experiment were carried out at the

University of Liverpool (Prof. Richard J. Nichols group).
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6.1 Introduction

Recent studies of electron transport through molecular junctions have been underpinned
by substantial improvements in electrical contacting techniques [1-4], which have
identified a range of fundamental characteristics involving switching [5], and organic-
based devices [6]. Molecular electronics has received great attention in investigating
nanoscale thermoelectricity, with the hope that it will contribute to the design of new
environmentally organic thermoelectric materials [7-8] through the use of individual
molecular structures which as function electronics devices [9-10]. Therefore, the design
of new organic thermoelectric materials for converting waste heat directly into

electricity is a global challenge [11].

There are various strategies to improve the thermoelectric properties of inorganic [12]
and organic materials [13-14], which yield quantum confinement of electrons and
phonons [15]. Due to the attractive characteristics of single molecules, research groups
have begun to measure and calculate the thermoelectric properties. Moreover, it is
highly desirable to design new materials and build devices suitable for applications [7].
Therefore, the transport properties of single metal-molecule-metal junction is one of
fundamental importance to develop functional nanoscale and organic-based devices [6,
16-17]. There are various features of these systems to control, including the chemical
linking compounds [16, 18-23] and the contact geometry they form [24-25], which are
important to study the electronic and phononic properties [1, 7] with nanoelectrode

contacts.

When describing the electron transport properties through single-molecules which is
controlled by the energy level alignment with the Fermi energy of the electrode, the

conductance will be calculated for both electrons and phonon. The thermopower will
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also be studied by calculation of the Seebeck coefficient. To investigate high-
performance thermoelectric materials, which will eventually inform the design and
synthesis of molecular structures [1, 26], a series of molecules have been studied to
understand the factors which may govern the sign and magnitude of their thermopower.
On such as the length of conjugated molecules and the kind of terminal group [16, 27].
In this work | examine a series of thiophene molecules where the bridging atoms vary:
silicon, germanium, carbon, and tin. Thiophene-based molecules are n-conjugated
compounds, which have been proven to give sensitive platforms in organic materials
chemistry [28]. Linking systems with Si, Ge, C and Sn unit is interesting due to the
interaction between the o orbital of the linked-bridges and the & orbital of the molecule,

which results in interesting properties such as enhanced conjugation [29-30].

Previous studies [31-33] have focused on calculating the electrical conductance and
thermopower of single molecules only, which provided fundamental knowledge
required to understand and enhance structures at the molecular scale. However, in this
chapter | will study both the electronic and phononic properties. The efficiency of a
thermoelectric device for power generation is characterized by the figure of merit ZT =
GS?z/k, where G is the electrical conductance, S is the Seebeck coefficient, T is
temperature, and k (ke kpn) IS the thermal conductance of the electronic and phonon
contributions [27, 34]. The aim is to then produce thermoelectric organic materials that
might be an attractive alternative to inorganic materials (i.e. have a higher ZT). To help
increase ZT and overcome the limiting factors concerning organic materials, there have
been recent studies into the behaviour of single organics at room temperature [8, 26,
35]. One possibility, is by utilizing the weak interaction between two parts of the
molecule such as n-m stacking [36-37], which leads to a reduction of the thermal

conductance (k) in molecular junctions (which should enhance efficiency because it is
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in the denominator of ZT). In what follows, we present the comparative theoretical
study of varying linked-bridge thiophenes, whose chemical structure is shown in figure

6.1.

I\ /] \
\S /SS\ S/ \S . " S/
IS e () )
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Figure 6.1: Chemical structure of thiophene molecules with terminal group SMe with varying
bridge-link atoms (Si, Ge, Snh, and C).

6.2 Theoretical Method

The geometry of each structure of thiophene consisting of the gold electrodes and a
single-molecule, which was relaxed to a force tolerance of 0.01 (eV A™), SIESTA [38]
implementation of density functional theory (DFT), with a double- polarized basis set
(DZP), as well as the Generalized Gradient Approximation (GGA) functional [39, 40],
with Perdew— Burke—Ernzerhof (PBE) parametrization. The Hamiltonian and overlap

matrices are calculated on a real-space grid defined by a plane-wave cut-off of 250 Ry.

To calculate the phononic thermal conductance for each structure, we use the harmonic
approximation method discussed in chapter three (3.6), to build the dynamical matrix D

for each molecule (shown in figure 6.1) contacted to gold electrodes. GOLLUM [41] is
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then used to calculate Tpn(w) which is the transport probability of a phonon. The phonon

thermal conductance «pn at room temperature t can be calculated from the formula:

o d ,T
kpn(@) = — [ hoTyp (@) L2 4y (6.1)

hw

Here, fpgr(w,7) = (e*s® —1)~! is Bose—Einstein distribution function, % is reduced

Planck’s constant, as well as ks = 8.6 x 107° eV/K is Boltzmann’s constant.

To calculate the transport of electrons through the molecule, contacted to gold
electrodes, we take the electronic Hamiltonian from the converged DFT calculation, and
again use GOLLUM to produce the transmission coefficient Te (E) of electrons. The
transmission coefficient can then be utilized to compute the Seebeck coefficient which
has been shown to depend on the magnitude and derivative of the transmission at the
Fermi level of the electrodes [42].

T k,23 TdInT(E)
3e dE E=Ep

S = (6.2)

where kg is the Boltzmann constant, 7 is the temperature of the junction and e is the
electron charge. The electrical conductance at room temperature is evaluated using the

formula:

G = Go [, dET(E) (- L2) (6.3)

Here, f(E) = [eE-Er/keT 4 1]_1 is the Fermi function, Er is the Fermi energy, G, =

2

2% is the quantum of conductance, t is the temperature, and h is the Planck’s constant.

I now have all the parameters to compute ZT for these molecules.
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6.3 Results and discussion

The compounds of thiophene that are shown in figure 6.1 were chosen to explore the
behaviour of the varying side bridges to the molecules. The main influences are the
mass of bridged atoms, and the resulting bond length between the backbone of molecule
and the molecular bridge (C, Si, Ge, and Sn). First, the electronic structure of the
molecules was calculated in the gas phase, including their lonization Potential (IP) and
the Electron Affinity (EA) which can give a more accurate calculation of the HOMO
and LUMO energy levels. Here | calculate IP=E(N-1)-E(N) and EA=E(N)-E(N+1)
where E(N) is the ground state energy of the neutral molecule, E(N-1) is the energy
with one electron removed and E(N+1) is the energy with one electron added. The
results can be seen in table 1, and show that the bridging atom only slightly affects the
IP and EA. | also plot the frontier orbitals of the individual molecules in figure 6.4.2
which shows that the structure of the HOMO and LUMO wave functions are unaltered
by changing the bridging atom.

Next, after connecting the molecules to gold electrodes via the SME anchor groups, |
compute the electron transmission coefficient Te(E), where the binding distance
between the gold tip and sulphur atom was calculated to be 0.24 nm. The results are
shown in figure 6.4.3.

Table 1: Variation of the lonization Potential (IP) and Electron Affinity (EA) with
central atom of molecules a-d in figure 6.4.2.

C 5.850395 -0.076025
Si 5.919914 0.134342
Ge 5.833446 0.128631
Sn 5.727306 0.034381
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Figure 6.4.2: Plots of the HOMO and LUMO of a, b, ¢, and d left panel are HOMOs and right
are LUMO:s.
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Figure 6.4.3: (left) Electron Transmission coefficient as a function of electron energy at varied
central bridge Si (red), Ge (blue), Sn (green) and C (black) of thiophene molecule. (right)
Conductance versus Fermi energy evaluated at room temperature.
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The electron transmission shows that the DFT predicted Fermi energy (E-ErF=0eV) lies
close to the LUMO resonances. The HOMO resonance for Sn (tin) sits at the highest
energy and causes the value of the transmission T(Er) to be highest, whereas the Si
(silicon) is at the lowest energy and has the lowest transmission in the gap. This
behaviour directly relates to the calculated IP-EA gap. | can then use this transmission
coefficient to evaluate the conductance and Seebeck coefficient using equations 6.2 and
6.3 at room temperature. The resulting values evaluated at the DFT predicted Fermi

Energy can be seen in Figure 6.4.4.

0.008

0.007—

-230

-245¢

-250

C Si Ge Sn

Figure 6.4.4: (a) electrical conductance and (b) Seebeck coefficient as a function of Fermi
energy (Er) for the thiophene series at room temperature for varying link atom (C, Si, Ge, and
Sn).
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In this work, we have demonstrated that introducing side bridged to molecules
decreases the phonon conductance. This occurs due to appearance of antiresonances in
the phonon transmission function when the frequency of incoming phonons happens to
resonate with vibrational modes of the side branch. The four introduced molecules in
figure 6.1, have side bridges of different shape and mass attached to the molecule

backbone. These side branches are expected to lower the phonon conductance.

Table 2: Mass of central atoms and bond length with Carbon in molecules a-d in figure
1

C 12.0107 1.53 A black
Si 28.0855 1.89 A red

Ge 72.64 1.98 A blue
Sn 118.71 2.18 A green

Therefore, we expect more scattering from the heavy atom and therefore lower
conductance. While molecule with Si, Ge and Sn follow this trend, the molecule with
the lightest central atom shows the lowest phonon conductance. This as explained in
table 2, could be due to the fact that molecule a has the stiffest backbone. This can be

understood by comparing the C-C bond length to C-Si, C-Ge, and C-Sn.

To study the electron and phonon thermal properties, we present contribution to the
comparative theoretical study of the side-branched dependent of the thiophene
molecule, which contains contributions from both electrons and phonons. The main

unpredicted result from our study is that thermal conductance of Si-bridged atom is
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higher than C-bridged (see fig. 6.4.5) due to each bridged atom in this molecule controls
the thermal phonon conductance by the relatively weak coupling between this bridged
atom and the backbone of molecule. We have found the bond length of Si-bridged atom
is more floppy than C-bridge because the high-mass value of Si-bridge unit is higher
than C-bridged atom, as shown in table 2. All these parameters that are demonstrated

above lead to a change in the thermal phonon conductance.

1 O T T T T T T T

Kel(PW/K)

O 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

T(K)

|
250 300

0 _.. |

| |
150 200
T(k)

Figure 6.4.5: Electron and phonon conductance (k) versus Temperature for molecules a (C,
black), b (Si, red), c (Ge, blue), d (Sn, green) of figure 6.1.

\
0 50 100
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To compare the potential of these series of molecules for thermoelectricity, the
electrical conductance and thermopower were calculated. The electrical conductance of
Si-bridged atom is the lowest, while we have found its thermopower is the highest (see
figs. 6.4.3 and 6.4.4(b)), this is because dependance on the lonization Potential of Si-
atom is lower (see table 1) and the width of HOMO-LUMO gap of Si-atom leads to low
electrical conductance. Our results also show that the thermopower provides valuable
information about the relative alignment between the molecular energy levels and the
electrode Fermi energy.

We explore SMe-Au linked molecules that are predicted to conduct through the lowest
unoccupied molecular orbital (LUMO) [44-46]. In addition, the Fermi energy lies in the
tail of the LUMO resonance, and depending on the terminal group (see fig. 6.4.3) the
value of the slope of transmission coefficient Te(E) of Si-bridged atom at Fermi energy
(EF=0 eV) is higher, which leads to higher thermopower.

In summary, we find the thermopower is negative for SMe-Au linked LUMO-

conducting junctions.
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In contrast, the highest conductance and the lowest thermopower is obtained with C-
bridging. Therefore, the resulting combination of low electrical conductance, and high
thermopower lead to a high value of ZT that is 1.77 shown in figure 6.4.6 , and make

Si-bridging attractive for thermoelectric devices.

1.8 | | x

1.75 71 1

1.7+ 1

ZT
el

1.65 1

1.6 1

1.55 - | * *
C Si Ge Sn

Figure 6.4.6: shows electronic contribution to the figure of merit ZTe at Fermi energy at room
temperature for each central atom (C, Si, Ge, and Sn).
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6.4 Conclusion

Understanding electron transport and phonon through molecular junctions formed from
single molecules attached to two electrodes is critical to the development of high-
performance thermoelectric materials in nanoscale devices. In this chapter, we have
studied the electronic and phononic properties in thiophene molecules that have various
bridge atoms (C, Si, Ge, and Sn), and we find the thermal phonon conductance
decreases monotonically with decreases bond length and mass for each bridged atom
such that the C-bridged phonon thermal conductance is the lowest than other bridges,
due to rigid nature of this bridge. In contrast, the thermal conductance of Si-bridged
thiophenes increases with bond length and mass. For electrical properties, various
results of conductance and thermopower were calculated for different bridges, which
leads to variations in the value of figure of merit ZTe, where Si-bridging has the highest
value of ZTe equal 1.77. Therefore, the Si-central unit is an attractive candidate for

high-performance thermoelectric energy conversion.
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Chapter 7

Conclusions and Future Works

7.1. Conclusions

I have studied the electronic and thermoelectric properties of 12 different organic
molecules, using density functional theory DFT, and the Green’s function formalism

which are reported in chapters 2 and 3, respectively.

Chapter 4 presents studies of the charge transport of 4,4-bipyridine molecules, with a
series of sterically-induced twist angles a between the two pyridyl rings. Experiment
reveals the presence of high and low conductance peaks, which are attributed to
different molecule orientations within the junctions. Both experimental measurements
using the STM-BJ technique and DFT-based theory reveal that their conductances are
proportional to cos?(a), confirming that for both geometries, the electrical current flows
through the C-C bond linking the pi systems of the two rings. In common with many
calculations of electron transport through pyridyl-terminated molecules, DFT predicts
that the Fermi energy of the gold electrodes lies close to the LUMO transmission peak,

in which case there would be no cos?(a) dependence. Shifting this to lower energies
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corrects this error and confirms that the Fermi energy of gold lies within the HOMO-

LUMO gap.

Chapter 5 demonstrated that the electronic properties and thermopower of = -stacked
molecules are enhanced by increasing n-stacking length. Intermolecular n- 7 stacking
between (OPE)-type molecules has a strong effect on thermopower and can change both
the magnitude and sign of the Seebeck coefficient. The increase of the conjugation
length of the system is predicted to enhance the thermoelectric response. In the case of
fully identical of OPE-molecules, the coupling between two molecules results in the
appearance of destructive interference features, which results in lower transmission
which leads to an increase in the thermopower. However, dislocated molecules yield
higher transmission, because such interference effects disappear. The displacements of
two molecules relative each another yield to change the behaviour of transmission
curves, and leads to oscillations in the Seebeck coefficient, and furthermore this

behaviour can be switched on or off.

Chapter 6 presented theoretical studies of electron and phonon transport through
molecular junctions formed from single molecules attached to two electrodes, which
could be critical to the development of high-performance thermoelectric materials in
nanoscale devices. In this chapter, we studied electronic and phononic properties in
thiophene-based molecules that contain various bridges (C, Si, Ge, and Sn), and found
that the thermal phonon conductance decreased monotonically with decrease of bond
length and mass for each bridge atom. The phonon thermal conductance with a C-
bridging atom is lower than other bridges, due to the rigid nature of this bridge.

Whereas, the thermal conductance with Si-bridges increases with bond length and mass.
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For electrical properties, various results of conductance and thermopower that are
calculated at different bridges due to variation in the central atom, which leads to
variations in the value of the figure of merit ZTe, with Si-bridges possessing the highest
value of ZTe equal 1.76. Therefore, thiophenes with a Si-central bridge are attractive

candidates for high-performance thermoelectric energy conversion.

7.2. Future Works

In this thesis, it would be of interest to investigate the electrical conductance of
molecular wires attached to gold electrodes. For the future, one can conceive of a
number of possibilities for extending this work in new directions. First, it would be
interesting to examine how results change when 4,4-bipyridine molecules are
terminated by other anchor group [1-5], as well as the examined effect of different
torsion angles between phenyl rings with different connectivities (para and meta) to the
terminal groups [6], which is known to control electrical conductance and may also be a
useful method of controlling thermoelectricity [7]. Secondly, it would be interesting to
examine the conductance of bipyridine and thiophene derivatives [8] with torsion angle
by using the same side groups. Also, the varied bridged atoms of thiophene molecules
may lead to new features and change the behaviour of electrical conductances. It would
also be of interest to study the effect of varying the electrode material using alternative
materials such as graphene [9], silicene [10, 11], platinum, palladium [12], or even
superconducting electrodes [13,14], which introduce their own novel interference

effects.
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