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Abstract—The orchestration of application components across 

heterogeneous cloud providers is a problem that has been tackled 
using various approaches, some of which led to the creation of 
cloud orchestration and management standards such as TOSCA 
and CAMP. Standardization is a definitive method of providing 
an end-to-end solution capable of defining, deploying, and 
managing applications and their components across 
heterogeneous cloud providers. TOSCA and CAMP, however, 
perform different functions with regards to cloud applications. 
TOSCA is focused primarily on topology modelling and 
orchestration, whereas CAMP is focused on deployment and 
management of applications. This paper presents a novel solution 
that not only involves the combination of the emerging standards 
TOSCA and CAMP but also introduces extensions to CAMP to 
allow for multi-cloud application orchestration through the use of 
declarative policies. Extensions to the CAMP platform are also 
made, which brings the standards closer together to enable a 
seamless integration. Our proposal provides an end-to-end cloud 
orchestration solution that supports cloud application modeling 
and deployment process, allowing a cloud application to span and 
be deployed over multiple clouds. The feasibility and benefit of 
our approach is demonstrated in our validation study. 
 

Index Terms—Distributed Computing, Middleware, Software 
Architecture, Model-Driven Development  
 

I. INTRODUCTION 
LOUD computing is an on-going area of distributed 
computing that enables the delivery of applications as 
services over the Internet, as well as platform- and 

infrastructure-level computing resources. The advent of cloud 
computing promises to provide “users” the benefits of, among 
many, availability of on-demand services, elimination of 
up-front commitment, and pay-per use model. These benefits, 
however, come with the addition of inherent issues such as 
availability of service, performance unpredictability, resource 
scaling,  and vendor lock-in [1][2].  
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The orchestration of applications and components across 
cloud providers is capable of addressing some of these inherent 
issues regarding cloud computing. However, the orchestration 
of applications and components itself is not an easy task to 
accomplish [3]. The orchestration of applications and resources 
in the cloud involves dynamically deploying, managing, and 
maintaining those aforementioned components in and across 
multiple heterogeneous cloud platforms. As it is possible that 
cloud providers’ platforms may be built using varying 
technologies and API’s [4], it is clear that standardization can 
provide the answer to orchestration across these heterogeneous 
cloud platforms [5][6][7]. 

Currently, the de-facto standard for cloud application 
modelling and orchestration, OASIS TOSCA (Topology and 
Orchestration Specification for Cloud Applications) [8],  
provides a method of defining the topology of cloud 
applications through the use of an XML DSL coupled with the 
detailed plans for the management of the applications. More 
recently, the TOSCA simple profile in YAML was produced, 
providing a declarative method for defining cloud application 
topologies via TOSCA [9]. This declarative approach negates 
the need for specifying deployment and or management plans 
within a TOSCA Service Template, thus making TOSCA a 
fully declarative specification.  

OASIS CAMP (Cloud Application Management for 
Platforms), is another specification whose primary purpose is to 
simplify cloud application deployment and management 
[6][10]. It also uses a declarative deployment plan defined in 
YAML in order to specify the artefacts that should be deployed 
as well as the services that should be used to fulfil those artefact 
deployments. CAMP serves as an API between the developers 
and cloud providers and provides a standard way for deploying 
and managing cloud applications. However, the orchestration 
of applications across multiple providers was not one of its 
deliverables.  

In this paper, we present TOSCAMP (TOSCA + CAMP) 
which is our proposed solution for providing a standards-based, 
end-to-end cloud orchestration solution by combining the 
standards of TOSCA and CAMP. By building upon mainstream 
standards relevant to cloud application deployment and 
management and orchestration, we can simplify the work 
required to deploy and orchestrate applications across multiple 
heterogeneous cloud providers.  

Therefore, the major contributions presented in this paper 
are as follows. (1) We present a method of converting TOSCA 
service templates into CAMP deployment plans and 
consequently converting the components of a TOSCA service 
template into appropriate deployment and management 
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components of a CAMP deployment plan. (2) The paper 
introduces our architectural design of TOSCAMP platform 
used to convert TOSCA Service Templates to CAMP 
Deployment plans, and presents a prototype implementation to 
demonstrate our approach. (3) We validate our proposed 
approach using our TOSCAMP platform and analyse the 
performance of our orchestration solution. (4) Finally, we 
discuss what differentiates our approach from the 
state-of-the-art approaches.  

The remainder of this paper is structured as follows. Section 
II describes our motivation and challenges. This section also 
contains our motivational scenario used to validate our 
approach. Section III presents our TOSCAMP architecture 
whose performance evaluation results are presented in the 
following section IV. Finally, we discuss related and future 
works in Section V, after which we conclude the paper.  

II. MOTIVATION AND CHALLENGES 
To illustrate our approach, we consider deploying a modified 

version of the “WebServer-DBMS” WordPress case study 
example [9]. The application used in this scenario comprises a 
Web application front-end which, in this case, is the WordPress 
application. The WordPress application is installed onto the 
server via a supplied installation script. Apart from the 
installation script, configuration scripts are also used to 
configure the WordPress application which is deployed in a 
clustered configuration. In this configuration, the front-end 
cluster may consist of one or more WordPress servers. Each 
node of the web cluster is in turn provisioned on a compute 
node provided by an IaaS cloud provider. The WordPress Web 
Application must connect to a database that is hosted on a SQL 
DBMS server. These data management components are also 
provisioned on a compute node on a cloud provider. Fig. 1 
depicts the topology of the web application. 

To leverage the features of orchestration, our example 
application must be deployed across two heterogeneous cloud 
providers. It is noted that the deployment scenario entails a 
more advanced form of orchestration support beyond current 
orchestration technologies in that the application spans multiple 
clouds. Moreover, there are further constraints that should be 
adhered to:  

• The Web application and the database should not be 
deployed on the same provider’s cloud platform.  

• The web application front-end should be deployed in a 
load-balanced configuration.  

Our TOSCAMP approach must allow for such an application to 
be deployed to the cloud as well as provide a means of 
declaratively specifying the management criteria for 
maintaining the application within the constraints given. There 
are, however, some challenges that have to be overcome in 
order to realize this solution.  
 

A. Portable Application Topology Specification 
A standardized approach to application orchestration must 

adhere to the caveat that the topology of the application should 
be described in a form that is portable and interoperable across 
compliant providers. To address this challenge, we utilise 
TOSCA as the standard Domain Specific Language (DSL) for 

specifying the topology. TOSCA provides a definition for 
modelling the topology of applications that may be deployed to 
heterogeneous cloud service providers. In TOSCA, cloud 
application designers may define the topology of an application, 
also known as the application’s Topology Template, within a 
declarative Service Template document. The topology template 
is composed of the application’s components which are 
modelled as typed Nodes that are interconnected via typed 
Relationships. The modelled application’s topology may be 
used to deploy the components of the application via a TOSCA 
orchestrator capable of interpreting the nodes and relationship 
types that have been used. Another salient feature of TOSCA is 
its ability to declare user-defined types which can be used to 
fulfil components within the Topology Template. While the 
specification provides a meta-model for describing the 
topology of an application, it does not define how a TOSCA 
compliant orchestrator may fulfil an application topology 
across heterogeneous cloud providers.  That is, a TOSCA 
compliant orchestrator may be capable of deploying the 
components on its own or leveraging the deployment 
capabilities of another suitable deployment platform. More 
importantly, though, TOSCA documents are not embellished 
with provider-specific information. As a result, a TOSCA 
document remains portable across compliant TOSCA 
platforms. 

  

B. Standard API for Cloud Providers 
Cloud providers are free to utilize any platform or API for 

providing their services. For example, Amazon’s AWS is 
powered by its own private platform, whereas providers such as 
Rackspace makes use of OpenStack for their cloud platform. 
From this, it can be seen that while some of these may be open, 
there may be proprietary platforms as well, which present 
proprietary API’s for connecting and performing management 
tasks. Standardization is a means of bringing these disparate 
platforms together through a unified API. In our approach, we 
use OASIS CAMP in order to provide a standard means of 
interfacing with cloud providers. 

Fig.  1.  Topology of a WordPress web application 
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OASIS CAMP defines the models, mechanisms, and 
protocols for the management of applications in and their use of 
a Platform as a Service (PaaS) environment [6][10]. Unlike 
TOSCA, the OASIS CAMP specification describes the format 
of an application as well as how that application’s components 
should be deployed to a CAMP compliant provider. The CAMP 
specification therefore makes use of declarative plan files 
written in YAML as well as a CAMP platform consisting of 
platform components. A CAMP deployment plan is 
constructed by creating a typed graph connecting artefacts and 
services via requirements, as seen in Fig 2.  

Artifacts used in a CAMP plans are the functional aspects of 
an application to be deployed. For example, if we consider a 
simple Web application packaged as a WAR file, then the 
functionality of the application is contained in the WAR file 
and must be deployed in order for the application to be useful. 
This WAR file is considered to be the application Artefact and 
may be deployed to a provider via a CAMP platform.  
 

C. Orchestration-Aware Deployment and Management 
Apart from being able to interface with heterogeneous 

providers, it is necessary to be able to deploy and manage the 
components of an application across those providers. The 
application, “as a unit”, should be maintained, even if its 
components are distributed across various providers. In other 
words, components are not to be managed in siloes. While 
OASIS CAMP is capable of deploying, and managing an 
application on specified cloud providers, it is incapable of 
orchestrating the components of the application across multiple 
providers. To overcome this challenge, we propose an 
extension to the CAMP specification through the addition of 
policies that will allow for the components of CAMP to be 
deployed and managed across heterogeneous cloud providers.  

Policies provide a means of management and orchestration 
of complex applications over heterogeneous clouds [11][12]. 
Cloud computing relies on the delivery and orchestration of 
decoupled, distributed services across disparate providers in 
order to meet consumers’ requirements. Policies, therefore, 
should be used to control the state of services in an application 
topology and the services used to fulfil the components of that 
topology [13]. TOSCA’s YAML specification consists of 
provisions for declaratively specifying policies within an 
application topology. In contrast, CAMP’s specification does 
not contain provisions for the specification of policies 
whatsoever. To address this, we propose to extend CAMP by 
adding a declarative policy format, based on CAMP’s YAML 
specification. Our proposed policy extensions for CAMP 

should provide declarative policies that may be associated with 
components of a CAMP plan. One key requirement of our 
extension is the policies must be declarative. Through the use of 
declarative policies, we can maintain the declarative structure 
of CAMP plans and reduce the complexity associated with 
orchestrating application components. We discuss our 
declarative policy approach in detail within Section III. 
 

D. Conversion Methodology from TOSCA to CAMP 
While both TOSCA and CAMP were derived from the same 

standards body, OASIS, they serve quite different purposes due 
to the fact that they have different targets. Apart from having 
different targets, the models which their YAML documents are 
based on are also not identical matches. TOSCA’s model 
consists of normative types that can be used to compose 
applications or extended to form new types. CAMP’s model, 
however, do not contain a static set of normative types. Instead, 
a cloud provider can supply types compatible to its namespace. 
Therefore, trying to provide a direct translation from a TOSCA 
model to a CAMP model would prove to be a complicated 
endeavour. Thus, in order to bridge the gap between the 
different models of TOSCA and CAMP, we made use of ATL 
(Atlas Transformation Language) to perform a model-to-model 
translation. Our model conversion strategy is elaborated in 
Section III.  

III. TOSCAMP ARCHITECTURE 
In this section, we present the overall strategy of our 

approach, TOSCAMP, as well as the architecture behind our 
approach. The overall approach of TOSCAMP focuses on the 
idea that both the TOSCA and CAMP specifications make use 
of typed components to describe an application topology or 
deployment depending on the specification. TOSCA 
specification contains a collection of predefined, normative 
types that may be used or extended, in order to define the 
topology of an application. CAMP, on the other hand, expects 
that CAMP platforms will be aware of and capable of 
interpreting specific defined types of CAMP components. 
Through this knowledge of the existence of “known” types in 
both specifications, we were able to translate a TOSCA 
topology into a CAMP deployment plan, so that it may be 
deployed and managed in a standard manner on a cloud 
provider’s platform.  
 

A. Architectural Design 
As illustrated in Fig. 3, the TOSCAMP architecture consists 

of a TOSCA parser and an extended CAMP platform joined by 
a conversion engine capable of translating the TOSCA 
topologies supplied to it into CAMP plans.  

 
1) TOSCA parser 

There exists quite a number of platforms that are capable of 
reading a TOSCA service template documents and interpreting 
the types contained. As of this writing, we are aware of 
Cloudify [14], Alien4cloud [15], Ubicity [16], SeaClouds [17] 
and OpenTosca [18]. However, in order to ensure that our 
TOSCA model can connect directly to our model converter and 

Fig.  2.  Sample structure of OASIS CAMP plan 
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consequently be coupled closer with CAMP, we have 
developed an in-house TOSCA parser capable of parsing 
TOSCA normative types in YAML as well as user-defined 
types written as extensions to TOSCA normative types. Our 

in-house TOSCA parser is capable of parsing a TOSCA YAML 
document and storing the components as objects which can be 
later deployed to a provider via a compatible platform. The 
parser as seen in Fig. 4 consists of three main parts.  

• The parser core contains the represenations of the TOSCA 
normative types and is used to process the TOSCA service 
template. 

• A programming API model allows for access to the parser 
core through Java objects. 

• Web API model allows for access to the parser core 
through a Web API that consumes and produces JSON. 

 
2) Extended CAMP 

Another major component is the extended CAMP platform. 
The OASIS CAMP standard is defined to allow the deployment 
and management of cloud applications, defined as YAML plans, 
onto cloud provider platforms. Applications are packaged as 
Platform Deployment Packages, otherwise known as PDPs, and 
delivered to a compliant CAMP platform. Upon arriving at the 

platform, the PDP is parsed into Artefacts, Requirements and 
Services, all of which are used to deploy the application to an 
appropriate cloud provider’s platform. The specification not 
only defines the format for supplying an application to be 
deployed, but it also defines a method for managing the 
application as well. To do so, CAMP makes use of an 
infrastructure composed of resources. Resources represent 
elements of the underlying system that can be interacted with 
through the CAMP protocol exposed by the platform.  

Our extended CAMP platform was created, so that it can 
process policies that may be used to manage a deployed 
application or components. In a previous work, we 
demonstrated the use of policies for application orchestration 
across heterogeneous clouds [19]. With that in mind, we also 
made special considerations, when addressing the use of 
policies within our work. TOSCA’s previous, XML-based 
specification made use of policies defined as workflows in 
BPEL or BPMN [8]. The state of the art has since moved from 
the imperative specification of policies to a declarative 
specification. As TOSCA’s policies are now defined 
declaratively, it is necessary for us to provide a declarative 
policy specification in CAMP that will allow for the 
interpretation of translated TOSCA policies. Our approach 
introduces declaratively defined, typed policies within our 
extended CAMP document. Our policy specification makes use 
of two main components, typed policies and typed constraints. 

Declarative policies in our extended CAMP platform in Fig. 
5 specify state or behaviour that an entity should adhere to and 

Fig.  5.  Sample policy specified in our extended CAMP 
________________________________________________________

 

________________________________________________________
 

Fig. 4.  TOSCA parser architecture 

 

 

Fig. 3. TOSCAMP Architecture 
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do not imperatively specify actions that must be taken. Typed 
policies in our extension represent a directive that may be 
associated with an entity, but must be interpreted by a policy 
enforcement agent and not the entity itself. Typed constraints 
capture the state that an entity should ideally be in, if it is to 
conform to the policy. For example, a Placement policy may be 
associated with an entity stating that the entity should be started 
(e.g., SERVICE_UP = true) and its location should ideally be 
chosen from one of a supplied set of locations (e.g., 
PROVISIONING_LOCATION is within [loc 1, loc 2,…, loc n]). 
If this policy were to be enforced, it would mean that the target 
must be maintained in a started state in one of the defined 
locations. In the event that the target’s state stops or fails for 
some reason, the through the policy their target should be 
attempted to be placed back into a started state.   

As declaratively defined policies define criteria that an entity 
should adhere to, whether or not the entity adheres depends not 
on the policy but the unit used to enforce the policy 
[20][21][22][23][24]. To capture this concept, we introduced a 
component known as a Policy Manager into our extended 
CAMP platform. This component serves as a container for 
policies and must interpret and enforce those policies on an 
entity. In the case of a policy violation, the policy manager 
component should be aware of actions that can be taken on the 
entity in order to return that entity to a valid state. To further our 
work, it is necessary to be able to specify these actions 
declaratively as directives. The actions, in our approach, are 
thus taken by the policy manager in order to enforce a policy on 
a CAMP entity. With this approach, an application designer 
would be able to declaratively define an application to be 
deployed as well as define directives to policy managers that 
may influence how they manage the entities of the application.  

The policy management directives as seen in Fig. 6, are 

defined as a group of actions the policy manager can choose 
from, that are applicable to the type of entity that the policy is 
associated with. Each action identifies the property of the entity 
that this action influences and the transition the property will 
undergo in the event of the action being performed. For 
example, the policy manager may be given the placement 
directives that specify two possible courses of actions it may 
take, i.e., START or STOP. The START action operating on an 
entity results in its SERVICE_UP property being set to true 
from its initial value of false. The same action may also affect 
the entity’s provisioned location by setting its 
PROVISIONING_LOCATION value to “any” location from its 
initial value of null. The initial value is null, because a START 
action can only be performed, if the entity is in a STOPPED 
stated. In a stopped state, the location of the entity would not be 
defined and would be null. As these actions represent known 
actions that can be invoked on entities within our extended 
platform, the policy manager needs only to decide on the best 
course of action to be performed and invoke that action on the 
entity. This decision is made by analysing the transitions an 
entity will undergo in order to be returned to a valid state. The 
policy manager first gathers the actions that contain properties 
that will be affected. The transitions are analyzed to determine 
if their start and end states coincide with the desired state of the 
entity. Transitions are weighted by the policy manager, so that 
actions with the lowest transition weight are selected first. Once 
an action is selected, the entity should already be aware of how 
to carry out that action, since actions are represented by CAMP 
operations. Thus, imperative instructions are not passed to the 
entity. 

B. Model Conversion Strategy 
Our approach to combining TOSCA and CAMP involves the 

conversion of a TOSCA Service Template into a CAMP 
platform deployment package using ATL (Atlas 
Transformation Language) [25][26]. The Atlas Transformation 
Language is a hybrid, imperative and declarative language that 
can allow the production of a number of target models from a 
set of source models through the use of model elements and 

Fig.  7.  Model conversion concept via Atlas transformation language 
Fig. 6.  Sample policy management directive specified in our extended 
CAMP 

_____________________________________________________________
 

_____________________________________________________________
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rules. The model transformation language ATL works by using 
a meta-model of the source model and a meta-model of the 
destination model which must each in turn conform to a 
common meta-meta-model as depicted in Fig. 7.  

To illustrate the model conversion process, we use a typical 
scenario depicting the deployment of an application using 
TOSCAMP, the details of which can also be seen through Fig. 
3. The process begins with a YAML file representing the 
Service Template of the application to be deployed. The 
Service Template is first loaded into the parser where it is 
parsed into the relative components, for example, Node 
Templates, Relationship Templates, and Policy Definitions. 
Any user-defined types are also parsed and stored in 
repositories within the parser.  

The parsed Service Template object and components are 
stored as Java classes within the parser. These classes can be 
directly accessed by the ATL conversion engine and serves as 
the TOSCA model depicted in Fig. 7. The meta-model of the 
TOSCA model is also stored within the TOSCA parser as an 
Eclipse ecore object. The model is used by the ATL conversion 
engine along with the CAMP meta-model which is stored in the 
extended CAMP platform as an ecore object.  

The actual conversion from TOSCA to CAMP takes place in 
the ATL conversion engine using ATL conversion rules. To 
enable this process, we must deliver to the engine the service 
template model, the TOSCA meta-model, and the CAMP 
meta-model. The properties of the nodes and components of 
TOSCA and CAMP are stored in lookup tables and are directly 
accessed by the ATL rules, when converting one model to 
another. For example, the lookup table may have an entry for 
“root_password” property of the “tosca.nodes.DBMS” node 
template that maps to “password” property of the 
“services.database.mysql.MySQL” in CAMP. 

Once the conversion is complete, the ATL conversion creates 
Java objects that represent the Platform Deployment Plan of a 
CAMP application. This PDP object can then be directly 
deployed by the CAMP platform. The declarative policies 
introduced into our CAMP PDP are directly translated from the 
declarative policies of the TOSCA topology. However, to 
ensure our policies are enforced, we must side-load policy 
directives into the CAMP platform.  

 During the conversion process, there are also other 
considerations that must be made, for example, CAMP plans 
are typically “flat” documents of about one level in depth, 
whereas a typical TOSCA document may be a few service 

levels deep. It is not possible to directly convert such a structure 
into CAMP, as CAMP only captures the relationship between 
Artefacts and the Services that fulfil them and not Service to 
Service relationships. To mitigate this, it is necessary to devise 
an approach to flatten the structure of the TOSCA Topology 
prior to the conversion. Our method relies on identifying 
particular patterns in the TOSCA topology. For example, a 
TOSCA topology may comprise a LoadBalancer typed node 
that “RoutesTo” an application hosted on a WebServer typed 
node as seen in Fig. 8. Our approach identifies this pattern as a 
“member pattern” and compresses the pattern into a 
LoadBalancer with a WebServer as its member. In another 
example also seen in Fig. 8, if we consider a database node that 
is “HostedOn” a SQL DBMS typed node. This SQLDBMS 
typed node may, in turn, be “HostedOn” a Computer typed 
node with specific specifications. Our approach identifies this 
“service to service” pattern and compresses the services up to 
the highest service, while preserving the properties of lower 
services for translation. Fig. 8 gives a depiction of these 
strategies. 

IV.  IMPLEMENTATION DETAILS AND EVALUATION 
In order to evaluate our proposal of the TOSCAMP 

architecture, we have taken a two-pronged approach. Firstly, 
we present a case study of the implementation of TOSCAMP as 
well as a look at the manner in which our solution handles the 
deployment and management of our sample application across 
two cloud providers. Secondly, we performed a stand-alone 
evaluation of our solution to determine how it would handle 
different scaling situations, when varying the workload of the 
application. For our case study, we have chosen to use 
WordPress as the application, which is a popular, scalable Web 
blogging and publishing platform.  Our WordPress topology 
consists of a load balancer which routes requests to WordPress 
front-end Web servers. Each Web server connects to a MySQL 
database on a MySQL back-end DBMS. The architecture is 
designed, so that the front-end servers can be scaled up or down 
depending on the workload being experienced. The case study 
analyses how our solution handles difference scenarios. 

• Placement of application components 
• Decision making with regards to scaling  

The TOSCA service template used to represent the application 
is given in Fig. 9 and corresponds to the application topology 
given in Fig. 1. 

Fig.  8.  Member and Service-Service pattern conversion strategy 
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A. Model Conversion  
Our approach emphasizes application portability and 
interoperability by adhering to the standards TOSCA and 
CAMP. By maintaining two separate models, each model can 
be tailored to perform best at what they were designed to do. 
This adheres to the basics of MDE (Model-Driven 
Engineering) [27] of which the main objective is to “factorize 
the complexity into different levels of abstraction and concern 
from high level, conceptual models down to individual aspects 
of the target platform.” One of the core tenets of MDE is the 
separation into Platform-Independent and Platform-Specific 
Model, PIM and PSM, respectively. PIM represents a model 
that is independent of the platform that is used to implement it. 
A PIM would thus represent a truly detached and portable 
model, abstracted from the platform-specific details of its 
implementation [27]. A PSM however is related in some form 
to the platform implementing it. Hence, the functionality that is 
described in a PIM should be realized through a PSM [27]. 
Models, if interrogated, should be able to provide up-to-date 
information about the solution they represent and thus drive 
adaptation decisions. Our approach maintains two independent 
models: a TOSCA model which represent the topology of the 
application independent of any providers or provider-specific 
resources and a CAMP model which is a provider-specific 
model that incorporates the types capable of deployment by 
specific providers. The TOSCA plan is converted using our 
ATL model conversion rules into a CAMP platform 
deployment plan representation of the WordPress application. 

_________________________________________________________________________________________________________________________________ 

Fig.  9.  TOSCA specification for WordPress application 
_________________________________________________________________________________________________________________________________ 

_____________________________________________________________
 

Fig.  10.  Model conversion algorithm 
_____________________________________________________________
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The original TOSCA plan remains unchanged and there is no 
information injected into this model to facilitate the conversion. 
By keeping the model unmodified, the original TOSCA plan 
can be used in other TOSCA platforms, Hence, the model 
remains portable and reusable as provider-specification 
information is omitted from this model. 

To govern placement of the application components, TOSCA 
placement policies are to be created and embedded into the 
application’s service template. Our placement policies 
definition in TOSCA are also typed components that associate 
the property to be managed, in this case, the location of the 
application component, and the target node the policy should be 
associated with. This approach allows for policies to be defined 
separate of the components they will govern. It also means that 
the application topology remains portable as 
specific-information related to the policy is never embedded 
into the component but associated, once the policy is processed. 
TOSCA orchestrators capable of processing policies will 
process and enforce them. However, orchestrators that are 
unable to process policies will not be affected by their presence, 
as the policies are not embedded into the nodes.  
 The conversion process makes use of an Atlas 
Transformation Language (ATL) conversion engine to 
transform a model of the TOSCA application’s service 
template into a CAMP deployment plan. The conversion was 
done by creating and maintaining a look-up table of TOSCA 
nodes and relationships as well as CAMP components.  During 
the conversion, properties registered to TOSCA types are 
converted to CAMP components. Fig. 10 presents the 
high-level look at our model conversion algorithm and, in Fig.  
11, we can see the converted CAMP deployment plan.  

To evaluate this algorithm, we performed a series of 
conversions of different TOSCA plans into CAMP. First, we 
ran a baseline conversion of a TOSCA document containing 
only a WordPress Front-End (WP_FE) which refers to a 

WordPress webapplication TOSCA node “HostedOn” a 
webserver node.  Using the values of ten conversions runs, the 
average time to convert a single application stack was found.  

After our baseline was established, we then ran a series of 
conversions by increasing the number of WordPress 
Front-Ends. We then channelled this data into a graph of 
conversion time against conversion run as can be seen in Fig. 
12.  

By looking at the data plotted, we observed that the 
conversion times for each run remained consistently small. The 
times for each conversion, although it fluctuated, did not 
change drastically but instead remained between 0.12s and 
0.18s.   

 

B. Multi-Cloud Deployment and Scaling Support 
The placement of application components is handled in our 

approach by using placement policies. Placement policies 
identify the property and constraint to be enforced as well as the 
targets they should be enforced on. To test the placement of 
components using placement policies, we devised three 
scenarios in which we used the application topology specified 
in Fig. 1. To deploy the application to various cloud providers. 

Figure 12.  Conversion times of TOSCA document to CAMP plan 

________________________________________________________________________________________________________________________________ 
Fig.  11.  Converted CAMP specification for WordPress application 

_________________________________________________________________________________________________________________________________ 
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In scenario 1, a single policy is used to place all components on 
the same provider. This scenario is used as our baseline and is 
run for each provider. The time taken to deploy the topology to 
each provider was recorded and can be seen in Fig. 13. In 
scenario 2, we separated the components by using two policies 
to place separate components on separate providers. In this 
scenario, we tested the separation of services by using policies 
to place each service on a different provider. The times taken to 
deploy each service on their particular provider as well as 
connect the complete application was recorded. In scenario 3, 
we used a single policy to place all component across multiple 
providers. This scenario tested whether it was possible for a 
single policy to be used to distribute the components of an 
application across multiple heterogeneous providers. We 
choose to conduct these experiments using live cloud services: 
Rackspace and IBM Softlayer cloud services. For each provider, 
we chose two locations. It was possible to have chosen more 
locations. However, in an effort to keep the tests as simple as 
possible, two locations were decided to be appropriate.  

The placement policy used for scenario 3 simply chooses 
randomly from the supplied providers (without affinity) and 
deploys the component to the provider selected. In order to 
obtain sufficient data, we therefore needed to run as many 
deployments as possible. Therefore, during the experiment, we 
ran the deployments and selected the combinations that were 
chosen 3 or more times. Using these combinations, we then ran 
the experiments of scenario 2, obtaining a further set of data. 
We found the average deployment times of these combinations 
and presented the information in Fig. 14.  

Through the results of Fig. 13 and Fig. 14, we can deduce that 
our strategy is capable of deploying and connecting application 
components on the same provider as well as across 
heterogeneous providers. Differences in deployment time may 
be attributed to different provider API’s. However, this analysis 

may require further research. 
In order to observe how our approach would handle scaling of 

application components, we performed experiments using a 
scaling policy to govern how the application components will 
scale based on varying workloads. These experiments also 
made use of the application topology define in Fig. 1. The 
scaling policy, as with placement policies, were defined within 
the TOSCA topology and then converted to a CAMP equivalent. 
After translating the topology, we obtained a scaling policy in 
CAMP which was deployed along with the application via our 
CAMP platform. For this deployment, a multi-cloud approach 
was also chosen. Hence, each component of the application was 
deployed on a separate provider. The providers used were kept 
as Rackspace and IBM Softlayer.  

Our approach to policies requires the policy manager to be 
equipped with the proper directives in order to process the 
policy constraints and choose an appropriate action in case of a 
violated constraint. We created and loaded a declarative policy 
manager directive as can be seen in Fig 15, into out platform 
prior to loading our application topology.  

To initiate scaling, it was necessary to manipulate the 
workload of the WordPress front-end servers. To do this, we 
made use of the Apache JMeter (http://jmeter.apache.org) to 
generate a workload for the deployed applications in order to 
trigger a scaling scenario. Our application scaling rules were 
configured, so that the application would scale up the number 
of nodes in the WordPress front-end cluster, if the load, i.e., the 
requests per second of the servers within the cluster, is above a 
defined threshold.  

Once the scaling policy and policy manager directives were 
deployed and enabled, our platform began responding to 
changes in the REQUEST_PER_SECOND_PER_NODE 
sensor which forms part of the component deployed via our 
extended CAMP. Once a violation was detected, the policy 

Fig.  15. Scaling policy directive 

____________________________________________________________
 

____________________________________________________________
 

Figure 13.  Deployment times for single provider deployments 

Figure 14.  Deployment times for multi-cloud provider deployments 

http://jmeter.apache.org/
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manager determined an appropriate action based on its 
directives and initiated that action. In our case, the policy 
manager decided that the application front-end should be scaled 
up. The scale-up process took place in stages, as the policy 
manager conservatively scaled and then checked that the 
violation was alleviated. A small “hold off” period was used to 
ensure that the policy manager does not trigger multiple actions 
in quick succession.  

The results of our scaling experiment are shown in Fig. 16 
and Fig 17. The experiment was run for 360 seconds during 
which the number of requests to the Web servers was gradually 
increased. Samples were taken of the average requests per 
second on each node via the LoadBalancer at 5 second intervals. 
As the number of requests increases, the requests per second 
measured at the server increase as well, until the value of 5 
requests per second is crossed. At this point, the number of 
nodes is scaled up to 3 since this is detected as a policy 
violation. This scale up, however, fails to address the constraint 
violation and as a result another scale up is triggered at sample 
17. As the constraint remains violated even after each 
consecutive scale up, another scale up is finally triggered at 
sample 31, bringing the number of nodes to 6. This scale up is 
enough to drop the constraint so that it is no longer in violation.  

V. RELATED WORK 
Cloud application orchestration has generated a considerable 
amount of popularity within the field of distributed computing. 
There have been numerous approaches to cloud application 
orchestration, each with varying advantages and limitations 
[7][28][29]. Some approaches focus on creation and use of 

standards, others on the use of libraries and intermediary layers, 
while others are based on the use of semantics of models. The 
authors of [28] also described a taxonomy that was used to 
compare cloud application orchestration techniques on two 
broad sets of criteria. From this taxonomy, cloud orchestration 
techniques were judged based on two broad areas.  

• Cloud Feature: features specific to the cloud 
infrastructure. 

• Application Feature: features specific to the application 
supported in the cloud. 

To gain an appreciation for how our approach stacks up 
against other similar approaches, we produced a qualitative 
comparison of the techniques. Table 1 depicts the comparison 
of TOSCAMP, SeaClouds, MODAClouds, Brooklyn-TOSCA, 
and Cloud Provider Orchestration features.  

Brooklyn-TOSCA[30] combined the facilities of TOSCA 
with the Apache Brooklyn platform. The SeaClouds 
project[17] is also known for its approach to multi-cloud 
deployment and management using a TOSCA DSL coupled 
with various deployment frameworks such as Apache Brooklyn 
and MODAClouds[31]. While these projects adequately 
combined the frameworks for orchestration and deployment 
and provide multi-cloud and cross-cloud support, there are 
some differences with regards to our TOSCAMP architecture. 
For example, Brooklyn-TOSCA makes use of an agnostic 
graph or intermediate graph that is used to bridge the gap 
between the TOSCA and Apache Brooklyn, and allows for 
resource selection and runtime adaptation. TOSCAMP 
approaches these through the use of placement policies which 
abstract the provider location from the application model. The 
SeaClouds approach also integrates TOSCA compliant plans 
and CAMP through the use of Apache Brooklyn. Our approach, 
however, does not rely on an intermediate graph in order to 
translate nor does it utilize Apache Brooklyn’s CAMP DSL. 
Instead, it makes use of matchmaking, SLA and monitoring 
components coupled with continuous refinement to provide 
resource selection, lifecycle management, monitoring, and 
runtime adaptation. For these, our TOSCAMP approach makes 
use of the CAMP platform features as well as our policy 
extensions for CAMP. 

The concept of combining TOSCA and CAMP is not only 
limited to the SeaCloud and Brooklyn-TOSCA approaches. 
However, there are other studies that suggested the 
combination of the TOSCA and CAMP standards in order to 
provide cloud orchestration features [32][33]. The authors of 
[32] proposed a strategy involving the use of ATL to convert 
from a TOSCA topology into an Apache Brooklyn plan in order 
to be deployed to a provider platforms. The proposal also 
suggests the use of an agnostic model to express the TOSCA 
model in order to generate orchestration plans for the 
application deployment and management. Similarly, the 
authors of [33] also proposed the combination of TOSCA and 
CAMP via Apache Brooklyn and suggested the use of an 
agnostic graph to bridge to automate the conversion process 
from TOSCA models to CAMP models. Their approach 
focused on abstracting all provider-specific information from 
TOSCA to provide a cross-cloud strategy that provides 
portability. Our proposal, however, incorporates an extended 
policy support system in order to provide cross- and multi- 

Fig.  16.  Requests per second per node measured at the load balancer 

Fig.17.  Increase in the number of nodes configured at the load balancer. 
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TOSCAMP SeaClouds MODAClouds Brooklyn-Tosca 
Cloud provider 

Orchestration as a 
Services 

Cloud features Multi-Cloud 
Support 

Supports targeting 
multiple cloud 
provider platforms 

Supports Targeting 
multiple cloud 
provider platforms 

Supports targeting 
multiple cloud 
provider platforms 

Supports targeting 
Multiple cloud 
provider platforms 

Support the provider’s 
API.    
Based on a single 
provider API. 

Cross-Cloud 
support 

Supports deploying 
applications across 
multiple cloud 
providers 

Supports deploying 
applications across 
multiple cloud 
providers 

Supports 
deploying 
applications 
across multiple 
cloud providers 

Supports deploying 
applications across 
multiple cloud 
providers 

Cannot deploy 
cross-cloud. 
Cross-location 
supported by some 
API’s.  

Cloud 
Standard API 
 

Does not use cloud 
specific API 

Does not use cloud 
specific API 

Do not use cloud 
specific API  

Does not use cloud 
specific API 

Relies on provider 
specific API 

Application  Application 
Standards 

Supports open 
standard languages 
normative TOSCA 
1.1 and CAMP.  

Support open 
standard language. 
SeaClouds TOSCA 
DSL 

Supports 
CloudML for 
modelling 
applications 

Support open 
standard languages 
TOSCA. 
Supports 
Alien4Cloud types. 
Supports TOSCA 
1.0 types 

Does not support open 
standard languages. 
Mainly based on 
JSON. 

Resource 
Selection 

Uses typed 
components to refer 
to resources.  
Provides manual 
binding.  
Provides automatic 
binding. 
Location is 
abstracted via 
policies. 

Uses typed 
components to refer 
to resources.  
Provides manual 
binding and 
automatic binding 
through match 
making 

Uses typed 
components to 
refer to resources. 
Provides manual 
binding 
Provides 
semi-automatic 
binding 
(Application 
Administrator is 
required) 

Uses typed 
components to refer 
to resources.  
Provides manual 
binding. 
Provides automatic 
binding via 
Agnostic, 
intermediate graph. 
Location is 
abstracted via the 
agnostic graph. 

Uses typed 
components to refer to 
resources.  
Provides manual 
binding 

Life-cycle 
Description 

Supports lifecycle 
through extended 
CAMP.  

Support lifecycles 
through SLA 
service. 

Provides lifecycle 
through 
continuous 
refinement at 
runtime.  

Provides lifecycles 
through integrated 
Apache Brooklyn. 

Provides lifecycle 
support via provider 
scripts. 

Monitoring  Provides monitoring 
through extended 
CAMP sensors. 

Provides monitoring 
through monitoring 
component 

Provides 
monitoring at 
runtime.  
Monitoring data 
feeds back into 
adaptation engine 

Provides monitoring 
through integrated 
Apache Brooklyn. 

Provides monitoring 
via the provider’s 
platform API 

Runtime 
adaptation 

Provides runtime 
adaptation through 
the use of policies. 
No reconfiguration 
of models. 

Provides runtime 
adaptation. 
Reconfiguration of 
models. 

Provides runtime 
adaptation through 
an adaptation 
engine.  

Provides runtime 
adaptation. Agnostic 
graph is 
reconfigured. 

Provides runtime 
adaptation through 
API. 

Reusability 
and sharing of 
models 

Support reusability 
and sharing of 
TOSCA topology.  
Supports reusability 
and sharing of 
CAMP plan if 
extracted. 

Provides reusability 
of abstract models.  
Refined models 
must be modified. 

Allows for reuse 
of CPIM.  
Supports REMICS 
for migrating 
legacy 
applications to the 
cloud. 

Provides reusability 
of models written in 
Alien4cloud and 
TOSCA DSL.  

Supports reusability 
among providers that 
support the same stack.  

Table. 1.  Qualitative analysis of orchestration approaches. 
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cloud support.  
With regards to cloud application modelling, the CloudMF 

[34] and MODAClouds [31] approaches provide a 
model-driven approach to multi-cloud application deployment 
through the use of a Doman Specific Language. The CloudMF 
approach introduced a cloud modelling framework consisting 
of a modelling language CloudMF and a deployment and 
management component described as models@run-time. This 
approach like ours took the two-model approach of Model 
Driven Engineering. This approach, however, relies on 
comparison and reasoning engines that must make   
modifications to the runtime model, when changes occur in 
either the Cloud Provider Independent Model or the 
models@run-time. While there are similarities to our approach, 
this still differs, as it makes use of refinement to transform the 
Cloud Provider Independent Model into the Cloud Provider 
Specific Model (CPSM). Also, it does not make use of policies 
to manage the deployed model, but instead relies on a reasoning 
engine to determine difference in the actual and target CPSM. 
More so, CloudMF is a model-based approach not based on 
open standards. Hence, its DSL does not adopt open techniques 
such as TOSCA and CAMP. The MODAClouds approach, 
which is a reference implementation of CloudMF, highlighted 
the use of models for both the deployment of the system and for 
monitoring the runtime environment and considered two 
general phases of the application lifecycle: design time and 
runtime. Our TOSCAMP approach does not perform 
continuous refinement of an intermediate model. With 
continuous refinement, the model is continually enriched with 
provider-specific information, as it is translated into the 
provider-specific model. By not performing continuous 
refinement, our model does not need to be reevaluated, when 
provider information changes or there is a need to target 
another provider.  

Almost every approach relies on an interface to each cloud 
platform. The Apache Brooklyn project represents a platform 
most compatible with the tenets of OASIS CAMP [10]. Being 
built on the concepts of CAMP, the project provides a blueprint 
document that is somewhat compliant to the CAMP standard. 
While our project makes use of some of Brooklyn’s core 
components, the Brooklyn blueprint only represents a subset of 
the CAMP plan document. In its current form, the Brooklyn 
blueprint diverges from core CAMP in the way policies are 
specified and processed. Apache Brooklyn is capable of 
handling and specifying policies declaratively within plans. In 
our approach, however, we decided to also explore the ability to 
define and tailor new policies and policy processing logic by 
providing the ability to define the policy processing 
components via directives.  
 Cloud providers rely on an array of services within their 
platforms in order to elevate their platform above others. There 
have been a number of cloud service providers providing 
orchestration services as part of their catalog of services. 
“Orchestration as a Service” solutions such as Amazon 
OpsWorks (https://aws.amazon.com/opsworks/), Amazon 
Cloud Formation (https://aws.amazon.com/cloudformation/), 
and Rackspace Cloud Orchestration 
(https://www.rackspace.com/cloud/orchestration) provide 
provisioning and scaling features for customers of these 

respective platforms through the use of DevOps recipes and/or 
Blueprints. While services such as these provide cloud 
orchestration features, by their nature, they still lock the client 
into a particular cloud provider. The DSL used by one provider 
may not necessarily be compatible with that of another provider. 
Furthermore, the orchestration actions performed on one 
provider cannot allow for cross-provider orchestration. Our 
work is set apart from others, as it provides a standards-based, 
complete orchestration solution for heterogeneous cloud 
platforms. Hence, a means of cross-provider orchestration that 
should keep users from being locked-in to any particular 
vendor.  
 

VI. CONCLUDING REMARKS 
Our work has explored a methodology for defining, 

deploying, and managing distributed cloud applications 
through the combination of two prominent standards: TOSCA 
and CAMP. We have also been successful in demonstrating 
that, through extensions to the current CAMP standard, it is 
possible to define declarative policies that can be used to 
orchestrate the components of a deployed application over 
heterogeneous cloud platforms.   

We have also proposed, implemented, and tested a method of 
translating TOSCA documents into CAMP plans, while 
maintaining the separation of each model. We consider it to be 
beneficial to maintain this separation in order to promote model 
interoperability and mobility by ensuring that each model 
remains “pure” and not deviated from the standard. We would 
like to emphasize that our work was made possible through 
some proposed extensions to the CAMP platform. These 
extensions afford the platform the ability to process 
orchestration policies. It should also be noted that our approach 
to policies does not alter the established components of the 
standard but adds new components capable of performing the 
required orchestration tasks on the existing components. We 
view this as significant, since, with our approach, there will be 
no effect to platforms that are incapable of interpreting our 
policies.  

There is still a significant amount of work that remains with 
regards to our approach and our prototyped platform. Currently, 
our platform is capable of parsing a TOSCA version 1.1 
document and converting the components into a CAMP 
document. The CAMP half of our TOSCAMP architecture, 
however, does not have a complete library of types that it is 
capable of deploying, and we plan to increase the number of 
types that can be handled by the CAMP portion. We also intend 
to explore the possibility of adding new types of policies and 
policy managers to our CAMP platform.  

REFERENCES 
[1] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical analysis of 

vendor lock-in and its impact on cloud computing migration: a 
business perspective,” J. Cloud Comput. Adv. Syst. Appl. 2016, vol. 5, 
no. 1, pp. 92–97, 2016. 

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, and RH, “Above the 
clouds: A Berkeley view of cloud computing,” Univ. California, 
Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb. 10, 2009. 

[3] C. Liu, B. T. Loo, and Y. Mao, “Declarative automated cloud resource 
orchestration,” in Proc. the 2nd Symposium Cloud Computing, 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 13 

Cascais, Portugal, 2011, pp. 1–8. 
[4] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards 

model-driven provisioning, deployment, monitoring, and adaptation 
of multi-cloud systems,” in Proc. the 6th Int. Conf. Cloud Computing, 
Santa Clara, CA, USA, 2013, pp. 887–894. 

[5] A. Barros, M. Dumas, and P. Oaks, “Standards for web service 
choreography and orchestration: Status and perspectives,” Lecture 
Notes in Computer Science, vol. 3812, pp. 61–74, 2006. 

[6] M. D. Hogan, F. Liu, A. W. Sokol, and T. Jin, “NIST Cloud 
Computing Standards Roadmap,” NIST, Gaithersburg, MD, USA, 
Special Pub. NIST-SP-500-291, Aug. 10, 2011. 

[7] D. Petcu and A. V. Vasilakos, “Portability in clouds: Approaches and 
research opportunities,” Scalable Computing., vol. 15, no. 3, pp. 
251–271, 2014. 

[8] Topology and Orchestration Specification for Cloud Applications 
Version 1.0, OASIS Standard, 2013. 

[9] TOSCA Simple Profile in YAML Version 1.0, OASIS TOSCA TC 
Committee Specification 01, 2016. 

[10] Cloud Application Management for Platforms Version 1.1, OASIS   
CAMP TC Committee Specification 01, 2014. 

[11] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service 
placement optimization in federated clouds,” IBM Res. Div. Tech. 
Rep, vol. 9, pp. 11–15, 2011. 

[12] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland, 
“Policy-aware provisioning of cloud applications,” in Proc. the 7th Int. 
Conf. Emerging Security Information, Systems and Technologies, 
Barcelona, Spain, 2013, pp. 86–95. 

[13] A. F. Antonescu, P. Robinson, and T. Braun, “Dynamic topology 
orchestration for distributed cloud-based applications,” in Proc. the 
2nd Symposium. Network Cloud Computing and Application, London, 
UK, 2012, pp. 116–123. 

[14] “Pure-Play Cloud Orchestration & Automation Based on TOSCA | 
Cloudify,” [Online]. Available: http://getcloudify.org, Accessed on: 
Mar. 24, 2017. 

[15] “ALIEN 4 Cloud,” [Online]. Available: http://alien4cloud.github.io, 
Accessed on: Mar. 24, 2017. 

[16] “Ubicity—Tosca Tools and Orchestration,” [Online]. Available: 
https://ubicity.com, Accessed on: Mar. 24, 2017. 

[17] A. Brogi, M. Fazzolari, A. Ibrahim, J. Soldani, P. Wang, D. 
Informatica, J. Carrasco, J. Cubo, F. Dur, E. Pimentel, U. De Mal, E. 
Di Nitto, D. Elettronica, I. Bioingegneria, P. Milano, and F. D. 
Andria, “Adaptive management of applications across multiple 
clouds : The SeaClouds Approach,” CLEI Electron. J., vol. 18, no. 1, 
pp. 1–14, 2015. 

[18] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, 
and S. Wagner, “OpenTOSCA - A runtime for TOSCA-based cloud 
applications,” in Proc. the 11th Int. Conf. Service-Oriented 
Computing, Berlin, Germany, 2013, pp. 692–695. 

[19] “Home - Apache Brooklyn.” [Online]. Available: 
https://brooklyn.apache.org/. [Accessed: 29-Apr-2016]. 

[20] K. Alexander, C. Lee, and S. Chai, “Declarative policy support for 
cloud application orchestration,” in Proc. the 19th Int. Conf. Advanced 
Communications Technology, Phoenix Park, South Korea, 2017, pp. 
102–104. 

[21] L. Kagal, T. Finin, and A. Joshi, “Declarative policies for describing 
Web service capabilities and constraints,” in Proc. W3C Workshop 
Constraints and Capabilities for Web Services, Redwood City, CA, 
USA, 2004, pp. 1-5. 

[22] C. Dimoulas, S. Moore, A. Askarov, and S. Chong, “Declarative 
policies for capability control,” in Proc. Computer Security 
Foundation Symposium, Vienna, Austria, 2014, pp. 3–17. 

[23] N. C. Damianou, “A policy framework for management of 
distributed systems,” Ph.D. dissertation, Dept. Computing, Univ. of 
London, London, U.K., 2002. 

[24] M. Sloman, “Policy driven management for distributed systems,” 
Journal. Network. Systems. Management., vol. 2, no. 4, pp. 333–360, 
1994. 

[25] ATLAS Group LINA & INRIA Nantes, “ATL: Atlas Transformation 
Language - ATL User Manual," Version 0.7, February 2006. [Online]. 
Available: 
http://www.eclipse.org/atl/documentation/old/ATL_User_Manual[v0
.7].pdf 

[26] F. Jouault and I. Kurtev, “Transforming models with ATL,” Lecture 
Notes in Computer Science, vol. 3844, pp. 128–138, 2006. 

[27] S. Kent, “Model driven engineering,” in Proc. the 3rd Int. Conf. 
Integrated Formal Methods, Turku, Finland, 2006, pp. 286–298. 

[28] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B. Hauser, and J. 
Domaschka, “Cloud orchestration features: Are tools fit for 
purpose?,” in Proc. the 8th Int. Conf. Util. Cloud Comput., Limassol, 
Cyprus, 2015, pp. 95–101. 

[29] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, “Cloud services 
orchestration: A comparative study of existing approaches,” in Proc. 
the 28th Int. Conf. Adv. Inf. Netw. Appl. Work., Victoria, BC, Canada, 
2014, pp. 410–416. 

 [30] J. Carrasco, J. Cubo, F. Dur, and E. Pimentel, “Bidimensional 
cross-cloud management with TOSCA and Brooklyn,” in Proc. the 
9th Int. Conf. Cloud Comput., San Francisco, CA, USA, 2016, pp. 
951-955. 

[31] D. Ardagna et al., “MODAClouds: A model-driven approach for the 
design and execution of applications on multiple clouds,” in Proc. the 
4th Int. Workshop Modeling in Software Engineering, Zurich, 
Switzerland, 2012, pp. 50–56. 

[32] J. Carrasco, J. Cubo, and E. Pimentel, “Towards a flexible 
deployment of multi-cloud applications based on TOSCA and 
CAMP,” Communications in Computer and Information Science, vol. 
508, pp. 278–286, 2015. 

[33] J. Carrasco, J. Cubo, E. Pimentel, and F. Duran, “Deployment over 
heterogeneous clouds with TOSCA and CAMP,” in Proc. the 6th Int. 
Conf. Cloud Computing and Services Science, Rome, Italy, 2016, pp. 
170–177. 

[34] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “Cloud 
MF: Applying MDE to tame the complexity of managing multi-cloud 
applications,” in Proc. the 7th Int. Conf. Util. Cloud Comput., 
London, UK, 2014, pp. 269–277. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	I. INTRODUCTION
	II. Motivation and Challenges
	A. Portable Application Topology Specification
	B. Standard API for Cloud Providers
	C. Orchestration-Aware Deployment and Management
	D. Conversion Methodology from TOSCA to CAMP

	III. Toscamp Architecture
	A. Architectural Design
	1) TOSCA parser
	2) Extended CAMP

	B. Model Conversion Strategy

	IV.  Implementation Details and Evaluation
	A. Model Conversion
	B. Multi-Cloud Deployment and Scaling Support

	V. Related Work
	VI. Concluding Remarks
	References

