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Abstract— In this Letter, we propose a new approach for 

remote sensing scene classification by creating an ensemble of the 

recently introduced massively parallel deep (fuzzy) rule-based 

(DRB) classifiers trained with different levels of spatial 

information separately. Each DRB classifier consists of a 

massively parallel set of human-interpretable, transparent 

0-order fuzzy IF…THEN… rules with a prototype-based nature. 

The DRB classifier can self-organize “from scratch” and 

self-evolve its structure. By employing the pre-trained deep 

convolution neural network as the feature descriptor, the 

proposed DRB ensemble is able to exhibit human-level 

performance through a transparent and parallelizable training 

process. Numerical examples using benchmark dataset 

demonstrate the superior accuracy of the proposed approach 

together with human-interpretable fuzzy rules autonomously 

generated by the DRB classifier. 

 
Index Terms—deep learning, rule-based classifier, scene 

classification, fuzzy rules. 

I. INTRODUCTION 

EMOTE sensing scene classification aims to allocate the 

sub-regions of fine spatial resolution images to distinct 

land use categories, a goal which is of paramount importance 

for many applications, such as urban planning, land resource 

management, and environmental conservation [1]. At the same 

time, land use classification is recognized widely as a 

challenging task because the land use sub-regions are 

recognised implicitly through their high-level semantic 

function, where multiple low-level features or land cover 

classes can appear in one land use category, and identical land 

cover classes can be shared among different land use 

categories. These high-level semantics need to be exploited 

sufficiently using robust and accurate approaches for feature 

representation. 

Currently, deep learning (DL) neural networks (NN) have 

gained huge popularity amongst researchers as well as amongst 

the general public, quickly becoming the state-of-art approach 

in the remote sensing domain, in particular [2]. Several 

publications have reported very promising results using DL for 
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spatial and spectral feature learning [2], [3]. Indeed, compared 

with the low- and mid-level feature-based methods (e.g., GIST 

[4], histogram of oriented gradient (HOG) [5], bags of visual 

words (BoVW) [6] and scale invariant feature transform (SIFT) 

[7], etc.), DL-based methods can learn more abstract and 

discriminative high-level semantic features and achieve greater 

accuracy. 

Nonetheless, the DL-based approaches [2], [3] and some 

other state-of-the-art approaches [8]–[10] suffer from several 

deficiencies and shortcomings including: 

1. the training process is opaque, and the classifier has low or 

no human interpretability (black box type); 

2. the training process is limited to offline and requires 

re-training for samples with feature properties different than the 

observed samples, as well as for samples from unseen classes; 

3. the training process is computationally expensive and 

requires a lot of training samples. 

These deficiencies hinder the performance of these new 

approaches in real applications. 

In this Letter, a new approach based on the ensemble of the 

recently introduced deep (fuzzy) rule-based (DRB) classifiers  

[11], [12] is proposed for remote sensing scene classification. 

The DRB classifier employs a massively parallel set of 0-order 

fuzzy rules as a learning engine [13]. By self-organizing a fully 

human-interpretable and transparent IF…THEN… model 

structure via a fast and nonparametric training process, our 

previous study shows that the DRB classifier can achieve 

human-level results in various applications, including 

handwritten digit recognition [11], [12], face recognition [12], 

etc. This is despite the fact that only low-level feature 

descriptors [14], namely GIST [4] and HOG [5], are employed. 

Further, due to its prototype-based nature, the DRB classifier 

can start learning and self-organizing “from scratch” and 

continue to learn from new images. Its training can be highly 

parallelized thanks to its specific structure [11], [12]. 

By introducing a pre-trained deep convolutional neural 

network (DCNN) as the feature descriptor [14] into the DRB 

classifier, it is able to grasp more abstract and discriminative 

semantic features within the remote sensing images. By further 

creating an ensemble of DRB classifiers trained with segments 

of remote sensing images partitioned with different 

granularities, the proposed approach is able to utilize spatial 

information at multiple scales and exhibit highly accurate 

classification performance.  

Preliminary numerical examples demonstrate that the DRB 

ensemble outperforms the state-of-the-art approaches [2], [3], 
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[8]–[10] in terms of classification accuracy and can serve as a 

competitive alternative to the traditional DCNNs [2], [3] with 

its highly transparent, human-interpretable, parallelizable 

system structure.  

II. ARCHITECTURE OF THE PROPOSED APPROACH 

The general architecture of the proposed DRB ensemble is 

depicted in Fig. 1, which consists of multiple deep (fuzzy) 

rule-based (DRB) classifiers trained with the segments of 

remote sensing images at different levels of granularity ( G  in 

total). The architecture of a multi-layer DRB classifier is 

presented in a modular/layered form in Fig. 2. One can see that 

each classifier consists of the following layers [11], [12]: 1) 

Rotation layer; 2) Segmentation layer; 3) Scaling layer; 4) 

Feature extraction layer and 5) Massively parallel 

IF…THEN… rule-based system. 

The rotation layer of the DRB rotates the images at 1) 0
o
; 2) 

90
o
; 3) 180

o
 and 4) 270

o
 around the centre point. The rotation 

operation significantly increases the generalizability and 

reduces the overfitting.  

The segmentation layer uses a sliding window to partition the 

remote sensing images into smaller pieces for local information 

extraction. By changing the size of the sliding window, the 

level of granularity of the segmentation result can be changed 

accordingly, which results in different scales of spatial 

information. A larger sliding window size allows the DRB to 

capture coarse scale spatial information at the cost of losing 

fine scale spatial information and, similarly, a smaller sliding 

window size results in more fine scale detail. In this Letter, we 

use sliding windows of different sizes and partition the images 

into segments of different levels of granularity, train a number 

of DRB classifiers (one per level of granularity) in parallel, and 

create an ensemble for decision-making at the validation stage. 

The DRB ensemble proposed in this Letter employs one of 

the currently best performing pre-trained deep convolutional 

neural network models, namely, VGG-VD-16 [15] as the 

feature descriptor due to its simple structure and high 

performance [14]. However, we stress that there is no further 

tuning involved, and alterative feature descriptors can also be 

used, i.e. GIST [4], HOG [5], or GoogLeNet [16]. 

As the segmentation layer produces image pieces of different 

sizes, a scaling layer is involved in the DRB classifier to rescale 

the segments into the uniform size of 227×227 pixels required 

by the VGG-VD-16 model [15]. Then, following common 

practice, the 1×4096 dimensional activations from the first fully 

connected layer are extracted as the feature vectors of the image 

segments (one 1×4096 dimensional vector per segment).  

The proposed DRB ensemble employs the self-organizing 

evolving fuzzy rule-based (FRB) systems of AnYa type with 

singletons in the consequent part [13] as its “learning engine”, 

and it involves a two-level decision-making process. 

As shown in Fig. 2, each DRB classifier is trained with the 

segments of the remote sensing images of one different 

granularity. Each DRB classifier consists of C 0-order fuzzy 

rule-based subsystems of AnYa type trained in parallel 

corresponding to the C classes from the image set (one per 

class). These FRB subsystems are entirely independent from 

each other, and each subsystem can be updated or removed 

without influencing others. Each FRB subsystem contains one 

massively parallel fuzzy rule set formulated around the 

prototypes generalized or learned from the segments of the 

corresponding class. These rules have the following form [12]: 

     ,1 ,~ ... ~
cc c NIF OR OR THEN class csg P sg P , (1) 

where ~ denotes similarity, which can also be seen as a fuzzy 

degree of satisfaction or membership; sg is a particular segment 

of an image, and its corresponding feature vector is denoted as 

x; Pc,j (j=1,2,…,Nc, c=1,2,…,C) denotes the j
th

 prototype of the 

c
th 

class with the corresponding feature vector pc,j; Pc,j  is of the 

same size as sg; x and pc,j have the same dimensionality; Nc 

corresponds to the number of prototypes of the c
th 

class. Each 

fuzzy IF…THEN… rule contains a number of prototypes 

identified from the segments of the images from the same class, 

which are connected by a local decision-maker using the 

“winner-takes-all” principle. Therefore, each massively 

parallel AnYa type fuzzy rule [13] can be represented as a 

series of simpler fuzzy rules with a single prototype connected 

by a logical “OR” operator. The zoomed-in structure of a 

particular massively parallel fuzzy rule is depicted in Fig. 3. 

The 0-order massively parallel fuzzy rules of AnYa type are 

nonparametric and transparent. Their identification process 

[11], [12] (as briefly described in the form of pseudo-code in 

section III.A to make this Letter self-contained) is autonomous 

(does not require any user input) and can also be self-evolving 

(new rules and prototypes can be added, merged or removed).  

The operating mechanism of each IF…THEN… rule during the 

validation process will be described in section III.B. 

The final layer of the proposed DRB ensemble is the overall 

decision-maker that decides the winning label of the validation 

images based on the suggestions of the individual (per class) 

IF… THEN… rules of the DRB classifiers within the 

ensemble. The operating mechanism of the decision-maker will 

be described in section IV.  

      
Fig.1. General architecture        Fig.2. The structure of a DRB classifier in a modular/layered form                                 Fig.3. Zoomed-in structure of a fuzzy rule 
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III. DEEP RULE-BASE 

This section describes briefly the training 

process of the fuzzy rules in the form of 

pseudo-code as well as the validation process 

within each fuzzy rule. 

A. Training Process 

The DRB classifier identifies prototypes 

from the segments of the observed images of 

each class autonomously, in a nonparametric 

manner, and forms data clouds around the 

prototypes from similar segments of the same 

class.  

As described in section II, the remote 

sensing images are partitioned into G segment 

sets of different levels of granularity, which 

correspond to three scales of spatial 

information. In this way, C·G 0-order 

massively parallel fuzzy rules of AnYa type in 

total are formed (learned) through the training 

processes independently based on the 

identified prototypes (one rule per class per 

level of granularity). The detailed training 

process of the FRB subsystems is described in 

[11], [12], and the main procedure of the training process is 

summarized in the form of pseudo-code in Table I.  

Once the training process is finished, the classification of 

new images can be performed using the identified FRBs. 

B. Validation Process 

 During the validation process, for a particular segment of a 

testing image with its feature vector denoted as xi,j (the j
th
 

segment under the i
th

 segmentation granularity), one can obtain 

C scores of confidence using the corresponding C 0-order 

massively parallel AnYa type fuzzy rules identified from the 

segments of the same size through the training process. The 

score of confidence produced by the local decision-maker of 

the c
th

 fuzzy rule, denoted by λi,c(xi,j), is expressed as: 

    
,

, , , , ,
1,2,...,

arg max
i c

i c i j i c l i j
l N

 


x x ,                                                (2) 

where  
2

, , , , , , ,

1
exp

2
i c l i j i j i j i c l

 
   

 
x x x p ; c=1,2,…,C; 

i=1,2,…,G; j=1,2,…,Mi and Mi denotes the number of segments 

of the i
th

 granularity. Therefore, for a particular remotely sensed 

image, one can obtain M1+ M2 +…+ MG segments, which result 

in C×(M1+ M2 +…+ MG ) confidence score vectors in total, 

denoted by λi(xi,j)=[ λi,1(xi,j), …, λi,C(xi,j)] (i=1,2,…,G; 

j=1,2,…,Mi). They serve as the inputs of the decision-maker. 

IV. DECISION-MAKING MECHANISM 

During the validation stage, for each testing image, the 

overall decision-maker of the proposed DRB ensemble firstly 

integrates the confidence scores obtained by the local 

decision-makers of the low-level decision-making committees: 

 , , ,

1

1
; 1, 2,..., ; 1, 2,...,

iM

i c i c i j

ji

i G c C
M




    x .        (3) 

Then, the label of the testing image is allocated following the 

“winner-takes-all” principle based on the overall outputs of the 

three DRB classifiers: 

,
1,2,.., 1

arg max
G

i c
c C i

Label
 

 
  

 
 .                                                      (4)  

V. NUMERICAL EXAMPLES 

To evaluate the performance of the proposed DRB ensemble, 

in this Letter, we use the well-known UC-Merced (UCM) 

dataset [6] as the standard use case. All the experiments in this 

Letter are conducted with Matlab2017a on a PC with dual core 

i7 processor each with a clock frequency of 3.4GHz and 16GB 

RAM. The RGB images are used directly by the DRB 

classifiers. The classification experiments are repeated five 

times under the same ratio of training-to-testing sample sets and 

the average result is reported as in [8].  

The UCM dataset consists of fine spatial resolution remote 

sensing images of 21 challenging scene categories (including 

airplane, beach, building, etc.). Each category contains 100 

images of the same image size (256×256 pixels). Following the 

common experiment protocol [6], 80% of the images in each 

category were selected for training and the rest used for testing.  

Considering the input image size of the VGG-VD-16 model 

[15], in this Letter, for simplification, each image is divided 

using an 8×8 grid net with the size of each grid equal to 32×32 

pixels (an illustration is given in Fig. 4). Sliding windows of 

four different window sizes (4×4 grids, 5×5 grids, 6×6 grids 

and 7×7 grids) and two different step sizes (1 grid and 2 grids in 

both horizontal and vertical directions) are used. As a result, in 

total, eight DRB classifiers are trained, which correspond to 

TABLE I 
SUMMARY OF THE TRAINING PROCESS OF THE FRB SUBSYSTEM 
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eight different sliding windows. The corresponding overall 

classification accuracy and the training time per massively 

parallel rule are reported in Table II.  

 From Table II one can see that the DRB classifier can 

achieve 96%+ accuracy with a parallel training process of less 

than 6 seconds. It is noticeable that both the window size and 

the step size of the sliding window can influence the 

performance and the efficiency of the DRB classifier. The 

training process varies from 2 seconds to 15 minutes per 

rule/class and the classification accuracy varies from 94.62% to 

96.19%. In general, with the same segmentation granularity, 

the smaller step size can allow the DRB classifier to gain more 

details of the image and, thus, leads to higher classification 

accuracy; meanwhile, the training time required by the DRB 

classifier will increase. Especially, for a DRB classifier with a 

smaller granularity, a smaller step size can increase the 

classification accuracy further. In contrast, the larger 

granularity results in higher computational efficiency, but it 

may decrease performance as the feature descriptor focuses 

only on the large scale spatial information. A DRB classifier 

with a smaller granularity relies mainly on small scale spatial 

information for the classification, it requires more training 

time, and its performance may also deteriorate due to the loss of 

large scale spatial information. 

By creating an ensemble of DRB classifiers trained with 

segments of different granularities, more accurate classification 

can be expected. In this Letter, the DRB ensembles consisting 

of the best two (G=2), the best three (G=3) and all four DRB 

classifiers (G=4) using the sliding windows of the same step 

size are considered, and the corresponding classification 

accuracies are given in Table III.  

One can see from Table III that, the more DRB classifiers 

involved in the ensemble, the better the performance of the 

ensemble. This is because the DRB ensemble can effectively 

integrate the multiple scales of spatial information into the 

decision-making process. Meanwhile, creating an ensemble of 

more DRB classifiers with different levels of granularity can 

further increase the classification accuracy, but also costs more 

computation- and memory-resources. In real applications, it is 

necessary to take both performance and cost into consideration. 

Due to the limited space of this Letter, we considered only the 

ensemble of maximum four DRB classifiers. Nonetheless, 

different experimental settings of the DRB ensemble can be 

considered as well. 

As the ensemble of the four DRB classifiers using a smaller 

step size achieved the highest accuracy (97.10%), in the 

remainder of this section this particular DRB ensemble is 

considered by default. The category-wise performance of the 

proposed DRB ensemble is depicted in Fig.5. As we can see, 

the DRB ensemble achieves 100% accuracy in classifying the 

following 10 categories: “agricultural”, “baseball diamond”, 

“beach”, “chaparral”, “forest”, “freeway”, “golf course”, 

“harbour”, “parking lot” and “runway”.  There are only four 

categories with classification accuracy below 95%, namely; 

89% for “buildings”, 89% for “sparse residential”, 92% for 

“storage tanks” and 83% for “tennis court”, all of which are 

categories demonstrating distinctive contents and a wide 

variety of textures. In particular, we observe that the 

misclassified classes in these four categories (“buildings”, 

“sparse residential”, “storage tanks” and “tennis court”) are 

categorized mainly as “dense residential”, “medium 

residential”, “mobile home park” and “intersection”. It is 

obvious that these misclassifications are caused by the visual 

similarity in the local textures shared by the images of the eight 

classes and the wide variety of details within the images 

themselves. 

The accuracy of the proposed DRB ensemble is contrasted 

with the following state-of-the-art approaches for benchmark 

comparison. These algorithms are spatial pyramid co-variance 

(SPCV) and bags of visual words (BoVW), both of which were 

implemented in [17], multipath unsupervised feature learning 

(MUFL) in [9], pyramid of spatial relations (PSR) in [18], 

two-level feature representation (TLFR) as implemented in [8], 

linear SVM with pre-trained CaffeNet (SVM+Caffe) in [19]. 

We also applied the classical k-nearest neighbours classifier 

(k=1) trained with GIST and HOG features extracted from the 

grey-level images (KNN+GIST and KNN+HOG) as well as the 

LIBLINEAR classifier [14] and the linear SVM trained with 

the high-level features extracted from the original RGB images 

by VGG-VD-16 model (LIBL+VGG and SVM+VGG) for 

comparison. To be more specific, the codebook size in SPCV 

TABLE II 
PERFORMANCE OF DIFFERENT DRB CLASSIFIERS 

Individual DRB 
Window Size 

4×4 5×5 6×6 7×7 

Step 

Size 

1 
Accuracy 0.9543 0.9610 0.9619 0.9614 

Time (s) 807.38 272.57 68.05 11.84 

2 
Accuracy 0.9462 0.9538 0.9614 0.9519 

Time (s) 164.27 26.06 5.75 1.70 

TABLE III 

PERFORMANCE OF DIFFERENT DRB ENSEMBLES 

Accuracy 
DRB Ensemble 

G=2 G=3 G=4 

Step 

Size 

1 0.9638 0.9676 0.9710 

2 0.9629 0.9633 0.9667 

 

 

 

                       
Fig.4. Segmentation using an 8×8 grid net    Fig.5. Category wise performance comparison 
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and BoVW was 100 and 1000, respectively. PSR used three 

hierarchical levels with the codebook size of 5000 and the 

dictionary size of 300. The codebook size, dictionary size, fixed 

number and the arrangement for the grid search strategy of 

TLFR were set as 300, 128, 10 and 10, respectively. The 

grey-level images of the original size are used in SPCV, 

BoVW, PSR and TLFR. MUFL adopted the same parameter 

setting as used in [20] and a linear SVM was used after the 

features were learnt from the RGB images resized to 300×300 

pixels. The accuracies of the DRB ensemble and the 

comparative algorithms are tabulated in Table IV. The 

category-wise comparison of the selected algorithms is also 

depicted in Fig. 5.  

From Table IV and Fig. 5 one can see that, the proposed 

DRB ensemble achieves the highest overall classification 

accuracy among the state-of-the-art approaches, including the 

DL-based approaches [14], [19]. It can produce the highest 

category-wise classification accuracy for 18 out of 21 classes 

except for the categories “overpass”, “sparse residential” and 

“storage tank”. One possible reason is that some segments of 

the images of these categories confuse the DRB ensemble as 

they can be highly similar to the segments of other categories. 

One appealing aspect of the proposed DRB ensemble is its 

fully human-interpretable and transparent IF…THEN… model 

structure generated after the training process. For a better 

illustration, examples of the 0-order AnYa type fuzzy rules 

generated autonomously from the data based on the segments 

of the remote sensing images with three levels of granularity 

are given in Table V, where the segments are reshaped into the 

same sizes for visual clarity.  

VI. CONCLUSION 

In this Letter, a novel approach based on an ensemble of the 

recently introduced DRB classifiers is proposed for remote 

sensing scene classification. Numerical examples demonstrate 

the very high accuracy and efficiency of the proposed DRB 

ensemble with its transparent, parallelizable, human- 

interpretable IF...THEN… structure as an appealing alternative 

to the state-of-the-art approaches. 

As future research, we would like to study the performance 

of the DRB ensemble on different remote sensing benchmark 

problems and apply it to remote sensing images containing 

multiple sub-regions of different land use classes. 
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TABLE IV 
PERFORMANCE COMPARISON 

Approach Accuracy Approach Accuracy 

KNN+HOG 53.81% PSR [18] 89.10% 

KNN+GIST 67.57% TLFR [8] 91.12% 

SPCV [17] 74.00% SVM+ Caffe [19] 93.42% 

BoVW [6] 76.80% SVM+VGG 94.48% 

SIFTSC [10] 81.67% LIBL+VGG  [14] 95.21% 

MUFL [9] 88.08% DRB Ensemble 97.10% 

TABLE V 
EXAMPLE OF FUZZY RULES 

 


