
Enhance Virtual-Machine-Based Code Obfuscation Security

Through Dynamic Bytecode Scheduling 1

Kaiyuan Kuanga, Zhanyong Tanga,, Xiaoqing Gonga, Dingyi Fanga, Xiaojiang Chena,
Zheng Wangb,

aSchool of Information Science and Technology, Northwest University, China.
bSchool of Computing and Communications, Lancaster University, UK

Abstract

Code virtualization builds upon virtual machine (VM) technologies is emerging as a viable
method for implementing code obfuscation to protect programs against unauthorized analy-
sis. State-of-the-art VM-based protection approaches use a fixed scheduling structure where
the program always follows a single, deterministic execution path for the same input. Such
approaches, however, are vulnerable in certain scenarios where the attacker can reuse knowl-
edge extracted from previously seen software to crack applications protected with the same
obfuscation scheme. This paper presents Dsvmp, a novel VM-based code obfuscation ap-
proach for software protection. Dsvmp brings together two techniques to provide stronger
code protection than prior VM-based approaches. Firstly, it uses a dynamic instruction
scheduler to randomly direct the program to execute different paths without violating the
correctness across different runs. By randomly choosing the program execution path, the
application exposes diverse behavior, making it much more difficult for an attacker to reuse
the knowledge collected from previous runs or similar applications to launch an attack.
Secondly, it employs multiple VMs to further obfuscate the mapping from VM opcode to
native machine instructions, so that the same opcode could be mapped to different native
instructions at runtime, making code analysis even harder. We have implemented Dsvmp in
a prototype system and evaluated it using a set of widely used applications. Experimental
results show that Dsvmp provides stronger protection with comparable runtime overhead
and code size, when it is compared to two commercial VM-based code obfuscation tools.

Keywords: Code virtualization, Code Obfuscation, Reverse Engineering

1Extension of Conference Paper: a preliminary version of this article entitled “Exploiting Dynamic
Scheduling for VM-Based Code Obfuscation” by K. Kuang et el. appeared in the 15th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2016 [1]. The
extended version makes the following additional contributions over the conference paper: (1) it provides
a more detailed description of the background and threat model (Sections 2 and 3); (2) it describes how
the virtual interpreter dynamically changes the execution path at runtime using an algorithmic model
(Section 6.2 and Algorithm 1); (3) it provides new experimental results to evaluate the overhead of the
proposed technique, providing new insights of the approach (Section 9.2); (4) it adds a new experiment
to evaluate the diversity of the protected structure at runtime (Section 9.3); (5) it includes new results
to compare the proposed approach against two commercial VM protection systems, Code Virtualizer and
VMProtect (Section 9.4).

1

1. Introduction

Unauthorized code analysis and modification based on reverse engineering is a major
concern for the software industry. Such attacks can lead to a number of undesired out-
comes, including cheating in online games, unauthorized use of software, pirated pay-tv
etc. Industry is looking for solutions for this issue to deter reverse engineering of software
systems. By making sensitive code difficult to be traced or analyzed, code obfuscation is a
potential solution for the problem.

Code virtualization based on a virtual machine (VM) is emerging as a promising way for
implementing code obfuscation [2, 3, 4, 5, 6, 7, 8]. The underlying principal of VM-based
protection is to replace the program instructions with virtual instructions which attackers
are unfamiliar with. These virtual instructions will then be translated into native machine
code at runtime to be executed on the underlying hardware platform. Using a VM-based
scheme, the execution path of the obfuscated code is controlled by a virtual instruction
scheduler. A typical scheduler consists of two components: a dispatcher that determines
which instruction is ready for execution, and a set of bytecode handlers that first decode the
bytecode2 and then translate it into native machine code. This process replaces the original
program instructions with bespoke bytecode, allowing developers to conceal the purpose or
logic of sensitive code regions.

Prior work on VM-based software protection primarily focuses on making a single set
of bytecodes more complicate, and uses one single virtual instruction scheduler. This is
based on the assumption that the scheduler and the bytecode instruction set are difficult
to be analyzed in most practical runtime environments. However, research has shown that
this is an unreliable assumption [9] in certain scenarios where an adversary can easily reuse
knowledge obtained from other applications protected with the same scheme to preform
reverse engineering (termed cumulative attacks in this work). To protect software against
cumulative attacks, it is important to have a certain degree of non-determinism and diversity
during program execution [10].

This paper presents Dsvmp (dynamic scheduling for VM-based code protection), a novel
VM-based code protection scheme to address the problem of cumulative attacks. Our key
insight is that it will be more difficult for the attacker to track the application logic if sen-
sitive code regions behave differently in different runs. Dsvmp achieves this by introducing
rich non-determinism and diversity to program execution. To do so, it exploits a flexible,
multi-dispatched scheme for code scheduling and interpretation. Unlike prior work where
a program always follows a single, fixed execution path for the same input across different
runs, the Dsvmp scheduler directs the program to execute a randomly selected path for each

Email addresses: kky@stumail.nwu.edu.cn (Kaiyuan Kuang), zytang@nwu.edu.cn (Zhanyong Tang),
gxq@nwu.edu.cn (Xiaoqing Gong), dyf@nwu.edu.cn (Dingyi Fang), xjchen@nwu.edu.cn (Xiaojiang
Chen), z.wang@lancaster.ac.uk (Zheng Wang)

2A bytecode is the binary form of a virtual instruction.

Preprint submitted to Computers & Security August 25, 2017

protected code region. As a result, the program follows different execution paths in different
runs and exposes an non-deterministic behavior. Our carefully designed scheme ensures
that the program will produces a consistent output for the same input despite the execution
paths might look differently from the attacker’s perspective. To analyze software protected
under Dsvmp, the adversary is forced to use a large number of trail runs to understand the
logic of the program. This significantly increases the cost of code reverse-engineering.

Dynamic instruction scheduling in Dsvmp is achieved through a combination of two
techniques. Firstly, Dsvmp provides a rich set of bytecode handlers, each of which has a
unique control flow, to translate a bytecode instruction to native code. Handlers for a partic-
ular bytecode opcode all generate identical native machine instructions for the same input,
but their execution paths and data accessing patterns are different from each other. During
runtime, our VM instruction scheduler randomly selects a bytecode handler to translate a
bytecode to the corresponding native machine code. Since the choice of handlers is random-
ly determined at runtime for each bytecode instruction and the implementation of different
handlers are different, the dynamic program execution path is likely to be different across
different executions. Secondly, Dsvmp employs a multi-VM scheme so that various code
regions can be protected using different bytecode instruction sets and VM implementations.
This further increases the diversity of the program, making it even harder for an adversary
to analyze the software behavior or to reuse knowledge extracted from other software prod-
ucts. This is because different products are likely to be protected using different bytecode
forms and VM implementations.

The whole is greater than the sum of the parts. These techniques, putting together,
enable Dsvmp to provide stronger code protection than any of the VM-based techniques seen
so far. We have evaluated Dsvmp on four applications that implement some of the widely
used algorithms: “md5”, “aescrypt”, “bcrypt” and “gzip”. Experimental results show
that Dsvmp provides stronger protection with comparable runtime overhead and code size
when compared to two commercial VM-based code obfuscation tools: Code Virtualizer [3]
and VMProtect [4].

This paper makes the following contributions:

• It presents a dynamic scheduling structure for VM-based code obfuscation to protect
software against dynamic cumulative attacks.

• It is the first to apply multiple VMs to enhance diversity of code obfuscation.

• It demonstrates that the proposed scheme is effective in protecting real-world software
applications.

The rest of this paper is organized as follows. Section 2 introduces the principle of
classical VM-based code obfuscation techniques and cumulative attacks scenario. Section 3
describes the VM reverse attacking approach. Section 4 gives an overview of Dsvmp, which
is followed by a detailed description of the design in Section 5 and 6. Section 7 uses a
case study to demonstrate protection scheme provided by Dsvmp. Evaluation results are
presented in Sections 8 and 9 before we discuss the related work in Section 10. Finally,
Section 11 presents our work conclusions.

3

Target Program

Key code
push ebx
add ecx, eax

Native instr. loadd r3
 loadd r1
 loadd r0
 addd
 stored r1

 01 03
 02 01
 02 00
 1b
 03 01

Virtual instr. Bytecodes

VM Section

jmp VMinit

Junk
Instr

Out Program

VM Section

VMcontext
VMinit

Dispatcher
Handlers
Bytecode
Program
VMexit

1 2 3 4Key code extraction File refactoringVirtualization Bytecodes
generation

Figure 1: A classical process for VM-based code obfuscation. To obfuscate the code, we first dissemble
the code region to be protected into native assembly code (1). The assembly code will be mapped into
our virtual instructions (2) which will then be encoded into a bytecode format (3). Finally, the generated
byecode will be inserted into a specific region of the binary which is linked with a VM library (4).

2. Background

2.1. VM-based Code Obfuscation

VM-based code obfuscation often performs at the binary level for an already compiled
program. As shown in Figure 1, the obfuscation process typically follows a number of steps.
Firstly, the critical code segment to be protected will be extracted from the compiled binary,
which will be dissembled into assembly code. Next, the native assembly code will translated
into virtual instructions, i.e. a machine-independent intermediate representation used by
our VMs. The translated virtual instructions are functional equivalent to original native
code. Then, the generated virtual instructions will be encoded into the bespoke bytecode
format. Finally, a new VM section will be linked (or inserted) into the target program where
the entry point of the protected code region will be redirected to a function call to invoke
the VM to translate the bytecode instructions to native machine code at runtime.

The idea of VM-based code obfuscation is to force the attacker to move from a familiar
instruction set (e.g. x86) to an unfamiliar bespoke virtual instruction set, which hopefully
will significantly increase the time and efforts for reverse-engineering.

2.2. VM Components.

Our approach follows a classic VM implementation, consisting of a number of components
that are shown in step 4 at Figure 1. The context of the native program, which includes
information such as local variables, function arguments, the return address etc., will be
stored in a register-based VM memory space called VMContext. When entering the VM, the
VMinit component saves the native program context and initializes the VMContext. After
executing the protected code segment, VMExit restores the native program context, and
then returns the program control back to the original program to continue executing native
machine code.

At the heart of the VM is an interpreter consisting of a dispatcher and a handler set
described as follows. The dispatcher fetches a bytecode that is ready to be exeucted, decoding
the fetched bytecode (by parsing the opcode and the operand), and then assigning a handler

4

Number of attacks

P1

P2

PP1 P2

Protect by
Our approach

attcker

Eventually compromise
the target software

After a lot of attempts,
failure and give up

 Succeed

 Failure

Figure 2: Diversity affects the attack effectiveness. In this example, a dark small square represents reusable
attacking knowledge. Diverse program execution increases the difficulty for performing reverse-engineering
based attacks.

(from a collection of handlers that can be used to interpret the bytecode) to translate the
fetched bytecode to native machine code. This process iterates until all the bytecode of
the target protected code region are executed. For the attacker’s perspective, the key to
understand the logic of the protected code region is to find out how bytecode or virtual
instructions are mapped into native machine code.

2.3. The Design Goal

Figure 2 gives a high-level abstraction on how an attacker can reuse knowledge extract-
ed from the previous runs of the same application or other applications protected under
the same VM scheme to perform reverse-engineering. This kind of attacks is referred as
cumulative attacks in this paper.

In the first scenario, the software always follows the same execution path across multiple
runs. Under this setting, the attacker may be able to obtain sufficient knowledge on the
program behavior in a few trail runs. In the second scenario, the program execution path
changes across different runs. As such, it will take longer and many more runs to gather
enough information to perform the attack. As can be seen from this simple illustration,
diversity is key for us to protect software against dynamic cumulative attacks. This is the
aim of this work, to improve the diversity of program executions for code obfuscation. It is
to note that like any other code protection techniques, our approach could also be exploited
by malware. How to prevent this is out of the scope of this work.

3. The Attack Model

3.1. Attacking methods

The classical approach to reverse engineer a VM-protected program typically follows
three steps [9, 11], described as follows. The first step is to understand how each components
of a VM interpreter works. To do so, the attacker needs to locate these components and
analyze how the dispatcher schedules bytecode instructions for interpretation. The second
step is to understand how each bytecode is mapped to machine code and work out the

5

semantics of the bytecode instructions, i.e. how will a bytecode opcode be translated into
a native machine instruction. The third step is to use knowledge obtained in the first two
steps to recover the logic of the target code region, through e.g. removing the redundant
information and generating a simplified program that is equivalent to the original program.

To perform such an attack, a significant portion of the time will have to spend in analyzing
the working mechanism of the VM. The problem is that a skilled attacker could reuse
knowledge gathered from parts of the program to analyze other protected code regions of
the same program, or other applications protected using the same VM scheme and bytecode
instructions.

3.2. The Threat model

Our attack model assumes that the attacker has the necessary tools and skills to imple-
ment the above reverse-engineering based attacks. We assume that the adversary holds an
executable binary of the target software and can run the program in a control environmen-
t [12]. We also assume that the adversary can access content stored in memory and registers,
trace and modify program instructions and control flows. All these can be achieved using
sophisticate profiling and analysis tools like “IDA” [13], “Ollydbg” [14] and “Sysinternals
suite” [15]. The aim of the adversary is to completely reverse the internal implementation
of the target program. Our goal is to increase the difficulties in terms of time and efforts for
an adversary to reverse the target program implementation protected using VM-based code
obfuscation.

4. Overview of Our Approach

To address the problem of cumulative attacks, we want to introduce a certain degree of
diversity and non-determinism to the program execution. This is achieved through using a
diversified scheduling structure (Section 5) and multiple VMs (Section 6). Like any VM-
based protection schemes, Dsvmp should be used to protect the most critical code regions
but not the entire program, in order to minimize the runtime overhead. Our current imple-
mentation targets the Intel x86 instruction set but the methodology itself can be applied to
other instruction sets and hardware architectures. Figure 3 depicts the system architecture
of Dsvmp. Code protection of Dsvmp follows several steps described as follows.

Code translation. Dsvmp takes in a compiled program binary. It does not require having
access to the source code. Code segments need to be protected are given by providing the
symbolic name of the target functions or the start and end addresses of a code block. The
code segments are firstly converted into native machine assembly code (e.g. x86 instruc-
tions) using a disassembler (Step ¶). The assembly code will then be mapped into a set of
virtual instructions, i.e. the intermediate language used by the VM (Step ·). The virtual
instructions will then be stored in a bytecode format.

6

Key code
segment

Native
Instr.

Multiple
VMs

Junk Intr.

VM
section

DSVMPTarget
Program

Protected
Program

Initial
handlers

set

1

2

VMcontextMultiple
dispatchers

VMInit

VMExit
VM

Components

Multiple
sets of

handlers

Multiple sets
of bytecodes

Deformation
engine

Serial number
transformation

Virtual
Instr.

4

6

7

6
3

5

Figure 3: Offline code protection process. Dsvmp takes in a program binary. For each protected code
region, it translates native instructions into bytecodes. Next, it generates multiple bytecode handlers that
are semantically equivalent but implemented in different ways. It then generates the corresponding driver-
data and multiple VMs. Finally, the generated VMs and associated components will be inserted into the
program binary and fills the original code region with junk instructions.

Diversifying. As a departure from prior work on VM-based code obfuscation, Dsvmp em-
ploys multiple VM instruction scheduling policies. Each virtual instruction scheduler can
have multiple dispatchers and bytecode handlers. Dsvmp provides a set of handlers that are
semantically equivalent but are implemented in different ways for a single virtual instruction.
Thus, the scheduler can dynamically determine at runtime which of the handlers is used to
decode a bytecode (i.e. the encoding scheme of the virtual instruction which includes the
opcode and operand) and to interpret a virtual instruction. Multiple handlers are generat-
ed by applying obfuscation to a set of seed handlers (Step ¸). The way the handlers are
obfuscated could be different for different code regions. Dsvmp also employs a multi-VM
scheme by providing more than one VM implementation. Therefore, each handler will be
obfuscated for each VM by using the deformation engine (i.e. a obfuscation toolkit), result-
ing in n (i.e. the number of VMs) sets of semantically equivalent handlers with different
implementations and control flows (Step ¹). Next, the virtual instructions will be encoded
into an unique bytecode form for each VM, so that the same opcode from different VMs will
be mapped into different native machine instructions to protect against static analysis. Our
preliminary implementation provides two sets of bytecode in a VM. Therefore, each virtual
instruction can be encoded into two different sets of bytecode forms in a VM(Step º). After
these steps, Dsvmp essentially provides multiple VMs, where each VM contains one set of
bytecode handlers (so that a virtual instruction can be interpreted by multiple handlers),
while the instructions of the protected code regions are stored in different bytecode forms
(Step »).

Code generation. Finally, a new section will be inserted into the program binary, which
contains n VMs and their components such as dispatchers, VMContext etc. Because the size
of the generated VM code and virtual instructions is typically larger than the protected
code region, and a PE file on disk, each section follow a certain file alignment value (512

7

Main Function Control unit Directly dispatch the next Handler

Randomly return to
a Dispatcher

lods byte ptr ds:[esi]
xor al,bl
sub al,0xFA
sub al,0x45
add bl,0x1
add esi,eax
mov ebx,0

push eax
rdtsc
mov ecx,2
div ecx
cmp edx,0
jz label

lods byte ptr ds:[esi]
... ...
add eax,edx
jmp dword ptr ds:[edi+0x60+eax*4]

label: push ebx
div bl
movzx eax,AH
add eax,9dH
jmp dword ptr ds:[edi+0x50+eax*4]

Handler

Next Handler

Dispatcher

Figure 4: The execution flow of the new handler, each bytecode handler has a control unit that randomly
determines whether the control after exiting the handler should be given to a dispatcher or an alternative
bytecode handler.

byte) [16], we simply fills the original code region with junk instructions(Step ¼), rather
than utilizing the space to store the VM code.

5. Dsvmp Scheduling Structure

The Dsvmp VM scheduler uses multiple dispatchers to determine which bytecode in-
struction should be interpreted at given time. A unique design of Dsvmp is that the
dispatcher used to schedule bytecode handlers is dynamically changed at execution time.
To further increase the diversity of the program’s behaviour, Dsvmp also uses multiple
bytecode instruction sets and bytecode handlers.

5.1. Multiple Bytecode Handlers

In classical VM-based code obfuscation, a single dispatcher is responsible for fetching a
bytecode instruction, and then determining which bytecode handler to use by examining the
opcode of the bytecode instruction. Because each bytecode instruction is decoded by a fixed
handler set, an adversary can easily work out the mapping from an opcode to its handler.
From the mapping, the adversary can correlate the native machine code to each bytecode
to analyze the program behavior and the logic structure.

To address this issue, for each bytecode handler, we use obfuscation techniques to auto-
matically generate a number of alternative implementations which all produce an equivalent
output for the same input instruction. Different implementations, however, are programmed
in different ways using e.g. different control flows, data structures or obfuscation methods.

To control the program execution path, we insert a control unit at the end of each
bytecode handler. Before exiting a bytecode handler, the control unit randomly determines
whether the control should be given back to a dispatcher or another handler. Figure 4 shows
an example of the control unit of a Dsvmp bytecode handler. When the main function of
the handler is finished, the control unit randomly switches to one of the branchs. At the
first branch, the “lods” (a load operand in the x86 assembly) instruction first fetches an
offset value from Offset Bytecode to calculate the address of the nest bytecode handler, and

8

Dispatcher1 Dispatcher2 Dispatcher3

Handler
1

Handler
2

Handler
3

Handler

20
Handler

21

Handler
43

Handler

n

Dispatcher1 Dispatcher2 Dispatcher3

Handler
1

Handler
2

Handler
3

Handler
20

Handler
21

Handler
43

Handler
n

Standard Bytecode：02 XX 01 21 XX 43 20 ... Offset Bytecode：02 XX 93 20 XX 22 71 ...

Figure 5: Our approach employes multiple dispatchers together with a control unit to schedule the handlers.
In this example, the type of handlers and the order for invoking the handlers could be different across
execution runs. The “XX” in bytecode refers to the parameters. Underlined two bytecodes is handler43
encoding results in two types of Bytecode respectively

then jump to execute it. By contrast, the instruction at another branch will return to a
dispatcher. Figure 5 shows two different dynamic scheduling results. Under the instruction
of the control unit, a handler can either be invoked by a dispatcher or a handler. The Offset
Bytecode here is different from the usual standard bytecode, which is designed to drive the
handler’s dispatch function, and we will describe it in detail in the next section.

5.2. Multiple Bytecode Formats and Dispatchers

Bytecode Formats. Using VM-based obfuscation, native machine code of the protected code
regions will be translated into virtual instructions and stored in a bytcode format. A handler
will be chosen to decode the bytecode instruction to translate it back to native machine code
at runtime. In classical VM-based code obfuscation approaches, there is one-one mapping
from a bytecode opcode to a handler, i.e. the bytecode opcode determines which handler
to be used. Having multiple bytecode instruction sets for different code regions of a target
program can provide stronger protection. By doing so, the same opcode from different
code region will have different semantic meanings. This is because the same opcode from
different regions can be mapped to different handlers (and hence different native machine
code implementations). For this reason, the virtual instructions of different code regions
will be stored in different bytecode formats.

Our current implementation uses two bytecode formats for each VM, namely Standard
Bytecode and Offset Bytecode. Additional bytecode formats can be easily added to our
system. Here, Standard Bytecode is a standard bytecode format where each bytecode consists
of the virtual instruction’s opcode3 and their operands. Instructions encoded as Standard
Bytecode will be fetched and executed by the dispatcher. Offset Bytecode uses a different
encoding scheme, which is fetched by the handler’s control unit. Each Offset Bytecode

3The opcode is a ID indicates which handler should be used to interpret the virtual instruction.

9

consists of the offset IDs of two handlers (e.g. handler21 and handler43 in Figure 5 has an
offset ID of 22) and their operands respectively. Recall that a control unit is inserted to the
end of each handler to determine whether the control should be given back to the dispatcher
or another handler. Before exiting the current handler, if the control unit chooses to execute
the next handler, it will fetch the corresponding offset ID from Offset Bytecode. The offset
ID will then be used to calculate the id of the next handler to execute.

Dispatchers. Dsvmp also provides multiple dispatchers to further increase the diversity of
program execution. As an example, considering Figure 5 which shows two possible program
execution paths using three dispatchers within a single VM. As can be seen from the dia-
gram, each time when a different dispatcher is chosen, a handler can either be invoked by
a dispatcher or another handler; and the type of handlers to be invoked could be different
in two different execution runs. As a result, knowledge about the program control flow
extracted from the first run does not apply to the second one.

6. Multiple VMs

In contrast to classical VM-based obfuscation approaches that uses a single VM (termed
SVM), Dsvmp uses multiple VMs. Multiple VMs offer different sets handlers and bytecode
instruction sets. Under such settings, bytecode instructions can be scheduled from different
VMs and a virtual instruction can be interpreted by more than one handler. Therefore, there
will be more than one possible mapping from a bytecode instruction to a handler. Together
with the multiple scheduling approach described above, Dsvmp can further increase the
diversity and uncertainly of program execution.

6.1. Switching between Multiple VMs

The number of VMs to use is a parameter provided by Dsvmp. This can be configured
by the user. This number can vary depending on the target program to be protected,
and the trade-off between the protection strength and runtime overhead. As described in
Section 5.2, we generate a set of handlers for each VM so that we have n different sets of
handlers for n VMs. Our current implementation also translates the virtual instructions of
each handler set to stored as two different sets of bytecode. Different bytecodes will have
different semantics in different VMs. Therefore, there are more than a bytecode that can be
translated by different handlers in different VMs.

Our system dynamically determines which VM to use at runtime. This is done through
altering the structure of the instruction dispatcher that decides which VM to use at runtime.
Figure 6 shows an example of the new dispatcher structure, which has a VM switch unit
that can randomly select one of the multiple VMs to use. To do so, The switching unit first
randomly selects one VM among the multiple VMs (lines 1-7), and then modifies the virtual
program counter (VM PC) to point to the target VM (lines 8-10). Our implementation uses
the x86 ESI register as a VM PC to store the address of the next bytecode instruction. Other
registers can also be used for this purpose. Finally, the dispatcher fetches a bytecode accord-
ing to the modified VM PC and dispatches the handler to interpret it in the corresponding

10

1 push edx ;−−−−−−−−−−−−−−−−−−−−−−−−
2 rd t s c
3 xor edx , edx
4 div dword ptr ds : [ed i+0x58] ;VM swi tch ing un i t
5 mov eax , edx
6 sub edx , dword ptr ds : [ed i+0x50]
7 j e l a b e l ;−−−−−−−−−−−−−−−−−−−−−−−−
8 imul edx , dword ptr ds : [ed i+0x54] ; Modify the VM PC and
9 add e s i , edx ; save the cur rent VM ID

10 mov dword ptr ds : [ed i+0x50] , eax
11 l a b e l : l od s byte ptr ds : [e s i] ;−−−−−−−−−−−−−−−−−−−−−−−−
12 ; Fetch the bytecode and
13 movzx eax , a l ; d i spatch a Handler
14 add eax , edx ; to i n t e r p r e t i t
15 pop edx
16 jmp dword ptr ds : [ed i+eax∗4+0x60]

Figure 6: The new dispatcher has a VM switch unit that can randomly select one of the multiple VMs to
continue scheduling handler.

VM (lines 11-16). The VM, the set of bytecode handlers and bytecode instructions will
be randomly switched across different code regions in both a single execution and across
different program runs.

6.2. The VM Scheduling Process

Our dynamic scheduling is achieved through two control units: (1) a structure control
unit to randomly determine whether the execution control should be given to a dispatcher or
another bytecode handler, (2) a VM switching unit to randomly select a VM to use. Having
these two control units to switch the execution path of virtual instruction interpretation can
greatly increase the diversity of the program behavior when compared to existing approaches
that have a single, fixed scheduling structure.

Our dynamic scheduling scheme is described in Algorithm 1. Bytecodes of a code region
will be executed one after one in sequential order. The virtual interpreter fetchs a bytecode
from Standard Bytecode and dispatchs a handler to interpret the bytecode (lines 5-6). After
executing the bytecode, the control unit will randomly decide whether the control should be
given back to a bytecode dispatcher or a VM handler (line 7). If the control is given back
to a bytecode dispatcher (lines 8-11), a dispatcher and a VM will be randomly chosen to
execute a bytecode from Standard Bytecode. If the control is directed to another bytecode
handler (lines 12-13), the program will execute the next bytecode from Offset Bytecode .
The process continues until all the virtual instructions of the protected code region have
been executed.

7. An Example

We use a short x86 code snippet shown in Figure 7 as an example to illustrate how
Dsvmp operates. In this example, “STARTSDK” and “ENDSDK” are used to mark the begin

11

Algorithm 1 Virtual Interpreter’s Work Flow
1: VMInit

2: Switcher selects a VM randomly
3: Fetch a bytecode from Standard Bytecode in current VM
4: while bytecode 6= ∅ do
5: Decode the bytecode
6: Select a handler to interpreter the bytecode
7: i = handler exit address
8: if i == dispatcher then
9: Select a dispatcher randomly

10: Switching unit selects a VM randomly
11: Fetch the next bytecode from Standard Bytecode from the selected VM
12: else {i == handler}
13: Fetch the next bytecode from Offset Bytecode in the current VM
14: end if
15: end while
16: VMExit

1 STARTSDK
2 00401036 mov eax , ebx
3 00401038 sub eax , 03
4 ENDSDK

Figure 7: Example assembly code snippet for a code region to be protected.

and end of the code region respectively, and “00401036” and “00401038” are the address of
two assembly instructions.

7.1. Code obfuscation

Table 1 shows the resulted obfuscated code for the code example given in Figure 7.
Firstly, Dsvmp extracts the target code region and disassemble it into native instructions.
Dsvmp inserts two additional instructions (“push 0x40103b” and “ret”) at the end of the
protected code region, in order to jump back to execute the native code. It then converts
the native instructions to virtual instructions based on a translation convention. Dsvmp’s
bytecode instructions are based on a stack machine model. Here the load instruction is
used to push operands into the stack, and the store instruction is used to pop results out
from the stack and store the result to the virtual context (VMContext).

After translating the native code to virtual instructions, we use the deformation engine to
transform the initial bytecode handlers set. For this example, our implementation provides
two VM configurations, so we generate two sets of bytecode handlers which are semantically
equivalent but are implemented in different ways. Then, we randomly shuffle the serial
numbers of these handlers, resulting in two new sets of handlers: HAS1 and HAS2. Each set
of bytecode handlers is associated with two bytecode instruction sets: Standard Bytecode

12

Table 1: Generated virtual instructions for the example shown in Figure 7
Instr.1 Instr.2 Instr.3 Instr.4

NI mov eax, ebx sub eax, 0x03 push 0x40103b ret

VI

move 0x08

load

move 0x04

store

move 0x04

load

load 0x03

sub

store

move 0x04

store

load 0x40103b ret

Notes: In the table, “NI” indicates the native x86 instructions, and “VI” donates the virtual instructions. Here, our system
inserts “Instr.3” and “Instr.4” in order to jump back to execute the native code after returning from the protected code region.

(Set11) and Offset Bytecode (Set12) for HSA1 and Standard Bytecode (Set21) and Offset
Bytecode (Set22) for HSA2. The resulted program is illustrated in Figure 8. We store the
virtual instructions as bytecode. Because the resulted code size is larger than the original
code and hence cannot simply be used to replace the original instructions. For this reason,
we simply fill the original code region with junk instructions.

Finally, Dsvmp creates a new code section attached to the end of the target program.
The new code section contains the implementation of the handlers, different sets of bytecode
instructions, dispatchers and other VM components such VMContext and routines such as
VMInit (used to initialize the VM) and VMExit (use for cleaning up the context before exiting
the VM).

7.2. Runtime execution

Runtime execution of the protected code region is illustrated in Figure 8, which follows
a number of steps:

• Step 1: The entry of the protected code segment contains an “jmp VMInit” instruc-
tion. This transfers the control to the VM initialization routine, VMInit, which saves
the native host context and initializes the virtual context, VMContext.

• Step 2: Next, a dispatcher is used to schedule the virtual instructions. It randomly
selects a VM (the example shown in Figure 8 assumes that VM2 is chosen at beginning)
and then it fetches a bytecode from the Standard Bytecode, Set21. After decoding the
bytcoe, the dispatcher gets an operand, “6a”, which directs the dispatch to jump to
execute another handler, “0x6aHandler”.

• Step 3: A control unit is executed (see Section 5.1) before exiting the “0x6aHandler”
handler. The control unit determines at runtime whether to execute another handler
or to return the control to the dispatcher. If it chooses to return the control to the
dispatcher, the program execution moves to Step 5.

• Step 4: Assume that the control unit decides to execute the next handler. It will fetch
a bytecode from Offset Bytecode, Set22. Adding the offset of 22 to the current handler
“0x6aHandler” gives the address (0x85) of the next handler “0x85Handler”. The

13

6a 07 85 91 6a 00 85
91 6a 02 85 91 6a 03
85 91 71 01 ...

jmp Vminit

Junk Intr

VM Section

VMcontext

VMinit

Dispatcher

VM1

VM2

VMexit

HAS1

Standard Bytecode Set11

Offset Bytecode Set12

HAS2

Standard Bytecode Set21

Offset Bytecode Set22

VM
section

00 07 01 12 00 00 01
12 00 04 01 12 00 02
01 12 00 03 ...
00 07 01 11 82 0 0 01
11 82 04 01 11 82 02
01 11 82 03 ...

6a 07 1b 0c 6d 00 1b
0c 6d 02 1b 0c 6d 03
1b 0c 74 24 ...

1

7
2

3

4

5

6

Program

Figure 8: The execution process of the protected program. Here each VM has two sets of bytecode instruc-
tions and one set of handlers.

control unit will then jump to execute “0x85Handler”. After executing this handler,
the program execution loops back to Step 3.

• Step 5: If the control unit chooses to return the control to a dispatcher, it will
randomly select a dispatcher to continue the execution. Then, the program moves to
Step 6.

• Step 6: The selected dispatcher randomly selects one of the VMs to use. The dispatch-
er fetches a bytecode from the selected VM, decoding it to get the handler’s address.
It then jumps to execute the handler. After executing the handler, the program goes
back to Step 3.

• Step 7: Steps 3 and 4 are iterated until all the virtual instructions get executed. The
finally step is to invoke the VMExit procedure to restore the native execution context
to continue executing the rest native code of the program.

8. Security Strength Analysis

In this section, we evaluate the security strength of Dsvmp. We first analyze the number
of possible execution paths, showing that Dsvmp can significantly increase the diversity
and non-determinism of program execution. Then, we discuss how Dsvmp can enhance the
diversity of code structures.

8.1. Program execution paths

Recall that our design goal is to increase the diversity of program execution, so that in
different runs the protected region does not follow a single execution path across runs. To
make the analysis concrete, we assume that there are 10 different dispatchers, which is the
standard setting in the current implementation of Dsvmp. We use the example presented in
Section 7 as a case study. In this example, Standard Bytecode has 103 bytes of data. They
contain a total of 78 handler serial numbers. In this analysis, we exclude the last handler
because of it is used to exit the VM and will always get executed. This leave us 77 handlers

14

where each handler can lead to 11 different execution paths. This is because at the end of
executing each handler, a control unit will determine whether the control should be given
to another handler or one of the 10 dispatchers (see Section 5.1) – 11 possibilities in total.

In combination, these options give 1177 possible execution paths for each protected code
region. Therefore, the probability, p, for a protected code region to follow the same execution
path across different runs is p = 1

1177
, a small possibility. It is to note that so far we have

assumed that the protection scheme uses just one VM. The multi-VM strategy employed
by Dsvmp can further increase the number of possible execution paths. This is because the
more dispatchers and VMs are, the greater number of possible execution paths will be. For
example, if the Dsvmp implementation provides five different VMs, then each dispatcher
can randomly select one VM among the 5 VMs; as a result, each handler can lead to 51
(= 10 ∗ 5 + 1) different execution paths. Together with multiple dispatchers and bytecode
instruction strategies, for the setting used in this discussion, Dsvmp gives a single code
region 5177 possible execution paths.

In summary, we can conclude that for a single code region protected by Dsvmp, its
possible execution path number, m, and the probability of its execution of the same execution
path across different runs, p, respectively are:

m = (ND ∗NVM + 1)n, p = 1/m.

where ND represents the number of dispatcher, NVM is the number of VMs, and n is
the number of handler scheduling options. Given the massive number of choices, it will be
unlikely for a protected code region to follow the same execution path across different runs.

8.2. Code structures

Having a diverse code structure is key to prevent an adversary from reusing knowledge
obtained from other software to launch a new attack. In other words, we would like the
code structures of the obfuscated program’s to be as dissimilar from the original program’s
as possible.

Blietz et al. [17] proposed a method to measure the similarity of program structures.
Their method is based on the control flow information such as the number of branches and
back blocks, the nesting level of the code etc. We adopt the metrics from [17] to analyze code
structures for programs protected using Dsvmp. We use a number of metrics to quantity
the code structure. These metrics are:

• NodeNum: the number of basic blocks of the protected region.

• BranchNum: the number of basic blocks where the last instruction is a conditional jump
instruction.

• DR(V i): the number of in and out instructions for the basic block, Vi. This metric
is defined as DR(V i) = Din(V i) + Dout(V i) where Dout (V i) refers to the out-degree
and Din (V i) refers to the in-degree and they mean the number of arcs that start or
end at V i.

15

Table 2: The relevant information about the program

Basic info of program Info of protected-software

program key code segment program Node Num Branch Num
i<n∑
i=0

DR(i)
i<n∑
i=0

DF (i)

A
mov eax,ebx

sub eax,03
A’ 23 5 46 18

B
pop eax

add eax,ebx
B’ 48 9 96 36

Notes: In the table, the number of n which in
i<n∑
i=0

DR(i) and
i<n∑
i=0

DF (i) are equal to the NodeNum.

• DF (V i): the data flow relationship of basic block, Vi. This is used to measure the
frequency of Vi ’s information exchange. It is defined as DF (V i) = Flowin(V i) +
Flowout(V i), where Flowin is the number of reading instruction in Vi and Flowout is
the number of writing instruction in Vi.

8.2.1. Example

Table 2 illustrates two code segments to be protected. These two code snippets have very
similar structures because they both have one basic block and there is no branch within the
basic block. As can be seen from the table, the code transformation applied by Dsvmp
leads to significant variances in the metric values. This indicates that the transformed code
segments have distinct code structures. The metric value calculation is described as follows.

We use the following formula to quantify the code structure information, SInforX , for
a given piece of code, X, after code obfuscation.

SInforX = NodeNumX + BranchNumX +
i<n∑
i=0

(DR(i) + DF (i))

Applying this formula to the transformed code segments, A’ and B’, listed in Table 2,
we get :

SInforA′ = NodeNumA′ + BranchNumA′ +
i<n∑
i=0

(DR(i) + DF (i))

= 23 + 5 + (46 + 18)
= 92

SInforB′ = NodeNumB′ + BranchNumB′ +
i<m∑
i=0

(DR(i) + DF (i))

= 48 + 9 + (96 + 36)
= 189

From SInforA′ and SInforB′ , we can calculate the similarity SDiff , for the two piece
of code, A’ and B’, as:

SDiff =
|SInforA′ − SInforB′|
SInforA′ + SInforB′

=
97

281
= 34.5%

16

Table 3: Information of the benchmarks
program Size(KB) Instr. Total Function to protect Instr. Protect Instr. Executed

md5 11 1357 Transform() 563 229141
aescrypt 142 9788 encrypt-stream() 1045 478297
bcrypt 68 3081 Blowfish-Encryp() 54 1050003
gzip 56 9837 deflate() 154 680037
astar 281 29036 SearchPath() 156 19589
tetris 37 4386 ClearRow() 73 10942

Notes: The 3rd column shown the total number of target program instructions. The 4th column of the table gives the function
to be projected and the 5th column shows the number of instructions of the function. The number of instructions got executed
with the critical functions while processing the test file, and shown in the last column of the table.

Therefore, the quantified code structure similarity between A’ and B’ is 34.5%. This
example shows that Dsvmp can significantly increase the dissimilarity of code structures
even for simple code segments.

9. Performance Evaluation

We now evaluate the performance of Dsvmp using six applications and compare it with
two commercial VM-based protection systems.

9.1. Evaluation Platform and Benchmarks

We evaluated Dsvmp on a PC with an 3.0 GHz Intel Core-i3 Duo processor and 8GB of
RAM. The PC runs the Windows 10 operating system.

We evaluated our approach using four widely use applications, md5, aescrypt, bcrypt,
gzip. We used these applications to process a test text file. The size of the file is 26 KB. In
addition to the four applications, we also evaluate our approach on two interactive gaming
applications: “AStar”, a maze pathfinding game using the A* algorithm, and“Tetris”, a
classic graphics combination game [18]. Figure 9 shows the “AStar” maze barrier setting
and route finding results, and the clear row operations of “Tetris”. Table 3 gives some
information of the protected code regions for each benchmark. The total number of target
program instructions are shown in the 3rd column in Table 3. The 4th column of the table
gives the function to be projected and the 5th column shows the number of instructions of
the function. Finally, we use the Intel Pin tools [19] to calculate the number of instructions
get executed within the protected functions while processing the test file. The result is
shown in the last column of the table.

9.2. Code Size and Runtime Overhead

9.2.1. Code size

For each target benchmark, we will choose a core function to protect. We do so by
inserting a set of specific SDK (“STARTSDK” and “ENDSDK”) at the beginning and end
of the target function in the compiled program binary. We applied Dsvmp to the target
function and repeated the process for 10 times. For each protection run, we used a different
number of VM configurations.

Figure 10 shows how the Dsvmp multi-VM scheme affects the code size. As described
before, each VM has two bytecode instruction sets and one set of handlers; therefore, it is

17

Figure 9: The interaction interface of the “AStar” and “Tetris”.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

C
o

d
e

si
ze

 (
K

B
)

md5 aescrypt bcrypt gzip astar tetris

Figure 10: The impact of code sizes for Dsvmp configurations with a different number of VMs. The number
of horizontal axis is the configuration of the VMs, “0” is the original program.

not supervising that the code size of the protected program grows as the number of VM
increases. In general, the code size grows as the number of VMs increases, because the
block of PE executables are usually follow a certain alignment value (such as, 4096 or 512
byte) [16]. Moreover, we can see that there is a strong correlation between the code size
and the number of protected instructions. This is why the code size of “aescrypt” grows
fastest than others – as it has the largest number of protected instructions (see Table 3).
For the same reason, the code size of “bcrypt” grows slower than other programs, as this
benchmark has the least number of protected instructions. Overall, the code size growth (a
few hundreds KB in our experiments) is modest as typically we only need to protect the
core function or a core algorithm of an application.

9.2.2. Runtime overhead

To evaluate the runtime overhead of Dsvmp, we used benchmark to process the test
file. For each protected benchmark we repeated the process for 10 times and report the
average runtime per benchmark. For “AStar” and “Tetris”, in order to eliminate the user

18

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5 x 10
5

A
ve

ra
ge

 R
u

n
ti

m
e

 (
u

s)

md5 aescrypt bcrypt gzip

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2 x 10
4

A
ve

ra
ge

 R
u

n
ti

m
e

 (
u

s)

astar tetris

(b)

Figure 11: The average runtime of target benchmark when protected with different VMs. The number of
horizontal axis is the configuration of the VMs, “0” is the original program. Because the runtime overhead
of “AStar” and “Tetris” is much smaller than the other four benchmarks, in particular, their experimental
data are shown separately in (b) in order to observe their variation.

Table 4: Possible execution path statistics

Basic configuration m, for different NV M configurations
program ND n 1 2 3 4 5 6 7 8

md5 5 6175 66175 116175 166175 216175 266175 316175 366175 416175

aescrypt 5 8014 68014 118014 168014 218014 268014 318014 368014 418014

bcrypt 5 585 6585 11585 16585 21585 26585 31585 36585 41585

gzip 5 1271 61271 111271 161271 211271 261271 311271 361271 411271

astar 5 1502 61502 111502 161502 211502 261502 311502 361502 411502

tetris 5 696 6696 11696 16696 21696 26696 31696 36696 41696

Notes: The specific calculation process is described in section 8. Where ND is the number of dispatcher, NV M is the number
of VMs, and n is the number of handler scheduling.

interaction delay, we only calculate and collect the average runtime of the target operations
(pathfinding and row clear).

The results are depicted in Figure 11. We see an increase on the runtime overhead when
using multiple VMs but the overhead becomes stable from 3 VMs onward. which shows
that the majority of average runtime. Except for the handler’s normal interpretation of the
time spent on the execution, the main runtime overhead comes from the the switch time
between different VMs. The overhead of VM switch is stable so that it does not significantly
increase when using 3 or more VMs. We notice that the overhead of VM switch for using
two VMs is not significant. This is because our scheme does not frequently switch the VM
under a 2-VM configuration. Besides, we found that the greater the number of protected
instructions get executed at runtime the greater the runtime overhead will be. This explains
why “bcrypt” has a much higher runtime overhead than other benchmarks.

9.3. Structural diversity

9.3.1. Possible execution path statistics

In the previous section, we have discussed how to calculate the number of optional
execution paths for a code region protected by Dsvmp (see Section 8.1). We adjust the
output of the protection system to collect the number of handlers that need to be scheduled

19

1 2 3 4 51 2 3 4 51 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
u

lt
ip

le
 V

M
 S

w
it

ch

No Switch
Switch

Test-2VM Test-3VM Test-4VM

(a)

0 1 2 3 4 5 6
1600

1620

1640

1660

1680

1700

1720

1740

In
st

ru
ct

io
n

 E
xe

cu
te

d

Test-2VM Test-3VM Test-4VM

(b)

Figure 12: (a) is the probability distribution of multiple VMs switching for multiple runs. The legend
“switch” donates the number of times a VM has been switched to another, and the “no switch” means the
VM remains unchanged. (b) is the number of instructions changes across runs due to the VM switch.

for different benchmarks. We then calculate the values of m under different configurations
for these benchmarks, based on the formula presented at Section 8.1. Detailed experimental
data are shown in Table 4. From the experimental data, we can clearly see that the number
of optional paths for each benchmark is a huge number, and the program protected by
Dsvmp rarely follows the same execution path across different runs. At the same time,
through the previous experimental data we found that the number of runtime instructions
for the target code is much larger than the number of its original instructions (see Table 3).
This is because the critical method is executed multiple times at runtime. Therefore, even
in a single run for a program protected by Dsvmp, calls to the critical function is likely to
follow different execution paths during a single run.

9.3.2. Multi-VM switching experiment

In order to evaluate the impact of multi-VM switching on program execution, we conduct
experiments on using a micro-benchmark, “test.exe4. Here we only protect one instruc-
tion “mov eax, 1234567” of the application, in order to isolating other scheduling effects.
In this experiment, we do not perform handler obfuscation and used only one dispatch-
er in the protection process. This can minimize the impact of irrelevant factors. We use
three VM configurations, 2-VM, 3-VM and 4-VM, to protect the target program. For each
configuration, we run the program execution 5 times to collect the relevant information.

Figure 12 (a) shows the VM switching frequency information of “test.exe” for the five
runs. We observe that the frequency of VM switching is low when 2 VMs are use. However,
the frequency increases by 75% when 3 or 4 VMs are used. Through the experiment we
found that the impact of 2-VM on the number of instructions gets executed at runtime is
less than 3-VM and 4-VM. This is depicted in Figure 12 (b). Essentially, the number of
instructions gets executed can reflect the runtime overhead. This explains why the 2-VM
configuration has a smaller effect on runtime overhead in Figure 11.

4A 3KB application that pops up a confirmation box.

20

0 10 20 30 40 50 60 70

1

2

3

V
ir

tu
al

 M
ac

h
in

e
ID

run1 run2 run3

(a)

0 10 20 30 40 50 60 70

1

2

3

4

V
ir

tu
al

 M
ac

h
in

e
ID

run1 run2 run3

(b)

Figure 13: Dynamic VM switching for executing protected code regions. There are a total of 69 handler
schedules. The y-axis shows the VM selected in each schedule. Different lines show the VM switches across
runs for a 3-VM (a) and a 4-VM (b) configuration.

9.3.3. Perform path runtime diversity

In the course of the above experiment, we also collected the ID of the VM where the
handler was executed each time. Figure 13 shows the switching of the VM for three runs.
The data in (a) and (b) are from the test program with 3-VM and 4-VM configurations,
respectively.

As can be clearly seen in the figure, VMs are randomly selected across different runs,
and the execution path of the 3 runs is not the identical. For each dispatch loop, the
dispatcher will randomly selects a VM to enter and schedules the corresponding handler.
As mentioned before, the handlers set in each VM is obfuscated with different obfuscation
schemes. Thus, the internal structure of the handler dispatched from different VMs during
each run is different. The experimental results show that the execution path of a protected
program exhibit strong diversity. Combined with various handler sets, the target program
protected by Dsvmp will have temporal diversity [10].

9.4. Comparisons with state-of-the-arts

We also compared Dsvmp against two commercial VM protection systems, Code Vir-
tualizer (CV) [3] and VMProtect (VMP) [4], in terms of code sizes and runtime overhead.
We adopt a customized protection scheme when using CV to protect the target program.
Specifically, this scheme uses the Medium opcodes obfuscation options, and does not use
the “Strip Relocation”, “Re-Virtualization” and other additional code obfuscation schemes.
Doing so allow us to keep the runtime and code-size overhead of the CV scheme at a mod-
erate level, in order to provide a fair comparison. For VMP, we use two types of schemes
to protect the target program, Maximum-protection which provides the strongest protection
(noted as VMProtect-Maximum-protection), and Maximum-speed (noted as VMProtect-
Maximum-speed), which aims to reduce the overhead. For Dsvmp, We use a configuration
of 5 VMs, Dsvmp-5VM, in this experiment. This is because the code-size overhead of 5-VM
configuration is moderate.

9.4.1. Code size

Figure 14 shows the impact on code size of several VM-based protection systems. From
the figure we can see that Dsvmp has a similar code-size overhead, if not smaller, when
compared with CV and VMP. For example, for the least affected program bcrypt, the code
sizes of the target function is around 120% for all schemes. For aescrypt, the code-size
overhead of Dsvmp-5VM and CV is around 177%. This is significantly smaller than the

21

md5 aescrypt bcrypt gzip astar tetris
0

100

200

300

400

500
C

o
d

e
Si

ze
 (

K
B

)
Original
DSVMP-5VM
Code Virtualizer
VMProtect-Max-protection
VMProtect-Max-speed

Figure 14: Code size comparisions.

md5 aescrypt bcrypt gzip astar tetris
0

0.5

1

1.5

2

2.5 x 10
6

A
ve

ra
ge

 R
u

n
ti

m
e

(μ
s)

DSVMP-5VM
Code Virtualizer
VMProtect-Max-protection
VMProtect-Max-speed

astar tetris
0

2

4

6

8

10 x 10
4

Figure 15: Average runtime overhead comparisions.

Table 5: The average runtime overhead(ms)

program Original
DSVMP

5VM
VMProtect
Max-Speed

VMProtect
Max-Protect

Code
Virtualizer

md5 1.603 64.229 73.660 141.179 803.302
aescrypt 6.550 154.720 257.718 1903.458 623.452
bcrypt 4.544 298.415 252.655 1899.968 2051.708
gzip 3.963 169.107 368.599 1923.022 1110.598
astar 8.806 16.992 18.210 91.691 58.705
tetris 0.668 1.565 4.811 13.393 12.012

Average 4.357 117.505 162.609 995.452 776.630

Notes: The average data for the last row is the average runtime for 6 benchmarks for each protection scheme.

overhead of 252% for VMProtect. We also observed that the code size is mainly determined
by the size of the protected code region. The larger the target code to be protected, the large
the code size will be. Among all the evaluation benchmarks, the aescrypt has a greater
code bloat when it is obfuscated by VMProtect-Maximum-protection. Overall, our approach
does not significantly the code size of the protected code segments when compared to the
commercial counterparts.

22

D
SV

M
P

-5
V

M

0 10 20 30 40 50 60 70 80 90 100 110 120 130

1

2

3
0

0.05

C
o

d
e

 V
ir

tu
al

iz
er

0 5 10 15 20 25

1

2

3 0.05

0.25

V
M

P
ro

te
ct

0 2 4 6 8 10 12 14 16

1

2

3
0.1

0.2

0.3

Figure 16: Calling frequencies for handlers across runs per scheme for md5. The x-axis shows the number of
handlers observed, and the y-axis represents three individual runs.

9.4.2. Runtime overhead

The average runtime overhead of the three schemes is given in Figure 15. This diagram
shows that the runtime overhead of Dsvmp and VMProtect-Maximum-speed are compara-
ble, which is smaller than CV and VMProtect-Maximum-protection. Code protected under
CV and VMProtect-Maximum-protection has the most expensive runtime overhead, which
on average is higher than Dsvmp and VMProtect-Maximum-speed. Detailed experimental
data are shown in Table 5. Specifically, the average runtime overhead brings by CV and
VMProtect-Maximum-protection are 7 and 9 times larger than Dsvmp-5VM respectively.

9.4.3. Diversity evaluation

Recall that one of the design goals of Dsvmp is to increase the diversity of program
execution. To evaluate this design goal, we record how frequent a handler is called across
different runs per protection scheme. This experiment was performed on the md5 application.
We ran the obfuscated program three times and used a 5-VM configuration for Dsvmp.
The results are shown in Figure 16. As can be seen from the heat maps, CV and VMP use
fewer handlers than Dsvmp; and the calling frequency of each handler remains unchanged
across different runs. By contrast, when using Dsvmp, the handler frequency changes across
runs, resulting in different ‘hot’ handlers across runs. This example shows that Dsvmp can
increase the diversity of program execution when compared to CV and VMP, because it uses
more handlers and the calling frequency of handlers varies across runs.

Intuitively, the stronger the variation of the handler address offsets across runs, the
stronger the non-deterministic behavior the program will exhibit across runs. To collect
the dynamic addresses information, we used the Intel Pin [19] binary instrumentation tool
instrument the code to gather the handler addresses during runtime. This experiment was
performed on the md5 application and we ran the obfuscated application three times.

Figure 17 (a) shows that the handler address offsets change across runs when using
Dsvmp. By contrast, CV and VMP (Figure 17 (b)) use a static set of handlers, and the
handler address offsets remain unchanged across runs. This experiment shows that code
protected by Dsvmp exhibits stronger non-deterministic runtime behavior when compared
to CV and VMP. This is because the set of handlers used to interpret the virtual instructions
can change across difficult runs. This dynamic feature makes it harder for an attacker to use

23

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2 x 104

D
SV

M
P

-5
V

M
H

an
d

le
r

ad
d

re
ss

 o
ff

se
t

Run 1 Run 1 Run 3

(a) Code protected by Dsvmp

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4 x 10
4

C
V

 &
 V

M
P

H

an
d

le
r

ad
d

re
ss

 o
ff

se
t

Code Virtualizer VMProtect

(b) Code protected by CV and VMProtect

Figure 17: The address offset of the scheduled handlers in time order during different runs for md5 protected
under different schemes. The x-axis shows the part of the handler’s scheduling at different times. Where
applications protected by Code Virtualizer and VMProtect, always follows a single and fixed handlers
execution sequence during different runs, so there’s only one curve.

the knowledge gathered during the previous runs to perform reverse engineering, because
the handler sets to use may change in future runs.

To sum up, compared with two commercial tools protection programs, which always
follow a fixed execution path for the same input across different runs, the program protected
by Dsvmp follows dynamically changing execution paths in different runs.

9.4.4. User study

We follow a similar evaluation methodology described in [20] to conduct a small scale
user study to evaluate the strengthen of our protection scheme. Our user study involved
15 students from the host institution. Among the 15 students, there are 2 senior PhD
students and 13 postgraduate (Master) students, of which 7 students are female and 8 are
males. The students were studying a computer science degree in cyber security at the time
this experiment was conducted. Our participants all have hands-on experience on software
reverse engineering. This experiment was approved by the research ethics board (REB) of
the host institution.

In this experiment, all participants acted as an attacker. They were asked to reverse
engineer the md5 application, which has been obfuscated by three code protection schemes:
Dsvmp, CV and VMP. In this experiment, we use a 5-VM configuration for Dsvmp. The
participants tried to accomplish three tasks described as follows. Each participant was given
72 hours to accomplish a task.

• Task 1: Find the entry point address of the VM interpreter;

24

Table 6: The number of participants who have successfully accomplished a task.

Code Obfuscation Schemes Task 1 Task 2 Task 3

DSVMP-5VM 11 3 3
CV 11 10 10
VMP 11 8 8

• Task 2: Given the entry point address of the VM interpreter, find the address of the
dispatcher;

• Task 3: Given the address of the dispatcher, find out what handlers have been executed
during runtime; and record the handler addresses.

It is to note that these tasks represent the essential steps that an attacker must perform
in order to reverse engineer a code region protected under a VM-based code obfuscated
scheme. Therefore, the fewer people success in a task, the stronger the protection a scheme
will provide. We also remark that these tasks are relatively simple, because the protected
code region only contains a handful number of native instructions; and accomplish these
tasks may not lead to a successful attack, because an attacker still needs to recover the
functionalities of the target code. Nonetheless, this experiment allows us to compare the
protection strengthen of our approach against commercial counterparts.

Table 6 shows how many participants have successfully accomplished a task. Intuitively,
the fewer participants could accomplish a task under a protection scheme, the stronger
protection the scheme has provided. Task 1, finding the entry point address of the VM
interpreter, is trivial to our participants (who already have hands-on experience on VM-
based code obfuscation). Most of our participants could do so for all schemes. Tasks 2 and
3 appear to be harder. When using Dsvmp, there are only three participants managed to
accomplish them. This is because the dynamic scheduling structure employed by Dsvmp
makes it difficult to trace the addresses of the dispatcher and the handlers. To perform tasks
2 and 3 on CV and VMP seems to be easier. As we can see from the table, 10 participants
could successfully finish these tasks when using CV, and 8 participants were able to do so
when using VMP. This experiment confirms that Dsvmp indeed increases the cost of reverse
engineering when compared to CV and VMP.

To investigate these results further we recorded the correct dispatcher and handler ad-
dresses collected by the different participants in task 2 and 3, respectively. The results are
shown in Table 7. Each data item of this table is a two-tuple, (ND, n), where ND is the
number of the correct dispatcher addresses obtained in task 2, and n represents the number
of the handler addresses recorded in task 3. Experimental results show that CV and VMP
only have a single dispatcher, i.e. the tuple for CV and VMP in Table 7 is (1, 14630429)
and (1, 2143262). This means that once the dispatcher address is located, it would be easy
to extract the entire handler set. For Dsvmp, however, there can be multiple dispatchers
(5 in this example). Because our participants had not been told that there may be multiple
dispatchers, most of the them thought they had completed the task when locating the first
dispatcher address. As a result, only 3 participants have successfully located all the dispatch-

25

Table 7: The dispatcher and handler addresses collected by different participants

Schemes P1 P2 P3 P4 P5 P6

DSVMP-5VM (3, 1057219) (5, 2463571) (1, 24037) (1, 89692) (0, 0) (2, 991895)
CV (1, 14630429) (1, 14630429) (1, 14630429) (1, 14630429) (0, 0) (1, 14630429)

VMP (1, 2143262) (1, 2143262) (1, 2143262) (0, 0) (0, 0) (1, 2143262)

Schemes P7 P8 P9 P10 P11

DSVMP-5VM (1, 88805) (1, 285717) (2, 477916) (5, 2463571) (5, 2463571)
CV (1, 14630429) (1, 14630429) (1, 14630429) (1, 14630429) (1, 14630429)

VMP (1, 2143262) (0, 0) (1, 2143262) (1, 2143262) (1, 2143262)

This table shows the data of the 11 participants (P1-P11) who have successfully found the VM entry address in task 1. Each
data item of this table is a two-tuple, (ND,n), where ND is the number of the correct dispatcher addresses obtained in task 2,
and n represents the number of the handler addresses recorded in task 3. Number “0” in a tuple means that the participant
did not get the data or got the wrong data.

er addresses (see task 2 in Table 6). As a consequence, most of them failed to locate the
complete set of handlers. Moreover, since each dispatcher is randomly selected at run time
by Dsvmp, the handler sequences collected by the same dispatcher addresses are different
across runs. This mechanism further increase the difficulty of code reverse engineering.

10. Related Work

Early work on the binary code protection relies on simple encryption and obfuscation
methods, but they are vulnerable to the sophisticated, diversified attacks developed over
the past years. Traditionally, techniques like junk instructions [21], packers [22, 23], are
used to protect software against attacks based on disassembly and static analysis. There
are also other code protection techniques like code obfuscation [24], control flow and data
flow obfuscation [25, 26, 27], all aim to obfuscate the semantic and logical information
of the target program. In practice, these approaches are often used in combination to
provide stronger protection. Dsvmp also leverages some of the code obfuscation techniques
developed in the past for code protection. In recent years, there are many different code
protection programs has been constantly put forward. Some research is devoted to CFI
(Control Flow Integrity) protection, for example, Zhang et al. [28] and van der Veen et
al. [29] provide fine-grained CFI systems against modern control flow hijacking attacks based
on ROP (Return-Oriented Programming) and more advanced code reuse attacks [30]. And
some studies consider Code Randomization protection, such as Stephen et al. presents a
practical, fine-grained code randomization defense, called Readactor, resilient to both static
and dynamic ROP attacks [31].

This paper focus on researching the code virtualization protection, and there is a growing
interest in using it to protect software from malicious reverse engineering. Similar to our
code virtualization approach is the work conducted by the following studies.

Fang et al. [5] proposed an algorithm of multi-stage software obfuscation method. Their
approach iteratively transforms the critical code region several times with different interpre-
tation methods to improve security. Adversaries will need to crack all intermediate results
to figure out the structure of original code. A similar, Yang et al. [6] presented a nested
virtual machine for code protection. Using their approach, an adversary would have to fully

26

reverse engineer a layer of the interpreter before moving to the next layer, which increases
the cost of attacks. The multi-stage and nested interpretation process, however, is bound
to bring expensive time overhead.

Averbuch et al. [32, 33] introduces an encryption and decryption technology on the basis
of VM-based protection. This approach uses the AES algorithm and a customize encryption
key to encrypt the virtual instructions. During runtime, the VM will decrypt the virtual
instruction and then dispatch a handler to interpret the virtual instructions. But it requires
hardware support, and the decryption key is stored in the CPU and the attacker cannot get
it, so it can effectively hinder the attacker’s reverse analysis.

Wang et al. [7] proposed a protection scheme to increase the time diversity of protected
code regions to resist dynamic analysis. This is achieved by constructing several equivalent
but different forms of sub program execution paths, from which a path will be randomly
selected to execute at runtime. However, once generated, these sub paths are determined
and the number is limited, so this approach only provides limited time diversity.

In the meantime, code analysis and deobfuscation techniques are constantly being in-
troduced. Representative techniques such as Symbolic and concolic execution and taint
analysis [34, 35, 36]. And Shoshitaishvili et al. [37] presents a binary analysis framework an-
gr. Their work presents a systematized implementation of analysis techniques that proposed
in the past, which allows other researchers to compose them and develop new approaches.
Some of the common methods for analysing VM-based protection are as follows, Coogan et
al. [38] puts forward a behavior based analysis method to analyze the important behavior
of code, but it does not pay attention to how to restore the original code structure. It is
often used to analyze Malware, due to the malicious code will inevitably interact with the
system. Sharif et al. [39] used dynamic data-flow and taint analysis to identify data and
extract the syntactic and semantic information about the bytecode instructions. Yadegari
et al. [40], by tracking the flow of inputs values, and then use semantics-preserving code
transformations to simplify the logic of the instructions. These approaches, however, cannot
restore the structure of the original code completely, because the analysis process is only
for a dynamically executed sequence of instructions and does not cover all branches, and
it depends on the results of the taint analysis. Therefore, they are usually performed and
analyzed several times with different input to obtain a better structure information.

As a departure from prior work, Dsvmp presents a dynamic scheduling structure to
improve security for software. Dsvmp has integrated several novel techniques to increase
the diversity and uncertainly of program execution. These include using a control unit to
diversify the execution path of bytecode handlers and using multiple VMs and dispatchers
to randomly schedule instructions from multiple bytecode instruction sets. Integrating these
techniques allows Dsvmp to provide a more diverse program execution structure compared
to prior work in the area. This richer set of diversity can better protect software against
code reverse engineering [41].

27

11. Conclusions

This paper has presented Dsvmp, a novel VM-based code protection scheme. Dsvm-
p uses a dynamic scheduling structure and multiple VMs to increase diversity of program
execution. We have shown that code segments protected by Dsvmp rarely follow the same
execution path across different runs. The dynamic program execution brought by Dsvmp
forces the attacker to have to use many trail runs to uncover the implementation of the pro-
tected code region. As such, Dsvmp significantly increases the overhead and effort involved
in code reverse engineering. We have evaluated Dsvmp using six real world applications and
compared it to two state-of-the-art VM-based code protection schemes. Our experimental
results show that Dsvmp provide stronger protection with comparable overhead of runtime
and code size.

Acknowledgment

This work was partially supported by projects of the National Natural Science Foun-
dation of China (No. 61373177, No. 61572402, No. 61672427), the Key Project of Chi-
nese Ministry of Education (No. 211181); the International Cooperation Foundation of
Shaanxi Province, China (No. 2013KW01-02, No. 2015KW-003, No. 2016KW-034); the
China Postdoctoral Science Foundation (grant No. 2012M521797); the Research Project of
Shaanxi Province Department of Education (No. 15JK1734); the Research Project of NWU,
China (No. 14NW28); the UK Engineering and Physical Sciences Research Council under
grants EP/M01567X/1 (SANDeRs) and EP/M015793/1 (DIVIDEND); and a Royal Society
International Collaboration Grant (IE161012).

References

[1] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, T. Xing, G. Ye, J. Zhang, Z. Wang, Exploiting dynamic
scheduling for vm-based code obfuscation, in: 15th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), IEEE, 2016.

[2] Themida, http://www.oreans.com/themida.php.
[3] Code virtualizer, http://www.oreans.com/codevirtualizer.php.
[4] Vmprotect software. vmprotect, http://vmpsoft.com/.
[5] H. Fang, Y. Wu, S. Wang, Y. Huang, Multi-stage binary code obfuscation using improved virtual

machine., in: Information Security, International Conference, ISC 2011, Springer, 2011, pp. 168–181.
[6] M. Yang, L. S. Huang, Software protection scheme via nested virtual machine, Journal of Chinese

Computer Systems 32 (2) (2011) 237–241.
[7] H. Wang, D. Fang, G. Li, N. An, X. Chen, Y. Gu, Tdvmp: Improved virtual machine-based software

protection with time diversity, in: Proceedings of ACM Sigplan on Program Protection and Reverse
Engineering Workshop, 2014, pp. 1–9.

[8] H. Wang, D. Fang, G. Li, X. Yin, B. Zhang, Y. Gu, Nislvmp: Improved virtual machine-based software
protection, in: 9th International Conference on Computational Intelligence & Security (CIS), 2013, pp.
479 – 483.

[9] N. Falliere, P. Fitzgerald, E. Chien, Inside the jaws of trojan, Tech. rep., Clampi. Technical report,
Symantec Corp (2009).

[10] C. Collberg, The case for dynamic digital asset protection techniques, Department of Computer Science,
University of Arizona (2011) 1–5.

28

http://www.oreans.com/themida.php
http://www.oreans.com/codevirtualizer.php
http://vmpsoft.com/

[11] R. Rolles, Unpacking virtualization obfuscators, in: 3rd USENIX Workshop on Offensive Technolo-
gies.(WOOT), 2009.

[12] C. S. Collberg, C. Thomborson, Watermarking, tamper-proofing, and obfuscation-tools for software
protection, IEEE Transactions on Software Engineering 28 (8) (2002) 735–746.

[13] Ida pro, https://www.hex-rays.com/index.shtml.
[14] Ollydbg, http://www.ollydbg.de/.
[15] Sysinternals suite, https://technet.microsoft.com/en-us/sysinternals/bb842062.
[16] Peering inside the PE: A tour of the Win32 portable executable file format, https://msdn.microsoft.

com/en-us/magazine/ms809762.aspx.

[17] B. Blietz, A. Tyagi, Software tamper resistance through dynamic program monitoring, in: Digital
Rights Management. Technologies, Issues, Challenges and Systems, 2006, pp. 146–163.

[18] Astar and tetris source code., https://github.com/MGKKY/AStar-and-Tetris.
[19] Pin, dynamic binary instrumentation tool, https://software.intel.com/en-us/articles/pintool.
[20] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella, A family of experiments

to assess the effectiveness and efficiency of source code obfuscation techniques, Empirical Software
Engineering 19 (4) (2014) 1040–1074.

[21] C. Linn, S. Debray, Obfuscation of executable code to improve resistance to static disassembly, in:
Proceedings of the 10th ACM conference on Computer and communications security, 2003, pp. 290–
299.

[22] Execryptor, http://www.strongbit.com/execryptor.asp.
[23] Upx, http://upx.sourceforge.net/.
[24] Z. Wu, S. Gianvecchio, M. Xie, H. Wang, Mimimorphism: a new approach to binary code obfuscation.,

in: ACM Conference on Computer and Communications Security (CCS), 2010, pp. 536–546.
[25] C. Liem, Y. X. Gu, H. Johnson, A compiler-based infrastructure for software-protection, in: Proceedings

of the third ACM SIGPLAN workshop on Programming languages and analysis for security, 2008, pp.
33–44.

[26] J. Ge, S. Chaudhuri, A. Tyagi, Control flow based obfuscation, in: Proceedings of the 5th ACM
workshop on Digital rights management, 2005, pp. 83–92.

[27] V. Balachandran, N. W. Keong, S. Emmanuel, Function level control flow obfuscation for software
security, in: Eighth International Conference on Complex, Intelligent and Software Intensive Systems
(CISIS), 2014, pp. 133–140.

[28] M. Zhang, R. Sekar, Control flow integrity for cots binaries., in: USENIX Security Symposium, 2013,
pp. 337–352.

[29] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos, T. Holz, E. Athana-
sopoulos, C. Giuffrida, A tough call: Mitigating advanced code-reuse attacks at the binary level, in:
Security and Privacy (S&P), 2016 IEEE Symposium on, IEEE, 2016, pp. 934–953.

[30] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, T. Holz, Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in c++ applications, in: Security and
Privacy (S&P), 2015 IEEE Symposium on, IEEE, 2015, pp. 745–762.

[31] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, M. Franz,
Readactor: Practical code randomization resilient to memory disclosure, in: Security and Privacy
(S&P), 2015 IEEE Symposium on, IEEE, 2015, pp. 763–780.

[32] A. Averbuch, M. Kiperberg, N. J. Zaidenberg, An efficient vm-based software protection, in: 5th
International Conference on Network and System Security (NSS), 2011, pp. 121–128.

[33] A. Averbuch, M. Kiperberg, N. J. Zaidenberg, Truly-protect: An efficient vm-based software protection,
IEEE Systems Journal 7 (3) (2013) 455–466.

[34] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, A. D. Keromytis, A general approach
for efficiently accelerating software-based dynamic data flow tracking on commodity hardware., in:
NDSS, 2012.

[35] M. Balliu, M. Dam, R. Guanciale, Automating information flow analysis of low level code, in: Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, ACM, 2014,

29

https://www.hex-rays.com/index.shtml
http://www.ollydbg.de/
https://technet.microsoft.com/en-us/sysinternals/bb842062
https://msdn.microsoft.com/en-us/magazine/ms809762.aspx.
https://msdn.microsoft.com/en-us/magazine/ms809762.aspx.
https://github.com/MGKKY/AStar-and-Tetris
https://software.intel.com/en-us/articles/pintool
http://www.strongbit.com/execryptor.asp
http://upx.sourceforge.net/

pp. 1080–1091.
[36] B. Yadegari, S. Debray, Symbolic execution of obfuscated code, in: Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, ACM, 2015, pp. 732–744.
[37] S. Yan, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,

C. Kruegel, Sok: (state of) the art of war: Offensive techniques in binary analysis, in: IEEE Sym-
posium on Security and Privacy (S&P), 2016, pp. 138–157.

[38] K. Coogan, G. Lu, S. Debray, Deobfuscation of virtualization-obfuscated software: a semantics-based
approach, in: Proceedings of the 18th ACM conference on Computer and Communications Security
(CCS), ACM, 2011, pp. 275–284.

[39] M. Sharif, A. Lanzi, J. Giffin, W. Lee, Automatic reverse engineering of malware emulators, in: 30th
IEEE Symposium on Security and Privacy (S&P), IEEE, 2009, pp. 94–109.

[40] B. Yadegari, B. Johannesmeyer, B. Whitely, S. Debray, A generic approach to automatic deobfuscation
of executable code, in: IEEE Symposium on Security and Privacy (S&P), 2015, pp. 674–691.

[41] P. Larsen, A. Homescu, S. Brunthaler, M. Franz, Sok: Automated software diversity, in: IEEE Sym-
posium on Security and Privacy (S&P), 2014, pp. 276–291.

30

	1 Introduction
	2 Background
	2.1 VM-based Code Obfuscation
	2.2 VM Components.
	2.3 The Design Goal

	3 The Attack Model
	3.1 Attacking methods
	3.2 The Threat model

	4 Overview of Our Approach
	5 Dsvmp Scheduling Structure
	5.1 Multiple Bytecode Handlers
	5.2 Multiple Bytecode Formats and Dispatchers

	6 Multiple VMs
	6.1 Switching between Multiple VMs
	6.2 The VM Scheduling Process

	7 An Example
	7.1 Code obfuscation
	7.2 Runtime execution

	8 Security Strength Analysis
	8.1 Program execution paths
	8.2 Code structures
	8.2.1 Example

	9 Performance Evaluation
	9.1 Evaluation Platform and Benchmarks
	9.2 Code Size and Runtime Overhead
	9.2.1 Code size
	9.2.2 Runtime overhead

	9.3 Structural diversity
	9.3.1 Possible execution path statistics
	9.3.2 Multi-VM switching experiment
	9.3.3 Perform path runtime diversity

	9.4 Comparisons with state-of-the-arts
	9.4.1 Code size
	9.4.2 Runtime overhead
	9.4.3 Diversity evaluation
	9.4.4 User study

	10 Related Work
	11 Conclusions

