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ABSTRACT 
The promise of the Internet of Things (IoT) and the many visions of unprecedented and transforming IoT 
applications are challenged by the realities of a highly fragmented ecosystem of devices, standards and industries. 
Systems research in IoT is shifting priorities to explore explicit “thing architectures” that promote and enable the 
friction-free interactions of things despite such fragmentations. In this paper, we focus on overcoming light-
weight communication protocol fragmentation. We introduce the Atlas IoT communication framework which 
enables interactions among things that speak similar or different communication protocols. The framework tools 
up Atlas things with protocol translator “attachments” that could be either hosted on board the Atlas thing 
platform, or in the cloud. The translator enables the seamless communication between heterogeneous things 
through a set of well-defined interfaces. The proposed framework supports seamless communication among the 
widely adopted Constrained Application Protocol (CoAP), Representational State Transfer (REST) over 
Hypertext Transfer protocol HTTP, and the Message Queue Telemetry Transport protocol (MQTT). Our 
framework is carefully designed to facilitate interoperability among heterogeneously communicating things 
without taxing the performance of things that are homogenously communicating. The framework itself utilizes the 
topic concept and uses a meta-topic hierarchy to map out and guide the translations.  We present the details of the 
Atlas IoT communication framework and give a detailed benchmarking study to measure the energy consumption 
and code footprint characteristics of the different aspects of the framework on real hardware platforms. In addition 
to basic characterizations, we compare our framework to the Eclipse Ponte framework and show how our 
framework is advantageous in energy consumption and how it is unique in that it does not tangibly penalize the 
homogeneous communication case.  

Keywords: Internet of Things interoperability, Translator, Topic, Atlas thing architecture, IoT-DDL, CoAP, 
MQTT 

 

1. INTRODUCTION 
Over the last decade, the Internet of Things (IoT) has attracted tremendous community and industry interest for its 
potential to bring more informative and interactive flavors to our lives [16][17]. Current advancements in IoT 
have shifted the primary focus of the research from the pervasive presence of smart objects and cyber elements in 
a smart space and the ad hoc integration of objects in smart systems, to IoT infrastructure and architecture, 
security, sensing technologies, communication protocols, and many other aspects of IoT. Things—the basic 
building blocks of IoT—empowered with evolving communication technologies and computing capabilities, 
utilize their communication capabilities to establish a wide range of interactions and interconnections with other 
things in the smart space [15][16]. To enable such interactions, several competitive IoT application-layer 
communication protocols (e.g., eXtensible Messaging and Presence Protocol (XMPP) [14][15], HTTP REST 
[27][28][29], MQTT [25][26], and CoAP [11][12][13]) have been developed to satisfy the properties of 
constrained ecosystems such as IoT. Each protocol is designed for a specific set of application requirements and 
aspects of IoT communications, such as low-power operation, lightweight headers, semantic intent-oriented 



messaging, service discovery and orientation, bootstrapping, and statelessness. Such communication protocols 
blur the line between messaging mechanisms and semantic-based computation. 

However, the wide heterogeneity in types and communication capabilities makes the participation of things in 
a smart space a significant challenge that requires considerable effort and human intervention, and limits 
programming opportunities that may involve things that utilize different communication languages to cooperate 
and interact. Such a highly fragmented market between many communication protocols that share no horizontal 
connectivity endangers the adoption of programming opportunities and restricts service and application 
development that can benefit from heterogeneous things. Such vertical slices create a set of isolated islands that 
oxymoron IoT vision, where a smart thing can smoothly communicate and interact with any other smart thing in 
the ecosystem. Interoperability—among current IoT research interests—has the potential to homogenize things 
that speak different communication languages so that they can interact and cooperate.  

A few proposed solutions that target IoT interoperability [3][6][7] require all communications to be routed 
through a centralized server. Such a server speaks all possible IoT communication protocols and is assumed to 
hold the resources of the smart space. However, such an assumption ignores the distributed and dynamic nature of 
IoT, where the things themselves are the resource holders. This approach also imposes inefficiencies in 
communication in some cases where only homogenous things (e.g., CoAP- or REST-speaking things) exist in the 
smart space with no requirement for a centralized server to handle the communication channels and resources. In 
this paper, we propose the Atlas communication framework for an interoperable distributed IoT ecosystem. The 
proposed framework enables seamless interaction between homogenous things that speak similar languages as 
well as heterogeneous things that speak different communication languages in a smart space with minimal human 
intervention. In addition, the framework does not additionally tax performance of the homogenous 
communicating things.  

We base our approach on the Atlas thing architecture and the IoT Device Description Language (IoT-DDL) 
proposed in [30]. The architecture takes advantage of the thing’s OS services to provide new layers and 
functionalities that introduce the novel capabilities a thing needs to engage in ad hoc interactions and 
interconnections, as well as IoT scenarios and applications. The architecture fully utilizes the specifications of 
IoT-DDL, which is a machine- and human-readable XML-based descriptive language that describes a thing’s 
identity, components, and services. The thing can self-discover its identity and components, and then formulate 
APIs of the services it wishes to offer and get involved in information-based and action-based interactions with 
other things in the smart space. Information-based interactions enable the thing to announce its identity, 
capabilities, and APIs, while action-based interactions include the applications that target the thing’s capabilities 
and services in terms of API calls. Such new services focus on descriptive and semantic aspects of things to better 
enable thing engagement, interaction, and programmability into an IoT. The Atlas IoT platform layer that 
provides these new services represents the logical layer of the architecture and is composed of three sublayers: 1) 
the DDL sublayer, which is responsible for configuring the Atlas architecture modules using the specifications of 
the IoT-DDL configuration file; 2) the tweeting sublayer, which tools the thing to uniquely define itself in the 
smart space, in addition to discovering thing mates; and 3) the interface sublayer, which holds the different 
communication protocols (e.g., MQTT, CoAP, HTTP REST) that allow the thing to engage and interact. As 
currently designed and implemented, the interface sublayer—the focus of this paper—supports only homogeneous 
communication.  

Our proposed Atlas communication framework is composed of three parts: 1) Atlas topics, 2) Atlas protocol 
translator, and 3) an extended version of the interface sublayer of the Atlas architecture to enable the seamless and 
automatic interoperability between the things that utilize similar and different communication protocols. We use 
the idea of the MQTT topic (as a channel where the publisher can post data without prior knowledge of the clients 
subscribed to the same topic) to create a set of common “Atlas topics” through which things can communicate 
and interact. Such communication channels enable both multicast communication for the thing to discover other 



things and distributed services in the smart space as well as peer-to-peer communication for unicast interactions. 
CoAP and REST also utilize the MQTT topic through Uniform Resource Locators (URLs) as a path to the 
resource [12][27]. Our proposed Atlas communication framework utilizes the minimum delimiter among the 
various communication protocols to provide homogenous communication links for the things in a smart space. 
The framework promotes topics as a suitable mechanism to link topic-oriented communication protocols (e.g., 
MQTT) with URL-oriented protocols (e.g., CoAP and HTTP REST). It uses CoAP, HTTP REST, and MQTT IoT 
communication standards for application-layer network protocol interoperability. 

The framework also utilizes the idea of expanding the thing’s capabilities through attachments [30]. A thing 
attachment is linked to the thing and tooled with additional functionalities that provide further representations 
(e.g., thing virtualization) and services (e.g., log server, database, or dashboard) that may require additional 
resources (e.g., memory storage or processing power). The Atlas protocol translator, as the third part of the 
framework, is a thing attachment that enables seamless communication and interaction with heterogeneous things 
through a set of well-defined interfaces.  

The paper is organized as follows. Section 2 highlights related work, followed by a description of the proposed 
Atlas heterogeneous communication framework in section 3. In section 4, we present our implementation and a 
benchmarking study in which we measure and assess code footprint and energy characteristics of the framework 
on real hardware platforms. Finally, a discussion of the result and conclusions are presented in section 5.  

 

2. BACKGROUND AND RELATED WORK 
In this section, we provide a quick background on the emerging IoT lightweight communication protocols utilized 
in our proposed communication framework. We then highlight proposed frameworks and approaches in the 
literature that target IoT interoperability on application-layer communication protocols.  

2.1 Overview of CoAP, MQTT, and HTTP REST 
The Constrained Application Protocol (CoAP) [11][12][13] is a specialized web transfer protocol for use with 
constrained nodes and constrained networks in a wireless sensor network (WSN) and IoT. CoAP is a client/server 
computing model that provides a request/report paradigm model over UDP. To compensate for UDP’s 
unreliability, CoAP defines a retransmission mechanism and provides a resource discovery mechanism with a 
resource description. CoAP provides URI and REST methods such as GET, POST, PUT, and DELETE to access 
the various resources. The Atlas architecture uses CoAP protocol support for multicasting, which allows things to 
broadcast tweets for all listening things. We extend the imported library [23] with Unix multicast sockets to 
enable the CoAP multicast feature.  

The Hypertext Transfer Protocol (HTTP) [27][28] is a reliable TCP application protocol for distributed and 
collaborative ecosystems, and is believed to be the foundation of data communication on the World Wide Web. 
HTTP is also a client/server computing model that provides URI and REST methods such as GET, POST, PUT, 
and DELETE to access the different resources hosted by the server. 

The Message Queue Telemetry Transport (MQTT) [25][26] uses a publish/subscribe architecture on top of the 
TCP/IP protocol in contrast to the HTTP request/response paradigm. An MQTT broker is the central 
communication point in charge of dispatching all messages between senders and receivers. MQTT’s 
publish/subscribe is an event-driven paradigm that allows clients to publish messages with topics and to subscribe 
to topics. The topic is routing information for the broker; a client subscribes to a topic and the broker delivers all 
messages with the matching topic to that client. Topics can be organized into a name space of any hierarchical 
structure. MQTT enables highly scalable and flexible solutions, where clients only communicate over the topic of 
interest without having to know each other. Each MQTT client has a permanently open TCP connection to the 
broker. If this connection is interrupted, the MQTT broker can buffer all messages and send them to the client 
when it is back online.  



2.2 State of the Art 
C. Lee et al. [2] proposed a hybrid IoT communication framework based on a software-defined network (SDN) 
that intercepts all packets from CoAP and MQTT, and vice versa. The proposed framework defines URL rules to 
specify the topic and differentiate homogenous (e.g., from CoAP client to CoAP client) from heterogeneous 
packets (e.g., from MQTT client to CoAP client). If packets belong to the same protocols, they operate as the 
original communication scenarios and the SDN just ignores this traffic. When the traffic of heterogeneous 
protocols is intercepted, the SDN switch delivers these packets to the SDN controller, and the SDN controller is 
responsible for redirecting the packets to the cross proxy for protocol translation. 

P. Desai et al. [3] proposed a gateway and semantic web-enabled IoT that provide translation between 
messaging protocols such as XMPP, CoAP, and MQTT using a multiprotocol proxy with a separate interface for 
each protocol. The proposed gateway, which is located between the physical-level sensors and the cloud-based 
services, holds a centralized topic router that maps information from the different communication protocols. 
However, the authors did not provide an implementation for the proposed gateway to show its feasibility. 

A. AL-Fuqaha et al. [4] developed a generic IoT protocol by enhancing the baseline MQTT protocol and 
allowing it to support rich quality-of-service (QoS) features by exploiting a mix of IP multicasting, intelligent 
broker queuing management, and traffic analytics techniques. The hybrid architecture allows the protocol to 
seamlessly utilize direct and brokerless multicast communication while utilizing the broker for machine-to-server 
(M2S) communications. This hybrid architecture would allow MQTT to extend its role in the IoT to handle M2M 
communications and would allow for multiple MQTT brokers to cooperate in delivering better QoS and reliability 
capabilities. The proposed new MQTT lets multiple brokers receive multicast communications from IoT devices, 
enabling failure recovery in the event of broker failures and allowing brokers to move subscribers to other brokers 
in support of QoS that is beyond the naïve QoS features currently offered by MQTT. Although the authors do not 
explicitly address the heterogeneity between the different communication protocols, the idea of brokerless 
multicast opens the door for other protocols to engage with MQTT.  

P. Bellavista et al. [1] proposed a gateway-oriented architecture where gateways jointly exploit MQTT and 
CoAP to achieve highly scalable IoT device management through dynamic hierarchical tree organizations. The 
proposed gateway extends the Kura Eclipse framework, which is based on the interworking of MQTT that is 
already integrated into the Kura framework [1], with CoAP coordination functionality as an added protocol. The 
extended Kura framework offers improved scalability and reduced latency for communication/coordination 
among wide-scale sets of geographically distributed IoT devices interworking via gateways for efficient resource 
lookup. MQTT plays a central role and is strongly exploited by the Kura framework, but exhibits nonnegligible 
limitations in terms of scalability, e.g., inefficient usage of TCP connections toward the broker when growing the 
number of IoT devices in a gateway locality.  

H. Derhamy et al. [5] investigated error-handling challenges for a multiprotocol SOA-based translator, taking 
MQTT and CoAP as a proof-of-concept implementation. In a single protocol system, errors are propagated 
according to protocol specification. In the case of multiprotocol systems, error handling becomes more complex. 
In designing an SOA-based translator, error handling and considerations become critical to robust 
communication. An error in one protocol must be translated to be understood by other protocols. While an SOA-
based translator must also address other aspects such as QoS, control messaging, security, and semantic 
translation, these issues are considered future work so are not addressed in this paper. Experimental results show 
that multiprotocol error handling is possible and, furthermore, a number of areas needing more investigation have 
been identified.  

Ponte [6] is an Eclipse IoT project that offers uniform open APIs to let developers create applications 
supporting CoAP, MQTT, and HTTP REST communication protocols through an independent module for each 
protocol. The Ponte gateway can reside in a server or edge where clients with different communication protocols 
can communicate. Ponte provides a centralized solution for interoperability, where the smart space resources 



reside in the cloud and can be accessed from different clients. Data collected from the three modules is stored in 
the SQL or NoSQL database; therefore, no matter which protocol clients utilize for communication, they can 
access the same resources. 

EMQTT [7] is a massively scalable MQTT broker for IoT and mobile applications licensed under Apache. An 
EMQTT server implements the MQTT protocol and supports a set of plugins that allows other communication 
protocols to coexist in parallel (e.g. MQTT-SN, CoAP, and Web sockets). 

The aforementioned approaches introduce a centralized server that resides on either a cloud platform or an 
edge, with all communications routed through it. The server implements all possible communication protocols 
and is assumed to hold the smart space resources. However, such an assumption ignores the distributed nature of 
IoT, where resources are distributed on the things. At the same time, such a centralized approach reduces 
flexibility and imposes inefficiencies in both communication links and bandwidth usage in cases where only 
homogenous things existed in the smart space with no requirement for a centralized server to handle the 
communication channels (e.g., CoAP- or HTTP REST-speaking things). Our proposed Atlas communication 
framework enables seamless interaction between things that speak different communication languages and does 
not tax performance when homogenous things are communicating. In the next section, we introduce our proposed 
Atlas communication framework and describe the different scenarios where the framework handles 
communication of smart spaces with homogenous and heterogeneous things. 

 

3. ATLAS IoT COMMUNICATION FRAMEWORK 
As noted earlier, we base our approach on the Atlas thing architecture and the IoT Device Description Language 
(IoT-DDL) proposed in [30]. The Atlas architecture takes advantage of a thing’s OS services to provide the new 
capabilities a thing needs to engage in ad hoc interactions and interconnections, as well as IoT applications. The 
architecture fully utilizes the specifications of IoT-DDL, which is a machine- and human-readable XML-based 
descriptive language that describes a thing’s identity, components, and services. 

The Atlas IoT platform layer of the architecture (which is built on top of the thing’s OS) provides new services 
that focus on descriptive and semantic aspects of things to better enable thing engagement, interaction, and IoT 
programmability. The platform tools the thing to self-discover its identity, components, and services, and to 
formulate APIs of its services. The thing also announces its identity, capabilities, and APIs to other things in the 
smart space through information-based interactions, while the action-based interactions include the applications 
that target a thing’s capabilities and services in terms of API calls. The Atlas IoT platform layer is further divided 
into the DDL sublayer, which configures the architecture modules according to the specifications of the uploaded 
IoT-DDL configuration file; the tweeting sublayer, which tools the thing to uniquely define itself in the smart 
space and to discover thing mates; and the interface sublayer, which holds the communication protocols the thing 
uses to engage and interact. Atlas IoT-DDL builder is a web service tool that allows a thing’s creator (e.g., the 
original equipment manufacturer (OEM)) or owner to create, update, or upload an IoT-DDL to a thing. The OEM 
of a thing could be the source of the IoT-DDL; a developer who utilizes space things’ services and resources 
might also be the source. Such flexibility facilitates further adoption of IoT-DDL with changes, and supports 
thing innovation, in which makers or hobbyists may be assembling new things not established by OEM. We 
developed an initial version of the web tool [34] that enables space users to develop an IoT-DDL that reflects, the 
thing’s metadata, attachments as well as the resources and services. The IoT-DDL manager of the DDL sublayer 
parses the different parameters of the uploaded IoT-DDL’s different sections required for the operation of the 
different modules of the Atlas architecture. The current implantation of the Atlas thing architecture [30] utilizes 
the lightweight OMA-LwM2M device management standard to manage the different aspects of IoT-DDL. The 
architecture translates the different sections and subsections of IoT-DDL into a set of dynamic objects to represent 
the different entities, services, resources, and attachments of an Atlas thing. The object creation and management 
occur on demand when IoT-DDL is uploaded to the thing during lifetime updates. At the same time, authorized 



lifetime management and updates from the management server trigger the device manager’s object engine module 
to maintain the corresponding objects and enables the authorized dynamic updates to the IoT-DDL parameters 
and attributes during the lifetime of the thing. 

The interface sublayer, the focus of this paper, currently supports only homogenous communication. The 
framework also utilizes the idea of expanding thing capabilities through attachments [30]. A thing attachment is 
an optional and additional accessory linked to the thing to tool it with further functionalities. Such functionalities 
can extend thing to provide additional services (e.g., log server, data store, software adaptor, specialized user 
interface, or dashboards) that may require additional resources and assets (e.g., software, manifests, memory 
storage or processing power). Such thing attachments could either reside on a more powerful platform (e.g., local 
cloud or edge) on the same smart space network with the things, or on a remotely accessible network. The owner 
of an attachment (e.g., a consumer electronics thing vendor) provides a well-defined interface to the offered 
function, where the function is either: 1) an online resource that the thing can access remotely (e.g., off-thing 
translator – as will be shown in section 3.2) or 2) a programmable object that the thing can download and 
dynamically integrate and bind with the thing (outside the scope of this paper).   

Our proposed Atlas communication framework is composed of three parts: 1) the interface sublayer of the 
Atlas thing architecture extended to enable seamless interoperability between things that use both similar and 
different communication protocols; 2) Atlas topics empowered by the idea of MQTT topics to create a set of 
common channels for things to discover other things and distributed services in the smart space, as well as enable 
peer-to-peer interactions; and 3) the Atlas protocol translator as a thing attachment, which can be either off-thing, 
residing on a cloud platform or edge, or an on-thing service running within the Atlas thing architecture. The 
translator provides protocol translation service to the thing through a set of well-defined interfaces, allowing the 
thing to communicate and interact with heterogeneous things. The proposed Atlas communication framework 
utilizes the widely adopted CoAP, HTTP REST, and MQTT IoT communication standards for application-layer 
network protocol interoperability. Each of these parts are described in detail in the following sections. 

An example application, which we implemented, that can benefit from our proposed framework is an 
infotainment application consisting of a Sports mobile app as a thing in the IoT [35], and a DVR recorder thing 
that can record games. The DVR and the mobile app, under our architecture, tweet and learn they can form an IoT 
application where the DVR recorder may offer recording service to the Sports app (details in [35]). This 
application scenario will benefit from our framework here where the vendor of the DVR may decide to choose 
one communication protocol or another, yet the interaction will be enabled under our IoT communication 
framework.  

3.1 Atlas IoT Topic Hierarchy 
The framework features the idea of MQTT topics to create a set of common channels (“Atlas topics”) that things 
can use to communicate and interact. Such communication channels enable both the multicast communication 
paradigm that tools the thing to discover other things and distributed services in the smart space as well as the 
peer-to-peer communication paradigm for unicast interactions. In this paper, we use “Atlas topic” to refer to the 
channels on which HTTP REST-, CoAP- and MQTT-speaking Atlas things can communicate, advertise, and 
interact. 

The framework extends the Atlas thing IoT-DDL specifications proposed in [30], which describe the different 
aspects and dimensions of the thing, to include the Smart Space ID (SSID), Atlas Thing ID (ATID), and the Smart 
Space Broker (SSB) attributes. SSID is an identifier for the smart space defined by the space owner (e.g., owner 
name, cellphone number, and zip code of the space) that ensures the uniqueness of the identity between the 
different smart spaces. ATID is an identifier for the thing defined by the owner or IoT-DDL developer that 
ensures the uniqueness of the thing for the same smart space. SSB defines the access interface to a broker 
provided by the space owner or offered by a third party (e.g., MQTT-HiveHQ [9] or Eclipse MQTT sandbox [8]). 
Learning the SSB is an essential step to establishing an initial shared communication medium through which 



smart space things speaking different communication languages can sense their mutual presence and 
communicate. On powering up an Atlas thing, as illustrated in Fig. 1, the thing connects to the default broker that 
is indicated by the SSB of IoT-DDL and subscribes to the Atlas topics. MQTT-speaking things connect directly to 
the broker, while HTTP REST- and CoAP-speaking thing utilize their own Atlas protocol translator, as will be 
illustrated in section 3.2, to connect and subscribe to this broker. The non-MQTT-speaking things in the scope of 
this paper are things that speak CoAP or HTTP REST. 

To keep the communication channels secure and private, or to utilize a required broker, the framework lets the 
space owner dynamically assign a new broker to the smart space through one of the shared Atlas topics. The new 
broker can be an Atlas thing with high capabilities (e.g., memory or power source) that offers broker service to the 
smart space. The Atlas things in the same smart space must have the same SSID and SSB values to ensure that 
they can communicate and interact with the same broker using the same channels, as will be discussed later.  

To ensure uniqueness, the framework uses the Atlas_(SSID) topic as the root of the hierarchy under which all 
Atlas things communication and interactions take place. The root topic (illustrated in Table 1) is further divided 
into network, multicast, and unicast subtopics. Such subtopics enable things in a smart space to sense the network 
for the presence of MQTT clients and any required broker that replaces the default broker. The subtopics also 
allow things to multicast packets and perform peer-to-peer interactions. The three subtopics are described next. 

 

Table 1: Atlas IoT topic hierarchy 
/Atlas_(SSID) /Network /MQTT_Client 
  /Private_Broker 
 /Multicast /Thing_Identity 
  /Thing_API 
 /Unicast /Interaction_(ATID) 

 
 

 
Figure 1: Smart space broker and HTTP REST-, CoAP- and MQTT-speaking Atlas things. 
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3.1.1 Network Topic 
The network topic of the Atlas topic hierarchy keeps the thing’s attention on network updates through two 
subtopics: MQTT_Client and Private_Broker. 
● The MQTT_Client topic indicates the existence of at least one MQTT-speaking Atlas thing in the smart space. 

After powering up, an MQTT-speaking thing publishes “true” to the MQTT_Client to mark the existence of an 
MQTT thing in the smart space. At the same time, non-MQTT-speaking things subscribed to the topic 
hierarchy detect the presence of MQTT client(s) in their smart space and route all future unicasting with 
intended MQTT peers through the broker, which requires an Atlas protocol translator, as will be shown in 
section 3.1.3. Similarly, multicasting of non-MQTT-speaking things is also routed through the broker, as will 
be detailed in the next section. The content of the MQTT_Client topic is empty by default to indicate no 
MQTT-speaking things exist in the smart space initially. 

● The Private_Broker topic holds the access information (e.g., URL, IP, and port) for an optional new broker 
assigned to the current smart space by the space owner. The Private_Broker topic enables the space owner to 
specify an alternative broker for the space things to use, other than the default broker defined by SSB of the 
IoT-DDL. If the content of the topic is null by default, no private broker exists and Atlas things will use the 
default broker. Such a powerful Atlas thing (which offers broker service) publishes the access information of 
the offered broker service to the Private_Broker topic. All other subscribed Atlas things are notified of the new 
broker, disconnect from the default broker defined by the SSB identified in IoT-DDL, and connect and 
subscribe to the same topic hierarchy on the new broker. 

3.1.2 Multicast Topic 
In the Atlas topic hierarchy, the multicast topic is the topic channel where Atlas things can propagate information-
based interactions to all other Atlas things in the smart space [30]. An Atlas thing announces its presence, identity, 
and internal entities on the Thing_Identity topic, and APIs for its offered resources to other things in the smart 
space on the Thing_API topic. The multicast topic, which all Atlas things are subscribed to, not only allows an 
Atlas thing to announce its presence and capabilities, but also enables an Atlas thing to discover other things and 
the distributed services offered by them. However, as will be mentioned in section 3.1.3, an Atlas thing can 
unicast an API call for a service offered by another thing on a separate dedicated channel linked to the peer’s ID, 
which guarantees that no other things are listening to the conversation.  

The updates on the topics listed under “Network Topic” shape two cases for multicasting. The existence of 
MQTT-speaking things in the smart space indicated by the MQTT_Client topic (as the first case), requires the 
MQTT-speaking things to affect a multicast through the broker and the non-MQTT-speaking things to utilize the 
translator to multicast through the broker. The absence of MQTT-speaking things, on the other hand (as in the 
second case), triggers CoAP-speaking things to utilize the UDP multicasting capability of the CoAP standard on 
the same multicast topics, as illustrated in Fig. 2. 

3.1.3 Unicast Topic 
The unicast topic of the Atlas topic hierarchy is the topic channel where an Atlas thing can initiate peer-to-peer, 
action-based interactions in the form of API calls. The action-based interactions enable an Atlas thing to request a 
specific service or call for an API offered by another Atlas thing in the smart space. With the presence of MQTT-
speaking things in the smart space, indicated by the MQTT_Client topic (as in the first case), each non-MQTT-
speaking thing through its translator as well as MQTT-speaking thing subscribes to its Interaction_(ATID) topic 
on the broker. Including ATID as part of the topic name ensures that each thing has a unique channel through 
which other things can initiate a private unicast. An Atlas thing that initiates a unicast interaction publishes to the 
unicast topic of the corresponding peer using the peer’s ATID to ensure that no other things are listening to the 
conversation. 

The absence of MQTT-speaking things (as the second case) triggers non-MQTT-speaking things to utilize the 
UDP unicasting capability of the CoAP standard on the same topic of the peer (in case of CoAP-speaking things) 



and the TCP unicasting capability of HTTP (in the case of HTTP-speaking things), as illustrated in Figs. 2 and 3, 
respectively. The payload of the unicast interaction contains the API call for the offered service in addition to the 
API’s required arguments for the other thing to handle the execution, as described in [30]. 

 
 

 
Figure 2: CoAP standard multicast and unicast communication. 

 

 

Figure 3. HTTP REST standard unicast communication. 
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or edge device) or an on-thing service that is executed by the thing itself, as will be explained in section 3.3. In 
either case, the Atlas thing interfaces with its own protocol translator and asks the translator to (a) connect to the 
broker identified by SSB and subscribe to the Atlas topic hierarchy; or (b) multicast or unicast data on specific 
topics through the interface functions depicted in Table 2. The translator, in return, notifies the thing of updates 
published to Atlas topics and interactions destined to the thing’s unicast topic through the appropriate interface 
function.  

Table 2: Translator interface functions 
Method EstablishConnection Input [translator IP and Port] 
Method BrokerSettings Input [SSB and Atlas Topic Hierarchy] 
Method MulticastPublish Input [Multicast Topic] 
Method UnicastPublish Input [Unicast Topic] 

 

The Atlas protocol translator, as illustrated in Fig. 4, is composed of the following modules: 
● The translator gateway accepts translation requests received from the connected non-MQTT-speaking thing 

through the interface function EstablishConnection and hands them to the packet dispatcher and response 
builder module. The gateway module also opens a communication channel with the broker indicated by the 
parameters of the EstablishConnection request and hands the responses from the packet dispatcher and 
response builder module back to the connected thing.  

● The packet analyzer and response builder performs two functions. First, it interprets the received translation 
request on the interface functions. The request can be to (a) establish a connection with a broker and subscribe 
to the topic hierarchy (the BrokerSettings interface function), (b) publish data to a specific multicast topic (the 
MulticastPublish interface function), or (c) unicast an interaction topic (the UnicastPublish interface function). 
The packet analyzer submodule forwards the request to the connection manager, multicast handler, or the 
unicast handler, respectively. The module’s second function is to capture MQTT responses on these requests 
from the broker and map them to the connected thing through the interface functions. It should be noted that 
each interface function request is processed on a separate thread, in which the thread is blocked until the packet 
dispatcher and response builder returns the response. 

● The connection manager handles the requests from non-MQTT-speaking things to establish a connection with a 
broker and to subscribe to topic hierarchy (specified from the inputs to the BrokerSettings interface function). 
The manager also handles new connections to new private brokers that publish their existence to the 
Private_Broker topic. MQTT acknowledges on broker connection and subscriptions as well as when data 
notifications are handed back to the response builder submodule to notify the connected thing.  

● The multicast handler translates data posting requests to a multicast topic (the MulticastPublish interface 
function) into MQTT publish requests to the proxy client and hands the acknowledgment back to the response 
builder submodule. 

● The unicast handler translates the interaction requests to the unicast topic (the UnicastPublish interface 
function) into MQTT publish requests to the proxy client and hands the acknowledgment back to the response 
builder submodule. 

● The proxy client is a lightweight client process that handles the connection, subscription, and publishing of 
MQTT packets to the broker specified by the connected thing through the gateway module. The proxy client 
also hands acknowledgments and data notifications back from the broker to the connection manager, multicast 
handler, and unicast handler modules according to the content.  
 



 
Figure 4: Atlas protocol translator. 

For a precise and clear illustration of the operation of the proposed Atlas on- and off-thing protocol translator, we 
provide an algorithmic representation of the translator below. We also provide, in section 3.3, an algorithmic 
representation of operation of the proposed framework (Atlas IoT topic hierarchy, the Atlas IoT protocol 
translator, and the extended interface sublayer of the Atlas thing architecture). The algorithm creates a set of event 
call-back functions that are triggered on specific events (e.g., connection request from an Atlas thing, request to 
publish to topic, received updates on a subscribed topic) and the different interface functions defined in table 2.  
 

Atlas protocol translator 

Algorithm: 

*SSID                           //Smart space id, default empty  

*ATID                          //Atlas thing id, default empty 

*MQTT_ Exist             //MQTT client exist, default false 

*Current_Broker         //Broker access info, default empty 

1. Set an event listener (Connection request from Atlas thing)  
2.     Set SSID to the smart space id of the connected thing                           
3.     Set ATID to the atlas thing id of the connected thing 
4. Set an event listener (Broker settings information from the connected Atlas thing) 
5.     Set Current_Broker according to the broker information 
6.    Connect to the Current_Broker  
7.    Subscribe to the Atlas topic hierarchy 
8. Set an event listener (updates on MQTT_Client topic) 
9.      Set MQTT_Exist to true 
10. Set an event listener (updates on Private_Broker topic) 
11.     Disconnect from the Current_Broker      
12.     Set the Current_Broker is the new broker 
13.     Connect to the Current_Broker  
14.     Subscribe to the Atlas topic hierarchy 
15.     Set MQTT_Exist to false 
16. Set an event listener (publish request on multicast or unicast topic) 
17.     If MQTT_Exist is true then 
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18.         Build an MQTT packet with the input payload 
19.         Publish the MQTT packet to the input topic 
20.     end if 
21. Set an event listener (updates on Multicast or Unicast topic) 
22.     Parse the received MQTT response 
23.     Reply on the connected Atlas thing with the received payload and the corresponding topic 
24. Set an event listener (Broker is down) 
25.     Set Current_Broker to the default SSB broker 
26.     Connect to the Current_Broker  
27.     Subscribe to the Atlas topic hierarchy 
28.     Set MQTT_Exist to false 
29. Set an event listener (Atlas Thing connection is down) 
30.     Disconnect from the Current_Broker      

 

 

3.3 Atlas Architecture Interface Sublayer 
We extended the current interface sublayer of the Atlas thing architecture with further capabilities to enable the 
seamless interaction between the things that speak similar languages as well as things that speak different 
languages. The Atlas architecture [30] enables a thing in a smart space to engage in ad hoc interactions and 
interconnections, as well as IoT applications through a set of new services. Such services focus on descriptive and 
semantic aspects of things to better enable thing engagement, interaction, and IoT programmability. The platform 
tools the thing to self-discover its identity, components, and services, and to formulate APIs of its services. The 
thing also announces its identity, capabilities, and APIs to other things in the smart space through information-
based interactions, while the action-based interactions include the applications that target the thing’s capabilities 
and services in terms of API calls. The original interface sublayer of the architecture (the focus of this subsection), 
through which the communication protocols the thing speaks to engage and interact, currently supports only 
homogenous communication. Fig. 5 illustrates the Atlas thing architecture with a focus on the interface sublayer 
with the extended capabilities. 



 
Figure 5: Atlas architecture with focus on the interface sublayer. 

The extended interface sublayer of the Atlas thing architecture is composed of the following modules: 
● The packet sniffer senses communication packets and classifies them as either homogenous packets of the same 

language that the thing speaks or heterogeneous packets received from the connected Atlas protocol translator.  
● The primary packet engine handles the homogenous requests and interactions received, and builds the 

corresponding responses to the requesters. 
● The proxy packet engine handles the heterogeneous requests and interactions destined for the translator 

manager and captures the responses to the requesters. 
● The translator manager is either an on-thing attachment of the Atlas protocol translator or an off-thing 

attachment of the same. In the latter case, the translator manager opens and manages a communication channel 
with the protocol translator through the well-defined interfaces depicted in table 2. 

● The topic repository keeps track of the latest published values to the various Atlas topics and interacts with the 
tweeting sublayer of the Atlas thing architecture to access both information-based and action-based tweets and 
interactions. 

In this section, we described our Atlas IoT heterogeneous communication framework by presenting the Atlas IoT 
topic hierarchy, the Atlas IoT protocol translator, and the extended interface sublayer of the Atlas thing 
architecture. Seeking a precise and clear definition of our proposal, we provide an algorithmic representation of 
the framework below.  
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Atlas thing communication framework 

Algorithm: 

*SSID                           //Smart space id, default empty  

*ATID                          //Atlas thing id, default empty 

*MQTT_ Exist             //MQTT client exist, default false 

*Current_Broker         //Broker access info, default empty 

*Native_Language      //Communication protocol, default empty 

*Topic_Map                //record for each topic, default empty 

*Translator_settings   //Atlas translator info, default empty 

1. Powering Atlas thing  
2. Call Initialize method 
3. Call Event_Handler method 
4. while true do 
5. Call Interaction_Handler method 
6. end while 

 
The supporting algorithm Initialize, which configures the different modules of the interface sublayer of the Atlas 
thing architecture according to the uploaded IoT-DDL, is specified as follows.  
 

Method Initialize: Initialize interface sub-layer, communication channels and event listeners. 

1. Read SSID, ATID, Current_Broker, Native_Language and Translator_settings parameters from the 
uploaded IoT-DDL 

2. If the Atlas thing provides private broker service then 
3.          Connect to the Current_Broker 
4.          Publish broker access information to Private_Broker 
5.          Disconnect from the Current_Broker 
6.          Change Current_Broker to the new broker 
7. end if 

 
The supporting algorithm Event_Handler, which initializes communication channels and creates event call-back 
functions that are triggered on specific events (e.g., a packet is received, the broker connection is down, or a 
MQTT client is in the smart space), is specified below. The event listener is a call-back mechanism used and 
developed by the communication standards (MQTT, CoAP, and HTTP REST) to track specific events.  
 

Method Event_Handler: Initialize communication channels and listeners for events. 

31. If Native_Language is MQTT then 
32.          Connect to the Current_Broker 
33.          Set MQTT_Exist to true 
34.          Publish true to MQTT_Client topic 
35.          Subscribe to Atlas topic hierarchy 
36. else if Native_Language is CoAP or HTTP-REST then 
37.          Connect to translator using Translator_settings 



38.          Subscribe to Private_Broker and MQTT_Client topics 
39.          Set an event listener (MQTT_Client topic update) 
40.          Set MQTT_Exist to true  
41.          Subscribe to multicast topics and the unicast topic 
42. end if 
43. //the above if-else statements handle both MQTT and non MQTT speakers differently 
44. //the next events’ call back functions handle both similarly 
45. Set an event listener (Packet received) 
46.     Call Interaction_Handler method 
47. Set an event listener (Private_Broker topic update) 
48.     Disconnect from the current broker 
49.     Change Current_Broker to the new broker 
50.     Call Event_Handler method 
51. Set an event listener (Broker is down) 
52.     Set Current_Broker to the default SSB broker of IoT-DDL  
53.     Call Event_Handler method 

 

The supporting algorithm Interaction_Handler, which builds multicast and unicast interactions as well as 
interactions’ responses to other things in the smart space, is specified as follows.  
 

Method Interaction_Handler: Creates outgoing interactions and processes incoming interactions. 

1. If new interaction then     //Creating outgoing interaction 
2.    Build up the interaction 
3.    If Multicast interaction then 
4.   If MQTT_Exist then 
5. If Native_Language is MQTT then 
6.       Publish interaction to the corresponding multicast topic 
7. Else if Native_Language is CoAP or HTTP then 
8.       Publish interaction through translator to the corresponding multicast topic 
9. end if 
10.   else if Native_Language is CoAP then    
11. CoAP UDP-multicast the interaction to the corresponding multicast topic 
12.   end if 
13.    else                                                       // Unicast interaction 
14.   If Native_Language is CoAP & peer is CoAP then 
15.        CoAP UDP-unicast the interaction to the corresponding unicast topic 
16.   else if Native_Language is HTTP & peer is HTTP then 
17.        HTTP-REST TCP-unicast the interaction to the corresponding unicast topic 
18.   else if Native_Language is CoAP & peer is non CoAP then 
19.        Post the interaction through the Atlas protocol translator to the corresponding unicast topic 
20.   else if Native_Language is HTTP & peer is non HTTP-REST then 
21.       Post the interaction through the Atlas protocol translator to the corresponding unicast topic 
22.   else                                                //MQTT speaking thing 
23.        Publish interaction to the corresponding unicast topic 



24.   end if 
25.   end if 
26. else                                     //Processing an incoming interaction 
27.   Parse request 
28.   If (Multicast interaction) then 
29.       Update the Topic_Map 
30.   else         //unicast interaction received on Interaction_(ATID) 
31.       Build up the corresponding response interaction 
32.       Jump to line 14  
33.    end if 
34. end if 

 

The proposed framework imposes some requirements on things to be part of such an interoperable multiprotocol 
ecosystem and to enable a smooth interaction with thing mates that utilize similar or different communication 
protocols. First, Atlas things are assumed to have an Internet connection (e.g., Wi-Fi, Ethernet, or cellular 
network) if the default SSB specified in the IoT-DDL or the private broker required by the space owner is not in 
the things’ local network. Second, Atlas things are assumed to have an operating system (e.g., Android, embedded 
Linux, ARM Mbed-OS [33], or Google Brillo [32]) that supports multithreading, where the thing can create a 
bidirectional communication channel that can interact and listen for interactions simultaneously.  
Seeking a clear illustration of the operation of the Atlas protocol translation, we provide the transition state 
diagram in figure 6 below. 

 
Figure 6: State transition diagram for the operation of the on-thing and off-thing Atlas protocol translators.  
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4. IMPLEMENTATION AND BENCHMARKING 
In this section, we give an overview of the communication protocols and how the IoT-DDL of an Atlas thing 
reflects the proposed framework attributes for an interoperable ecosystem. We then provide a benchmarking study 
to measure energy consumption as well as the code footprint of the different aspects of each protocol. The aspects 
benchmarked are the engagement of the thing with other things through multicasting its presence, unicasting 
interactions (e.g., issuing API calls) and listening to similar interactions sent by thing mates in the smart space. 
This section also describes the implementation details of engaging the Atlas communication framework in various 
homogenous and heterogeneous network scenarios. The framework adopts the open source C++ implementation 
of CoAP developed by Noisy Atom [23], C/C++ implementations of MQTT developed by the Paho Eclipse 
project [22], and HTTP REST developed by the C Curl library [24]. The framework also utilizes a connection 
with the cloud-based MQTT broker HiveMQ dashboard [9] as the default broker defined by SSB in the Atlas 
thing IoT-DDL. The things used in this study are Raspberry Pi Model B and Beaglebone black sensor platforms 
with the specifications listed in Table 3. The benchmarking and implementation demonstrate the feasibility of the 
framework on these real platforms. 

Table 3: Sensor platform specifications 
Specifications Raspberry Pi Model B Beaglebone Black 
OS Raspbian Angstorm 
Processor 900 MHz Quadcore ARM Cortex A7 1 G-Hz Sitara AM3359 ARM Cortex A8 
Network Module Onboard Ethernet Onboard Ethernet 
RAM 1 GB 512 MB 

4.1 IoT-DDL Specifications of the Atlas IoT heterogeneous communication framework 
This section shows how the Atlas thing IoT-DDL configuration file is extended to enable the proposed framework 
and engage the communication language (detailed in section 2.1) the thing speaks. IoT-DDL specifications [30] 
describe the different parts and accessories of a thing in a smart space through a set of attributes, parameters, and 
properties. The structure of IoT-DDL is divided into (a) the Atlas thing section, which characterizes the thing as a 
whole, describing the different resources and components on board; (b) the thing entities section, which describes 
the different types of entities (hardware, software, or hybrid) that can be embedded, built in, or connected to the 
thing; and (c) the thing attachments section, which describes the different cloud-based and on-thing accessories 
that expand the thing’s functionalities and resources.  

The descriptive metadata subsection of the Atlas thing section of IoT-DDL specifications, as illustrated in Fig. 
7, is the subsection that is used to uniquely identity the thing in the smart space, by providing its ATID (line 8), 
the smart space SSID (line 9), and the thing’s vendor, owner, model, and type (line 2 to 7). The IoT-DDL 
manager module of the DDL sublayer of the architecture parses the attributes of the descriptive metadata 
subsection and configure the parameters of the Identity parser module of the DDL sublayer to uniquely identify 
the thing [30]. Another IoT-DDL subsection of the Atlas thing section is the network manager. The network 
manager describes the network connection capabilities in terms of the mounted network module (e.g., Wi-Fi or 
Bluetooth), network access information, and preferences (lines 3–5). The network manager lists the required 
attributes and properties of the communication protocol that the thing speaks (lines 6–10). The network manager 
section also, as illustrated in Fig. 8, includes configuration of the SSB broker for the thing to initially connect to 
as well as the Atlas topics (lines 11–17) for the thing to subscribe to either directly (for the MQTT-speaking 
things) or through the Atlas protocol translator (for the non-MQTT-speaking things, as will be declared in the 
thing attachment section of IoT-DDL). The IoT-DDL manager module of the DDL sublayer of the architecture 
parses the attributes of the network manager subsection and configures the parameters of the Interface sublayer of 
the architecture for the thing to start interact with other things in the smart space. 
 



 

1. <Descriptive_Metadata>  
2.    <Thing_Owner>CISE-UF</Thing_Owner> 
3.    <Thing_Name>Raspberry Pi</Thing_Name> 
4.    <Thing_Id>RPi1</Thing_Id> 
5.    <Thing_Model>B+</Thing_Model> 
6.    <Thing_ShortDescription>sensor-platform </Thing_ShortDescription>  
7.    <Thing_Type>ThingOfThings</Thing_Type> 
8.    <Thing_ATID>AtlasThing128</Thing_ATID> 
9.    <Thing_SSID>SmartSpace326012</Thing_SSID>  
10.    ….  
11. </Descriptive_Metadata>  

Figure 7: The descriptive metadata section in the IoT-DDL for an Atlas thing. 

 

1. <Administrative_Metadata>  
2.       <Network_Manager>  
3.          <Module>Wifi</Module>  
4.          <Type>External USB</Type>  
5.          <Network_Name>ATLAS</Network_Name> 
6.          <Transport_Protocol>TCP</Transport_Protocol>  
7.     <Communication_Protocol>CoAP </Communication_Protocol> 
8.     <Mulicast_Address>266.1.1.1</Multicast_Address> 
9.     <Listen_Port>5755</Listen_Port> 
10.     <Interaction_Port>4322</Interaction_Port> 
11. <SSB>broker.hivemq.com:1883</SSB>  
12. <Topic_Root>Atlas</Topic_Root>  
13.     <Network_MQTTClient>/Network /MQTT_Client </Network_MQTTClient>  
14.    <Network_PrivateBroker>/Network /Private_Broker </Network_PrivateBroker> 
15.    <Multicast_ThingIdentity>/Multicast/Thing_Identity </Multicast_ThingIdentity> 
16.    <Multicast_API>/Multicast/Thing_API </Multicast_API>  
17. <Unicast>/Unicast/Interaction</Unicast>  
18.       ….  
19. </Network_Manager>  
20.    ….  
21. </Administrative_Metadata> 

Figure 8: The network manager subsection in the IoT-DDL for a CoAP-speaking Atlas thing. 

The thing attachment section of the IoT-DDL specifications includes the protocol translator for CoAP- and REST-
speaking things. The protocol translator subsection includes the different attributes and parameters to configure 
the translator (in case of an on-thing translator) or to create a communication channel with the translator (in case 
of an off-thing translator as shown in Fig. 9). 
 

1. <Thing_Attachment>  
2.    <Protocol_Translator>  
3.       <Type>off-thing</Type>  
4.       <Description>Atlas protocol translator</Description> 
5.       <Translator_URL>192.168.0.4</Translator_URL> 
6.       <Translator_PORT>57577</Translator_PORT> 
7.       <Transport_Protocol>TCP</Transport_Protocol> 
8.       <Availability>Enabled</Availability>  



9.       ....  
10. </Protocol_Translator>  
11.    ....  
12. </Thing_Attachment> 

Figure 9: An off-thing Atlas protocol translator in the thing attachment section in the IoT-DDL. 

 

4.2 Benchmarking Code Footprint and Energy Consumption of Basic Communication Operations 
To characterize our proposed framework in terms of concrete metrics we measured its various code footprints and 
the energy cost of all its basic operations. We measured the code footprint of the different features of the proposed 
Atlas communication framework. The code footprint depicted in table 4, in kilobytes, represents the compressed 
version of the code files and libraries of the proposed framework components and features.  
 

Table 4: Code footprint (in kilobytes) for the different features of Atlas communication framework 
Feature Code footprint  

Atlas thing architecture 

MQTT client library [22] 

85 

525 

CoAP library [23]  76 

REST library [24] 12 

On-thing Atlas protocol translator 540 

Off-thing Atlas protocol translator 565 

 
Our communication framework loaded with IoT-DDL, in addition to the specific lightweight communication 
library (MQTT, CoAP or HTTP-REST) is evidently small in size to fit many of the available IoT platforms. Our 
framework footprint also compares favorably when compared to existing related work. In fact the Atlas thing 
architecture with a CoAP library and an on-thing translator (which is about 700KB – the highest footprint among 
all features in our framework) records a slightly smaller footprint when compared to the 710KB of Eclipse Ponte 
framework (which we described in the related work section 2.2) in addition to the CoAP client library for 
communication.  
To benchmark energy consumption characteristics of the homogenous basic communication functionalities of our 
framework (where things that speak similar languages can interact), we measured the energy consumed under 
CoAP, HTTP and MQTT protocols on the two different IoT platforms described in table 3. Basic functionalities, 
as depicted in table 5,6 and 7, enable the thing to:  
a. Announce its presence (64 bytes) and own APIs (64 bytes) to the Atlas multicast topics, through publishing to 

the broker (in case of MQTT speaking thing), UDP GET on a multicast IP address (in case of CoAP speaking 
thing) or TCP POST on the thing mate’s IP address (in case of HTTP-REST speaking thing). It should be 
noted as mentioned before in section 3.1.2 that MQTT speaking things affect a multicast through the broker, 
whereas the CoAP standard protocol is equipped with UDP multicast feature in which the homogenous 
CoAP-speaking things can join the same multicast group to receive such announcements. However, HTTP-
REST utilizes TCP for communication that does not enable a multicast feature. Thus, an HTTP-REST 
speaking thing can only utilize a unicast POST on other peers’ IP addresses.  

b. Interact with a thing mate in a peer-to-peer fashion (e.g., API call) on the Atlas unicast topic through 
publishing, UDP GET unicasted on the mate’s IP address and TCP GET on the mate’s IP address in cases of 
MQTT, CoAP and HTTP-REST speaking things, respectively. 



Discover presence and APIs of thing mates by receiving other thing announcements on the Atlas multicast topics 
as well as processing API’s on an Atlas unicast topic.  
Energy consumption is measured using PowerJive [31] – a USB-based device that measures voltage and capacity. 
For each operation in tables 5-7, we measured the total energy consumed in executing a loop consisting of only 
this operation for 10 minutes. To factor out energy consumed by background OS processes, we measured their 
total energy consumption over the same 10 min duration, which we then subtracted from that of the operation to 
obtain the adjusted total energy consumed by the operation. A first average was taken by dividing the adjusted 
total energy by the number of times this operation was completed within the 10 minutes duration. The whole 
process was repeated three times for each operation and a second average was calculated over the three 
measurements. Tables 5-7 show the measurements of energy consumption (watt-seconds) on the two hardware 
platforms with respect to the basic communication functions under MQTT, CoAP and HTTP-REST protocols, 
respectively. 
 

Table 5: Energy consumption (in watt seconds) measurements for MQTT functionalities. 
 Connect to SSB broker Publish  Receive and process message 

Raspberry Pi  0.2985 0.03947 0.0399 

Beaglebone Black 1.2739 0.16689 0.1507 

 

Table 6: Energy consumption (in watt seconds) measurements for CoAP functionalities. 
 Multicast (POST)  Unicast (GET) Receive and process message 

Raspberry Pi  0.00025 0.00247 0.00053 

Beaglebone Black 0.000790 0.00340 0.00160 

 

Table 7: Energy consumption (in watt seconds) measurements for REST functionalities. 
 Unicast (POST)  Unicast (GET) Receive and process message 

Raspberry Pi  0.01813 0.0165 0.0078 

Beaglebone Black 0.02885 0.0209 0.0327 

 

It should be noted that basic measurements obtained in tables 5-7 could vary if the if we change the type of 
network used, the processor clock frequency or the amount of RAM used. However, these measurements are 
important and critical to designing a battery-operated thing in a given use scenario with a targeted thing 
operational lifetime. 
It should also be noted that the more powerful platform – the Raspberry Pi with 1GB of RAM and quad-core 
processor – consumes less energy for all basic operations compared to the Beaglebone Black platform. CoAP that 
utilizes UDP is also shown to be a lightweight communication protocol compared to both MQTT and REST that 
utilize TCP on both Raspberry Pi and BeagleboneBlack.  
 

4.3 Benchmarking Energy Consumption under Different Scenarios 
Unlike section 4.2, in which we measured the energy consumption of each individual operation in our 
communication framework, in this section we measure the energy consumed in full-interaction scenarios from the 
point of view of one thing in a network of four or more things. We examine two main scenarios: homogeneously 
communicating things (section 4.3.1) and heterogeneously communicating things (section 4.3.2). We also 
compare energy consumption of our communication framework with Eclipse’s Ponte system (section 4.3.3) and 



finally examine the scalability of our proposed approach as the number of communicating Atlas things in a smart 
space increases (section 4.3.4). 
For the above scenarios, we set up a network of four Atlas communicating things (two Raspberry-Pi’s and two 
Beaglebone black). Each Atlas thing interacts with thing mates by generating random interactions that follow a 
uniform distribution process with a mean interval of 5 seconds, for a period of 10 minutes.  Interactions are 
limited to only identity announcements or unicast interactions (e.g., API calls) with other thing. Each thing also 
listens to other things’ announcements and API calls. 
If configured to speak HTTP REST or CoAP, an Atlas thing can be further configured with either on-thing or off-
thing Atlas protocol translator attachments. No attachments are necessary if an Atlas thing is configured to speak 
MQTT. In case of off-thing attachment, the Atlas protocol translator resides on a Linux Ubuntu machine on the 
same local network as the Atlas things. 
Given space limitation we report only for the Raspberry Pi even though we have conducted experiments for the 
Beaglebone black as well.  

4.3.1 Experiment-1: Homogenous things scenario 
In this experiment we measure the energy consumed by an Atlas thing when it engages within a homogeneous 
network of four things. In this experiment an arbitrary thing is chosen at random to take the measurements. 
MQTT-speaking things are found to consume more energy, as shown in figure 10 as an MQTT client requires a 
long-term TCP connection to be maintained with the broker. In the case of CoAP or HTTP REST, an Atlas thing 
can talk in discontinued sessions with other things over UDP and TCP channels respectively. Figure 9 shows that 
an Atlas MQTT-speaking thing consumes around 8% more energy than an HTTP REST-speaking thing and 
around 20% more than a CoAP-speaking thing for a homogenous things scenario. 

 

 

Figure 10: Atlas communication framework for homogenous speaking things. 
 

4.3.2 Experiment-2: Heterogeneous things scenario 
In this experiment we measure the energy consumed by an Atlas thing when it engages within a heterogeneous 
network of four things (two MQTT-speaking, one CoAP-speaking and one-HTTP REST speaking). The 
experiment shows the energy difference between utilizing an on-thing and off-thing Atlas protocol translator for 
the non MQTT-speaking things to engage with other things through the SSB broker. As it uses no translators, 
MQTT thing’s energy consumption is not measured in this experiment. The on-thing Atlas protocol translator –as 
listed in table 4– taxes an extra code footprint on the Atlas node, however it saves energy that would be consumed 
by the thing to create a connection and to listen to notifications from an off-thing Atlas protocol translator, as 
shown in figure 11. It is worth mentioning that with a 540 more kilobytes of code, the on-thing Atlas protocol 



translator saves around 7% in energy. Such little energy saving could add up in a real life scenario over a much 
longer duration. 

  

 

Figure 11: Atlas communication framework for heterogeneous speaking things. 
In this experiment we also measure the time required for the non-MQTT speaking thing to utilize the Atlas 
protocol translator (on-thing and off-thing) to multicast an announcement. Time is measured using the Unix-
Chrono library for a high-resolution clock cast to microseconds. The off-thing translator takes more time, as 
would be expected, shown in figure 12, as it receives request from the connected thing to send an announcement 
to the smart space. The time difference between off-thing and on-thing is not significant though. The off-thing 
translator takes more time because, upon receiving a request, it must build the MQTT packet and announce it 
using the Atlas IoT topic hierarchy (Table 1). It should be noted that this set of experiments shows a slight 
increase in latency mainly because the four Atlas things and the off-thing Atlas protocol translator (on a Linux 
Ubuntu machine) reside in the local network with low traffic load. However, the time difference between utilizing 
the on-thing and off-thing translator to multicast announcement would increase proportionally to the network 
traffic when more things are added into the smart space. Supporting both on- and off-thing translator in our 
approach would therefore allow our framework to be configured appropriately based on the scale of the smart 
space deployment.  

 

 
Figure 12: Time comparison for the on-/off-thing Atlas translator for non-MQTT speaking things. 
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4.3.3 Experiment-3: Atlas framework vs Eclipse Ponte 
In this experiment we compare energy consumption by our Atlas communication framework with Eclipse’s Ponte 
framework [22] in both homogenous and heterogeneous scenarios. Eclipse Ponte –described in section 2.2– offers 
a set of APIs that enable MQTT, REST-HTTP and CoAP speaking things to communicate through a centralized 
gateway that speaks all these languages. Eclipse Ponte requires the space owner to dedicate a powerful edge 
device (e.g., a server) that hosts the gateway with a continuous source of power that guarantee the gateway 
availability. Our framework, on the other hand, utilizes the cloud-based MQTT broker HiveMQ dashboard [9] as 
the default broker defined by SSB in the Atlas thing IoT-DDL. Such cloud-based broker alleviates the 
requirement on the space owner to set up a centralized gateway dedicated to the smart space and reduces the effort 
of creating a shared channel for things to communicate.  

For this experiment, we installed Eclipse Ponte on a Linux-Ubuntu workstation connected to the local network 
and which utilized MQTT client [22], CoAP client [23] and HTTP-REST client [24] on things listed in table 3. 
We also utilized a network of 4 things (2 MQTT things, one CoAP thing and one HTTP REST thing). For 
homogenous speaking things, as shown in figure 13, MQTT-speaking things that utilize Atlas framework 
consume more energy as the SSB broker is an online cloud broker compared to the Ponte workstation that exists 
on the local network. The homogenous things that speak CoAP or HTTP within Ponte framework consume more 
energy, as such things require a continuous connection to the centralized gateway for notifications and updates 
from other things that announce their presence or those that initiate unicast interactions (e.g., API calls). The 
advantage of our framework in the homogeneous case is however shown clearly in the CoAP and HTTP REST 
cases. Our framework consumes 22% less energy for CoAP things, and 17% less energy for HTTP-REST things. 
This homogeneous advantage is critical in planned spaces in which it is more likely to find homogeneously 
communicating things than heterogeneous.  

For heterogeneous speaking things, as shown in figure 14 (notice MQTT is not presented as it does not use 
attachments), our framework and Ponte consume almost the same energy in the case of on-thing attachments 
(actually our framework is slightly better in the CoAP case, and slightly over in the HTTP-REST case). In the 
case of off-thing attachments, our framework consumes only 5% and 8% more energy than Ponte in the CoAP 
and HTTP REST cases, respectively. 

It should be noted that our framework does not impose the use of a centralized gateway dedicated to the smart 
space to host Eclipse Ponte. Such is a heavy requirement imposed on the space owner. In contrast, our framework 
configures the Atlas things –through the IoT-DDL– to utilize any readily available standardized broker, which in 
this article we used the HiveHQ broker to enable a seamless interoperable smart space with the least human 
intervention and effort on the part of the space owner.  

 

Figure 13: Comparing Atlas communication framework and Eclipse Ponte for homogenous communicating 
things. 
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Figure 14: Comparing Atlas communication framework and Eclipse Ponte for heterogeneous 
communicating things. 

 

4.3.4 Experiment-4: Atlas framework scalability 
In this experiment we examine the scalability of our proposed framework by increasing the number of Atlas 
things that engage with each other in the smart space. However, in order to manage the experiment, we ran 5, 10 
and 15 concurrent Atlas thing processes (virtual things) on a shuttle Linux-Ubuntu machine (a portable server 
machine). One Raspberry Pi Atlas thing that speaks CoAP and utilizes an on-thing Atlas protocol translator was 
used as point of measurements, and connected to a network of 6, 11, and 16 things running the same interaction 
scenario described in the beginning of section 4.3. Figure 13 shows the energy consumed by the Raspberry Pi 
Atlas thing. As shown in figure 15, the Atlas thing can interact and engage with a large number of thing mates 
that speak similar or different languages exhibiting only a small increase in the consumed energy. In fact, such 
small increase in the consumed energy seems to decrease gradually with the number of communicating Atlas 
things in the smart space.  Doubling the number of things from 5 to 10 increased energy consumption by only 
19%. Adding 50% more nodes (from 10 to 15) increased energy consumption by only 8%. The scalable increase 
in energy consumption reflects the energy spent in listening to announcements and learning APIs of the IoT as it 
grows and expands.   

 

Figure 15: testing scalability on a CoAP-speaking Atlas thing with on-thing Atlas protocol translator. 
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5. CONCLUSION 
In this paper, we propose the Atlas communication framework that enables distributed interaction between things 
that speak similar or different IoT communication languages. The proposed framework does not tax the 
performance of the homogenously communication things. The Atlas communication framework offers 
lightweight IoT interoperability through a protocol translator that resides either on the cloud platform or on the 
thing itself. The protocol translator enables the seamless communication between heterogeneous things through a 
set of well-defined interfaces. We demonstrate the feasibility of implementing and deploying the Atlas 
communication framework on real hardware platforms. We also present a benchmarking study to validate the 
energy consumption feasibility of our approach. The study measures both code footprint and energy consumption 
rate for the different aspects of the framework in homogeneous and heterogeneous settings. The results show the 
feasibility of enabling seamless heterogeneous communication between things with an acceptable energy cost. 
The results also show the advantage of not taxing the energy profile in the homogenous communication cases. We 
also compare our framework to the Eclipse Ponte framework and show the energy consumption advantage of our 
framework in the different communication scenarios. The scalability of the proposed framework is also tested and 
reflected the slight increase in energy consumption with adding more things in the smart space. The proposed 
framework and the experimentation results pave the way for other IoT communication protocols to engage in such 
interoperable ecosystem (e.g., Advanced Message Queuing Protocol (AMQP) and XMPP that utilize publish-
subscribe architecture). The proposed Atlas communication framework enables the real participation of 
heterogeneous things in a smart space with least human intervention and the seamless integration of new things. 
Our proposed framework also opens the door for programming opportunities that may involve things that utilize 
different communication languages to cooperate and interact.  
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 In this paper, we focus on overcoming light-weight communication protocol fragmentation and introduce 
the Atlas IoT communication framework which enables interactions among things that speak similar or 
different communication protocols.  

 
 The framework tools up Atlas things with protocol translator “attachments” that enables the seamless 

communication between heterogeneous things through a set of well-defined interfaces.  
 

 The framework supports seamless communication among the widely adopted Constrained Application 
Protocol (CoAP), Representational State Transfer (REST) over Hypertext Transfer protocol HTTP, and 
the Message Queue Telemetry Transport protocol (MQTT).  

 
 We give a detailed benchmarking study to measure the energy consumption and code footprint 

characteristics of the different aspects of the framework on real hardware platforms.  
 

 We compare our framework to the Eclipse Ponte framework and show how our framework is 
advantageous in energy consumption and how it is unique in that it does not tangibly penalize the 
homogeneous communication case.  
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