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ABSTRACT 12 

The study of natural carbon dioxide reservoirs provides fundamental insight into 13 

processes involved in carbon capture and storage. However, the calculations of process 14 

rates such as dissolution of CO2 into formation water remain uncertain due to indirectly 15 

determined ages of the CO2 influx. The proposed ages for the Bravo Dome gas field in 16 

New Mexico, USA, vary from 56 ka to 1.5 Ma. Here we demonstrate that residence times 17 

can be estimated from simple modeling of noble gas and stable isotope diffusion profiles 18 

from the gas-water contact through the gas column. The Bravo Dome gas field shows a 19 

gradient in noble gas concentrations and isotopic ratios from east to west across the 70-20 

km-wide field. A mantle-like end member with a 3He/4He (R/RA) ratio of up to 4.7 is 21 

found in the west in contrast to a groundwater end member with high concentrations of 22 
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air- and crustal-derived noble gases in the east. The air- and crustal-derived noble gases 23 

decrease gradually toward the west. Stable isotope compositions (C and O) also vary 24 

across the field. Diffusion modeling of He, Ne, Ar, Kr, Xe, and 13C and data yield 25 

residence times for the CO2 between 14.1 ± 0.2 ka and 16.9 +1.1/–0.5 ka. This is far less 26 

than the previous estimates of 1.2–1.5 Ma  based on apatite (U-Th)/He 27 

thermochronology, leading to a dissolution rate of [[Precede these values with “~” 28 

symbol, given that they are rounded from the values reported in 29 

Conclusions?]]30,000 +12,000/–11,000 t/a to 36,000 ± 12,000 t/a, implying that 32% of 30 

the total emplaced CO2 dissolved. This new method can be applied to a wide variety of 31 

gas fields with variation in the concentration of groundwater-derived noble gases and 32 

allow a better assessment of the time scale of other diffusive fluid-fluid interactions. 33 

INTRODUCTION 34 

Natural carbon dioxide reservoirs serve as natural analogues for geological CO2 35 

storage and hence are studied extensively to understand processes that act over geological 36 

time scales (Bickle et al., 2013). In order to quantify the rates of interactions between 37 

CO2, subsurface fluids, and the host rock, it is crucial to know the residence time of the 38 

CO2 in the reservoir. Previous estimates of CO2 reservoir residence times include dating 39 

of surface intrusive igneous rocks from the Colorado Plateau (Armstrong, 1969), dating 40 

of close-by effusive igneous rocks (Condit, 1995; Stroud, 1997), and apatite (U-Th)/He 41 

thermochronology (Sathaye et al., 2014). These methods have been used to infer 42 

residence times for the Bravo Dome (New Mexico, USA) CO2 reservoir ranging between 43 

56 ka (Stroud, 1997) and 1.5 Ma (Sathaye et al., 2014). Petrographic studies on drill cores 44 

suggest the carbon dioxide filling of Bravo Dome in the mid-Cenozoic (Hartig et al., 45 
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2011), but rely exclusively on relative time constraints of diagenetic mineral growths 46 

with poorly developed textures. Here we present a model for estimating directly the CO2 47 

residence time applied to the Bravo Dome gas field. The model relies on spatial sampling 48 

of gases across the field and uses the diffusion of groundwater-derived noble gases 49 

entering the gas column at the gas-water contact, with known diffusion constants, to 50 

estimate residence ages. 51 

BRAVO DOME FIELD 52 

Bravo Dome is a well-studied sandstone-hosted CO2 reservoir (Baines and 53 

Worden, 2004; Cassidy, 2006; Dubacq et al., 2012; Gilfillan et al., 2008, 2009; Hartig et 54 

al., 2011; Holland and Ballentine, 2006; Kessler et al., 2001; Sathaye et al., 2014). The 55 

gas is primarily of magmatic origin (Staudacher, 1987) and has 3He/4He (R/RA) ratios up 56 

to 4.7 and CO2/
3He ratios in the mid-oceanic ridge basalt (MORB) range (Ballentine et 57 

al., 2001; Cassidy, 2006; Gilfillan et al., 2008; Holland and Ballentine, 2006). The gas 58 

field comprises a thin laterally extensive reservoir with an east-west extent of >70 km 59 

(Fig. 1) and supercritical reservoir conditions (Broadhead, 1993). The western portion of 60 

the gas field is not in contact with formation water because it overlies dry impermeable 61 

basement (Cassidy, 2006), and we assume that the most western fault on the map in 62 

Figure 1 represents the east-west gas-water contact (Appendix DR4 in the GSA Data 63 

Repository1). On the east side of this fault, the water table is within the sandstone 64 

formation and the CO2 overlies water-saturated rock, with lateral juxtaposition of CO2 65 

and formation water also occurring laterally to the extreme east (Fig. 1). Oxygen isotope 66 

data of CO2 gas confirm the western fault as a gas-water contact because the gas samples 67 

east of the fault have 18O of 29‰ [[relative to?]] standard mean ocean water 68 
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(SMOW)[[Should this be “Vienna standard mean ocean water (V-SMOW) as 69 

indicated in fig. 2A?]] on average, which is the value predicted from CO2-H2O 70 

fractionation (Brenninkmeijer et al., 1983) and complete equilibration with formation 71 

water of 18O = 11‰ at 33 °C (Cassidy, 2006) (Fig. 2A). 72 

MODEL 73 

Data and Corrections 74 

The gas samples were collected in two different sampling campaigns (b and c) of 75 

the Bravo Dome gas field (Gilfillan et al., 2008, 2009; Holland and Ballentine, 2006). 76 

Noble gas data of sample set b are from previous studies (Gilfillan et al., 2008, 2009; 77 

Holland and Ballentine, 2006), whereas sample set c has been measured following 78 

previous methods (Holland and Ballentine, 2006) (Appendix DR1). The oxygen isotopic 79 

and carbon isotopic analysis of sample set b was performed at the University of East 80 

Anglia (Norwich, UK) using a MIRA (multi-isotope ratio analyzer) mass spectrometer 81 

(Dennis, 2014) with procedures following Royle (2015) and precision for standard 82 

replicates of <0.01‰. The carbon isotopes of sample set c were measured at Lancaster 83 

University (UK) using an Isoprime100 spectrometer with a multiflow inlet. The data 84 

were corrected to PDB (Peedee belemnite[[Or should it be “Vienna Peedee belemnite 85 

(V-PDB)”, as indicated in Fig. 2B? (all instances of “PDB” in text)]]) using 86 

international standards LSVEC (lithium carbonate; 13C 46.6‰), NBS 18 (calcite; 13C 87 

5.014‰) and CO1 (marble; 13C +2.492‰). Precision for standard replicates (n = 5, 1 88 

standard deviation) was <0.1‰ for carbon isotopes. 89 

The data for the model comprise the noble gas measurements and their sampling 90 

distance to the gas-water contact. The distance from the 26 selected wells to the gas-91 
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water contact has been measured horizontally for the wells west of the main fault and 92 

vertically for the wells east of it, because these are the shortest distances to the gas-water 93 

contact (Fig. 1). The perforation interval depths from which the CO2 is produced have 94 

been considered for the wells with vertical distances to the gas-water contact. 95 

At the gas-water contact, the air- and crustal-derived noble gases, which 96 

accumulated in the formation water, degas into the CO2 because of the higher 97 

concentration and lower solubility in the formation water than in the CO2 phase. In 98 

addition to this increase in noble gas concentration in the CO2, noble gas concentrations 99 

in the gas phase are also enhanced by contemporaneous CO2 dissolution into the 100 

formation water. This solvent loss effect can be corrected based on 3He concentrations 101 

(Appendix DR3) (Dubacq et al., 2012). 102 

Parameters and Error Calculation 103 

Following the noble gas concentration correction, the data can then be compared 104 

to a diffusion profile based on Fick’s second law of diffusion: 105 

ቂப஼
ப௧
ൌ ୤୤ୣܦ

பమ஼

ப௫మ
ቃ ,      (1) 106 

where C is concentration, t is time, Deff is the effective diffusion coefficient, and x is the 107 

[[diffusion?]] distance. The solution of the equation involves two boundary conditions 108 

which are set to be a constant noble gas concentration in the CO2 at the gas-water contact 109 

(Cstart) and a magmatic-derived noble gas concentration (Cend) at the western end of the 110 

gas field: 111 

 ሾܥሺݔ, ሻݐ ൌ ୱ୲ୟ୰୲ܥ െ ሺܥୱ୲ୟ୰୲ െ ୬ୢሻୣܥ ∗ erf ൬
௫

ଶඥ௧∗஽౛౜౜
൰ሿ .  (2) 112 
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The effective diffusion coefficient compensates for the indirect travel paths of the 113 

particles and differs from the common diffusion coefficient by taking into account the 114 

porosity and tortuosity: 115 

୤୤ୣܦ]  ൌ ܦ ø

த
	] ,       (3) 116 

where D is the diffusion coefficient, ø is porosity, and  is tortuosity. The diffusion 117 

coefficients have been calculated after the method of He and Yu (1998) because no 118 

experimental data exist for diffusion of noble gases in supercritical CO2 (Appendix DR2). 119 

Poling et al. (2001) tested this approach for the vitamin K1 in supercritical CO2 and found 120 

a low error of 0.4% compared to the empirically determined diffusion coefficient. The 121 

calculated diffusion coefficients for the noble gases in CO2 are approximately one order 122 

of magnitude higher compared to those in water. The reported porosity of the Tubb 123 

Formation in New Mexico is 20% on average (Johnson, 1983; Cassidy, 2006), and the 124 

tortuosity has been calculated to be 2.4, which is a typical value for sandstones (Cassidy, 125 

2006; Epstein, 1989; Matthews and Spearing, 1992). 126 

Solutions for the diffusion profiles are calculated using a Monte Carlo simulation 127 

in Matlab where both boundary conditions and the diffusion time multiplied by the 128 

diffusion coefficient are fitted 1000 to the data, taking into account the error on 129 

measurements through minimizing 2: 130 

߯ଶ ൌ 	∑ ሺ௫౟ି	௫ౣሻమ
భ
మ
௫ሺ౛౨౨౥౨	౨౗౤ౝ౛ሻ
మ ൅

ሾ௬౟ି	௬ሺ௫ౣሻሿమ

஢೤మ
௡
௜ 	,    (4) 131 

where xm and y(xm) are model values for the distance and the concentration, xi and yi are 132 

the distance and concentration of the data points, x(error range) is the error range of the 133 

distance, and y is the standard error of the concentration measurements (Appendix 134 
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DR2). The data points in the simulation are picked randomly within the normal 135 

distribution of their standard error for the concentration and within the error range of their 136 

distance to the gas-water contact. A second Monte Carlo simulation is set up to evaluate 137 

the error of the diffusion coefficient on the diffusion time. The most probable diffusion 138 

time, the diffusion coefficient, Cstart, and Cend are reported with asymmetric error brackets 139 

defining the 95% quantile (Fig. 2; Appendix DR2). In the simulation for xenon, about 140 

one-fifth of the Cend concentrations resulted in negative values which were excluded 141 

because negative concentrations are meaningless. The model simplifies the field and does 142 

not account for lithology heterogeneities, residual water, compartmentalization of the 143 

field, lateral heterogeneities, and temporal variation in the noble gas concentration in the 144 

formation water which would have the tendency to increase the diffusion time. 145 

The fitted carbon isotope Cstart composition of 7.9‰ (Appendix DR2) fits well 146 

with a CO2 composition in equilibrium with formation water at Bravo Dome that is in 147 

equilibrium with dolomite. Dolomite with a 13C of ~2‰ PDB (Hoefs, 2008) in 148 

equilibrium with the formation water at Bravo Dome (Kessler et al., 2001; Hartig et al., 149 

2011) results in a CO2 groundwater end member of 8‰ based on a CO2(g)-150 

dolomite[[Explain what “(g)” means]] fractionation of 10‰ (Sheppard and Schwarz, 151 

1970; Clark and Fritz, 1997) at 33 °C (Cassidy, 2006). The fitted Cend composition of the 152 

carbon isotope is 4.1‰ which is in the range of magmatic-derived CO2 (Jenden et al., 153 

1993). 154 

AGE ESTIMATION 155 

The model generates noble gas diffusion profiles from the gas-water contact in the 156 

east toward the western end of the field that are consistent with the observed well gas 157 
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concentrations and place age constraints for [[the beginning of?]] the process at between 158 

14.1 ± 0.2 ka and 16.9 +1.1/–0.5 ka (Figs. 2C–2H; Appendices DR2 and DR4). The age 159 

difference between the noble gases could arise from the uncertainty of the diffusion 160 

coefficients because the noble gas diffusion coefficients are calculated and not 161 

empirically measured. The diffusion ages are strongly influenced by the wells close to the 162 

gas-water contact because these define the curvature and hence the age of the diffusion 163 

profile. 164 

The diffusion of the groundwater-derived noble gases through the CO2 most 165 

likely started when the CO2 first contacted the formation water. The gas-water contact 166 

probably moved down dip from the inferred entry point (see Sathaye et al., 2014, their 167 

figure 4b) throughout the filling of the CO2 but this does not affect the diffusion of the 168 

noble gases in the CO2, assuming a slug-like displacement of the formation water, which 169 

is reasonable given the likely slow rates of filling. Today the gas-water contact is >30 km 170 

away from the inferred entry point of the CO2 (Sathaye et al., 2014). Therefore, later CO2 171 

pulses, as proposed in previous studies (Baines and Worden, 2004; Sathaye et al., 2014), 172 

would not alter the noble gas diffusion profile at the gas-water contact. The water table in 173 

the Bravo Dome field lies horizontally (Cassidy, 2006), and the anhydrite seal likely 174 

prevents groundwater recharge, which suggests a stagnant aquifer (Akhbari and Hesse, 175 

2017). The estimated CO2 residence times are younger than the youngest[[Residence 176 

time is not an age, and therefore cannot be younger than something – please 177 

reword]] dated effusive rock in the area. Deep igneous activity, however, could have 178 

continued after the last lava flow at 56 ka (Stroud, 1997). 179 
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Additionally, the change in carbon and oxygen isotopes has been investigated; 180 

this can give insight into the source of the CO2 and extent of gas-water exchange and CO2 181 

dissolution. The 13C varies from 3.2‰ PDB in the west to 5.8‰ PDB in the east. 182 

This isotopic difference originates from the presence of two sources of carbon. There is a 183 

magmatic carbon input in the west, which is isotopically distinct from the formation 184 

water–derived carbon in the east. Similarly to the noble gases, diffusion controls the 185 

mixing between these two end members (Fig. 2B). Diffusion modeling of the 13C profile 186 

indicates a development period of 15.0 +0.2/–0.5 ka (Fig. 2B). This age[[period?]] 187 

agrees well with the age[[Can’t directly compare a “period” to an “age” – reword]] 188 

estimates derived from diffusion modeling of the noble gas concentration profiles. 189 

However, the evolution of oxygen isotopes is more complex. The 18O 190 

[[Correct?]] varies from a minimum of 18.6‰ in the west to 29‰ in the east. The wells 191 

in the west have lighter isotopic composition but differ by more than 9‰–12‰ from an 192 

expected mantle-like CO2 composition of 6‰–9‰ (Eiler, 2001). During the 193 

displacement of the formation water by the invading CO2, an irreducible water saturation 194 

of typically 5%–22% in sandstones (Krevor et al., 2012) will be trapped in the CO2-filled 195 

pores. The pores in the Tubb Formation thus contain an irreducible water saturation with 196 

a sufficient mass of oxygen such that O-isotopic exchange can modify the O-isotopic 197 

composition of across the entire CO2-filled volume. A residual water content correction 198 

has been made to the O-isotope ratios based on the mass balance equation: 199 

18Of
CO2 = 18Oi

CO2(1 X0
H2O) + X0

H2O (18OH2O + ),   (5)  200 

(Johnson et al., 2011[[Johnson et al., 2011 is not in the reference list.]]) where  is the 201 

CO2(g)-H2O fractionation factor at 33 °C (Brenninkmeijer et al., 1983), 18Oi
CO2 and 202 
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18Of
CO2 refer to initial and final composition of the CO2, respectively, and X0

H2O is the 203 

fraction of oxygen in the system from water. This amendment decreases the measured 204 

values only very little because the residual water saturation is as low as 5–10 vol% 205 

(Sathaye et al., 2014). Due to this complexity, the spatial trends in O-isotopic 206 

composition are not a useful constraint on the emplacement age. 207 

DISSOLUTION RATE 208 

Combining the range of residence times of 14.1 ± 0.2 ka and 16.9 +1.1/–0.5 ka 209 

with the gas mass, which has been subject to dissolution, enables the estimation of the 210 

dissolution rate. The dissolved gas can simply be estimated by subtracting the present 211 

mass of gas in the reservoir from the mass of gas that was in place originally. The present 212 

gas volume in the reservoir has previously been estimated to be 1.3 ± 0.6 Gt CO2 213 

(Sathaye et al., 2014). The original gas mass can be calculated from the difference 214 

between the present gas and the deviation from the highest CO2/
3He ratio (7.4  109) 215 

(Appendix DR1), representing dissolution of CO2 through apparent increase in 3He. The 216 

dissolved gas mass has been calculated in the past (Sathaye et al., 2014), however, the 217 

highest CO2/
3He ratio used was 5.35  109 (Cassidy, 2006; Gilfillan et al., 2008, 2009). 218 

Therefore, the dissolved mass is one-third larger than previously estimated (Sathaye et 219 

al., 2014) and equates to 506 ± 166 Mt CO2. This amount is 32% of the total estimated 220 

emplacement of 1.6 ± 0.67 Gt CO2 (Sathaye et al., 2014). The resulting dissolution rate 221 

ranges from 23,000 +1200/–1100 t/a to 36,000 ± 12,000 t/a. The gas-water contact covers 222 

an estimated area of 623 km2 (Sathaye et al., 2014) and enables estimating the flux that 223 

ranges from 48 +19/–17 g/(m2a) to 58 ± 19.7 g/(m2a). This flux is >500 larger compared 224 

to previous estimates [0.1 g/(m2a)] (Sathaye et al., 2014) but still almost 400 smaller 225 



Publisher: GSA 
Journal: GEOL: Geology 
DOI:10.1130/G39291.1 

Page 11 of 17 

than the estimates for the permeable Sleipner CO2 storage site in the North Sea [20 226 

kg/(m2a)] (Neufeld et al., 2010). 227 

CONCLUSIONS 228 

This diffusion model has, for the first time, been applied to estimation of the 229 

residence time of CO2 in Bravo Dome. This is key for quantifying the rate of CO2 230 

dissolution occurring in carbon dioxide reservoirs. Combining the range of residence 231 

times of 14.1 ± 0.2 ka and 16.9 +1.1/–0.5 ka with the gas volume that has been subject to 232 

dissolution, we could estimate the CO2 dissolution rate of 29,900 +11,800/–10,700 t/a to 233 

35,900  ± 12,300 t/a. Furthermore, the model can be tested on other natural CO2 and 234 

enhanced oil recovery (EOR) reservoirs to investigate gas-water interactions and quantify 235 

gas dissolution rates into the formation waters that are ubiquitously found in subsurface 236 

gas reservoirs. 237 
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FIGURE CAPTIONS 345 

Figure 1. A: Map of Bravo Dome gas field (New Mexico, USA), showing top of CO2-346 

hosting Tubb Formation (black contour lines, in m above sea level [a.s.l.]), gas-water 347 

contact (short dashed line), the 3He/4He ratio (long dashed line), and 26 sampling wells 348 

(circles). B: West-east cross-section highlighting gas-water contact within Tubb 349 

Formation on eastern side of westernmost fault, as opposed to west side, where gas 350 

reservoir is not in contact with formation water. Sampling wells are projected with their 351 

perforation depth (circles). 352 

[[In the figure, label panels A and B with uppercase letters; change all instances of 353 

“gas/water” to “gas-water”. In panel A, insert hyphen in “east-west” on the gas-354 

water fault contact; in symbol explanation, insert space between “Fm” and “[m 355 

a.s.l.]”, between “water” and “contact”, and between “10” and “km” on the scale 356 

bar. In panel B, sense of slip on the faults doesn’t seem to match that shown in panel 357 

A (barbs typically on upthrown side); change “Tubb Sandstone” to “Tubb 358 

Formation” for consistency; include horizontal scale bar (or reference the one in 359 

panel A if the same)]] 360 

 361 
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Figure 2. A–H: CO2 dissolution–corrected noble gas concentrations and measured stable 362 

isotopes plotted against distance to gas-water contact. Groundwater-derived noble gases 363 

diffusing from gas-water contact through gas column are fitted by Monte Carlo 364 

simulation to Fick’s second law of diffusion equation (C–H). This reveals residence time 365 

of CO2. Additionally, Ne diffusion profile is drawn for 1.2 Ma (D). Carbon isotopes show 366 

diffusive mixing between magmatic carbon source and formation water carbon source 367 

that is in equilibrium with dolomite (B). Time estimated using 13C isotopes is within 368 

range of ages estimated from noble gases. Oxygen isotopes show full equilibration with 369 

formation water in eastern part of field close to gas-water contact (A). Concentration and 370 

distance errors are smaller than symbols (circles). Symbol fills correspond to well 371 

locations in Figure 1. 18O and 13C values are relative to: V-SMOW—Vienna standard 372 

mean ocean water; V-PDB—Vienna Peedee belemnite. cm3STP—standard cubic 373 

centimeter. 374 

 [[In the figure, change “gas/water” to “gas-water”]] 375 

 376 

1GSA Data Repository item 2017, Appendices DR1–DR4, is available online at 377 

http://www.geosociety.org/datarepository/2017/ or on request from 378 

editing@geosociety.org. 379 


