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Abstract

In this thesis, we consider the electronic properties of bilayer graphene in a steady,

parallel magnetic field. Using the tight–binding model, and taking into account

relevant tight–binding parameters, we find a new contribution to the electronic

Hamiltonian describing the orbital effect of the magnetic field.

We consider the effect of the magnetic field on the Lifshitz transition, in which

the Fermi surface breaks up into separate pockets at very low energy, due to

trigonal warping. We show that the predicted band structure is dramatically

altered when taking the new magnetic field contribution into account.

We consider the effect of the magnetic field on non–linear dynamics in the

presence of an ac laser field and spatial inversion asymmetry. Bilayer graphene

is particularly interesting from this point of view because inversion symmetry

can be broken either through asymmetry of disorder, the presence of a substrate

or through interlayer asymmetry induced by an external gate voltage, the latter

yielding tunable non–linear properties. Using the Boltzmann transport equation,

we determine the intraband contribution to the dc current, known as the magnetic

ratchet effect, and the second harmonic current. We also take into account a

perpendicular magnetic field component, which produces cyclotron motion and

cyclotron resonance. We discuss the dependence of these non–linear currents on

the polarisation of light, the direction of the in–plane field, and the cyclotron

frequency.
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Chapter 1

Introduction

This thesis is about the electronic properties of bilayer graphene and, in particu-

lar, the orbital effect of an in–plane magnetic field on them. The main discovery

is a new contribution to the low–energy Hamiltonian arising from the magnetic

field. Subsequently, we model the influence of this contribution on the electronic

band structure, focussing on a low–energy feature known as the Lifshitz transi-

tion, as well as its influence on electronic scattering that produces an intraband

contribution to nonlinear optical processes (dc current and second harmonic gen-

eration). This introductory chapter sets the scene by providing background infor-

mation about graphene (monolayer and bilayer), the Lifshitz transition, and the

non–linear optical properties of graphene.

1.1 Graphene

1.1.1 Monolayer Graphene

Carbon has many different physical forms, including diamond, graphite, and amor-

phous carbon. Diamond and graphite have been known since ancient times.

Fullerene, the third form of carbon, was discovered in 1985 by Kroto et al.[1],

and carbon nanotubes (CNTs) were discovered in 1991 by Iijima [2]. Thus, only

three–dimensional (3D) (diamond and graphite), one–dimensional (1D; CNTs),
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and zero–dimensional (0D; fullerenes) allotropes of carbon were known in the car-

bon community (Fig. 1.1). Although it was realized in 1991 that carbon nanotubes

Figure 1.1: Graphene, top left, is a hexagonal lattice of carbon atoms. Graphite, top
right, includes graphene layers, carbon nanotubes are rolled–up tubes of graphene, bottom left.
Fullerenes, are molecules consisting of wrapped graphene by the introduction of pentagons on
the hexagonal lattice. Figure taken from AH Casto Neto et al, Rev Mod. Phys. 81, 109 (2009).

are effectively a rolled up two–dimensional (2D) graphene sheet, which is single

layer of a 3D graphitic crystal, the isolation of graphene itself was quite elusive,

resisting any attempt until 2004 [3].

Theoretically, graphene was studied first by Wallace [4] over 60 years ago when

he wanted to understand the electronic properties of graphite. The issue with

graphene was its fabrication, until 2004, when Geim and Novoselov fabricated

graphene monolayers and multilayers in the laboratory. This experimental step

led to the Nobel prize for physics [5].

After the initial production of graphene by mechanical exfoliation, different

methods have been invented to fabricate graphene. As an example, large–area

uniform polycrystalline graphene films are now being grown by chemical vapour

deposition on copper foils and films, and show promise for many applications [6].

Other ways to produce graphene are epitaxial growth of graphene on silicon car-

bide (SiC), chemically derived graphene and graphene produced by electrochem-

9



ical exfoliation [7]. Typically, graphene characterisation can be done by trans-

mission electron microscopy, scanning tunnelling microscopy, Raman spectroscopy

and photoemission [7].

Graphene is a very good candidate for electronic devices because of its high

electrical mobility [8] and the possibility to control its Fermi level using a metallic

back gate. This two–dimensional allotrope of carbon also serves as the basis for

the understanding of the electronic properties of other allotropes.

Moreover, graphene has high mechanical strength [9], its charge carriers behave

like massless Dirac fermions with a linear dispersion relation [10], and it is a

tunable optical material [11]. In addition, graphene has also been considered and

intensively researched for high frequency transistor applications [12]. In fact, as

graphene possesses degrees of freedom related to charge, pseudospin, spin and

valley [13; 14], different types of transistor can be fabricated in the laboratory.

Scattering mechanisms including Coulomb scattering, lattice disorder scatter-

ing and electron-phonon scattering play roles in realistic graphene devices [7]. In

addition, in this two–dimensional material, Dirac fermions behave in unusual ways

when compared to ordinary electrons if subjected to magnetic fields [15], leading

to new physical phenomena, such as the anomalous integer quantum Hall effect

[5; 16], in which the sequence of steps in the conductance is shifted by 1/2 in units

of conductance quantum with respect to the standard sequence [13].

1.1.2 Bilayer Graphene

Bilayer graphene [5] is a material consisting of two coupled layers of graphene

where the layers are exactly aligned (AA stacked) or where half of the atoms lie

directly over the centre of a hexagon in the lower graphene sheet, Bernal–stacked

form (AB–stacked)(Fig. 1.2). It has been shown that the AB–stacked arrangement

is more stable than the AA one [17]. In this thesis, we study AB–stacked bilayer

graphene.

Bilayer graphene has four atoms in its unit cell as the result of there being
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Figure 1.2: AB–Stacked Bilayer graphene. Half of the atoms in the upper graphene sheet lie
directly over the centre of a hexagon in the lower graphene sheet

two coupled layers. The band gap of bilayer graphene is generally zero, so it is

a semimetal. It displays fascinating electronic properties including pseudospin

and chirality. Pseudospin means that there is a twofold lattice degree of freedom

hat acts like spin 1/2, chirality means that the pseudospin direction is related to

the direction of the electronic momentum [18; 19; 20]. In addition, for bilayer

graphene, there is the possibility to create and tune a gap between the conduction

and the valence bands using potential asymmetry of the layers [19] which makes

it a new material for applications.

Lifshitz transition

The band structure of bilayer graphene is quadratic at low energy, the Fermi

level can be changed using external gates, and the band structure can be modi-

fied by external perturbations [21]. In monolayer and bilayer graphene, there is

a triangular–shaped distortion of the Fermi circle, known as trigonal warping. In

bilayer graphene this is particularly strong at very low energy. This change of

Fermi surface is so much that, within a few meV of the change neutrality point,

the distorted circle breaks into four different pockets; a process known as a Lif-

shitz transition (Fig. 1.3). More details about the Lifshitz transition will come in

Chapter 4.

Chapter 2 describes the tight–binding model of bilayer graphene and, in Chap-

ter 3, we take into account the effect of an in–plane magnetic field. The influence
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of their field on the Lifshitz transition is described in Chapter 4.

Figure 1.3: Left: The electronic structure of bilayer graphene, where a Lifshitz transition
as the result of trigonal warping is depicted for εL = 1 meV. Figure taken From E McCann
et al, Rep.Prog.Phys.76, 056503 (2013). Right: Numerical calculations showing constant en-
ergy contours as described in Chapter 4. Parameter values are constant energy contours in(
νpx/γ1, νpy/γ1

)
for ε/γ1 = −0.002, ε/γ1 = −0.004, ε/γ1 = −0.020, and ε/γ1 = −0.059.

1.2 Nonlinear Optics

For a linear optical device the current of density J produced under an applied

electric field E is proportional to that electric field:

Ji =
∑
j

σ
(1)
ij Ej (1.1)

where σ
(1)
ij is the first order conductivity tensor element, i, j are Cartesian spatial

indices. For a non–linear device, however, the produced current under an applied

electric field can be written as an expansion in powers of the electric field:

Ji =
∑
j

σ
(1)
ij Ej +

∑
jk

σ
(2)
ijkEjEk +

∑
jkl

σ
(3)
ijklEjEkEl + ... (1.2)

where σ
(2)
ijk and σ

(3)
ijkl are second and third order conductivity tensor elements, re-

spectively.
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Nonlinear optical effects were studied in 1870 by John Kerr. He demonstrated

that the refractive index of a number of solids and liquids is slightly changed by

the application of a strong dc field; this phenomenon is named the dc Kerr effect

[22].

In order to observe second order effects, spatial inversion should be broken

because, under inversion symmetry, the current is odd while the second order

term in electric field is even.

Different physical regimes for optics in graphene are determined by the ratio of

the Fermi energy to the photon energy, Fig. 1.4. At zero temperature, we consider

the photon energy h̄ω, h̄ is the Planck constant and ω is angular frequency, the

highest occupied energy level is the Fermi energy EF , Dirac point is zero of energy

and τ−1 is the scattering rate of electrons. For a typical value of the Fermi energy in

graphene, of the order of 100 to 400 meV, if ω ≤ EF/h̄, the transition is intraband

and electron dynamics can be described semiclassically by the Boltzmann kinetic

equation, Fig. 1.4 (c). An energy of 100 meV corresponds to radiation of angular

frequency 152 Trad/s and a linear frequency equal to 24.25 THz which is in the

mid–infrared range of the light spectrum.

For EF/h̄ ≤ ω ≤ 2EF/h̄ the transition is an indirect interband one and classical

and quantum results emerge. Finally, for ω ≥ 2EF/h̄, direct interband transitions

happen.

Figure 1.4: Schematic diagram of the possible optical transitions in graphene: (a) direct inter-
band transition, (b) indirect interband transition, (c) indirect intraband transition. Solid and
dashed arrows show electron–photon interaction (solid arrows) and electron scattering caused
by impurities or phonons (dashed arrows). Initial and final states of a photoexcited carrier with
wave vectors ki and kf are shown by open and solid circles, respectively. Inequalities define the
corresponding photon energy ranges. Figure taken from MM Glazov, et al. Phys. Rep. 535,
101 (2009).
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Graphene shows remarkable optical properties. For example, it can be optically

visualized despite being only a single atom thick [23; 24; 25]. Graphene produces

an unexpectedly high opacity for an atomic monolayer in vacuum, and the fine

structure constant defines the visual transparency of graphene, for example it

absorbs πα ≈ 2.3% of red light, where α is the fine–structure constant. Such

a high absorbency of light makes it visible to the naked eye [26](Fig. 1.5, left).

In addition, its light transmittance is linear over most of the visible spectrum

(Fig. 1.5) [26; 27; 28].

Figure 1.5: (A) Figure of a 50 µm space partially covered by graphene and its bilayer. The
line scan profile shows the intensity of transmitted white light along the yellow line. (B) Trans-
mittance spectrum of single–layer graphene (open circles). The red line is the transmittance
expected for two–dimensional Dirac fermions and it is linear, whereas the green curve takes into
account a nonlinearity and triangular warping of graphene’s electronic spectrum. The gray area
indicates the standard error for the measurements. (Inset) Transmittance of white light as a
function of the number of graphene layers (squares). Figure taken from RR Nair et al, Science
6, 1308 (2008).

In this thesis, we study two nonlinear optical effects, first, the magnetic quan-

tum ratchet effect, then, second harmonic generation. In the quantum ratchet

effect an optical device produces a dc current under the ac electric field of laser

light. It is called a “ratchet” because the electronic device makes a dc current

from an oscillating electric field. To have this effect, spatial symmetry should be

broken because it is a second order effect [29; 30].

Another nonlinear optical effect is second harmonic generation. In this phe-

nomenon, photons with the same frequency interacting with a nonlinear mate-
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rial are effectively combined to generate new photons with twice the energy, and

therefore twice the frequency. Historically, second harmonic generation was not

discovered until there was a source of strong optical frequency fields, namely, the

laser, which occured in 1961 at Michigan University [22; 31; 32; 33].

Finally, we consider some parameter values. First of all, in this thesis we

consider that the typical photon energy is from the mid infrared, 124 meV, to mi-

crowave and radiowaves 12.4neV; hence the regime of the work is semiclassical and

we can use Boltzmann kinetic equations and intraband optical processes happen

(Fig. 1.4) (c). Moreover, the graphene Fermi energy order is around 100 to 400

meV [29]. In the whole of this thesis we also assume that EF � h̄τ−1 so that

electrons are long–lived quasiparticles and that EF � kBT , so that electrons form

a degenerate gas, kB is the Boltzmann constant and T is temperature.

1.3 The content of the thesis

This thesis has seven Chapters. After this introduction, in the second Chapter, the

theoretical background to the work is reviewed, namely, the graphene structure, its

reciprocal lattice, and the tight–binding model are described. Then, the structure

of bilayer graphene is depicted and it is shown that the four component electronic

Hamiltonian of bilayer graphene may be written as a two component one at low

energy.

In Chapter 3, the tight–binding Hamiltonian of bilayer graphene in the presence

of an in–plane magnetic field is derived. In this Chapter, by considering skew

interlayer coupling, we have found a new term in the bilayer graphene Hamiltonian.

In Chapter 4, the influence of the in–plane magnetic field on the electronic

band structure is described. In particular we show how it has a profound effect on

the Lifshitz transition.

Chapter 5 describes the role that in–plane magnetic field plays in creating an

interband contribution to a non–linear optical effect, namely, the production of a

dc current in the magnetic field.
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In the sixth Chapter, the ac current produced by the magnetic ratchet is deter-

mined including first and second harmonics. Consequently, the deduced ac current

is related to linear and nonlinear optics, respectively.

Finally, in the last Chapter, a general conclusion of the original material of this

thesis is provided.
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Chapter 2

Theoretical background

2.1 Introduction

To determine the tight–binding Hamiltonian of a crystal, its Bravais lattice should

be known. Graphene is not a Bravais lattice, but, by considering two sublattices,

A and B, the graphene honeycomb lattice can be viewed as two triangular Bravais

lattices [15] (Fig. 2.1). Based on this point of view, the primitive lattice vectors

Figure 2.1: The honeycomb lattice of monolayer graphene. The red (blue) spheres indicate A
(B) sublattices, while the solid lines between atoms represent covalent bands. The blue rhombus
shows the unit cell of monolayer graphene unit cell, which includes two sublatices. Accordingly,
δi vectors, (i = 1 to 3) for three nearest neighbours of a typical A sublattice have been depicted.

are a1 = a
(
1/2,
√

3/2
)

and a2 = a
(
1/2,−

√
3/2
)

where a = 2.46Å is the graphene

lattice constant [34]. Furthermore, each carbon atom has one electron in its free

pz orbital; so, each carbon atom contributes one electron to the low–energy bands.

As a result, the monolayer graphene Hamiltonian should be a 2 × 2 matrix. In

addition, the triangular Bravais lattice results in a triangular reciprocal lattice.
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The primitive vectors in the reciprocal lattice space satisfying ai · bj = 2πδij are

(Fig. 2.2)

b1 =

(
2π

a
,

2π√
3a

)
, b2 =

(
2π

a
,− 2π√

3a

)
. (2.1)

The symmetry lines in the reciprocal lattice of monolayer graphene are the Γ−K,

Γ −M and K −M lines (Fig. 2.2). At special points in the Brillouin zone, the

group of the wave vector may be larger than that on symmetry lines which thread

it; these are called symmetry points [35; 36]. The symmetry points in graphene

are point Γ, the centre of the Brilloiun zone points, points K which are corners of

the Brilloiun zone and points M which are the centres of the edge of the Brillouin

zone [37]. There are two types of K points in the reciprocal lattice named as k+

Figure 2.2: The reciprocal lattice of monolayer graphene where b1 and b2 are primitive lattice
vectors. The k± symmetry points are located in the corners of the first Brillouin zone, Γ is in
the centre of the first Brillouin zone, and M points are located in the centres of the edge of the
Brillouin zone.

and k− valleys. By use of primitive vectors in the reciprocal lattice, it is possible

to show that the wave vector corresponding to point kξ valley is

kξ = ξ

(
4π

3a
, 0

)
, (2.2)

where ξ = ±1 is a valley index.
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2.2 General tight–binding model

The eigenstates of the one–electron Hamiltonian, Ĥ = −h̄2∇/2m + U(r), where

potential U(r+R) = U(r) for all R in a Bravais lattice, can be chosen to have the

form of a plane wave times a function with the periodicity of the Bravais lattice

[38]:

ψnk(r) = eik·runk(r). (2.3)

This is Bloch’s theorem and it is the basis of our work. For our case of study

consider a system with n atomic orbitals φj (j = 1...n) in the unit cell. We will

use Bloch functions with a periodic function related to the molecular orbitals in a

unit cell, and an exponential function which describes a plane wave [13; 38]. The

form of this Bloch wave function is:

Φj(k, r) =
1√
N

N∑
i=1

eik·Rj,iφj(r−Rj,i), (2.4)

where the sum is over N different unit cells, labelled by index i = 1...N , r is the

position vector and k is the wave vector of the Bloch wave function. Coordinate

Rj,i denotes the position of the jth orbital in the ith unit cell. Within tight binding

theory, an electronic wave function Ψj(k, r) is given by a linear superposition of n

different Bloch functions

Ψj(k, r) =
n∑
l=1

cj,l(k)Φl(k, r), (2.5)

where cj,l are coefficients of the expansion. The energy Ej(k) of the jth band is

given by

Ej(k) =
〈Ψj | H | Ψj〉
〈Ψj | Ψj〉

, (2.6)
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where H is the Hamiltonian. Substituting the expansion of the wave function

(Eq. 2.5) into the energy gives

Ej(k) =

∑n
i,l c
∗
jicjl 〈Φi | H | Φl〉∑n

i,l c
∗
jicjl 〈Φj | Φl〉

, (2.7)

=

∑n
i,lHi,lc

∗
jicjl∑n

i,l Silc
∗
jicjl

, (2.8)

where the transfer integral matrix elements Hil and overlap integral matrix ele-

ments Sil are defined by

Hil = 〈Φi | H | Φl〉 , Sil = 〈Φi | Φl〉 . (2.9)

We minimize the energy Ej with respect to the coefficient c∗jm and set ∂Ej/∂c
∗
jm = 0

by calculating the derivative,

∂Ej
∂c∗jm

=

∑n
l Hmlcjl∑n
i,l Silc

∗
jicjl
−
∑n

i,lHilc
∗
jicjl

∑n
l Smlcjl(∑n

i,l Silc
∗
jicjl

)2 . (2.10)

The second term contains a factor equal to energy Ej itself Eq. 4.16. Then, by

setting ∂Ej/∂c
∗
jm = 0, we find

n∑
l=1

Hmlcjl = Ej

n∑
l=1

Smlcjl, (2.11)

The energy bands may be determined using

det(Ĥ − EjS) = 0. (2.12)
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2.3 Tight–binding model for graphene

For graphene, which has two sublattices, for a general wave function ψj = (cj1 cj2)T ,

then

Ĥ =

HAA HAB

HBA HBB

 , S =

SAA SAB

SBA SBB

 . (2.13)

To determine the transfer integral matrix and overlap matrix, we replace index

j = 1 for the A sublattice and j = 2 for the B sublattice. Substitution of the

Bloch wave function (Eq. 2.5) in Eq. 2.9 results in:

HAA =
1

N

N∑
i=1

N∑
j=1

eik·(RA,j−RA,i) 〈φA(r−RA,i) | H | φA(r−RA,i)〉 , (2.14)

where k = (kx, ky) is the wave vector in the graphene plane. Eq. 2.14 includes a

double summation over all A sites of the lattice. If we assume that the dominant

contribution arises from the same site j = i within every unit cell, then

HAA ≈
1

N

N∑
i=1

〈φA(r−RA,i) | H | φA(r−RA,i)〉 . (2.15)

The matrix element 〈φA | H | φA〉 within the summation has the same value on

every A site, i.e. it is independent of the site index i. We set it to be equal to a

parameter

ε2p = 〈φA(r−RA,i) | H | φA(r−RA,i)〉 , (2.16)

that is equal to the energy of the 2pz orbital. Then, we keep the same site contri-

bution

HAA ≈
1

N

N∑
i=1

ε2p = ε2p. (2.17)

It is possible to take into account the contribution of other terms in the double

summation (Eq. 2.14), such as next–nearest neighbour contributions. They gener-

ally have a small effect on the electronic band structure and will not be discussed

here. The B sublattice has the same structure as the A sublattice, and the car-
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bon atoms on the two sublattices are chemically identical. This means that the

diagonal transfer integral matrix element corresponding to the B sublattice has

the same values as that of the A sublattice

HBB = HAA ≈ ε2p. (2.18)

A calculation of the diagonal elements of the overlap integral matrix proceeds in a

similar way as for those of the transfer integral. In this case, the overlap between

a 2pz orbital on the same atom is equal:

〈φA(r−RA,i) | φA(r−RA,i)〉 = 1. (2.19)

Then, assuming that the same site contribution dominates,

SAA =
1

N

N∑
i=1

N∑
j=1

eik·(RA,j−RA,i) 〈φA(r−RA,i) | φA(r−RA,j)〉 ,

≈ 1

N

N∑
i=1

〈φA(r−RA,i) | φA(r−RA,i)〉 ,

=
1

N

N∑
i=1

1,

= 1. (2.20)

Again, as the B sublattice has the same structure as the A sublattice,

SBB = SAA = 1. (2.21)

For the off–diagonal matrix elements, substitution of Eq. 2.5 into the transfer

integral Eq. 2.9 results in

HAB ≈ 1

N

N∑
i=1

3∑
l=1

eik·(RB,l−RA,i) 〈φA(r−RA,i) | H | φB(r−RB,l)〉 ,

' − 1

N

N∑
i=1

3∑
j=1

eik·(RB,j−RA,i)γ0,
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= −γ0f(k), (2.22)

where f(k) =
∑3

j=1 e
ik·δj (Fig. 2.1). Eq. 2.22 describes the hopping between

different nearest neighbour sublattices. The matrix element between neighbouring

atoms, 〈φA | H | φB〉, has the same value for each neighbouring pair, i.e. it is in

dependent of indices i and l. Here, we have defined parameter γ0, so that

γ0 = −〈φA(r−RA,i) | H | φB(r−RB,l)〉 . (2.23)

Here, δl is the position vector of atom Bl relative to the Ai atom, δl = RB,l−RA,i.

According to Fig. 2.1, we can show that

δ1 =

(
0,

a√
3

)
, δ2 =

(
a

2
,− a

2
√

3

)
, δ3 =

(
−a

2
,− a

2
√

3

)
. (2.24)

The overlap integral matrix is

SAB =
1

N

N∑
i=1

N∑
j=1

eik·(RB,j−RA,i) 〈φA(r−RA,i) | φB(r−RB,j)〉 ,

' 1

N

N∑
i=1

3∑
j=1

eik·(RB,j−RA,i)s0,

= s0f(k), (2.25)

where f(k) =
∑3

l=1 e
ik·δl and 〈φA(r−RA,i) | φB(r−RB,j)〉 = s0. Therefore, the

tight–binding Hamiltonian and overlap matrices of bilayer graphene are

Ĥ =

 ε2p −γ0f(k)

−γ0f
∗(k) ε2p

 , S =

 1 s0f(k)

s0f
∗(k) 1

 . (2.26)

For δl determined in Eq. 2.24, f(k) is

f(k) =
3∑
l=1

eik·δl ,

= eikya/
√

3 + eikxa/2e−ikya/2
√

3 + e−ikxa/2e−ikya/2
√

3,
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= eikya/
√

3 + 2e−ikya/2
√

3 cos(kxa/2). (2.27)

The interaction between two different sublattices is described by off-diagonal

elements of H matrix, HAB (Eq. 2.22), that is proportional to parameter γ0 and

the function f(k) (Eq. 2.27).

Based on Eq. 2.12, the eigenvalues of monolayer graphene are determined by

the following determinant:

det

 ε2p − E −(γ0 + Es0)f(k)

−(γ0 + Es0)f ∗(k) ε2p − E

 = 0, (2.28)

⇒ (E − ε2p)2 − ([E − ε2p]s0 + ε2ps0 + γ0)2 |f(k)|2 = 0, (2.29)

⇒ E± =
ε2p ± γ0 |f(k)|
1∓ s0 |f(k)|

. (2.30)

where ε2p = 0 while γ0 = 3.033 eV, s0 = 0.129 [34]. However, in the whole of this

thesis, the overlap matrix has been considered equal to the unit matrix because,

at low–energy, s0 only appears in quadratic–in–momentum terms and is, thus,

irrelevant.

Exactly at the Kξ point (corners of the BZ), k = Kξ, we find that

f(Kξ) = e0 + eiξ2π/3 + e−iξ2π/3 = 0. (2.31)

This indicates that there is no coupling between A and B sublattices exactly at the

Kξ points. Since the two sublattices are both hexagonal Bravais lattices of carbon

atoms, they support the same quantum states leading to a degeneracy point in the

spectrum at Kξ (Fig. 2.3). According to Fig. 2.3, the band structure of monolayer

graphene is gapless and, near to the corner of the Brillouin zone, it is linear. The

exact cancellation of the three factors describing coupling between the A and B

sublattices, Eq. 2.31, no longer holds when the wave vector is not exactly equal

to that of the Kξ point. We introduce a momentum p that is measured from the
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Figure 2.3: The band structure of monolayer graphene in the Brillouin zone. Accordingly, near
to the corner of the Brillouin zone, near to the Dirac points, the band structure of monolayer
graphene is linear.

centre of the Kξ point,

p = h̄k− h̄Kξ. (2.32)

Then, the coupling between A and B sublattices is proportional to

f(k) = eipya/
√

3h̄ + 2e−ipya/
√

3h̄ cos

(
2πξ

3
+
pxa

2h̄

)
, (2.33)

≈
(

1 +
ipya√

3h̄

)
+ 2

(
1− ipya

2
√

3h̄

)(
−1

2
− ξ
√

3pxa

4h̄

)
, (2.34)

≈ −
√

3a

2h̄
(ξpx − ipy) . (2.35)

To derive this equation, linear terms in momentum, p = (px, py), have been con-

sidered which is valid for pa/h̄ � 1. These approximations for f(k) result in an

effective Hamiltonian in the vicinity of the Kξ point:

H = v

 0 ξpx − ipy

ξpx + ipy 0

 , (2.36)

where v =
√

3aγ0/2h̄. Eigenvalues and eigenstates of this Hamiltonian dependent
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on the valley index are

E± = ±vp, ψ± =
1√
2

 1

±ξeiξφ

 . (2.37)

The eigenstates of graphene based Hamiltonians (Eq. 2.37) have two compo-

nents: one component refers to A sites, and another one refers to B sites. This

is similar to what happens in the description of spin up and spin down electrons,

but it is dependent on different sublattices (pseudospin) instead of spin. If all of

the electrons were to be on A sites, graphene would have up pseudospin. Or, if

all of the electrons were to be on B sites, graphene would have down pseudospin.

However, electron density is shared equally between A and B sublattices and the

pseudospin vector is in the plane of graphene.

Based on the eigenstates of monolayer graphene, Eq. 2.37, the direction of

the pseudospin is dependent on φ, momentum direction in space. We calculate

the expectation value of the pseudospin operator 〈σ〉 = (〈σx〉 , 〈σy〉 , 〈σz〉) with

respect to the eigenstate ψ±, the result is 〈σ〉e/h = ± (ξ cosφ, sinφ, 0). In this

situation we say that monolayer graphene electrons are chiral. This means that

the direction of pseudospin (in the graphene plane) depends on the direction of

electronic momentum.

2.4 Tight–binding model for bilayer graphene

The unit cell of AB–stacked bilayer graphene is depicted in Fig. 2.4. There are

four atoms in the unit cell, two dimer sites which are on top of each other and two

non–dimer–sites. The primitive lattice and the lattice constant a are the same as

for monolayer graphene. The unit cell has the same area in the plane as in the

monolayer. Therefore, the reciprocal lattice and first Brillouin zone are the same

as in monolayer graphene [13]. In addition, there are four energy bands in its band

structure (Fig. 2.5).
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Figure 2.4: The side view of 4 atoms in the unit cell of AB stacked bilayer graphene. A1 and
B1 atoms on the top layer and A2 and B2 on the bottom layer have been depicted. Straight lines
indicate intralayer coupling γ0, vertical interlayer coupling γ1 and skew interlayer couplings γ3,
γ4. Parameters U1, U2, δ indicate different on-site energies, as described in the main text.

Figure 2.5: The band structure of bilayer graphene considering nearest neigbor hopping param-
eters where γ0 = 3.033eV , ε2p = 0, γ1 = 0.39eV and s0 = 0.129. Figure taken from E McCann,
Graphene Nanoelectronics, Berlin Heidelberg : Springer, 237 (2012).

Because there are four atoms in the unit cell, the Hamiltonian is 4× 4 as well.

In the tight–binding description of bilayer graphene in a basis of (A1, B1, A2, B2)†
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the Hamiltonian is [20]



U1 −γ0f(k) γ4f(k) −γ3f
∗(k)

−γ0f
∗(k) U1 + δ γ1 γ4f(k)

γ4f
∗(k) γ1 U2 + δ −γ0f(k)

−γ3f
(k) γ4f

∗(k) −γ0f
∗(k) U2


, (2.38)

Consequently, the Hamiltonian near the Kξ point is

H =



U1 vπ† −v4π
† v3π

vπ U1 + δ γ1 −v4π
†

−v4π γ1 U2 + δ vπ†

v3π
† −v4π vπ U2


. (2.39)

Here, with a being the lattice constant and γi being tight–binding hopping param-

eter, vi =
√

3aγi/2h̄ are velocities corresponding to three different hopping factors

in bilayer graphene, i = 0, 1, 3, 4, v0 = v. This Hamiltonian has been written based

on the next–nearest approximation in the tight–binding model.

Parameter v characterizes the strength of in–plane nearest–neighbour A1−B1

and A2 − B2 hopping, γ1 describes vertical interlayer coupling, v3 characterizes

the strength of skew interlayer A1−B2 hopping and v4 characterizes the strength

of skew interlayer A1 − A2, B1 − B2 hoppping. Parameters U1, U2 are the on–

site energies of the two layers and δ describes an energy difference between sites

which have neighbouring atoms directly above or below them (dimer sites) and

those sites which do not [39; 20]. Numerical values of these tight binding hopping

parameters are γ0 = 3.0 eV, γ1 = 0.4 eV, γ3 = 0.38 eV, γ4 = 0.015 eV [28].

2.5 Two component Hamiltonian

The Fermi level is generally located near zero energy where only two bands are

present. Thus, we study the low–energy Hamiltonian of bilayer graphene which is
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a 2× 2 matrix related to the non–dimer sites [13; 19]. This two component model

is valid at low energy where ε� γ1. The basis of this Hamiltonian is (A1, B2)†.

To derive a two component Hamiltonian, we divide the 4× 4 Hamiltonian into

four blocks [20]. We also divide the eigenstate of the Hamiltonian into low–energy,

ψl = (ψA1 , ψB2)
T , and dimer, ψd = (ψA2 , ψB1)

T , components. Consequently, we

can write hψl
x

x† hψd


ψl
ψd

 = E

ψl
ψd

 . (2.40)

The second row of Eq. 2.40 allows the dimer components to be expressed in terms

of the low–energy ones

ψd = (E − hψd
)−1x†ψl. (2.41)

Substituting this into the first row of Eq. 2.40 gives an effective eigenvalue equation

which is only for the low–energy components

[
hψl

+ x(E − hψd
)−1x†

]
ψl = Eψl, (2.42)

[
hψl
− xh−1

ψd
x†
]
ψl = ESψl, (2.43)

where S = 1 + xh−2
ψd
x†, and the second equation is accurate up to linear terms in

energy. Then, we perform a transformation Φ = S1/2ψl

[
hψl
− xh−1

ψd
x†
]
S−1/2Φ ≈ ES−1/2Φ, (2.44)

S−1/2
[
hψl
− xh−1

ψd
x†
]
S−1/2Φ ≈ EΦ. (2.45)

This transformation ensures that the normalization of Φ is consistent with that of
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the original states

Φ†Φ = ψ†l Sψl = ψ†l (1 + xh−2
ψd
x†)ψl,

≈ ψ†lψl + ψ†dψd, (2.46)

where we used equation Eq. 2.41 for small E, ψd = −h−1
ψd
x†ψl. Thus, the effective

Hamiltonian at low energy is given by Eq. 2.45

H(eff) ≈ S−1/2
[
hψl
− xh−1

ψd
x†
]
S−1/2, (2.47)

S = 1 + xh−2
ψd
x†. (2.48)

We apply these general equations to bilayer graphene (Eq. 2.39) giving the follow-

ing 2× 2 blocks:

x =

−v4π
† v3π

vπ U2

 , (2.49)

hψl
=

 U1 vπ†

v3π
† −v4π

 , (2.50)

hψd
=

U2 + δ vπ†

γ1 −v4π
†

 . (2.51)
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Then, using Eqs. 2.47 and 2.48, the 2× 2 Hamiltonian of bilayer graphene is

H = −v
2

γ1

[
1 +

(
v4

v
+

δ

γ1

)2

− (U2
1 + U2

2 )

2γ2
1

] 0 π†
2

π2 0


+

U1 0

0 U2


+v3

 0 π

π† 0


−v

2p2

γ2
1

U1 − U2 − δ 0

0 U2 − U1 − δ


+

2vv4p
2

γ1

1 0

0 1

 . (2.52)

The first term in Eq. 2.52 describes chiral quasiparticles in bilayer graphene with

the direction of pseudospin in (A1, B2) space lying in the graphene plane and re-

lated to that of the electronic momentum, and this term accounts for a quadratic

dispersion ε ≈ v2p2/γ1. In the following, we assume the other terms are a small

perturbation with respect to this dominant one. The second term describes differ-

ent on–site energies U1, U2 on the A1 and B2 sites, and the third term accounts

for trigonal warping due to the presence of skew interlayer coupling γ3 between

the A1 and B2 sites.

For this quadratic Hamiltonian, the quadratic dispersion relation is Es =

sp2/2m, where s is +1(−1) for the conduction (valence) band and m, mass, is

equal to γ1/2v. The eigenstate of the essential part of the above Hamiltonian is

ψs =
1√
2L

 1

−se2iξφ

 eip·r/h̄. (2.53)

For the main term, the probability of the existence of electrons on A or B sites

is the same. While for monolayer graphene the phase difference between electron
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wave functions of A and B sublattices is iξφ, for bilayer graphene, this phase shift is

2iξφ (Eq. 2.53)[13]. The phase difference between A and B sublattices is dependent

on the momentum direction in the space, meaning that bilayer graphene electrons

are chiral.

The main term of the bilayer graphene Hamiltonian determines the main pseu-

dospin and the graphene chirality. According to pseudospin vector definition , σ =

(σx, σy, σz), as we saw the expectation values of this operator for monolayer and

bilayer graphene are 〈σ〉e/h = ±(ξ cosφ, sinφ, 0) and 〈σ〉e/h = ∓(cos 2φ, ξ sin 2φ, 0),

respectively [15]. Consequently, in monolayer graphene, if the momentum turns

2π degree, the pseudospin vector, dependent on the valley, turns parallel or anti–

parallel to the momentum 2π degree. For bilayer graphene, the pseudospin vector

turns twice as fast as that of monolayer graphene.

The second term of the Hamiltonian, the second line of Eq. 2.52, is related to the

broken symmetry between non–dimer sites caused by applying a gate voltage. This

term opens a gap in the bilayer graphene band structure [40]. The third term is the

trigonal warping term which resembles the linear–in–momentum Hamiltonian of

monolayer graphene [13]. However, while the linear term for monolayer graphene

is the main term, the linear term here leads to a Lifshitz transition for bilayer

graphene.

To summarize, we have studied theoretical background and tight–binding model

of monolayer and bilayer graphene in this Chapter. To reach this aim, we have

discussed about unit cell and primitive vectors of monolayer and bilayer graphene

in the direct and in the reciprocal lattice. We have also defined atomic labels,

layer index and on–site energies for bilayer graphene. In addition, general tight–

binding model has been described based on tight–binding parameters and it has

been used to derive monolayer graphene Hamiltonian. Moreover, tight binding

model has been used to extract bilayer graphene Hamiltonian. Then, based on the

method introduced in Ref. [20], low–energy Hamiltonian of bilayer graphene has

been extracted.
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Chapter 3

The Hamiltonian of bilayer

graphene in the presence of an

in–plane magnetic field

3.1 Four component Hamiltonian of bilayer graphene

In this Chapter, we have used orbital effect to write the Hamiltonian of bilayer

graphene in a parallel magnetic field. For simplicity, we neglect Zeeman effect of

the conduction band and focus on the orbital mechanisms [41]. Zeeman effect is

the splitting of a band into two components in the presence of a static magnetic

field. For graphene in a constant magnetic field Zeeman energy is E = gµBB

where for µB as Bohr Magneton, g ≈ 2, Zeeman energy is ±11.56 × 10−5 eV per

Tesla [42]. Hence, experimentally determined Zeeman effect is of order of 10 µeV,

while orbital effect is of order of meV. As a consequence, the Zeeman effect is

neglected.

To derive the bilayer graphene tight–binding Hamiltonian in the parallel mag-

netic field, the Peierls substitution is used. The Peierls substitution method is an

approximation for describing tightly-bound electrons in the presence of a slowly

varying magnetic vector potential [43]. For instance, to determine the Hamiltonian
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element for a process of hopping between the in–plane A and B sublattices, HAB,

we must evaluate the following summation over B sites at the position RBj

HAB = −γ0

3∑
j=1

exp

(
ik · (RBj

−RA)− ie

h̄

∫ RA

RBj

A.dl

)
. (3.1)

Here, k is the electron wave vector, dl is the length differential, and A is the

magnetic field vector potential and it is equal to (zBy,−zBx) where the magnetic

field is B = (Bx, By, 0). We assume the lower layer of the bilayer is located at

z = −d/2, the upper layer at z = +d/2, where d is the interlayer spacing. For

example, to calculate HA1B1 we have

HA1B1 = −γ0

3∑
j=1

exp

(
ik · (RBj −RA)− ie

h̄

∫ RA

RBj

A · dl

)
. (3.2)

We have introduced the first nearest neighbour coordinate in the first chapter.

Consequently, we can write

HA1B1 = −γ0

{
exp

(
ik · (−δ1)− ie

h̄

∫ RA

RB11

(zBy,−zBx) · dl
)

+ exp

(
ik · (−δ2)− ie

h̄

∫ RA

RB12

(zBy,−zBx) · dl
)

+ exp

(
ik · (−δ3)− ie

h̄

∫ RA

RB13

(zBy,−zBx) · dl
)}

. (3.3)

By the substitution of the variables we have

HA1B1 = −γ0

{
exp

(
−iky

a√
3
− ied

2h̄

∫ (0,0, d
2

)

(0, a√
3
, d
2

)

Bydx−Bxdy

)

+ exp

(
−ikx

a

2
+ iky

a

2
√

3
− ied

2h̄

∫ (0,0, d
2

)

(a
2
, −a
2
√
3
, d
2

)

Bydx−Bxdy

)

+ exp

(
ikx

a

2
+ iky

a

2
√

3
− ied

2h̄

∫ (0,0, d
2

)

(−a
2
, −a
2
√
3
, d
2

)

Bydx−Bxdy

)}
. (3.4)
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So, we have

HA1B1 = −γ0

{
exp

(
−iky

a√
3
− ied

2h̄

a√
3
Bx

)
+ exp

(
i

(
−kxa

2
+
kya

2
√

3

)
− ied

2h̄

(
−By

a

2
−Bx

a

2
√

3

))
+ exp

(
i

(
kxa

2
+
kya

2
√

3

)
− ied

2h̄

(
By
a

2
−Bx

a

2
√

3

))}
. (3.5)

This equation is similar to Eq. 2.27 and 2.33 with the difference that px changes

to px − by and py changes to py + bx, where b = edB/2. Consequently, HA1B1 =

v (ξ(px − by) + i(py + bx)). Also, HB1A1 = (HA1B1)
∗.

As a result, we can show that the 4× 4 Hamiltonian of bilayer graphene in the

parallel magnetic field is

H =



U1 vπ†1 −v4π
† v3π

vπ1 U1 + δ γ1 −v4π
†

−v4π γ1 U2 + δ vπ†2

v3π
† −v4π vπ2 U2


. (3.6)

For in–plane momentum p = (px, py, 0), the complex momentum operators are

π1 = π − ξby + ibx for the lower layer, π2 = π + ξby − ibx for the upper layer, and

π = ξpx + ipy for skew interlayer hopping. Here bx = edBx/2, by = edBy/2, and

ξ = ±1 is an index for the two non–equivalent valleys at wave vectors ξ(4π/3a, 0).

Following the procedure described in Sec. 2.5, the low–energy Hamiltonian of

bilayer graphene in a parallel magnetic field in basis
(
Ak
±

1 , Bk±
2

)
is

H = −v
2

γ1

[
1 +

(
v4

v
+

δ

γ1

)2

− (U2
1 + U2

2 )

2γ2
1

] 0 π†
2

π2 0


+

U1 0

0 U2


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+v3

 0 π

π† 0


−v

2p2

γ2
1

U1 − U2 − δ 0

0 U2 − U1 − δ


+

2vv4p
2

γ1

1 0

0 1


+

2v2

γ2
1

(p× b)z

U1 − U2 − δ 0

0 U1 − U2 + δ


−2vv4

γ1

(p× b)z

1 0

0 −1


−vv4

γ2
1

(U1 − U2)

 0 iπ†β†

−iπβ 0


−v

2

γ1

 0 (ξbx − iby)2

(ξbx + iby)
2 0

 , (3.7)

where β = bx + iξby and p = |p|. Here, we neglect those terms which are cubic or

higher in the magnetic field, cubic or higher in vp/γ1 and cubic or higher in other

small parameters (v4/v, δ/γ1, U1/γ1 and U2/γ1).

Including γ3 does not produce magnetic field dependent terms in the Hamilto-

nian, although it will produce small cross terms in the scattering probability. The

fourth and fifth terms are not field dependent but those are quadratic in momen-

tum and lead to small corrections to the dispersion. Instead, magnetic field terms

appear due to different on–site energies (6th term) or due to the inclusion of skew

interlayer coupling γ4 (7th term) and there is a cross term, too (8th term).

In the following, we neglect terms that are proportional to the unit matrix

in (A1, B2) space. Although those which have a small effect on the dispersion

relation (parameters v4 and δ both produce electron–hole asymmetry due to the

p2 terms), they do not influence electronic scattering. In addition, we neglect
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the small quadratic corrections to the first term in Eq. 3.7 because they do not

feature in the results for the scattering rate. Consequently, the Hamiltonian may

be simplified as

H = −v
2

γ1

 0 π†2

π2 0


+

∆

2

[
1− 2v2p2

γ2
1

]1 0

0 −1


+v3

 0 π

π† 0


−2v2

γ1

[
v4

v
+

δ

γ1

]
(p× b)z

1 0

0 −1


−vv4∆

γ2
1

 0 iπ†β†

−iπβ 0


−v

2

γ1

 0 (ξbx − iby)2

(ξbx + iby)
2 0

 , (3.8)

where we denote interlayer asymmetry by ∆ = U1 − U2. In Eq. 3.8, the first line

is the main term, because it is related to γ1 and γ0, the largest hopping factors

[20].

3.2 Symmetry analysis of the Hamiltonian

Here, we check that the Hamiltonian obeys spatial inversion symmetry. To do this,

we write the Hamiltonian Eqs. 3.7 in terms of Pauli matrices in the sublattice and
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the valley spaces:

H = −v
2

γ1

(
1 +

(
v4

v
+

δ

γ1

)2

− U2
1 + U2

2

2γ2
1

)[
(p2
x − p2

y)(Π0σx) + 2pxpy(Πzσy)
]

+

(
U1 + U2

2
− v2p2δ

γ2
1

+
2v2∆

γ2
1

(p× b)z +
2vv4p

2

γ1

)
Π0σ0

+
∆

2

[
1− 2v2p2

γ2
1

]
Π0σz

+v3

[
px(Πzσx)− py(Π0σy)

]
−2v2

γ1

[
v4

v
+

δ

γ1

]
(p× b)zΠ0σz

+
vv4∆

γ2
1

[
(pybx + pxby)(Π0σx) + (pyby − pxbx)(Πzσy)

]
−v

2

γ1

[
(b2
x − b2

y)(Π0σx) + 2bxby(Πzσy)
]
. (3.9)

Here, we use a direct product of AB lattice space matrices σx,y,z and pseudospin

inter/intra valley matrices Π0,x,y,z in order to highlight the different forms of the

Hamiltonian in the non–equivalent valleys (σi are Pauli matrices acting in the

sublattice space, Π0 ≡ 1̂ is acting in the valley space) [44]. The Hamiltonian of

bilayer graphene should be symmetric under inversion symmetry. The inversion

symmetry operator is a (C6Rz)
3 operator which is constructed of 2 generators,

π/3–rotation, C6 and mirror reflection with respect to OZ axis, Rz. While the v,

δ, and γ prefactors are intrinsic parameters of the lattice and are symmetric with

respect to the spatial inversion, the momentum and ∆ change their sign under

spatial inversion. However, the magnetic field does not change under inversion

symmetry. Considering following equations

(C6Rz)
3U1 = U2, (C6Rz)

3U2 = U1, (C6Rz)
3I = I,

(C6Rz)
3Πzσy = Πzσy, (C6Rz)

3Π0σz = −Π0σz, (C6Rz)
3Π0σx = Π0σx,

(C6Rz)
3Πzσx = −Πzσx, (C6Rz)

3Π0σy = −Π0σy.

Consequently, the derived Hamiltonian (Eq. 3.9) is invariant under spatial inver-

sion. It is also possible to show that this Hamiltonian is invariant under time
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reversal symmetry. The appearance of the magnetic field in the form of (p× b)z

in Eq. 3.9 causes the Hamiltonian to be invariant under time reversal symmetry.

To summarize, we have considered the orbital effect of an in-plane magnetic

field on electrons in bilayer graphene. Previously, the orbital effect of an in-plane

magnetic field on the electronic spectrum was modeled [45; 46; 47] using the so–

called minimal tight–binding model which includes only intralayer and vertical

interlayer coupling, accounting for quadratic–in–magnetic field terms in the low–

energy Hamiltonian. Here, we derived linear–in–field terms in the Hamiltonian

arising from skew interlayer coupling and nonuniform on–site energies. We found

two types of term; the first has the form of the Lorentz force, and it causes the

pseudospin (the relative amplitude of the wave function on the two layers) to

acquire a small component perpendicular to the graphene plane. The second

term is off diagonal in the layer space, and it creates a small perturbation of

the pseudospin direction within the graphene plane.
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Chapter 4

The Lifshitz transition of bilayer

graphene in an in–plane magnetic

field

4.1 Introduction

As mentioned in the Introduction, a Lifshitz transition occurs at very low energy

in bilayer graphene. The presence of the linear–in–momentum term in the Hamil-

tonian (the third term in Eq. 3.8) arising from skew interlayer coupling γ3 causes a

distortion of the Fermi circle, known as trigonal warping. At very low energy, this

warping leads to a breaking of the Fermi surface into four different pockets ??,

Fig. 4.1. In this Chapter, we aim to determine the influence of the in-plane mag-

netic field on the Lifshitz transition. Interlayer asymmetry, ∆, will be neglected

because its effect is already well understood (it opens a gap) [20].

The influence of an in-plane field has been considered previously [48; 45; 46;

47; 49; 50], but simplified tight-binding models were used that neglected small

tight-binding parameters such as γ4 and δ. Thus, they included the quadratic in

magnetic field term, but not the linear one, Eq. 3.8. Our aim is to include the

linear one, too. To begin, we will estimate the magnitude of the linear term as
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compared to the quadratic one,

linear

quadratic
∼ 2∆4p

b
=

4∆4 |p|
ed |B|

, (4.1)

where ∆4 = v4/v + δ/γ1. We will estimate the value of this ratio at a magnetic

field of 1 Tesla and a momentum value corresponding to the centre of one of the

Fermi surface pockets, p = γ1v3/v
2 [19]. Then, we find that

linear

quadratic
∼ 4∆4γ1v3

ed |B| v2
∼ 28. (4.2)

This then shows that the linear term is indeed relevant for the Lifshitz transi-

tion, at least for realistic values of magnetic field. In Section 4.2, we begin the

analysis of the influence of the field on the Lifshitz transition by considering the

quadratic–in–field term only. Then, in Section 4.3, we will include the full model

that incorporates the linear–in–field term.

Figure 4.1: Low–energy isoenergetic contours for zero magnetic field. Figure determined with
numerical calculations as described in Section 4.2. For k+ valley the lowest energy conduction
band is considered. Constant energy contours in the

(
νpx/γ1, νpy/γ1

)
for ε/γ1 = −0.002, ε/γ1 =

−0.004, ε/γ1 = −0.020, and ε/γ1 = −0.059 at zero magnetic field.
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4.2 The effect of in–plane magnetic field on the

Lifshitz transition, neglecting small parame-

ters γ4 and δ

To visualise the Lifshitz transition, we plot constant energy contours, as in Fig. 4.1.

To derive such contours, the 4 × 4 Hamiltonian of bilayer graphene, Eq. 3.6, was

used with U2 = U1 = 0 and γ4 = δ = 0. We introduce dimensionless variables

vpx
γ1

,
vpy
γ1

(4.3)

and multiply the Hamiltonian by 1/γ1. Then, we choose either conduction or va-

lence bands and depict the isoenergetic contours. The result for non–zero magnetic

field is depicted in Fig. 4.2.

Fig. 4.2 shows the effect that a 200T in–plane magnetic field in the x direction

has on the Lifshitz transition. Comparison of Fig. 4.1 and Fig. 4.2 shows that

the in–plane magnetic field affects the Lifshitz transition, albeit at an extremely

high field value (note, however, that we only take the quadratic–in–plane field

contribution into account at this stage). To determine the possible locations of

turning points and Dirac points in the spectrum, it is convenient to use the 2× 2

Hamiltonian, Eq. 3.8. Then, we introduce a new set of dimensionless variables p̃x,

p̃y, β̃:

p̃x =
px
Kb

, p̃y =
py
Kb

, β̃ =
β

Kb

=
edB

2Kb

, (4.4)

where the typical momentum scale is given by

Kb = mv3. (4.5)

We multiply the Hamiltonian by 2m/K2
b to make the Hamiltonian dimensionless,

too. Then we calculate the eigenvalues for one valley which are dependent on β̃

and the direction of the magnetic field ϕ. To find saddle points and maxima and
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Figure 4.2: Low–energy isoenergetic contour for magnetic field along the x axis. Isoenergetic
contours in k+ valley for the first valence band are depicted, considering v4 = 0 and δ = 0.
Constant energy contours in the

(
νpx/γ1, νpy/γ1

)
for ε/γ1 = −0.002, ε/γ1 = −0.004, ε/γ1 =

−0.020, and ε/γ1 = −0.059 kept in a 200T magnetic field in x direction. Isoenergetic contours
for the conduction band are the same.

minima, first, we calculate the eigenvalue squared. Then, the partial derivative

of the eigenvalue squared is determined for p̃x and for p̃y. Then, we find those

(p̃x, p̃y) for which the partial derivatives are simultaneously zero. Of these points,

Dirac points are where the squared eigenvalue is also equal to zero. Fig. 4.3 shows

the resulting contour plots for different magnetic field strengths and orientations.

Consequently, we can distinguish three phases shown in Fig. 4.3. If the magnetic

field is equal to zero, there are four Dirac Points (DPs) in band structure. In

addition, for 0 < β < 2 and the field directed along the x–axis the number of DPs

is also four. For 2 < β < 5, there are two DPs and one local minima in the band

structure of bilayer graphene. Then, for stronger magnetic field, there are only

two Dirac points.

However, these phases are dependent on the orientation of the magnetic field.

As depicted in Fig. 4.3, if the magnetic field direction is π/2, by the increase of

magnetic field a phase transition from four DPs to two DPs happens. In addition,
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according to this figure, for stronger fields, by π/2 rotation of the magnetic field,

DPs will also rotate in the p–plane as much as π/2, Fig. 4.3. In order to summarise

the different situations shown in the contour plots, Fig. 4.3, we derive a phase

diagram as a function of magnetic field. To do this, we use the 2× 2 Hamiltonian

Eq. 3.8. For γ3 = 0, we consider the first and last terms of Eq. 3.8, and ignore all

other terms. Then, the low–energy eigenvalue of this Hamiltonian is determined:

ε2 =
p4

4m2
+

β2

8m2
p2 cos[2(ϕ− φ)] +

β2

64m2
. (4.6)

The Dirac points of the spectrum are given by the roots of this equation: it has

two roots for ϕ− φ = nπ, n = ±1, and p = ±β/2.

To determine the phase diagram with γ3 6= 0, according to Fig. 4.3, first we

distinguish the range of magnetic field where there are four DPs. The condition

is fulfilled when the imaginary part and the real part of one of the off–diagonal

terms of the Hamiltonian are equal to zero at the same time, so that for derived

dimensionless (p̃x, p̃y) points, ε̃ = 0 is also satisfied. In Cartesian coordinates, for

a non–zero magnetic field, we have

ε̃2 =
(
p̃2
x + p̃2

y

)2 − 4p̃x
(
p̃2
x − 3p̃2

y

)
+ 4
(
p̃2
x + p̃2

y

)
+

1

2
β̃2
y

(
p̃2
y + 2p̃x − p̃2

x

)
+

1

8
β̃2
x

(
− 4p̃2

y + 4p̃2
x − 8p̃x + β2

y

)
+2β̃xβ̃y

(
1 + p̃x

)
p̃y +

1

16
β̃4
x +

1

16
β̃4
y = 0, (4.7)

The real part of one of the diagonal terms:

p̃2
y + p̃2

x + 2p̃x +
1

4
β̃2
y −

1

4
β̃2
x = 0. (4.8)

The imaginary part of one of the diagonal terms:

2p̃y + 2p̃yp̃x +
1

2
β̃xβ̃y = 0. (4.9)
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Figure 4.3: Isoenergetic contours of conduction low–energy band of bilayer graphene under

in–plane magnetic field for magnetic field in the ϕ = 0 and the ϕ = π/2 direction, where
{
β̃, ϕ

}
are determined for each diagram where black points are DPs and grey points are saddle points or
minima. In addition, for all of contour diagrams, shorter wavelength of colour indicates higher
energy of the band structure. We use δ = γ4 = ∆ = 0.
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These equations can be solved numerically. The result of such a procedure is shown

in Fig. 4.4 which shows the phase diagram.

In fact, the determinant of the Hessian matrix is a determining factor for the

phase diagram, as well. If the determinant of the Hessian matrix is positive, there

is a local extremum there. If the determinant of the Hessian matrix is negative

there is a saddle point and if it is zero, no conclusion can be made.

The area of the phase diagram where there are two DPs should be separated

into two parts. One part contains two DPs and one minimum, and the other con-

tains two DPs only. To find the borders between these parts, first, the determinant

of the Hessian matrix of the second derivative should be equal to zero:

det Hessian = 16(4 + 28p̃2 + 3p̃4 + 12p̃3 cos 3φ
)

−
(
β̃2
x + β̃2

y

)2
+ 8p̃2

(
β̃2
x − β̃2

y

)
cos 2φ

+16
(
β̃xβ̃yp̃

2 sin 2φ+ 6β̃xβ̃yp̃ sinφ

+3
(
β̃2
x − β̃2

y

)
p̃ cosφ

)
= 0. (4.10)

In addition, two derivatives of the dispersion relation should be equal to zero

p̃
(
8+4p̃2

)
cosφ−12p̃2 cos 2φ+2p̃β̃xβ̃y sinφ+p̃ cosφ

(
β̃2
x−β̃2

y

)
+β̃y

2−β̃x
2

= 0, (4.11)

p̃ sinφ
(
8 + 4p̃2 + 24p̃ cosφ

)
− p̃ sinφ

(
β̃x

2 − β̃y
2)

+ 2β̃xβ̃y
(
1 + cosφ

)
= 0. (4.12)

Solutions of these equations occur for p̃ = 1 (i.e. p = Kb). For this magnitude of

p̃, if the magnetic field is zero, saddle point are a distance Kb from the origin [21].

Then, we determine the values of β̃x, β̃y and φ which solve the above equations.

The boundaries of the phase diagram are thus found by plotting all these (β̃x,β̃y)

values for 0 ≤ φ ≤ π/2.
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Figure 4.4: Phase diagram of bilayer graphene in a parallel magnetic field where (β̃x, β̃y)
indicates dimensionless magnetic field as described in the main text. The yellow region is where
the low–energy dispersion of bilayer graphene has four DPs, the red region is where there are
two DPs and one minimum. The white part is where there are two DPs. We set δ = γ4 = ∆ = 0.
Note that β̃ = 1Kb is equal to a magnetic field strength about 138 Tesla.

4.3 The effect of in–plane magnetic field on the

Lifshitz transition taking small parameters

γ4 and δ into account

To take account of γ4 and δ, we consider the Hamiltonian of bilayer graphene in a

parallel magnetic field (Eq. 3.8 with ∆ = 0):

H = −v
2

γ1

 0
(
ξpx − ipy

)2(
ξpx + ipy

)2
0

+ v3

 0 ξpx + ipy

ξpx − ipy 0


−2v2

γ1

(
v4

v
+

δ

γ1

)(
p × b

)
z

1 0

0 −1

− v2

γ1

 0
(
ξbx − iby

)2(
ξbx + iby

)2
0

 .

(4.13)

The linear–in–magnetic field term was not considered in Section 4.2. We make H

dimensionless by dividing by γ1 and we use Z = vp/γ1, x = vpx/γ1, y = vpy/γ1,

47



β = vb/γ1, ∆4 = v4/v + δ/γ1 and ∆3 = v3/v, to show that

H

γ1

= −

 0
(
ξx− iy

)2(
ξx+ iy

)2
0

+ ∆3

 0 ξx+ iy

ξx− iy 0


−2∆4

(
Z× β

)1 0

0 −1

−
 0

(
ξβx − iβy

)2(
ξβx + iβy

)2
0

 . (4.14)

Consequently, we have

E

γ1

− H

γ1

=

ε+ 2∆4

(
Z× β

)
z

Θ

Θ† ε− 2∆4

(
Z× β

)
z

 , (4.15)

where Θ =
(
ξx− iy

)2−∆3

(
ξx+ iy

)
+
(
ξβx− iβy

)2
and ε = E/γ1. The eigenvalue

of this Hamiltonian is given by

ε =

[
4∆2

4

(
Z× β

)2

z
+
∣∣∣(ξx− iy)2 −∆3

(
ξx+ iy

)
+
(
ξβx − iβy

)2
∣∣∣2 ] 1

2

. (4.16)

To get a DP the eigenvalue should be zero. The ∆4 term tends to open a gap in

the spectrum, dependent on the relative direction of p and B. It is either positive

or zero. In addition, the second part is the modulus of a complex number, so it is

also either zero or a positive number. For the first term to be zero, we must have

p ‖ B. Note that p = 0 is not a DP, because of the finite magnetic field in the

second term.

To find a DP, the second part of Eq. 4.16 should be equal to zero under the

constraint that p ‖ B. To find these zeroes, we set the magnetic field direction to

be parallel to the momentum:

βx = sαx, βy = sαy, α =
|β|
Z
, (4.17)

where s = +1(−1) for parallel (anti–parallel) magnetic field and momentum, |β| =

48



√
β2
x + β2

y and Z =
∣∣Z̄∣∣ =

√
x2 + y2. Then, we need to solve

2ndterm =
∣∣∣(ξx− iy)2 −∆3

(
ξx+ iy

)
+
(
ξsαx− isαy

)2
∣∣∣2 = 0, (4.18)

⇒
∣∣∣(1 + α2)

(
ξx− iy

)2 −∆3

(
ξx+ iy

)∣∣∣2 = 0. (4.19)

To solve this equation, we use polar coordinates with ξx + iy = ξZ exp(iξφ) and

determine the modulus squared,

(
1 +
|β|2

Z2

)2

Z2 − 2ξ∆3

(
1 +
|β|2

Z2

)
Z cos 3φ+ ∆2

3 = 0. (4.20)

We define a new variable ζ =
(
1 + |β|2 /Z2

)
Z giving

ζ2 − 2ξ∆3ζ cos 3φ+ ∆2
3 = 0. (4.21)

However, this is just the equation that would have come from the Hamiltonian for

field B = 0 for which the location of the DPs is known as shown in Fig. 4.1 [19].

To find a Dirac point, because the first part and the last part are always

positive, the second term should always be negative and its angular part should

be a maximum. Hence, for ξ = 1, φ should be 0◦, 120◦ and −120◦. For the other

valley (ξ = 1) these angles should be 180◦, 60◦ and −60◦ and magnitude of the

momentum is ζ = ∆3, i.e. p = γ1v3/v
2 [19].

For the magnetic field dependent answer, we can use the same solution ζ = ∆3

in combination with the definition of ζ, ζ = (1 + |β|2 /Z2)Z, for |β| 6= 0, yielding

Z2 − Z∆3 + β2 = 0. The two solutions of the equation Z2 − Z∆3 + β2 = 0 are

Z =
1

2

(
−
√

∆2
3 − 4β2 + ∆3

)
, (4.22)

and

Z =
1

2

(
+
√

∆2
3 − 4β2 + ∆3

)
. (4.23)

49



Hence, we have

p =
γ1

2v

−
√
v3

v
− 4

(
v

γ1

ed

2
B

)2

+
v3

v

 , (4.24)

and

p =
γ1

2v

√v3

v
− 4

(
v

γ1

ed

2
B

)2

+
v3

v

 . (4.25)

Consequently, for 0 < β < ∆3/2 there are two Dirac points, and as the value of β

increases, they move towards each other. At β = ∆3/2, they annihilate and, for

higher magnetic field values, there are no DPs, only a gapped spectrum. The value

β = ∆3/2 corresponds to an actual field value of B = 138T. Note, however, that

such DPs, only occur at certain angles 0◦, 120◦, −120◦ for the first valley (ξ = +1),

and there is an additional constraint that p ‖ B. In other words, there can only

be Dirac points for the first valley (ξ = +1) if B is oriented in directions 0◦, 60◦,

120◦, 180◦, −60◦, −120◦ (B can be in the opposite direction to p, too). Numerical

results are derived based on the method described in Sec. 4.2 by Eq. 4.4. The

analytical results are consistent with numerical results (Fig. 4.5).

For magnetic field in the opposite direction, the band structure is the same.

So, the phase diagram of bilayer graphene in a parallel magnetic field is as shown

in Fig. 4.6. For most directions of B, the spectrum is gapped but, for 6 special

directions, there are two Dirac points (assuming |B| < 138 T). This Chapter

has shown, comparing Fig. 4.4 and 4.6, that the linear–in–magnetic field term,

arising from the presence of small parameters γ4 and δ, has a dramatic effect

on the band structure at low energy. Nevertheless, such effects should only be

noticeable in an experiment using extremely high magnetic field values. In the next

Chapter, we consider the influence of the magnetic field on electronic scattering,

this requires much smaller magnetic fields to produce an experimentally relevant

effect as compared to band structure changes.

To summarize, we have studied the topology of the low–energy band structure

of bilayer graphene. At low energy, small parameters skew interlayer coupling and

nonuniform on–site energies have been considered. We have shown that as the
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Figure 4.5: Schematic of isoenergetic contours for k+ valley for γ4 6= 0, δ 6= 0 considering the
lowest energy conduction band; dark black points are DPs while the grey points are extrema.{
β̃, ϕ

}
is written on each diagram.

Figure 4.6: Schematic of the phase diagram of bilayer graphene considering all hopping factors
(including γ4 and δ) where B1 = (v3γ1)/(v2ed) is about 138 T. Black lines determine the magnetic
field strength and direction where there are 2DPs in the band structure and the white area is the
area where there are no DPs in the band structure of bilayer graphene (the spectrum is gapped).

result of this consideration, phase diagram is changed drastically, so that there are

only two phases in this diagram. For one phase, in specific directions, there are

only two Dirac points for magnetic field under 138 T and other phase is no Dirac

point phase.
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Chapter 5

Ratchet current in bilayer

graphene

5.1 Introduction

The magnetic ratchet effect is the production of a dc electric current in response

to a steady in–plane magnetic field and an alternating electric field, in the pres-

ence of spatial asymmetry [31]. This is similar to what happens in a mechanical

ratchet machine in which an alternating applied force causes a one way rotation

of a ratchet wheel. The magnetic ratchet effect has been studied theoretically in

semiconductor quantum wells [31; 41; 51] in which the inversion symmetry has

been broken and a laser radiation creates an alternating electric field [30]. Exper-

imental observation of the magnetic ratchet effect has been reported in monolayer

graphene with symmetry broken by the presence of adatoms [29] or a superlattice

[30] (for a review of nonlinear optical and optoelectronic effects in graphene see

Ref. [52]).

The magnetic quantum ratchet effect is more intriguing in bilayer graphene.

We describe two different mechanisms to break inversion symmetry, either a dif-

ferent density of impurities on the two layers of the bilayer or interlayer–symmetry

breaking due to the presence of an external gate, the latter mechanism provid-
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ing a natural way to tune the ratchet effect. By comparison with the analysis

of Ref. [29], we predict the ratchet effect to be up to two orders of magnitude

greater in bilayer graphene than in monolayer. According to Fig. 5.1, for bilayer

Figure 5.1: Bilayer graphene (blue circles) illustrating the ratchet effect in the presence of an
in–plane magnetic field B (out of the page), an alternating electric field E (to the right or to the
left) and layer asymmetry illustrated by impurities (red circles) on the upper layer. Electrons
are driven towards the lower or upper layer by the Lorentz force, resulting in a relatively high or
low mobility, depending on the presence of impurities.

graphene where the asymmetry is caused by a larger density of impurities on the

upper layer, laser radiation which produces an alternating electric field breaks the

equilibrium. For a given direction of electric field (to the right as shown in the left

side of Fig. 5.1), electrons are driven downwards by the Lorentz force towards the

lower layer where, owing to an absence of impurities, the mobility is relatively high.

When the electric field alternates to the opposite direction, electrons are driven

upwards towards the upper layer where, owing to the presence of impurities, the

mobility is relatively low. Asymmetry in mobility depending on the direction of

electron motion leads to the presence of a non–zero dc current [51; 29]. Here, we

contend that bilayer graphene is a natural system in which spatial symmetry may

be broken and, thus, in which the magnetic ratchet could be observed.

To model it, we use the tight–binding model in the presence of a magnetic field

as described in Chapter 3 and we employ the Boltzmann kinetic equation (BKE)
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to calculate the current. To begin, we make some remarks about the general form

of the magnetic ratchet current and the response to different polarisations of light.

5.1.1 Symmetry of the current

In the presence of an alternating electric field with components Ex, Ey, and a

steady magnetic field with components Bx, By, the resulting current density is J.

J and E are vectors and B is an axial vector. Under a π/2 degree rotation of the

coordinates, in the x− y plane, we can show that

Jnewx = Jy, Jnewy = −Jx, Enew
x = Ey, Enew

y = −Ex, Bnew
x = By, Bnew

y = −Bx,

while the direction of a perpendicular magnetic field (if present) remains un-

changed. Also, reflection from the z − y plane results in

Jnewx = −Jx, Jnewy = Jy, Enew
x = −Ex, Enew

y = Ey, Bnew
x = −Bx, Bnew

y = By,

and, for perpendicular magnetic field, Bnew
z = Bz. Using these symmetry relations,

it is possible to derive the general form of the dc ratchet current [52]:

Jx = M1[By(|Ex|2 − |Ey|2)−Bx(ExE
∗
y + EyE

∗
x)]

+M2By |E|2 +M3Bxi(ExE
∗
y − EyE∗x), (5.1)

Jy = M1[Bx(|Ex|2 − |Ey|2) +By(ExE
∗
y + EyE

∗
x)]

−M2Bx |E|2 +M3Byi(ExE
∗
y − EyE∗x). (5.2)

Here, the coefficients M1, M2, M3 describe the current response to different light

polarizations. The coefficients M1, M2, M3 are zero in systems with spatial inver-

sion symmetry because current density J and electric field E are odd with respect

to spatial inversion, whereas the magnetic field B, being an axial vector, is even
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(this is the case for the second-order nonlinear susceptibility in general) [22? ].

Linearly polarized light- For linearly polarized light, the form of the electric

field in the x and y directions are

E‖x = E0 cos θ, (5.3)

E‖y = E0 sin θ, (5.4)

where θ is the polarization angle. By substitution of these equations in Eqs. 5.1

and 5.2, we have

Jx = M1[ByE
2
0cos 2θ −BxE

2
0 sin 2θ] +M2ByE

2
0 . (5.5)

So, the M1 and M2 terms are non–zero, but the M3 term is zero. A similar analysis

could be done for y direction.

Unpolarized light- Unpolarized light can be considered to be linearly–polarized

light with a time–dependent polarization angle. The response of the electronic sys-

tem to unpolarized light is the average of such radiation with respect to the time.

As a result, the mathematical form of an unpolarized light is

E‖x(t) = |E| cos θt, (5.6)

E‖y(t) = |E| sin θt, (5.7)

and the t index indicates time dependent parameters. By substitution of 5.6 and

5.7 in Eqs. 5.1 and 5.2, we can show that the M2 term is non–zero, but the M1

and M3 terms are zero. This can be seen from Eq. 5.5, where an average over θt

of the M1 term yields zero because the averages of cos 2θt and sin 2θt are zero.

Circular polarized light- If µ = +1 and µ = −1 are referred to as left–hand

and right–hand circular polarized light, respectively, then, for circularly–polarized
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light, the form of E‖x and E‖y are

E‖x = E0, (5.8)

E‖y = iµE0. (5.9)

Substitution into Eqs. 5.1 and 5.2 shows that the M2 and M3 terms remain non–

zero, but the M1 term is zero. Thus, to summarize, M2 characterizes the effect of

unpolarized light, M1 describes additional terms if the light is linearly–polarized,

M3 describes additional terms for circular polarization.

To calculate the ratchet current, we use the Boltzmann kinetic equation and

we calculate the electron scattering rate by use of the eigenstates of the low–

energy Hamiltonian of bilayer graphene discussed in the previous Chapter. This

is described in the next Section.

5.2 Boltzmann kinetic equation

In statistical mechanics, the equilibrium distribution of particles over a set of en-

ergy levels obeys the Fermi–Dirac distribution function. In a non–equilibrium

statistical system, δf describes the change of the Fermi distribution function de-

fined by the BKE. BKE describes the statistical behaviour of a thermodynamic

system not in thermodynamic equilibrium [53]. The Boltzmann kinetic equation,

which is a semiclassical point of view, suggests a method to calculate the time de-

pendent distribution function of electrons out of equilibrium; the non–equilibrium

distribution of a 2D electron gas produced by an external force could be the source

of a current. The general form of the Boltzmann kinetic equation is

∂f

∂t
=

(
∂f

∂t

)
force

+

(
∂f

∂t

)
diff

+

(
∂f

∂t

)
coll

. (5.10)

Based on the above equation, the change of the electron distribution function with

time is caused by the applied external force, time dependent internal forces and the
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force acting on the electrons during collisions, respectively. For a 2D electron gas

in a parallel magnetic field and under perpendicular laser radiation, the in–plane

electric field of the laser is the source of the external force and, consequently, the

in–plane current. Because the Lorentz force caused by the in–plane magnetic field

pushes electrons perpendicular to the graphene plane, the in–plane electric field,

E‖(t), is the source of the in–plane alternating electron motion.

If E‖(t) is considered as a complex amplitude of the electric field, we have

E||(t) = E‖e
−iωt + E∗‖e

iωt, (5.11)

where ω is the angular frequency of the laser radiation. Consequently, the Boltz-

mann kinetic equation for a 2D electron gas under laser radiation and consisting

of particles with energy ε and momentum p = (px, py) is

∂f(p, t)

∂t
− eE‖(t) ·

∂f(p, t)

∂p
= Stf(p, t). (5.12)

In this equation, the electron distribution function, f(p, t), is dependent on the

electron momentum and the time, e is the electron charge, and Stf(p, t) is the

collision integral [51]. For Wp′p as the rate of the elastic scattering between in-

coming electrons with a momentum p and outgoing electrons with a momentum

p′, the collision integral is

Stf(p, t) =
∑
p′

[Wpp′f(p′, t)−Wp′pf(p, t)]. (5.13)

Additionally, according to the golden rule, the transition rate between p and p′

states under a scattering potential, Vp′p, is

Wp′p =
2π

h̄
〈|Vp′p|2〉δ(εp − εp′), (5.14)

where angular brackets indicate an average over impurity positions. For a per-
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turbed electron gas the scattering rate may be written as

Wp′p = W
(0)
p′p + δWp′p, (5.15)

where W
(0)
p′p is the rate of the electron scattering in the absence of parallel magnetic

field, and δWp′p is the change of the scattering rate because of the magnetic field.

5.3 General expression of Boltzmann kinetic equa-

tion

For electrons in a huge box with periodic boundary conditions, the density of states

is Γ = p/(2πh̄2vg), where vg = dε/dp. To solve the Boltzmann kinetic equation

(Eq. 5.12), we use cylindrical coordinates:

−eE · ∇ρf(p, t) +
∂f(p, t)

∂t
= St(f), (5.16)

where

∇ρ =
∂f

∂ρ
eρ +

1

ρ

∂f

∂φ
eφ +

∂f

∂z
ez. (5.17)

The z dependence for our system (a 2D material) is equal to zero. Consequently,

the BKE in cylindrical coordinates is

−eE ·
(
∂f

∂p
ep +

1

p

∂f

∂φ
eφ

)
+
∂f

∂t
= St(f). (5.18)

By substitution of eφ = (− sinφ, cosφ, 0) and ep = (cosφ, sinφ, 0) in Eq. 5.18, we

have

−e(Ex cosφ+ Ey sinφ)
∂f

∂p
− e

p

∂f

∂φ
(−Ex sinφ+ Ey cosφ) +

∂f

∂t
= St(f). (5.19)
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In a parallel magnetic field, we write the linear–in–field part of the scattering rate

of a system of length L as

δWp′p =
1

L2
|u(p′ − p)|2 δ(εp − εp′)

×
{

(Ω0 − Ωc cos[2(φ′ − φ)])
[
Bx

(
py + p′y

)
−By (px + p′x)

]
+Ωs sin[2(φ′ − φ)]

[
Bx (p′x − px) +By

(
p′y − py

)]}
, (5.20)

this form will be justified when considering bilayer graphene in Section 5.4 We

perform a harmonic expansion of the impurity potential,

|u(p′ − p)|2 =
∑
m

νme
im(φ′−φ). (5.21)

The fact that it is an even function of (φ′−φ) leads to the constraint that νm = ν−m.

To determine the current by the Boltzmann kinetic equation (Eq. 5.12) we use a

harmonic expansion method. We write that f(p, t) as a series with two indices

(n,m):

f(p, t) =
∑
n,m

fnme
(imφ−inωt), (5.22)

where φ is the polar angle of momentum. To quantify the dc current caused by an

alternating electric field, it is necessary to determine time–independent asymmetric

parts of the distribution function: the f 0
±1 terms. Considering the fnm prefactors

as a function of energy, we can show that BKE has the form

e(Ex cosφ+ Ey sinφ)
dε

dp

∑
n,m

dfnm
dε

eimφ−inωt

−ie
p

(−Ex sinφ+ Ey cosφ)
∑
n,m

mfnme
imφ−inωt

+iω
∑
n,m

nfnme
imφ−inωt

= −St(f). (5.23)
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We consider Ex and Ey to be complex numbers

E‖x(t) = E‖xe
−iωt + E∗‖xe

−iωt, (5.24)

E‖y(t) = E‖ye
−iωt + E∗‖ye

−iωt. (5.25)

Multiplying the Boltzmann equation Eq. 5.23 by a factor exp(−ijφ+ ilωt), where

j, l are integers, and integrating over a period 2π of angle φ and a period of time T ,

leads to coupled equations between different harmonic coefficients. For simplicity,

we write these coupled equations using six different parts, named as A, B to G

terms. In addition, by considering ∂f/∂p = (dε/dp)df/dε, we have

e
dε

dp
(A+B) +

ie

p
(C +D) + iωF = −G− δS, (5.26)

where

A =
1

2

d

dε

[
E‖x

(
f l−1
j−1 + f l−1

j+1

)
+ E∗‖x

(
f l+1
j−1 + f l+1

j+1

)]
, (5.27)

B =
−i
2

[
E‖y

(
df l−1

j−1

dε
−

df l−1
j+1

dε

)
+ E∗‖y

(
df l+1

j−1

dε
−

df l+1
j+1

dε

)]
, (5.28)

C =
i

2

[
E‖x

(
(j − 1)f l−1

j−1 − (j + 1)f l−1
j+1

)
+ E∗‖x

(
(j − 1)f l+1

j−1 − (j + 1)f l+1
j+1

)]
, (5.29)

D =
1

2

[
E‖y

(
(j − 1)f l−1

j−1 + (j + 1)f l−1
j+1

)
+ E∗‖y

(
(j − 1)f l+1

j−1 + (j + 1)f l+1
j+1

)]
,

(5.30)

F = lf lj, (5.31)

G = −τ−1
|j| f

l
j, (5.32)

and we will discuss δS which is the perturbed term explicitly later. Here, we show

explicitly how term A is derived:

A =

∫ 2π

0

∫ T

0

eilωtEx cosφ
∑ dfnm

dε
ei(m−j)φ−inωt

dt

T

dφ

2π
,

=

∫ 2π

0

∫ T

0

eilωt
(
E‖xe

−iωt + E∗‖xe
−iωt) cosφ

∑ dfnm
dε

ei(m−j)φ−inωt
dt

T

dφ

2π
,
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=

∫ 2π

0

cosφ
∑ dfnm

dε
ei(m−j)φ

dφ

2π

∫ T

0

ei(l−n)ωt
(
E‖xe

−iωt + E∗‖xe
−iωt) dt

T
,

=

∫ 2π

0

cosφ
∑ dfnm

dε
ei(m−j)φ

dφ

2π

∫ T

0

(
E‖xe

i(l−1−n)ωt + E∗‖xe
i(l+1+n)ωt

) dt

T
,

=

∫ 2π

0

cosφ
∑ dfnm

dε
ei(m−j)φ

dφ

2π

(
E‖xδn,l−1 + E∗‖xδn,l+1

)
,

=
∑ dfnm

dε

(
E‖xδn,l−1 + E∗‖xδn,l+1

) ∫ 2π

0

cosφei(m−j)φ
dφ

2π
,

=
∑ dfnm

dε

(
E‖xδn,l−1 + E∗‖xδn,l+1

) ∫ 2π

0

1

2

(
eiφ + e−iφ

)
ei(m−j)φ

dφ

2π
,

=
∑ dfnm

dε

(
E‖xδn,l−1 + E∗‖xδn,l+1

) ∫ 2π

0

1

2

(
ei(m−(j−1))φ + ei(m−(j+1))φ

) dφ

2π
,

=
1

2

∑ dfnm
dε

(
E‖xδn,l−1 + E∗‖xδn,l+1

)
(δm,j−1 + δm,j+1) ,

=
1

2

(
E‖x

df l−1
m

dε
+ E∗‖x

df l+1
m

dε

)
(δm,j−1 + δm,j+1) ,

=
1

2

d

dε

[
E‖x

(
f l−1
j−1 + f l−1

j+1

)
+ E∗‖x

(
f l+1
j−1 + f l+1

j+1

)]
. (5.33)

The calculations related to other terms are provided in Appendix A. By combining

terms, we can show that Eq. 5.26 may be written as

f
(l)
j

(
τ−1
|j| − ilω

)
= αj−1f

(l−1)
j−1 + ηj+1f

(l−1)
j+1 + α̃j−1f

(l+1)
j−1 + η̃j+1f

(l+1)
j+1 + δS

(l)
j , (5.34)

where the scattering rate (in the absence of magnetic field) is defined as

τ−1
|j| =

2π

h̄

∑
p′

|〈p′ |δH|p〉|2 δ(εp − εp′) [1− cos (j[φ′ − φ])] , (5.35)

in the following, we write τ1 = τ for simplicity. Operators arising from the electric

field in the Boltzmann kinetic equation are

αj =
e(Ex − iEy)

2

(
−j
p

+
∂

∂p

)
, (5.36)

α̃j =
e(E∗x − iE∗y)

2

(
−j
p

+
∂

∂p

)
, (5.37)

ηj =
e(Ex + iEy)

2

(
j

p
+

∂

∂p

)
, (5.38)
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η̃j =
e(E∗x + iE∗y)

2

(
j

p
+

∂

∂p

)
. (5.39)

The factors δSlj in Eq. 5.34 describe the correction to scattering caused by the

magnetic field. Substitution of this expression into the collision integral Eq. 5.13

gives the terms δSlj; the relevant ones have small values of j;

δSl0 = 0,

δSl1 =
1

2
pΓ(ε)(By − iBx)Λ1f

l
2,

δSl−1 =
1

2
pΓ(ε)(By + iBx)Λ1f

l
−2,

δSl2 =
1

2
pΓ(ε)

[
(By + iBx)Λ1f

l
1 + (By − iBx)Λ2f

l
3

]
,

δSl−2 =
1

2
pΓ(ε)

[
(By − iBx)Λ1f

l
−1 + (By + iBx)Λ2f

l
−3

]
, (5.40)

where

Λ1 = Ω(ν0 − ν2) +
1

2
Ωc(ν0 − 2ν2 + ν4) +

1

2
Ωs(ν0 − 2ν1 + 2ν3 − ν4), (5.41)

Λ2 = Ω(ν0+ν1−ν2−ν3)+
1

2
Ωc(ν0−2ν2−ν3+ν4+ν5)−1

2
Ωs(ν0−ν3−ν4+ν5). (5.42)

The current density is [54]

J = − g

L2

∑
p

evgf(p, t), (5.43)

where f(p, t) is defined by Eq. 5.22, g is degeneracy factor of electrons, and vg is

group velocity, the velocity of an electronic wave produced in the material.

In this thesis the total derived current for bilayer graphene is

J = J(0) + J(1) + J(2) + ..., (5.44)

where we have

J(0) = − g

L2

∑
p

evg
(
f 0

1 e
iφ + f 0

−1e
−iφ) , (5.45)
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J(1) = − g

L2

∑
p

evg
(
f 1

1 e
iφ−iωt + f−1

1 eiφ+iωt + c.c
)
, (5.46)

J(2) = − g

L2

∑
p

evg
(
f−2
−1 e

iφ−2iωt + f 2
−1e

iφ+2iωt + c.c
)
. (5.47)

To derive this current we have used two equations:

∫ 2π

0

vg(A cosφ+B sinφ)
dφ

2π
=
vg
2

(iA+ jB), (5.48)

and

∑
p

(...) = L2Γ(ε)

∫ 2π

0

dφ

2π

∫
(...)dε,

=
L2

4π2h̄2

∫ 2π

0

dφ

∫ ∞
0

(...)pdp. (5.49)

To derive J (0), we define δf = f 0
1 exp(iφ) + f 0

−1 exp(−iφ). According to Eq. 5.43

[51? ], we have

δf =
e2Λ1Γ(ε)Byττ2

4

×
[
(|Ex|2 − (|Ey|2) cosφ+ (ExE

∗
y + EyE

∗
x) sinφ

]
×
(
p
∂

∂p
− 1

)(
1

1 + iωt
+

1

1− iωt

)
τ
∂f 0

0

∂p

+
e2Byτ

4

{[
(|Ex|2 + (|Ey|2) cosφ− (ExE

∗
y − EyE∗x) sinφ

]
×
(

2

p
+

∂

∂p

)
Λ1Γ(ε)pττ2

(1− iωτ2)(1− iωτ)

∂f 0
0

∂p

+
[
(|Ex|2 + |Ey|2) cosφ+ (ExE

∗
y − EyE∗x) sinφ

]
×(

2

p
+

∂

∂p
)

Λ1Γ(ε)pττ2

(1 + iωτ2)(1 + iωτ)

∂f 0
0

∂p

}
. (5.50)

Based on Eq. 5.50, one can determine that Mi coefficients in Eqs. 5.1 and 5.2

are

M1 = − ge3

16π2h̄4

1

1 + ω2τ 2
[4Λ1p

2τ 2τ2 + vgp
3τ(Λ1ττ2)′], (5.51)

M2 =
ge3

16π2h̄4

Λ1p
2τ 2τ2(1− ω2ττ2)

(1 + ω2τ 2
2 )(1 + ω2τ 2)

(1− vg ′ −
vgp

τ
τ ′), (5.52)
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M3 = − ge3

16π2h̄4

Λ1p
2τ 2τ2ω(τ + τ2)

(1 + ω2τ 2
2 )(1 + ω2τ 2)

(1− pvg ′ −
vgp

τ
τ ′). (5.53)

These equations, which generalize those in Refs. [51; 55], describe the ratchet effect

in a 2D material with isotropic dispersion. Parameters such as the scattering times

τ , τ2, Eq. 5.35, and Λ1, Eq. 5.41, describing the effect of in–plane magnetic field

will be specific to the given material, in this case bilayer graphene. The frequency

dependence of the Mi coefficients is plotted in Fig. 5.2 for the case τ2 = τ .

Figure 5.2: (a) frequency dependence of the coefficients Mi, Eq. 5.54 to 5.56, characterizing
the polarization dependence of the ratchet current Eq. 5.1 and 5.2. For simplicity, we set τ2 = τ .
(b) and (c) illustrate the direction of the ratchet current J in the graphene (x − y) plane for
linear polarization (and M1 > 0) in (b) the x direction, and (c) at 45 to the x–axis [56].

In the following, we assume that the dispersion of bilayer graphene is quadratic

ε = v2p2/γ1 and vg = 2v2p/γ1, (note that vg 6= v where v is the group velocity of

monolayer graphene). Hence, the Mi factors are

M1 = −ge
3Λ1m

∗

4π2h̄4

εF τ [2ττ2 + εF (ττ2)′]

1 + ω2τ 2
, (5.54)

M2 = −ge
3Λ1m

∗

4π2h̄4

ε2F τ
′ττ2(1− ω2ττ2)

(1 + ω2τ 2)(1 + ω2τ 2
2 )
, (5.55)

M3 =
ge3Λ1m

∗

4π2h̄4

ε2F τ
′ωττ2(τ + τ2)

(1 + ω2τ 2)(1 + ω2τ 2
2 )
. (5.56)

Here, m∗ is the effective mass of the electron, and the derivative is respect to the

energy. Parameters such as the scattering time τ , τ2, Eq. 5.35, and Λ1, Eq. 5.41,
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describing the effect of in–plane magnetic field will be specific to the given material,

in this case bilayer graphene.

5.4 Results and discussion for bilayer graphene

Eigenvalues and eigenstates of the perturbed Hamiltonian, Eq. 3.8, can be de-

termined by the first order Born approximation. In particular, we determine the

scattering rate of electrons in the perturbed bilayer graphene for two different,

representative scattering potentials. If both layers are under the same scattering

potential, for instance impurities are equally distributed over both layers, V is

proportional to a unit matrix. However, if we assume that the top (bottom) layer

is decorated by adatoms, the scattering potential is an asymmetric matrix

V = u(r)
I + ζσz

2
. (5.57)

where u(r) is the impurity potential in the x− y plane and ζ = +1(−1) refers to

the disordered top (bottom) layer. According to Eqs. 5.54 to 5.56, the existence

of non–zero M2 and M3 relies on the energy dependence of the scattering rate τ ,

irrespective of the effect of the in–plane field. Furthermore, in bilayer graphene,

overscreened Coulomb impurities act like short–range scatters [57]

u(r−Rj) = u0δ(r−Rj), (5.58)

in which case ũ(p′ − p) = u0 and the scattering rate is simplified as

symmetric disorder: τ−1 = 2τ−1
2 =

niu
2
0γ1

4h̄3v2
, (5.59)

asymmetric disorder: τ−1 = τ−1
2 =

niu
2
0γ1

8h̄3v2
. (5.60)

Furthermore, if u0 is independent of energy, then so is τ and M2 = M3 = 0. As

the potential is isotropic, ν = u2
0 is the only non–zero harmonic and parameter Λ1
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simplifies as Λ1 = u2
0[Ω + (Ωc + Ωs)/2].

Symmetric scattering potential or diagonal disorder

According to Eq. 5.14 to 5.20, for the elastic scattering of electrons in a bilayer

graphene of dimension L2, the rate of the scattering under diagonal disorder is

5.14

Wp′p =
2πni
h̄L2

|up′−p|2 δ(εp − εp′)
{

1

2
(1 + cos[2(φ′ − φ)])

+
ξγ1γ3h̄ sin[2(φ− φ′)]√

3aγ2
0p

(sin 3φ′ − sin 3φ)

+
γ4∆

2γ0γ1p2
sin 2(φ′ − φ)(p− p′) · b

− ∆γ1

2v2p4

(
v4

v
+

δ

γ1

)(
1− 2v2p2

γ2
1

)
[1− cos[2(φ′ − φ)]] [(p′ + p)× b]z

}̇
(5.61)

In the above equation, ni is the concentration of impurities, up′−p is the Fourier

transform of the impurity potential, u(r), in the (x− y) plane, and it is equal to

up′−p =

∫ ∞
0

u(r)ei(p−p
′)·r/h̄dr. (5.62)

According to Eq. 5.61, for bilayer graphene, the dominant term of the scattering

rate is proportional to [1 + cos 2(φ− φ′)]/2 [13; 57]. In contrast, for a 2D electron

gas whose Hamiltonian is not chiral, the scattering rate is 1, and for monolayer, it

is proportion to [1 + cos(φ− φ′)]/2 [57].

According to 5.20, the angular independent factors Ω0, Ωc, Ωs are obtained

from the derived scattering rates and those are angle–independent factors

Ω
(s)
0 = Ω(s)

c =
πedni∆γ1

2h̄v2p4

(
γ4

γ0

+
δ

γ1

)(
1− 2v2p2

γ2
1

)
,

Ω(s)
s =

πedni∆γ4

2h̄p2γ1γ0

. (5.63)

The evaluation of variables has been done on the Fermi surface for bilayer graphene.
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Consequently, we predict a ratchet current caused by asymmetry in the non–dimer

on–site energies and the in–plane magnetic field.

According to Eq. 5.54, for symmetric disorder we can show that

M
(s)
1 =

e4dτ 2

πh̄2m(1 + ω2τ 2)

∆

γ1

(
5

2

γ4

γ0

+ 3
δ

γ1

)
, (5.64)

where the mass is m = γ1/2v
2.

Asymmetric scattering potential

For asymmetric disorder, the scattering potential acts similarly to the σz Pauli

matrix. This scattering potential alters an out of plane perturbed or unperturbed

pseudospin into an in–plane vector, and inversely. As a result, the rate of electron

scattering under asymmetric disorder is

Wp′→p =
2πni
h̄L2

|up′−p|2 δ(εp − εp′)
{

1

4
+
sζ∆γ1

4v2p2

(
1− 2v2p2

γ2
1

)
−
(
v4

v
+

δ

γ1

)(
sζ − ∆

γ1

+
∆γ1

2v2p2

)
[(p + p′)× b]z

2p2

−
(
sζξγ1γ3γ4h̄√

3aγ3
0

)
cos 3φ(p× b)z + cos 3φ′(p′ × b)z

p3

}̇
(5.65)

In the case of asymmetric disorder, considering the essential part of the Hamil-

tonian causes the rate of the scattering to be independent of the momentum direc-

tion in the graphene plane. In fact, the asymmetric disorder destroys the chirality

of the incoming electron wave vector. As a result, the dot product of the incom-

ing electron wave vector and the outgoing electron wave vector is independent of

momentum directions in the space.

For asymmetric disorder, refer to Eq. 5.20, we have

Ω(a) =
πedni
2h̄p2

(
γ4

γ0

+
δ

γ1

)(
sξ − ∆

γ1

+
∆γ1

2v2p2

)
,

Ω(a)
c = Ω(a)

s = 0. (5.66)
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In the case of asymmetric disorder, the switch of the electric field alters the

current magnitude. Consequently, the study of the ratchet current under the

change of an applied gate voltage provides information about the structure of

bilayer graphene.

For bilayer graphene with asymmetric disorder, we can show that

M
(a)
1 =

e4dτ 2

πh̄2m(1 + ω2τ 2)

(
δ

γ1

+
γ4

γ0

)(
∆

γ1

− sζ
)
, (5.67)

The expressions for M1 in Eqs. 5.64 and 5.67 are independent of the Fermi level

other than through the factor s = ±1 for conduction/valence bands. Linear de-

pendence on gate–induced interlayer asymmetry ∆/γ1 occurs for symmetric dis-

order because interlayer asymmetry is required to break symmetry in this case,

whereas interlayer asymmetry ∆/γ1 is a small correction for asymmetric disor-

der (as ∆/γ1 << 1 in general). Note that for linear polarization Ex = E0 cos θ,

Ey = E0 sin θ, where E0 is real, and M2 = M3 = 0; so the expression for the

ratchet current Eq. 5.1 and 5.2 simplifies as

Jx = M1E
2
0(By cos 2θ −Bx sin 2θ), (5.68)

Jy = M1E
2
0(Bx cos 2θ +By sin 2θ). (5.69)

This indicates that the direction of the ratchet current is given by a rotation of

the magnetic field direction by an amount determined by the polarization angle,

as illustrated in Fig. 5.2 (b) and (c). Assuming the scattering time for bilayer

graphene and monolayer graphene is the same, we can show that the magnitude

of the ratchet effect in bilayer graphene should be substantial. Parameter values

determined by infrared spectroscopy [58] include γ0 = 3.0eV , γ1 = 0.4eV , γ4 =

0.015eV , δ = 0.018eV and we also use interlayer spacing d ≈ 3.3A◦, m ≈ 0.05m∗.

We compare the magnitude of Masym
1 for asymmetric disorder Eq. 5.67 with the

theoretical prediction of Ref. [29]. Assuming a typical value τ = 0.5 ps of the

scattering time in bilayer graphene and using parameters |E| = 10 kV cm−1, |B|
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= 7 T, ω = 2 × 10−13 rad s−1 from the experimental results in Ref. [29] for

monolayer graphene, we estimate that the ratchet current density for asymmetric

disorder is 1 mA cm−1. To the best of our knowledge, there is not any experimental

result for bilayer graphene.

5.5 Ratchet current and cyclotron resonance ef-

fect

In the presence of a perpendicular magnetic field, electrons will tend to move in

circles, an effect known as cyclotron motion. If the angular frequency ωc (the

cyclotron frequency) of this motion coincides with the ac laser frequency ω, there

will be a cyclotron resonance effect.

To model cyclotron motion, the Boltzmann kinetic equation is modified as

∂f(p, t)

∂t
− e

(
E‖(t) + v×B

)
· ∂f(p, t)

∂p
= Stf(p, t), (5.70)

where p is the momentum, E‖(t) = E‖e
−iωt + E∗‖e

iωt, v = dεp/dp and εp are the

electron energy and velocity for electrons distributed in Fermi distribution function

f(p, t) with the collision integral Stf(p, t). Here, we define the magnetic field

B = (Bx, By, Bz), with corresponding vector potential A = (zBy−yBz/2,−zBx+

xBz/2, 0). The cyclotron motion of electrons caused by the Lorentz force changes

the form of the ratchet current [59]. The general form of the ratchet current in a

2D electron gas is:

J(0) =
(
B‖ × nz

)
|E|2 Re[M2] + B‖ (i(E× E∗).nz) Re[M3]

−
{[

(nz ×B) · E
]
E∗ + c.c−

(
nz ×B‖

)
|E|2

}
Re[M1]

−B‖ |E|2 Im[M2] + B‖ × i(E× E∗)Im[M3]

+

[
E
(
B‖ · E∗

)
+ E∗

(
B‖ · E

)
−B‖ |E|2

]
Im[M1]. (5.71)
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In terms of components, it may be written as

J (0)
x = |E|2 (ByRe[M2]−BxIm[M2])

+i
(
E‖xE

∗
‖y − E‖yE∗‖x

)
(BxRe[M3] +ByIm[M3])

+
(∣∣E‖x∣∣2 − ∣∣E‖y∣∣2) (BxIm[M1] +ByRe[M1])

+
(
E‖xE

∗
‖y + E‖yE

∗
‖x
)

(ByIm[M1]−BxRe[M1]) , (5.72)

J (0)
y = − |E|2 (BxRe[M2] +ByIm[M2])

−i
(
E‖xE

∗
‖y − E‖yE∗‖x

)
(BxIm[M3]−ByRe[M3])

+
(∣∣E‖x∣∣2 − ∣∣E‖y∣∣2) (BxRe[M1]−ByIm[M1])

+
(
E‖xE

∗
‖y + E‖yE

∗
‖x
)

(BxIm[M1] +ByRe[M1]) , (5.73)

where the imaginary terms are only non–zero in the presence of non–zero perpen-

dicular magnetic field. In addition, based on Eqs. 5.72 to 5.73, it is possible to

show that [59] the general forms of the complex Mi prefactors are

M1 = − ge3

32π2h̄4 (
1

Υ−1,1
+

1

Υ1,1
)

(
4p2Λ1

Υ0,1Υ0,2
+ vgp

3

(
Λ1

Υ0,1Υ0,2

)′)
, (5.74)

M2 =
ge3

32π2h̄4p
2Λ1

(
1

Υ1,2Υ1,1
+

1

Υ−1,2Υ−1,1

)(
1

Υ0,1
− p( vg

Υ0,1
)′
)
, (5.75)

M3 = i
ge3

32π2h̄4p
2Λ1

(
1

Υ1,2Υ1,1
− 1

Υ−1,2Υ−1,1

)(
1

Υ0,1
− p( vg

Υ0,1
)′
)
. (5.76)

For e as the magnitude of electron charge, g = gsgv degeneracy factor, m as the

effective mass of electron, Λ1 is the material specific and (...)′ ≡ ∂(...)/∂ε when all

parameters are evaluated on the Fermi surface. For ωc = 0 these expressions are

the same as Eqs 5.54 to 5.56.

Here, cyclotron frequency is ωc = −eBz/m, Υn,m = 1/τm − inω− imωc, where

n is time contribution and m is angular momentum contribution. The resonance

effect in bilayer graphene happens if nω + mωc = 0. For an electron in bilayer
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graphene under 1 T magnetic field, the ωc and resonance frequency are around

5.524 Trad/s and 0.88 THz, respectively. These amounts correspond to an energy

scale equal to 3.62 meV which is much smaller than 100 meV Fermi energy.

Similar to the previous situation without perpendicular magnetic field, the

coefficients M1, M2, M3 describe the response to different polarizations of light:

M2 characterizes the effect of unpolarized light, M1 describes additional terms that

appear if the light is linearly polarized, M3 includes additional terms that occur

for circularly polarized light. Accordingly for the case of linear polarized light

(Eqs. 5.3 and 5.4), the current density may be expressed as

J(0) = E2
0B‖ |M1|

{̂
i cos

(
2θ − ϕ− χ1 +

π

2

)
+ ĵ sin

(
2θ − ϕ− χ1 +

π

2

)}
+E2

0

{(
B‖ × n̂zRe[M2]−B‖Im[M2]

)}
, (5.77)

where χ1 = arg(M1) and ϕ is the polar angle of the in–plane magnetic field. The

M1 term produces current in a direction determined by the polarization angle θ and

magnetic field direction and the phase of the M1 coefficient, wherease M2 describes

current in a direction only determined by the parallel field. For unpolarized light,

the M1 related term is zero but the M2 current survives.

For circularly polarized light, Eqs. 5.8 and 5.9, the current density is

J(0) = 2E2
0B‖ |M2|

{̂
i cos

(
ϕ− χ2 −

π

2

)
+ ĵ sin

(
ϕ− χ2 −

π

2

)}
+2µE2

0B‖ |M3|
{̂

i cos (ϕ− χ3) + ĵ sin (ϕ− χ3)

}
, (5.78)

where χ2 = arg(M2) and χ3 = arg(M3) indicting that the direction of the current

is determined by the magnetic field direction and the phase of the M2 and M3

coefficients.

For an energy–independent electron scattering rate and quadratic and linear
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dispersion, M2 and M3 prefactors are zero, and

M1 = − ge3

32π2h̄4

1

Υ0,1Υ0,2

(
1

Υ−1,1
+

1

Υ1,1

)(
4p2Λ1 + vgp

3Λ′1
)
. (5.79)

In contrast, for a linear energy dispersion, monolayer graphene, we have Λ1 =

πh̄2ezπσ/m
2επστ [29], where zπσ is the coordinate matrix element between the π−

and σ− band states, επσ is the energy distance between the two bands, Vππ and Vπσ

are the intraband and interband matrix elements of scattering at zero magnetic

field. Hence, we find that

M1 = − e4zπσ

2πh̄2m2επστ
p2
f

1

Υ0,1Υ0,2

(
1

Υ−1,1
+

1

Υ1,1

)
. (5.80)

For bilayer graphene’s quadratic dispersion relation, Λ1 is

Λ
(s)
1 =

πedh̄2

τ
∆

{
3

p4

(
γ4

γ0

+
δ

γ1

)
− v2

p2γ2
1

(
5
γ4

γ0

+ 6
δ

γ1

)}
, (5.81)

Λ
(a)
1 =

2πedh̄2

mτ

v2

p2

(
γ4

γ0

+
δ

γ1

)(
sζ − ∆

γ1

)
, (5.82)

where s = +1(−1) for conduction(valence) band and ζ = +1(−1) where the scat-

tering is limited to the lower (upper layer). For bilayer graphene M1 is dependent

on the symmetry type because Λ1 is dependent on the type of symmetry or asym-

metry condition. Hence, it is shown

M
(s)
1 =

e4d

8πh̄2mτ

∆

γ1

(
5
γ4

γ0

+ 6
δ

γ1

)
1

Υ0,1Υ0,2

(
1

Υ−1,1
+

1

Υ1,1

)
, (5.83)

M
(a)
1 = − e4d

2πh̄2mτ

(
sζ − ∆

γ1

)(
δ

γ1

+
γ4

γ0

)
1

Υ0,1Υ0,2

(
1

Υ−1,1
+

1

Υ1,1

)
. (5.84)

The resonance frequencies come from definition of Υn,m where nω = mωc. Accord-

ingly, M1 that is linear response has Drude absorption peculiarity where ω = ±ωc.

For M2 and M3, the resonance also happens for ω = ±2ωc means that the tran-

sition between n and n + 2 becomes possible in the presence of scattering [59].
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According to Fig. 5.3, the major effect is related Re[M1] where there are two res-

Figure 5.3: Fixed ωc: Real and imaginary parts of Mi prefactors for asymmetric disorder have
been depicted separately. (a) Frequency dependence of the M1 coefficient (Eq. 5.74) (b) diagram
of the resonance effect related to M2 prefactor (Eq. 5.75), (c) and M3 prefactor based on Eq. 5.76.
We have set τ = τ2 and τ ′ = 0 and ωcτ = 10.

onance frequencies there ω = ±ωc. However, Re[M2] and Re[M3] each have 4

different resonances; the first one is the stronger effect. These diagrams are re-

lated to experiments with B⊥ fixed and a laser radiation whose frequency varies.

However, for an experiment with a fixed laser frequency and a changing B⊥ the

results are according to Fig. 5.4. Comparing of Fig. 5.3 and 5.4 for the M1 pref-

actor shows that, for ωc = 0, there is a maximum in the current. It means that

the cyclotron resonance effect does not actually increase the current with respect

to its value at ωc = 0.

To summarize, we modelled the influence of the new linear term in magnetic

field on electronic scattering and its manifestation in the magnetic ratchet effect.
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Figure 5.4: Fixed ω: Real and imaginary parts of Mi prefactors for asymmetric disorder where
B ⊥ changes have been depicted separately. (a) Frequency dependence of the M1 coefficient
(Eq. 5.74) (b) diagram of the resonance effect related to M2 prefactor (Eq. 5.75)(c) M3 prefactor
have been depicted based on Eq. 5.76. We have set τ = τ2 and τ ′ = 0 and ωτ = 3.

We estimate that the effect should be substantial, two orders of magnitude greater

than that in monolayer graphene [29], as well as being sensitive to the nature of dis-

order and tunable by gate voltage. As detailed in Section 5.5, we have determined

the dc current, Eq. 5.71, for the magnetic ratchet in a two-dimensional electron

system. These results apply to systems with arbitrary, isotropic dispersion and

energy-dependent scattering rates. For the particular case of bilayer graphene, we

assume a perfectly quadratic dispersion relation to produce simplified expressions

for the dc current under tilted magnetic field, Eqs. 5.74 to 5.76. In addition, in

the presence of a tilted field, we find that the dc current has a resonance at ωc = ω

but that the current value is actually largest at ωc = 0.
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Chapter 6

Second harmonic generated

current

6.1 Introduction

Magneto–optical modulators are in high demand for photonic and optoelectronic

devices [60]. They are divided into wave length [61], amplitude [62; 63; 64], phase

[62] and polarization modulator [65; 61]. One important phase–modulator mech-

anism is based on the magneto–optical Faraday–Kerr effect. The Faraday–Kerr

effect is the rotation of the polarization angle of a linearly polarized light beam

when it passes or reflected from a material kept in a constant magnetic field. For

example, the optical property of a material with a refractive index depended on

the polarization and propagation direction of light is important for laser applica-

tion processes. In fact, the majority of optical modulators are based on the strong

non–linear optical response of a 2–dimensional material (mainly the third order

susceptibility) [60].

It has been shown that the maximum Faraday rotation angle is 6 degrees for

far–infrared monolayer graphene kept in a parallel magnetic field of order of 7T [66];

for far–infra red radiation the amount of parallel magnetic field to observe the effect

is 1T . Current graphene optoelectronic modulators work under 10 THz frequencies
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and graphene plasmonic electro–optic modulators have been demonstrated. It

is also reported that a pseudo–magnetic field caused by strain results in a 0.3

rad Faraday–Kerr rotation [67]. The Faraday rotation angle of graphene is small

because of the graphene structure.

In this Chapter, we will study ac currents produced in graphene. In addition,

we will study different responses of graphene under different light polarization and

we will also discuss about the response polarization and characteristics.

6.2 Semi–classical point of view, distribution

function of the electron under a time–dependent

electric field

Two essential equations to derive the current based on BKE and in the semi–

classical regime are Eqs. 5.22 and 5.11; the time dependent electric field changes

the electron momentum direction and its magnitude. Hence, 2DEG is not in termal

equilibrium, and such an unsteady distribution of electron motion is the origin of

the current in the system.

In fact, the magnetic quantum ratchet effect results in a dc current caused

by the imbalance of the motion of electrons. As it is shown, the dc current is

related to the change of the electron distribution function, the time independent

part of δf = f 0
1 exp(iφ) + f 0

−1 exp(−iφ). For response to first order ac current, we

should consider f±1
±1 , and second harmonic generated current, δf = f 2

1 exp(iφ −

2ωt) + f−2
1 exp(iφ+ 2ωt) + c.c, is defined by f±2

±1 terms of the harmonic expansion

of the distribution function Eq. 5.22. This results in a second order ac current in

graphene based materials under a parallel magnetic field. To study the interaction

of THz with microwave radiation, the Boltzmann kinetic equation is used. As

mentioned before, for an in–plane ac field E‖(t) = E‖e
−iωt + E∗‖e

iωt, the current

has been calculated based on distribution functions, Eq. 5.44.
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6.3 First order ac current

The first order ac current is the result of Fermi distribution function related to

f 1
1 and f−1

1 and the complex conjugate of those terms. This current is the result

of coupled equations determined by Eq. 5.34 with linear in E terms where δS is

irrelevant,

J(1) = − g

L2

∑
p

evg
(
f 1

1 e
iφ−iωt + f−1

1 eiφ+iωt + c.c
)
. (6.1)

In order to determine the first order ac current, in Eq. 5.26 with δS = 0, we have

f
(1)
±1 =

eτ (Ex ∓ weEy)
2 (1− iωτ ± weωcτ)

∂f
(0)
0

∂p
; f

(−1)
±1 =

(
f

(1)
∓1

)∗
. (6.2)

Hence, for a degenerate electron gas, it has been found that J(1) = 2Re
{
σEe−iωt

}
where σ is the first order ac conductivity tensor independent of the radiation po-

larization, impurity potential and external in–plane magnetic field. Consequently,

the ac conductivity of bilayer graphene is

σ0 =
ge2τ

2πh̄2 εf , (6.3)

which is proportional to the Fermi level (εf = pvg/2). This result agrees with pre-

vious results [68], where it was shown that the ac conductivity of bilayer graphene

is twice that of monolayer graphene and metals based on Drude–Boltzmann the-

ory [69]. The response to linearly polarized light is similar to monolayer graphene;

and, for circular polarized light there is circular radiation [70]. In addition, the

resonance effect happens when ω = ±ωc.

6.4 Second order ac current, SHG current

The study of SHG is important because non–reversible optoelectronic devices act

based on SHG effects. In order to have a second order effect, both time reversal

and inversion symmetry should be broken. For bilayer graphene, time reversal is
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broken by the magnetic field and the field related terms come with γ4 and δ factor.

Inversion symmetry is broken by on–site energies and by disorder.

To find the second order ac current, we should consider four terms in the Fermi

distribution function (Eq. 5.47 and 5.34) where f−2
−1 , f 2

−1, coefficients are

f−2
−1 =

1

Υ−2,−1

{
α̃−2

1

Υ−1,−2

pΓ

2
Λ1(By − iBx)

1

Υ1,−1
η̃0f

0
0

+
pΓ

2
Λ1(By + iBx)

1

Υ−2,−2
η̃−1

1

Υ−1,−1
η̃0f

0
0

}
, (6.4)

f 2
−1 =

1

Υ2,−1

{
α−2

1

Υ1,−2

pΓ

2
Λ1(By − iBx)

1

Υ1,−1
η0f

0
0

+
pΓ

2
Λ1(By + iBx)

1

Υ2,−2
η−1

1

Υ1,−1
η0f

0
0

}
. (6.5)

For a 2D electronic system with an isotropic dispersion relation, it is possible to

show that [71]

J(2) = 2Re

[{
− 2N1

[
(nz ×B) · EE +

(
B‖ × nz

)
E2

]
−N2

[
2E
(
B‖ · E

)
−B‖E

2

]
+N3

(
B‖ × nz

)
E2 +N4B‖E

2

}
e−2iωt

]
, (6.6)

where E2 ≡ E · E = E2
x + E2

y . Explicitly in terms of components, this is

Jx = 2Re

{[
N1 (ByΘ4 −BxΘ5)−N2 (BxΘ4 +ByΘ5)+Θ6 (ByN3 +BxN4)

]
e−2iωt

}
,

(6.7)

Jy = 2Re

{[
N1 (BxΘ4 +ByΘ5)+N2 (ByΘ4 −BxΘ5)+Θ6 (−BxN3 +ByN4)

]
e−2iωt

}
,

(6.8)

where Θ4 =
(
E2
x − E2

y

)
, Θ5 = 2ExEy, Θ6 =

(
E2
x + E2

y

)
. For defined J(2), Eq. 6.6,

we can show that the Ni coefficients are

N1 = −ge
3vgp

32πh̄2

{
1

Υ1,1

(
vgpΓΛ1

Υ2,1Υ2,2

)′
+

1

Υ1,−1

(
vgpΓΛ1

Υ2,−1Υ2,−2

)′}
, (6.9)
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N2 = −ige
3vgp

32πh̄2

{
1

Υ1,1

(
vgpΓΛ1

Υ2,1Υ2,2

)′
− 1

Υ1,−1

(
vgpΓΛ1

Υ2,−1Υ2,−2

)′}
, (6.10)

N3 =
ge3vgpΓΛ1

32πh̄2

{
1

Υ2,1Υ1,2Υ1,1
+

1

Υ2,−1Υ1,−2Υ1,−1
− p

Υ1,2Υ1,1

( vg
Υ2,1

)′
− p

Υ1,−2Υ1,−1

( vg
Υ2,−1

)′}
, (6.11)

N4 =
ige3vgpΓΛ1

32πh̄2

{
1

Υ2,1Υ1,2Υ1,1
− 1

Υ2,−1Υ1,−2Υ1,−1
− p

Υ1,2Υ1,1

( vg
Υ2,1

)′
+

p

Υ1,−2Υ1,−1

( vg
Υ2,−1

)′}
. (6.12)

Note that N2 and N4 coefficients are only non-zero in the presence of non-zero

perpendicular field B⊥.

6.4.1 Results and discussion

If the electron scattering rate is independent of the electron energy then the Ni

coefficients simplify as

N1 = −ge
3vgp

32πh̄2

(
1

Υ2,1Υ2,2Υ1,1
+

1

Υ2,−1Υ2,−2Υ1,−1

)
(vgpΓΛ1)′ , (6.13)

N2 = −ige
3vgp

32πh̄2

(
1

Υ2,1Υ2,2Υ1,1
− 1

Υ2,−1Υ2,−2Υ1,−1

)
(vgpΓΛ1)′ , (6.14)

N3 =
ge3vgpΓΛ1

32πh̄2

{(
1− pv′g

)( 1

Υ1,2Υ1,1Υ2,1
+

1

Υ1,−2Υ1,−1Υ2,−1

)}
, (6.15)

N4 = i
ge3vgpΓΛ1

32πh̄2

{(
1− pv′g

)( 1

Υ1,2Υ1,1Υ2,1
− 1

Υ1,−2Υ1,−1Υ2,−1

)}
. (6.16)

79



SHG in monolayer graphene

For monolayer graphene, Λ1 = πh̄2ezπσ/m
2επστ [29; 56], and vg = v, we can show

that N1 and N2 are equal to zero and N3 and N4 are

N3 =
ge4zπσ

64πh̄2m2επστ
p2
f

(
1

Υ2,1Υ1,2Υ−1,1
+

1

Υ2,−1Υ1,−2Υ1,−1

)
, (6.17)

N4 = i
ge4zπσ

64πh̄2m2επστ
p2
f

(
1

Υ2,1Υ1,2Υ−1,1
− 1

Υ2,−1Υ1,−2Υ1,−1

)
. (6.18)

For monolayer graphene, the increase of the Fermi level by gating increases the

electron momentum pf .

SHG in bilayer graphene

For quadratic dispersion relation of bilayer graphene, vg = 2v2p/γ1; and Λ1 is

dependent on the symmetry types as defined in Eqs. 5.81 and 5.82. Consequently,

N3 = N4 = 0, while N1 and N2 coefficients for the case of symmetric bilayer

graphene are

N
(s)
1 =

3e4d

8πh̄2τ

∆

p2

(
γ4

γ0

+
δ

γ1

)(
1

Υ2,1Υ2,2Υ1,1
+

1

Υ2,−1Υ2,−2Υ1,−1

)
, (6.19)

N
(s)
2 = i

3e4d

8πh̄2τ

∆

p2

(
γ4

γ0

+
δ

γ1

)(
1

Υ2,1Υ2,2Υ1,1
− 1

Υ2,−1Υ2,−2Υ1,−1

)
. (6.20)

For asymmetric disorder, N1 and N2 coefficients are

N
(a)
1 =

e4d

4πh̄2τ

∆

p2

(
γ4

γ0

+
δ

γ1

)(
1

Υ2,1Υ2,2Υ1,1
+

1

Υ2,−1Υ2,−2Υ1,−1

)
, (6.21)

N
(a)
2 = i

e4d

4πh̄2τ

∆

p2

(
γ4

γ0

+
δ

γ1

)(
1

Υ2,1Υ2,2Υ1,1
− 1

Υ2,−1Υ2,−2Υ1,−1

)
. (6.22)

Note that this is a remarkable result: asymmetric disorder on its own does not

produce second harmonic generation, interlayer asymmetry ∆ is required.

For linearly polarized light at angle θ and magnetic field direction ϕ we assume

that B‖ = B‖(cosϕ, sinϕ, 0) and B‖ =
∣∣B‖∣∣. SHG related current in response to
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Figure 6.1: Fixed ωc: N
(a)
1 and N

(a)
2 phase related coefficients for SHG current considering the

cyclotron resonance effect.

linearly polarized light is

J(2) = 2E2
0B‖ |N1| cos(2ωt− ψ1)

{̂
i cos(2θ − ϕ+ π/2) + ĵ sin(2θ − ϕ+ π/2)

}
+2E2

0B‖ |N2| cos(2ωt− ψ2)
{̂
i cos(2θ − ϕ+ π) + ĵ sin(2θ − ϕ+ π)

}
+2E2

0 |N3|
(
B‖ × n̂z

)
cos(2ωt− ψ3)

+2E2
0 |N4|B‖ cos(2ωt− ψ4), (6.23)

where the phases ψi = arg(Ni) describe a time lag between the incoming light and

produced current. For the N1 and N2 terms, the in–plane magnetic field rotates

the polarization direction as in the Faraday effect. For the N3 and N4 terms, the

out going linear polarization direction is only determined by the parallel field (it is

independent of the incoming polarization direction θ). For unpolarized light, N1

and N2 related currents are zero but the N3 and N4 currents survive. Consequently,

for unpolarized light, monolayer graphene has a polarized response whose phase

rotates as the in–plane magnetic field is rotating. This similarity to the Faraday

effect is essential for applications in the field of optical birefringence under polarized

light.
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For incoming circularly–polarized light, the N3 and N4–related currents are

zero, and the deduced ac current stimulated by radiation is

Jx = 4E2
0B‖

[
|N1| cos

(
2ωt− µϕ− ψ1 + µ

π

2

)
+ |N2| cos (2ωt− µϕ− ψ2 − π)

]
,

(6.24)

Jy = 4E2
0B‖

[
|N1| cos (2ωt− µϕ− ψ1) + |N2| cos

(
2ωt− µϕ− ψ2 + µ

π

2

)]
,

(6.25)

and it is also circularly polarized light.

For a varing ωc and a constant laser radiation frequency, according to Fig. 6.2,

we can say that the cyclotron resonance is essential to have a strong SHG current,

i.e. in contrast to the M1 coefficient for the dc current, the cyclotron resonances

are generally much stronger than the signal at ωc = 0.

Figure 6.2: Fixed ω: N
(a)
1 and N

(a)
2 phase related coefficients for SHG current considering

cyclotron resonance effect for a varying magnetic field and a constant Laser radiation frequency

To summarize, we have determined the second harmonic generation, Eq. 6.6,

for the magnetic ratchet in the semiclassical regime (EF � ω) in a two-dimensional

electron system. These results apply to systems with arbitrary, isotropic dispersion

and energy-dependent scattering rates. For the particular case of bilayer graphene,

we assume a perfectly quadratic dispersion relation ε = p2/2m and relaxation rates

that are independent of energy to produce simplified expressions Eqs. 6.13 to 6.16.
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We take into account inversion symmetry breaking by disorder and by interlayer

asymmetry, the latter may potentially be induced by using an external gate and is

thus tunable. In the presence of a tilted field, for the second harmonic, resonances

at ωc = ω and ωc = 2ω generally produce currents significantly greater than that at

ωc = 0. In principle, cyclotron resonances could be observed in experiments either

as a function of laser frequency ω for fixed ωc (as in Fig. 6.1) or as a function of

cyclotron frequency ωc for fixed ω (as in Fig. 6.2), and the width of such resonance

peaks can be related to the relaxation times τ and τ2.
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Chapter 7

Conclusion

We have introduced Lifshitz transition, non–linear optics and non–linear optical

effects, ratchet effect and SHG effect in graphene based structures.

Moreover, we have introduced theoretical background to write low–energy

Hamiltonian of bilayer graphene under perpendicular magnetic field. We have

considered the orbital effect of an in-plane magnetic field on electrons in bilayer

graphene. Previously the orbital effect of an in-plane magnetic field on the elec-

tronic spectrum was modelled using the so-called minimal tight-binding model

which includes only intralayer and vertical interlayer coupling, accounting for

quadratic in magnetic field terms in the low-energy Hamiltonian. At low energy,

these terms have a similar effect as homogeneous lateral strain in producing a

change in topology of the band structure [49; 50; 72; 73; 74], although, owing to

the small interlayer distance, a huge magnetic field of magnitude ≈ 100T would

be required to observe this. Here, we derived linear-in-field terms in the Hamilto-

nian arising from skew interlayer coupling and non-uniform on-site energies. We

found two types of term: the first has the form of the Lorentz force and it causes

the pseudospin (the relative amplitude of the wave function on the two layers) to

acquire a small component perpendicular to the graphene plane; the second term

is off-diagonal in the layer-space and it creates a small perturbation of the pseu-

dospin direction within the graphene plane. We modelled the influence of these

terms on electronic scattering and their manifestation in the magnetic ratchet ef-
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fect. We estimate that the effect should be substantial, two orders of magnitude

greater than that in monolayer graphene, as well as being sensitive to the nature

of disorder and tunable by gate voltage.

In addition, we have shown that the Lifshitz transition of bilayer graphene is

strongly related to skew interlayer coupling and interlayer potential asymmetry.

Accordingly, there is only one phase with two DPs for bilayer graphene under a

magnetic field smaller than something about 138 T and only in certain magnetic

field directions. For larger magnetic fields, there are no Dirac Points. While, for

zero magnetic field, there are 4 DPs in the phase diagram of bilayer graphene.

Whithout considering γ4 and δ, the phase diagram is schemed in Fig. 4.4 where by

the change of the size and the direction of magnetic field, there are three different

phases.

In the next step, we have found a first order and a second harmonic generated

current in bilayer and monolayer graphene caused by laser radiation. SHG currents

are sensitive to the material, monolayer and bilayer graphene, and sensitive to the

radiation polarization. In addition, it has been shown that for an unpolarized light

a linear polarized light whose direction is proportional to the direction of magnetic

field will be produced.

In bilayer graphene in a tilted magnetic field, the dc current has a resonance

at ωc = ω but the current value is actually largest at ωc = 0. For the second

harmonic, however, resonances at ωc = ω and ωc = 2ω generally produce currents

significantly greater than that at ωc = 0.
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Appendix A

Boltzmann kinetic equation

solution for a 2D electron gas

under a laser radiation

To calculate the B parameter in Eq. 5.26, we have

B =

∫ 2π

0

∫ T

0

eilωtEy sinφ
∑ dfnm

dε
ei(m−j)φ−inωt

dt

T

dφ

2π
,

=

∫ 2π

0

∫ T

0

eilωt
(
E‖xe

−iωt + E∗‖xe
−iωt) sinφ

∑ dfnm
dε

ei(m−j)φ−inωt
dt

T

dφ

2π
,

=

∫ 2π

0

sinφ
∑ dfnm

dε
ei(m−j)φ

dφ

2π

∫ T

0

ei(l−n)ωt
(
E‖ye

−iωt + E∗‖xe
−iωt) dt

T
,

=

∫ 2π

0

sinφ
∑ dfnm

dε
ei(m−j)φ

dφ

2π

∫ T

0

(
E‖ye

i(l−1−n)ωt + E∗‖xe
i(l+1+n)ωt

) dt

T
,

=

∫ 2π

0

sinφ
∑ dfnm

dε
ei(m−j)φ

dφ

2π

(
E‖yδn,l−1 + E∗‖xδn,l+1

)
,

=
∑ dfnm

dε

(
E‖yδn,l−1 + E∗‖xδn,l+1

) ∫ 2π

0

sinφei(m−j)φ
dφ

2π
,

=
∑ dfnm

dε

(
E‖yδn,l−1 + E∗‖xδn,l+1

) ∫ 2π

0

−i
2

(
eiφ − e−iφ

)
ei(m−j)φ

dφ

2π
,

=
∑ dfnm

dε

(
E‖yδn,l−1 + E∗‖xδn,l+1

) ∫ 2π

0

1

2

(
ei(m−(j−1))φ − ei(m−(j+1))φ

) dφ

2π
,

=
−i
2

∑ dfnm
dε

(
E‖yδn,l−1 + E∗‖xδn,l+1

)
(δm,j−1 − δm,j+1) ,

=
−i
2

(
E‖x

df l−1
m

dε
+ E∗‖y

df l+1
m

dε

)
(δm,j−1 − δm,j+1) ,

=
−i
2

[
E‖y

(
df l−1

j−1

dε
−

df l−1
j+1

dε

)
+ E∗‖y

(
df l+1

j−1

dε
−

df l+1
j+1

dε

)]
. (A.1)
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While the calculation of C is similar to B, the calculation of D is similar to A, but

the differences come from the prefactor and omit the differential sign for fnm. The

calculation of the E related part is straights forward and it will be equal to lf lj.

In addition, the calculations of G related part needs some description. First, we

assume that the change of scattering rate δW , which is related to the appearance

of the magnetic field, is equal to zero. Hence

Wp′p = W 0
p′p, Wpp′ = W 0

pp′ . (A.2)

If we assume that W 0
p′p is a general function of p and p′, then

W 0
p′p = g (p′, p) δ (εp − εp′) , (A.3)

where according to the Fermi golden rule

g (p′, p) =
2π

h̄

〈
|Vp′p|2

〉
. (A.4)

We can show that g (p′, p) is just dependent on the cos θp′p. So

S (f) =
∑
p′

W 0
pp′f (p′, t)−W 0

p′pf (p, t) ,

=
∑
p′

g (p, p′) (f (p′, t)− f (p, t)) δ (εp − εp′) ,

=
∑
p′

g (p, p′)
(∑

fnme
imφ′−inωt −

∑
fnme

imφ′−inωt
)
δ (εp − εp′) .(A.5)

After multiplication of above equation by
∫ T

0
eilωtdt/T ,

∫ 2π

0
e−ijφdφ/2π, we have

G = L2Γ (ε)
∑
m

f lm

∫ 2π

0

dφ′

2π

∫ 2π

0

dφ

2π
g (φ′ − φ)

(
eimφ

′ − eimφ
)
e−ijφ. (A.6)

By the change of variables θ = φ′ − φ and µ = (φ′ + φ) /2, we can show that

G =
−L2Γ (ε)

π
f lj

∫ π

0

g (θ) (1− cos jθ) dθ. (A.7)
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If we introduce τ|j|, so that

τ−1
|j| =

L2Γ (ε)

π

∫ π

0

g (θ) (1− cos jθ) dθ, (A.8)

then, we can write

G = −τ−1
|j| f

l
j, (A.9)

So, in total the BKE is

e

2

(
dε

dp

d

dε
− j − 1

p

)[(
E‖x − iE‖y

)
f l−1
j−1 +

(
E∗‖x − iE∗‖y

)
f l+1
j−1

]
+
e

2

(
dε

dp

d

dε
+
j + 1

p

)[(
E‖x + iE‖y

)
f l−1
j+1 +

(
E∗‖x + iE∗‖y

)
f l+1
j+1

]
=
(
τ−1
|j| − iωl

)
f lj, (A.10)

as described in Eq.5.34. The only difference is that δSlj has been added to Slj.
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