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Abstract

This thesis looks at developing efficient methodology for analysing high dimensional time-

series, with an aim of detecting structural changes in the properties of the time series that

may affect only a subset of dimensions.

Firstly, we develop a Bayesian approach to analysing multiple time-series with the aim of

detecting abnormal regions. These are regions where the properties of the data change from

some normal or baseline behaviour. We allow for the possibility that such changes will only

be present in a, potentially small, subset of the time-series. A motivating application for this

problem comes from detecting copy number variation (CNVs) in genetics, using data from

multiple individuals.

Secondly, we present a novel approach to detect sets of most recent changepoints in panel

data which aims to pool information across time-series, so that we preferentially infer a most

recent change at the same time point in multiple series.

Lastly, an approach to fit a sequence of piece-wise linear segments to a univariate time series

is considered. Two additional constraints on the resulting segmentation are imposed which

are practically useful: (i) we require that the segmentation is robust to the presence of

outliers; (ii) that there is an enforcement of continuity between the linear segments at the
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changepoint locations. These constraints add significantly to the computational complexity

of the resulting recursive solution. Several steps are investigated to reduce the computational

burden.
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Chapter 1

Introduction

The work presented in this thesis considers the detection of changepoints in multivariate

time series. There has been a great deal of work in recent years on changepoint detection

in univariate time series and the development of many efficient algorithms to solve these

problems. However there is much less work on the corresponding problem for multivariate

time series due to the increased complexity in modelling such data, together with substantial

computational complexity.

The main contribution of this thesis is the development of methodology to detect changepoints

in high-dimensional time series where we assume that only a subset of the dimensions are

affected by each changepoint. There can be significant benefits in solving problems like this

as weaker changes that may not be detectable in the univariate case can now be detected by

pooling information across the dimensions of the series.

Our work has been motivated by data sets from Genetics, Finance and the Telecommu-

nications sector. These data sets are explained in their respective chapters, however, the

Telecommunications data is considered in two chapters and its structure is somewhat com-

1



CHAPTER 1. INTRODUCTION 2

plex so we describe it briefly below.

1.1 Telecommunications event data

This data set contains information about the number of events that occur in a telecommuni-

cations network per week. The time series in Figure 1.1.1 shows the number of events that

occur over the entire network per week for 175 weeks.

0 50 100 150

Week

E
ve

nt
 c

ou
nt

Figure 1.1.1: The number of events that occur per week over the entire telecommunications
network measured over a three and a half year time period (175 weeks).

Whenever an event occurs it is automatically logged in a database with the time it occurs. In

addition, many other attributes about the event are also recorded including the geographical

location of where it occurred on the network and many other attributes known as event types.

We can subdivide the number of events per week into different classes. For example the

number of events that occur in each of ten Regions of the UK. These regions partition the

UK so if we take the pointwise sum over all regions per week we get the total number i.e. the

time series in Figure 1.1.1. We can subdivide further and for example look at the number of
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events in each Region with a given event type combination. The series are shown in Figure

1.1.2 where there are 80 possible combinations, however, for some combinations no events

occur throughout the entire period and these are shown by horizontal lines in the centre of

the grid square.

Region

E
ve

nt
 ty

pe

Figure 1.1.2: A grid showing all possible combinations of Regions and Event types and the
number of events that occur per week for the combination considered.

The primary goal here is to understand the most recent behaviour of the data by analysing

all series in the hierarchical time series and fitting a changepoint model to the data.

1.2 Thesis structure

We begin in Chapters 2 and 3 by reviewing existing literature from both the univariate and

multivariate changepoint detection settings respectively. The different problem formulations

and detection methods are discussed and special attention is reserved for those state of the

art methods which we use as benchmark methods later in the thesis.
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In Chapter 4 we present a novel Bayesian approach to analysing multiple time-series with

the aim of detecting abnormal regions. These are regions where the properties of the data

change from some normal or baseline behaviour. We allow for the possibility that such

changes will only be present in a, potentially small, subset of the time-series. We develop

a general model for this problem, and show how it is possible to accurately and efficiently

perform Bayesian inference, based upon recursions that enable independent sampling from

the posterior distribution. A motivating application for this problem comes from detecting

copy number variation (CNVs), using data from multiple individuals. Pooling information

across individuals can increase the power of detecting CNVs, but often a specific CNV will

only be present in a small subset of the individuals. We evaluate the Bayesian method on

both simulated and real CNV data, and give evidence that this approach is more accurate

than a recently proposed method for analysing such data.

In Chapter 5 we present a novel approach to detect sets of most recent changepoints (MRC)

in panel data. A panel is made up of a number of univariate time series and our method is

described firstly for the univariate case where finding the most recent changepoint (prior to

the end of the data) is straightforward. We then extend this to panel data as there may be a

number of MRC’s due to different subsets of the series that make up the panel having different

behaviours. These MRC’s affect disjoint subsets of the series as any one series can only have

one MRC. We seek a parsimonious model for the data that gives a reasonable number of

MRC’s and doesn’t over-fit the data. Focusing on the most recent changepoints makes sense

for forecasting & understanding recent behaviour of the panel and the specific subsets of

series within it. The possibility that such changes will only be present in a, potentially

small, subset of the series which many existing methodologies do not account for is a key
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consideration in this work. This involves pooling information across individual series of the

panel to increase the power of detection. We develop a general model for this problem, and

show how it is possible to accurately and efficiently perform inference. We present simulations

showing that this approach is more accurate than other proposed method for analysing such

data. Two real data sets are considered, regarding the number of events that occur over time

in a telecommunications network and a data set from the field of Corporate finance where

our method gives insights into the different subsets of series that change.

In Chapter 6 we present a novel approach to detect changepoints and fit a sequence of piece-

wise linear segments to a univariate time series. Two additional constraints on the resulting

segmentation are imposed which are practically useful: (i) we require that the segmentation

is robust to the presence of outliers; (ii) that there is an enforcement of continuity between

the linear segments at the changepoint locations. These constraints have been considered

separately in the context of changepoint detection before but here we develop a set of recur-

sions to segment a series with both criteria. Solving these recursions exactly proves to have

a computational cost that is exponential in the length of the data so we apply two pruning

techniques, one of which is heuristic that enables us to evaluate the recursions in a reason-

able time. We present simulations showing that this approach performs well in practice and

describe the improvements over using simpler models such as Ordinary Least Squares.



Chapter 2

Changepoint detection for univariate

time series

This chapter focuses on changepoint detection in univariate time series. Many of the tech-

niques used to analyse multivariate time series described later in this thesis are based upon

these univariate methods. Thus understanding them allows us to see their limitations and

how they can possibly be extended.

Firstly, in Section 2.2, the changepoint problem is posed as an optimisation problem. Sev-

eral different formulations are discussed as well as different solution methods. One of the

main concerns is the computational efficiency of the solution methods. We describe several

techniques from the literature which are used to reduce the computational complexity of

segmenting a time series by an order of magnitude.

In Section 2.3 we then look at modelling changepoints using the Bayesian paradigm, this al-

lows more quantification of uncertainty about the locations of changes. However, performing

inference for time series of moderate length proves challenging and we find that an acceptably

6
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efficient algorithm comes at the cost of performing approximate inference.

Many of the methods mentioned in this Chapter are implemented in the Changepoint R

package available on CRAN [Killick and Eckley, 2014].

2.1 Notation

Assume we have an ordered sequence of data of length n which we denote y1:n = (y1, y2, . . . , yn).

Firstly for simplicity consider a single changepoint in the data. Then for some time point

τ ∈ {2, . . . , n−1}, we can split the data into two segments, with the data in the first segment

being y1:τ , and that in the second y(τ+1):n. A changepoint model assumes a common model

for data within the same segment but allows different models for data in different segments.

Possibly the simplest example is a change in mean model with Normally distributed residuals

with some variance σ2. Assume the data in the first segment y1:τ has a common mean of

µ1 and that data in the second segment y(τ+1):n has a different common mean of µ2. The

distribution for this data is as follows Yi ∼ N (µ1, σ
2) for i ∈ {1, . . . , τ} and Yj ∼ N (µ2, σ

2)

for j ∈ {τ + 1, . . . , n}.

To extend this to the multiple changepoint case, assume there are m changepoints with

locations τ 1:m = (τ1, τ2, . . . , τm) where τi < τj iff i < j. For notational convenience we define

τ0 = 0 and τm+1 = n. These m changepoints segment the data into m + 1 segments, with

the data in the ith segment being y(τi−1+1):τi .

We have described a change in mean model, however, many other types of changes can be

modelled. In the three time series shown in Figure 2.1.1 we can see a change in mean model,

a change in variance model and a change in regression model on the right.
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Y Z

Figure 2.1.1: Three time series having a single change. A mean change on the left, variance
change in the middle and change in regression on the right.

2.2 Optimisation methods for changepoint detection

The problem of finding changepoints or, equivalently segmenting a time series into contiguous

segments can be formulated as an optimisation problem. This is a popular formulation of the

mutiple changepoint detection problem and is the one that the methods in this thesis build

on. This formulation gives rise to a relatively simple set of recursions that can be solved

exactly to give the location of the changepoints in a time series.

Firstly we discuss two different formulations of the optimisation problem in Sections 2.2.1

and 2.2.2. Efficient methods to perform inference on these two formulations are described in

Section 2.2.3.

We only concern ourselves with the case where the data in individual segments are assumed to

have some known parametric distribution. However, the formulations we cover can easily be

extended to allow non-parametric models for the data within each segment, see for example

Haynes et al. [2017b].
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A penalised cost approach to detecting changepoints involves introducing a cost associated

with each putative segment. This cost is often derived by modelling the data within a

segment, and then setting the cost to be proportional to minus the maximum likelihood

value for fitting that model to a segment of data. If our model for data in a segment is that

they are Independently and identically distributed (IID) with some density f(y|θ), where θ

is a segment-specific parameter, then we can define a cost for a segment ys:t as

C(ys:t) = −2 max
θ

t∑
i=s

log f(yi|θ).

To make this idea concrete we give an example of a cost function used to model changes in

mean. A simple model is that the data in a segment are IID Gaussian with common known

variance, σ2, and segment specific mean, θ. In this case we get

C(ys:t) = −2 max
θ
− 1

2σ2

t∑
i=s

(yi − θ)2 =
1

σ2

t∑
i=s

(
yi −

∑t
j=s yj

t− s+ 1

)2

. (2.2.1)

Once we have defined a segment cost, we then define a cost for a segmentation as the sum

of the segment costs for that segmentation.

To segment the data, and find the changepoints, we then want to minimise this cost over

all segmentations. Whenever a new changepoint is added into the model the overall cost

of the segmentation decreases. Therefore if we just directly minimise this cost the resulting

segmentation would include a changepoint at every time point. We obviously want to avoid

such over-fitting which implies we have a trade-off between a reduced cost and a parsimonious

model. There are two ways in which we can achieve this trade off, the first is to constrain the
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model to some maximum number of changepoints and the second is to introduce a penalty

value each time a changepoint is added. This means that the overall ‘best’ model will provide

a good fit using a reasonable amount of changepoints.

The first approach to overcome over-fitting is to consider a constrained optimisation problem

where the segmentation is constrained to have a certain number of changepoints (in this case

m)

Qm(y1:n) = min
τ1:m

{
m+1∑
i=1

[
C(y(τi−1+1):τi)

]}
. (2.2.2)

Usually the number of changes m is unknown so that the number of changes is estimated

by minimising the constrained cost plus some penalty which is a function of the number of

changes

min
m
{Qm(y1:n) + βf(m)}. (2.2.3)

The general form of the penalty function is βf(m). This can be broken down into two parts.

Firstly f(m), which is a function of the number of changepoints m. This function is usually

chosen to be linear in m. Secondly, β is the term used for model selection (the number of

changepoints to be added) which is usually an information theoretic measure. Choices for

this term are described in more detail in Section 2.2.4.

Solving the constrained problem is computationally intensive and can be carried out using

the Segment Neighbourhood search algorithm [Auger and Lawrence, 1989] which we describe

in Section 2.2.1. A more efficient approach which eliminates the need to select an m for the
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constrained problem is known as the penalised optimisation problem. This requires us to

take f(m) to be linear in m.

So if f(m) = m and for some β > 0, solving (2.2.3) is equivalent to solving

min
m,τ1:m

{
m+1∑
i=1

[
C(y(τi−1+1):τi)

]
+ βf(m)

}
, (2.2.4)

which in turn can be written as

min
m,τ1:m

m+1∑
i=1

[
C(y(τi−1+1):τi) + β

]
. (2.2.5)

To solve this problem the Optimal Partitioning algorithm described in Section 2.2.2 can be

used. Variants of this method are proposed in Section 2.2.3 to decrease the computational

cost.

In the following sections we consider the solution of these problems. Both the Segment Neigh-

bourhood and Optimal partitioning methods depend on us being able to break the original

problem which is difficult to solve into sub problems which are progressively easier to solve

via a relatively simple set of recursions. This approach is known as Dynamic programming

[Bellman, 1957].

2.2.1 Segment Neighbourhood

The Segment Neighbourhood search algorithm (SN) [Auger and Lawrence, 1989] was devel-

oped to solve the constrained optimisation problem described in (2.2.2). In (2.2.2) we defined

Qm(y1:t) as the minimum cost of putting m changepoints into the segment of data y1:t. In
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the SN recursions we optimise for m changepoints based on the optimal solution for m − 1

changepoints. We do this by conditioning on the last changepoint being at s where s < t.

Then we can relate Qm(y1:t) to the segmentation of y1:s with m− 1 changepoints Qm−1(y1:s)

Qm(y1:t) = min
τ1:m

{
m+1∑
i=1

[
C(y(τi−1+1):τi)

]}

= min
s∈{τm−1,...,t−1}

[
Qm−1(y1:s) + C(y(s+1):t)

]
.

(2.2.6)

Solving this recursion proceeds by going forwards through the data. We need to specify a

maximum number of changepoints that we want to consider, say M . We then compute the

cost for all possible segmentations, with between 0 and M changepoints.

For each t ∈ 1, . . . , n we calculate (2.2.6) for all possible change locations, s ∈ m, . . . , t − 1.

For the full n data points this has computational time of O(n2). This is repeated M times,

therefore SN has an overall computational cost of O(Mn2). If, as the observed data increases,

the number of changepoints increases linearly, then M = O(n) and the method will have a

computational cost that is cubic in n. This is prohibitive if n is large. One advantage to the

SN approach is the ability to use an arbitrary penalty of the form, βf(m) where f(m) does

not have to be linear in m, unlike the Optimal Partitioning method.

2.2.2 Optimal Partitioning

Optimal Partitioning (OP) is a dynamic programming approach to solving (2.2.5) and was

first developed in Jackson et al. [2005]. The idea behind OP is to recursively condition on

the last changepoint prior to a given time until the end of the data is reached. As an example

if the last changepoint prior to time t is at s, then the optimal cost of the segmentation up
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to t is the optimal cost up to s plus the cost of adding a segment from s + 1 to t (with

penalty added as well). Of course we do not know the value of s but we can calculate it via

minimising over a set of candidate changepoints for each t.

In order to do this we need to be able to calculate segment costs independently of other

segments. This implies that there can be no dependence between the parameters in different

segments.

More formally let Tt = {τ : 0 = τ0 < τ1 < . . . < τm < τm+1 = t} be a vector of all possible

segmentations with m changepoints and let F (t) denote the minimisation from (2.2.5) for

data y1:t

F (t) = min
τ∈Tt

{
m+1∑
i=1

[
C(y(τi−1+1):τi) + β

]}
.

Then we can devise a recursion for F (t) as

F (t) = min
s

{
min
τ∈Ts

m∑
i=1

[
C(y(τi−1+1):τi) + β

]
+ C(y(s+1):t) + β

}
,

= min
s

{
F (s) + C(y(s+1):t) + β

}
.

(2.2.7)

Note that the argmin we find in (2.2.7) is the location of the change prior to time t. We

therefore record these argmin and to find the full set of changepoints we look back from the

end of the data until we encounter an argmin of 0. The pseudocode for this method is shown

in Algorithm 1. To initialise the recursion we define F (0) = −β so that F (1) = C(y1).
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Algorithm 1: Optimal Partitioning algorithm.

Input: A data set y1:n = (y1, y2, . . . , yn).

A cost function C(·) dependent on the data.

A penalty term β.

Initialize: Let n = the length of the data and set F (0) = −β, cp(0) = NULL.

for t = 1 to n do

1. Calculate F (t) = min0≤s<t
[
F (s) + C(y(s+1):t) + β

]
.

2. Let τ = arg min0≤s<t
[
F (s) + C(y(s+1):t) + β

]
.

3. Set cp(τ) = (cp(τ), τ)

end

Output: The changepoints recorded in cp(n).

In Step 1. of Algorithm 1 for each time step t, we must calculate F (t) by minimising over all

the integers between 0 and t− 1. Thus for each t we have to calculate t different expressions

and find the minimum. If we have a time series of length n the total number of operations

in the full algorithm is of the order of
∑n

t=1 t ∼ n2. The next section explores how we can

make OP more efficient by removing some integers from consideration.

2.2.3 Pruning

Pruning is a technique applied in the solution of both the SN and OP methods. It greatly

increases the efficiency of both the methods while retaining the exact nature of the solution.

There are two types of pruning, inequality pruning which was first developed by Killick et al.

[2012] and functional pruning which was introduced by Rigaill [2015]. Both of these pruning

techniques can be applied to both the SN and OP methods [Maidstone et al., 2016b]. The
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simplest exposition and most efficient algorithm to describe is the OP method.

The intuition behind pruning is quite simple if we consider the full OP method.

In the OP algorithm to find F (t) we condition on the most recent changepoint s, prior to

t. This involves searching through all the integers from 0 to t − 1 in order to find the best

location in which to place the changepoint. Denote the set of candidate changepoints that

we must consider at time t as Rt = {0, 1, . . . , t − 1}. Searching through this entire set of

candidate changepoints Rt at every time step t can be extremely wasteful. For example if

we know that the most recent changepoint prior to t is at s then when looking for the most

recent changepoint prior to time t + 1, we should not have to search through the entire list

again.

This is where the concept of pruning comes in, we ‘prune’ the set Rt removing those candidate

changepoints that can never be optimal in the future and are left with a smaller subset of

Rt to propagate to the next time step. Intuitively this is clear, however we want the pruned

OP method to remain optimal so we must be careful how we prune Rt.

We now consider two pruning methods that can be used to increase the computational effi-

ciency of the OP method whilst ensuring the global minimum of (2.2.5) is still found.

Inequality pruning

The first method of pruning from Killick et al. [2012] is based on an inequality which de-

termines whether a candidate changepoint can ever be optimal in the future. Once we have

the inequality it is very easy and efficient to implement this within the OP method. The

following theorem proves that for any pruning based on the given inequality we retain the

optimal solution from the OP algorithm.



CHAPTER 2. CHANGEPOINT DETECTION FOR UNIVARIATE TIME SERIES 16

Theorem 2.2.1. Killick et al. [2012] Assume there exists a constant K such that for all

t < s < T ,

C(y(s+1):t) + C(y(t+1):T ) +K ≤ C(y(s+1):T ). (2.2.8)

Then, if

F (s) + C(y(s+1):t) +K ≥ F (t) (2.2.9)

holds, at a future time T > t, then s can never be the optimal last changepoint prior to T

and so can be removed from all the candidate changepoint sets in the future with no effect on

the exact solution.

Proof. For a proof of this see Section 5 of the supplementary material of Killick et al. [2012].

In condition (2.2.8) if we take cost functions that are based on the log likelihood, such as

those described in (2.2.1) we can set K = 0.

Inequality pruning was combined with the OP algorithm in Killick et al. [2012] and the

resulting algorithm is known as Pruned Exact Linear Time (PELT). We give pseudocode in

Algorithm 2.
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Algorithm 2: The PELT algorithm.

Input: A data set y1:n = (y1, y2, . . . , yn).

A cost function C(·) dependent on the data.

A penalty term β.

A constant K that satisfies Equation (2.2.8).

Initialize: Let n = the length of the data and set F (0) = −β, cp(0) = NULL, R1 = {0}.

for t = 1 to n do

1. Calculate F (t) = mins∈Rt

[
F (s) + C(y(s+1):t) + β

]
.

2. Let τ = arg mins∈Rt

[
F (s) + C(y(s+1):t) + β

]
.

3. Set cp(τ) = (cp(τ), τ).

4. Set Rt+1 = {s ∈ Rt : F (s) + C(y(s+1):t) +K < F (t)} ∪ {t}

end

Output: The changepoints recorded in cp(n).

Note how similar this is to the OP algorithm, where the only difference is the addition of the

pruning inequality in Step 4. which reduces the size of the candidate changepoint set.

In Figure 2.2.1 we show a time series that undergoes a change in mean process which has

been segmented with the OP and PELT methods which give identical locations for the

changepoints.

Figure 2.2.2 shows the size of the set of candidate changepoints over time i.e. |Rt| for each

time t. For the OP method this line is shown in black and increases linearly with time as

|Rt| = t. However, for PELT the corresponding line is in red and with the pruning step

added to the OP method it increases at a much slower rate. Note also that large reductions

in the size of the sets Rt occur at or near changepoints, shown by the vertical lines.
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The PELT method is always faster than OP and in certain circumstances when the number

of changepoints increases linearly with the length of the data PELT can be shown to be O(n).

It performs well in cases where there are a large number of changepoints in the data as lots

of pruning can occur throughout time so that the sets Rt cannot grow to be too large.
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Figure 2.2.1: A time series of length 1000 with the changepoints found using the OP/PELT
methods highlighted in red.
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Figure 2.2.2: The number of candidate changepoints at each time point t for OP (in black)
and PELT (in red). The vertical dashed lines give the location of the changepoints found
(identical for both methods).



CHAPTER 2. CHANGEPOINT DETECTION FOR UNIVARIATE TIME SERIES 19

Functional pruning

Functional pruning, which was first developed by Rigaill [2015] was originally applied to the

SN algorithm.

The basic idea behind functional pruning is that conditional on knowing the parameter for

the current segment the best location for the most recent changepoint can be calculated

easily. Thus only the most recent changepoints that are optimal for some value(s) of the

parameter of the current segment need to be considered and the rest can be pruned.

Firstly we define the segmentation cost as a function of the segment parameter which we

denote here as θ. A key assumption that underlies functional pruning is that the segmentation

costs defined in (2.2.1) can be split into component parts γ(yi, θ) that depend on some

parameter which we minimise over to obtain the overall cost of a segment

C(ys:t) = min
θ

t∑
i=s

γ(yi, θ). (2.2.10)

For the change in mean model for Gaussian data the function γ(·) is a quadratic

γ(yi, θ) =
(yi − θ)
σ2

.

To develop a set of recursions we follow Maidstone et al. [2016b] and define new cost functions

Costτt (θ) as the minimal cost of segmenting the data y1:t with the most recent changepoint

at τ and the parameter in the final segment being θ. This can be written as the optimal

segmentation up to time τ plus the cost of a segment from τ + 1 to t and the addition of the
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penalty term for a new segment

Costτt (θ) = F (τ) + β +
t∑

i=τ+1

γ(yt, θ). (2.2.11)

Given these cost functions Costτt (θ) we can find F (t) by minimising over both τ and θ by

interchanging the order of minimisation

min
τ

min
θ
Costτt (θ) = min

τ
min
θ

[
F (τ) + β +

t∑
i=τ+1

γ(yi, θ)

]
,

= min
τ

[
F (τ) + β + min

θ

t∑
i=τ+1

γ(yi, θ)

]
,

= min
τ

[
F (τ) + β + C(y(τ+1):t)

]
,

= F (t).

This relationship is key as it shows that values of the potential last changepoint, τ , can be

pruned whilst allowing for a varying θ.

Define the function Cost∗t (θ) as the minimal cost of segmenting data y1:t conditional on the

last segment having parameter θ

Cost∗t (θ) = min
τ
Costτt (θ).

These functions are updated recursively over time, and then we use the relation F (t) =

minθ Cost
∗
t (θ) to obtain the solution of the penalised minimisation problem. The recursions
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for Cost∗t (θ) are obtained by splitting the minimisation over τ into τ ≤ t− 1 and τ = t

Cost∗t (θ) = min

{
min
τ≤t−1

Costτt (θ), Cost
t
t(θ)

}
= min

{
Cost∗t−1(θ) + γ(yt, θ), F (t) + β

}
.

To implement these recursions we need to be able to efficiently store and update Cost∗t (θ).

This is done by partitioning the space of possible θ values, into sets where each set corresponds

to a value τ for which Cost∗t (θ) = Costτt (θ). We then need to be able to update these sets,

and store Costτt (θ) just for each τ for which the corresponding set is non-empty. This results

in us storing piece-wise quadratics for the change in mean model.

Functional pruning was combined with the OP algorithm in Maidstone et al. [2016b] result-

ing in the Functional Pruning Optimal Partitioning (FPOP) algorithm. It was shown that

functional pruning always prunes at least as much as inequality based pruning. The FPOP

algorithm is especially effective for long data sets which contain few changes for which the

PELT algorithm performs poorly.

The FPOP algorithm has seen several modifications, these include the R(obust)-FPOP

method [Fearnhead and Rigaill, 2016] which is an approach to changepoint detection that is

robust to the presence of outliers. Also the CPOP algorithm [Maidstone et al., 2017a] was

developed to fit a continuous piece-wise linear process to a data set.

Despite the computational advantages of FPOP there is one serious drawback in that when

the segment parameter has dimension greater than one it is not practical to perform func-

tional pruning. This is because the pruning of FPOP involves a line search over the values of

the parameter of the current segment to find the set of most recent changepoints that are op-
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timum for some value of this parameter. Performing this search is easy for a one-dimensional

parameter, but computationally intractable for a higher-dimensional parameter. This would

occur if we wanted to detect changes in both the mean and variance of a time series at the

same time.

2.2.4 Penalty

The penalty function is used to give a parsimonious model that fits the data adequately using

a reasonable number of changepoints and so avoids over-fitting.

The general penalty function is βf(m), however, in practice the function that penalises the

number of changepoints m, f(m) is linear and increasing in m. For the OP and PELT

algorithms we need to take f(m) = m so that we can form the recursion in (2.2.7).

The penalty parameter β has received much more attention in the literature as we rely on

this parameter for model selection. In the changepoint problem model selection is basically

choosing the “optimal” number of changepoints to put in the data.

The Bayesian Information Criterion (BIC) [Schwarz, 1978] and the Akaike Information Crite-

rion (AIC) [Akaike, 1974] are both widely used across statistics for model selection. However,

their use in changepoint problems are not theoretically justified, as the likelihood functions

involved do not satisfy the required regularity conditions. In Yao [1988] however, weak con-

sistency results were established for estimating the number and position of changepoints, in

normally distributed data using the BIC penalty.

If we have a data set of length n and the segment specific parameter that we model to be

changing is of dimension p, i.e. for just the mean parameter µ, p = 1 or for both the mean
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and variance (µ, σ) then p = 2. The AIC and BIC are then defined as

AIC = 2(p+ 1)

BIC = (p+ 1) log n.

A modified version of the BIC was introduced in Zhang and Siegmund [2007b] which has

theoretical justification for one specific model, data consisting of independent normally dis-

tributed observations with constant variance and piece-wise constant mean. These informa-

tion criteria have also been developed for different and more complex models. For example

Ding et al. [2016] derive a consistent BIC like criterion for a piece-wise auto-regressive model.

Adaptive procedures for penalty selection were first discussed in Lavielle [August 2005], this

leads to the fuller treatment given by the CROPS method [Haynes et al., 2017a]. This paper

describes an efficient approach to compare segmentations for different choices of the penalty

β which takes values on some specified continuous range. This method allows us to evaluate

the various segmentations and so to identify a suitable choice for the penalty given the specific

data set we observe.

The CROPS method is not dependent on the model we assume for the data and can be used

with any changepoint method that minimises the penalised cost. Computationally, it involves

running the chosen algorithm for a set of penalty values. The number of different values that

need to be taken is at most one more than the difference in the number of changepoints in

the optimal segementations for the lowest and highest penalty values.
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2.2.5 Binary Segmentation

The methods we have hitherto described are all exact, meaning they find the optimal solution

to the optimisation problem in (2.2.4). Also of interest, and widely applied in practice are

approximate methods that do not solve (2.2.4) exactly. These methods can generally be

applied more widely to different models and can sometimes be much quicker than their exact

counterparts.

A very simple and widely used approximate changepoint method is the Binary segmentation

method introduced by Scott and Knott [1974] and Sen and Srivastava [1975]. Binary segmen-

tation extends any single changepoint detection method to detect multiple changepoints by

repeated application to different subsets of the data. It can be viewed as a greedy heuristic

because it makes the locally optimal choice at each stage of the process.

The first step is to apply the chosen single changepoint detection method to the entire data

set, if no changepoint is found then we are done. If a changepoint is detected, call this τ , then

the data is split into two segments, y1:τ and y(τ+1):n. We then apply the single changepoint

method to the two segments and repeat iteratively. We stop when no more changepoints are

detected.

Assume we are at a step of the algorithm where we consider the segment of data ys:t, firstly

we locate the best location for a single changepoint in this segment of data by minimising

τ̂ = arg min
τ∈{s+1,...,t−1}

[
C(ys:τ ) + C(y(τ+1):t)

]
. (2.2.12)

Then given the location of this candidate changepoint, we test to see whether it improves
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the fit of the model to warrant its inclusion by testing whether the following inequality holds

C(ys:τ̂ ) + C(y(τ̂+1):t) + β < C(ys:t). (2.2.13)

If this inequality holds then τ̂ is added to the changepoints found and we then split the data

into two at time τ̂ so that we have two resulting segments ys:τ̂ and y(τ̂+1):t. These two new

segments are then analysed using the same procedure, splitting them recursively until the

inequality in (2.2.13) does not hold.

Computationally, Binary segmentation is very efficient and is of the order of O(n log n). The

obvious drawback to its use is that it is only approximate in the sense that it does not find the

global minimum of (2.2.5), and in certain situations it can break down as estimated change-

point locations are conditional on previously identified changepoints. Practically, however, it

often performs very well and the estimated changepoint locations given by this method have

been shown to be consistent in a particular sense described in Fryzlewicz [2014b].

There has been some work to develop variants of Binary segmentation in Fryzlewicz [2014b]

and Olshen et al. [2004b].

One problem encountered in practice due to the iterative nature of the algorithm, is that

Binary segmentation may fail to detect a small segment which lies inside a larger segment. A

modified Binary segmentation algorithm, Circular Binary segmentation (CBS) [Olshen et al.,

2004b], attempts to address this issue. CBS still iteratively applies a single changepoint

detection method. However, at each step it allows for the identification of either a single

changepoint or a small segment made up of two changepoints.
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2.3 Bayesian inference for changepoint models

The Bayesian paradigm is also widely used in the changepoint literature. Some examples of

these are described in Barry and Hartigan [1993], Green [1995], Fearnhead [2006], Benson

and Friel [2016] and Fearnhead and Liu [2007].

The Bayesian approach gives us information regarding the uncertainty in the number of

changepoints and their locations from the posterior distribution. This is much more informa-

tive than the point estimates given by the optimisation methods mentioned above, however,

the disadvantage of Bayesian methods is their larger computational cost.

To perform Bayesian inference we need to specify priors on the parameters of interest, namely

the number of changepoints, π(m), locations and segment parameters of the changes condi-

tional on the number π(θ(m)|m). The parameter vector θ(m) contains the locations of the m

changepoints and the m+ 1 segment specific parameters θi, for i = 1, 2, . . . ,m+ 1

θ(m) = (τ1, . . . , τm, θ1, . . . , θm+1).

For m changepoints the parameter vector θ(m) has length 2m+ 1.

The joint posterior we are interested in can be factorised as

p(m,θ(m)|y) ∝ π(m)π(θ(m)|m)p(y|θ(m),m). (2.3.1)

Traditional Markov Chain Monte Carlo (MCMC) methods can be used to explore this poste-

rior if m is known or fixed. However as we want to perform a full Bayesian analysis and have

specified some prior π(m) on m the sampler needs to be able to move between models with
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differing numbers of changepoints. This is a problem for traditional MCMC samplers as the

parameter vector we are aiming to explore and draw samples from θ changes in dimension

with each iteration.

One way to perform Bayesian inference on this model is to extend the traditional MCMC

methodology and follow the well known Reversible jump Markov chain Monte Carlo (RJM-

CMC) method described in Green [1995]. This method allows us to jump between parameter

spaces with a different number of dimensions. The traditional MCMC step of proposing a

new value for a parameter and deciding whether to accept or reject the move is maintained

in the RJMCMC method. However, two more steps are added: a “birth” step, used for the

addition of a changepoint to the model and a “death” step, to remove a changepoint.

As in standard MCMC the mixing of the chain, autocorrelation of the samples and conver-

gence are still an issue here. For general guidelines on designing RJMCMC algorithms see

Armstrong et al. [2007]. The problems in diagnosing convergence and the possible substantial

errors was highlighted by the analysis of a data set using the RJMCMC method and another

approach which we describe below.

An adaptive algorithm was introduced in Benson and Friel [2016] which uses birth and death

steps but also learns from the past states of the Markov chain in order to build proposal

distributions which can quickly discover where changepoints are likely to be located. It is

demonstrated that this algorithm is viable for large datasets and that the MCMC that targets

the stationary distribution is ergodic.

For many changepoint models it is possible to simulate independent realisations directly

from the posterior distribution. The ideas for direct simulation are based on exact meth-

ods for calculating posterior means which originated in Barry and Hartigan [1993] and are
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extended in Fearnhead [2006]. The advantages of direct simulation methods over MCMC

based methods are twofold. Firstly there is no need to concern ourselves with convergence

and potentially running the chain for many iterations to prove convergence. Secondly sam-

ples from the posterior are independent so quantifying uncertainty is simple. An example of

the first problem regarding convergence of the RJMCMC method is clear if we compare the

inferences obtained for a Coal-mining disaster data set analysed using RJMCMC in Green

[1995] and direct simulation in Fearnhead [2006]. Using the same model resulted in different

segmentations because the chain wasn’t run for a sufficient number of iterations.

The disadvantage of direct simulation methods is that they can only be applied to certain

changepoint models that satisfy a conditional independence property. In our setting this

means that conditional on the changepoint locations parameters of different segments are

independent. Many models satisfy this property, for example a change in mean model where

the mean parameters of each segment are i.i.d draws from some distribution. However, there

are several useful models in practice that do not satisfy this condition. For example if we want

to fit piece-wise functions but wish to enforce continuity between functions in neighbouring

segments then this introduces dependence between parameters in neighbouring segments. It

should be noted that this sort of dependence across segments is a problem for all changepoint

detection methods and not only Bayesian methods. Later work in Fearnhead and Liu [2011]

showed how the direct simulation method could be adapted to the case where parameters in

consecutive segments have a Markov style dependence structure, however their method only

calculates an approximation to the posterior.

While the specification of separate priors for the number and position of changepoints in

(2.3.1) may seem intuitive. The direct simulation methods of Barry and Hartigan [1993],



CHAPTER 2. CHANGEPOINT DETECTION FOR UNIVARIATE TIME SERIES 29

Fearnhead [2006] and Fearnhead and Liu [2007] are simplest to describe when both the

number and position of changepoints are jointly specified via a single prior distribution on

the length of a segment. This single prior for the length of a segment implies that the

sequence of changepoints forms a discrete renewal process with inter-arrival times that are

identically distributed. The simplest inter-arrival distribution commonly used is a geometric

distribution which results in the number of changepoints being Binomially distributed.

In Section 2.3.1 we show how a series of recursions can be developed following Fearnhead

and Liu [2007] to calculate the posterior distribution of interest numerically, and then draw

samples from it. We then consider how methods from the particle filtering literature can be

used to limit the computational cost of these recursions in Section 2.3.2.

2.3.1 Exact online inference

Following the paper of Fearnhead and Liu [2007] we model the data through a hidden state

process, C1:n. This hidden state process will contain information about where the change-

points of the data are located. Our model is defined through specifying the distribution of

the hidden state process, p(c1:n), and then the conditional distribution of the data given the

state process, p(y1:n|c1:n).

Our interest lies in inference about this hidden state process given the observations which

involves calculating the posterior distribution for the states

p(c1:n|y1:n) ∝ p(y1:n|c1:n)p(c1:n). (2.3.2)

We introduce a state at time t, Ct , which is defined to be the time of the most recent change
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point prior to time t.

We model Ct as a Markov process, conditional on Ct, either Ct+1 = ct, which corresponds

to no changepoint at time t, or Ct+1 = t, if there is a changepoint at time t. We need that

p(Ct+1 = t|ct) only depends on ct. Thus Ct ∈ {0, . . . , t − 1} with Ct = 0 meaning that

the current segment is the first segment. This Markov process is determined by a set of

transition probabilities which depend only on the distance between the current time t and

the last changepoint.

Due to this process being Markov we can decompose p(c1:n) into factors

p(c1:n) = p(C1 = c1)
n−1∏
i=1

p(Ci+1 = ci+1|Ci = ci). (2.3.3)

The decomposition in (2.3.3) gives us two aspects of the process to define, namely the tran-

sition probabilities p(Ci+1 = ci+1|ci) and the initial distribution, p(C1 = c1).

Firstly consider the transition probabilities. Now either Ct+1 = Ct or Ct+1 = t depending on

whether a new segment starts between time t and t + 1. The probability of a new segment

starting is just the conditional probability of a segment being of length t − Ct given that is

at least t − Ct. The probability of a segment continuing is the conditional probability of a

segment having a length greater than t− Ct given that is at least of length t− Ct.

Let G(·) be the distribution function of the distance between two successive change points

then the transition probabilities can be written down for p(Ct+1 = j|Ct = i) where i =
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1, . . . , t− 1 as

p(Ct+1 = j|Ct = i) =



1−G(t−i)
1−G(t−i−1) if j = i

G(t−i)−G(t−i−1)
1−G(t−i−1) if j = t

0 otherwise

This hidden process partitions the time interval into contiguous non-overlapping segments.

Using this we want to define a likelihood for the observations conditional on this process

p(y1:n|c1:n), in (2.3.2). To make this model tractable, so we can write down a set of recursions,

we assume a conditional independence between segments:

p(y1:t|Ct = j) = p(y1:j|Ct = j)p(y(j+1):t|Ct = j)

We can then define, for all t < s,

P (t, s) = p(yt:s|Cs = t− 1). (2.3.4)

Conditional on the hidden states c1:n the likelihood is

p(y1:n|c1:n) =
n∏
t=1

p(yt|c1:n,y1:t−1)

=
n∏
t=1

p(yt|ct,y(ct+1):(t−1)).

(2.3.5)

The terms in (2.3.5) can be written as

p(yt|ct,y(ct+1):(t−1)) =
P (ct + 1, t)

P (ct + 1, t− 1)
. (2.3.6)
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The main set of recursions is now derived that enable us to calculate the exact posterior

numerically. There are two separate cases the first where j < t

p(Ct+1 = j|y1:(t+1)) ∝ p(yt+1|y1:t, Ct+1 = j)p(Ct+1 = j|y1:t)

=
P (j + 1, t+ 1)

P (j + 1, t)
Pr(Ct+1 = j|Ct = j)p(Ct = j|y1:t).

Then the second where j = t

p(Ct+1 = t|y1:(t+1)) ∝ p(yt+1|y1:t, Ct+1 = j)p(Ct+1 = j|y1:t)

= P (t+ 1, t+ 1)
t−1∑
i=0

Pr(Ct+1 = t|Ct = i)p(Ct = i|y1:t).

If we define

w
(j)
t+1 =


P (j+1,t+1)
P (j+1,t)

if j < t

P (t+ 1, t+ 1) if j = t

Then we can rewrite the set of recursions above more simply as

p(Ct+1 = j|y1:(t+1)) ∝


w

(j)
t+1

1−G(t−i)
1−G(t−i−1)p(Ct = j|y1:t) if j < t

w
(t)
t+1

∑t−1
i=0

(
G(t−i)−G(t−i−1)

1−G(t−i−1) p(Ct = i|y1:t)
)

if j = t

(2.3.7)

Rewriting the recursions in the form shown in (2.3.7) enables us to calculate the posterior

distribution of Ct+1 by propagating the posterior for Ct and adding on another support point

for a changepoint at time t.

For many simple models such as a change in mean the weights wt+1 can be calculated effi-

ciently because each P (j + 1, t) depends on a set of summary statistics of the observations
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yj+1:t. These summaries can often be calculated and stored before we begin calculating the

recursions and then updated recursively. Indeed for such models the computational cost of

calculating any such wt+1 is fixed, and does not increase with t− j.

Simulation

Given that we calculate and store the filtering distributions p(ct|y1:t) for all t = 1, . . . , n,

simulating from the full joint posterior is straightforward. This is done backwards in time

by first simulating the last changepoint in the data cn and repeating this until we get to the

beginning of the data.

To simulate one realisation from this joint density:

1. Set t0 = n, and k = 0.

2. Simulate tk+1 from the filtering density p(Ctk |y1:tk), and set k = k + 1.

3. If tk > 0 return to (2); otherwise output the set of simulated changepoints, tk1, tk2, . . . , t1.

A simple extension of this algorithm allows for efficient simulation of a large sample of

realisations of sets of changepoints in a parallel manner. This is described in more detail in

Fearnhead [2006].

2.3.2 Approximate filtering

The computational and memory costs of the recursions for exact inference presented in Sec-

tion 2.3.1 both increase with time. The filtering distribution p(ct|y1:t) has t support points

as ct ∈ {0, . . . , t − 1}. Thus calculating the full set of filtering distributions exactly, grows
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quadratically in n. The memory costs of storing all of the filtering densities necessary to

simulate from the joint posterior of all changepoints also increases quadratically with n. For

large data sets, these computational and memory costs become prohibitive.

A similar problem of increasing computational cost occurs in the analysis of some hidden

Markov models, though generally computational cost increases exponentially with time [Chen

and Liu, 2000]. Particle filters have been successfully applied to these problems [Fearnhead

and Clifford, 2003] by using a resampling step to limit the computational cost at each time

step. Similar resampling ideas can be applied to the online inference of changepoint models.

We follow the methods described by Fearnhead and Liu [2007].

For our problem the particle filtering and resampling methods described here attempt to

approximate the discrete distribution p(ct|y1:t) that has t support points with a discrete

distribution with fewer support points or “particles”. This will of course increase the compu-

tational efficiency and decrease storage costs. However, due to the nature of these techniques

error is introduced in the approximation. The aim is to come up with a method that is a

trade off between increased performance while remaining as accurate as possible.

Essentially a threshold value α is chosen that defines the maximum error (as defined by

the Kolmogorov Smirnov distance) that is introduced by the resampling procedure at each

time step. Then those support points which have a probability less than α are stochastically

removed. Note this value α governs the trade-off between a more precise approximation

(smaller α) and speed (larger α). The stochastic removal of support points is required so

that the process remains unbiased.

This algorithm is known as the Stratified Rejection Control (SRC) algorithm and more

details can be found in Fearnhead and Liu [2007]. Pseudo-code for the SRC method is given
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in Algorithm 3.

Theoretical guarantees and simulations showing that the SRC algorithm performs well are

described in Liu and Chen [1998] and Fearnhead and Liu [2007].

It was found in the analysis of GC content in DNA by Paul Fearnhead [2009] that a value of

α = 10−6 introduced negligible error, but greatly increased the speed of the overall algorithm.

The resulting algorithm approximated the filtering densities, by distributions with an average

of around 200 support points whereas the true distributions had an average of 80,000 support

points, meaning this led to a 400-fold reduction in CPU and memory costs.

An alternative approach is to specify the maximum number of particles stored at any time.

This is most suitable in an online algorithm used to analyse streaming data where the fre-

quency of observations will place an upper bound on the CPU time that can be used to process

each observation. This is known as the Stratified Optimal Resampling (SOR) method. More

details can be found in Fearnhead and Liu [2007].
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Algorithm 3: Stratified rejection control (SRC)

Input: An arbitrary cut-off 0 < α < 1
An ordered set of M particles c

(i)
t with associated weights w(i) that sum to one, where

i = 1, 2, . . . ,M .

Initialize: Simulate u a single realisation from Unif(0, α)
Set i = 1

while i ≤M do
if w(i) ≥ α then

Keep particle i with weight w(i)

end
else

u← u− w(i)

if u ≤ 0 then
Set w(i) = α
u← u+ α

end
else

Set w(i) = 0
end

end
i← i+ 1

end

Output: Remove the particles for which w(i) = 0 and renormalise the remaining
probabilities. These are the set of resampled particles.



Chapter 3

Changepoint detection for

Multivariate time series

Historically, research on changepoint detection methods has focused on the univariate setting

with some of the methods we have looked at in Chapter 2 being developed for this problem.

More recently there has been an increased focus on multivariate changepoint detection due

to the increase in multivariate series now being collected. There are many sources of this

data such as the large array of sensors that record large streaming data sets. This data comes

from many diverse fields such as finance where large numbers of asset prices are considered

[Cho and Fryzlewicz, 2015] to bioinformatics and signal processing [Vert and Bleakley, 2010].

If we believe that the variables are related somehow and that changepoints occur at the same

time in different series, then it makes sense to analyse them together in order to make the

best possible use of the information available.

In this setting there are several subtleties that make this problem quite different to its uni-

37
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Figure 3.0.1: A multivariate series with three dimensions where any changes that occur affect
all three series at the same time. We call this the full change model.

variate analogue. To show this graphically we have three plots in Figures 3.0.1, 3.0.2 and

3.0.3.

In Figure 3.0.1 we show an example of a three dimensional time series in which both of the

changepoints affect all of the dimensions in the series. In future we refer to this problem as

the full change model. We can compare this situation to that depicted in Figure 3.0.2 where

at each changepoint only a subset of the dimensions are affected, we call this the subset

change model.

Another possible subtlety in the multivariate setting is that we can allow for the possibility

of different dimensions sharing a common change but the precise location in each dimension

is perturbed. We call this the lagged change model and show an example of this in Figure

3.0.3. In the changepoint literature to our knowledge there hasn’t been any work on the

lagged change model.

The focus of the work in this thesis is the subset change model. We briefly review some of

the main contributions in the literature to both the full and subset change models separately
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Figure 3.0.2: A multivariate series with three dimensions where the changes that occur only
affect a subset of the three series at each changepoint. We call this the subset change model.

Figure 3.0.3: A multivariate series with three dimensions where any changes that occur affect
all three series but at slightly different times. We call this the lagged change model.

so we can understand the different types of approaches that have been successful.

3.1 Full change model

For data that respects the full change model, techniques used for the univariate problem can

be used.
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A simplistic approach to the problem would thus be to try and apply univariate changepoint

methods and analyse each time series separately. This method will lose power when detecting

changepoints, as it ignores the information that the different time series have changepoints

that occur at the same time.

An alternative approach to analysing data of this form is to treat the data as a single time

series with multivariate observations. We then model the multivariate data within a segment,

and allow for this model to change, in an appropriate way, between segments. This approach

is taken by Lavielle and Teyssière [2006], who model data as multivariate Gaussian but with

a mean that can change from segment to segment. Lavielle and Teyssière [2006] proposes

dynamic programming recursions similar to those described in Chapter 2.

Matteson and James [2014] present a non-parametric approach which is based on a Euclidean

style metric known as an energy statistic which takes the role of a cost function. Estima-

tion of the changepoint locations is based on hierarchical clustering and both divisive and

agglomerative algorithms are developed.

3.2 Subset change model

In some applications, when a changepoint occurs only a subset of the dimensions in a given

series are affected. Recently there has been lots of work on certain special cases of the

subset change model which are of importance in detecting Copy Number Variants (CNV’s)

in Genetics.

A CNV is a type of structural variation that results in a genome having an abnormal (gen-

erally 6= 2) number of copies of a segment of DNA, such as a gene. Understanding these is
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important as these variants have been shown to account for much of the variability within a

population. More details can be found in Jeng et al. [2013] and the references therein.

There are two types of CNV, common CNV which affect all or most of the population and

rare CNV which only affect a small subset of the population. Different techniques have been

developed to detect the two types of CNV with the methods in Zhang et al. [2010] and

Siegmund et al. [2011] designed for the common CNV problem. It was argued in Jeng et al.

[2013] that these methods cannot detect rarer CNVs and special methods are required to use

the information across the dimensions most efficiently so that it is not drowned out by noise.

The Proportion Adaptive Segment Selection (PASS) method developed in Jeng et al. [2013]

aims to efficiently detect both common and rare variants without incurring too many false

positives.

Such a situation is not uncommon in practice and is not confined to genetics. Consider,

for example, the finance setting and a large panel data set consisting of asset returns over

time. Here an event may induce a sudden change in the stock prices of companies within

one industrial sector but not in those of companies within a different sector. Whereas for

the CNV application only a change in mean is considered, for asset returns the second

order structure of the data is important. Indeed Mikosch and Stric [2004] note that certain

observable features of financial time series, such as long-range dependence of the absolute

returns, might be artifacts that are induced by change points in the second order structure.

Both Maboudou-Tchao and Hawkins [2013] and Preuss et al. [2015] present methods which

explicitly output both the locations of changepoints and the corresponding sets of affected

variables. These methods are quite similar in their approach in that they initially assume

the full change model and then perform variable-specific hypothesis tests for each estimated
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changepoint to determine the subset of variables each changepoint affects. As estimation

is not performed jointly, in that the changepoints and affected variables are not estimated

at the same time the methods are approximate. Also when performing the variable specific

hypothesis tests problems arise in that certain variables could be falsely claimed to be affected

(a Type I error) as well as the converse. For example if many variables were weakly affected by

a change but which individually are not significant enough to be flagged by the test (a Type II

error). The advantages of both methods, however is that they are relatively computationally

efficient and the main idea behind the approaches outlined above is applicable to many

different time series models. Indeed Preuss et al. [2015] deviate from the setting of i.i.d. data

and aim to detect multiple changes in the autocovariance through the consideration of raw

periodograms.

In contrast to the approaches already considered, Pickering [2016] develops a Dynamic pro-

gramming method for inference in the full subset change model and outputs changepoint

locations as well as the variables that are affected. The two methods (for multivariate

data) considered in this thesis are Subset Multivariate Optimal Partitioning (SMOP) and

Approximate-SMOP (ASMOP).

The general subset change model is formulated in Pickering [2016] using changepoint vectors.

For a p-variate series the changepoint vector at time t, ct = (c
(1)
t , . . . , c

(i)
t , . . . , c

(p)
t ) has length

p. The ith element of the vector c
(i)
t is the location of the most recent change in the ith

dimension prior to time t. These vectors encapsulate all the information needed to model

the full subset change model.

Using these changepoint vectors and a suitably defined cost function a set of Dynamic pro-

gramming recursions are developed to solve this problem exactly through the optimisation
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of a penalised cost function using an exact search. However, this exact search is extremely

computationally intensive due to the dependence between segments that exists in the general

subset change model. This results in the SMOP method having a computational complexity

that is exponential in the length of the data.

An approximate version of this procedure, ASMOP was also presented in this thesis where a

substantial reduction in the search space is achieved by identifying “likely” regions in which

changepoints are thought to occur and only considering candidates from these areas along

with two types of thresholding.

For the univariate and non-parametric case a common and simple approach to detect change-

points is to use the CUSUM test [Page, 1954b]. CUSUM statistics are computed over time

and track the cumulative distance from the mean for proposed changepoints. These series

of CUSUMs are examined to locate changepoints, often where its maximum in the absolute

value is attained. With a binary segmentation (BS) algorithm, the CUSUM statistics can

consistently detect multiple change-points in a recursive manner (see e.g. Vostrikova [1981],

Venkatraman [1993] and Cho and Fryzlewicz [2012]).

This idea can be extended to multivariate data by combining the CUSUMs of each of the

dimensions of the series. Care is needed in choosing the method used to combine these.

Standard maximum and average methods for doing so often fail in high dimensions when,

changepoints only affect a small subset of the series so that the CUSUM statistics are cor-

rupted by noise.

Cho and Fryzlewicz [2015] and Cho [2016] propose methods that aggregate the cumulative

sum statistics by adding only those that pass a certain threshold. This “sparsifying” step

reduces the influence of irrelevant noisy contributions, which is particularly beneficial in
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high dimensions in order to share information across series. Whenever a thresholding step is

introduced in a procedure an additional parameter is usually added. However, the aggregation

procedure of Cho [2016] in contrast to Cho and Fryzlewicz [2015], avoids arbitrary choices

for the threshold by using a data driven approach which is shown to perform well.

In the next Chapter we describe a Bayesian method that can be used to perform inference

for the CNV problem described above.



Chapter 4

Bayesian detection of abnormal

segments in multiple time series

4.1 Introduction

In this paper we consider the problem of detecting abnormal (or outlier) segments in mul-

tivariate time series. We assume that the series has some normal or baseline behaviour but

that in certain intervals or segments of time a subset of the dimensions of the series has some

kind of altered or abnormal behaviour. By the term abnormal behaviour we mean some

change in distribution of the data away from the baseline distribution. For example, this

could include a change in mean, variance or auto-correlation structure. In particular our

work is concerned with situations where the size of this subset is only a small proportion of

the total number of dimensions. We attempt to do this in a fully Bayesian framework.

This problem is increasingly common across a range of applications where the detection of

abnormal segments (sometimes known as recurrent signal segments) is of interest (particu-
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larly in high dimensional and/or very noisy data). Some example applications include the

analysis of the correlations between sensor data from different vehicles [Spiegel et al., 2011]

or for intrusion detection in large interconnected computer networks [Qu et al., 2005]. An-

other related application involves detecting common and potentially more subtle objects in

a number of images, for example Jin [2004] and the references therein look at this in relation

to multiple images taken of astronomical bodies.

We will focus in particular on one specific example of this type of problem, namely that of

detecting copy number variants (CNV’s) in DNA sequences. A CNV is a type of structural

variation that results in a genome having an abnormal (generally 6= 2) number of copies of

a segment of DNA, such as a gene. Understanding these is important as these variants have

been shown to account for much of the variability within a population. For a more detailed

overview of this topic see Zhang [2010], Jeng et al. [2013] and the references therein.

Data on CNVs for a given cell or individual is often in the form of “log-R ratios” for a range

of probes, each associated with different locations along the genome. These are calculated as

log base 2 of the ratio of the measured probe intensity to the reference intensity for a given

probe. Normal regions of the genome would have log-R ratios with a mean of 0, whereas

CNVs would have log-R ratios with a mean that is away from zero.

Figure 4.1.1 gives an example of such data from 6 individuals. We can see that there is

substantial noise in the data, and each CNV may cover only a relatively small region of

the genome. Both these factors mean that it can be difficult to accurately detect CNVs by

analysing data from a single individual or cell. To increase the power to identify CNVs we

can pool information by jointly analysing data from multiple individuals. However this is

complicated as a CNV may be observed for only a subset of the individuals. For example,
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Figure 4.1.1: Log-R ratios from 6 individuals for a small portion of chromosome 16. We
indicate the baseline level (mean zero) by a horizontal line in blue and the identified CNV
(abnormal region) is highlighted between two vertical black lines with the mean of the affected
individuals in red.

for the data in Figure 4.1.1, which shows data from a small portion of chromosome 16, we

have identified a single CNV which affects only three individuals. This can seen by the raised

means (indicated by the red lines) in these three series for a segment of data. By comparison,

the other individuals are unaffected in this segment.

Whilst there has been substantial research into methods for detecting outliers [Tsay et al.,

2000, Galeano et al., 2006] or abrupt changes in data [Olshen et al., 2004a, Jandhyala et al.,

2013, Wyse et al., 2011, Frick et al., 2014], the problem of identifying outlier regions in just
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a subset of dimensions has received less attention. Exceptions include methods described in

Zhang et al. [2010] and Siegmund et al. [2011]. However Jeng et al. [2013] argue that these

methods are only able to detect common variants, that is abnormal segments for which a

large proportion of the dimensions have undergone the change. Jeng et al. [2013] propose a

method, the PASS algorithm, which is also able to detect rare variants.

The methods of Siegmund et al. [2011] and Jeng et al. [2013] are based on defining an

appropriate test-statistic for whether a region is abnormal for a subset of dimensions, and

then recursively using this test-statistic to identify abnormal regions. As such the output of

these methods is a list of estimated abnormal regions. Here we introduce a Bayesian approach

to detecting abnormal regions. This is able to not only give estimates of the number and

location of the abnormal regions, but to also give measures of uncertainty about these. We

show how it is possible to efficiently simulate from the posterior distribution of the number

and location of abnormal regions, through using recursions similar to those from multiple

changepoint detection [Barry and Hartigan, 1992, Fearnhead, 2006, Fearnhead and Vasileiou,

2009]. We call the resulting algorithm, Bayesian Abnormal Region Detector (BARD).

The outline of the paper is as follows. In the next section we introduce our model, both for

the general problem of detecting abnormal regions, and also for the specific CNV application.

In Section 4.3 we derive the recursions that enable us to draw iid samples from the posterior,

as well as a simple approximation to these recursions that results in an algorithm, BARD,

that scales linearly with the length of data set. We then present theoretical results that show

that BARD can consistently estimate the absence of abnormal segments, and the location of

any abnormal segments, and is robust to some mis-specification of the priors. In Section 4.5

we evaluate BARD for the CNV application on both simulated and real data. Our results
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suggest that BARD is more accurate than PASS, particularly in terms of having fewer false

positives. Furthermore, we see evidence that posterior probabilities are well-calibrated and

hence are accurately representing the uncertainty in the inferences. The paper ends with a

discussion.

4.2 The Model

We shall now describe the details of our model. Consider a multiple time series of dimension

d and length n, Y1:n = (Y1,Y2, . . . ,Yn) where Yi = (Yi,1, Yi,2, . . . , Yi,d)
T . We model this

data through introducing a hidden state process, X1:n. The hidden state process will contain

information about where the abnormal segments of the data are. Our model is defined

through specifying the distribution of the hidden state process, p(x1:n), and the conditional

distribution of the data given the state process, p(y1:n|x1:n). These are defined in Sections

4.2.1 and 4.2.2 respectively.

Our interest lies in inference about this hidden state process given the observations. This

involves calculating the posterior distribution for the states

p(x1:n|y1:n) ∝ p(x1:n,y1:n) = p(x1:n)p(y1:n|x1:n). (4.2.1)

It should be noted that these probabilities will depend on a set of hyper-parameters. These

parameters are initially assumed to be known, however we will later discuss performing

inference for them.
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4.2.1 Hidden State Model

The hidden state process will define the location of the abnormal segments. We will model

the location of these segments through a renewal process. The length of a given segment

is drawn from some distribution which depends on the segment type, and is independent of

all other segment lengths. We assume a normal segment is always followed by an abnormal

segment, but allow for either a normal or abnormal segment to follow an abnormal one. The

latter is because each abnormal segment may be abnormal in a different way, for example

with different subsets of the time-series being affected. This will become clearer when we

discuss the likelihood model in Section 4.2.2.

To define such a model we need distributions for the lengths of normal and abnormal seg-

ments. We denote the cumulative distribution functions of these lengths by GN(t) and GA(t)

respectively. We also need to specify the probability that an abnormal segment is followed

by either a normal or abnormal segment. We denote these probabilities as πN and πA re-

spectively, with πN = 1− πA.

Note that the first segment for the data will have a different distribution to other segments as

it may have started at some time prior to when we started collecting data. We can define this

distribution in a way that is consistent with our underlying model by assuming the process for

the segments is at stationarity and that we start observing it at an arbitrary time. Renewal

theory [Cox, 1962] then gives the distribution function for the length of the first segment. If

the first segment is normal, then we define its cumulative distribution function as

G0N(t) =
t∑

s=1

1−GN(s)

EN
,
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where EN is the expected length of a normal segment. The cumulative distribution function

for the first segment conditional on it being abnormal, G0A(t), is similarly defined.

Formally, we define our hidden state process Xt as Xt = (Ct, Bt) where Ct is the end of

the previous segment prior to time t and Bt is the type of the current segment. So Ct ∈

{0, . . . , t − 1} with Ct = 0 denoting that the current segment is the first segment. We use

the notation that Bt = N if the current segment is normal, and Bt = A if not. This state

process is Markov, and thus we can write

p(x1:n) = p(c1:n, b1:n)

= Pr(C1 = c1, B1 = b1)
n−1∏
i=1

Pr(Ci+1 = ci+1, Bi+1 = bi+1|Ci = ci, Bi = bi).

(4.2.2)

The decomposition in (4.2.2) gives us two aspects of the process to define, namely the tran-

sition probabilities Pr(Ci+1 = ci+1, Bi+1 = bi+1|ci, bi) and the initial distribution, Pr(C1 =

c1, B1 = b1).

Firstly consider the transition probabilities. Now either Ct+1 = Ct or Ct+1 = t depending on

whether a new segment starts between time t and t + 1. The probability of a new segment

starting is just the conditional probability of a segment being of length t − Ct given that is

at least t−Ct. If Ct+1 = Ct, then we must have Bt+1 = Bt, otherwise the distribution of the

type of the new segment depends on the type of the previous segment as described above.
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Thus for i = 1, . . . , t− 1 we have

Pr(Ct+1 = j, Bt+1 = k|Ct = i, Bt = N) =



1−GN (t−i)
1−GN (t−i−1) if j = i and k = N ,

GN (t−i)−GN (t−i−1)
1−GN (t−i−1) if j = t and k = A,

0 otherwise,

Pr(Ct+1 = j, Bt+1 = k|Ct = i, Bt = A) =



1−GA(t−i)
1−GA(t−i−1) if j = i and k = A,

πA

(
GA(t−i)−GA(t−i−1)

1−GA(t−i−1)

)
if j = t and k = A,

πN

(
GA(t−i)−GA(t−i−1)

1−GA(t−i−1)

)
if j = t and k = N ,

0 otherwise.

(4.2.3)

For i = 0, that is when Ct = 0, we replace GN(·) and GA· with G0N(·) and G0A(·) respectively.

Finally we need to define the initial distribution for X1 = (B1, C1). Firstly note that C1 = 0

so we need only the distribution of B1. We define this as the stationary distribution of the

Bt process. This is [see for example Theorem 5.6 of Kulkarni, 2012]

Pr(B1 = N) =
πNEN

πNEN + EA
, Pr(B1 = A) = 1− Pr(B1 = N),

where EN and EA are the expected lengths of normal and abnormal segments respectively.
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4.2.2 Likelihood model

The hidden process X1:n described above partitions the time interval into contiguous non-

overlapping segments each of which is either normal, N , or abnormal, A. Now conditional

on this process we want to define a likelihood for the observations, p(y1:n|x1:n).

For many applications it is natural to assume a conditional independence property between

segments: this means that if we knew the locations of segments and their types then data

from different segments are independent. This assumption is key to the algorithms we later

introduce to sample from the posterior. Thus when we condition on Ct and Bt the likelihood

for the first t observations factorises as follows

p(y1:t|Ct = j, Bt) = p(y1:j|Ct = j, Bt)p(yj+1:t|Ct = j, Bt). (4.2.4)

The second term in equation (4.2.4) is the marginal likelihood of the data, Yj+1:t, given

it comes from a segment that has type Bt. We introduce the following notation for these

segment marginal likelihoods, where for s ≥ t,

PN(t, s) = Pr(yt:s|Cs = t− 1, Bs = N),

PA(t, s) = Pr(yt:s|Cs = t− 1, Bs = A),

(4.2.5)

and define PN(t, s) = 1 and PA(t, s) = 1 if s < t.

Now using the above factorisation we can write down the likelihood conditional on the hidden

process. Note that we can condition on Xt rather than the full history X1:n in each of the
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factors in (4.2.6) due to the conditional independence assumption on the segments

p(y1:n|x1:n) =
n∏
t=1

p(yt|x1:n,y1:(t−1))

=
n∏
t=1

p(yt|Ct, Bt,y(Ct+1):(t−1)).

(4.2.6)

The terms on the right-hand side of equation (4.2.6) can then be written in terms of the

segment marginal likelihoods

p(yt|Ct, Bt,y(Ct+1):(t−1)) =
PBt(Ct + 1, t)

PBt(Ct + 1, t− 1)
. (4.2.7)

Thus our likelihood is specified through defining appropriate forms for the marginal likeli-

hoods for normal and abnormal segments.

Model for data in normal segments

For a normal segment we model that the data for all dimensions of the series are realisations

from some known distribution, D, and these realisations are independent over both time and

dimension. Denote the density function of the distribution D as fD(·). We can write down

the segment marginal likelihood as

PN(t, s) =
d∏

k=1

s∏
i=t

fD(yi,k). (4.2.8)

Model for data in abnormal segments

For abnormal segments our model is that data for a subset of the dimensions are drawn

from D, with the data for the remaining dimensions being independent realisations from a
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different distribution, Pθ, which depends on a segment specific parameter θ. We denote the

density function for this distribution as fP(·|θ).

Our model for which dimensions have data drawn from Pθ is that this occurs for dimension

k with probability pk, independently of the other dimensions. Thus if we have an abnormal

segment with data Yt:s, with segment parameter θ, the likelihood of the data associated with

the kth dimension is

pk

s∏
i=t

fP(yi,k|θ) + (1− pk)
s∏
i=t

fD(yi,k).

Thus by independence over dimension

p(yt:s|θ) =
d∏

k=1

(
pk

s∏
i=t

fP(yi,k|θ) + (1− pk)
s∏
i=t

fD(yi,k)

)
.

Our model is completed by a prior for θ, π(θ). To find the marginal likelihood PA(t, s) we

need to integrate out θ from p(yt:s|θ)

PA(t, s) =

∫
p(yt:s|θ)π(θ) dθ. (4.2.9)

In practice this integral will need to be calculated numerically, which is feasible if θ is low-

dimensional.

CNV example

In Section 4.1 we discussed the copy number variant (CNV) application and showed some

real data in Figure 4.1.1. From the framework described above we now need to specify a

model for normal and abnormal segments. Following Jeng et al. [2013] we model the data
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as being normally distributed with constant variance but differing means either zero or µ

depending on whether we are in a normal or abnormal segment. This model also underpins

the simulation studies that we present in Section 4.5.

Using the notation from the more general framework discussed above the two distributions

for normal and abnormal segments are

D ∼ N(0, σ2)

Pµ ∼ N(µ, σ2).

We assume that the variance σ2 is constant and known. In practice we estimate this quantity

using the robust median absolute deviation estimator as recommended in Jeng et al. [2013].

Having specified these two distributions we then need to calculate marginal likelihoods for

normal and abnormal segments given by equations (4.2.8) and (4.2.9) respectively. Calculat-

ing the marginal likelihood for a normal segment is simple because of independence over time

and dimension as shown in equation (4.2.8). However calculating PA(·, ·) is more challenging,

as there is no conjugacy between p(y|µ) and π(µ) so we can only numerically approximate the

integral. Calculating the numerical approximation is fast as it is a one-dimensional integral.

In the simulation studies and results we take the prior for µ to be uniform on a region that

excludes values of µ close to zero. For CNV data such a prior seems reasonable empirically

(see Figure 4.5.1c) and also because we expect CNV’s to correspond to a change in mean

level of at least log(3/2) and can be both positive or negative.
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4.3 Inference

We now consider performing inference for the model described in Section 4.2. Firstly a

set of recursions to perform this task exactly are introduced and then an approximation is

considered to make this procedure computationally more efficient.

4.3.1 Exact On-line inference

We follow the method of Fearnhead and Vasileiou [2009] in developing a set of recursions for

the posterior distribution of the hidden state, the location of the start of the current segment

and its type, at time t given that we have observed data upto time t, p(xt|y1:t) = p(ct, bt|y1:t),

for t ∈ {1, 2, . . . , n}. These are known as the filtering distributions. Eventually we will be

able to use these to simulate from the full posterior, p(x1:n|y1:n).

To find these filtering distribution we develop a set of recursions that enable us to calculate

p(ct+1, bt+1|y(1:t+1)) in terms of p(ct, bt|y1:t). These recursions are analogous to the forward-

backward equations widely used in analysing Hidden Markov models.

There are two forms of these recursions depending on whether Ct+1 = j for j < t or Ct+1 = t.

We derive the two forms separately. Consider the first case. For j < t and k ∈ {N,A},

p(Ct+1 = j, Bt+1 = k|y1:(t+1)) ∝ p(yt+1|y1:t, Ct+1 = j, Bt+1 = k)p(Ct+1 = j, Bt+1 = k|y1:t)

=

(
Pk(j + 1, t+ 1)

Pk(j + 1, t)

)
Pr(Ct+1 = j, Bt+1 = k|Ct = j, Bt = k)p(Ct = j, Bt = k|y1:t),

where the first term in the last expression is the conditional likelihood from equation (4.2.7).

The second two terms use the fact that there has not been a new segment and hence Ct+1 = Ct
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and Bt+1 = Bt.

Now for the second case, when Ct+1 = t,

p(Ct+1 = t, Bt+1 = k|y1:t)

=
t−1∑
i=0

∑
l∈{N,A}

p(Ct = i, Bt = l|y1:t) Pr(Ct+1 = t, Bt+1 = k|Ct = i, Bt = l).

Thus, as p(yt+1|Ct+1 = t, Bt+1 = k,y1:t) = Pk(t+ 1, t+ 1), the filtering recursion is;

p(Ct+1 = t, Bt+1 = k|y1:(t+1)) ∝

Pk(t+ 1, t+ 1)
t−1∑
i=0

∑
l∈{N,A}

p(Ct = i, Bt = l|y1:t) Pr(Ct+1 = t, Bt+1 = k|Ct = i, Bt = l).

These recursions are initialised by p(C1 = 0, B1 = k|y1) ∝ Pr(B1 = k)Pk(1, 1) for k ∈ {N,A}.

4.3.2 Approximate Inference

The support of the filtering distribution p(ct, bt|y1:t) has 2t points. Hence, calculating

p(ct, bt|y1:t) exactly is of order t both in terms of computational and storage costs. The

cost of calculating and storing the full set of filtering distributions t = 1, 2, . . . , n is thus of

order n2. For larger data sets this exact calculation can be prohibitive. A natural way to

make this more efficient is to approximate each of the filtering distributions by distributions

with a fewer number of support points. In practice such an approximation is feasible as many

of the support points of each filtering distribution have negligible probability. If we removed

these points then we could greatly increase the speed of our algorithm without sacrificing too

much accuracy.
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We use the stratified rejection control (SRC) algorithm [Fearnhead and Liu, 2007] to produce

an approximation to the filtering distribution with potentially fewer support points at each

time-point. This algorithm requires the choice of a threshold, α ≥ 0. At each iteration the

SRC algorithm keeps all support points which have a probability greater than α. For the

remaining particles the probability of them being removed is proportional to their associated

probability and the resampling is done in a stratified manner. This algorithm has good

theoretical properties in terms of the error introduced at each resampling step, measured by

the Kolmogorov Smirnov distance, being bounded by α.

4.3.3 Simulation

Having calculated and stored the filtering distributions, either exactly or approximately,

simulating from the posterior is straightforward. This is performed by simulating the hidden

process backwards in time [Carter and Kohn, 1994]. First we simulate Xn = (Cn, Bn) from

the final filtering distribution p(cn, bn|y1:n). Assume we simulate Cn = t. Then, by definition

of the hidden process, we have Cs = t and Bs = Bn for s = t + 1, . . . , n − 1, as these

time-points are all part of the same segment. Thus we next need to simulate Ct, from its
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conditional distribution given Ct+1, Bt+1 and Y1:n,

p(ct, bt|Ct+1 = t, Bt+1,y1:n)

∝ p(ct, bt, Ct+1 = t, Bt+1,y1:n)

= p(ct, bt) Pr(Ct+1 = t, Bt+1|Ct, Bt)p(y1:n|Ct, Bt, Ct+1 = t, Bt+1)

∝ p(ct, bt) Pr(Ct+1 = t, Bt+1|Ct, Bt)p(y1:t|Ct, Bt)

∝ p(ct, bt|y1:t) Pr(Ct+1 = t, Bt+1|Ct, Bt).

We then repeat this process, going backwards in time until we simulate Ct = 0. From the

simulated values we can extract the location and type of each segment.

4.3.4 Hyper-parameters

As mentioned earlier in Section 4.2 the posterior of interest (4.2.1) depends upon a vector of

hyper-parameters which we now label as Ψ. In Section 5, Ψ contains the parameters for the

LOS distributions for the two differing types of segments which determine the cdf’s GN(·)

and GA(·). However we could extend Ψ to account for the hyperparameters for the prior on

µ or, if we did not assume a common and known variance for the data, the variance for each

time-series.

We use two approaches to estimating these hyper-parameters. The first is to maximise

the marginal-likelihood for the hyper-parameters, which we can do using Monte Carlo EM

(MCEM). For general details on MCEM see Levine and Casella [2001]. Although convergence

of the hyper-parameters is quite rapid in the examples we look at in Section 4.5, for very

large data sets a cruder but faster alternative is to initially segment the data using a different
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method to ours and then use information from this segmentation to inform the choice of

hyper-parameter values. The alternative method we use is the PASS method of Jeng et al.

[2013] and discussed in detail in Section 4.5.

4.3.5 Estimating a Segmentation

We have described how to calculate the posterior density p(x1:n|y1:n) from which we can

easily draw a large number of samples. However we often want to report a single estimated

“best” segmentation of the data. We can define such a segmentation using Bayesian decision

theory [Berger, 1985]. This involves defining a loss function which determines the cost of

us making a mistake in our estimate of the true quantity which we then seek to minimise.

There are various choices of loss function we could use [see Yau and Holmes, 2010], but we

use a loss that is a sum of a loss for estimating whether each location is abnormal or not. If

L(b̃t|bt) gives the cost of making the decision that the state at time t is b̃t when in fact it is

bt, then:

L(b̃t|bt) =



1 if b̃t = A and bt = N

γ if b̃t = N and bt = A

0 otherwise

(4.3.1)

The inclusion of γ allows us to vary the relative penalty for false positives as compared to

false negatives. Under this loss we estimate b̂t = N if π(bt = A) < 1/(1 + γ) or b̂t = A

otherwise.
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4.4 Asymptotic Consistency

We will now consider the asymptotic properties of the method as d, the number of time-

series, increases. Our aim is to study the robustness of inferences to the choice of prior for

the abnormal segments, and the estimate of pd, allowing for abnormal segments that are

rare. We will assume that each time-series is of fixed length n. Following Jeng et al. [2013],

to consider the influence of rare abnormal segments, we will let the proportion of sequences

that are abnormal in an abnormal segment to decrease as d increases.

Our assumptions on how the data is generated is that there are a fixed number and location

of abnormal segments. We will assume the model of Section 4.2.2 with, without loss of

generality, σ2 = 1 (for σ2 6= 1 we can just normalise the data). So if Bt = N , then Yi,j ∼

N(0, 1). If (t, . . . , s) is an abnormal segment then it has an associated mean, µ0 6= 0. For

each j = 1, . . . , d, independently with probability αd, Yi,j ∼ N(µ, 1) for i = t, . . . , s; otherwise

Yi,j ∼ N(0, 1) for i = t, . . . , s.

We fit the model of Section 4.2, assuming the correct likelihood for data in normal and abnor-

mal segments. For each abnormal segment we will have an independent prior for the associ-

ated mean, π(µ). Our assumptions on π(µ) is that its support is a subset of {[−b,−a], [a, b]}

for some a > 0 and b <∞, and it places non-zero probability on both positive and negative

values of µ. The model we fit will assume a specified probability, pd, of each sequences being

abnormal within each abnormal segment. Note that we do not require pd = αd, the true

probability, but we do allow the choice of this parameter to depend on d.

The Lemmas used in the proof of the following two theorems can be found in the appendices.

Theorem 4.4.1. Assume the model for the data and the constraints on the prior specified
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above. Let E be the event that there are no abnormal segments, and Ec its complement. If

there are no abnormal segments and d→∞, with 1/pd = O(d
1
2
−ε) for some ε > 0, then

Pr(Ec|y1:n)→ 0,

in probability.

Proof. As n is fixed, we have a fixed number of possible segmentations. We will show that

the posterior probabilility of each possible segmentation with at least one abnormal segment

is op(1) as d→∞.

For time-series k let PN,k(t, s) denote the likelihood of the data yt,k, . . . , ys,k assuming this

is a normal segment; and let PA,k(t, s;µ) be the marginal likelihood of the same data given

that it is drawn from independent Gaussian distributions with mean µ. Then if we have a

segmentation with m abnormal segments, with the ith abnormal segment from ti to si, the

ratio of the posterior probability of this segmentation to the posterior probability of E is

K
m∏
i=1

(∫ { d∏
k=1

PA,k(tm, sm;µ)

PN,k(tm, sm)

}
π(µ)dµ

)
,

where K is the ratio of the prior probabilities of these two segmentations. So it is sufficient

to show that for all t ≤ s,

∫ { d∏
k=1

PA,k(t, s;µ)

PN,k(t, s)

}
π(µ)dµ→ 0 (4.4.1)

in probability as d→∞.

Our limit involves treating the data as random. Each term in this product is then random,
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and of the form

PA,k(t, s;µ)

PN,k(t, s)
= 1 + pd

(
exp

{
µ

s∑
u=t

(
Yk,u −

µ

2

)}
− 1

)
. (4.4.2)

By applying Lemma A.0.4 separately to positive and negative values of µ, we have that this

tends to 0 with probability 1 as d → ∞. This is true for all possible segmentations with at

least one abnormal segments. As n is fixed, there are a finite number of such segments, so

the result follows.

Theorem 4.4.2 tells us that the posterior probability of misclassifying a time point as normal

when it is abnormal tends to zero as more time-series are observed.

Theorem 4.4.2. Assume the model for the data and the constraints on the prior specified

above. Fix any position t, and consider the limit as d→∞, with dp2d →∞ and either

(i) pd = o(αd); or

(ii) if µ0 is the mean associated with the abnormal sequences at position t, then there exists

a region A such that the prior probability associated with µ ∈ A is non-zero, and for all

µ ∈ A and for sufficiently large d

αd (eµµ0 − 1)− pd
2

(
eµ

2 − 1
)
> 0.

Then if Bt = A

Pr(Bt = N |y1:n)→ 0.
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in probability.

Proof. We will show that each segmentation with Bt = N has posterior probability that

tends to 0 in probability as d → ∞. For each segmentation with Bt = N we will compare

its posterior probability with one which is identical except for the addition of an abnormal

segmentant, of length 1, at location t. The ratio of posterior probabilities of these two

segmentations will be

K

(∫ { d∏
k=1

PA,k(t, t;µ)

PN,k(t, t)

}
π(µ)dµ

)
,

where K is a constant that depends on the prior for the segmentations. We require that this

ratio tends to infinity in probability as d → ∞. Under both conditions (i) and (ii) above

this follows immediately from Lemma A.1.2. For case (i) we are using the fact that the prior

places positive probability both on µ being positive and negative, and for µ the same sign as

µ0 we have that eµµ0 > 1.

This result shows some robustness of the Bayesian approach to the choice of prior. Consider

a prior on the mean for an abnormal segment that has strictly positive density for values in

{[−b,−a], [a, b]} for a > 0. Then for any true mean, µ0 with |µ0| ≥ a, we will consistently

estimate the segment as abnormal provided the assumed or estimated probability of a se-

quence being abnormal is less than twice the true value. Thus we want to choose a to be

the smallest absolute value of the mean of an abnormal segment we expect or wish to detect.

The choice of b is less important, in that it does not affect the asymptotic consistency implied

by the above theorem.

Furthermore we do not need to specify pd exactly for consistency – the key is not to over-

estimate the true proportion of abnormal segments by more than a factor of two. We could
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set pd = Kd−1/2+ε for some constants K, ε > 0 and ensure that asymptotically we will

consistently estimate the absence of abnormal segments (Theorem 4.4.1) and the location of

any abnormal segments (Theorem 4.4.2) the true proportion of abnormal segments decays at

a rate that is slower than d−1/2+ε.

4.5 Results

We call the method introduced in Sections 4.2 and 4.3 BARD: Bayesian Abnormal Region

Detector. We now evaluate BARD on both simulated and real CNV data. Our aim is to

both investigate its robustness to different types of model mis-specification, and to compare

its performance with a recently proposed method for analysing such CNV data.

The simulation studies we present are based on the concrete example in Section 4.2.2, namely

the change in mean model for Normally distributed data. For inference we assume that

the LOS distributions, SN and SA, to be Negative binomial and the prior probability of

a particular dimension k being abnormal pk as the same for all k = {1, 2, . . . , d}. For all

the simulation studies we present we used MCEM on a single replicate of the simulated

data set to get estimates for the hyper-parameters for the LOS distribution, but fixed pk.

Data for normal segments are IID standard Gaussian, and for abnormal segments data from

dimensions that are abnormal are Gaussian with variance 1 but mean µ drawn from some

prior π(µ). Below we consider the effect of varying the choice of prior used for simulating

the data and that assumed within BARD. In implementing BARD we used the SRC method

of resampling described in Section 4.3.2 with a value of α = 10−4, we found this value of α

gave a good trade off between accuracy and computational cost.
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To get an explicit segmentation from BARD we use the asymmetric loss function (4.3.1) with

a value of γ = 1/3.

As a benchmark for comparison we also analyse all data sets using the Proportion Adap-

tive Segment Selection procedure (PASS) from Jeng et al. [2013]. This was implemented

using an R package called PASS which we obtained from the authors website. At its most

basic level the PASS method involves evaluating a test statistic for different segments of the

data. After these evaluations the values of the statistic that exceed a certain pre-specified

threshold are said to be significant and the segments that correspond to these values are the

identified abnormal segments. This threshold is typically found by simulating data sets with

no abnormal segments and then choosing the threshold which gives a desired type 1 error,

here we take this error to be 0.05 in the simulation studies. The PASS algorithm considers

all segments that are shorter than a pre-defined length. To avoid excessive computational

costs this length should be as small as possible, but at least as large as the longest abnormal

segment we wish to detect (or believe exists in the data). We ran PASS with this length set

to ten-times the largest abnormal segment.

We found that a run of PASS was about twice as fast as one run of BARD. In order to

estimate the hyper-parameters using MCEM took between 5 and 20 runs of BARD.

Evaluating a segmentation

To form a comparison between the two methods we must have some way of evaluating the

quality of a particular segmentation with respect to the ground truth. We consider the three

most important criteria to be the number of true and false positives and the accuracy in

detecting the true positives.

We define a segment to be correctly identified or a true positive if it intersects with the
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true segment. With this definition in mind then finding the true/false positives is simple.

Note that results for false positives are the number of false positive segments per data set.

To define the accuracy of an estimated segment compared to the truth it is most intuitive

to measure the amount of “overlap” of the segments, this is captured by the dissimilarity

measure Dk (4.5.1) defined in Jeng et al. [2013].

Let Î be the collection of estimated intervals, the accuracy of estimating the kth true segment

Ik is given by Dk

Dk = min
Îj∈Î

1− |Îj ∩ Ik|√
|Îj||Ik|

 (4.5.1)

Dk ∈ [0, 1], if Dk = 0 then an estimated interval overlaps exactly with segment Ik however if

Dk = 1 then no estimated intervals overlap with the kth segment, i.e. it hasn’t been detected.

Smaller values of D indicate a greater overlap.

For all measures we present the average value across the simulated data sets, together with

a 95% confidence interval for this average calculated via the bootstrap.

4.5.1 Simulated Data from the Model

Firstly we analysed data simulated from the model assumed by BARD. A soft maximum on

the length of the simulated data of n = 1000 was imposed and the number of dimensions

fixed at d = 200. The LOS distributions were

SN ∼ NBinom(10, 0.1) and SA ∼ NBinom(15, 0.3).
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Two different distributions were used to generate the altered means for the affected dimen-

sions and we also varied πN (see Table 4.5.1), and for each scenario we implemented the

Bayesian method with the correct prior for the abnormal mean, and the correct choice of πN .

The number of affected dimensions for each abnormal segment was fixed at 4% and we fixed

pk to this value. For each scenario we considered we generated 200 data sets.

µ πN Method Proportion detected Accuracy Number of False positives

PASS 0.68 (0.66,0.70) 0.12 (0.11,0.13) 0.80 (0.68,0.93)
U(0.3, 0.7) 0.5

BARD 0.88 (0.87,0.89) 0.077 (0.071,0.084) 0.08 (0.04,0.12)

PASS 0.67 (0.65,0.69) 0.13 (0.12,0.14) 1.13 (0.98,1.29)
0.8

BARD 0.78 (0.77,0.80) 0.094 (0.088,0.10) 0.07 (0.04,0.11)

PASS 0.92 (0.91,0.93) 0.074 (0.070,0.078) 1.08 (0.94,1.22)
U(0.5, 0.9) 0.5

BARD 0.98 (0.98,0.99) 0.039 (0.036,0.042) 0.03 (0.01,0.06)

PASS 0.94 (0.93,0.95) 0.073 (0.069,0.076) 1.02 (0.88,1.17)
0.8

BARD 0.96 (0.95,0.97) 0.042 (0.040,0.045) 0.02 (0.00,0.04)

Table 4.5.1: Scenarios differed in the prior for µ and the value of πN used to simulate the
data. In BARD these same priors were used for the analysis of the data. The results for each
scenario are averages across 200 simulated data sets together with 95% confidence interval
in brackets.

Results summarising the accuracy of the segmentations obtained by the two methods are

shown in Table 4.5.1. BARD performed substantially better than PASS here especially with

regards to the number of false positives each method found, though this is in part because

all the modelling assumptions within BARD are correct for these simulated data sets. It is

worth noting that both methods do much better when µ ∼ U(0.5, 0.9) due to the stronger

signal present.

We next investigated how robust the results were to our choice for pk. We just consider

µ ∼ U(0.3, 0.7) and πN = 0.8 and we vary our choice of pk from 0.5% to 10%. These results

are in table 4.5.2. Whilst, as expected, if we take pk to be the true value for the data we get
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pk Proportion detected Accuracy Number of False positives
1

200
0.65 (0.63,0.67) 0.093 (0.086,0.10) 0.03 (0.005,0.06)

4
200

0.76 (0.74,0.78) 0.092 (0.086,0.10) 0.09 (0.05,0.12)
8

200
0.77 (0.75,0.78) 0.086 (0.081,0.093) 0.06 (0.03,0.09)

12
200

0.76 (0.74,0.78) 0.089 (0.083,0.096) 0.06 (0.03,0.095)
16
200

0.74 (0.72,0.76) 0.091 (0.084,0.098) 0.06 (0.03,0.09)
20
200

0.72 (0.70,0.74) 0.095 (0.088,0.102) 0.05 (0.02,0.08)

Table 4.5.2: The robustness of BARD under a misspecification of pk taking the prior as
µ ∼ U(0.3, 0.7) and πN = 0.8 with the true value of pk being 4%. Values of pk were varied
between 0.5% and 10% and we simulated 200 data sets for each pk. The results for each
scenario are averages across 200 simulated data sets together with 95% confidence interval
in brackets.

the best segmentation, the results are clearly robust to mis-specification of pk. In all cases

we still achieve much higher accuracy and fewer false positives than PASS. Apart from the

choice pk = 1/200 we also have a higher proportion of correctly detected CNVs than PASS.

We also investigated the robustness to mis-specification of the model for the LOS distribution,

and for the distribution of the mean of the abnormal segments. We fixed the position of five

abnormal segments at the following time points 200, 300, 500, 600 and 750. Additionally

the segments at 200 and 750 were followed by another abnormal segment. Thus we have

seven abnormal segments in total. The true LOS distribution for the abnormal segments are

in fact Poisson with intensity randomly chosen from the set {20, 25, 30, 35, 40}. For these

abnormal segments the mean value that affected the dimensions was drawn from a Normal

distribution with differing means and a fixed variance shown in Table 4.5.3. The number of

affected dimensions for each of the abnormal segments was also varied randomly from 3-6%

of the total number of dimensions (d = 200). For inference, we fixed pk to 4% for all k

and we set the prior for the abnormal mean to be uniform on (−0.7,−0.3) ∪ (0.3, 0.7). Our

model for the LOS distribution were negative binomials, with MCEM used to estimate the
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hyper-parameters of these distributions.

µ Method Proportion detected Accuracy Number of False positives

PASS 0.81 (0.78,0.82) 0.065 (0.056,0.068) 1.26 (1.15,1.41)
N(0.8, 0.42)

BARD 0.85 (0.82,0.86) 0.055 (0.048,0.059) 0.04 (0.02,0.07)

PASS 0.77 (0.74,0.78) 0.076 (0.069,0.084) 1.11 (1.05,1.33)
N(0.7, 0.42)

BARD 0.80 (0.78,0.82) 0.066 (0.060,0.073) 0.02 (0.01,0.07)

PASS 0.69 (0.66,0.71) 0.086 (0.079,0.095) 1.22 (1.08,1.37)
N(0.6, 0.42)

BARD 0.73 (0.70,0.75) 0.066 (0.061,0.072) 0.06 (0.03,0.09)

PASS 0.62 (0.60,0.65) 0.10 (0.089,0.11) 1.15 (1.06,1.37)
N(0.5, 0.42)

BARD 0.65 (0.62,0.68) 0.087 (0.075,0.093) 0.06 (0.02,0.08)

PASS 0.53 (0.51,0.56) 0.12 (0.10,0.13) 1.07 (0.92,1.22)
N(0.4, 0.42)

BARD 0.58 (0.55,0.61) 0.093 (0.084,0.10) 0.07 (0.03,0.10)

Table 4.5.3: Results based on 200 simulated data sets as we vary the distribution from which
µ was simulated from but keeping the prior π(µ) in BARD uniform. The results for each
scenario are averages across 200 simulated data sets together with 95% confidence interval
in brackets.

From Table 4.5.3 it can be seen that BARD still outperforms PASS especially in regards to

accuracy and the number of false positives. The performance of BARD also shows that it is

robust to a misspecification of both the LOS distributions and the distribution from which µ

was drawn from as we kept the prior in BARD the same. The performance of both methods

was impacted by the decreasing mean of the Normal distributions from which µ was drawn

as more of them became close to zero and thus abnormal segments became indistinguishable

from normal segments.

4.5.2 Simulated CNV Data

We now make use of the CNV data presented in the Section 4.1, to obtain a more realistic

model to simulate data from. We used the PASS method to initially segment one replicate

of the data, and then analysed this segmentation to obtain information about the LOS
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distributions and the distributions that generate the data in both normal and abnormal

segments.

In Figure 4.5.1 we plot some of the empirical data from the segmentation given by PASS.

To simulate data sets we either fitted distributions to these quantities or sampled from their

empirical distributions. Firstly if we consider the two LOS distributions then for normal

segments, see Figure 4.5.1b, we found that a geometric distribution fitted the data well. For

the abnormal LOS distribution we took a discrete uniform distribution on {1, 2, . . . , 200}.

This was partly due to us having specified a maximum abnormal segment length of 200 in

the PASS method but is potentially realistic in practice as abnormal segments longer than

200 time points are unlikely to occur. To support this choice we plot the empirical cdf of

the ordered data and a straight line which are the quantiles of the uniform distribution we

propose. We can see that although the fit is not perfect, this is probably due to the small

sample size.

Now consider the distributions that generate the actual observations, we can think of these

in two parts, one of them being a distribution for the “noise” in normal segments (Figure

4.5.1d) and then the mean shift parameter for the abnormal segments (Figure 4.5.1c). Up

until now we have taken this noise distribution to be standard Normal, however the data

suggests that in reality it has heavier tails than the Normal distribution. We found that a

t-distribution with 15 degrees of freedom was a better fit to the data so we simulated from

this for the noise distribution. For the mean shift parameter µ we took abnormal segments

found by the PASS method and looked at the means of each of the dimensions and took the

affected dimensions only, this gave the histogram in Figure 4.5.1c. In the study we simulated

µ from this empirical distribution.
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Figure 4.5.1: Empirical distribution of features of the optimal segmentation of CNV data ob-
tained using the PASS method. (a) QQ-plot of length (measured in number of observations)
of abnormal segments against a Uniform distribution on {1, 2, . . . , 200}; (b) histogram of
length (measured in number of observations) of normal segments; (c) histogram of estimated
mean for abnormal segments; and (d) histogram of residuals.

Each simulated data set has length of approximately n = 20, 000 and dimension d = 50.

We also varied the proportion of affected dimensions between 4% and 6%. The robustness

of BARD to the choice of prior for µ introduced in Section 4.4, where |µ| is uniform on

an interval (a, b), was also investigated. We simulated 40 of these data sets for each of the

scenarios and used both methods to segment them, results are given in Table 4.5.4.

We can see that the proportion of correct segments identified is decreased in both meth-

ods, this is most likely due to the non-Normally distributed noise present. However the two

methods report a very different number of false positives. The performance of BARD is

encouraging as it gives many fewer false positives than PASS even with heavier tailed ob-
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% of dim. Method Proportion detected Accuracy Number of False positives
affected

4%

PASS 0.55 (0.51,0.59) 0.071 (0.061,0.081) 1.23 (0.95,1.53)
BARD a = 0 0.65 (0.62,0.70) 0.064 (0.056,0.074) 0.23 (0.10,0.38)

BARD a = 0.15 0.65 (0.61,0.69) 0.065 (0.056,0.074) 0.23 (0.10,0.38)
BARD a = 0.3 0.65 (0.61,0.69) 0.064 (0.055,0.072) 0.2 (0.08,0.35)
BARD a = 0.6 0.55 (0.50,0.59) 0.070 (0.060,0.081) 0.13 (0.03,0.23)

6%

PASS 0.64 (0.61,0.68) 0.068 (0.062,0.074) 1.38 (0.98,1.80)
BARD a = 0 0.72 (0.69,0.75) 0.058 (0.053,0.064) 0.23 (0.10,0.35)

BARD a = 0.15 0.71 (0.68,0.74) 0.059 (0.053,0.065) 0.2 (0.08,0.35)
BARD a = 0.3 0.70 (0.67,0.73) 0.054 (0.049,0.060) 0.1 (0.00,0.20)
BARD a = 0.6 0.63 (0.59,0.66) 0.071 (0.061,0.081) 0.05 (0.00,0.13)

Table 4.5.4: Results based on 40 simulated data sets for two scenarios where the proportion
of dimensions affected for each abnormal segment varied between 4% and 6% (of the total
number of dimensions d = 50). The prior for |µ| assumed by BARD is uniform on (a, 0.7) The
results for each case are averages across simulated data sets together with 95% confidence
interval in brackets.

servations than the standard Gaussian case for all choices of a. The results for BARD are

similar for different values of a ≤ 0.3, but do deteriorate slightly for a = 0.6. This is likely

to be due to a loss of power in detecting abnormal segments with whose change in mean is

less than 0.6.

We also vary the second parameter, b, in the prior for µ. We fix a = 0.3 and the number of

dimensions as d = 50. These figures are reported in Table 4.5.5 and show that our procedure

is relatively robust to the choice of b.

We also looked at the effect of varying the dimension d of the data, but keeping the proportion

of affected dimensions the same. The results can be seen in Table 4.5.6, these indicate

that both the proportion of abnormal segments detected and the accuracy improve as d is

increased, due to the extra information with larger d. However the number of false positives

gets worse for both methods, as with larger d there is more chance for some dimensions to

show evidence for abnormality within normal regions.
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b Method Proportion detected Accuracy Number of False positives

- PASS 0.55 (0.51,0.59) 0.071 (0.061,0.081) 1.23 (0.95,1.53)
0.5 BARD 0.64 (0.60,0.68) 0.063 (0.055,0.072) 0.13 (0.03,0.23)
1 BARD 0.64 (0.61,0.69) 0.063 (0.055,0.073) 0.3 (0.15,0.48)
2 BARD 0.63 (0.59,0.66) 0.069 (0.059,0.081) 0.2 (0.08,0.35)
4 BARD 0.61 (0.57,0.64) 0.067 (0.057,0.079) 0.13 (0.03,0.25)
10 BARD 0.52 (0.48,0.55) 0.071 (0.060,0.082) 0.10 (0.03,0.20)

Table 4.5.5: Results based on 40 simulated data sets for each scenario where the proportion of
dimensions affected for each abnormal segment was fixed at 4% and the number of dimensions
d = 50. The prior for |µ| used by BARD was (0.3, b). The results for each case are averages
across simulated data sets together with 95% confidence interval in brackets.

d Method Proportion detected Accuracy Number of False positives

50
PASS 0.55 (0.51,0.59) 0.071 (0.061,0.081) 1.23 (0.95,1.53)
BARD 0.65 (0.61,0.69) 0.064 (0.055,0.072) 0.2 (0.08,0.35)

100
PASS 0.65 (0.62,0.68) 0.063 (0.056,0.070) 2.1 (1.68,2.58)
BARD 0.73 (0.70,0.76) 0.051 (0.045,0.059) 0.35 (0.18,0.58)

200
PASS 0.75 (0.72,0.78) 0.055 (0.049,0.062) 3.1 (2.60,3.60)
BARD 0.85 (0.84,0.87) 0.038 (0.034,0.043) 1.4 (1.05,1.80)

Table 4.5.6: Results based on 40 simulated data sets for each scenario where the proportion of
dimensions affected for each abnormal segment was fixed at 4% and the number of dimensions
d was varied from 50 to 200. The results for each case are averages across simulated data
sets together with 95% confidence interval in brackets.

The final parameter we investigate is γ which is instrumental in getting an explicit segmen-

tation from the BARD method using the loss function in (4.3.1). If γ is small then more

evidence is needed for a time point to be classified as abnormal so generally the smaller γ

is the smaller the proportion of true positives will be, however the mean number of false

positives detected would be large. The reverse is true as γ is increased. We can see from

Table 4.5.7 that all values of γ perform similarly.

BARD also allows us to get an estimate of the uncertainty in the position of abnormal

segments as from the posterior we can get the probability of each time point belonging to an

abnormal segment. If we bin these probabilities into intervals and then find the proportion



CHAPTER 4. BARD 76

γ Method Proportion detected Accuracy Number of False positives

- PASS 0.55 (0.51,0.59) 0.071 (0.061,0.081) 1.23 (0.95,1.53)
1/4 BARD 0.64 (0.60,0.68) 0.064 (0.057,0.073) 0.2 (0.05,0.38)
1/3 BARD 0.65 (0.61,0.69) 0.064 (0.055,0.072) 0.2 (0.08,0.35)
1/2 BARD 0.66 (0.62,0.69) 0.063 (0.054,0.072) 0.28 (0.13,0.45)
2/3 BARD 0.67 (0.63,0.71) 0.063 (0.055,0.073) 0.35 (0.18,0.53)
3/4 BARD 0.67 (0.63,0.71) 0.061 (0.053,0.072) 0.4 (0.23,0.60)
1 BARD 0.68 (0.64,0.71) 0.065 (0.056,0.075) 0.48 (0.28,0.68)

Table 4.5.7: Results based on 40 simulated data sets for each scenario where the proportion
of dimensions affected for each abnormal segment was fixed at 4%, the number of dimensions
d = 50 and values of a = 0.3 and b = 0.7 in the split prior. The parameter γ was varied in
the loss function (4.3.1). The results for each case are averages across simulated data sets
together with 95% confidence interval in brackets.

of these points that are actually abnormal we can obtain a calibration plot Figure 4.5.2. We

can see from this that the model seems to be well calibrated.
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Figure 4.5.2: All the time points t for which the posterior probability lies in a certain interval
plotted against the proportion of times t lies in an abnormal segment.

4.5.3 Analysis of CNV Data

We now apply our method to CNV data from Pinto et al. [2011], a subset of which was

presented in Section 4.1 and was used to construct a model for the simulated data in Section

4.5.2.



CHAPTER 4. BARD 77

Pinto et al. [2011] undertook a detailed study of the different technologies (platforms) used

to obtain the measurements and many of the algorithms currently used to call CNV’s. We

chose to analyse data from the Nimblegen 2.1M platform and from chromosomes 6 and 16.

For both chromosomes we have three replicate data sets, each consisting of measurements

from from six genomes. We preprocessed the data to remove experimental artifacts, using the

method described in Siegmund et al. [2011], before analysing it. The data from chromosome

16 consisted of 59,590 measurements, and the data from chromosome 6 consisted of 126,695

measurements, for each genome.

Firstly we ran the PASS method on just the first replicate of the data from chromosome

16 and found the most significant segments. Doing this enables us to get an estimate of

the parameters for the LOS distributions to use in the Bayesian method without having to

do any parameter inference. The maximum length of segment we searched over was 200

(measured in observations not base pairs) as this is greater than the largest CNV we would

expect to find. This gave parameters that suggested a geometric distribution for the length

of normal segments SN ∼ Geom(0.0007) and the following Negative Binomial distribution

for abnormal segments SN ∼ NBinom(2, 0.1). We used the same split uniform prior for µ

as we did in Section 4.5.2 namely one with equal density on the set (−0.7,−0.3) ∪ (0.3, 0.7)

and zero elsewhere. We justified the use of this form of prior which excludes values close to

zero in Section 4.2.2 and it was shown to perform well on some realistically simulated data

in Section 4.5.2.

For both chromosomes we analysed the three replicates separately. Ideally we should infer

exactly the same segmentation for each of the replicate data sets. Due to the large amount

of noise present in the data this does not happen. However we would expect that a “better”
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Truth PASS BARD
Start Length Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

2619669 62144 - - - - X X
21422575 76266 X X X X X X
32165010 456897 X X X X X X
34328205 286367 X X X X X X
54351338 28607 X X - X X X
70644511 21083 - X X - X X

Table 4.5.8: Known CNV’s from HapMap found by either method when analysing different
replicates of data from chromosome 16. Ticks indicate whether the particular segment was
detected or not.

Truth PASS Bayesian
Start Length Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

202353 37484 - - - X X -
243700 80315 X X X X X X

29945167 12079 X X - - - -
31388080 61239 X - - X - -
32562253 117686 X - X - - -
32605094 74845 - X - X X X
32717276 22702 X - - X X X
74648953 9185 X X - X X X
77073620 10881 - X - X X X
77155307 781 - - - X - -
77496587 12936 - - - X X X
78936990 18244 X X X X X X
103844669 24085 X X X X X X
126225385 3084 X X - - - X
139645437 3392 - - - X - -
165647807 4111 - - - X - X

Table 4.5.9: Known CNV’s from HapMap found by either method when analysing different
replicates of data from chromosome 6. Ticks indicate whether the particular segment was
detected or not.

method would be more consistent across the three replicates, and we use the consistency of

the inferred segmentations across the replicates as a measure of accuracy.

We can also use data from the HapMap project to validate some of the CNV’s we found to

those known experimentally or which have been called by other authors. A list containing
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Chromosome Method Rep 1 v 2 Rep 1 v 3 Rep 2 v 3

PASS 0.474 0.709 0.522
6

BARD 0.495 0.457 0.416

PASS 0.478 0.507 0.388
16

BARD 0.426 0.467 0.682

Table 4.5.10: The average consistency measured using the dissimilarity measure for found
CNV’s between replicates and methods. A lower value indicates the inferred segmentations
for the two replicates were more similar.

these known CNV’s by chromosome and sample can be found at http://hapmap.ncbi.nlm.nih.gov/.

These validated segments suggest that about 1% of chromosome 16 is abnormal.

To make comparisons between BARD and PASS fair we implemented both of these methods

so that they identified the same proportion, 4%, of the chromosome as being abnormal.

For BARD this involved choosing γ in the loss function (4.3.1) appropriately and for PASS

selecting the most significant segments that give us a total of 4% abnormal time points. We

then tested these against the validated CNV’s.

The results for chromosome 16 are contained in Tables 4.5.8 and 4.5.10; and those for chrom-

some 6 in Tables 4.5.9 and 4.5.10. Tables 4.5.8 and 4.5.9 list the known CNV regions that

were detected by one or both methods for at least one replicate, whilst Table 4.5.10 gives

summaries of the consistency of the inferred segmentations across replicates.

The results show that BARD is more successful at detecting known CNV regions than PASS.

In total BARD found 6 CNV regions on chromosome 16 for at least one replicate, and 14 for

chromosome 6, while PASS managed 5 and 11 respectively. For the measures of consistency

across the different replicates, shown in Table 4.5.10, BARD performed better for 4 of the 6

pairs.
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4.6 Discussion

In this paper we have developed novel methodology to detect abnormal regions in multiple

time series. Firstly we developed a general model for this type of problem including length

of stay distributions and marginal likelihoods for normal and abnormal segments. We then

derived recursions that could be used to calculate the posterior of interest and showed how

to obtain iid samples from an accurate approximation to this posterior in a way that scales

linearly with the length of series.

The resulting algorithm, BARD, was then compared in several simulation studies and some

real data to another competing method PASS. These results showed that BARD was con-

sistently more accurate than the PASS benchmark on several important criteria for all of

the data sets we considered. Furthermore, being able to accurately and efficiently perform

Bayesian inference for large and high dimensional data sets of this type allows us to quantify

uncertainty in the location of abnormal segments. Before this with other methods such as

PASS this quantification of uncertainty has not been possible.

Whilst we have focused on a specific model of changes in mean from some baseline level, our

method could easily be adapted to any model which specifies some normal behaviour and

abnormal behaviour. The only restrictions we place on this is the ability to calculate marginal

likelihoods for both types of segment. The main computational bottleneck would be in the

calculation of the abnormal marginal likelihoods as this involves integration over a prior for

the parameter(s) which cannot be done analytically, and for higher dimensional parameters

would be computationally intensive. For example, our approach can trivially be extended to

allow different but known variances for each time-series. To allow each abnormal segment to
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have its own variance as well as mean is possible, but would involve extra computation, as

a 2-dimensional integral would be needed to calculate the marginal likelihoods for abnormal

segments.

R code to run the BARD method is available at the first authors website. http://www.

lancaster.ac.uk/pg/bardwell/Work.html. The real CNV data we analysed in Section

6.5 is available publicly and can be downloaded from the GEO accession website http:

//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25893.

http://www.lancaster.ac.uk/pg/bardwell/Work.html
http://www.lancaster.ac.uk/pg/bardwell/Work.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25893
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25893


Chapter 5

Most recent changepoint detection in

Panel data

5.1 Introduction

There are many modern applications where high-dimensional observations are collected and

stored over time. This type of data can be viewed as a (potentially large) collection of time

series and in the literature is often known as panel data. For an overview of this area see

Wooldridge [2010].

We are interested in structural changes, also known as changepoint detection. For an overview

of some of the methods used on univariate time series see Jandhyala et al. [2013]. In this

work, however, we will look at structural changes in panel data. Some recent work in this

area includes Kirch et al. [2015], Ma and Yau [2016] and Preuss et al. [2015]. Applications

of these methods to detect changes occur in many areas such as finance, bioinformatics and

signal processing [Cho and Fryzlewicz, 2015, Vert and Bleakley, 2010, Cao and Wu, 2015].

82



CHAPTER 5. MRC 83

0 50 100 150

Time

0 50 100 150

Time

0 50 100 150

Time

0 50 100 150

Time

0 50 100 150

Time

0 50 100 150

Time

Figure 5.1.1: An example of six of the event count time-series. These show different patterns.
The left-hand column has two series consistent with a constant positive trend since around
week 40. The middle column show series with evidence for a recent increase in trend around
week 140. The right-hand column shows series with evidence for a decrease in the rate
of events from around week 160. In each case we show our estimate of the most recent
changepoint – see Section 5.5.1 for more detail.

Our work is motivated by a real-life problem of predicting the number of events that occur

across a telecommunications network. We have weekly data on the number of events in the

network, with this number recorded for each of a set of line types and for each of a set

of geographical regions. Being able to make short-term predictions of future event counts is

important for planning. These event counts are observed to change over time, often abruptly,

and it is natural to model the time-series data using a changepoint model.

The challenge with analysing the data is dealing with the large number of separate time-series,

one for each product and region pair. In total there are 160 time-series. Six example time-

series are shown in Figure 5.1.1. It is natural to assume that some reasons, such as large

external factors, that affect the event count for one time-series may also affect the event

counts for other time-series. However, not all time-series may see a changepoint at exactly

the same time. We would like a changepoint method that has the flexibility to encapsulate,
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but does not force, time-series to share common changepoints. As our primary interest is

in short-term prediction, we particularly want a method that is accurate in estimating the

location of the most recent change-point for each time-series, so that we can use the data

since that change-point to predict the likely number of events in the future.

Detecting changepoints in multiple time-series introduces computational challenges that are

not present when analysing a single time-series. A simplistic approach to the problem would

thus be to try and apply univariate changepoint methods [Jandhyala et al., 2013]. There

are two ways of doing this. One is to analyse each time-series separately. The other is

to aggregate the time-series, and analyse the resulting univariate series. Each method has

its drawbacks. The former will lose power when detecting changepoints, as it ignores the

information that different time-series are likely to have changepoints at similar times. The

latter approach can perform poorly if the signal from changepoints that affect a small number

of series is swamped by the noise in the remaining series when they are aggregated.

An alternative approach to analysing data of this form is to treat the data as a single time-

series with multivariate observations. We then model the multivariate data within a segment,

and allow for this model to change, in an appropriate way, between segments. This approach

is taken by Lavielle and Teyssière [2006], who model data as multivariate Gaussian but

with a mean that can change from segment to segment. Similarly, Matteson and James

[2014] present a non-parametric approach to detecting multiple changes in multivariate data.

However, like aggregating the data, these methods may lack power if a change only affects a

small proportion of the time-series. [Though see Wang and Samworth, 2016, for ideas that

try to overcome this problem].

Recently there have been methods specifically designed for detecting changes that affect
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only a subset of series. Cho and Fryzlewicz [2015] and Cho [2016] propose a way to detect a

single, potentially common, changepoint in such data. They consider a novel, non-linear, way

of combining summaries of individual time-series, so-called CUSUM statistics, that contain

information about the presence and location of a changepoint. The intuition is to retain

CUSUM values from all series that show strong evidence for a change at a given time-point,

but down-weight the values from other time-series. Thus they are able to share information

across time-series without any signal being swamped by noise from series which do not share

the common changepoint.

Similarly, Xie and Siegmund [2013] introduce a generalised likelihood ratio test for detecting

a single common changepoint that affects only a subset of series. This test needs an estimate

of the proportion of series affected by the change, and this estimate then affects the weight

given to evidence for a change from each series. Again the intution of the approach is to

give large weight to series that show strong evidence for a change, but lower weight to those

with little evidence. These approaches can be used within a binary segmentation procedure

to find multiple changes. Empirical results in Cho and Fryzlewicz [2015] and Cho [2016]

show this type of approach can be more powerful than either analysing series individually or

aggregating them.

Because we are primarily interested in estimating the most recent changepoint for each time-

series, we take a different approach. Our approach is focussed primarily on detecting the most

recent changepoint in each time-series. It does this by partioning the panel of time-series

into groups each of which share the same most recent changepoint, with, potentially, a group

corresponding to time-series with no change. This is achieved by analysing each time-series

independently, using a penalised cost, or penalised likelihood, approach to detecting changes
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[Lavielle, 2005, Killick et al., 2012, Maidstone et al., 2017b]. From each analysis we output

a measure of evidence for the most recent changepoint being at each possible time-point, or

that the series has no change. We then post-process the output from these analyses in a way

that encourages time-series to share a common most recent change. This post-processing step

involves trying to partition the time-series into a small number, K, of groups that share the

same value for their most recent changepoint. We show that this post-processing step can be

formulated in terms of solving a combinatorial optimisation problem, known as the K-median

problem. Whilst this problem is NP-hard, we use a heuristic solver that is computationally

inexpensive, and, empirically, works well in terms of the estimated most recent changepoints.

The outline of the paper is as follows. Firstly we define the problem of finding the most

recent changepoint in a univariate time series using a penalised cost approach, and show how

this can be extended to panel data. To infer the most recent changepoints requires solving a

combinatorial optimisation problem. We discuss how to solve this in Section 5.3. In Section

6.4 we evaluate our method, and compare to a number of alternatives on simulated data.

We then apply our method to two real data applications. The first data set represents a

telecommunications event time-series, shown in Figure 5.1.1, where the aim is for improved

prediction. Secondly, we analyse financial data from a large number of firms. In this appli-

cation we are more concerned about detecting the locations of most recent changepoints and

the sets of firms that change. The aim of this is to understand the causes of these changes,

for example whether they be legal changes that affect specific sectors, or wider economic

changes. Finally we end with a discussion on the advantages and limitations of our method.
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5.2 A Penalised Cost Approach to Most Recent Change-

point Detection

We begin by assuming we have panel data consisting of N time series of length n. Denote

the ith time series by y1,i, . . . , yn,i. Throughout we will use the notation ys:t,i to denote the

subset of observation from time s to time t inclusive.

Our approach to detecting the common most recent changepoints is based on a penalised

cost approach. We will first describe how this approach can be used to analyse individual

time-series, before then explaining how the output from these individual analyses can be

combined to estimate a set of common most recent changepoints for our N series.

5.2.1 Analysing a Univariate Time Series

First consider analysing data from one of the N time series in our panel data. To simplify

notation we will drop the subscript that denotes which time-series, and instead denote the

data by y1:n. We we will denote the number and position of changes by m and τ = (τ1, . . . , τm)

respectively. We will assume the changepoints are ordered, and define τ0 = 0 and τm+1 = n.

A penalised cost approach to detecting changepoints in this time series involves introducing a

cost associated with each putative segment. This cost is often derived by modelling the data

within a segment, and defining the cost to be proportional to minus the maximum likelihood

value for fitting that model to a segment of data. If our model for data in a segment is that

they are IID with some density f(y|θ), where θ is a segment-specific parameter, then we can
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define a cost for a segment ys:t as

C(ys:t) = −2 max
θ

t∑
u=s

log f(yu|θ).

The segment cost function can include a component that depends on the length of segment

as is used in some penalised cost approaches [Davis et al., 2006, Zhang and Siegmund, 2007a].

To make this idea concrete we will give two examples of cost functions that we will use later.

The first is for detecting a change in mean. A simple model is that the data in a segment is

IID Gaussian with common known variance, σ2, and segment specific mean, θ. In this case

we get

C(ys:t) = −2 max
θ

−1

2σ2

t∑
u=s

(yu − θ)2 =
1

σ2

t∑
u=s

(
yu −

∑t
v=s yv

t− s+ 1

)2

.

The second is where we model the mean of the data within a segment as a linear function

of time, but allow this linear model to vary between segments. Denote θ = (θ1, θ2) to be

the segment intercept and slope. If the noise for this model is IID Gaussian we then get a

segment cost

C(ys:t) =
1

σ2
max
θ

t∑
u=s

(yu − θ1 − uθ2)2 .

We use this model for analysing the data presented in the introduction, however in that

application some time-series have clear outliers. To make our inferences robust to these

outliers we follow Fearnhead and Rigaill [2016] and instead use a segment cost

C(ys:t) =
1

σ2
max
θ

t∑
i=s

min
{

(yi − θ1 − iθ2)2 , 4σ2
}
. (5.2.1)

This cost limits the impact of outliers if their residuals are greater than 2 standard deviations
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away from the segment mean.

For all these costs we require knowledge of σ2, the residual variance (or in the latter example,

the variance of the non-outlier residuals). In practice we use a simple and robust estimator of

σ, based on the median absolute deviation of the differenced time-series [Fryzlewicz, 2014a].

Once we have defined a segment cost, we then define a cost for a segmentation as the sum

of the segment costs for that segmentation. To segment the data, and find the changepoints,

we then want to minimise this cost over all segmentations. However to avoid over-fitting we

add a penalty, β > 0, for each segment. Thus to segment the data we solve the following

optimisation problem

min
m,τ

m+1∑
j=1

[
C(y(τj−1+1):τj) + β

]
. (5.2.2)

The choice of β in this approach is important. Higher values for β will mean fewer change-

points detected. There are various suggestions for how to choose β, and the most common for

detecting changes in a single time-series is the BIC criteria. If our segment specific parame-

ter is of dimension p, then this corresponds to β = (p + 1) log n. This has good theoretical

properties, if our modelling assumptions are correct [e.g. Yao, 1987]. However care is needed

in practice where this is not the case, see Haynes et al. [2017a] for guidance in selecting an

optimal value for β for a given a time-series.

Solving (5.2.2) is possible using dynamic programming. This requires the solution of a set of

intermediate problems. Define F (t) for t = 1, 2, . . . , n as

F (t) = min
τ

{
m+1∑
j=1

[
C(y(τj−1+1):τj) + β

]}
, (5.2.3)
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where the minimisation is over m and 0 = τ0 < τ1 < · · · < τm < τm+1 = t. Thus F (t) is the

minimum cost for segmenting data y1:t. The functions F (·) can be efficiently calculated, for

example using the PELT [Killick et al., 2012] or FPOP [Maidstone et al., 2017b] algorithms,

as

F (t) = min
s<t
{F (s) + C(ys+1:t) + β} .

Recalling that our interest is in detecting the most recent changepoint, let us consider G(r),

which we define to be the minimum cost of the data conditional on the most recent change-

point prior to n being at time r. This is related to F (r) as it is just the minimum cost of

segmenting y1:r plus the cost of adding a changepoint and the cost for segment y(r+1):n,

G(r) = F (r) + C(y(r+1):n) + β, for r = 1, . . . , n− 1, (5.2.4)

with G(0) = C(y1:n), This quantity can be viewed as related to the idea of a profile likelihood,

as we have optimised over all nuisance parameters (the number and locations of the change-

points prior to the most recent changepoint). It is trivial to see that our estimate for the

most recent changepoint is given by arg minr∈{0,...,n−1}G(r). If the most recent changepoint

is at r = 0, then this corresponds to no change within the time-series.

5.2.2 Extension to panel data

We now return to the problem of finding a set of common most recent changepoints in our

panel data. Let Gi(r) denote the minimum cost for segmenting series i with a most-recent

changepoint at r, defined in (5.2.4). Our idea is to search for a set of K locations for the

common most recent changepoints for our N series.
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Firstly assume that an appropriate value for K is known. Denote a set of common most

recent changepoints as r1:K = (r1, . . . , rK). For the kth most recent changepoint, located at

rk, then there will exist a set, Ik ⊂ {1, 2, . . . , N}, such that all series i ∈ Ik the most recent

changepoint is located at rk. The sets I1, I2 . . . , IK will be disjoint sets that partition the full

set of series {1, 2, . . . , N}.

It is natural to estimate the r1:K , and the associated sets, by the values that minimise the

sum of costs for each series

CK = min
I1,...,IK r1,...,rK

K∑
k=1

∑
i∈Ik

Gi(rk). (5.2.5)

The minimisation of (5.2.5) is challenging, however we will describe a method adopted from

the field of combinatorial optimisation to solve it for a given value of K in Section 5.3.

In practice we do not know what value of K to choose. Thus to choose K we resort to

minimising a penalised version of (5.2.5). We first solve the optimisation problem in (5.2.5)

for a range of K, and then choose the value of K that minimises

CK +N log2K +K log2 n,

where log2 is log base two. This uses a minimum description length criteria [Grünwald, 2007],

and the penalty can be viewed as the log, in base two, of the model complexity for allowing

K most recent changepoints: the number of choices of the K changepoints is approximately

nK and then each of the N time-series can choose which of the K most recent changepoints

to have, which gives KN possible choices.
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This approach penalises adding most recent changepoints. Thus when we implement our

method we use a value of β, the penalty for adding a change used in calculating Gi(r), which

is slightly lower than the BIC choice. Specifically, we suggest using β = (p + 1/2) log n, as

on simulated data with no change, values of β lower than this produce G(r) functions that

on average get smaller as r increases for r ≥ 1 – which suggests smaller choices of β would

be biased towards adding erroneous very recent changepoints. By comparison our choice of

β produced G(r) functions whose average value appeared constant for r ≥ 1.

5.3 Optimal set of most recent changepoints

We now turn to solving the optimisation problem in (5.2.5) for a fixed value of K. Solving this

is computationally challenging if a brute force method is applied, due to the exponentially

large number of ways of choosing either r1:K or the sets I1:K . However it can be reduced to

a well studied problem in the field of combinatorial optimisation.

To formulate this problem we proceed as follows. Let G be a matrix of the conditional costs

that we defined in (5.2.4), so that for i = 1, 2, . . . , N and r = 0, 1, . . . , n − 1, Gir = Gi(r)

the optimal cost of the most recent changepoint of the ith series being at time r. We want

to find the K columns of G such that if, for each row, we take the minimum of elements in

these columns, and then sum these across all N rows, the total is minimised. This allocates

each of the N series into K disjoint classes according to which series are affected by a specific

most recent changepoint. The specific optimisation problem is

min
S

N∑
i=1

min
r∈S

Gir, where S ⊂ {0, 1, . . . , n− 1} and |S| = K.
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It turns out that this optimisation problem is mathematically equivalent to the so-called

K-median problem [Reese, 2006]. This problem can be formulated, and solved, as an integer

program with binary variables xir and zr where

xir =


1 if series i has most recent changepoint at time r

0 otherwise,

and

zr =


1 if there is a most recent changepoint in any series at time r

0 otherwise.

The objective is then simply to solve the following problem:

min
N∑
i=1

n−1∑
r=0

Girxir (5.3.1)

subject to
n−1∑
r=0

xir = 1,∀i, (5.3.2)

xir ≤ zr,∀i, r, (5.3.3)

n−1∑
r=0

zr = K. (5.3.4)

Here constraint (5.3.2) ensures each series has only one most recent changepoint, whilst the

two remaining constraings, (5.3.3) and (5.3.4), ensure that K different most recent change-

points are selected.

Approaches for solving the K-median problem are discussed in Reese [2006] and references

therein. We use the method of Teitz and Bart [1968], available within the R package tbart.
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This is a simple algorithm that tries to improve on a current solution by replacing one of the

K values for a most recent changepoint with a value that is not currently in the set of most

recent changepoints. It loops over all such pairs, and makes the replacement if it will reduce

the objective function (5.3.1). This is repeated until there is no replacement that will improve

the objective any further. This method is heuristic, in that it is not guaranteed to find the

global optimum to the optimisation problem. However we found that it is computationally

efficient and empirically leads to good estimates of the most recent changepoints.
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Pseudo-code for full MRC method is shown below.

Algorithm 4: Pseudo-code for the MRC algorithm.

Input: A data set containing N series made up of n observation, y ∈ RN×n.

A cost function C(·) used as a measure of fit, usually the negative log-likelihood for the data

in a segment of the assumed model.

A penalty term β.

A constant Kmax, the maximum number of most recent changes to find.

Pre-process: Run the PELT algorithm on each series in the panel and calculate the

matrix containing the costs for a MRC in each series at a given time point.

for i = 1 to N do

1. Calculate Fi(t) using PELT for all time points t = 1, 2, . . . , n in series i.

2. Calculate the conditional costs for a MRC in series i at time t

Gi,t = Fi(t) + C(yi,(t+1):n) + β

and store in a matrix (use corrected value for β as described in 5.2.2).

end

Optimisation: Apply the K-median problem to the G matrix.

3. Calculate CK for all K = 1, 2, . . . , Kmax.

5. Find the number of most recent changepoints by minimising the MDL,

K̂ = arg min
K∈{1,...,Kmax}

CK +N log2K +K log2 n.

Output : The K̂ most recent changepoints along with a matrix (x) from the IP

formulation that gives the MRC for each series.
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5.4 Simulation study

As described in the introduction, there are a number of methods in the literature that allow

us to detect multiple changes in panel data. We compare our method, which we call MRC,

to several of these to see empirically how they compare. None of these alternative methods

were specifically designed to just estimate the most recent changepoints, and we are unaware

of any other methods that focus solely on this. Furthermore some of these methods are able

to infer quantities, such as earlier common changepoints, that MRC cannot.

The alternative methods can be split into two groups. The first set of methods estimate

common change points for each series. We compare with three such approaches. These are

analysing the aggregated data (AGG) and two approaches for detecting common changepoints

in multivariate data. The latter two methods are the approach of Lavielle and Teyssière [2006]

which models data within a segment as multivariate Gaussian with known covariance (MV);

and the ECP method [Matteson and James, 2014], which is a non-parametric change point

detection procedure (ECP).

Both the AGG and MV methods require a choice of penalty and we use the BIC penalty.

However, for the ECP method every proposed changepoint is tested for statistical significance

using a permutation test and a threshold obtained via a bootstrap which is described in

Matteson and James [2014].

The second group of alternative methods includes two methods that can estimate common

changepoints that affect only a subset of the time-series. The simplest method we consider

(IND) involves analysing each series in the panel independently and finding the most recent

changepoint in each series. The second method in this group is Double CUSUM Binary
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Segmentation (DCBS) [Cho, 2016] which also identifies the subsets affected by each change.

We again use the BIC penalty when segmenting each series as part of the IND method. The

DCBS method has two parameters that need to be chosen. The first parameter ψ, is related

to the expected degree of sparsity or the number of series affected by a change compared to

the total number of series. Guidance is available on how to choose this parameter in Cho

[2016]. The second parameter πψ is the threshold for testing whether or not a change is

significant as is done in the ECP method mentioned above. This threshold is chosen using a

bootstrap style procedure where the null hypothesis of no changepoint is assumed and some

empirical quantile of this distribution is taken. We chose this parameter by simulating 100

replications from the null hypothesis, i.e. no changepoints at all, and measured the proportion

of false positives for a number of different values for πψ. In practice, we found that a value

of πψ = 10 worked well.

Each panel data set we simulate consists of 100 series all having length 500. For a given

value of K most recent changepoint we first simulate K distinct values for the most recent

changepoints and these are sampled at random from the set {300, 320, . . . , 480}. This ensures

each most recent changepoint position is at least 20 time-points away from all other posi-

tions, which helps interpretation when we measure the accuracy of methods in detecting the

location of the changes. We partition our 100 time-series evenly across the K most recent

changepoint locations. We then simulate earlier common changepoints by first simulating

potential changepoints independently with probability 0.02 at each time-point prior to the

earliest most recent common changepoint. For each of these we simulate a probability from

a uniform distribution, and then simulate that a changepoint appears in each time-series

independently with this probability. The observations in each of the segments are IID and
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Normally distributed with mean µ drawn from its prior distribution N (0, 22). For simplicity

we keep a fixed variance σ2 = 1 for all the observations. In this study the parameter of the

last segment differs by ε from the mean in the penultimate segment, with the sign of the

change being chosen uniformly at random for each time-series. We use ε = 1 for the studies

in Cases 1, 3 and 4 below, whereas for Case 2 we look at the effect of varying ε.

In the first three studies we consider the accuracy of estimates of the most recent changepoints

and which series are affected. We only compare IND, DCBS from the second group of methods

and our method MRC. We exclude those methods in the first group because they only detect

common changes in the panel and are unable to identify which series are affected by each

of the different most recent changepoints. We evaluate these three methods on a number of

different criteria: the proportion of the true changepoints we detect (PD), the changepoint

accuracy (CA) and the location accuracy (LA). A changepoint is defined as being detected

if it is within 5 time points of the truth. To define the location accuracy we take only those

changepoints that are detected then take the average of their absolute deviations from the

true most recent changepoint in each series. For every series in each panel that we simulate

we calculate whether or not the most recent change in that series has been detected and the

accuracy of the location estimated compared to the truth. We then take the average over

the 100 series in that panel and do this for every panel we simulate.

Two of the methods we consider, namely MRC and DCBS, return more information than

IND, including the estimated number of most recent changepoints K̂ and the subset of series

that are affected by each most recent changepoint.

We measure the accuracy of the estimate of the number of most recent changepoints using

the absolute error, |K̂ −K|, and call this the changepoint accuracy (CA).
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We then measure the accuracy of the estimates of the subsets of series affected by each of

the changepoints using the set coverage

Dj = 1− |Îj ∩ Ij|√
|Îj||Ij|

,

where Ij is the true subset of series affected by the j most recent changepoint and Îj is

the estimated subset. This measure satisfies Dj ∈ [0, 1], with Dj = 0 indicating that the

estimated subset overlaps exactly with the true subset, and Dj = 1 if the two subsets are

disjoint. More generally, smaller values of Dj indicate a greater overlap. In the simulations

presented for each panel we calculate the mean of D1, D2, . . . , DK̂ .

Case 1. Effect of K.

For the first study we simulated data as described above for a range of values for K from

K = 1 to K = 10. Results are shown in Table 5.4.1.

IND DCBS MRC
k PD LA PD CA LA D PD CA LA D

1 0.73 (0.11) 1.46 (0.25) 0.86 (0.23) 2.98 (2.46) 0.05 (0.21) 0.09 (0.15) 0.98 (0.07) 0.10 (0.44) 0.06 (0.31) 0.01 (0.04)
2 0.76 (0.07) 1.43 (0.26) 0.82 (0.19) 2.55 (1.86) 0.04 (0.22) 0.14 (0.16) 0.97 (0.03) 0.04 (0.20) 0.04 (0.19) 0.03 (0.03)
3 0.77 (0.05) 1.39 (0.22) 0.70 (0.19) 2.64 (2.01) 0.13 (0.34) 0.24 (0.15) 0.95 (0.03) 0.05 (0.22) 0.03 (0.15) 0.05 (0.03)
4 0.77 (0.05) 1.37 (0.25) 0.67 (0.13) 2.47 (2.23) 0.18 (0.36) 0.28 (0.11) 0.94 (0.04) 0.03 (0.17) 0.05 (0.15) 0.06 (0.03)
5 0.78 (0.05) 1.38 (0.22) 0.58 (0.12) 2.09 (1.72) 0.24 (0.39) 0.35 (0.12) 0.93 (0.03) 0.03 (0.17) 0.04 (0.11) 0.07 (0.03)
10 0.78 (0.04) 1.41 (0.20) 0.29 (0.07) 1.77 (1.37) 0.76 (0.68) 0.62 (0.10) 0.89 (0.04) 0.10 (0.30) 0.19 (0.17) 0.10 (0.04)

Table 5.4.1: For all of the methods and differing values of K we repeated each experiment
100 times and recorded the proportion of true changes we detected (PD), the accuracy in
detecting the number of distinct most recent changes (CA), the accuracy of the estimated
location of these changes (LA) and the set coverage (D). These values are averaged over the
100 replications alongside their standard deviation, shown in brackets.

It is clear from Table 5.4.1 that our MRC method outperforms both IND and DCBS across

the criteria we consider. The ability to synthesise information across time-series means that

MRC is able to more accurately detect changes and locate where they occur than analysing
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each time-series independently. Not surprisingly we see that the advantage of using MRC

over IND decreases as K increases. We also see that DCBS is more accurate than IND for

small values of K, and is consistently more accurate in estimating the position of detected

changepoints, but appears less powerful at detecting the most recent changes as K increases.

Case 2. Effect of size of change at final changepoint.

Next we look at how each method is effected by the size of the mean change at the most

recent changepoint, ε. We fix the number of most recent changepoints as K = 5, meaning

that there are 20 series affected by each different changepoint. We vary the value of ε from

ε = 0.2 to ε = 1.6. Results are shown in Table 5.4.2.

We again see MRC giving consistently stronger performance for all values of ε. The advantage

of MRC over IND is largest for moderate values of ε. For small values of ε the information

about changes in each time-series is small, and thus the benefit of merging information across

time-series is limited. For larger values of ε it is relatively easy to detect changes from an

individual time-series, and hence the benefit of using MRC over IND is mainly seen in its

ability to more accurately locate the position. Surprisingly DCBS does not improve as much

as the other methods as we increase ε. The DCBS method was not specifically designed

to detect most recent changes, and it appears not to be as accurate at identifying which

time-series change at each changepoint, which then impacts its accuracy at detecting which

changes are most recent for a given time-series.

Case 3. Dependent observations.

One of the key assumptions we made when modelling the most recent change process was

the independence of observations, both within and between segments. This greatly simplifies

the modelling and especially the inference procedure, however, in many real time series
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IND DCBS MRC
ε PD LA PD CA LA D PD CA LA D

0.2 0.11 (0.12) 1.49 (1.13) 0.09 (0.07) 3.49 (1.61) 0.75 (1.26) 0.66 (0.10) 0.11 (0.15) 2.06 (1.12) 0.47 (0.88) 0.64 (0.16)
0.4 0.22 (0.11) 1.75 (0.53) 0.22 (0.10) 3.43 (1.66) 1.01 (1.12) 0.55 (0.11) 0.36 (0.19) 1.27 (1.07) 0.88 (1.05) 0.42 (0.11)
0.6 0.46 (0.09) 1.76 (0.34) 0.37 (0.10) 3.00 (1.92) 0.64 (0.69) 0.51 (0.09) 0.76 (0.12) 0.30 (0.50) 0.29 (0.33) 0.20 (0.06)
0.8 0.65 (0.07) 1.57 (0.25) 0.48 (0.13) 2.51 (1.96) 0.35 (0.50) 0.45 (0.11) 0.89 (0.06) 0.09 (0.29) 0.12 (0.21) 0.10 (0.04)
1 0.78 (0.05) 1.38 (0.22) 0.58 (0.12) 2.09 (1.72) 0.24 (0.39) 0.35 (0.12) 0.93 (0.03) 0.03 (0.17) 0.04 (0.11) 0.07 (0.03)

1.2 0.86 (0.04) 1.19 (0.17) 0.62 (0.13) 1.63 (1.47) 0.16 (0.25) 0.31 (0.13) 0.95 (0.03) 0.04 (0.20) 0.02 (0.06) 0.05 (0.03)
1.4 0.91 (0.04) 1.01 (0.14) 0.65 (0.12) 1.44 (1.25) 0.13 (0.26) 0.26 (0.13) 0.95 (0.03) 0.04 (0.20) 0.00 (0.03) 0.05 (0.03)
1.6 0.93 (0.03) 0.85 (0.13) 0.66 (0.12) 1.47 (1.25) 0.10 (0.23) 0.25 (0.13) 0.96 (0.03) 0.04 (0.20) 0.00 (0.02) 0.04 (0.02)

Table 5.4.2: For all of the methods with a fixed value of K = 5 and differing values of
ε we repeated each experiment 100 times and recorded the proportion of true changes we
detected (PD), the accuracy in detecting the number of distinct most recent changes (CA),
the accuracy of the estimated location of these changes (LA) and the set coverage (D). These
values are averaged over the 100 replications alongside their standard deviation, shown in
brackets.

applications observations are not independent and display serial autocorrelation.

To assess the robustness of the MRC procedure we simulated an MRC process with a piecewise

constant mean function as before but instead of adding IID normally distributed ‘noise’ we

simulated an AR(1) noise process, Zt, with standard normal errors et

Zt = φZt−1 + et.

This process was simulated for a range of values of φ which represented mild to moderate

autocorrelation. The number of most recent changepoints was fixed at K = 5 and we set

ε = 1. Results are shown in Table 5.4.3.

As φ increases the dependence between observations increases and the measures for all meth-

ods we consider decrease. The impact on both MRC and DCBS is larger than the impact

on IND, with IND correctly detecting more recent changepoints for φ = 0.4. Both MRC and

DCBS still give more accurate estimates of the position of the changes that they do detect,

and MRC is again more accurate than DCBS for all cases we consider. It may be possible to
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IND DCBS MRC
φ PD LA PD CA LA D PD CA LA D

0 0.78 (0.05) 1.38 (0.22) 0.58 (0.12) 2.09 (1.72) 0.24 (0.39) 0.35 (0.12) 0.93 (0.03) 0.03 (0.17) 0.04 (0.11) 0.07 (0.03)
0.1 0.73 (0.04) 1.47 (0.23) 0.55 (0.12) 2.17 (1.95) 0.29 (0.37) 0.40 (0.12) 0.89 (0.04) 0.03 (0.22) 0.07 (0.15) 0.11 (0.03)
0.2 0.64 (0.05) 1.56 (0.26) 0.43 (0.13) 2.66 (1.90) 0.31 (0.48) 0.49 (0.11) 0.75 (0.08) 0.74 (0.81) 0.18 (0.28) 0.21 (0.05)
0.3 0.51 (0.05) 1.59 (0.24) 0.12 (0.09) 3.05 (1.20) 0.66 (1.01) 0.71 (0.12) 0.47 (0.09) 1.71 (1.38) 0.35 (0.38) 0.38 (0.05)
0.4 0.36 (0.05) 1.72 (0.29) 0.04 (0.04) 2.70 (1.06) 1.59 (1.49) 0.80 (0.13) 0.21 (0.09) 1.79 (1.24) 0.82 (0.90) 0.55 (0.07)

Table 5.4.3: For all of the methods and differing values of φ we repeated each experiment
100 times and recorded the proportion of true changes we detected (PD), the number of false
positives (FP), the accuracy of estimated location of these changes (LA) and the set coverage
(D). These values are averaged over the 100 replications alongside their standard deviation,
shown in brackets. Fixed values for K = 5 and ε = 1.0 were used.

improve the performance of all methods by increasing the penalty or threshold the defines

when we add a change [see Lavielle and Moulines, 2000, for theoreticaly justification of this].

Case 4. Accuracy of prediction.

Finally, we consider at how each method performs if the aim is to predict Yi,n+1 for each

time-series. Each method gives an estimate for the most recent changepoint for each time-

series. Conditional on this estimate we can estimate the mean in the final segment. This

estimated mean is our prediction for the next value(s). We use the same data as in Case 1

but leave out 5 time points at the end of the data. We then predict the last 5 points using

the most recent changepoints found by each method and measure the Mean Squared Error

(MSE) between the truth and our predictions. Results are shown in Table 5.4.4.

k IND AGG MV ECP DCBS MRC
1 1.04 (0.10) 1.29 (0.84) 1.01 (0.07) 1.09 (0.28) 1.08 (0.19) 1.01 (0.07)
2 1.06 (0.09) 1.27 (0.31) 1.05 (0.08) 1.09 (0.15) 1.08 (0.12) 1.03 (0.07)
3 1.04 (0.07) 1.25 (0.28) 1.06 (0.11) 1.08 (0.13) 1.07 (0.11) 1.02 (0.06)
4 1.04 (0.08) 1.34 (0.37) 1.08 (0.11) 1.09 (0.12) 1.08 (0.12) 1.02 (0.07)
5 1.04 (0.07) 1.23 (0.24) 1.08 (0.10) 1.09 (0.12) 1.07 (0.11) 1.02 (0.06)
10 1.04 (0.06) 1.29 (0.28) 1.12 (0.08) 1.09 (0.09) 1.09 (0.09) 1.02 (0.06)

Table 5.4.4: The average Mean Squared Error (MSE) for predictions of each method. The
MSE was calculated for the difference between the truth and predicted values and averaged
over 100 replications.
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MRC gives the most accurate predictions for all values of K, and is the only method to

consistently be more accurate than analysing each time-series individually. The method

which treats the N time-series as a multivariate time-series where the mean changes in all

components at a change (MV) does well for K = 1 and K = 2, but loses accuracy for larger

K. The method that aggregates the time-series, and then detects changes in the resulting

uni-variate time series does particularly poorly. This is because the aggregation step reduces

the signal for a change, even when all changes are in the same location, as the sign of the

change in mean differs across time-series.

Computational cost and scaling

The computational cost of the different methods is compared in Table 5.4.5 for a typical data

set used in the simulation study above. The data we used contained N = 100 series and had

a length of 500 time points, n = 500.

Methods
AGG ECP IND DCBS MRC

Average run time (seconds) 0.01 9.94 0.96 1.84 5.14

Table 5.4.5: Average run time calculated on 10 replications of the same data set which was
simulated with fixed values for K = 5 and ε = 1.0.

The ecp package and function was used with its default values, this method makes no dis-

tributional assumptions on the data and has quite a complex procedure for changepoint

detection. Our MRC method is reasonably quick on a moderately sized panel data set and

is around two and a half times slower than the leading competitor, the DCBS method.

Our MRC method “contains” the IND method in its pre-processing step (see Algorithm 4)

as the univariate changepoint method PELT is applied to each series individually. Thus,

this pre-processing step will scale approximately linearly in both n and N i.e. O(nN). This
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is because PELT scales linearly in the length of the data n subject to some conditions.

Calculating the conditional costs is relatively straightforward as the costs C(y(t+1):n) are

derived from summary statistics that are stored.

In Section 5.5.2 we apply the MRC method to data with N = 7039 firms over an observation

period of n = 53 years. Even with this large number of firms the time needed to solve the K-

median problem only increased to around 30 seconds. This scaling suggests that the number

of dimensions is not particularly important in terms of the time needed to solve the second

step of our method. As the length of the data (n) increases however, the computational

cost should increase linearly. This is because for each new time point there are another K

alternatives used to compute the objective function. As each of the current K MRC’s can

be swapped with the new time point and the objective evaluated at each of them to see if a

swap should be performed.

So far we have fixed the maximum number of most recent changepoints we wanted to search

for to Kmax = 10. With this choice the heuristic in the tbart package gave fast and efficient

results, however we may want to increase this. Figure 5.4.1 shows how the computational

cost changes as Kmax increases. For problems with many most recent changes it may be

sensible to get an estimate for the earliest change of interest and analyse only the data after

that so that the number of true MRC’s is limited to only those of interest.
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Figure 5.4.1: The computational cost when we changed the maximum number of most recent
changepoints to search for.

5.5 Applications

We look at two different applications of our method using real data. These applications

differ in their focus and the aim of the analysis. The first is that of the telecommunications

event count data introduced in Section 5.1. For this example we segment series assuming a

piecewise linear regression model which is robust to the presence of outliers.

Our second application concerns the balance sheets of a large number of firms. In this case

we look for changes in a parameter that measures the ratio between the cash holdings of a

company and the net assets held on its balance sheet. The goal of this analysis is to explore

why the cash holdings of many large firms have increased over time, and if there are any

specific events which have caused this. By using our method we can identify in which years

a change occurs and for each of these years which firms change. This information helps us to

tie in specific legal or economic changes to the years in which they happened and the types

of industries that are affected.
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5.5.1 Telecommunications event data

Our panel data consists of the number of events that occur each week over a 175 week period.

Events are recorded for each of 10 geographical regions, 8 different line types, and 2 different

age classes (binary variable for age that exceeds a certain threshold). Thus there are 160

possible series, of which 18 of these show no weekly events over the 175 weeks measured. So

we are left with 142 series to analyse.

We can get an overall time series for the number of events per week across the entire network

if we aggregate all of these series together for the 175 weekly observations over all line

attributes. This fully aggregated series is shown in Figure 5.5.1. We can see that there are

distinct changes in the slope of this series and it is segmented into piecewise linear regressions.

The exact cost function we use to model the data within a segment is shown in (5.5.1). This

is a piecewise linear regression model which uses a bi-weight loss function to limit the impact

of outliers on the inference for the slope and intercept parameters

C(ys:t) =
1

σ2
max
θ

t∑
i=s

min
{

(yi − θ1 − iθ2)2 , 4σ2
}
. (5.5.1)

In the cost function above we have defined a data point to be an outlier if its residual is greater

than two standard deviations away from the segment mean. We also require knowledge of σ2,

the variance of the non-outlier residuals). In practice we use a simple and robust estimator

of σ, the median absolute deviation of the differenced time-series.

As mentioned in the introduction, the main interest with this data is in making short-term

predictions. To do this we use the method described in Section 5.3 to find the number of

most recent changes. We estimate that there are five different most recent changepoints.
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Figure 5.5.1: The aggregate series segmented into piece wise linear regressions.

This means that all of the 142 series can be separated into five groups depending upon which

of the five most recent changepoint affects each series.
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Figure 5.5.2: The aggregate series for each of the five groups of series. Their respective
most recent changepoints are added, with the final segment shown in blue. The previous
segmentation prior to the most recent change is shown as a red dashed line.

Figure 5.5.2 show the aggregate series for each of the five groups. The groups contain 26, 27,

28, 28 and 33 series from left to right respectively.



CHAPTER 5. MRC 108

All of the aggregated series show an increased trend initially until around the 35th week. This

can be seen most prominently in the first series on the left, with a lower consistent gradient

after this change. The second series shows that at around the 100th week the gradient of

the trend increases slightly. In the third series at around the 140th week the gradient of the

final segment increases markedly. The fourth and fifth series both show a most recent change

which is close to the end of the series, at around the 160th week, with a marked decrease in

trend for the fifth series.

We can see several characteristics of the fully aggregated series in Figure 5.5.1 “stripped”

almost into their component parts. The fourth series is somewhat of an anomaly as it is

highly variable, upon further inspection this set of series was made up of individual series

which all contained a small number of events per week and were quite variable.

When we have found the most recent changepoints, the parameters of the resulting regression

line in the last segment can be estimated. These estimates can then be used to predict

succeeding time points. We analyse the data up to four data points (weeks) from the end

of the data and then use the predictions obtained from the regression model to evaluate the

Mean Square Error (MSE) of the prediction for the last four weeks.

We compare predictions using the estimated most recent changepoints from MRC with pre-

dictions where we segment each time-series separately. The MSE for the predictions in the

latter case is 43442 while for our algorithm (with K = 5) it is 41779. This is an improvement

of 3.8% in the MSE of the prediction compared to analysing each time-series individually.
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5.5.2 Corporate finance data

We now apply our method to a panel data set from the field of Corporate finance. This data

set comprises the annual value of a range of different financial indicators for a number of firms.

These include, for example, the value of a firm’s assets or whether the firm pays dividends

or not. This particular data set is known as an unbalanced panel as the observations for

each firm do not all begin or end in the same year. We can view this as a longitudinal

data problem where the cohort are the firms that are tracked over time. As is common in

these problems there is a large (cohort) number of firms, 7039 in this example, but these are

observed over a much smaller time frame. In this case there are a maximum 53 observations

per firm (annually from 1962 - 2015).

An intriguing phenomenon in corporate finance is the fact that U.S. firms hold considerably

more cash nowadays compared with a few decades previously. Specifically, cash as a propor-

tion of total assets held by U.S. firms has more than doubled in the past three decades. The

evolution of corporate cash holdings has received a lot of attention from academic researchers,

policy makers, and practitioners. Numerous explanations for this have been offered in the lit-

erature, inclduing increased cash flow volatility [Bates et al., 2009, 2017], competition [Brown

and Petersen, 2011], changes in production technology [Gao, 2017], changes in the cost of

carry [Azar et al., 2015].

Azar et al. [2015] argue that changes over time in the cost of carry, that is the net cost of

financing one dollar of liquid assets, explains the evolution of corporate cash holdings [see

also Graham and Leary, 2016]. They measure the cost of carry as the spread between the

risk-free Treasury-bill rate and the return on the portfolio of liquid assets for the corporate

sector. However a limitation of existing studies is that they split their data along the time
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domain into distinct ‘regimes’ by eyeballing the data. Such an approach is highly subjective

and increases the opportunity for data snooping. It would be preferable to introduce a formal

procedure for detecting any distinct regimes.

We therefore re-examine the ability of the cost of carry to capture variation in corporate

cash by formally modelling the breakpoint process using our changepoint methodology. Our

analysis follows Azar et al. [2015] and therefore uses the same dataset [see Azar et al., 2015,

for a detailed description of the dataset]. We control for a number of variables that may

affect cash holdings of a firm, such as capital expenditure, spending on R&D and the amount

of leverage it has amongst others. Specifically we consider a fixed effects linear model where

the response variable, yit, represents the cash to net asset ratio of firm i in year t is regressed

against 12 covariates,

yit = αi + β1X1it + β2X2it + . . .+ β12X12it + εit. (5.5.2)

These covariates are described in Table 5.5.1. The βjs are pooled estimates of the effect

of the covariates measured over all 7039 firms and the years in which they are observed.

Each fixed effect term, αi, captures a firm-specific characteristic in terms of a firm specific

intercept. These fixed effects can be interpreted as the difference between the predicted cash

to net assets ratio and the true value observed. As such, the fixed effects are able to capture

differences caused by external changes which can not be explained by the covariates in the

model.

For a specific firm the fixed effects term may change due to a number of factors such as a

CEO change, a merger or takeover by another firm or some scandal such as a product recall
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which requires large amounts of cash to be spent. However, we are more interested in the

times at which the fixed effect parameter changes in a significant number of firms at the same

time. The causes of these changes would be due to wider economic events such as changes

in policy, technological innovation, or regulatory changes such as the Sarbanes-Oxley Act of

2002.

Having estimated the βjs via maximum likelihood estimate, we can rewrite (5.5.2) as a change

in mean model

yit −
(
β̂1X1it + β̂2X2it + . . .+ β̂12X12it

)
= αit + εit, (5.5.3)

where the β̂is are the parameter estimates.

Our MRC method can be applied to this problem and aims to find the year(s) in which the

most recent changepoint(s) occur and the subsets of firms that are affected. We now follow

the method of Section 5.3 to find the optimal number of most-recent changepoints and the

sets of firms that are affected by them.

The Estimated Changepoints

We find three most-recent changepoints. These are located in years 1979, 1996 and 2007.

The largest subset of firms have their most recent change at 1979. Approximately 70% of

the 7039 firms we consider have some evidence for a change in their fixed effect parameter

in 1979. This date corresponds to a change in the Federal Reserve’s operating procedures,

specifically it marks the beginning of the ‘monetarist policy experiment’, and is identified

as a breakpoint in Pettenuzzo and Timmermann [2011] who use a historical time series of
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excess returns that are subject to breaks to forecast the equity premium out-of-sample.

Another benefit of our methodology is the ability to observe which firms are undergoing

a change and which are not. This is of real interest in economic and finance applications

because it may be able to provide information to help identify the underlying cause of the

structural break. For instance if the change is experienced predominantly by firms in one

industry it could be indicative of an industry-specific shock or regulation change. Conversely,

if the change occurs across all firms this might suggest an economy-wide change in policy. In

this application the affected firms are roughly equally distributed across each of the broader

industry classes strengthening the case for the cause being the change in the Federal Reserve’s

macroeconomic policy. This policy change led to a decrease in the fixed effects part of the

model in the majority of the firms that were affected by the change and thus a decrease in

their cash holdings.
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Figure 5.5.3: Some of the affected firms plots of their fixed effects showing a change in 1979.

The changes at 1996 and 2007 each affect around 15% of the firms. The change in 1996

affected mostly Utilities firms and the one in 2007 affected both the Trade and Services sec-
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tors. The 1996 changepoint is also found in related work on structural breaks [Pettenuzzo and

Timmermann, 2011] and can be attributed to the late 1990’s retail bull market in which net

assets markedly increased in value. The Telecommunications Act of 1996 which deregulated

the U.S. broadcasting and telecommunications markets could explain why the Utilities sector

experienced a large shock. The deregulation paved the way for many utilities companies to

enter the broadcasting and telecommunications market. The change in 2007 corresponds to

the recent financial crisis and the large fluctuations in the value of assets held by many firms

in that period.

Covariate Description
X1it T-Bill (the rate of return on a 90 day treasury bill)
X2it Cost of carry
X3it Log of real assets
X4it Industry sigma (a measure of the volatility in each sector)
X5it Cash flow to assets ratio
X6it Net working capital to assets ratio
X7it R&D/Sales
X8it Dividend dummy
X9it Market to book ratio
X10it Capital expenditure
X11it Leverage
X12it Acquistion activity

Table 5.5.1: A description of the 12 covariates in the model.
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5.6 Discussion

In this paper we have developed novel methodology to detect changepoints in panel data. The

specific changepoints we aim to detect are the most recent changes that affect different and

disjoint subsets of the series that make up the panel. We focus on detecting the most recent

changes as this can be useful in forecasting as shown in Section 5.5.1. We are also able to

identify which series are affected by different changes which leads to a greater understanding

of why and how the changes have occurred.

In our analysis of the two real data sets we used cost functions for segmenting each individual

time-series that are based on assuming no temporal dependence in the residuals. This can

be justified theoretically by results that show, for example, that detecting changes in mean

using a least squares criteria is robust to the presence of temporal dependence in the residuals

[Lavielle and Moulines, 2000]. We showed empirically that our method can still detect the

most recent changes even in the presence of AR(1) structure. Furthermore, our general

approach can easily be extended to allow for modelling of the error structure of the residuals,

by using cost functions for the data within each segment that are based on models which

allow for autocorrelation.

Our method also ignores any dependence across time-series, either in the form of cross-

correlation in the residuals or of similar changes at common changepoints. Whilst the former

is an active area of research within the non-stationary time series community [see for example

Ombao et al., 2005, Park et al., 2014] this is an open, and intriguing area of future research

for the changepoint community. The consquence of ignoring such (time-varying) structure

might be that we infer some spurious changes to fit unusual patterns in the residuals that
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are seen in multiple time-series. It is not clear how to develop a method that accounts for

the latter, but such a method could have greater power at detecting changes than our MRC

procedure.



Chapter 6

Changepoint detection for piece-wise

linear models in the presence of

outliers

6.1 Introduction

A problem often found when performing changepoint detection on real data is being able to

distinguish between actual changes that occur in the time series and outliers that exist in

the data due to measurement or experimental error.

Currently most changepoint detection methods do not give robust segmentations of data

when outliers are present. Those methods that use a penalised likelihood approach [Killick

et al., 2012] assume simple parametric models such as Gaussian noise and thus over estimate

the number of changes when outliers are present (i.e. the true noise distribution has heavier

tails).

116
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A widely used family of changepoint detection methods are based on the cumulative sums

of squares test (CUSUM) [Page, 1954a]. These are non-parametric tests and can be applied

to many different models, however, they implicitly assume Gaussian errors as well and so

are not robust. Alternative non-parametric methods exist which would be expected to have

some robustness such as the methods described in Haynes et al. [2017b] and Zou et al. [2014].

Thus, in reality it is often necessary to do some pre-processing to “clean” the data and

remove outliers manually before performing changepoint detection. For data collected at a

high-frequency, this is obviously a time consuming task and can be prone to error.

Fearnhead and Rigaill [2016], give a concrete example of the effects outliers can cause when

attempting to detect changes in mean when outliers are present by considering the well-log

data set. This data set, originally presented in O Ruanaidh [1996], has been analysed by

a number of authors using different techniques. Whilst many methods perform well when

analysing the cleaned dataset, they performed much worse and in many cases were unable

to distinguish between changes and outliers when analysing the real data.

In recent years several automatic methods that detect a change in mean which are robust to

outliers have been proposed.

One natural approach is to adapt ideas from robust statistics, namely replacing the squared

error loss for a change in mean test statistic (assuming Gaussian noise) with an alternative

loss function, (i.e. the Huber loss) that is less sensitive to outliers. Hušková [2013] derives

CUSUM-like tests using these alternative loss functions to detect a single changepoint. This

can be easily extended to find multiple changes using binary segmentation. Fearnhead and

Rigaill [2016] incorporate a loss function within a penalised cost approach to estimating

multiple changepoints which overcomes the approximate nature of binary segmentation.
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An alternative approach, devised by James et al. [2016], segments time series using a test

statistic based on the median instead of the mean. This has the advantage of being robust

by design, fast to compute, but approximate if a segmentation of a time series into changing

means is required. This method has been employed in a number of areas including Finance,

Medicine, and Signal processing as well as being used on a regular basis at Twitter.

What has received less attention is the problem of distinguishing between changepoints and

outliers in more complex models, such as the change in regression setting. The differing

models we look at in this paper can be summarised graphically in Figure 6.1.1. These are

changes in regression, or slope, in which the latter has a constraint to enforce continuity

on the underlying linear process. The other feature we consider apart from continuity are

outliers. We can see the difference in Figures 6.1.1b and 6.1.1d where the residuals are drawn

from a mixture distribution. This is a mixture between a t−distribution and a standard

Gaussian random variable.

In this paper we aim to develop a changepoint detection technique for data, where the model

we assume is made up of continuous piece-wise linear segments and in which outliers are

present. To do this we aim to combine two methods from the changepoint literature which

we describe below.

The first method, described in Fearnhead and Rigaill [2016], considers the problem of de-

tecting changes in the mean in the presence of outliers. The aim of this work is to provide

segmentations that are robust to outliers. There are several applications of this work in

diverse fields such as bio-statistics, in estimating Copy Number Variation and of detecting

tampering in Wifi transmitters and receivers [Bagci et al., 2015].

The method, described in Fearnhead and Rigaill [2016], is called R(obust)-FPOP and is
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(a) Regression change - OLS (b) Regression change - Robust

(c) Slope change - OLS (d) Slope change - Robust

Figure 6.1.1: Four plots showing the different data models we consider in this paper. These
include data with or without outliers and an underlying process which is continuous or non-
continuous at the changepoints. In each figure we show the true segmentation of the data in
red and the standard estimated segmentation under the assumption of Normally distributed
residuals (the OLS segmentation) in blue. The standard OLS method works reasonably well
for situations with no outliers (Figures 6.1.1a and 6.1.1c). However, for data with outliers
(Figures 6.1.1b and 6.1.1d) the standard estimation method is heavily affected. This can be
seen from the large deviations from the red and blue lines and the spikes in the blue line at
outlier locations. The two figures in the top row show examples of the piece-wise change in
regression model whereas the bottom row shows the change in slope model (Figures 6.1.1c and
6.1.1d). The underlying data generating process for the change in slope model is continuous
at the changepoints.
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based on the FPOP method first introduced in Maidstone et al. [2017b].

The second method we consider [Maidstone et al., 2016a], describes the problem of segmenting

time series which are made up of continuous piece-wise linear segments. This continuity

constraint adds a great deal of computational complexity to the problem as it means that

there is dependence across segments. This increase in computational time is based on the fact

that the usual dynamic programming recursions and pruning techniques developed in Killick

et al. [2012] and Maidstone et al. [2017b] are predicated on an assumption of conditional

independence between segments.

The outline of the chapter is as follows. Firstly, in Section 6.2, we present a penalised

cost approach that uses existing methods to detect piece-wise changes in regression using

both OLS and robust methods for independent segments. We then proceed to develop a

set of recursions for the dependent segment case in Section 6.3.2 with robustness to outliers

that update and propagate sets of quadratic equations in two variables. If we attempted

to solve this set of recursions the computational complexity would be exponential in the

length of the data. To deal with this, we consider two pruning algorithms that attempt to

reduce the number of quadratics considered at each time step. One of these pruning methods

overestimates the size of the set but is guaranteed to be optimal whereas the other has no

such guarantee but is much more efficient in reducing the size of the set.

In Section 6.4 we evaluate our method, and compare it to a number of alternatives on

simulated data. We then apply our method on a telecommunications event time series that

contains a number of outliers in Section 6.5.

Finally we end with a discussion on the advantages and limitations of our method.
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6.2 Problem set-up

Assume we have time-series data, y1:n, though the ideas we present apply equally to other

univariate data that is ordered, for example with genetic data which is ordered by position

along a chromosome. We wish to fit a piecewise-linear mean to this data. We can define

such a piecewise-linear mean through a set of changepoints, which will split the data into

contiguous segments, and the linear form of the mean on each of the segments. Denote the

number and position of changepoints by m and τ 1:m = (τ1, . . . , τm) respectively. We will

assume the changepoints are ordered, and define τ0 = 0 and τm+1 = n. We model the mean

of the data within a segment as a linear function of time, but allow this linear model to vary

between segments. We denote (φj, δj) to be, respectively, the intercept and slope of the mean

for the jth segment.

A standard approach to fitting such a piecewise-linear mean to the data, and hence to esti-

mating the changepoints where the form of the mean changes, is to minimise some cost over

all possible piecewise-linear means. This cost is usually defined in terms of some measure of

fit to the data plus some penalty for the complexity of the piecewise-linear mean, with the

measure of fit being a sum of a loss-function of the residuals and the penalty on complexity

being linear in the number of changepoints. So, for some appropriately chosen loss function

γ(·) and positive constant β we wish to find the piecewise-linear mean that minimises a cost

of the form
m+1∑
j=1

 τj+1∑
t=τj+1

γ (yt − φj − δjt) + β

 . (6.2.1)

We consider two types of changepoint model, corresponding to two different classes of piecewise-

linear means that we minimise over. The first, which we call change in regression, allows for
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any linear mean within each segment, and thus imposes no constraints on the parameters m,

τ , φ1:m1
and δ1:m+1. The second, which we call change in slope, requires the piecewise linear

mean to be continuous. To enforce continuity at the changepoint locations we must impose

a series of constraints linking parameters in adjacent segments at each changepoint

φj + δjτj = φj+1 + δj+1τj ∀j = 1, . . . ,m. (6.2.2)

This additional constraint makes solving the optimisation problem in (6.2.1) much more

difficult, as it creates dependency across segments.

There is substantial literature on how to choose the penalty constant β as it has an important

impact on the accuracy of the estimated segmentation that we obtain. This parameter

is involved in model selection and helps to avoid overfitting by penalising the addition of

changepoints. Many authors have looked at different choices of penalties. If we let p denote

the number of additional parameters introduced by adding a changepoint, then two popular

examples used frequently in the literature include β = 2(p+1) (Akaike’s Information Criterion

(AIC); [Akaike, 1974] and β = (p+1) log n (Bayesian Information Criterion (BIC); [Schwarz,

1978]. In both cases, some assumptions are made about the data for these penalty values to

work well while an incorrect specification risks over/under-fitting the data. Some theoretical

results have been established showing weak consistency for the BIC penalty in a number of

models by Yao [1988] amongst others. There have also been several modifications to the

BIC with their own advantages and unique features. One of the better known examples

is the modified BIC (mBIC) which was introduced in Zhang and Siegmund [2007b] with a

strong theoretical justification. We chose the BIC penalty in this work as it is by far the
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most commonly used and is very simple to implement. In Section 6.3.1 we comment on

alternatives.

The standard choice of loss-function is the square-error loss

γ(x) =
x2

σ2
,

where σ2 is the variance of the residuals, or an estimate of this variance. In this case the

measure of fit to the data is just the standard residual sum of squares used for Ordinary Least

Squares regression (OLS). However using such a loss-function leads to methods that are not

robust to outliers. This can be seen in Figure 6.1.1, where all four time series are segmented

using the square-error loss with these estimated segmentations shown in blue while the true

segmentations are shown in red. In Figures 6.1.1b and 6.1.1d in which outliers are present

in the data, it can be seen that the square-error loss performs poorly due to spikes in the

estimated segmentation at the outlier locations.

In order to obtain a changepoint method that is robust to the presence of outliers, we will

consider a different form for this loss function. In particular we follow Fearnhead and Rigaill

[2016] and take γ(·) to be

γ(x) = min

{
x2

σ2
, K2

}
. (6.2.3)

For a suitably chosen value of K this cost limits the impact of outliers on estimating segment

specific parameters. In the examples considered in this work we set K = 2. Our rationale for

doing this is the well known fact that approximately 95% of Normally distributed observations

lie within two standard deviations of the mean. This means that we attain robustness to

outliers whilst still using the information from the vast majority of the observations.
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We now consider how to minimise the cost function (6.2.1) when we use the loss-function

(6.2.3) for both the change in regression and the change in slope problems.

6.3 Algorithms

We require two different methods to solve the problems discussed in Section 6.2. Firstly

we recall the methods that can be used to infer changepoints for the change in regression

model outlined in Section 6.3.1. We then consider the change in slope problem and give

two different pruning methods. One of these pruning methods is a heuristic and so will not

solve the problem exactly, however, without some form of approximation the computational

complexity increases exponentially in the length of the data.

The vast difference in computational complexity between the two problems is caused by the

addition of the continuity constraint and the dependence between parameters in different

segments this introduces.

6.3.1 Change in regression

For the change in regression case existing penalised likelihood methods [Killick et al., 2012]

can be applied. This is because we can write down the likelihood for the data within a putative

segment and analytically (or numerically) maximise the likelihood function, enabling us to

define a cost function to be used within methods such as the PELT algorithm. To ensure

robustness to outliers we can use alternative loss functions discussed in Section 6.2.

We model the mean of the data within a segment as a linear function of time, but allow this

linear model to vary between segments. We denote θj and δj to be the intercept and slope
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respectively of the regression line in the jth segment.

The log likelihood for the jth segment of data y(τj−1+1):τj assuming a linear regression model

with an intercept φj and slope δj can be written as

`(y(τj−1+1):τj ;φj, δj, σ) = −(τj − τj−1) log σ −
τj∑

i=τj−1+1

γ(yi − φj − δji). (6.3.1)

To simplify the notation we will now use ri = yi − φj − δji to denote the residual associated

with the ith data point. The residual is a function of the parameters associated with the

segment that yi belongs to, but we suppress this dependence in the notation.

The cost of this segment can then be produced by minimising the negative log likelihood in

equation (6.3.1) with respect to the two segment parameters φj and δj,

C(y(τj−1+1):τj) = min
φj ,δj

(τj − τj−1) log(σ2) +

τj∑
i=τj−1+1

γ (ri)

 . (6.3.2)

If we were to take γ(·) to be the square error loss, then we could perform the minimisation

required in (6.3.2) analytically, however we would be implicitly assuming Gaussian noise

and hence would not be robust to outliers. Using a more robust loss function such as that

described in (6.2.3) results in a more complex minimisation problem (6.3.3) that requires the

use of numerical methods.

min
φj ,δj

∑
i

γ(ri). (6.3.3)

Of these methods, the Iteratively ReWeighted Least Squares (IRWLS) method, is by far the

most commonly used. This requires the definition of a weight function which is related to
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the first derivative of the loss function γ(·). The minimum is found by iteratively computing

min
φj ,δj

∑
i

w(r
(k)
i )(yi − φj − δji)2. (6.3.4)

Where the weight function w(x) = γ′(x)
x

and r
(k)
i is the kth iteration formed by finding the

residuals using the kth estimates φ
(k)
j and δ

(k)
j of φj and δj respectively.

Here we are considering a fixed segment, the jth consisting of the data y(τj−1+1):τj . Initial

estimates for φj, δj are taken by fitting an OLS model. Then, for each observation in the

jth segment r
(0)
i is the residual from fitting this OLS model. The estimates of the segment

parameters are then iteratively improved by solving a weighted least squares minimisation

problem. Given an estimate of the residuals at step k, r
(k)
i , we find the values of φj and

δj that minimise (6.3.4). Using this method convergence is usually quite rapid. When the

minimum has been found this can be substituted into the segment cost (6.3.2).

Having defined a segment cost, we can then use a standard Dynamic Programming algorithm

such as PELT [Killick et al., 2012] to find the optimal segmentation with respect to this cost.

6.3.2 Change in slope

In contrast to the change in regression problem the change in slope problem is much more

difficult as we cannot form a segment cost in the same way. This is due to the continu-

ity constraint between segments introducing dependence in the parameters in contiguous

segments.

We develop an alternative set of Dynamic programming recursions in two variables in order

to be able to model and solve this problem. At each time step, t, if we condition on the
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current value of the process (mean) and the current slope then we do not need to consider

past segmentations prior to time t in order to segment data in the future. This idea is key

in developing the recursions in Section 6.3.2.

Recursions

Define Ft(θ, δ) as the optimal segmentation of the sequence of data y1:t with the position of

the underlying estimated linear process being θ at time t and the gradient of the segment

that includes yt being δ.

We can find Ft(θ, δ) by solving the minimisation problem in (6.3.5) for the first t time

points where 0 < τ1 . . . < τp−1 < τp = t with all the continuity constraints for the segment

parameters added as well

Ft(θ, δ) = min
p,τ1:p

p−1∑
j=1

 τj+1∑
i−τj+1

γ(yi − φj − δji) + β


st φj + δjτj = φj+1 + δj+1τj ∀j = 1, 2, . . . , p− 1

and θ = φp + δpt

δ = δp.

(6.3.5)

We can form a set of recursions to calculate Ft+1(θ, δ) based on its previous value Ft(Θ,∆).

The form of these recursions are simple if we condition on whether or not there is a change-

point at time t− 1

Ft+1(θ, δ) = min
{
Ft(θ − δ, δ) + γ(yt+1 − θ),min

δ′
[Ft(θ − δ, δ′) + γ(yt+1 − θ) + β]

}
. (6.3.6)
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To describe the intuition behind (6.3.6), we look at each term in the minimisation on the

right separately.

Firstly if we assume no change occurs at time t, then the gradient of the line at time t and

t+ 1 are equal. For the linear process to take the value θ at time t+ 1 the position at time

t must be θ − δ because the gradient at t is δ and we “step back” one time step. As we are

considering the observation at time t+ 1, yt+1, then we add on the contribution given by the

loss function evaluated at yt+1 − θ.

If a change does occur at time t the gradient of the line segment that ended at time t is not

the same as the gradient of the new line segment at time t + 1, i.e. δ′ 6= δ. This gradient is

found by minimising the resulting expression with respect to δ′. The values for the position

can be argued in the same way as above. The penalty β must also be added for including a

new changepoint.

For the recursion in equation (6.3.6) to be useful in computing Ft, it is instructive to see that

Ft can be written as the minimum over a set of quadratics St. I.e.

Ft(θ, δ) = min
i∈St

{
q
(i)
t (θ, δ)

}
. (6.3.7)

Substituting (6.3.7) into (6.3.6) and switching the order of minimisation gives

Ft+1(θ, δ) = min
i∈St

{
min{q(i)t (θ − δ, δ) + γ(yt+1 − θ),min

δ′
q
(i)
t (θ − δ, δ′) + γ(yt+1 − θ) + β}

}
.

If we consider the terms in the inner minimisation that depend upon q
(i)
t and substitute in
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the definition of γ(·), these become

min



q
(i)
t (θ − δ, δ) + (yt+1−θ)2

σ2

q
(i)
t (θ − δ, δ) +K2

minδ′ q
(i)
t (θ − δ, δ′) + (yt+1−θ)2

σ2 + β

minδ′ q
(i)
t (θ − δ, δ′) +K2 + β

(6.3.8)

The first two quadratics in (6.3.8) are produced if we assume no change at t and thus yt+1

can either be an ordinary point or an outlier. The third and fourth quadratics are produced

when a change occurs at time t and yt+1 is an ordinary or outlier point respectively.

To initialise these recursions we set q11(θ, δ) = (y1 − θ)2 = θ2 − 2θy1 + y21. The different

updates for the coefficients of the quadratics are given in Appendix B.

For each quadratic qt at time t the recursion in (6.3.6) and quadratic updates given in (6.3.8)

imply that there will be four new quadratics propagated to time t + 1. Thus the number of

quadratics considered to calculate Ft+1(θ, δ) is 4× |St|. This is because for every i ∈ St four

new quadratics are propagated from each quadratic qit(θ, δ) at time t.

Computational cost

It is simple to calculate the number of quadratics stored at each time (|St|) as |St| = 4|St−1|

by the argument above. Initially at time t = 1 we only consider a single quadratic so that

|S1| = 1. Thus we have that |St| = 4t−1.

Using this method the number of quadratics we have to store and consider grows exponentially

in the length of the data, thus for problems of any interesting size this procedure is infeasible.

We consider two ways in which the number of quadratics that are considered at each time
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can be pruned so that the total number propagated to the next time step is reduced.

The first method discussed is called inequality pruning, this reduces the set of quadratics at

every time step t using an easily computed inequality. This type of pruning is also guaranteed

to retain the optimal solution. However, the number of quadratics still grows rapidly over

time when using this pruning method albeit at a slower rate than without any pruning,

making it infeasible for analysing time series of moderate length.

The second approach discussed is called heuristic pruning as in contrast to inequality pruning

the method is not guaranteed to retain the optimal solution. The pruning technique used

by this method is more computationally intensive than inequality pruning at each time step,

however it prunes much more than inequality pruning and far fewer quadratics are retained

at each time step. Tuning parameters are used to balance the approximation to the optimal

solution and the efficiency of the pruning method.

Inequality pruning

The first pruning method we present is akin to the PELT pruning method as described in

Killick et al. [2012] because it involves some pruning based on an inequality.

Define the global minimum of all the quadratics at time t, as

q∗t = min
i∈St

[
min
θ,δ

qit(θ, δ)

]
.

Then we can show that the following PELT style inequality to remove quadratics that can

never be optimal in the future is true.
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Theorem 6.3.1. If for some i,

min
θ,δ

[
qit(θ, δ)

]
> q∗t + 2β, (6.3.9)

holds then at any future time T > t, the ith quadratic qit(θ, δ) and all of its offspring can

never in the future be optimal. Therefore whenever this inequality is satisfied the quadratic

can be pruned from the set of quadratics considered.

The advantage of pruning using this inequality is that it can be done very efficiently. The

natural logarithm of the number of quadratics considered at each iteration is shown on the

right hand side plot in Figure 6.3.1 for the methods with and without inequality pruning.

We can see that inequality pruning reduces the number of quadratics that are considered at

each iteration, however, the number of quadratics still grows quickly and analysing larger

data sets would be infeasible.

Time

da
ta

0 5 10 15 20 25 30

−
6

−
4

−
2

0
2

●

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Time

Lo
g 

N
o 

of
 Q

ua
dr

at
ic

s

Figure 6.3.1: A time series on the left with changepoints shown in red with outliers highlighted
as thicker black circles. On the right a plot of the (logarithm of the) number of quadratics
considered at each time step for the inequality pruning method in black and with no pruning
in blue.
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Pruning heuristic

The inequality pruning considered above can be seen as removing too few quadratics than

we would ideally like, but guaranteeing that we retain the optimal quadratic at each time

step.

We now present a pruning heuristic called “Conditional quadratics”. This heuristic is based

on reducing the quadratics in two variables to quadratics in a single variable, then using

the functional pruning method in Maidstone et al. [2016a]. This heuristic vastly reduces the

number of quadratics stored at each time step however, it is approximate in nature and may

remove too many quadratics i.e. the optimal solution at any given time step.

Conditional quadratics

Reducing a two variable quadratic such as q(θ, δ) into a single variable quadratic which in

this instance we call a conditional quadratic just involves the substitution of a constant in

place of one of the variables. We substitute a constant θ0 for the variable θ so that the

quadratic can now be written in terms of the variable δ conditional on the value of θ0 for the

values of the coefficients. The conditional quadratic q(δ|θ = θ0) can be written as

q(δ|θ = θ0) = c1θ
2
0 + c2θ0 + c3δ

2 + c4δ + c5θ0δ + c6

= c3δ
2 + (c4 + c5θ0)δ + (c6 + c1θ

2
0 + c2θ0).

(6.3.10)

Geometrically this is equivalent to taking a slice through all the quadratic surfaces at a point

θ0, doing this we are left with a collection of single variable quadratics in δ. Now it is much

easier to find those quadratics that make up the piece-wise minimum quadratic. The first

step involves setting δ = −∞ and finding which quadratic gives the pointwise minimum here
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and so is the first member of the piece-wise minimum. We then find the points of intersection

between this quadratic and all of the others, and the minimum of these points gives us the

location where the second member of the minimum begins. This is done repeatedly until

no other intersections occur. Notice this is an exact method as points of intersection in the

single variable case are easily found by finding roots of ordinary quadratic equations so that

one source of error is now completely removed from the method.

Pruning using the conditional quadratic gives us the set of quadratics we need to store

conditional on the corresponding value of θ. In theory we would need to repeat this for all

values of θ over a continuous range. We approximate this by choosing a grid of θ values,

finding the set of quadratics we need to keep for each of the θ values on this grid, and then

pruning all quadratics that are not required to be kept for any θ on our grid.

This can be seen as approximating the true Ft(θ, δ) defined in (6.3.5) by

F̂t(θ, δ) = min
i∈Ŝt

{
q
(i)
t (θ, δ)

}

where Ŝt ⊂ St. The approximation error between F̂t and Ft can be controlled by making the

grid of θ values finer. However, this incurs a greater computational cost when performing

the conditional quadratic pruning.

In Figure 6.3.2 we can see that the number of quadratics stays relatively constant over time

in contrast to the inequality pruning in Figure 6.3.1. We took the grid to be the range

of observed values of the series θ ∈ [−7, 3] with intervals of width 0.1. For this data the

heuristic gives the same (optimal) solution as the exact inequality pruning, however we

cannot guarantee our method always gives the same (optimal) solution.
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Figure 6.3.2: A time series on the left with changepoints shown in red with outliers highlighted
as thicker black circles. On the right a plot of the number of quadratics considered at each
time step when conditional quadratic pruning is performed at each step.

Recommendations

For practical use when analsying time series with a length larger than approximately 50 time

points we would recommend the use of the conditional quadratic pruning heuristic. There are

some tuning parameters to select and be aware of, this is the size and coarseness of the grid

of values used for the variable θ. The limits of this grid are found by taking the minimum and

maximum values for θ that optimise each of the quadratics considered at time t, denote these

as θ̂min and θ̂max. The grid we use for θ is then the interval
[
θ̂min − 1, θ̂max + 1

]
, the coarseness

of the grid is taken to have intervals of width 0.1. We have found that this combination

provides an efficient pruning method that keeps the number of quadratics considered at each

time step relatively constant and the resulting segmentation accurate.

These recommendations as to the limits and coarseness of the grid considered here are con-

ditioned on the data being scaled, so that the residuals have unit variance.
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6.4 Simulation study

We call the method introduced in Section 6.3.2 C-ROB (continuous and robust). In this

section we evaluate C-ROB on simulated data, comparing performance against three other

methods. The first we call C-OLS (continuous and OLS method) introduced in Maidstone

et al. [2016a]. The next two methods I-OLS and I-ROB assume independence across segments

and use the OLS and robust cost functions in Section 6.3.1.

Our aim is to compare these different methods and evaluate the quality of segmentation in

a variety of different situations such as an increasing proportion of outliers, variations in the

heaviness of the tails of the outlier distribution and the quality of predictions.

The model we simulate from is a piece-wise continuous linear process in which outliers are

present. Firstly, we simulate a changepoint process where the distance between successive

changepoints is drawn from a specific geometric distribution (Geom(0.05)). After this process

is simulated, values for θ (the positions for the beginning and end of the segment), are drawn

from a uniform distribution. This describes the true linear process at each time. We then

draw samples from the distribution for residuals which is a mixture between a standard

Gaussian random variable for normal points and a heavier tailed t-distribution for the outliers.

6.4.1 Performance of different segmentation methods

We investigate three different situations in this set of simulations and test the performance

of the four different segmentation methods.

The simulations in Case 1 examine the impact on performance when the proportion of outliers

to normal points in the data increases from one-tenth to around a third of the total points. We
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would expect that as this proportion increases the performance of the non-robust methods

would degrade. In Case 2 we also vary the proportion of outliers but this time we are

interested in the predictive power of the methods when we hold back several data points and

extrapolate the final segment.

The third and final case considers how heavy tailed the outlier residuals are. The outlier

residuals are drawn from a t-distribution with a varying number of degrees of freedom, from

a heavy tailed distribution with two degrees of freedom to lighter tailed distributions with

five, ten and then an infinite number of degrees of freedom (i.e. a normal distribution).

We report several different measures of the accuracy of segmentation. These include the

Mean Squared Error (MSE) of the estimated process compared to the truth, the proportion

of true changepoints detected and the number of false positives. A changepoint is defined as

being detected if it is within five time points of the truth.

For greater comparability between the different methods we don’t report raw MSE figures

but instead we give a 0/1 score depending on which method gives the smallest MSE (1 if

that method gives the smallest MSE). In Tables 6.4.1, 6.4.2 and 6.4.3 we then report the

proportion of times each of the methods attains the smallest MSE.

Case 1: Effect of p

We would expect that the proportion of outliers in the data would have an effect on the

segmentations, especially those obtained via OLS with higher proportions leading to poorer

quality segmentations. Outliers come about through adding heavy tailed noise where the
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p Method Proportion lowest MSE Proportion detected Number of False positives

0.1

C-OLS 0.01 (0,0.03) 0.70 (0.68,0.73) 14.6 (13.8,15.5)
C-ROB 0.77 (0.71,0.83) 0.79 (0.77,0.81) 2.06 (1.83,2.30)
I-OLS 0.14 (0.10,0.19) 0.48 (0.46,0.51) 11.4 (11.0,11.7)
I-ROB 0.08 (0.05,0.12) 0.72 (0.70,0.74) 9.97 (9.63,10.4)

0.2

C-OLS 0 (0,0) 0.71 (0.68,0.73) 30.8 (29.7,31.8)
C-ROB 0.90 (0.86,0.94) 0.74 (0.72,0.76) 2.90 (2.63,3.17)
I-OLS 0.04 (0.02,0.07) 0.38 (0.36,0.40) 9.44 (9.15,9.73)
I-ROB 0.06 (0.03,0.10) 0.67 (0.64,0.69) 10.8 (10.4,11.2)

0.3

C-OLS 0 (0,0) 0.76 (0.75,0.79) 43.9 (42.6,45.1)
C-ROB 0.91 (0.87,0.95) 0.72 (0.70,0.75) 3.82 (3.52,4.11)
I-OLS 0.04 (0.02,0.07) 0.30 (0.28,0.32) 9.80 (9.51,10.1)
I-ROB 0.05 (0.02,0.08) 0.57 (0.55,0.60) 7.27 (6.99,7.54)

Table 6.4.1: For all four methods and differing values of p we repeated each experiment 100
times. Three measures were recorded, the MSE between the true and estimated segmenta-
tions, the proportion of true changes that were detected and the number of false positives.
These values are averaged over the 100 replications and 95% bootstrap confidence intervals
are included in brackets.

following mixture distribution for each residual ε is used in these studies

ε ∼ (1− p)N(0, 1) + pt(2). (6.4.1)

Here p can be thought of as the proportion of outliers in the time series which are drawn

from a t-distribution having two degrees of freedom.

In this setting C-OLS performs poorly in the MSE and false positives criteria. This is due

to this method enforcing continuity and a segmentation involving OLS which for increasing

proportions of outliers in the data estimates segmentations which have too many changepoints

as they are excessively affected by outliers.
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p Method Proportion lowest MSE

0.1

C-OLS 0.24 (0.18,0.30)
C-ROB 0.31 (0.25,0.38)
I-OLS 0.19 (0.14,0.25)
I-ROB 0.26 (0.20,0.33)

0.2

C-OLS 0.16 (0.11,0.21)
C-ROB 0.43 (0.36,0.51)
I-OLS 0.11 (0.07,0.16)
I-ROB 0.30 (0.24,0.37)

0.3

C-OLS 0.16 (0.11,0.21)
C-ROB 0.39 (0.33,0.46)
I-OLS 0.17 (0.12,0.22)
I-ROB 0.28 (0.22,0.34)

Table 6.4.2: For all four methods and differing values of p we repeated each experiment 100
times. We recorded the MSE between the truth and predictions. These values are averaged
over the 100 replications and 95% bootstrap confidence intervals are included in brackets.

Case 2: Prediction

The quality of predictions is an important consideration in many applications and in the

presence of outliers, predictions can often suffer. We evaluate the predictions given by the

differing methods on simulated data sets with varying proportions of outliers.

In this study we segment the data but exclude the last five time points, then we extrapolate

the last segment and find the MSE of the predictions compared to the truth. The results are

shown in Table 6.4.2.

The results show that as the proportion of outliers in the data increases the predictions

given by the C-OLS method degrades. In this study we are effectively just considering the

accuracy in identifying the final segment so that we can extrapolate it to form the predictions.

Hence, the OLS methods that typically infer a new segment when an outlier is present will

be expected to perform poorly as the extrapolated segment will deviate substantially from

the simulated path.
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df Method Proportion lowest MSE Proportion detected Number of False positives

2
C-OLS 0.06 (0.01,0.11) 0.70 (0.68,0.73) 14.6 (13.8,15.5)
C-ROB 0.94 (0.87,0.99) 0.79 (0.77,0.81) 2.06 (1.83,2.30)

5
C-OLS 0.33 (0.27,0.42) 0.71 (0.66,0.75) 6.80 (5.95,8.30)
C-ROB 0.67 (0.59,0.74) 0.73 (0.70,0.77) 3.53 (2.74,4.20)

10
C-OLS 0.65 (0.57,0.73) 0.76 (0.72,0.80) 4.08 (2.86,6.30)
C-ROB 0.35 (0.31,0.39) 0.75 (0.73,0.78) 4.75 (3.90,6.83)

∞ C-OLS 0.83 (0.77,0.89) 0.79 (0.75,0.83) 1.87 (1.61,2.25)
C-ROB 0.17 (0.09,0.25) 0.64 (0.59,0.68) 7.91 (6.23,9.40)

Table 6.4.3: For the two methods and differing values of df we repeated each experiment 100
times. Three measures were recorded, the MSE between the true and estimated segmenta-
tions, the proportion of true changes that were detected and the number of false positives.
These values are averaged over the 100 replications and 95% bootstrap confidence intervals
are included in brackets.

Case 3: Outlier distribution

In Cases 1 & 2 the outlier residuals are drawn from a t-distribution with a fixed number of

degrees of freedom (df = 2). This is a rather heavy tailed distribution so we would expect

our C-ROB method to outperform the C-OLS method in this case. However as the tails of

the distribution become gradually lighter (with an increasing number of degrees of freedom)

we would expect that C-OLS would perform better. This is because it assumes a Normal

distribution which is equivalent to a t-distribution with df =∞.

The mixture distribution for each residual ε used here is

ε ∼ (1− p)N(0, 1) + pt(df).

We vary the number of degrees of freedom of the t-distribution that we use to simulate

outliers t(df) from df = {2, 5, 10,∞} and fix p = 0.1.

As the outlier distribution gains progressively lighter tails the C-OLS method begins to
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improve and outperform our robust method. This is to be expected as the C-OLS method

optimally segments data having Normally distributed residuals whilst our C-ROB method is

approximate.

In the next section we apply our method to a real data set which has been looked at elsewhere

in this thesis.

6.5 Telecommunications event data

This data was first introduced in Section 1.1 and was subsequently analysed using our MRC

methodology in Section 5.5.1. In the MRC work we modelled each time series using a robust

piece-wise linear regression changepoint model, which in the terminology of this chapter is a

change in regression model or I-ROB.

Modelling this data using the (robust) change in slope (C-ROB) method makes practical

sense as it assumes that the number of events changes continuously, rather than having

piece-wise jumps from week to week at the changepoint locations. Here we just focus on the

fully aggregated series of events shown below and also in Figures 1.1.1 and 5.5.1.

It could be useful to combine the method developed here with the MRC method in Chapter

5. This would be relatively simple to do as we would just need to substitute the I-ROB

method of segmentation for each time series with our C-ROB method. This new method

would have a much higher computational cost.

Comparing the segmentation on the left hand side of Figure 6.5.1 (C-ROB) to the (non-

continuous) robust segmentation (I-ROB) in Figure 5.5.1, we can see that the shapes of the

two segmentations are roughly similar. However, our method does give more changepoints
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Figure 6.5.1: The telecommunications event data segmented into continuous piece-wise linear
segments on the left hand side and the number of quadratics we have to store at each time
step on the right hand side.

because we have enforced continuity between segments. In the plot on the right hand side of

Figure 6.5.1 we can see that the number of quadratics considered at each time step does not

increase uniformly over the length of the data.

6.6 Discussion

In this paper we have developed novel methodology to detect changepoints in data that is

made up of piece-wise linear segments which are continuous and contain outliers.

The resulting algorithm, C-ROB, was compared in simulation studies and was shown to

outperform other methods in cases where the residuals were indeed heavier tailed but didn’t

perform as well as other methods when the residuals were Gaussian for which an exact method

has been developed (C-OLS).

An advantage of our method is that it gives us the location of both changepoints and outliers

in a time series without the need for any pre-processing, however, due to its approximate
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nature it under-performs C-OLS when the model assumed (heavier tailed residuals) does not

hold.

An R package to run the methods discussed here is available.



Chapter 7

Conclusions and future work

In this thesis we have presented novel methodology for the detection of changepoints in a

number of different settings.

Chapters 4 and 5 focused on multivariate time series where changepoints were modelled so

that they may occur in only a subset of the variables. The vast majority of methods currently

available assume that changes occur in all variables at the same time and so potentially miss

more subtle changes that occur only in a subset of series.

These methods required us to develop techniques that used the multivariate nature of the

observations to borrow information across the multiple series when only subtle changes were

present in a (potentially small) subset of the series. For both methods we showed that this

approach increases the accuracy in detecting changes over and above simpler methods based

on analysing each of the channels in the multivariate time series independently. The models

and methods developed are more complex, however, the algorithms for inference are efficient

and the computational cost of our approaches is comparable to the simpler methods.

The BARD approach in Chapter 4 allows for more accurate detection for the location of

143
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copy number variants in DNA and for other models where there are characteristic regions

of baseline and abnormal behaviour observed in multivariate data. The MRC algorithm

described in Chapter 5 leads to improved forecasts when considering panel data where there

may be several different regimes for the final segment of data in different series of the panel.

In Chapter 6 we considered a more complex data model in the univariate setting. This

included a constraint on a piece-wise linear process that was constrained to be continuous

at the changepoint locations. We also wanted our estimation to automatically be robust to

outliers rather than many methods in the literature that require a pre-processing step.

7.1 Future work

The methods developed in this thesis can be extended further. In this section several direc-

tions which related research could take in the future are discussed.

Firstly we look at an extension to the BARD method, introduced in Chapter 4. We consider

the situation when the model assumed for the data becomes more complex. Specifically the

computational challenges that arise when higher dimensional parameters are considered.

We then go on to discuss how dependence can be modelled in the work presented in Chap-

ter 5. Currently, it is assumed that all of the variables in the panel are independent. This

assumption leads to simple cost functions that are adapted from the univariate case by sum-

ming across the different variables. However, since we model changes occurring at common

time points across the different variables this assumption is unlikely to hold and substantial

cross-correlation between variables is likely to be present.
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7.1.1 Higher dimensional parameters in the BARD method

In Chapter 4 we focused on a specific model of a change in mean from some baseline level.

The data model for baseline behaviour is given by D and for abnormal behaviour is Pθ

D ∼ N(0, σ2)

Pθ ∼ N(θ, σ2).

(7.1.1)

Here, σ is assumed to be constant across time and can be estimated from the data. Thus,

the only difference is in the mean of the different segments θ (which has dimension one).

For more details on the model see Section 4.2.2.

Our method could easily be adapted to any model which specifies some normal and abnormal

behaviour as defined in (7.1.1). The only restrictions we place on this is the ability to calculate

marginal likelihoods for both types of segment. Typically the marginal likelihood for the

normal behaviour is simple to calculate. However, the marginal likelihood for an abnormal

segment is more challenging to compute.

If we have an abnormal segment with data Yt:s, with segment parameter θ, the likelihood of

the data associated with the kth dimension is

pk

s∏
i=t

fP(yi,k|θ) + (1− pk)
s∏
i=t

fD(yi,k).

Then by independence over dimension

p(yt:s|θ) =
d∏

k=1

(
pk

s∏
i=t

fP(yi,k|θ) + (1− pk)
s∏
i=t

fD(yi,k)

)
.
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We place a prior on θ, π(θ) and then find the marginal likelihood PA(t, s) by integrating

PA(t, s) =

∫
p(yt:s|θ)π(θ) dθ.

The main computational bottleneck is in the calculation of PA(·, ·) as this involves integra-

tion over a prior for the parameter(s) which cannot be done analytically, and for higher

dimensional parameters would be computationally intensive.

To see this, consider a trivial extension to our model allow different but known variances for

each time series. To allow each abnormal segment to have its own variance as well as mean

is possible, but would involve extra computation, as a 2-dimensional integral (7.1.2) would

be needed to calculate the marginal likelihoods for abnormal segments

PA(t, s) =

∫ ∫
p(yt:s|θ, σ)π(θ, σ) dθ dσ. (7.1.2)

In Chapter 4 we used simple numerical techniques to calculate PA(·, ·). However, if we were

to extend this method in the manner set out above we would require different techniques to

calculate higher dimensional integrals. One possibility would be to use a Laplace approxi-

mation, however care would need to be taken that this approximation is valid for the cases

we consider. If this were to hold then such an approximation would allow us to extend the

BARD method to deal with higher dimensional parameters relatively simply while retaining

an efficient computational cost.
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7.1.2 Modelling dependence

When we set out the model for the MRC problem in Chapter 5 we assumed that there was

no temporal dependence in the observations (autocorrelation) and that all of the variables in

the panel are independent. This allowed us to formulate the problem in a univariate setting

and extend it simply to the multivariate setting, see Section 5.2.2 for more details. These

assumptions, however are questionable when analysing real data.

Some theoretical justification for ignoring temporal dependence can be seen in the simulation

study with results that show, for example, that detecting changes in mean using a least

squares criteria is robust to the presence of temporal dependence in the residuals [Lavielle

and Moulines, 2000]. We showed empirically that our method can still detect the most recent

changes even in the presence of AR(1) structure.

This was done by simulating an MRC process with a piecewise constant mean function as

before but instead of adding IID normally distributed ‘noise’ we simulated an AR(1) noise

process, Zt, with standard normal errors et

Zt = φZt−1 + et.

This process was simulated for a range of values of φ which represented mild to moderate

autocorrelation

Furthermore, our general approach can easily be extended to allow for modelling of the error

structure of the residuals, by using cost functions for the data within each segment that are

based on models which allow for autocorrelation.

A central assumption in both Chapters 4 and 5 is that of independence between time series.
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This assumption allows us to write the likelihood easily in product form and perform much

of the (possibly) high-dimensional inference efficiently. However, the purpose behind us

analysing multiple time series together in that the changes occur in different series at common

time points infers that this independence assumption is unlikely to hold and substantial cross-

correlation between variables is likely to be present.

Several authors within the non-stationary time series community [see for example Ombao

et al., 2005, Park et al., 2014] have worked on this problem. However, in the changepoint

setting this remains an area for future research.



Appendix A

Lemmas for Proof of Theorem 4.4.1

Throughout this and the following section, we will assume the data is generated from the

model detailed in Section 4.4.

We define part of the ratio in (4.4.2) as Xk(µ)

Xk(µ) = exp

{
µ

s∑
u=t

(
Yk,u −

µ

2

)}
.

The random variable Xk(µ) is log-normally distributed with different parameters depending

on whether the sequence is normal or abnormal for that segment. In the normal segment

case it is log-normal with parameters −µ2(s− t+ 1)/2 and µ2(s− t+ 1),

with EXk(µ) = 1.

149
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For this case we will further define the mth central moment of Xk(µ) to be Cm(µ)

Cm(µ) = E [(Xk(µ)− EXk(µ))m] .

Finally we denote the log of the product over the d terms in 4.4.2 as Sd(µ), taking the

logarithm makes this become a sum over all the time-series

Sd(µ) =
d∑

k=1

log(1 + pd(Xk(µ)− 1)).

We now go on to prove several lemmas about Sd(µ) for both normal segments which will aid

us in proving Theorems 4.4.1.

Lemma A.0.1 (Normal segment moment bounds). Assume we have a normal segment then

ESd(µ) ≤ −1

2
C2(µ)dp2d +

1

3
C3(µ)dp3d

E
[
(Sd(µ)− ESd(µ))2k

]
≤ Kk(µ)dkp2kd

(A.0.1)

where Cm(µ) is the mth central moment of Xm(µ), and Kk(µ) > 0 does not depend on d.

Proof. Writing out the expectation of Sd(µ) gives

ESd(µ) =
d∑

k=1

E [log(1 + pd(Xk(µ)− 1))] (A.0.2)
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then we use the inequality log(1 + x) ≤ x− x2

2
+ x3

3
for x > 0. So

d∑
k=1

E [log(1 + pd(Xk(µ)− 1))] ≤
d∑

k=1

E
[
pd(Xk(µ)− 1)− p2d(Xk(µ)− 1)2

2
+
p3d(Xk(µ)− 1)3

3

]

=
d∑

k=1

−p2d
E [(Xk(µ)− 1)2]

2
+ p3d

E [(Xk(µ)− 1)3]

3

= −1

2
C2(µ)dp2d +

1

3
C3(µ)dp3d.

Now to derive the second inequality we consider Sd(µ)− ESd(µ)

Sd(µ)− ESd(µ) =
d∑
i=1

[Zi(µ)− EZi(µ)] =
d∑
i=1

Z̄i(µ),

where Z̄i(µ) = Zi(µ)−EZi(µ). Writing this in terms of the centered random variables Z̄i(µ)

is advantageous as when we consider raising the sum to the 2kth power any term including

a unit power of Z̄i(µ) vanishes by independence as EZ̄i(µ) = 0. Define

Id,k =

{
(j1, . . . , jd) : ji ∈ {0, 2, 3, . . . , 2k} for i = 1, . . . , d and

d∑
i=1

ji = 2k

}
,

the set of non-negative integer vectors of length d, whose entries sum to 2k, and that have

no-entry that is equal to 1. For j ∈ Id,k, let nj be the number of terms in the expansion of
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(
∑d

i=1 Z̄i(µ))2k which have powers ji for Z̄i(µ)). Thus

E
[
(Sd(µ)− ESd(µ))2k

]
= E

( d∑
i=1

Z̄i(µ)

)2k


=
∑
j∈Id,k

nj

d∏
i=1

E
(
Z̄i(µ)ji

)
≤ E

(
Z̄1(µ)2k

) ∑
j∈Id,k

nj.

Using | log(1 + x)| ≤ |x|+ x2/2, we can bound E(Z̄2k
1 ) by Ak(µ)p2kd , where Ak(µ) will depend

only on the the first 2k moments of Xk(µ), but not on pd. Finally note that each term in Id,k

can only involve vectors with at most k non-zero components. For a term with l non-zero-

components there will be O(dl) possible choices for which components are non-zero. Hence

we have that ∑
j∈Id,k

nj ≤ Bkd
k,

for some constant Bk that does not depend on d. Thus we have the required result, with

Kk(µ) = Ak(µ)Bk.

Lemma A.0.2 (Probability bound). Fix µ and assume pd → 0 as d → ∞. For a normal

segment we have that there exists Dk(µ) > 0 such that for sufficiently large d

Pr

(
Sd(µ) ≥ −1

4
C2(µ)dp2d

)
≤ Dk(µ)

dkp2kd
. (A.0.3)

Proof. We first bound the probability by the absolute value of the centered random variable
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and then use Markov’s inequality with an even power of the form 2k

Pr

(
Sd(µ) ≥ −1

4
C2(µ)dp2d

)
≤ Pr

(
|Sd(µ)− ESd(µ)| ≥ 1

4
C2(µ)dp2d −

1

3
C3(µ)dp3d

)

≤
E
[
(Sd(µ)− ESd(µ))2k

]
(1
4
C2(µ)dp2d − 1

3
C3(µ)dp3d)

2k
.

For d sufficiently large that 2C3(µ)pd < C2(µ), we have

1

4
C2(µ)dp2d −

1

3
C3(µ)dp3d >

1

12
C2(µ)dp2d.

Now using the result from Lemma A.0.1 we can replace the 2kth centered moment by the

bound we obtained above. Thus for sufficiently large d,

Pr

(
Sd(µ) ≥ −1

4
C2(µ)dp2d

)
≤ Kk(µ)dkp2kd

( 1
12
C2(µ)dp2d)

2k

So the result holds with Dk(µ) = Kk(µ)[C2(µ)/12]−2k.

Lemma A.0.3 (Lower bound for the second derivative of Sd(µ)). We have that

d2Sd(µ)

dµ2
≥ −d(s− t+ 1)

Proof. Firstly note that

dXk(µ)

dµ
=

(
s∑
u=t

yk,u − µ(s− t+ 1)

)
Xk(µ).
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Now differentiating Sd(µ) twice

dSd(µ)

dµ
=

d∑
k=1

pd (
∑s

u=t yk,u − µ(s− t+ 1))Xk(µ)

1 + pd(Xk(µ)− 1)

d2Sd(µ)

dµ2
=

d∑
k=1

−pd(s− t+ 1)Xk(µ) + pd (
∑s

u=t yk,u − µ(s− t+ 1))
2
Xk(µ)

1 + pd(Xk(µ)− 1)

−

(
s∑
u=t

yk,u − µ(s− t+ 1)

)2(
pdXk(µ)

1 + pd(Xk(µ)− 1)

)2

Let

Qk =
pdXk(µ)

1 + pd(Xk(µ)− 1)

and 0 ≤ Qk ≤ 1 as 1− pd > 0 (or pd < 1). Thus the second derivative

d2Sd(µ)

dµ2
=

d∑
k=1

−(s− t+ 1)Qk +

(
s∑
u=t

yk,u − µ(s− t+ 1)

)2

(Qk −Q2
k)


≥

d∑
k=1

−(s− t+ 1)Qk ≥ −d(s− t+ 1)

has the required lower bound.

Lemma A.0.4 (Detection of normal segments). Let π(µ) be a density function with support

[a, b] with a > 0 and b < ∞, and assume 1/pd = O(d
1
2
−ε) for some ε > 0. For a normal

segment [t, s],

∫ { d∏
k=1

PA,k(t, s;µ)

PN,k(t, s)

}
π(µ)dµ→ 0 (A.0.4)

in probability as d→∞.
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Proof. Define C2 = minµ∈[a,b]C2(µ), and for a given d, Md to be the smallest integer that is

greater than

(b− a)
√
s− t+ 1

pd
√
C2

.

Define ∆d = (b− a)/Md. Now we can partition [a, b] into Md intervals of the form [µi−1, µi]

for i = 1, . . . ,Md, where µi = a+ i∆d. Then the left-hand side of (A.0.4) can be rewritten as

Md∑
i=1

∫ µi

µi−1

{
d∏

k=1

[1 + pd(Xk(µ)− 1)]

}
π(µ)dµ.

Remember that Sd(µ) =
∑d

k=1 log[1 + pd(Xk(µ)− 1)]. Let Ed be the event that

Sd(µ) < −1

4
C2dp

2
d, for all µ = µi, i = 0, . . . ,Md.

If this event occurs then

max
µ∈[a,b]

Sd(µ) < −1

4
C2dp

2
d + ∆2

dd(s− t+ 1)/8,

as using Lemma A.0.3 we can bound Sd(µ) on each interval [µi, µi+1] by a quadratic with

second derivative −d(s− t+ 1) and which takes values −1
4
C2dp

2
d at the end-points.

Now by definition of ∆d,

−1

4
C2dp

2
d + ∆2

dd(s− t+ 1)/8 < −1

4
C2dp

2
d +

1

8
C2dp

2
d → −∞

as d → ∞ because dp2d → ∞ under our assumption on pd. Thus to prove the Lemma we

need only show that event Ed occurs with probability 1 as d→∞.
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We can bound the probability of Ed not occurring using Lemma A.0.2. For any integer k > 0

we have that the probability Ed does not occur is

Md+1∑
i=1

Pr

(
Sd(µi) ≥ −

1

4
C2dp

2
d

)
≤

Md+1∑
i=1

Pr

(
Sd(µi) ≥ −

1

4
C2(µi)dp

2
d

)

≤
Md+1∑
i=1

Dk(µi)

dkp2kd

≤ (Md + 1) max
µ∈[a,b]

Dk(µ)

dkp2kd
.

Here Dk(µ) is defined in Lemma A.0.2. It is finite for any µ, and hence maxµ∈[a,b]Dk(µ) is

finite.

Now Md = O(p−1d ), so we have that the above probability is O(d−kp−2k−1d ) = O(d1/2−(2k+1)ε).

So by choosing k > 1/(4ε) this is O(d−ε) which tends to 0 as required.

A.1 Lemmas for Proof of Theorem 4.4.2

We use the same notation as in Section 4.4.1. However, we will now consider an abnormal

segment from positions t to s. Let αd denote the proportion of sequences that are abnormal,

and µ0 the mean. The observations in this segment come from a two component mixture.

With probability αd they are normally distributed with mean µ0 and variance 1; otherwise

they have a standard normal distribution. It is straightforward to show that for such an

abnormal segment,

EXk(µ) = (1− αd) + αde
µµ0(s−t+1). (A.1.1)
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Lemma A.1.1 (Abnormal segments, expectation and variance). Assume we have an ab-

normal segment [t, s] with the mean of affected dimensions being µ0. Let f(µ) be a density

function with support A ⊂ R then

E
[∫

A

Sd(µ)f(µ)dµ

]
≥ D1(µ)dpd

Var

(∫
A

Sd(µ)f(µ)dµ

)
≤ D2(µ)dp2d + o(dp2d)

with

D1(µ) = min
µ∈A

(
E[Xk(µ)− 1]− pd

2
E[(Xk(µ)− 1)2]

)
(A.1.2)

= min
µ∈A

[
αd(e

µµ0(s−t+1) − 1)− pd
2

(
eµ

2(s−t+1) − 1
)
− αdpdC(µ)

2

]
(A.1.3)

C(µ) = eµ
2(s−t+1)(e2µµ0(s−t+1) − 1)− 2(eµµ0(s−t+1) − 1)

and

D2(µ) = max
µ∈A

E
[
(Xk(µ)− 1)2

]
.

Proof. As Sd(µ) is the sum of d iid terms we can rewrite the expectation and variance with

a single term

E
[∫

A

Sd(µ)f(µ)dµ

]
= dE

[∫
A

log(1 + pd(Xk(µ)− 1))f(µ)dµ

]
Var

(∫
A

Sd(µ)f(µ)dµ

)
= dVar

(∫
A

log(1 + pd(Xk(µ)− 1))f(µ)dµ

)
.
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Now as log(1 + x) > x− x2/2,

E
[∫

A

log(1 + pd(Xk(µ)− 1))f(µ)dµ

]
≥ E

[∫
A

(
pd(Xk(µ)− 1)− p2d(Xk(µ)− 1)2

2

)
f(µ)dµ

]
= pd

∫
A

(
E[Xk(µ)− 1]− pd

2
E[(Xk(µ)− 1)2]

)
f(µ)dµ,

which gives (A.1.2). We then obtain (A.1.3) by using (A.1.1) and a similar calculation for

the variance of Xk(µ).

We now consider the variance, which is bounded by the second moment. Using | log(1+x)| ≤

|x|+ x2/2 we have

Var

(∫
A

log(1 + pd(Xk(µ)− 1))f(µ)dµ

)
≤ E

[(∫
A

log(1 + pd(Xk(µ)− 1))f(µ)dµ

)2
]

≤ E
[∫

A

{log(1 + pd(Xk(µ)− 1))}2 f(µ)dµ

]
≤ E

[∫
A

{
p2d(Xk(µ)− 1)2 + p3d|Xk(µ)− 1|3 +

p4d
4

(Xk(µ)− 1)4
}
f(µ)dµ

]
≤ max

µ∈A
E
{
p2d(Xk(µ)− 1)2

}∫
A

f(µ)dµ+ o(p2d),

which gives the required bound for the variance.

Lemma A.1.2 (Detection of abnormal segments). Assume that we have an abnormal seg-

ment [t, s]. Let αd be the probability of a sequence being abnormal and the mean of the

abnormal observations be µ0, with pd = o(1). Assume that there exists a set A such that for

all µ ∈ A we have

lim
d→∞

αd
(
eµµ0(s−t+1) − 1

)
− pd

2

(
eµ

2(s−t+1) − 1
)
> δ,
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and
∫
A
π(µ)dµ > δ′, for some δ, δ′ > 0. If dp2d →∞ as d→∞ then

∫ { d∏
k=1

PA,k(t, s;µ)

PN,k(t, s)

}
π(µ)dµ→∞ (A.1.4)

in probability as d→∞.

Proof. If we restrict the integral in (A.1.4) to one over A ⊂ R we get a lower bound. Then

rewriting the ratio in (A.1.4), using (4.4.2), in terms of Xk(µ) we get

∫ { d∏
k=1

[1 + pd(Xk(µ)− 1)]

}
π(µ)dµ ≥

∫
A

{
d∏

k=1

[1 + pd(Xk(µ)− 1)]

}
π(µ)dµ.

If we consider the logarithm of the above random variable and use Jensen’s inequality we get

a lower bound

log

(∫
A

{
d∏

k=1

[1 + pd(Xk(µ)− 1)]

}
π(µ)dµ

)
≥
∫
A

{
d∑

k=1

log(1 + pd(Xk(µ)− 1))

}
π(µ)dµ

=

∫
A

Sd(µ)π(µ)dµ.

Then if we can show this random variable goes to ∞ as d→∞ the original random variable

has the same limit. Let Td =
∫
A
Sd(µ)π(µ)dµ. Using Lemma A.1.1, we have

E(Td) > log(δ′) + δdpd,

and for sufficiently large d there exists a constant C such that

Var(Td) < Cdp2d.



APPENDIX A. LEMMAS FOR PROOF OF THEOREM 4.4.1 160

So by Chebyshev’s inequality

Pr(Td ≤ log(δ′) + δdpd − dp2d) ≤ Pr(|Td − ETd| ≥ dp2d) ≤
Var(Td)

d2p4d
<

C

dp2d
.

Thus Td →∞ in probability as d→∞, which implies (A.1.4).



Appendix B

Updating the polynomials

The first and second updates given in (6.3.8) represent no change at t and involves a change

in variables to represent the change in position from time t to t+ 1 but a constant gradient

δ. The form of this quadratic is

qt(θ, δ) = c1θ
2 + c2θ + c3δ

2 + c4δ + c5θδ + c6

qt(θ − δ, δ) = c1(θ − δ)2 + c2(θ − δ) + c3δ
2 + c4δ + c5(θ − δ)δ + c6

= c1θ
2 + c2θ + (c1 + c3 − c5)δ2 + (c4 − c2)δ + (c5 − 2c1)θδ + c6.

(B.0.1)

The third and fourth updates in (6.3.8) represents a changepoint at t and involves a similar

change in position variable as above but a different variable for the gradient, δ′

qt(θ − δ, δ′) = c1(θ − δ)2 + c2(θ − δ) + c3δ
′2 + c4δ

′ + c5(θ − δ)δ′ + c6

= c1θ
2 − 2c1θδ + c1δ

2 + c2θ − c2δ + c3δ
′2 + c4δ

′ + c5θδ
′ − c5δδ′ + c6.

(B.0.2)

Equation (B.0.2) needs to be minimised with respect to δ′, we can do this analytically which

161
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gives us a value for the minimiser δ′ as

δ̂′ =
c5δ − c5θ − c4

2c3
.

Substituting this back into (B.0.2) gives us the quadratic

min
δ′
qt(θ − δ, δ′) =

(
c1 −

c25
4c3

)
θ2 +

(
c2 −

c4c5
2c3

)
θ +

(
c1 −

c25
4c3

)
δ2

+

(
c4c5
2c3
− c2

)
δ +

(
c25
2c3
− 2c1

)
θδ + c6 −

c24
4c3

.

(B.0.3)
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