

Children with Rare Chromosome Disorders: UK families' experiences of diagnosis and counseling 2003 - 2013

Professor Ala Szczepura ^{1§}

Dr Sarah Wynn ²

Dr Beverly Searle ²

Dr Amir J Khan ³

Dr Tom Palmer ⁴

Dr Debbie Biggerstaff ⁵

Mr Josh Elliott ³

Professor Maj A Hultén ⁶

¹ Enterprise and Innovation Group, Coventry University, Coventry, CV1 5FB, UK

² Unique, The Rare Chromosome Disorder Support Group, Oxted, Surrey, RH8 9EE, UK.

³ Centre for Technology Enabled Health Research, Coventry University, Coventry, CV1 5FB, UK

⁴ Department Mathematics & Statistics, Lancaster University, Lancaster, LA1 4YF, UK

⁵ Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK

⁶ Dept Clin Genetic, Karolinska University Hospital, Solna, CMM L8:02, 17176 Stockholm, Sweden

CONFLICT OF INTEREST

The authors AS, SW, BS, AK, TP, DB, JE, MH all declare that they have no conflict of interest.

ACKNOWLEDGEMENTS

The authors wish to thank all the families who took the time to complete a detailed questionnaire describing their experiences.

ABSTRACT

Introduction: The United Kingdom (UK) Strategy for Rare Diseases places a strong emphasis on the need to empower people affected in order to improve diagnosis, intervention, and coordination of care. An important group to consider are families with children with a rare chromosome disorder (RCD). This study reports on families' experiences of diagnosis and counselling, highlights changes over ten years, and identifies recommendations for improvement.

Methods: Two national surveys were undertaken by Unique (Rare Chromosome Disorder Support Group) to compare families' experiences over the decade prior to the launch of the strategy. Questionnaires explored seven stages of the care pathway from pre-testing, to diagnosis, genetics consultation, follow-up and then sign-posting to peer support, plus measurement of perceived service quality.

Results: Response rates were: 36.4% in 2003 (583 families) and 53.6% in 2013 (575 families). Mean age of respondents was 42.3 years and 43.0 years respectively. Analysis of responses identified 28 user-identified areas for service improvement for families affected by RCDs. Only 12/28 are currently incorporated in service specifications.

Conclusions: Identification of user-led, evidence-based recommendations can empower those affected by RCDs and enable professionals to co-design improved services through involvement of family support groups. A series of further surveys is planned.

Key Words: Families' Experiences, Clinical Genetics Services, Rare Chromosome Disorders, National Surveys, Patient Reported Outcomes (PROs), Evidence-Based Clinical Guidelines.

1 **1. INTRODUCTION**

2
3 The United Kingdom (UK) Strategy for Rare Diseases places a strong emphasis on empowering those affected
4 by rare diseases in order to improve diagnosis, intervention, and coordination of care in genetics services ¹.
5 Although the strategy was published in late 2013, implementation plans are still being developed for England
6 in 2017 with a view to being fully actioned in 2020. It is acknowledged that this will require “strengthening the
7 mechanisms and opportunities for meaningful and sustained patient involvement in rare disease service
8 provision”.

9
10 An important and challenging group to consider when involving those affected by rare diseases will be children
11 with a rare chromosome disorder (RCD). In the UK, it is estimated that at least 300-500 children are born
12 every year with one of a range of RCDs, widely spread geographically ². In comparison to more common and
13 well-studied chromosome disorders like Down syndrome, there is far less information available on the natural
14 history or prognosis for these rare diseases (<5 per 10,000 births) ³. Their extreme rarity means RCD cases
15 can be particularly challenging for genetics services because, in addition to communicating a laboratory
16 diagnosis, professionals also need to support families who frequently experience severe distress combined
17 with high levels of uncertainty ⁴. In such a situation, service providers must ensure that parents understand
18 the diagnosis, help families identify effective coping strategies, and address the lack of available evidence ^{5,6}.
19 To date, little is known about the experiences of these families, or the degree to which Clinical Genetics
20 Services currently meet their needs. This is an important gap, since the UK strategy emphasises that
21 successful implementation will require “recognising patient groups as key partners” to develop care pathways
22 that incorporate “best practice from the user perspective” ¹.

23
24 Patient-reported outcomes for Clinical Genetics Services are still in their infancy ⁷. Over the last decade some
25 developments have occurred, largely driven by the extension of clinical genetic services from diagnosing
26 conditions that are exclusively genetic in nature to investigating genetic components for more common
27 diseases ⁸, with increased knowledge about the contribution of genetic factors to a range of common diseases
28 ⁹. Comprehensive data are not yet available for RCDs although it is anticipated that, in time, the new National
29 Congenital Anomaly and Rare Disease Registration Service established by Public Health England will fill this
30 gap in knowledge ¹⁰, with projects such as the Sanger DECIPHER database ¹¹ and the Unique
31 registry/database and information guide service ¹² also contributing to an improved knowledge base.
32 Currently, there is no European Reference Network (ERN) specific to RCDs despite pan-European efforts to
33 create one. However, the UK-led ERN-Ithaca for intellectual disability and congenital malformations will
34 include RCDs with family support group representation and promises to be a channel through which the
35 experiences of RCD families can be improved.

36
37 For chromosome disorders, technological developments such as the introduction of microarray-based
38 comparative genomic hybridisation (*microarray analysis*) techniques have meant that chromosome
39 abnormalities which were formerly too small to be detected by conventional karyotyping can now be identified.
40 Although this has significantly improved sensitivity for detection of clinically relevant genomic imbalances, it
41 has also increased the need for comprehensive genetic counselling to ensure accurate clinical interpretation
42 ¹³. In the case of RCDs, clinical interpretation will still face a high level of uncertainty about each affected
43 child's health, potential cognitive development, and life span even after there is a definitive diagnosis ¹⁴⁻¹⁶.

44
45 In this paper, we present the findings of two large scale surveys which investigated the experiences of UK
46 families who have a child with a RCD over the period 2003 – 2013. We examined the entire care pathway
47 including provision of pre-test information, diagnosis of RCD, genetic counselling, provision of follow-up
48 information and ongoing support. Analysis of responses at different time-points is used to reveal trends and
49 changes over time. The findings should hopefully enable best practice from the user perspective to be more
50 effectively integrated into the implementation phase of the UK Strategy for Rare Diseases.

51
52 **1.1 Objectives**

53
54 The study had three main objectives:

55
56
57 1. to examine RCD families' experiences along the entire care pathway;
58 2. to compare differences over ten years and identify positive or negative changes over time; and
59 3. to recommend improvements to service provision for this important patient group.

61 **2. METHODS**

62 **2.1 Survey Overview**

63 Two surveys were undertaken using a detailed questionnaire designed by Unique, a UK-based Rare
64 Chromosome Disorder Support Group. The group has over 15,300 member families, representing over 17,000
65 individuals affected by RCDs, in over 100 countries worldwide, with around 1500 new families registering
66 annually¹⁷. The process for designing the questionnaire is described in Supplementary file 1. The first survey
67 was undertaken in March 2003 and the second in May 2013. Both surveys were limited to members with at
68 least one surviving child with RCD and a valid UK address, and the 2013 survey to UK families who had joined
69 the group since March 2003. Both were identical, except for the addition of some questions in 2013 relevant
70 to the introduction of microarray analysis¹⁸. The layout of questionnaires was designed to minimise the
71 possibility of systematic missing responses. Questionnaires in 2003 were pre-printed and posted out to
72 families while questionnaires in 2013 could be completed online or printed off and returned by post; responses
73 were anonymous. The initial invitation in 2013 was followed by two email reminders.

74 **2.2 Questionnaire Content**

75 Questionnaires collected background information on the family. Respondents were then asked about their
76 experiences during different stages of the patient journey (see Table 1). A separate question asked families
77 to rate the quality of the overall service from a user perspective in terms of the overall service received on a
78 ten-point Likert scale ranging from 1 (worst) to 10 (best), and how helpful overall the genetics counselling
79 service has been since their first appointment (4 categories ranging from 'not very helpful' to 'very helpful').
80 Finally, respondents were invited to give free text descriptions of their experiences of diagnosis and genetic
81 counselling. A copy of the 2003 postal questionnaire is provided in Supplementary file 2.

82 **2.3 Data Analysis**

83 Numerical data were summarised using mean and SD or median and range, depending on data distribution.
84 Analysis was based on completed question responses. There was no imputation of missing data, although
85 we investigated to assess as far as is possible that missing data were missing completely at random. Certain
86 descriptive variables with multiple response categories were dichotomized before analysis e.g. whether person
87 communicating diagnosis was 'genetics professional' or 'non-genetics professional', whether the method of
88 communicating was 'in person face-to-face' or 'indirect by phone, letter etc.'. For comparison of baseline and
89 2013 responses, chi-square tests were performed for categorical variables and *t*-tests or Mann-Whitney *U*
90 tests for continuous variables. 95% confidence intervals were estimated together with the significance level
91 of observed differences. In addition, some 2013 survey responses were analysed separately for cases
92 diagnosed before and after the introduction of microarray tests in 2008. Stata (version 13) was used for all
93 analyses. Statistical significance was set at *p*=0.001 level.

94 **2.4 Recommended Improvements**

95 A list of recommended improvements was compiled by knowledgeable family members with direct personal
96 experience of RCD, as well as a clinical geneticist and genetics laboratory scientists. Recommendations
97 were based on analysis of data extracted from the questionnaire responses (with detailed examination of
98 levels, significant changes or lack of a significant difference over time).

99 **3. RESULTS**

100 **3.1 Respondents**

101 A total of 583/1600 families responded to the 2003 survey (36.4% response rate). In 2013, of 584
102 responses received; 9 families not resident in the UK were excluded, leaving a total of 575/1072
103 questionnaires for analysis (53.6 % response rates).

104 Respondent characteristics were similar in the two groups. Mean age was 42.3 years in 2003 and 43.0 years
105 in 2013. Questionnaires were mainly completed by mothers, although this proportion fell over time from 92.3%
106 to 85.9% in 2013. The majority described themselves as White British/ White European, although ethnic
107 minority respondents doubled over the period from 4.8% to 8.5%. Most families had only one child with a
108 RCD, with this figure rising over the ten years from 86.1% to 92.3%. A small minority of families had lost a

121 child with a RCD at or after birth; this figure had reduced over time from 6.5% in 2003 to 2.2% in the 2013
122 sample.

124 **3.2 Rating of service received**

125 When asked how helpful the genetics counselling service had been since their first appointment, Figure 1a
126 shows views were fairly evenly spread across the four categories ranging from 'not very helpful' to 'very
127 helpful', although the most common response was 'had no more contact'. The percentage rating a service
128 as 'not very helpful' did not alter over time; it was 18.7% (95% Confidence Interval (CI): 15.1 - 22.7) in 2003
129 and 15.0% (95% CI: 11.6 - 19.0) in 2013 (p=0.161).

130 When asked to rate overall service quality on a ten-point scale, average scores rose from 6.37 [SD 2.63] in
131 2003 to 7.00 [SD 2.52] in 2013. Figure 1b shows mean scores for different professional groups (i.e. genetics
132 doctors, genetics counsellors, and genetics nurses). In 2013, scores were 7.1 (95% CI 6.9, 7.3), 6.5 (6.0, 7.1),
133 and 6.6 (5.7, 7.5) respectively. Therefore, using an unpaired t-test, the genetics doctors scored statistically
134 significantly higher than the genetics counsellors. Comparison of the genetics doctors with the nurses, and of
135 the counsellors with nurses, were not statistically significant.

137 **3.3 Families' experiences over ten years**

138 Families' experiences of services over time are presented in Table 2.

139 1: *Pre-testing process*: In 2003 only 70.7% (95% CI: 66.4 - 74.7) of families reported that they had been
140 informed that their child's chromosomes were going to be tested. In 2013, this figure was slightly higher at
141 73.2% (95% CI: 68.6 - 77.5) but showed no significant improvement over the ten years (p=0.404).

142 2: *Test result communication*: In 2003, test results were far more likely to be communicated by a paediatrician
143 (64.5% (95% CI: 60.3 - 68.5)) than a genetic specialist (23.8% (95% CI: 20.2 - 27.5)). By 2013, results were
144 almost equally likely to be communicated by a genetic specialist (49.0% (95% CI: 44.3 - 53.7)) or a
145 paediatrician (45.0% (95% CI: 40.3 - 49.7)). Results were rarely reported by other professionals e.g. GPs,
146 genetic nurses, obstetricians, health visitors.

147 Table 2 indicates that, over the ten year period, it has become significantly less likely (p<0.001) that parents
148 will be informed in person about their child's chromosome disorder, although even in 2013 the majority still
149 stated that they were told in person (62.7% (95% CI: 58.2, 67.1)) versus 76.1% (95% CI: 72.4 - 79.6) in 2003.
150 During the same period, communication by telephone doubled from 12.2% (95% CI: 9.6 - 15.2) to 22.1%
151 (95% CI: 18.4 - 26.1) in 2013, and by 50% for letters from 10.1% to 14.4%. Similar trends, away from telling
152 parents in person, are observable for both professional groups (i.e. paediatricians and genetic specialists).

153 Possibly linked to this trend, responses indicate a shift towards families receiving their test result at home.
154 This has risen significantly (p<0.001) from 17.1% (95% CI: 14.0, 20.6) in 2003 to 27.1% (95% CI: 22.9, 31.7)
155 in 2013. At the same time, there has been an increase (p=0.006) in test results being communicated in a
156 genetics centre from 8.7% (95% CI: 6.5 - 11.5) to 14.4% (95% CI: 11.1, 18.2); and a significant drop (p<0.001)
157 in parents receiving information on the ward after birth or on the children's ward (28.5% (95% CI: 24.6 - 32.5)
158 vs. 14.7% (95% CI: 11.4 - 18.4)). Throughout, one in four families continued to receive their test results in a
159 doctor's surgery (26.7% vs. 23.6% in 2013) and one in ten in a child development centre (11.3% vs. 11.5%).
160 The proportion who are told in private has not changed significantly (p=0.697) over this period; 80.2% (95%
161 CI: 76.5 - 83.5) in 2003 and 81.1% (95% CI: 77.2 - 84.8) in 2013. Services did not always ensure that
162 support was available from a spouse/partner, relative or friend when imparting this life-changing information.
163 In 2003, one quarter of respondents (23.1% (95% CI: 19.5 - 26.9)) were on their own when they received
164 the diagnosis; rising slightly (p=0.082) to 28.0% (95% CI: 23.8 - 32.4) in 2013. In addition, 47.3% (95% CI:
165 42.9 - 51.7) said that their affected child had been present in 2003, and 46.1% (95% CI: 41.3 - 50.9) in
166 2013, indicating no significant change (p=0.710).

167 3: *Referral to a genetic specialist*: Table 2 shows that the proportion of families receiving genetic counselling
168 has decreased slightly (p=0.031) from 58.4% (95% CI: 54.2 - 62.5) in 2003 to 52.0% (95% CI: 47.7 - 56.2)
169 in 2013. For families informed about their child's test result by a non-geneticist (i.e. paediatrician, GP etc.)
170 likelihood of referral to a genetic specialist has not increased (p=0.322), with two out of ten not offered a
171 referral; 22.3% (95% CI: 18.4 - 26.7) in 2003 and 19.3% (95% CI: 14.9 - 24.2) in 2013. In families where
172 a second child was diagnosed with an RCD, this figure remains similar (22.7% vs. 21.7% in 2013).

180 Once referred, the waiting time for an appointment was over 3 months with a slight non-significant ($p=0.105$)
181 increase over time; 95.7 days in 2003 (95% CI: 83.6 - 107.7) and 115.0 days (95% CI: 94.4 - 135.7) in
182 2013. For a medical geneticist the time has increased from 103.5 days to 172.1 days and for a genetic
183 counsellor from 118 days to 199.1 days. However, for genetic nurses waiting times have fallen from 118 days
184 to 75.6 days. In cases where a definitive diagnosis could not be made at the time of the appointment (15%),
185 further tests are increasingly likely to be ordered; 43.1% of such cases in 2003 and 60.0% in 2013. These
186 further tests produce a change in the provisional diagnosis in one in ten cases (11.6% in 2003 and 9.9% in
187 2013).

188
189 *4: Conduct of genetic consultation:* Table 2 shows that most respondents considered they had been informed
190 of their child's condition in a sensitive manner; with a slight rise ($p=0.014$) from 66.9% (95% CI: 62.6 - 70.9)
191 in 2003 to 74.1% (95% CI: 69.8 - 78.2) in 2013. There appear to be consistent differences between the
192 perceived sensitivity of different professional groups; for genetic professionals, 81.6% in 2003 and 86.2%
193 in 2013 were viewed as providing the information sensitively, 63.3% and 67.7% of paediatricians
194 respectively, and 43.8% vs. 44.0% of other clinicians.

195
196 The conduct of consultations was explored in some detail. Although genetic specialists always introduced
197 themselves (>98% consultations), families were not always told how long the consultation would take
198 (45.6% vs. 38.1% in 2013) or asked what information they already had (24.7% vs. 24.3% in 2013 not asked),
199 and half were not asked how detailed they would like information provided to be (56.5% vs. 54.4% in 2013).
200 Almost half of respondents thought the genetic specialist did not seem to know about them and their family
201 (49.1% vs. 42.3% in 2013), one in five said that a family genetic history was not taken (20.7% vs. 21.0% in
202 2013), and one third said that there had been no physical examination of their child (37.4% vs. 31.9% in
203 2013). The risk of having another baby with an RCD was not always explained, with evidence of a decline
204 over time and variation between professionals; medical geneticists (11.8% vs. 20.0% in 2013 did not
205 explain), genetic counsellors (19.0% vs. 32.1%), and genetic nurses (27.8% vs. 30.0%).

206
207 Provision of a written summary following the genetic consultation is considered to be good practice ¹⁹. In 2003,
208 written summaries were provided by 69.0% of medical geneticists, 50.7% of genetics counsellor and 43.8% of
209 genetics nurses. By 2013, although figures had risen to 81.0%, 65.3% and 65.4% respectively, they were still
210 not provided for all as routine practice. On average, families had to wait one month to receive a summary,
211 but some waited as long as 6 months; in 2013 longer delays were reported. The written information provided
212 was considered easy to understand by almost all recipients (93.0% in both 2003 and 2013).

213
214 *5: Genetic and clinical information provision:* Although most respondents could understand the information
215 provided (92.7% in 2003 vs. 89.7% in 2013), the majority considered they had not been given enough
216 information about their child's condition. Table 2 shows this did not change significantly ($p=0.093$) over
217 time; 69.4% (95% CI: 65.2 - 73.4) in 2003 and 64.3% (95% CI: 59.6 - 68.8) in 2013. Responses were not
218 affected by the introduction of microarray analysis, with 66.4% pre-2008 and 61.4% post-microarrays
219 reporting a need for more information. In terms of the content of the information provided, although the
220 majority of families were told which chromosome numbers were involved this has not increased significantly
221 ($p=0.067$); 78.5% (95% CI: 74.6 - 82.0) were told in 2003 and 83.3% (95% CI: 79.4 - 86.7) in 2013. However,
222 explanation of the type of chromosome disorder in a clear and understandable way has improved
223 significantly ($p<0.001$) rising from 57.2% (95% CI: 52.8 - 61.6) in 2003 to 75.1% (95% CI: 70.7 - 79.1) in
224 2013. Similarly, although a significant proportion of families are not given the karyotype, this has decreased
225 over time (44.4% in 2003 falling to 34.0% in 2013).

226
227 Virtually all respondents (95%) said they would have liked a copy of the genetics laboratory report. Although
228 this was not provided in the majority of cases, there is evidence that families are increasingly likely to be
229 given a copy. In 2003, 71.1% were not given a copy, compared to only 48.6% in 2013. However, when
230 laboratory reports were provided, only half included a suitable explanation of the medical or technical terms
231 used, with no evidence of improvement over time (52.2% in 2003 vs. 50.2% in 2013).

232
233 In terms of the clinical prognosis, nearly one in three respondents said that they were not told the possible
234 effects on their child of the chromosomal abnormality (30.1% vs. 28.7% in 2013). In cases where this is
235 provided, accuracy appears to have improved over time e.g. for genetic nurses from 68.3% to 75.7%
236 considered accurate in 2013.

237
238 *6: Genetic service follow-up:* Although most families were offered a further meeting to discuss their child's
239 chromosome disorder, one third reported that they were not. There was a slight but non-significant ($p=0.158$)

240 improvement over time. In 2003, 35.2% (95% CI: 31.1 - 39.5) were not offered a further meeting, falling to
241 30.9% (95% CI: 26.6 - 35.5) in 2013. Linked to this, only a minority of families said they were told how the
242 genetic counselling service could help them in the future; 28.9% in 2003 and 31.0% in 2013.

243
244 7: *Signposting to peer support:* Signposting of families by all specialists to some form of peer support group
245 has risen significantly, from 34.8% of families in 2003 to 58.7% in 2013. Respondents were increasingly
246 likely to be signposted to Unique (26% in 2003 rising to 67% in 2013). Only a small number of respondents
247 stated that the genetic specialist tried to put them off contacting other affected families (7.3% in 2003 and
248 3.9% in 2013). Nevertheless, very few respondents (7% in both time periods) reported that they were
249 offered any help to contact other RCD families.

250 251 **3.4 Recommended improvements identified**

252
253 Table 3 lists the recommended improvements identified by experts based on survey responses. The
254 penultimate column identifies which are included in the NHS England service specification for organisations
255 funded to provide specialised medical genetics services²⁰. This indicates that 12 out of 28 recommendations
256 identified by the present study are already included in service specifications. However, aspects which are
257 missing include: a) education of non-clinical professionals; b) recommended speed of testing; c) six practical
258 recommendations for communication of test results; d) need to indicate waiting time for referral to a genetics
259 expert; e) five specific recommendations for conduct of consultation with genetics expert. For section f), all
260 recommendations identified by the current study are included in the service specification. The final column
261 shows levels achieved as reported by respondents for selected recommendations included in the service
262 specification. These range from 36% to 80%.

263 264 **4. DISCUSSION**

265
266 The necessity for patient reported outcomes (PROs) in clinical genetics services has been identified in a recent
267 review⁷. However, provision of services to families who have a child with a RCD is acknowledged to be
268 exceptionally challenging⁴⁻⁶. There is also limited research evidence. A review of research into clinical
269 genetics services and the patient perspective which identified 102 articles²¹ found only one focused on these
270 families³. The recommendations identified in the current study are novel because they are based on the real-
271 life experiences of over one thousand families living with RCDs. As PROs become more important in
272 performance management and funding of health services⁷, sustained capture of the experiences of such
273 families will be a key challenge¹. Although a recommendation for 'sustained patient involvement in rare
274 disease service provision' was embedded in the UK strategy for rare diseases, the overall strategy
275 implementation plan for England has only recently been announced²².

276
277 The large scale surveys reported here show that, although families' rating of service quality has improved
278 over time, key aspects of the 'patient journey' have not and require improvement. Although agreement on
279 key PROs for genetic services is generally acknowledged to be challenging for RCD cases^{7,23}, our surveys
280 do highlight a number of simple improvements which might be easily introduced and which are indicated
281 elsewhere. For example, a review of guidelines from 18 organisations in six countries on communication of
282 genetic information to families concluded that there was a significant gap in terms of the professional's role in
283 assisting clients to find options for continued support²⁴. This is a key finding identified from our surveys. Our
284 results also echo evidence from US research which found that parents of children with RCDs were largely
285 disappointed in the counselling they received, although this was a small-scale study³.

286
287 Although international guidelines for clinical genetics professionals largely cover the professional-client
288 **relationship**, including respect for the client, maintaining confidentiality, and enabling clients to make informed
289 independent decisions^{25,26}, they do not include more practical PROs such as those reported in the present
290 study. Other recommendations, such as those produced by Rare Disease UK (a project of the charity Genetic
291 Alliance UK) mostly concentrate on higher level activities (e.g. commissioning and planning of services for rare
292 diseases) with some general recommendations to improve information and support²⁷. More recent
293 recommendations for reporting the results of diagnostic genetic tests primarily focus on providing patients with
294 information on how to manage their own condition, something which is less relevant for families of children
295 with RCDs²⁸. However, the most recent service specification for organisations providing specialised NHS
296 medical genetics services does include some, but not all, of the recommendations identified in the present
297 study²⁰.

298

Meanwhile, international evidence has emerged of large variations in clinical genetics practice, leading to an increased interest in defining the quality of services and improving delivery models²⁹⁻³¹. Core competences and a code of practice have been produced for European health professionals^{19 32}, based on research by Skilton et al.³³ and approved by the European Society of Human Genetics³⁴. To date such recommendations are based on the subjective views of professionals, rather than evidence-based, data on user experience. More recently, the US National Society of Genetic Counselors launched a series of new *Evidence-Based Clinical Practice Guidelines* although up to now these do not include RCDs, only Fragile X Syndrome and Down Syndrome. (<http://www.nsgc.org/practiceguidelines>).

Service quality for RCD cases will inevitably be influenced by the availability of genetic specialist expertise. In this respect, the UK appears to be fortunate, with a higher number of genetic counsellors/nurses per million population than other European countries³¹. The existence of a long-established Rare Chromosome Disorder Support Group also differentiates the UK from other countries. As the rates of RCD diagnoses rise significantly, thanks to wider use of microarray analyses and the anticipated introduction of next generation DNA sequencing into routine clinical practice, combined with the fact that RCD cases are inevitable geographically widespread, the role of non-geneticist clinicians will inevitably continue at various stages of the patient journey, reinforcing the need for common guidelines, multidisciplinary teamwork, audit checklists, training and coordinated care pathways^{35 36 37}.

We recognise that the genetic and genomic testing and service landscape in the UK is also developing at a tremendous pace, not least because of the 100,000 Genomes project³⁸, the creation of 13 Genomic Medicine Centres across the UK³⁹, the Genomics England Clinical Interpretation Partnerships (GeCIP), designed to improve the accuracy and reliability of information fed back to patients³⁸; and a drive by Health Education England to educate non-genetics healthcare and other professionals in genomic medicine⁴⁰. It is therefore imperative that the value of the expertise of UK families affected by RCDs is not lost in the rapid pace of developments in genomics per se for identifying current and future needs. Although patients' and professionals' views may differ, there does appear to be a level of consensus on important domains such as: decision-making, knowledge of the genetic condition, perceived personal control, risk perception, diagnostic accuracy, and satisfaction/ quality of life⁴¹. Also, since clinical genetics services in the UK are currently delivered through a network of 23 centres, this network could facilitate the introduction of a coordinated strategy to support these families, although there is currently no designated centre of excellence specific to RCDs to take the lead. It is possible that an holistic RCD-specific service might be introduced by the newly-emerging rare disease centres, such as those in Birmingham⁴² and London⁴³.

Our study inevitably has a number of limitations that should be borne in mind when considering the findings and subsequent recommendations. Firstly, some bias in responses is likely as participants were recruited from a specialist support group and therefore respondents may be different from other UK families with an RCD child. Secondly, it is possible that parents in Unique may be more knowledgeable because they are part of a well-established support group and have higher expectations (e.g. in terms of the information required) than people who do not belong to such an organisation. Finally, there may be recall inaccuracy since, in some instances, the survey requested information from families sometime after the event.

Conclusions & Recommendations:

These surveys of Unique members address the lack of data on genetic diagnosis and counselling care pathways experienced by families of children with RCDs. Recommendations are offered in the spirit of constructive collaboration to assist clinicians to best meet the needs of patients and their families²⁰. The findings set baseline data for the experiences of families in 2003 and 2013. The intention is to repeat the surveys in 2018/2019 to gather patient-reported experiences as the new streamlined genetics service configuration is rolled out across the UK, and then again in 2021/2022 when new genetics services and implementation plans for the rare disease strategy are well embedded in the UK service provision. We consider that establishment of this form of longer term overview of user experience is particularly important, not least because diagnoses and genetic counselling are likely to be increasingly provided by non-geneticist clinicians.

REFERENCES

1. Department of Health. The UK Strategy for Rarer Diseases. Secondary The UK Strategy for Rarer Diseases 2013.

358 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/260562/UK_Strategy_for_Rare_Diseases.pdf.

359

360 2. Office for National Statistics. Statistical bulletin: Births in England and Wales 2012. Secondary Statistical
361 bulletin: Births in England and Wales 2012 2013. <http://www.ons.gov.uk/ons/rel/vsob1/birth-summary-tables--england-and-wales/2012/stb-births-in-england-and-wales-2012.html>.

362

363 3. Lipinski SE, Lipinski MJ, Biesecker LG, et al. Uncertainty and perceived personal control among parents
364 of children with rare chromosome conditions: the role of genetic counseling. American journal of
365 medical genetics Part C, Seminars in medical genetics 2006;**142C**(4):232-40.

366

367 4. Strehle EM, Middlemiss PM. Children with 4q-syndrome: the parents' perspective. Genetic counseling
368 2007;**18**(2):189-99.

369

370 5. Bernhardt BA, Biesecker BB, Mastromarino CL. Goals, benefits, and outcomes of genetic counseling:
371 client and genetic counselor assessment. American journal of medical genetics 2000;**94**(3):189-97.

372

373 6. Biesecker BB, Peters KF. Process studies in genetic counseling: peering into the black box. American
374 journal of medical genetics 2001;**106**(3):191-8.

375

376 7. McAllister M, Dearing A. Patient reported outcomes and patient empowerment in clinical genetics
377 services. Clin Genet 2015;**88**(2):114-21.

378

379 8. Veach PM, Bartels DM, Leroy BS. Coming full circle: a reciprocal-engagement model of genetic
380 counseling practice. Journal of genetic counseling 2007;**16**(6):713-28.

381

382 9. Department of Health. Our inheritance, our future. Realising the potential of genetics in the NHS. Progress
383 Review of White Paper. Secondary Our inheritance, our future. Realising the potential of genetics in
384 the NHS. Progress Review of White Paper 2008.
http://www.geneticseducation.nhs.uk/downloads/0070DH_White_paper_review.pdf.

385

386 10. Public Health England. National Congenital Anomaly and Rare Disease Registration Service
387 (NCARDRS). Secondary National Congenital Anomaly and Rare Disease Registration Service
388 (NCARDRS) 2015. <https://www.gov.uk/guidance/the-national-congenital-anomaly-and-rare-disease-registration-service-ncardrs>.

389

390 11. DECIPHER. Mapping the clinical genome. Secondary Mapping the clinical genome 2017.
<https://decipher.sanger.ac.uk>.

391

392 12. Unique. Rare Chromosome Disorder & Single Gene Guides - English. Secondary Rare Chromosome
393 Disorder & Single Gene Guides - English 2017.
<http://www.rarechromo.org/html/DisorderGuides.asp>.

394

395 13. Lu X, Shaw CA, Patel A, et al. Clinical implementation of chromosomal microarray analysis: summary of
396 2513 postnatal cases. PloS one 2007;**2**(3):e327.

397

398 14. Stewart JL, Mishel MH. Uncertainty in childhood illness: a synthesis of the parent and child literature.
Scholarly inquiry for nursing practice 2000;**14**(4):299-319; discussion 21-6.

399

400 15. Rosenthal ET, Biesecker LG, Biesecker BB. Parental attitudes toward a diagnosis in children with
401 unidentified multiple congenital anomaly syndromes. American journal of medical genetics
402 2001;**103**(2):106-14.

403

404 16. Lenhard W, Breitenbach E, Ebert H, et al. Psychological benefit of diagnostic certainty for mothers of
405 children with disabilities: lessons from Down syndrome. American journal of medical genetics Part A
406 2005;**133A**(2):170-5.

407

408 17. Unique. Our History. Secondary Our History 2017. <http://www.rarechromo.org/html/History.asp>.

409

410 18. Unique. Microarray-based comparative genomic hybridisation (array CGH). Secondary Microarray-based
411 comparative genomic hybridisation (array CGH) 2015.
<http://www.rarechromo.org/information/other/array%20cgh%20ftnw.pdf>.

412

413 19. Eurogentest. Recommendations for genetic counselling related to genetic testing. Secondary
414 Recommendations for genetic counselling related to genetic testing 2006.
http://www.eurogentest.org/fileadmin/templates/eugt/pdf/guidelines_of_GC_final.pdf.

415

416 20. NHS England. NHS Commissioning Specialised Services E01. Medical Genetics. Secondary NHS
Commissioning Specialised Services E01. Medical Genetics 2017.
<https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-e/>.

21. Kosonen J, Rantanen E, Hietala M, et al. Have patients' opinion been asked? A review of 102 studies
from the years 1997–2007 on patient perspective of genetic counselling services in genetic testing
situations. EuroGentest Report., 2013.

22. House of Commons Hansard. Rare Diseases Strategy. Secondary Rare Diseases Strategy 2017.
<https://hansard.parliament.uk/commons/2017-03-28/debates/B6E00098-C8E6-4675-8787-6BF510E2B2CD/RareDiseasesStrategy>.

23. McAllister M, Payne K, Macleod R, et al. Patient empowerment in clinical genetics services. Journal of
health psychology 2008;**13**(7):895-905.

417 24. Forrest LE, Delatycki MB, Skene L, et al. Communicating genetic information in families--a review of
418 guidelines and position papers. European journal of human genetics : EJHG 2007;**15**(6):612-8.
419 25. Association of Genetic Nurses and Counsellors. Code of Ethics.
420 26. National Society of Genetic Counselors' Definition Task F, Resta R, Biesecker BB, et al. A new definition
421 of Genetic Counseling: National Society of Genetic Counselors' Task Force report. Journal of
422 genetic counseling 2006;**15**(2):77-83.
423 27. Rare Disease UK. Improving Lives, Optimising Resources: A Vision for the UK Rare Disease Strategy.
424 Secondary Improving Lives, Optimising Resources: A Vision for the UK Rare Disease Strategy
425 2010. <http://www.raredisease.org.uk/documents/RD-UK-Strategy-Report.pdf>.
426 28. Claustres M, Kozich V, Dequeker E, et al. Recommendations for reporting results of diagnostic genetic
427 testing (biochemical, cytogenetic and molecular genetic). European journal of human genetics :
428 EJHG 2014;**22**(2):160-70.
429 29. Skirton H, Cordier C, Lambert D, et al. A study of the practice of individual genetic counsellors and
430 genetic nurses in Europe. Journal of community genetics 2013;**4**(1):69-75.
431 30. Cohen SA, Gustafson SL, Marvin ML, et al. Report from the National Society of Genetic Counselors
432 service delivery model task force: a proposal to define models, components, and modes of referral.
433 Journal of genetic counseling 2012;**21**(5):645-51.
434 31. Cordier C, Lambert D, Voelkel MA, et al. A profile of the genetic counsellor and genetic nurse
435 profession in European countries. Journal of community genetics 2012;**3**(1):19-24.
436 32. European Board of Medical Genetics. Code of professional practice for genetic counsellors in Europe.
437 2015.
438 33. Skirton H, Lewis C, Kent A, et al. Genetic education and the challenge of genomic medicine:
439 development of core competences to support preparation of health professionals in Europe.
440 European journal of human genetics : EJHG 2010;**18**(9):972-7.
441 34. European Board of Medical Genetics. Core competences for genetic counsellors. 2010.
442 35. Association of Genetic Nurses and Counsellors & Clinical Genetics Society. Professional Roles in the
443 Multidisciplinary Team in Clinical Genetics. Secondary Professional Roles in the Multidisciplinary
444 Team in Clinical Genetics 2011. agnc.org.uk/MDTworkinginClinicalGenetics.doc.
445 36. Clinical Genetics Society (CGS). Clinical Standards for a Genetics Unit. 2005.
446 37. Middleton A, Marks P, Bruce A, et al. The role of genetic counsellors in genomic healthcare in the United
447 Kingdom: a statement by the Association of Genetic Nurses and Counsellors. European journal of
448 human genetics : EJHG 2017;**25**(6):659-61.
449 38. Genomics England. Research in the 100,000 Genomes Project. Secondary Research in the 100,000
450 Genomes Project 2017. <https://www.genomicsengland.co.uk/about-gecip/>.
451 39. NHS England. NHS Genomic England Medicine Centres. Paving the way to personalised medicine.
452 Secondary NHS Genomic England Medicine Centres. Paving the way to personalised medicine
453 2017. <https://www.england.nhs.uk/wp-content/uploads/2017/01/nhs-gmcs-map-jan-2017.pdf>.
454 40. NHS Health Education England. Genomics Education Programme. Secondary Genomics Education
455 Programme. 2017. <https://www.genomicseducation.hee.nhs.uk/>.
456 41. Payne K, Nicholls SG, McAllister M, et al. Outcome measures for clinical genetics services: a
457 comparison of genetics healthcare professionals and patients' views. Health policy 2007;**84**(1):112-
458 22.
459 42. Queen Elizabeth Hospital Birmingham. Centre for Rare Diseases. Secondary Centre for Rare Diseases
460 2017. <http://www.uhb.nhs.uk/centre-for-rare-diseases.htm>.
461 43. Great Ormond Street Hospital. Zayed Centre for Research into Rare Disease in Children. Secondary
462 Zayed Centre for Research into Rare Disease in Children 2017. <http://www.gosh.org/what-we->
463 [do/research/zayed-centre-research-rare-disease-children](http://research/zayed-centre-research-rare-disease-children).

464

Legends:

Table 1: Questionnaire Content for Stages 1-7 in the Patient Journey

Table 2: Questionnaire responses and changes over time (2003 – 2013)

Table 3: Study Recommendations vs NHS England Service Specification, and Levels Achieved.

Figure 1: Rating of Genetic Counselling Services