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Abstract

Model-based approaches for the analysis of areal count data are commonplace
in spatiotemporal analysis. In Bayesian hierarchical models, a latent process is
incorporated in the mean function to account for dependence in space and time.
Typically, the latent process is modelled using a conditional autoregressive (CAR)
prior. The aim of this paper is to offer an alternative approach to CAR-based
priors for modelling the latent process. The proposed approach is based on a spa-
tiotemporal generalization of a latent process Poisson regression model developed
in a time series setting. Spatiotemporal dependence in the autoregressive model
for the latent process is modelled through its transition matrix, with a struc-
tured covariance matrix specified for its error term. The proposed model and its
parameterizations are fitted in a Bayesian framework implemented via MCMC
techniques. Our findings based on real-life examples show that the proposed ap-
proach is at least as effective as CAR-based models.

Keywords: Autoregressive latent process; Bayesian inference; Conditional autore-

gressive prior; Markov Chain Monte Carlo; Spatiotemporal areal count data
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1 Introduction

The development of Bayesian hierarchical models for analyzing spatiotemporal areal

data, driven by an upsurge in the availability of data (Lee et al., 2016), has been

an increasingly active area in recent times. Spatiotemporal areal count data result

mostly from the need to collect and monitor administrative-level information relating

to health, socioeconomic or demographic outcomes. Such spatially aggregated data

play an important role in providing an evidence base for public health policies and

interventions as they represent broader geographical scales and are not affected by

confidentiality issues often encountered with individual-level data. The analysis of

areal data focuses mainly on accounting for the underlying spatial and temporal au-

tocorrelation, identifying local and global changes in spatial patterns and trends over

time and quantifying the association between the outcome and covariate factors.

Several spatiotemporal models for analyzing areal data have been developed in the

statistical literature (see Bernardinelli et al., 1995; Waller et al., 1997; Knorr-Held &

Besag, 1998 and Xia & Carlin, 1998, for some of the earliest approaches). These models

are widely applied in disease mapping studies for modelling different epidemiological

outcomes. Their spatial analogues are, however, more widely studied and applied

and most of the available spatiotemporal models are in fact direct extensions of well-

known spatial models. In the spatial context, the outcome variables Y = (Y1, . . . , Yn)

corresponding to a set of n contiguous, non-overlapping areal units are regressed on

area-level covariate information, z = (z′1, . . . , z
′
n). Customarily, the expected counts,

E1, . . . , En, calculated using internal or external standardization are included in the

mean function of the model to account for sampling variability and demographic dif-

ferences between the areas (Lee, 2011; Banerjee et al., 2015). In general, the spatial

models take the form:

Yi|Xi, zi ∼ Poisson(Ei exp(z′iβ +Xi)), i = 1, . . . , n, (1)

where β is a p−dimensional set of regression coefficients, µi = exp(z′iβ + Xi) is the

relative risk for area i, and the Xi’s constitute the latent process (also referred to as

area-specific random effects - we use the terms ‘latent process’ and ‘random effects’

interchangeably) used to model residual spatial autocorrelation in the data. In (1),

X = (X1, . . . , Xn) is typically represented by a conditional autoregressive (CAR) prior.

Besag (1974) proposed the intrinsic CAR prior in which X is modelled as having a

zero-mean multivariate normal distribution with a covariance matrix usually specified
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as the generalized inverse of the singular precision matrix τ(D−W ), where D and W

are n×n matrices that characterize the neighbourhood structure of the data and τ−1

is a conditional variance parameter. Specifically, W is a binary neighbourhood matrix

(see Section 2.1) and D is a diagonal matrix whose ith entry is equal to the number of

neighbours for the corresponding areal unit. A very popular CAR prior used in disease

mapping studies is the Besag-York-Mollie (BYM) model (Besag et al., 1991) which

is an extension of the intrinsic CAR model that includes an additional area-specific

latent variable modelled as exchangeable or an unstructured term. Other commonly

used CAR priors include those proposed by Leroux et al. (2000), which includes an

autoregressive parameter that measures the strength of spatial autocorrelation in the

latent process; see Lee (2013) for a review of these models.

Direct spatiotemporal extensions of spatial CAR models often proceed by decom-

posing the latent process in (1) into a sum of spatial, temporal and spatiotemporal

interaction terms (see, e.g., Blangiardo & Cameletti, 2015, Chapter 7). With the vari-

ables now indexed by space (i = 1, . . . , n) and time (t = 1, . . . , T ), the latent process

has a general form which can be expressed as: Xt,i = ai+ bt+ ct,i, where the terms are

indexed according to the components they represent. For example, the specification in

Waller et al. (1997) is a direct extension of the BYM model to the spatiotemporal case

where spatial dependence is modelled separately for each time point so that ai = bt = 0

and ct,i is a sum of spatial (CAR) and independent random effects at time t. In many

of these spatiotemporal models (see Anderson & Ryan, 2017, for a review), separate

latent variables/random effects are used to capture spatial and temporal dependence.

This implicitly suggests that dependence in space and time is separable and may, thus,

be unrealistic for many real-world processes. A few of the proposed models (e.g. Lee

& Lawson, 2014; Rushworth et al., 2014) capture spatiotemporal dependence using a

single latent process but spatial autocorrelation in these models is characterized using

CAR priors - a consequence of the extension from the spatial to the spatiotemporal

setting. In particular, in the model proposed by Rushworth et al. (2014) which is

similar in structure to the models developed here, the latent process characterizing

spatiotemporal autocorrelation is modelled as a multivariate first-order autoregressive

process with a single temporal autoregressive parameter and spatial autocorrelation

induced by a precision matrix based on the CAR prior proposed by Leroux et al.

(2000). In general, Bayesian estimation is the state-of-the-art in these spatiotemporal

models and computational approaches such as Markov Chain Monte Carlo (MCMC)

(Lee et al., 2016) and Integrated Nested Laplace Approximation (INLA) (Blangiardo
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& Cameletti, 2015) are commonly used.

In this paper, we introduce an alternative, flexible class of models for analyzing

spatiotemporal areal count data as a generalization of the parameter-driven model of

Zeger (1988). Zeger’s model is an extension of the standard Poisson regression model

for independent outcomes to the time series setting. Using the same notation as in

(1), the model can be expressed as:

Yt|Xt, zt,∼ Poisson(exp(zTt β +Xt)), (2)

where {Xt} is a first-order autoregressive latent process (e.g. Xt|Xt−1 ∼ N(αXt−1, τ−1))

used to account for serial correlation and overdispersion in the observed data, {Yt}.
The term ‘parameter-driven’ arises from the use of a latent process to account for de-

pendence in time as against the introduction of lagged values of the outcome variable

in the conditional mean of the model. With a suitable moment restriction on Xt such

as E(exp(Xt)) = 1, the terms in exp(zTt β) can be interpreted just as in a standard

Poisson regression model. Other assumptions of the model, modifications and imple-

mentation details can be found in Zeger (1988) and Utazi (2017). McShane et al.

(1997) generalized Zeger’s model to the spatial setting to analyze point-referenced

data, modelling spatial autocorrelation in the latent process using a parametric corre-

lation function from the Matérn family (Banerjee et al., 2015, Chapter 2). In contrast,

our spatiotemporal extension applies to areal data. In the proposed model, as in

parameter-driven models, a latent process is used to account for spatiotemporal de-

pendence in the observed counts. We exploit the natural ordering in time to specify

a first-order vector autoregression for the latent process, with structured transition

matrices and a constrained error covariance structure to characterize different levels

of spatiotemporal dependence and address the problem of high dimensionality. Our

modelling efforts are geared towards characterising spatial dependence using the au-

toregressive structure of the latent process as against using its covariance structure

or second-order moments ubiquitous in the literature. The structures imposed on the

transition matrices are mostly based on notions of spatial dependence defined through

an adjacency matrix or a monotonically decreasing distance function. The proposed

models are fully implemented in a Bayesian framework. We use MCMC methods to

estimate the parameters of the model including the latent process via data augmen-

tation. A key contribution is the development of a Metropolis-Hastings (M-H) step

relative to an independence update for estimating the missing values of the latent
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process.

The rest of this paper is organized as follows. In Section 2, we present the general

form of the proposed model. The parameterizations of the general model are explored

in Section 2.1. Section 3 discusses Bayesian estimation of the models. In Section 4,

the methodology is illustrated using Ohio lung cancer mortality and Georgia low birth

weight datasets and compared with CAR-based models.

2 Model Development

We begin by writing down the general form of the proposed model. The model assumes

that conditional on the latent process Xt,i and a p−dimensional covariate vector zt,i,

the observed counts Yt,i, (i = 1, . . . , n; t = 1, . . . , T ) are distributed as Poisson with

mean Et,iµt,i denoted by

Yt,i|Xt,i, zt,i ∼ Poisson(Et,i exp(z′t,iβ +Xt,i)), (3)

where Et,i is the expected count for area i at time t (as defined previously) and β ∈ Rp

are uniform regression coefficients for all areas. In the model, µt,i = exp(z′t,iβi +Xt,i)

is the relative risk for area i at time t - a quantity of significant epidemiological

importance. A crude measure of disease risk based on the expected counts, Et,i,

is the standardized incidence ratio (SIR) given by SIR = Yt,i/Et,i. The SIR does

not account for spatial autocorrelation and often exhibits large variability (Wakefield,

2007). Hence, model-based approaches for estimating disease risk are preferable.

In the second level of the hierarchical model in (3), the latent process, {Xt,i}, is

assumed to follow a first-order autoregressive model expressed as

Xt,i =
∑n

j=1 aijXt−1,j + ξt + εt,i, (4)

where ξt ∼ N(0, τ−1ξ ), a temporal random effect, and εt,i ∼ N(0, τ−1), an error term,

are assumed to be independent. Let A = {aij} be an n × n transition matrix or

matrix of autoregressive coefficients, 1 an n× 1 vector of 1’s, and εt = (εt,1, . . . , εt,n)′

iid Gaussian (non-Gaussian errors are possible) with a positive definite covariance

matrix, Σ = τ−1In. In a compact vector notation, (4) can be written as

Xt = AXt−1 + ξt1 + εt, εt ∼ Nn(0,Σ). (5)
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In (5), it is assumed that X1 ∼ N(0,ΣX), where ΣX is the covariance matrix

of Xt which can be expressed using the ‘vec’ operator as vec(ΣX) = (In2 − A ⊗
A)−1vec(τ−1ξ 11′ + Σ), where ‘⊗’ denotes the Kronecker product (see supplementary

material). To ensure that {Xt} is second-order stationary in time, we assume that

the roots of det(In − Az) = 0 lie outside the unit circle, or equivalently, the eigen-

values of A have moduli less than one. This implies that ξt1 + εt is independent of

Xk for any k < t (see Lütkepohl, 2005). The independent error terms, ξt1 and εt,

can be viewed as an additive decomposition of some general zero-mean error term,

say ψt, with covariance matrix, Σψ = τ−1ξ 11′ + Σ. While the temporal random ef-

fect ξt represents time-specific variability common to all the areal units, the Gaussian

zero-mean error term εt, as modelled by Σ, captures additional homogenous spatial

variability. Thus, the combination of ξt1 and εt results in a structured conditional

covariance matrix for Xt. A further discussion on this choice of covariance matrix for

ψt is given in Section 2.1. Note that a more general structure could be easily assumed

for Σψ if desired by replacing the vector of 1’s in (5) with a different deterministic

vector, C = (c1, . . . , cn), which could represent area-specific weights applied to ξt.

For example, these weights could be a function of the number of neighbours an area

has. In addition, the covariance matrix Σ could be generalized to include area-specific

variance parameters.

The latent process {Xt} captures both overdispersion and spatiotemporal depen-

dence in the observed counts, as demonstrated by the moment properties of the model

provided in the supplementary material, and can also be viewed as a surrogate for

unmeasured spatially varying covariate factors. Spatiotemporal dependence in {Xt}
is clearly expressed by the dynamical structures in (4) and (5), both of which show

that the current value of the process for a given areal unit Xt,i depends not only on

its own past value but also on the past values of the process at other areal units. This

dependence structure is, however, modified by the A matrix, with the contribution of

the (t− 1)th value of the jth areal unit to the tth value of the ith area scaled by aij .

Note that (5) can be considered as a special case of the STAR(1) model (see Pfeifer &

Deutsch, 1980) when all forms of spatial ordering are eliminated from the latter. Note

also that higher order temporal lags could be considered if desirable.

2.1 Parameterizing the latent spatiotemporal process, {X t}

In its general form, the latent process model in equation (5) is often said to be ‘satu-

ratedly parameterized’ (Davis et al., 2012). The matrix of autoregressive coefficients,
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A, has n2 parameters to be estimated. In practice, when n is small, the model can

be estimated with less uncertainty. However, with large (and even moderate) n as is

often the case with areal data, the number of parameters can be prohibitively large

and obtaining reliable estimates for these parameters and model interpretation can be

challenging (see Cressie & Wikle, 2011, p.384). This is the so-called problem of ‘curse

of dimensionality’.

Parameterizing space-time models of the type given in model (5) typically involves

trade-offs between the compositions/structures given to A and Σψ - the covariance

matrix for the general error term, ψt (Wikle et al., 1998). However, the A matrix is

often considered ‘the most critical part’ (Xu & Wikle, 2007) of (5) owing to its role

in capturing dynamical spatiotemporal interactions. Hence, we model spatial depen-

dence using A. We expect that if spatial interactions are adequately captured using

this transition matrix, then the structure of Σψ is greatly simplified. Hence the spec-

ification: Σψ = τ−1ξ 11′ + Σ, with homogenous within- and between-area covariances

(see Wikle et al. for a related discussion).

Known approaches used in reducing the dimensionality of the A matrix in (5)

include making it sparse through the use of spatial neighborhood assumptions such

as [Aij ] = 0 except when the centroids of areas i and j are within a given distance

of each other (Cressie & Wikle, 2011). Here, different parameterizations of A can

be introduced with some flexibility subject to the stationarity constraint. Some ideas

explored include the possibility of spatial independence, spatial homogeneity/hetero-

geneity assumptions which entail the use of a uniform set of parameters/ area-specific

parameters to describe spatial dependence and the use of distances and spatial adja-

cency for characterizing spatial dependence. These will help refine spatial dependence

in A and consequently reduce the number of parameters to be estimated. The spec-

ification in (3) is the same in all the proposed parameterizations and is omitted for

conciseness. Also, we use the words ‘parameterization’ and ‘model’ interchangeably.

The first parameterization that we consider is that which allows for spatial inde-

pendence in the A matrix. This parameterization is useful for analyzing processes

with weak spatial dependence where prior knowledge could suggest this, as well as for

the purpose of comparison with more complex models to preserve parsimony. This

parameterization assumes that A = diag(ω) = diag(ω1, . . . , ωn) and is given by

Model 1 : Xt = diag(ω)Xt−1 + ξt1 + εt. (6)
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In (6), temporal dependence is captured using a separate autoregressive parameter,

ωi, for each area. Similar parameterizations (e.g. ωi = ω ∀i) are often used in models

that focus on modeling spatial dependence using the error covariance matrix, Σψ (e.g.

Rushworth et al., 2014). We note that although a spatial independence structure has

been imposed on A, the temporal random effect ξt ensures that Model 1 cannot be

separated into individual time series models for each area.

To model spatial dependence in A, we first consider a refinement of the fully

parameterized A in which the present structure allows the current value of Xt,i to

depend not only on its past values but also on the past values of every other area.

This dependence can be much improved in the spatial context since neighbouring areas

are expected to be more similar and have a stronger effect on each other than areas

that are further apart. Thus, spatial neighbourhood structures as defined by a binary

neighbourhood matrix, W n×n (W ij = 1 if areas i and j are neighbours or if i = j;

and 0 otherwise) can be utilized to make A sparse. The second model proposed is

given by

Model 2 : Xt = AI(Wij=1)Xt−1 + ξt1 + εt; (7)

where I(.) is an indicator function and A has the specification in (5). This model

results in a sparse transition matrix which could be robustly estimated with small n

and moderate or large T . However, with even a moderate n, the number of parameters

to be estimated may be large. Against this backdrop, the next model that we consider

replaces the remaining heterogenous parameters inA in (7) with a single autoregressive

parameter. This can be expressed as

Model 3 : Xt = (αW )Xt−1 + ξt1 + εt; (8)

In addition to defining spatial proximity as given in W , distance-based matrices

have also been used to characterize spatial dependence in covariance matrices of latent

process priors for areal data (Xia et al., 1997; Pascutto et al., 2000). Thus, we define

a distance-based weighting matrix given by: Dφ = exp(−φd), where d is a matrix

of Euclidean distances between the centroids of the areal units and φ (φ > 0) is a

decay parameter that determines the rate at which spatial dependence decreases with

increasing distance. In principle, any other suitable monotonically decreasing function

can be used in Dφ. It is possible to include a sense of direction in the weighting

matrix (see Stoffer, 1986) in which case dij may not necessarily be equal to dji, but
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we consider Euclidean distances only. Based on this proposition, Model 4, given by

Model 4 : Xt = (αDφ)Xt−1 + ξt1 + εt, (9)

results from substituting Dφ for W in (8). This model is somewhat a generalization

of Model 1 since independence can be attained as φ→∞.

To explore further the characterization of spatial dependence without utilizing too

many parameters, we extend Models 3 and 4 using area-specific parameters as in Model

1. Two sets of parameters: γn×1 = (γi; i = 1, . . . , n) and δn×1 = (δj ; j = 1, . . . , n) are

used to generate a non-symmetric matrix γδ′ which is then modified using the spatial

matrices to form a transition matrix for the latent process. With the neighbourhood

matrix, W , we obtain

Model 5 : Xt = (γδ′ ◦W )Xt−1 + ξt1 + εt; (10)

whereas using the weighting matrix, Dφ, we have

Model 6 : Xt = (γδ′ ◦Dφ)Xt−1 + ξt1 + εt. (11)

These models in (10) and (11) introduce a higher level of complexity in the transition

matrix using more parameters but a great reduction in the dimensionality of A in the

full model in (5) is achieved, from n2 to ≤ 2n+1 parameters. The asymmetrical form of

the transition matrices implies that areas i and j can influence each other differently.

This relationship is better seen by examining the noncompact forms of the models

(e.g., Xt,i = γi
∑n

j=1 δj exp(−φdij)Xt−1,j +ξt+εt,i) as in equation (4). More explicitly,

γi scales the dependence of the current value of the ith area on all past values (with the

latter pre-modified by the δj ’s and the entries of the spatial matrices), while δj(j = i)

partly determines the influence of its past value on all current values. There are non-

identifiability issues with the joint estimation of γ and δ, requiring a constraint to be

placed on either of these parameters. For example, we could fix the δj ’s or constrain

the γi’s to sum to a known constant. As in model (5), it is necessary that Models 1-6

represent stationary processes. For Model 1, this requires that |ωi| < 1 ∀ i. For other

models, we assume that the eigenvalues of the corresponding transition matrices have

moduli less than unity as in (5).
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3 Bayesian analysis

In this section, we present a Bayesian approach implemented using MCMC methods

for estimating the parameters of the proposed models. Let Y (T×n) denote the data

matrix of the observed counts, X(T×n) the values of the latent process and Z(T×np),

a rectangular array of covariate data. Also, let ξ = (ξ1, . . . , ξT ) and θ denote the

parameters of the general model in (3). The likelihood function of the model is not

available in closed form, but only as a high-dimensional integral over the latent process,

X (and ξ). Therefore, we work with the augmented data likelihood function (Tanner

& Wong, 1987) which facilitates the numerical evaluation of the integral in an MCMC

framework. This is given by

π(Y ,X,Z, ξ|θ) =p1(Y |X,Z,θ)× p2(X|ξ,θ)× p3(ξ|θ)

∝
n∏

i=1

T∏

t=1

{
exp

(
Xt,iYt,i + z′t,iβYt,i − Et,iez

′
t,iβ+Xt,i

)}

×
n∏

i=1

T∏

t=2

{
τ1/2exp

(
−τ

2

[
Xt,i −

∑n
j=1 aijXt−1,j − ξt

]2)}

× p(X1)×
T∏

t=1

τ
1/2
ξ exp

(
−τξ

2
ξ2t

)
, (12)

where p(X1) is as defined in (5). Note that the likelihood functions of models (6) -

(11) can be obtained from (12) by replacing aij with the corresponding terms. For

example, this would be α exp(−φdij) for model (9).

Assuming prior independence, we consider proper priors for the parameters com-

mon to all the models which, in some cases, are also conjugate priors. For τ, τξ and

βj (j = 0, . . . , p−1) we choose Gamma(aτ , bτ ), Gamma(aξ, bξ) and N(uβ, v
−1
β ) respec-

tively. The prior for the aij ’s is aij ∼ N(ua, v
−1
a ), i, j = 1, . . . , n. For the parameters

of the parameterizations of the general model, we use the following prior distribu-

tions: ωi ∼ N(uω, v
−1
ω ), α ∼ N(uα, v

−1
α ), γi ∼ N(uγ , v

−1
γ ), δj ∼ N(uδ, v

−1
δ ) and

φ ∼ Gamma(aφ, bφ). We have chosen Gaussian priors for aij , ω, α, the γi’s and the

δj ’s which can be truncated to lie in R+ under the assumption of positive dependence

between the areas.

With these choices of prior distributions, it is straightforward to write down the

posterior distribution. The conditional posterior distributions of the parameters and

the MCMC schemes to draw samples from them are given in the Appendix. We focus

10
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here on estimating the missing values of the latent process, {Xt}. Noting that the

value of the process for areal unit i at time t, Xt,i, depends on Xt−1 from the past,

Xt+1 into the future and the current values of the process for other areas Xt,−i, its

conditional posterior distribution is given by

π(Xt,i|Xt−1,Xt+1,Xt,−i,θ, Yt,i, ξ) ∝

exp

(
−τ

2

[
Xt,i −

∑n
j=1 aijXt−1,j − ξt

]2)

× exp

(
−τ

2

∑n
k=1

[
Xt+1,k − akiXt,i −

∑n
j 6=i,j=1 akjXt,j − ξt+1

]2)

× exp
(
Xt,iYt,i − Et,iez

′
t,iβ+Xt,i

)
, t = 2, . . . , n− 1. (13)

Equation (13) shows how the interdependence among Xt,1 . . . Xt,n can be exploited

when estimating any given Xt,i. Clearly, (13) does not have a standard form if we do

not wish to approximate any of the exponents and in the MCMC context, we cannot

use a Gibbs move to obtain samples from it. Hence, we propose an updating scheme

relative to independence M-H sampling procedure. Motivated by the Markovian struc-

ture of the latent process, the proposal density is given by

p(Xt,i|Xt−1,Xt+1,Xt,−i),θ, ξ) ∼

N

(∑n
k=1 akiUk(t) +

∑n
j=1 aijXt−1,j + ξt

1 +
∑n

k=1 a
2
ki

,
1

τ(1 +
∑n

k=1 a
2
ki)

)
, (14)

where Uk(t) = Xt+1,k −
∑n

j=1
j 6=i

akjXt,j − ξt+1, and the corresponding acceptance prob-

ability is

αx(Xt,i → X ′t,i) = min



1,

exp(X ′t,iYt,i − Et,iez
′
t,iβ+X′

t,i)

exp(Xt,iYt,i − Et,iez
′
t,iβ+Xt,i)



 , (15)

where X ′t,i denotes the proposed value of Xt,i. Observe that both the proposal dis-

tribution in (14) and the acceptance probability in (15) were constructed from (13).

Equation (15) reveals the role of the Yt,i’s in providing feedback for the estimation of

the Xt,i’s. The idea behind the choice of (14) is that if this feedback mechanism is

obliterated by excluding the Yt,i’s from the model, the acceptance probability in (15)

becomes equal to unity and this M-H sampling procedure reduces to a Gibbs step in

which samples are obtained from (14) to update {Xt}. These proposals were investi-
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gated and successfully used in Utazi (2014) and Utazi (2017) in both spatiotemporal

and temporal settings. We also found that this updating scheme outperformed random

walk M-H updates in pilot studies, attaining convergence quickly and yielding better

parameter estimates.

The conditional posterior distributions of X1,i and XT,i are special cases. For

convenience, we use the vector notation to write the proposal density of X1 as

p(X1|X2,θ) ∼N
[
(Σ−1X +A′Σ−1ψ A)−1(X ′2Σ

−1
ψ A)′, (Σ−1X +A′Σ−1ψ A)−1

]
. (16)

For XT,i, we have

p(XT,i|XT−1, ξT ,θ) ∼ N
[∑n

j=1 aijXT−1,j + ξT , τ
−1
]
. (17)

In the MCMC algorithm, proposed values of X2, . . . ,XT are drawn in block for each

t using the compact forms of (14) and (17) for improved speed and convergence.

These are provided in the Appendix. The estimation of missing values in the observed

counts {Yt,i} is easy as these can be straightforwardly drawn in the algorithm. Details

of forward predictions in time using the proposed models are also discussed in the

Appendix.

3.1 Model choice and evaluation

Many approaches have been proposed for model choice in a Bayesian framework (Kass

& Raftery, 1995; Spiegelhalter et al., 2002; Gelman et al., 2014). In this work, we

consider two model choice criteria that appear to be popular in the literature for

areal data models for determining the best model/parameterization from the set of

models developed here for any given set of data. Also, as a diagnostic tool to assess

the residuals of the best-fitting model, we employ the spatiotemporal version of the

Moran’s I statistic (see Anderson & Ryan, 2017). These are discussed as follows.

Deviance Information Criterion (DIC)

The DIC (Spiegelhalter et al., 2002) is a Bayesian generalization of the Akaike Infor-

mation Criterion (AIC) that is based on two quantities: the posterior distribution of

the deviance statistic given by Dθ = −2 log p(Y |θ̂), where p(Y |θ̂) is the likelihood

function p1(.) given in (12) with dependence on other variables suppressed, and the

effective number of parameters pD given by pD = 2(log p(Y |θ̂) − Eθ(log p(Y |θ̂))),

12
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which replaces the actual number of parameters used in AIC. The posterior expecta-

tion of the deviance provides a measure of fit of the model whereas pD summarizes its

complexity. For each of the models, the DIC can be calculated as

DIC = −2 log p(Y |θ̂) + 2pDIC (18)

The smaller the DIC, the better the fit.

Watanabe-Akaike information criterion (WAIC)

The WAIC is a fully Bayesian criterion for model choice introduced by Watanabe

(2010). The WAIC is based on pointwise calculations and can be viewed as a Bayesian

approximation of cross-validation (Vehtari et al., 2015). The fit of the model is mea-

sured by DWAIC =
∑T

t=1

∑n
i=1Eθ(p(Yt,i|θ)) while the effective number of parameters

is pWAIC = 2
∑T

t=1

∑n
i=1(log(Eθ(p(Yt,i|θ)))−Eθ(log p(Yt,i|θ))). In these expressions,

p(.) is the likelihood function p1(.) in (12). The WAIC can be expressed as

WAIC = −2(D̂WAIC − p̂WAIC). (19)

In (19), all expectations are with respect to the posterior distribution of the parameters

and the smaller the WAIC, the better the fit.

Spatiotemporal Moran’s I

We measure residual autocorrelation in the fitted models using the MoranST statis-

tic (Anderson & Ryan, 2017) - a spatiotemporal extension of the Moran’s I statistic

(Moran, 1950). The MoranST statistic is given by

MoranST =
Tn
∑T

t=1

∑n
i=1

∑T
l=1

∑n
k=1 W̃ (ti,lk)(rti − r̄)(rlk − r̄)∑T

t=1

∑n
i=1

∑T
l=1

∑n
k=1 W̃ (ti,lk)

∑T
t=1

∑n
i=1(rti − r̄)2

, (20)

where rti is the residual for areal unit i at time t (i.e. the observed value minus the

fitted value), r̄ is the overall mean of the residuals and W̃ (ti,lk) is spatial weight defined

13
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by

W̃ (ti,lk) =





W ik, if t = l,

1, if i = k and |t− l| = 1,

0, otherwise,

(21)

where W is the adjacency matrix defined in Section 2.1. Equation (20) considers pairs

of contemporaneous observations which are neighbours in space as defined by W and

and first-order neighbours in time at the same areal unit to measure spatiotemporal

dependence. Similar to the Moran’s I, a MoranST value close to 1 indicates a strong

positive dependence whereas a value of 0 indicates the absence of dependence in space

and time.

4 Applications

We illustrate the methodology developed in this paper with two data sets: county-

level lung cancer mortality in Ohio and low birth weight incidence in Georgia, both in

USA. Each data is described in full in the following subsections, together with details

of model fitting, model choice and the results of the best fitting model and comparisons

with CAR-based approaches.

4.1 Ohio lung cancer mortality data

This data concerns lung cancer deaths in n = 88 counties of Ohio, USA, for the years

1968 to 1988. This dataset was originally analyzed by Devine (1992) but has since been

analyzed by others including Waller et al. (1997), Xia et al. (1997), Lawson (2009)

and Blangiardo & Cameletti (2015). The data and the corresponding shapefile were

downloaded from the website: https://sites.google.com/a/r-inla.org/stbook/.

The number of deaths for each year and county, Yt,i and the corresponding expected

number of deaths, Et,i, among other details, were obtained. For an exploratory assess-

ment of the mortality burden of the counties, the standardized mortality ratio (SMR)

estimates, i.e. ratios of the observed and expected counts, for selected years are plot-

ted in the top panel of Figure 1. High risk areas (SMR > 1) have darker colours

whereas low risk areas (SMR < 1) are coloured in lighter shades. The plotted values
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range between 0 and 2.56. Further exploratory analysis revealed an evidence of trend

in many counties. Hence, we include a trend term (t/T ) as a covariate in the analysis.

The priors placed on the parameters common to all the models were: Gamma(1,1)

on τξ, Gamma(2,1) on τ and N(0, 103Ip) on β. Others were: aij , ωi, α, γi, δj ∼ N(0, 1)

and φ ∼ Gamma(20, 1), with the prior on φ chosen based on the distances between

the centroids of the areas to encourage localized dependence and stationarity in A.

For identifiability reasons, we set δj = 0.5 ∀ j (other values are possible) in Models

5 and 6, as discussed earlier. Each time, the MCMC algorithm was run for 10,000

iterations after a burn-in period of 10,000 iterations. Convergence was assessed by

visual inspection of the trace plots of the parameters and by using other MCMC

diagnostics such as Geweke diagnostic (Geweke, 1992). In Table 1, we summarize the

DIC and WAIC values of the fitted models. Model 5 has the minimum values of both

criteria and is, hence, the best-fitting model.

Table 1: Model choice criteria for Ohio lung cancer mortality data

Model DIC WAIC

Model 1 11877 11758
Model 2 11788 11681
Model 3 12234 12143
Model 4 11929 11768
Model 5 11778 11642
Model 6 11792 11681

Table 2: Posterior means, standard deviations and 95% credible intervals of the pa-
rameters of Model 5

Parameter Mean SD 95% CI

τξ 5.2485 1.5993 (2.6433, 8.9726)
τ 25.0260 2.2877 (20.8904, 29.9214)
γ1(Trumbull) 0.1597 0.0284 (0.1043, 0.2141)
γ46(Wayne) 0.2918 0.0221 (0.2466, 0.3293)
γ88(Butler) 0.1583 0.0360 (0.0852, 0.2277)
β0 0.5440 0.0174 (0.4971, 0.5717)
β1 0.0884 0.0305 (0.0202, 0.1332)

The posterior estimates of the parameters of Model 5 - the parameters of the

latent process and the regression coefficients - are reported in Table 2. The 95%

credible intervals of the reported γi’s (and those not reported) do not include zero.
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This confirms the presence of significant spatiotemporal dependence in the data. The

estimate of β1 provides evidence of increasing trend in mortality for the period under

study (see Blangiardo & Cameletti, 2015, for similar results). Also, the estimated

values of τξ and τ are both significant and these show that ξt is the more dominant

component of ψt.

Figure 1: Ohio lung cancer mortality data: (top) Standardized Mortality Ratio (SMR)
estimates, (middle) Relative Risk (RR) estimates E(µt,i|Y ) and (bottom) correspond-
ing posterior probabilities p(µt,i > 1|Y ).

In the middle panel of Figure 1, the relative risk estimates of Model 5 for selected

years are mapped. These generally appear to be smoother than the SMRs, ranging

between 0.45 and 1.72. The associated probabilities of the risk estimates are displayed

in the bottom panel of the figure. The high risk areas (i.e. areas with p(µt,i > 1|Y ) ≥
0.8) are mostly concentrated in the southeastern part of the state over the years with

pockets of other high risk areas springing up in an inconsistent manner in other areas.

Two counties - Hamilton and Cuyahoga - consistently had posterior probabilities (i.e.

p(µt,i > 1|Y )) ≥ 0.8 throughout the study period. These constitute hotspot areas of
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high mortality. As reported in Table 3, the residuals of the Model 5 had a MoranST

value of 0.0026, indicating the absence of spatial autocorrelation.

Table 3: MoranST values of the residuals of Model 5, other proposed models and some
CAR models

Proposed models MoranST CAR models MoranST

Model 1 0.0574 CAR-1 0.2204
Model 2 -0.0025 CAR-2 -0.0053
Model 3 -0.0357 CAR-3 -0.0350
Model 4 0.0001 CAR-4 -0.0393
Model 5 0.0026 CAR-5 -0.0359
Model 6 0.0073

Additional analyses were carried out to compare the best-fitting model (i.e. Model

5) with some existing CAR-based models used for analyzing spatiotemporal areal data.

The first CAR model examined (CAR-1), a modification of that proposed by Bernar-

dinelli et al. (1995), characterizes spatiotemporal dependence in its mean function

using spatially-varying linear time trends. In the model, two sets of spatial random

effects - area-specific intercept and slope terms - both modelled using the CAR prior

proposed by Leroux et al. (2000) are used to estimate a separate but correlated linear

trend for each areal unit. The second CAR model considered (CAR-2, see Knorr-Held

(2000) and Lee et al. (2016)) decomposes spatiotemporal variation in the data into an

overall spatial effect, an overall temporal effect and a space-time interaction term. As

in CAR-1, the spatial and temporal random effects are modelled using Leroux et al.’s

CAR prior whereas the interaction terms are modelled as being independent. The next

model, termed CAR-3 (Rushworth et al., 2014), shares the same structure as Models

1-5 proposed here in that it captures spatiotemporal dependence using a single set of

random effects/latent process modelled using a first-order multivariate autoregressive

process. More explicitly, the A matrix is modelled as ωIn, where ω is a uniform au-

toregressive parameter, while Σψ is modelled as a product of a variance parameter

and the correlation matrix proposed by (Leroux et al., 2000). In the fourth model

(CAR-4, Lee & Lawson (2016)), a single set of spatiotemporal random effects having

the same structure as CAR-3 characterizes spatiotemporal dependence. Additionally,

this model incorporates a piecewise constant term to model step changes in the mean

response with the aim of identifying clusters of areas of elevated or reduced risks. The

last CAR model examined, CAR-5, was proposed by Rushworth et al. (2017). This
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is similar in structure to CAR-3 but replaces the usual binary neighbourhood matrix

in the correlation matrix with a modified version in which the non-zero elements of

the matrix are treated as parameters with support on the unit interval to allow adap-

tive levels of spatial smoothing. These CAR models were chosen because they could

be implemented using an open software. The models were fitted using CARBayesST

package in R (Lee et al., 2016) with standard model specifications.
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Figure 2: Ohio lung cancer mortality data: Violin plots of Standardized Mortality
Ratio (SMR) and Relative Risk (RR) estimates from Model 5 and the CAR models
and plots of observed versus predicted values from all the models.
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In Figure 2, relative risk estimates obtained from the CAR models are compared

with those of Model 5 using violin plots. In general, these plots show that Model 5

performed equally well as the CAR models in shrinking the risk estimates towards

their mean value. However, upon examining the plots of the observed versus predicted

values from these models, it is clear that Model 5 outperforms some of the CAR models

(CAR-1 and CAR-2) by producing less biased predictions. The MoranST values of

the proposed models (including Model 5) and the CAR models are reported in Table

3. These indicate that spatiotemporal autocorrelation is adequately accounted for

in these models, with the exception of CAR-1 which appears to show some residual

autocorrelation.

4.2 Georgia low birth weight data

Low birthweight (LBW), i.e. a live birth weighing less than 2500g, has been associated

with greater risk of infant mortality. As in many countries around the world, LBW

has been a significant public health issue in the USA, with rates in Georgia being

among the worst (Tian et al., 2013). In this section, we undertake an analysis of low

birth weights data for the 159 counties of the state of Georgia, USA, for the years

2000-2010. The data were downloaded from https://sites.google.com/a/r-inla.

org/stbook/ and were analyzed in Blangiardo & Cameletti (2015). Other versions of

the data covering different spatial and temporal scales have been analyzed by Lawson

(2009), Kirby et al. (2011) and Tian et al. (2013). For each county, both the observed

and expected counts were available with the latter calculated by using the internal

standardization method. The Standardized Incidence Ratio (SIR) estimates, ranging

between 0.00 and 3.04 are mapped in Figure 3 (top panel) for selected years. These

provide an exploratory visualization of the patterns in the data.

Due to the short time period covered by the data, we include only an intercept

term in the regression function and regard this analysis as purely illustrative. The

prior distributions used in the analysis were similar to those given in Section 4.1.

Here again, the MCMC algorithms were run for 10,000 iterations each time after a

burn in period of 10,000 iterations. Convergence diagnostics were also carried out as

before. There is a good agreement between the DIC and WAIC values of the models

reported in Table 4. Model 4 is the best fitting model with the lowest values of both

criteria. Posterior estimates of the parameters of this model are shown in Table 5.

The estimates of the parameters of the latent process generally show the presence of

significant spatiotemporal correlation in the data. The middle and bottom panels of

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3 map the relative risk estimates and the corresponding posterior probabilities

of being greater than one, respectively. The RR estimates (min. = 0.45, max. = 2.30)

from the model generally appear to be smoother and less variable than the SIRs.

Table 4: Model choice for Georgia low birth weight data

Model DIC WAIC

Model 1 11842 11685
Model 2 11934 11788
Model 3 12137 11949
Model 4 11803 11624
Model 5 11955 11786
Model 6 11875 11739

Table 5: Posterior means, standard deviations and 95% credible intervals of the pa-
rameters of Model 4

Parameter Mean SD 95 % CI

α 0.4717 0.0333 (0.4058, 0.5361)
φ 7.4813 0.4404 (6.7026, 8.3735)
τξ 6.8346 2.6231 (2.6917, 12.9211)
τ 16.5504 1.8466 (13.3152, 20.3702)
β0 -0.0114 0.0141 (-0.0345, 0.0272)

Throughout the study period, counties with higher LBW rates were found to be con-

centrated in the area stretching from the southwestern part of the state up to its

middle area, as these figures reveal. Similar findings were also observed in Tian et al.

(2013). Fulton, Hancock, Spalding, Bibb, Muscogee, Clay and Dougherty counties

consistently had posterior probabilities (i.e. p(µt,i > 1|Y )) ≥ 0.8. These counties

constitute hotspot areas of high LBW rates. As reported in Table 6, the residuals

of the Model 4 had a MoranST value of 0.0165, indicating the absence of spatial

autocorrelation.

As in Section 4.1, we performed a comparative analysis of the data using some

CAR-based models described previously. The results obtained are displayed in Figure

4. The violin plots indicate that all the models show similar behaviour in shrinking the

risk estimates although the best model (Model 4) appears to have identified slightly

greater numbers of higher and lower risk areas in comparison with the CAR models.
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Figure 3: Georgia low birth weight data: (top) Standardized Incidence Ratio (SIR) es-
timates, (middle) Relative Risk (RR) estimates E(µt,i|Y ) and (bottom) corresponding
posterior probabilities p(µt,i > 1|Y ).

Table 6: MoranST values of the residuals of the models

Proposed models MoranST CAR models MoranST

Model 1 0.0153 CAR-1 0.2179
Model 2 0.0576 CAR-2 0.0371
Model 3 -0.0405 CAR-3 -0.0606
Model 4 0.0165 CAR-4 -0.0301
Model 5 0.0697 CAR-5 -0.0575
Model 6 -0.0349
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Figure 4: Georgia low birth weight data: Violin plots of Standardized Incidence Ratio
(SIR) and Relative Risk (RR) estimates from Model 5 and the CAR models and plots
of observed versus predicted values from the models.

The plots of observed versus predicted values of the models reveal that Model 4 and

other CAR models outperformed CAR-1 and CAR-2, both of which produced more

biased predictions. The MoranST values of the residuals of the proposed models

and those of CAR models given in Table 6 generally indicate that spatiotemporal

autocorrelation has been properly accounted for by these models with the exception

of CAR-1 with a relatively higher MoranST value.
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5 Discussion

In this paper, we have presented a new methodology for the analysis of spatiotem-

poral areal count data. In the proposed models, a new approach that characterizes

spatiotemporal dependence dynamically using the transition matrix of the first-order

autoregressive latent process as against its the error covariance matrix was explored.

A great deal of flexibility was achieved through the development of various parame-

terizations of the transition matrix. Parameter estimation in the proposed models is

shown to be straightforward and we have demonstrated, using two illustrative exam-

ples, that the methodology is as effective as, and in some cases more effective than,

alternative approaches which characterize spatial and spatiotemporal correlation us-

ing CAR-based priors. In particular, the goodness-of-fit evaluation done in Section 4

points to the fact that the proposed models intrinsically achieve a good balance be-

tween smoothing (variance reduction) and bias in relative risk estimation. This implies

that these models are not only well-suited for identifying the overall spatial pattern

in the risk estimates but also for highlighting the presence of heterogeneity resulting

from clustering of high or low risk areas or individual areas with distinctive risks. This

is a desirable attribute in disease mapping studies (see Best et al., 2005); however, a

more comprehensive study involving a variety of set-ups not considered here will be

necessary to provide a broad evaluation of the models in this regard.

A topic of interest in spatiotemporal modelling often ignored in models for areal

data is the modelling of the dependence of responses on covariates using spatially-

varying or area-specific regression coefficients. Such specifications not only introduce

greater flexibility in modelling but also facilitate the quantification of covariate effects

for each areal unit - an important attribute that is appealing from an epidemiological

perspective - and production of risk maps for individual covariate factors. An approach

for accounting for spatial autocorrelation in the regression parameters explored in As-

sunção (2003) is the use of a Markov random field prior. Correlated normal priors

with the elements of the correlation matrix specified using a suitable parametric func-

tion of the distances between the centroids of the areas, such as the exponential decay

function used in Section 2.1, could also be used. The uniform regression coefficients

used in the proposed models is a special case of spatially-varying coefficients and it

is straightforward to extend these models along these lines. We plan to take up this

idea in future work. However, to demonstrate the utility of this approach using the

datasets analyzed in Section 4, spatially-varying covariate data such as county-level
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socioeconomic variables as in Kirby et al. (2011) will need to be included in the anal-

ysis. We anticipate that the selected models for the latent process may change when

such covariates are included in the analysis as these help to account for residual au-

tocorrelation in the data. Nevertheless, spatially-varying regression parameters may

not be relevant in all cases. Where prior knowledge suggests that covariate effects do

not vary over the study region, a uniform set of regression parameters should be used

to preserve parsimony.

Finally, as an additional future line of development, generalizations of the method-

ology to other outcome distributions such as binomial and Gaussian distributions will

be considered. This will improve the applicability of the methodology.
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Appendix

Conditional posterior distributions of the parameters of the proposed

models

Here, we present the conditional posterior distributions of the parameters of the models

developed in Section 2.1. We begin with the parameters common to all the models.

The conditional posterior distribution of τ , the precision parameter for εt,i, is the

Gamma distribution given by

π(τ |θ−τ ) ∼ Gamma

(
aτ +

n(T − 1)

2
,
1

2

∑n
i=1

∑T
t=2

[
Xt,i −

∑n
j=1 aijXt−1,j − ξt

]2
+ bτ

)
.

(22)

For the autoregressive parameters aik, i, k ∈ {1, . . . , n}, we have that

π(aik|θ−aik) ∼ N
(
τ
∑T

t=2Xt−1,kUt(ik) + uava

τ
∑T

t=2X
2
t−1,k + va

,
1

τ
∑T

t=2X
2
t−1,k + va

)
, (23)

where Ut(ik) = Xt,i −
∑n

j=1
j 6=k

aijXt−1,j − ξt. In Model 2, these parameters are only

updated when Wik = 1. The conditional posterior distribution of τξ, the precision

parameter for ξt, is

π(τξ|θ−τξ) ∼ Gamma

(
T

2
+ aξ,

∑T
t=1 ξ

2
t

2
+ bξ

)
. (24)
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The posterior distribution of ξ factors into T − 1 independent posteriors for each ξt.

That is, for t = 2, . . . , T , we have that

π(ξt|θ−ξt) ∼ N
(
τ
∑n

i=1(Xt,i −
∑n

j=1 aijXt−1,j)

τξ + nτ
,

1

τξ + nτ

)
. (25)

The conditional posterior distribution of the uniform regression coefficients, β, is given

by

π(β|θ−β) ∝ exp
(∑n

i=1

∑T
t=1

[
z′t,iβYt,i − Et,iez

′
t,iβ+Xt,i

])

× exp
(
−vβ

2

∑p−1
j=0(βj − uβ)2

)
. (26)

The conditional distributions of τ , τξ, ξt and aik in equations (22) - (25) are in

standard forms. These are updated using Gibbs moves. For β, we use a random

walk Metropolis step. By making appropriate substitutions for aij in (22), (24) and

(25), the conditional posterior distributions of these parameters in Models 1 - 6 can

be obtained.

The conditional posterior distribution of the site-specific autoregressive parameter

in model (6), ωi, is given by

π(ωi|θ−ωi) ∼ N
(
τ
∑T

t=2Xt−1,i(Xt,i − ξt) + uωvω

τ
∑T

t=2X
2
t−1,i + vω

,
1

τ
∑T

t=2X
2
t−1,i + vω

)
. (27)

The full conditional distribution of α in Models 3 and 4 is

π(α|θ−α) ∼ N
(
τ
∑n

i=1

∑T
t=2 Ui,t−1(Xt,i − ξt) + uαvα

τ
∑n

i=1

∑T
t=2(Ui,t−1)

2 + vα
,

1

τ
∑n

i=1

∑T
t=2(Ui,t−1)

2 + vα

)
;

(28)

where Ui,t−1 equals
∑n

j=1WijXt−1,j in Model 3 and
∑n

j=1 e
−φdijXt−1,j in Model 4.

In the models in equations (10) and (11), the γi’s and δj ’s are to be estimated. For

the γi’s, we have

π(γi|θ−γi) ∼ N
(
τ
∑T

t=2 Ui,t−1(Yt,i − ξt) + uγvγ

τ
∑T

t=2 U
2
i,t−1 + vγ

,
1

τ
∑T

t=2 U
2
i,t−1 + vγ

)
, (29)

where Ui,t−1 =
∑n

j=1 δjWijYt−1,j in (10) and
∑n

j=1 δje
−dijφYt−1,j in (11). For the δj ’s,
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we have

π(δj |θ−δj ) ∼ N
(
τ
∑n

i=1 γiCij
∑T

t=2 Ui,t + uδvδ

τ
∑n

i=1 γ
2
i C

2
ij

∑T
t=2X

2
t−1,j + vδ

,
1

τ
∑n

i=1 γ
2
i C

2
ij

∑T
t=2X

2
t−1,j + vδ

)
,

(30)

where Ui,t = Xt,iXt−1,j − ξtXt−1,j −γiXt−1,j
∑n

k=1
k 6=j

δkCikXt−1,k and Cr = Wr in model

(10) and e−drφ in (11). Note that under the prior assumption of positive dependence

between the areas, equations (23), (27), (28), (29), and (30) will be truncated distri-

butions with support in R+. Note also that with a large n, block updates could be

explored for the area-specific parameters for increased computational efficiency. For

the decay parameter φ in models (9) and (11,) we have that

π(φ|θ−φ) ∝exp

(
−τ

2

∑n
i=1

∑T
t=2

[
Xt,i −

∑n
j=1Cije

−φdijXt−1,j − ξt
]2)

× φaφ−1exp(−bφφ), (31)

where Cij equals α in equation (9) and γiδj in (11). All the model-specific param-

eters in equations (27) - (30) are updated using Gibbs steps while the conditional

distribution in (31) is sampled using a random walk Metropolis step.

As highlighted in Section 3, the compact forms of equations (14) and (17) for

updating X2, . . . ,XT−1 and XT are

p(Xt|Xt−1,Xt+1,θ) ∼ N
(

(Σ−1ψ +A′Σ−1ψ A)−1(X ′t−1A
′Σ−1ψ +X ′t+1Σ

−1
ψ A)′,

(Σ−1ψ +A′Σ−1ψ A)−1
)
, and

p(XT |XT−1,θ) ∼ N(AXT−1,Σψ),

respectively. Finally, the stationarity condition discussed in Section 2 can be straight-

forwardly imposed when updating the autoregressive parameters in each case. All the

MCMC algorithms for the proposed models were coded in R (R Core Team, 2014).

Prediction

We consider predictions in time for the latent process {Xt} and the observed counts

{Y t}. First, the predictive distribution of {Xt} is derived as follows.

By iterating on the second level of equation (5) from time t = T to time t = T +h,
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we have that

XT+h = AhXT +
∑h−1

i=0 A
i(εT+h−i + ξT+h−i1). (32)

From (32), it is easy to see that

E(XT+h|XT ) = AhXT (33)

and

ΣX(h) = V ar(XT+h|XT ) =
h−1∑

i=0

Ai[τ−1ξ 11′ + Σ](Ai)′. (34)

Using the vec operator, we can simplify (34) further to obtain

vec(ΣX(h)) = (In2 − (A⊗A)h)(In2 − (A⊗A))−1vec(τ−1ξ 11′ + Σ). (35)

The h-step ahead predictive distribution of {Xt} for area i is therefore given by

XT+h,i|XT ∼ N
(

[AhXT ]i, [ΣX(h)]i

)
, (36)

where [.]i denotes the ith element or the ith diagonal element of the corresponding vec-

tor or matrix. Conditional on (36), for i = 1, . . . , n, YT+h,i has a Poisson distribution

with an unconditional mean given by

E[YT+h,i|Y ,θ] = ET+h,iexp
(
z′T+h,iβi + 0.5[ΣX(h)]i

)
E[exp([AhXT ]i)|X,θ]. (37)

Equation (37) is straightforward to evaluate in an MCMC algorithm.
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