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Abstract 

Mineralized hydrogels are increasingly gaining attention as biomaterials for bone 

regeneration. The most common mineralization strategy has been addition of preformed 

inorganic particles during hydrogel formation. This maintains injectability. One common form 

of bone cement is formed by mixing particles of the highly reactive calcium phosphate alpha-

tricalcium phosphate (α-TCP) with water to form hydroxyapatite (HA). The calcium ions 

released during this reaction can be exploited to crosslink anionic, calcium-binding polymers 

such as the polysaccharide gellan gum (GG) to induce hydrogel formation. In this study, three 

different amounts of α-TCP particles were added to GG polymer solution to generate novel, 

injectable hydrogel-inorganic composites. Distribution of the inorganic phase in the hydrogel 

was studied by high resolution microcomputer tomography (µCT).  Gelation occurred within 

30 minutes. α-TCP converted to HA. µCT revealed inhomogeneous distribution of the 

inorganic phase in the composites. These results demonstrate the potential of the composites 

as alternatives to traditional α-TCP bone cement and pave the way for incorporation of 

biologically active substances and in vitro and in vivo testing. 
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1. Introduction 

 

Mineralized hydrogels are increasingly gaining attention as biomaterials for bone regeneration 

1
, and the most widespread mineralization strategy has been addition of preformed inorganic 

particles, most commonly calcium phosphate (CaP), to hydrogel precursors which become 

entrapped in the hydrogel network during gelation.  This maintains hydrogel injectability, 

while promoting mechanical strength and growth and osteogenic differentiation of bone-

forming cells 
2,3

. 

Certain anionic polysaccharides, including  gellan gum (GG), can be crosslinked with Ca
2+

 to 

form hydrogels 
4
. Inorganic particles in GG solution may serve as delivery vehicles for slow 

release of Ca
2+

 to enable hydrogel formation 
5-7

, a process known as “internal gelation” 
8
. For 

this, sufficient Ca
2+

 is a prerequisite. One highly reactive CaP type is alpha-tricalcium 

phosphate (α-TCP), which reacts with water to form crystals of calcium-deficient 

hydroxyapatite (CDHA), which can interlock mechanically to form bone cement 
9
.  

α-TCP present in the studied materials hydrolyzes to a  

CDHA according to Equation 1: 

 

3Ca3(PO4)2 + H2O → Ca9(HPO4)(PO4)5(OH)         (1) 

 

Hence, one would expect sufficient Ca
2+

 release from α-TCP to enable crosslinking of GG 

and subsequent internal gelation. 

The creation of hydrogel-CaP composites combines the advantages of the CaP phase, i.e. 

mechanical reinforcement, bioactivity (the ability to form a direct chemical bond with 

surrounding bone) with the advantages of the hydrogel phase, i.e. straightforward addition of 

biologically active substances, such as antibacterial agents and growth factors to promote 
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bone regeneration, as well as bone-forming cells. 

Addition of hydroxyapatite (HA) to hydrogels has been performed previously 
3,10,11

. When 

preparing composites of GG hydrogels and a mineral phase, addition of α-TCP particles to 

GG solution has certain advantages over addition of pre-formed HA particles. Firstly, since 

the α-TCP particles release the crosslinker (Ca
2+

 ions), there is no need to add any further 

crosslinker to induce gelation. Addition of Ca
2+

 ions to GG solution at room temperature 

would result in instantaneous and inhomogeneous gelation, Secondly, the CDHA crystals 

formed by hydrolysis of α-TCP particles may be able to interlock mechanically to a greater 

degree than pre-formed HA particles. This would result in greater compressive strength and 

hardness, which is considered to be beneficial for osteogenic differentiation of bone-forming 

cells 
12,13

. 

In this study, α-TCP was mixed with GG solution to create self-gelling, injectable hydrogel-

inorganic composite biomaterials. The overall aim of the study was the physicochemical 

characterization of the composites to with a view to further in vitro and in vivo studies. 

Particular attention was paid to i) the rate of hydrogel formation, which was studied by 

rheometry; ii) the distribution of inorganic particles and their agglomerates, which was 

evaluated by high-resolution micro-computer tomography (µCT) and iii) the type of CaP 

present by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman 

spectroscopy and Scanning electron microscopy (SEM). Release of Ca and P from composites 

was also studied using Inductively-coupled optical emission spectroscopy (ICP-OES).  

 

2. Materials and methods 

 

All materials, including GG (G1910, “Low-Acyl”, 200-300 kD), were acquired from Sigma-

Aldrich, unless stated otherwise. α-TCP  was produced as described previously 
9
. α-TCP was  
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fully crystalline and sterilized thermally at 160°C  for 3 hours. α-TCP particle size 

distributions were measured by laser diffraction (Mastersizer-S long bench, Malvern 

Instruments, Malvern, UK), using a wet dispersion technique. 100 mg α-TCP was dispersed in 

10 mL 0.1% (w/v) aqueous polysorbate 80 solution and added to a MS1 Small Volume 

Dispersion unit (Malvern Instruments, Malvern, UK) to obtain 20% laser beam obscuration. 

The parameters were: 300RF lens, 2.4 mm active beam length, 1500 rpm stirrer speed, 6000 

scans, polydisperse analysis model. 

To produce composites, 1 mL pre-autoclaved (121°C for 15 min) aqueous 0.875% (w/v) GG 

solution was mixed with 300, 400 or 500 mg pre-sterilized α-TCP particles at room 

temperature in 2 mL Eppendorf tubes and shaken vigorously to yield 30, 40 or 50% (w/v) 

composites, hereafter referred to as GGa30, GGa40 and GGa50, respectively.  The Eppendorf 

tubes served as moulds. This resulted in 1 mL roughly cylindrical samples of identical 

dimensions. 

Rheometry was performed with an AR1000N Rheometer (TA Instruments) for 1800 s in 

triplicate as described previously (strain 0.1%, frequency 1 Hz, 37°C, plate-cone setup, cone 

diameter 4 cm) 
7
.  

 Release of elemental Ca and P was measured by incubating composites in Milli-Q water after 

gelation. Each composite was placed in 16 mL Milli-Q water. At each time point, 3 mL water 

was removed.for ICP-OES analysis. ICP-OES was performed using a Spectro Arcos Optical 

Emission Spectrometer (Spectro, Germany) as described previously 
14

. Briefly, samples were 

mixed 1:1 (v:v) with 14 M analytical grade HNO3 (ChemLab, Belgium). Samples were 

diluted with 0.3 M HNO3 as necessary. Calibration was performed using standard solutions 

with Ca and P concentrations in the range 0-15 mg L
−1

. Yttrium was used as an internal 

standard. For all measurements, n=3. 

Injectability studies were performed based on the methods developed by Montufar et al 
15-17

. 2 
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ml GG solution containing 30, 40 or 50% (w/v) α-TCP particles was added to a 5 ml syringe 

(Emerald™, BD, Belgium) with an orifice of internal diameter 2 mm. 0.2 ml was extruded 

every 1 minute by applying manual pressure. The measurement lasted 10 minutes. 

After 7 d, µCT was performed with a laboratory X-ray tube (Detector Lab of Institute for 

Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Germany, 

Viscom X9160-D ED) set to 60 kV and 120 µA. For detection, a Dexela 1207 with a 150 µm 

CsI CMOS sensor (effective pixel size 74.8 µm) was used. To ensure focal spot limited spatial 

resolution, the source sample distance and source detector distance were adjusted to 3.5 cm 

and 70.0 cm, respectively, with total magnification of x20 resulting in effective pixel size of 

3.7 µm and field of view 3.2 x 5.7 mm
2
.  For computed tomography, 1200 projection images 

were acquired over 360 ° degrees of sample rotation with the exposure time for each image of 

4 s. 

After 24 h, prior to XRD, FTIR, Raman and SEM, samples were dried at 60°C for 72 h and 

crushed into powders. XRD was performed with a Miniflex-600 diffractometer (Rigaku 

Corporation, Tokyo, Japan) using Cu-Kα radiation (40 kV, 15 mA, Ni-Kβ filter, 2θ range 5–

60°, scan speed 7°/min). Crystalline phases were identified using integrated X-ray powder 

diffraction software (PDXL: Rigaku Diffraction Software) and ICDD PDF-2 datasets (Release 

2014 RDB). Results were compared with known crystallographic data for hydroxyapatite 

(PDF#01-084-1998) 
18

. FTIR was performed using a Perkin Elmer type Spectrum 

BX in ATR mode (attenuated total reflectance) over the wavenumber range 4000–550 cm
−1

 

(32 scans, resolution of 4 cm
−1

). as described previously 
7
. 

SEM was performed with a MIRA II LMU (Tescan) at 20 kV in secondary electron mode. 

Prior to analysis, a drop of an aqueous suspension of the powder was air-dried on a silicon 

wafer at 22°C. Raman spectroscopy was performed with a WITec Alpha300R+ 

confocal Raman microscope equipped with a 785 nm excitation diode laser (Toptica) and 
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an UHTS 300 spectrometer with a -60 °C cooled CCD camera (ANDOR iDus 401 BR-DD) 

and an 100x/0.9 NA Nikon objective with lateral resolution 0.5 µm per pixel. 5 µL of a 

powder suspension in water (2.5 % (w/v)) was placed on a CaF plate and scanned (integration 

time 2 s, laser power 120 mW). Background subtraction was performed in R with in-house 

built scripts. 

 

3. Results and Discussion 

 

Laser diffraction measurements (Figure 1a) showed that sterilization had no effect on the size 

distribution of α-TCP particles. Representative rheometric measurements (Figure 1b) showed 

that hydrogel formation seemed to be approaching a maximum within 30 min, which would 

be acceptable for clinical applications. Storage modulus (G’), a measure of sample elasticity, 

decreased in the order GGa50 > GGa40 > GGa30. In addition, gelation speed decreased in the 

same order. Injectablility measurements revealed that all three composites could be extruded 

completely over 10 minutes, demonstrating injectability. ICP-OES measurements (Figure 1c) 

showed that release of elemental Ca and P from sample groups was similar for all sample 

groups at all time points. This suggests that a higher initial α-TCP content does not lead to 

higher Ca
2+

 release from the composites, which in turn would mean that quicker gelation and 

higher G’ is not caused by higher Ca
2+

 release. It is also conceivable that higher initial α-TCP 

content leads to a greater contribution of particle-particle interactions to G’. Amounts of Ca 

and P released increased markedly from 3 h to 24 h to 48 h, suggesting that ion release 

continues over a longer time period, which may have consequences for hydrogel crosslinking. 

 

µCT results (Figure 2a & 2b) revealed that CaP was distributed throughout the hydrogels. 

This distribution was not homogeneous. Regions of CaP were observed which were clearly 
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much larger than α-TCP particles. Inhomogeneity in the distribution of preformed ceramic 

particles has been reported previously 
6,11

. Strategies to improve particle distribution include 

the use of dispersants such as sodium citrate 
10

. In sample group GGa50, a larger number of 

small aggregates in the size range 10
3
-10

4
 µm

3
 were observed (Figure 2c). This suggests 

superior dispersion of CaP within the composite, The reasons for this remain unclear. Greater 

homogeneity would be advantageous in order to promote more homogeneous regeneration of 

bone after implantation. A high concentration of CaP would be considered beneficial to aid 

bone regeneration. In this study, the maximum concentration of α-TCP particles added was 

50% (w/v) (GGa50). Other authors have described the incorporation of up to 30% (w/v) HA 

in hydrogels of oligo(poly(ethylene glycol)fumarate) 
3,10,11

 or incorporation of up to 66% 

(w/v) HA in peptide amphiphile hydrogels functionalized with ligands
19

. 3% (w/w) PVA 

hydrogels have been enriched with 32% (w/w) α-TCP and subjected to hydrothermal 

treatment to convert α-TCP to rod-like HA crystals 
20

. In this study, conversion of α-TCP to 

CDHA was achieved without hydrothermal treatment. 

 

XRD, FTIR, SEM and Raman confirmed the transformation of α-TCP to CDHA in samples 

GGa30, GGa40 and GGa50. SEM (Figure 3a) revealed “star-like” deposits characteristic of 

CDHA. As secondary electron mode was used, lighter areas correspond to areas of increased 

charge and darker areas are due to areas of lower charge. Charging is not uncommon when 

studying CaP using SEM, especially as coating with a gold or carbon layer was not 

performed. XRD (Figure 3b) revealed peaks characteristic of CDHA. FTIR (Figure 3c) 

showed the presence of phosphate-specific bands characteristic of CDHA at 560 and 600 (υ
4
 

antisymmetrical bending), 962 (υ
1
 symmetrical stretching) and 1022 cm

-1
 (υ

3
 symmetrical 

bending) 
21

. Raman (Figure 3d) showed bands characteristic for υ
1
 symmetric stretching of 

phosphate groups at 961 cm
-1

 in aforementioned samples and 970 cm
-1

 in α-TCP. These are 
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typical for CDHA and α-TCP, respectively 
22

. 

 

These results demonstrate the potential of the composites as alternatives to traditional α-TCP 

bone cement and pave the way for incorporation of biologically active substances and in vitro 

and in vivo testing. The physiochemical characterization data showed no difference in the type 

of mineral formed in GGa30, GGa40 and GGa50. Possibly, GGa50 could be most suitable 

composite for medical applications due to the superior mechanical strength and more  

homogeneous distribution of CaP. 

This study has concentrated on physicochemical characterization of the composites. Further 

work is required to assess the biological performance of the composites both in vitro and in 

vivo. One potential advantage of combining α-TCP with the GG hydrogel phase is the 

incorporation of biologically active, water-soluble molecules in the hydrogel phase. This is a 

subject for future study. One possibility is inclusion of the enzyme alkaline phosphatase 

(ALP) and polydpoamine, which have induced and promoted mineralization of GG hydrogels 

in previous work 
23

. Another possibility is inclusion of polyphenols, which can also promote 

GG hydrogel mineralization and impart antibacterial activity 
24

. From a biological point of 

view, mineralization of GG with CDHA has resulted in superior adhesion and proliferation of 

osteoblast-like cells and superior osteoclast formation 
23,25

. 

 

4. Conclusions 

 

Addition of α-TCP to GG solution at 30, 40 and 50% (w/v) caused gelation within 30 min. α-

TCP converted to CDHA, which was distributed inhomogeneously in the resulting 

composites. Release of Ca and P was similar for all composites. These novel composites may 

be an alternative to α-TCP bone cement. All three α-TCP concentrations induce hydrogel 
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formation and therefore all appear to be suitable. 
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8. Figure Captions 

 

Figure 1: a) Size distribution of α-TCP particles before and after sterilization measured by 

laser diffraction analysis. b) Typical gelation curves for composites measured by rheometry. 

c) Release of elemental Ca and P from composites as a function of time. Mean values are 

displayed. Error bars show standard deviation. 

 

Figure 2: µCT analysis of composites. a) 3D rendering of particles (red color) within GG 

(blue transparent color). b) Horizontal cross-sections through composites at four different 

heights (scale bar = 600 µm). c) Pie charts showing size distributions in four size categories of 

mineral agglomerates detected within composites. d) Bar charts showing number of mineral 

agglomerates in size categories ranging from 0 to 10
8
 µm

3
. 

 

Figure 3: Physicochemical analysis of mineral within composites. a) SEM images. Scale bar = 

2 µm (GGa30, GGa40) or 1 µm (GGa50). b) XRD diffractograms. The standard characteristic 

peaks of hydroxyapatite are marked. c) FTIR spectra. d) Raman spectra. 
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Figure 1: a) Size distribution of α-TCP particles before and after sterilization measured by laser diffraction 
analysis. b) Typical gelation curves for composites measured by rheometry. c) Release of elemental Ca and 

P from composites as a function of time. Mean values are displayed. Error bars show standard deviation.  
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Figure 2: µCT analysis of composites. a) 3D rendering of particles (red color) within GG (blue transparent 
color). b) Horizontal cross-sections through composites at four different heights (scale bar = 600 µm). c) Pie 
charts showing size distributions in four size categories of mineral agglomerates detected within composites. 

d) Bar charts showing number of mineral agglomerates in size categories ranging from 0 to 108 µm3.  
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Figure 3: Physicochemical analysis of mineral within composites. a) SEM images. Scale bar = 2 µm (GGa30, 
GGa40) or 1 µm (GGa50). b) XRD diffractograms. The standard characteristic peaks of hydroxyapatite are 

marked. c) FTIR spectra. d) Raman spectra.  
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