
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—The orchestration of application components across

heterogeneous cloud providers is a problem that has been tackled
using various approaches, some of which led to the creation of
cloud orchestration and management standards such as TOSCA
and CAMP. Standardization is a definitive method of providing
an end-to-end solution capable of defining, deploying, and
managing applications and their components across
heterogeneous cloud providers. TOSCA and CAMP, however,
perform different functions with regards to cloud applications.
TOSCA is focused primarily on topology modelling and
orchestration, whereas CAMP is focused on deployment and
management of applications. This paper presents a novel solution
that not only involves the combination of the emerging standards
TOSCA and CAMP but also introduces extensions to CAMP to
allow for multi-cloud application orchestration through the use of
declarative policies. Extensions to the CAMP platform are also
made, which brings the standards closer together to enable a
seamless integration. Our proposal provides an end-to-end cloud
orchestration solution that supports cloud application modeling
and deployment process, allowing a cloud application to span and
be deployed over multiple clouds. The feasibility and benefit of
our approach is demonstrated in our validation study.

Index Terms—Distributed Computing, Middleware, Software
Architecture, Model-Driven Development

I. INTRODUCTION
LOUD computing is an on-going area of distributed
computing that enables the delivery of applications as
services over the Internet, as well as platform- and

infrastructure-level computing resources. The advent of cloud
computing promises to provide “users” the benefits of, among
many, availability of on-demand services, elimination of
up-front commitment, and pay-per use model. These benefits,
however, come with the addition of inherent issues such as
availability of service, performance unpredictability, resource
scaling, and vendor lock-in [1][2].

Manuscript received May 10, 2017.
This research was supported by Basic Science Research Program through

the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (No. 2017R1A2B4010395).

Kena Alexander and Choonhwa Lee are with the Department of Computer
Science, Hanyang University, Seoul, Republic of Korea (e-mail:
{kenaxle,lee}@ hanyang.ac.kr).

Eunsam Kim is with the Department of Computer Engineering, Hongik
University, Seoul, Republic of Korea (e-mail: eskim@hongik.ac.kr).

Sumi Helal is with the CISE Department, University of Florida, Gainesville,
FL 32611, USA (e-mail: helal@cise.ufl.edu).

The orchestration of applications and components across
cloud providers is capable of addressing some of these inherent
issues regarding cloud computing. However, the orchestration
of applications and components itself is not an easy task to
accomplish [3]. The orchestration of applications and resources
in the cloud involves dynamically deploying, managing, and
maintaining those aforementioned components in and across
multiple heterogeneous cloud platforms. As it is possible that
cloud providers’ platforms may be built using varying
technologies and API’s [4], it is clear that standardization can
provide the answer to orchestration across these heterogeneous
cloud platforms [5][6][7].

Currently, the de-facto standard for cloud application
modelling and orchestration, OASIS TOSCA (Topology and
Orchestration Specification for Cloud Applications) [8],
provides a method of defining the topology of cloud
applications through the use of an XML DSL coupled with the
detailed plans for the management of the applications. More
recently, the TOSCA simple profile in YAML was produced,
providing a declarative method for defining cloud application
topologies via TOSCA [9]. This declarative approach negates
the need for specifying deployment and or management plans
within a TOSCA Service Template, thus making TOSCA a
fully declarative specification.

OASIS CAMP (Cloud Application Management for
Platforms), is another specification whose primary purpose is to
simplify cloud application deployment and management
[6][10]. It also uses a declarative deployment plan defined in
YAML in order to specify the artefacts that should be deployed
as well as the services that should be used to fulfil those artefact
deployments. CAMP serves as an API between the developers
and cloud providers and provides a standard way for deploying
and managing cloud applications. However, the orchestration
of applications across multiple providers was not one of its
deliverables.

In this paper, we present TOSCAMP (TOSCA + CAMP)
which is our proposed solution for providing a standards-based,
end-to-end cloud orchestration solution by combining the
standards of TOSCA and CAMP. By building upon mainstream
standards relevant to cloud application deployment and
management and orchestration, we can simplify the work
required to deploy and orchestrate applications across multiple
heterogeneous cloud providers.

Therefore, the major contributions presented in this paper
are as follows. (1) We present a method of converting TOSCA
service templates into CAMP deployment plans and
consequently converting the components of a TOSCA service
template into appropriate deployment and management

Enabling End-to-End Orchestration of
Multi-Cloud Applications

Kena Alexander, Choonhwa Lee, Eunsam Kim, and Sumi Helal

C

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

components of a CAMP deployment plan. (2) The paper
introduces our architectural design of TOSCAMP platform
used to convert TOSCA Service Templates to CAMP
Deployment plans, and presents a prototype implementation to
demonstrate our approach. (3) We validate our proposed
approach using our TOSCAMP platform and analyse the
performance of our orchestration solution. (4) Finally, we
discuss what differentiates our approach from the
state-of-the-art approaches.

The remainder of this paper is structured as follows. Section
II describes our motivation and challenges. This section also
contains our motivational scenario used to validate our
approach. Section III presents our TOSCAMP architecture
whose performance evaluation results are presented in the
following section IV. Finally, we discuss related and future
works in Section V, after which we conclude the paper.

II. MOTIVATION AND CHALLENGES
To illustrate our approach, we consider deploying a modified

version of the “WebServer-DBMS” WordPress case study
example [9]. The application used in this scenario comprises a
Web application front-end which, in this case, is the WordPress
application. The WordPress application is installed onto the
server via a supplied installation script. Apart from the
installation script, configuration scripts are also used to
configure the WordPress application which is deployed in a
clustered configuration. In this configuration, the front-end
cluster may consist of one or more WordPress servers. Each
node of the web cluster is in turn provisioned on a compute
node provided by an IaaS cloud provider. The WordPress Web
Application must connect to a database that is hosted on a SQL
DBMS server. These data management components are also
provisioned on a compute node on a cloud provider. Fig. 1
depicts the topology of the web application.

To leverage the features of orchestration, our example
application must be deployed across two heterogeneous cloud
providers. It is noted that the deployment scenario entails a
more advanced form of orchestration support beyond current
orchestration technologies in that the application spans multiple
clouds. Moreover, there are further constraints that should be
adhered to:

• The Web application and the database should not be
deployed on the same provider’s cloud platform.

• The web application front-end should be deployed in a
load-balanced configuration.

Our TOSCAMP approach must allow for such an application to
be deployed to the cloud as well as provide a means of
declaratively specifying the management criteria for
maintaining the application within the constraints given. There
are, however, some challenges that have to be overcome in
order to realize this solution.

A. Portable Application Topology Specification
A standardized approach to application orchestration must

adhere to the caveat that the topology of the application should
be described in a form that is portable and interoperable across
compliant providers. To address this challenge, we utilise
TOSCA as the standard Domain Specific Language (DSL) for

specifying the topology. TOSCA provides a definition for
modelling the topology of applications that may be deployed to
heterogeneous cloud service providers. In TOSCA, cloud
application designers may define the topology of an application,
also known as the application’s Topology Template, within a
declarative Service Template document. The topology template
is composed of the application’s components which are
modelled as typed Nodes that are interconnected via typed
Relationships. The modelled application’s topology may be
used to deploy the components of the application via a TOSCA
orchestrator capable of interpreting the nodes and relationship
types that have been used. Another salient feature of TOSCA is
its ability to declare user-defined types which can be used to
fulfil components within the Topology Template. While the
specification provides a meta-model for describing the
topology of an application, it does not define how a TOSCA
compliant orchestrator may fulfil an application topology
across heterogeneous cloud providers. That is, a TOSCA
compliant orchestrator may be capable of deploying the
components on its own or leveraging the deployment
capabilities of another suitable deployment platform. More
importantly, though, TOSCA documents are not embellished
with provider-specific information. As a result, a TOSCA
document remains portable across compliant TOSCA
platforms.

B. Standard API for Cloud Providers
Cloud providers are free to utilize any platform or API for

providing their services. For example, Amazon’s AWS is
powered by its own private platform, whereas providers such as
Rackspace makes use of OpenStack for their cloud platform.
From this, it can be seen that while some of these may be open,
there may be proprietary platforms as well, which present
proprietary API’s for connecting and performing management
tasks. Standardization is a means of bringing these disparate
platforms together through a unified API. In our approach, we
use OASIS CAMP in order to provide a standard means of
interfacing with cloud providers.

Fig. 1. Topology of a WordPress web application

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

OASIS CAMP defines the models, mechanisms, and
protocols for the management of applications in and their use of
a Platform as a Service (PaaS) environment [6][10]. Unlike
TOSCA, the OASIS CAMP specification describes the format
of an application as well as how that application’s components
should be deployed to a CAMP compliant provider. The CAMP
specification therefore makes use of declarative plan files
written in YAML as well as a CAMP platform consisting of
platform components. A CAMP deployment plan is
constructed by creating a typed graph connecting artefacts and
services via requirements, as seen in Fig 2.

Artifacts used in a CAMP plans are the functional aspects of
an application to be deployed. For example, if we consider a
simple Web application packaged as a WAR file, then the
functionality of the application is contained in the WAR file
and must be deployed in order for the application to be useful.
This WAR file is considered to be the application Artefact and
may be deployed to a provider via a CAMP platform.

C. Orchestration-Aware Deployment and Management
Apart from being able to interface with heterogeneous

providers, it is necessary to be able to deploy and manage the
components of an application across those providers. The
application, “as a unit”, should be maintained, even if its
components are distributed across various providers. In other
words, components are not to be managed in siloes. While
OASIS CAMP is capable of deploying, and managing an
application on specified cloud providers, it is incapable of
orchestrating the components of the application across multiple
providers. To overcome this challenge, we propose an
extension to the CAMP specification through the addition of
policies that will allow for the components of CAMP to be
deployed and managed across heterogeneous cloud providers.

Policies provide a means of management and orchestration
of complex applications over heterogeneous clouds [11][12].
Cloud computing relies on the delivery and orchestration of
decoupled, distributed services across disparate providers in
order to meet consumers’ requirements. Policies, therefore,
should be used to control the state of services in an application
topology and the services used to fulfil the components of that
topology [13]. TOSCA’s YAML specification consists of
provisions for declaratively specifying policies within an
application topology. In contrast, CAMP’s specification does
not contain provisions for the specification of policies
whatsoever. To address this, we propose to extend CAMP by
adding a declarative policy format, based on CAMP’s YAML
specification. Our proposed policy extensions for CAMP

should provide declarative policies that may be associated with
components of a CAMP plan. One key requirement of our
extension is the policies must be declarative. Through the use of
declarative policies, we can maintain the declarative structure
of CAMP plans and reduce the complexity associated with
orchestrating application components. We discuss our
declarative policy approach in detail within Section III.

D. Conversion Methodology from TOSCA to CAMP
While both TOSCA and CAMP were derived from the same

standards body, OASIS, they serve quite different purposes due
to the fact that they have different targets. Apart from having
different targets, the models which their YAML documents are
based on are also not identical matches. TOSCA’s model
consists of normative types that can be used to compose
applications or extended to form new types. CAMP’s model,
however, do not contain a static set of normative types. Instead,
a cloud provider can supply types compatible to its namespace.
Therefore, trying to provide a direct translation from a TOSCA
model to a CAMP model would prove to be a complicated
endeavour. Thus, in order to bridge the gap between the
different models of TOSCA and CAMP, we made use of ATL
(Atlas Transformation Language) to perform a model-to-model
translation. Our model conversion strategy is elaborated in
Section III.

III. TOSCAMP ARCHITECTURE
In this section, we present the overall strategy of our

approach, TOSCAMP, as well as the architecture behind our
approach. The overall approach of TOSCAMP focuses on the
idea that both the TOSCA and CAMP specifications make use
of typed components to describe an application topology or
deployment depending on the specification. TOSCA
specification contains a collection of predefined, normative
types that may be used or extended, in order to define the
topology of an application. CAMP, on the other hand, expects
that CAMP platforms will be aware of and capable of
interpreting specific defined types of CAMP components.
Through this knowledge of the existence of “known” types in
both specifications, we were able to translate a TOSCA
topology into a CAMP deployment plan, so that it may be
deployed and managed in a standard manner on a cloud
provider’s platform.

A. Architectural Design
As illustrated in Fig. 3, the TOSCAMP architecture consists

of a TOSCA parser and an extended CAMP platform joined by
a conversion engine capable of translating the TOSCA
topologies supplied to it into CAMP plans.

1) TOSCA parser

There exists quite a number of platforms that are capable of
reading a TOSCA service template documents and interpreting
the types contained. As of this writing, we are aware of
Cloudify [14], Alien4cloud [15], Ubicity [16], SeaClouds [17]
and OpenTosca [18]. However, in order to ensure that our
TOSCA model can connect directly to our model converter and

Fig. 2. Sample structure of OASIS CAMP plan

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

consequently be coupled closer with CAMP, we have
developed an in-house TOSCA parser capable of parsing
TOSCA normative types in YAML as well as user-defined
types written as extensions to TOSCA normative types. Our

in-house TOSCA parser is capable of parsing a TOSCA YAML
document and storing the components as objects which can be
later deployed to a provider via a compatible platform. The
parser as seen in Fig. 4 consists of three main parts.

• The parser core contains the represenations of the TOSCA
normative types and is used to process the TOSCA service
template.

• A programming API model allows for access to the parser
core through Java objects.

• Web API model allows for access to the parser core
through a Web API that consumes and produces JSON.

2) Extended CAMP

Another major component is the extended CAMP platform.
The OASIS CAMP standard is defined to allow the deployment
and management of cloud applications, defined as YAML plans,
onto cloud provider platforms. Applications are packaged as
Platform Deployment Packages, otherwise known as PDPs, and
delivered to a compliant CAMP platform. Upon arriving at the

platform, the PDP is parsed into Artefacts, Requirements and
Services, all of which are used to deploy the application to an
appropriate cloud provider’s platform. The specification not
only defines the format for supplying an application to be
deployed, but it also defines a method for managing the
application as well. To do so, CAMP makes use of an
infrastructure composed of resources. Resources represent
elements of the underlying system that can be interacted with
through the CAMP protocol exposed by the platform.

Our extended CAMP platform was created, so that it can
process policies that may be used to manage a deployed
application or components. In a previous work, we
demonstrated the use of policies for application orchestration
across heterogeneous clouds [19]. With that in mind, we also
made special considerations, when addressing the use of
policies within our work. TOSCA’s previous, XML-based
specification made use of policies defined as workflows in
BPEL or BPMN [8]. The state of the art has since moved from
the imperative specification of policies to a declarative
specification. As TOSCA’s policies are now defined
declaratively, it is necessary for us to provide a declarative
policy specification in CAMP that will allow for the
interpretation of translated TOSCA policies. Our approach
introduces declaratively defined, typed policies within our
extended CAMP document. Our policy specification makes use
of two main components, typed policies and typed constraints.

Declarative policies in our extended CAMP platform in Fig.
5 specify state or behaviour that an entity should adhere to and

Fig. 5. Sample policy specified in our extended CAMP
__

__

Fig. 4. TOSCA parser architecture

Fig. 3. TOSCAMP Architecture

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

do not imperatively specify actions that must be taken. Typed
policies in our extension represent a directive that may be
associated with an entity, but must be interpreted by a policy
enforcement agent and not the entity itself. Typed constraints
capture the state that an entity should ideally be in, if it is to
conform to the policy. For example, a Placement policy may be
associated with an entity stating that the entity should be started
(e.g., SERVICE_UP = true) and its location should ideally be
chosen from one of a supplied set of locations (e.g.,
PROVISIONING_LOCATION is within [loc 1, loc 2,…, loc n]).
If this policy were to be enforced, it would mean that the target
must be maintained in a started state in one of the defined
locations. In the event that the target’s state stops or fails for
some reason, the through the policy their target should be
attempted to be placed back into a started state.

As declaratively defined policies define criteria that an entity
should adhere to, whether or not the entity adheres depends not
on the policy but the unit used to enforce the policy
[20][21][22][23][24]. To capture this concept, we introduced a
component known as a Policy Manager into our extended
CAMP platform. This component serves as a container for
policies and must interpret and enforce those policies on an
entity. In the case of a policy violation, the policy manager
component should be aware of actions that can be taken on the
entity in order to return that entity to a valid state. To further our
work, it is necessary to be able to specify these actions
declaratively as directives. The actions, in our approach, are
thus taken by the policy manager in order to enforce a policy on
a CAMP entity. With this approach, an application designer
would be able to declaratively define an application to be
deployed as well as define directives to policy managers that
may influence how they manage the entities of the application.

The policy management directives as seen in Fig. 6, are

defined as a group of actions the policy manager can choose
from, that are applicable to the type of entity that the policy is
associated with. Each action identifies the property of the entity
that this action influences and the transition the property will
undergo in the event of the action being performed. For
example, the policy manager may be given the placement
directives that specify two possible courses of actions it may
take, i.e., START or STOP. The START action operating on an
entity results in its SERVICE_UP property being set to true
from its initial value of false. The same action may also affect
the entity’s provisioned location by setting its
PROVISIONING_LOCATION value to “any” location from its
initial value of null. The initial value is null, because a START
action can only be performed, if the entity is in a STOPPED
stated. In a stopped state, the location of the entity would not be
defined and would be null. As these actions represent known
actions that can be invoked on entities within our extended
platform, the policy manager needs only to decide on the best
course of action to be performed and invoke that action on the
entity. This decision is made by analysing the transitions an
entity will undergo in order to be returned to a valid state. The
policy manager first gathers the actions that contain properties
that will be affected. The transitions are analyzed to determine
if their start and end states coincide with the desired state of the
entity. Transitions are weighted by the policy manager, so that
actions with the lowest transition weight are selected first. Once
an action is selected, the entity should already be aware of how
to carry out that action, since actions are represented by CAMP
operations. Thus, imperative instructions are not passed to the
entity.

B. Model Conversion Strategy
Our approach to combining TOSCA and CAMP involves the

conversion of a TOSCA Service Template into a CAMP
platform deployment package using ATL (Atlas
Transformation Language) [25][26]. The Atlas Transformation
Language is a hybrid, imperative and declarative language that
can allow the production of a number of target models from a
set of source models through the use of model elements and

Fig. 7. Model conversion concept via Atlas transformation language
Fig. 6. Sample policy management directive specified in our extended
CAMP

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

rules. The model transformation language ATL works by using
a meta-model of the source model and a meta-model of the
destination model which must each in turn conform to a
common meta-meta-model as depicted in Fig. 7.

To illustrate the model conversion process, we use a typical
scenario depicting the deployment of an application using
TOSCAMP, the details of which can also be seen through Fig.
3. The process begins with a YAML file representing the
Service Template of the application to be deployed. The
Service Template is first loaded into the parser where it is
parsed into the relative components, for example, Node
Templates, Relationship Templates, and Policy Definitions.
Any user-defined types are also parsed and stored in
repositories within the parser.

The parsed Service Template object and components are
stored as Java classes within the parser. These classes can be
directly accessed by the ATL conversion engine and serves as
the TOSCA model depicted in Fig. 7. The meta-model of the
TOSCA model is also stored within the TOSCA parser as an
Eclipse ecore object. The model is used by the ATL conversion
engine along with the CAMP meta-model which is stored in the
extended CAMP platform as an ecore object.

The actual conversion from TOSCA to CAMP takes place in
the ATL conversion engine using ATL conversion rules. To
enable this process, we must deliver to the engine the service
template model, the TOSCA meta-model, and the CAMP
meta-model. The properties of the nodes and components of
TOSCA and CAMP are stored in lookup tables and are directly
accessed by the ATL rules, when converting one model to
another. For example, the lookup table may have an entry for
“root_password” property of the “tosca.nodes.DBMS” node
template that maps to “password” property of the
“services.database.mysql.MySQL” in CAMP.

Once the conversion is complete, the ATL conversion creates
Java objects that represent the Platform Deployment Plan of a
CAMP application. This PDP object can then be directly
deployed by the CAMP platform. The declarative policies
introduced into our CAMP PDP are directly translated from the
declarative policies of the TOSCA topology. However, to
ensure our policies are enforced, we must side-load policy
directives into the CAMP platform.

 During the conversion process, there are also other
considerations that must be made, for example, CAMP plans
are typically “flat” documents of about one level in depth,
whereas a typical TOSCA document may be a few service

levels deep. It is not possible to directly convert such a structure
into CAMP, as CAMP only captures the relationship between
Artefacts and the Services that fulfil them and not Service to
Service relationships. To mitigate this, it is necessary to devise
an approach to flatten the structure of the TOSCA Topology
prior to the conversion. Our method relies on identifying
particular patterns in the TOSCA topology. For example, a
TOSCA topology may comprise a LoadBalancer typed node
that “RoutesTo” an application hosted on a WebServer typed
node as seen in Fig. 8. Our approach identifies this pattern as a
“member pattern” and compresses the pattern into a
LoadBalancer with a WebServer as its member. In another
example also seen in Fig. 8, if we consider a database node that
is “HostedOn” a SQL DBMS typed node. This SQLDBMS
typed node may, in turn, be “HostedOn” a Computer typed
node with specific specifications. Our approach identifies this
“service to service” pattern and compresses the services up to
the highest service, while preserving the properties of lower
services for translation. Fig. 8 gives a depiction of these
strategies.

IV. IMPLEMENTATION DETAILS AND EVALUATION
In order to evaluate our proposal of the TOSCAMP

architecture, we have taken a two-pronged approach. Firstly,
we present a case study of the implementation of TOSCAMP as
well as a look at the manner in which our solution handles the
deployment and management of our sample application across
two cloud providers. Secondly, we performed a stand-alone
evaluation of our solution to determine how it would handle
different scaling situations, when varying the workload of the
application. For our case study, we have chosen to use
WordPress as the application, which is a popular, scalable Web
blogging and publishing platform. Our WordPress topology
consists of a load balancer which routes requests to WordPress
front-end Web servers. Each Web server connects to a MySQL
database on a MySQL back-end DBMS. The architecture is
designed, so that the front-end servers can be scaled up or down
depending on the workload being experienced. The case study
analyses how our solution handles difference scenarios.

• Placement of application components
• Decision making with regards to scaling

The TOSCA service template used to represent the application
is given in Fig. 9 and corresponds to the application topology
given in Fig. 1.

Fig. 8. Member and Service-Service pattern conversion strategy

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

A. Model Conversion
Our approach emphasizes application portability and
interoperability by adhering to the standards TOSCA and
CAMP. By maintaining two separate models, each model can
be tailored to perform best at what they were designed to do.
This adheres to the basics of MDE (Model-Driven
Engineering) [27] of which the main objective is to “factorize
the complexity into different levels of abstraction and concern
from high level, conceptual models down to individual aspects
of the target platform.” One of the core tenets of MDE is the
separation into Platform-Independent and Platform-Specific
Model, PIM and PSM, respectively. PIM represents a model
that is independent of the platform that is used to implement it.
A PIM would thus represent a truly detached and portable
model, abstracted from the platform-specific details of its
implementation [27]. A PSM however is related in some form
to the platform implementing it. Hence, the functionality that is
described in a PIM should be realized through a PSM [27].
Models, if interrogated, should be able to provide up-to-date
information about the solution they represent and thus drive
adaptation decisions. Our approach maintains two independent
models: a TOSCA model which represent the topology of the
application independent of any providers or provider-specific
resources and a CAMP model which is a provider-specific
model that incorporates the types capable of deployment by
specific providers. The TOSCA plan is converted using our
ATL model conversion rules into a CAMP platform
deployment plan representation of the WordPress application.

Fig. 9. TOSCA specification for WordPress application

Fig. 10. Model conversion algorithm

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

The original TOSCA plan remains unchanged and there is no
information injected into this model to facilitate the conversion.
By keeping the model unmodified, the original TOSCA plan
can be used in other TOSCA platforms, Hence, the model
remains portable and reusable as provider-specification
information is omitted from this model.

To govern placement of the application components, TOSCA
placement policies are to be created and embedded into the
application’s service template. Our placement policies
definition in TOSCA are also typed components that associate
the property to be managed, in this case, the location of the
application component, and the target node the policy should be
associated with. This approach allows for policies to be defined
separate of the components they will govern. It also means that
the application topology remains portable as
specific-information related to the policy is never embedded
into the component but associated, once the policy is processed.
TOSCA orchestrators capable of processing policies will
process and enforce them. However, orchestrators that are
unable to process policies will not be affected by their presence,
as the policies are not embedded into the nodes.
 The conversion process makes use of an Atlas
Transformation Language (ATL) conversion engine to
transform a model of the TOSCA application’s service
template into a CAMP deployment plan. The conversion was
done by creating and maintaining a look-up table of TOSCA
nodes and relationships as well as CAMP components. During
the conversion, properties registered to TOSCA types are
converted to CAMP components. Fig. 10 presents the
high-level look at our model conversion algorithm and, in Fig.
11, we can see the converted CAMP deployment plan.

To evaluate this algorithm, we performed a series of
conversions of different TOSCA plans into CAMP. First, we
ran a baseline conversion of a TOSCA document containing
only a WordPress Front-End (WP_FE) which refers to a

WordPress webapplication TOSCA node “HostedOn” a
webserver node. Using the values of ten conversions runs, the
average time to convert a single application stack was found.

After our baseline was established, we then ran a series of
conversions by increasing the number of WordPress
Front-Ends. We then channelled this data into a graph of
conversion time against conversion run as can be seen in Fig.
12.

By looking at the data plotted, we observed that the
conversion times for each run remained consistently small. The
times for each conversion, although it fluctuated, did not
change drastically but instead remained between 0.12s and
0.18s.

B. Multi-Cloud Deployment and Scaling Support
The placement of application components is handled in our

approach by using placement policies. Placement policies
identify the property and constraint to be enforced as well as the
targets they should be enforced on. To test the placement of
components using placement policies, we devised three
scenarios in which we used the application topology specified
in Fig. 1. To deploy the application to various cloud providers.

Figure 12. Conversion times of TOSCA document to CAMP plan

__
Fig. 11. Converted CAMP specification for WordPress application

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

In scenario 1, a single policy is used to place all components on
the same provider. This scenario is used as our baseline and is
run for each provider. The time taken to deploy the topology to
each provider was recorded and can be seen in Fig. 13. In
scenario 2, we separated the components by using two policies
to place separate components on separate providers. In this
scenario, we tested the separation of services by using policies
to place each service on a different provider. The times taken to
deploy each service on their particular provider as well as
connect the complete application was recorded. In scenario 3,
we used a single policy to place all component across multiple
providers. This scenario tested whether it was possible for a
single policy to be used to distribute the components of an
application across multiple heterogeneous providers. We
choose to conduct these experiments using live cloud services:
Rackspace and IBM Softlayer cloud services. For each provider,
we chose two locations. It was possible to have chosen more
locations. However, in an effort to keep the tests as simple as
possible, two locations were decided to be appropriate.

The placement policy used for scenario 3 simply chooses
randomly from the supplied providers (without affinity) and
deploys the component to the provider selected. In order to
obtain sufficient data, we therefore needed to run as many
deployments as possible. Therefore, during the experiment, we
ran the deployments and selected the combinations that were
chosen 3 or more times. Using these combinations, we then ran
the experiments of scenario 2, obtaining a further set of data.
We found the average deployment times of these combinations
and presented the information in Fig. 14.

Through the results of Fig. 13 and Fig. 14, we can deduce that
our strategy is capable of deploying and connecting application
components on the same provider as well as across
heterogeneous providers. Differences in deployment time may
be attributed to different provider API’s. However, this analysis

may require further research.
In order to observe how our approach would handle scaling of

application components, we performed experiments using a
scaling policy to govern how the application components will
scale based on varying workloads. These experiments also
made use of the application topology define in Fig. 1. The
scaling policy, as with placement policies, were defined within
the TOSCA topology and then converted to a CAMP equivalent.
After translating the topology, we obtained a scaling policy in
CAMP which was deployed along with the application via our
CAMP platform. For this deployment, a multi-cloud approach
was also chosen. Hence, each component of the application was
deployed on a separate provider. The providers used were kept
as Rackspace and IBM Softlayer.

Our approach to policies requires the policy manager to be
equipped with the proper directives in order to process the
policy constraints and choose an appropriate action in case of a
violated constraint. We created and loaded a declarative policy
manager directive as can be seen in Fig 15, into out platform
prior to loading our application topology.

To initiate scaling, it was necessary to manipulate the
workload of the WordPress front-end servers. To do this, we
made use of the Apache JMeter (http://jmeter.apache.org) to
generate a workload for the deployed applications in order to
trigger a scaling scenario. Our application scaling rules were
configured, so that the application would scale up the number
of nodes in the WordPress front-end cluster, if the load, i.e., the
requests per second of the servers within the cluster, is above a
defined threshold.

Once the scaling policy and policy manager directives were
deployed and enabled, our platform began responding to
changes in the REQUEST_PER_SECOND_PER_NODE
sensor which forms part of the component deployed via our
extended CAMP. Once a violation was detected, the policy

Fig. 15. Scaling policy directive

__

__

Figure 13. Deployment times for single provider deployments

Figure 14. Deployment times for multi-cloud provider deployments

http://jmeter.apache.org/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 10

manager determined an appropriate action based on its
directives and initiated that action. In our case, the policy
manager decided that the application front-end should be scaled
up. The scale-up process took place in stages, as the policy
manager conservatively scaled and then checked that the
violation was alleviated. A small “hold off” period was used to
ensure that the policy manager does not trigger multiple actions
in quick succession.

The results of our scaling experiment are shown in Fig. 16
and Fig 17. The experiment was run for 360 seconds during
which the number of requests to the Web servers was gradually
increased. Samples were taken of the average requests per
second on each node via the LoadBalancer at 5 second intervals.
As the number of requests increases, the requests per second
measured at the server increase as well, until the value of 5
requests per second is crossed. At this point, the number of
nodes is scaled up to 3 since this is detected as a policy
violation. This scale up, however, fails to address the constraint
violation and as a result another scale up is triggered at sample
17. As the constraint remains violated even after each
consecutive scale up, another scale up is finally triggered at
sample 31, bringing the number of nodes to 6. This scale up is
enough to drop the constraint so that it is no longer in violation.

V. RELATED WORK
Cloud application orchestration has generated a considerable
amount of popularity within the field of distributed computing.
There have been numerous approaches to cloud application
orchestration, each with varying advantages and limitations
[7][28][29]. Some approaches focus on creation and use of

standards, others on the use of libraries and intermediary layers,
while others are based on the use of semantics of models. The
authors of [28] also described a taxonomy that was used to
compare cloud application orchestration techniques on two
broad sets of criteria. From this taxonomy, cloud orchestration
techniques were judged based on two broad areas.

• Cloud Feature: features specific to the cloud
infrastructure.

• Application Feature: features specific to the application
supported in the cloud.

To gain an appreciation for how our approach stacks up
against other similar approaches, we produced a qualitative
comparison of the techniques. Table 1 depicts the comparison
of TOSCAMP, SeaClouds, MODAClouds, Brooklyn-TOSCA,
and Cloud Provider Orchestration features.

Brooklyn-TOSCA[30] combined the facilities of TOSCA
with the Apache Brooklyn platform. The SeaClouds
project[17] is also known for its approach to multi-cloud
deployment and management using a TOSCA DSL coupled
with various deployment frameworks such as Apache Brooklyn
and MODAClouds[31]. While these projects adequately
combined the frameworks for orchestration and deployment
and provide multi-cloud and cross-cloud support, there are
some differences with regards to our TOSCAMP architecture.
For example, Brooklyn-TOSCA makes use of an agnostic
graph or intermediate graph that is used to bridge the gap
between the TOSCA and Apache Brooklyn, and allows for
resource selection and runtime adaptation. TOSCAMP
approaches these through the use of placement policies which
abstract the provider location from the application model. The
SeaClouds approach also integrates TOSCA compliant plans
and CAMP through the use of Apache Brooklyn. Our approach,
however, does not rely on an intermediate graph in order to
translate nor does it utilize Apache Brooklyn’s CAMP DSL.
Instead, it makes use of matchmaking, SLA and monitoring
components coupled with continuous refinement to provide
resource selection, lifecycle management, monitoring, and
runtime adaptation. For these, our TOSCAMP approach makes
use of the CAMP platform features as well as our policy
extensions for CAMP.

The concept of combining TOSCA and CAMP is not only
limited to the SeaCloud and Brooklyn-TOSCA approaches.
However, there are other studies that suggested the
combination of the TOSCA and CAMP standards in order to
provide cloud orchestration features [32][33]. The authors of
[32] proposed a strategy involving the use of ATL to convert
from a TOSCA topology into an Apache Brooklyn plan in order
to be deployed to a provider platforms. The proposal also
suggests the use of an agnostic model to express the TOSCA
model in order to generate orchestration plans for the
application deployment and management. Similarly, the
authors of [33] also proposed the combination of TOSCA and
CAMP via Apache Brooklyn and suggested the use of an
agnostic graph to bridge to automate the conversion process
from TOSCA models to CAMP models. Their approach
focused on abstracting all provider-specific information from
TOSCA to provide a cross-cloud strategy that provides
portability. Our proposal, however, incorporates an extended
policy support system in order to provide cross- and multi-

Fig. 16. Requests per second per node measured at the load balancer

Fig.17. Increase in the number of nodes configured at the load balancer.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

TOSCAMP SeaClouds MODAClouds Brooklyn-Tosca
Cloud provider

Orchestration as a
Services

Cloud features Multi-Cloud
Support

Supports targeting
multiple cloud
provider platforms

Supports Targeting
multiple cloud
provider platforms

Supports targeting
multiple cloud
provider platforms

Supports targeting
Multiple cloud
provider platforms

Support the provider’s
API.
Based on a single
provider API.

Cross-Cloud
support

Supports deploying
applications across
multiple cloud
providers

Supports deploying
applications across
multiple cloud
providers

Supports
deploying
applications
across multiple
cloud providers

Supports deploying
applications across
multiple cloud
providers

Cannot deploy
cross-cloud.
Cross-location
supported by some
API’s.

Cloud
Standard API

Does not use cloud
specific API

Does not use cloud
specific API

Do not use cloud
specific API

Does not use cloud
specific API

Relies on provider
specific API

Application Application
Standards

Supports open
standard languages
normative TOSCA
1.1 and CAMP.

Support open
standard language.
SeaClouds TOSCA
DSL

Supports
CloudML for
modelling
applications

Support open
standard languages
TOSCA.
Supports
Alien4Cloud types.
Supports TOSCA
1.0 types

Does not support open
standard languages.
Mainly based on
JSON.

Resource
Selection

Uses typed
components to refer
to resources.
Provides manual
binding.
Provides automatic
binding.
Location is
abstracted via
policies.

Uses typed
components to refer
to resources.
Provides manual
binding and
automatic binding
through match
making

Uses typed
components to
refer to resources.
Provides manual
binding
Provides
semi-automatic
binding
(Application
Administrator is
required)

Uses typed
components to refer
to resources.
Provides manual
binding.
Provides automatic
binding via
Agnostic,
intermediate graph.
Location is
abstracted via the
agnostic graph.

Uses typed
components to refer to
resources.
Provides manual
binding

Life-cycle
Description

Supports lifecycle
through extended
CAMP.

Support lifecycles
through SLA
service.

Provides lifecycle
through
continuous
refinement at
runtime.

Provides lifecycles
through integrated
Apache Brooklyn.

Provides lifecycle
support via provider
scripts.

Monitoring Provides monitoring
through extended
CAMP sensors.

Provides monitoring
through monitoring
component

Provides
monitoring at
runtime.
Monitoring data
feeds back into
adaptation engine

Provides monitoring
through integrated
Apache Brooklyn.

Provides monitoring
via the provider’s
platform API

Runtime
adaptation

Provides runtime
adaptation through
the use of policies.
No reconfiguration
of models.

Provides runtime
adaptation.
Reconfiguration of
models.

Provides runtime
adaptation through
an adaptation
engine.

Provides runtime
adaptation. Agnostic
graph is
reconfigured.

Provides runtime
adaptation through
API.

Reusability
and sharing of
models

Support reusability
and sharing of
TOSCA topology.
Supports reusability
and sharing of
CAMP plan if
extracted.

Provides reusability
of abstract models.
Refined models
must be modified.

Allows for reuse
of CPIM.
Supports REMICS
for migrating
legacy
applications to the
cloud.

Provides reusability
of models written in
Alien4cloud and
TOSCA DSL.

Supports reusability
among providers that
support the same stack.

Table. 1. Qualitative analysis of orchestration approaches.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 12

cloud support.
With regards to cloud application modelling, the CloudMF

[34] and MODAClouds [31] approaches provide a
model-driven approach to multi-cloud application deployment
through the use of a Doman Specific Language. The CloudMF
approach introduced a cloud modelling framework consisting
of a modelling language CloudMF and a deployment and
management component described as models@run-time. This
approach like ours took the two-model approach of Model
Driven Engineering. This approach, however, relies on
comparison and reasoning engines that must make
modifications to the runtime model, when changes occur in
either the Cloud Provider Independent Model or the
models@run-time. While there are similarities to our approach,
this still differs, as it makes use of refinement to transform the
Cloud Provider Independent Model into the Cloud Provider
Specific Model (CPSM). Also, it does not make use of policies
to manage the deployed model, but instead relies on a reasoning
engine to determine difference in the actual and target CPSM.
More so, CloudMF is a model-based approach not based on
open standards. Hence, its DSL does not adopt open techniques
such as TOSCA and CAMP. The MODAClouds approach,
which is a reference implementation of CloudMF, highlighted
the use of models for both the deployment of the system and for
monitoring the runtime environment and considered two
general phases of the application lifecycle: design time and
runtime. Our TOSCAMP approach does not perform
continuous refinement of an intermediate model. With
continuous refinement, the model is continually enriched with
provider-specific information, as it is translated into the
provider-specific model. By not performing continuous
refinement, our model does not need to be reevaluated, when
provider information changes or there is a need to target
another provider.

Almost every approach relies on an interface to each cloud
platform. The Apache Brooklyn project represents a platform
most compatible with the tenets of OASIS CAMP [10]. Being
built on the concepts of CAMP, the project provides a blueprint
document that is somewhat compliant to the CAMP standard.
While our project makes use of some of Brooklyn’s core
components, the Brooklyn blueprint only represents a subset of
the CAMP plan document. In its current form, the Brooklyn
blueprint diverges from core CAMP in the way policies are
specified and processed. Apache Brooklyn is capable of
handling and specifying policies declaratively within plans. In
our approach, however, we decided to also explore the ability to
define and tailor new policies and policy processing logic by
providing the ability to define the policy processing
components via directives.
 Cloud providers rely on an array of services within their
platforms in order to elevate their platform above others. There
have been a number of cloud service providers providing
orchestration services as part of their catalog of services.
“Orchestration as a Service” solutions such as Amazon
OpsWorks (https://aws.amazon.com/opsworks/), Amazon
Cloud Formation (https://aws.amazon.com/cloudformation/),
and Rackspace Cloud Orchestration
(https://www.rackspace.com/cloud/orchestration) provide
provisioning and scaling features for customers of these

respective platforms through the use of DevOps recipes and/or
Blueprints. While services such as these provide cloud
orchestration features, by their nature, they still lock the client
into a particular cloud provider. The DSL used by one provider
may not necessarily be compatible with that of another provider.
Furthermore, the orchestration actions performed on one
provider cannot allow for cross-provider orchestration. Our
work is set apart from others, as it provides a standards-based,
complete orchestration solution for heterogeneous cloud
platforms. Hence, a means of cross-provider orchestration that
should keep users from being locked-in to any particular
vendor.

VI. CONCLUDING REMARKS
Our work has explored a methodology for defining,

deploying, and managing distributed cloud applications
through the combination of two prominent standards: TOSCA
and CAMP. We have also been successful in demonstrating
that, through extensions to the current CAMP standard, it is
possible to define declarative policies that can be used to
orchestrate the components of a deployed application over
heterogeneous cloud platforms.

We have also proposed, implemented, and tested a method of
translating TOSCA documents into CAMP plans, while
maintaining the separation of each model. We consider it to be
beneficial to maintain this separation in order to promote model
interoperability and mobility by ensuring that each model
remains “pure” and not deviated from the standard. We would
like to emphasize that our work was made possible through
some proposed extensions to the CAMP platform. These
extensions afford the platform the ability to process
orchestration policies. It should also be noted that our approach
to policies does not alter the established components of the
standard but adds new components capable of performing the
required orchestration tasks on the existing components. We
view this as significant, since, with our approach, there will be
no effect to platforms that are incapable of interpreting our
policies.

There is still a significant amount of work that remains with
regards to our approach and our prototyped platform. Currently,
our platform is capable of parsing a TOSCA version 1.1
document and converting the components into a CAMP
document. The CAMP half of our TOSCAMP architecture,
however, does not have a complete library of types that it is
capable of deploying, and we plan to increase the number of
types that can be handled by the CAMP portion. We also intend
to explore the possibility of adding new types of policies and
policy managers to our CAMP platform.

REFERENCES
[1] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical analysis of

vendor lock-in and its impact on cloud computing migration: a
business perspective,” J. Cloud Comput. Adv. Syst. Appl. 2016, vol. 5,
no. 1, pp. 92–97, 2016.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, and RH, “Above the
clouds: A Berkeley view of cloud computing,” Univ. California,
Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb. 10, 2009.

[3] C. Liu, B. T. Loo, and Y. Mao, “Declarative automated cloud resource
orchestration,” in Proc. the 2nd Symposium Cloud Computing,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 13

Cascais, Portugal, 2011, pp. 1–8.
[4] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards

model-driven provisioning, deployment, monitoring, and adaptation
of multi-cloud systems,” in Proc. the 6th Int. Conf. Cloud Computing,
Santa Clara, CA, USA, 2013, pp. 887–894.

[5] A. Barros, M. Dumas, and P. Oaks, “Standards for web service
choreography and orchestration: Status and perspectives,” Lecture
Notes in Computer Science, vol. 3812, pp. 61–74, 2006.

[6] M. D. Hogan, F. Liu, A. W. Sokol, and T. Jin, “NIST Cloud
Computing Standards Roadmap,” NIST, Gaithersburg, MD, USA,
Special Pub. NIST-SP-500-291, Aug. 10, 2011.

[7] D. Petcu and A. V. Vasilakos, “Portability in clouds: Approaches and
research opportunities,” Scalable Computing., vol. 15, no. 3, pp.
251–271, 2014.

[8] Topology and Orchestration Specification for Cloud Applications
Version 1.0, OASIS Standard, 2013.

[9] TOSCA Simple Profile in YAML Version 1.0, OASIS TOSCA TC
Committee Specification 01, 2016.

[10] Cloud Application Management for Platforms Version 1.1, OASIS
CAMP TC Committee Specification 01, 2014.

[11] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service
placement optimization in federated clouds,” IBM Res. Div. Tech.
Rep, vol. 9, pp. 11–15, 2011.

[12] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-aware provisioning of cloud applications,” in Proc. the 7th Int.
Conf. Emerging Security Information, Systems and Technologies,
Barcelona, Spain, 2013, pp. 86–95.

[13] A. F. Antonescu, P. Robinson, and T. Braun, “Dynamic topology
orchestration for distributed cloud-based applications,” in Proc. the
2nd Symposium. Network Cloud Computing and Application, London,
UK, 2012, pp. 116–123.

[14] “Pure-Play Cloud Orchestration & Automation Based on TOSCA |
Cloudify,” [Online]. Available: http://getcloudify.org, Accessed on:
Mar. 24, 2017.

[15] “ALIEN 4 Cloud,” [Online]. Available: http://alien4cloud.github.io,
Accessed on: Mar. 24, 2017.

[16] “Ubicity—Tosca Tools and Orchestration,” [Online]. Available:
https://ubicity.com, Accessed on: Mar. 24, 2017.

[17] A. Brogi, M. Fazzolari, A. Ibrahim, J. Soldani, P. Wang, D.
Informatica, J. Carrasco, J. Cubo, F. Dur, E. Pimentel, U. De Mal, E.
Di Nitto, D. Elettronica, I. Bioingegneria, P. Milano, and F. D.
Andria, “Adaptive management of applications across multiple
clouds : The SeaClouds Approach,” CLEI Electron. J., vol. 18, no. 1,
pp. 1–14, 2015.

[18] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA - A runtime for TOSCA-based cloud
applications,” in Proc. the 11th Int. Conf. Service-Oriented
Computing, Berlin, Germany, 2013, pp. 692–695.

[19] “Home - Apache Brooklyn.” [Online]. Available:
https://brooklyn.apache.org/. [Accessed: 29-Apr-2016].

[20] K. Alexander, C. Lee, and S. Chai, “Declarative policy support for
cloud application orchestration,” in Proc. the 19th Int. Conf. Advanced
Communications Technology, Phoenix Park, South Korea, 2017, pp.
102–104.

[21] L. Kagal, T. Finin, and A. Joshi, “Declarative policies for describing
Web service capabilities and constraints,” in Proc. W3C Workshop
Constraints and Capabilities for Web Services, Redwood City, CA,
USA, 2004, pp. 1-5.

[22] C. Dimoulas, S. Moore, A. Askarov, and S. Chong, “Declarative
policies for capability control,” in Proc. Computer Security
Foundation Symposium, Vienna, Austria, 2014, pp. 3–17.

[23] N. C. Damianou, “A policy framework for management of
distributed systems,” Ph.D. dissertation, Dept. Computing, Univ. of
London, London, U.K., 2002.

[24] M. Sloman, “Policy driven management for distributed systems,”
Journal. Network. Systems. Management., vol. 2, no. 4, pp. 333–360,
1994.

[25] ATLAS Group LINA & INRIA Nantes, “ATL: Atlas Transformation
Language - ATL User Manual," Version 0.7, February 2006. [Online].
Available:
http://www.eclipse.org/atl/documentation/old/ATL_User_Manual[v0
.7].pdf

[26] F. Jouault and I. Kurtev, “Transforming models with ATL,” Lecture
Notes in Computer Science, vol. 3844, pp. 128–138, 2006.

[27] S. Kent, “Model driven engineering,” in Proc. the 3rd Int. Conf.
Integrated Formal Methods, Turku, Finland, 2006, pp. 286–298.

[28] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B. Hauser, and J.
Domaschka, “Cloud orchestration features: Are tools fit for
purpose?,” in Proc. the 8th Int. Conf. Util. Cloud Comput., Limassol,
Cyprus, 2015, pp. 95–101.

[29] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, “Cloud services
orchestration: A comparative study of existing approaches,” in Proc.
the 28th Int. Conf. Adv. Inf. Netw. Appl. Work., Victoria, BC, Canada,
2014, pp. 410–416.

 [30] J. Carrasco, J. Cubo, F. Dur, and E. Pimentel, “Bidimensional
cross-cloud management with TOSCA and Brooklyn,” in Proc. the
9th Int. Conf. Cloud Comput., San Francisco, CA, USA, 2016, pp.
951-955.

[31] D. Ardagna et al., “MODAClouds: A model-driven approach for the
design and execution of applications on multiple clouds,” in Proc. the
4th Int. Workshop Modeling in Software Engineering, Zurich,
Switzerland, 2012, pp. 50–56.

[32] J. Carrasco, J. Cubo, and E. Pimentel, “Towards a flexible
deployment of multi-cloud applications based on TOSCA and
CAMP,” Communications in Computer and Information Science, vol.
508, pp. 278–286, 2015.

[33] J. Carrasco, J. Cubo, E. Pimentel, and F. Duran, “Deployment over
heterogeneous clouds with TOSCA and CAMP,” in Proc. the 6th Int.
Conf. Cloud Computing and Services Science, Rome, Italy, 2016, pp.
170–177.

[34] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “Cloud
MF: Applying MDE to tame the complexity of managing multi-cloud
applications,” in Proc. the 7th Int. Conf. Util. Cloud Comput.,
London, UK, 2014, pp. 269–277.

	I. INTRODUCTION
	II. Motivation and Challenges
	A. Portable Application Topology Specification
	B. Standard API for Cloud Providers
	C. Orchestration-Aware Deployment and Management
	D. Conversion Methodology from TOSCA to CAMP

	III. Toscamp Architecture
	A. Architectural Design
	1) TOSCA parser
	2) Extended CAMP

	B. Model Conversion Strategy

	IV. Implementation Details and Evaluation
	A. Model Conversion
	B. Multi-Cloud Deployment and Scaling Support

	V. Related Work
	VI. Concluding Remarks
	References

