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Abstract

This thesis attempts to model and forecast returns and realized volatility using
two different methods: time series models that exploit the historical information
set and options-based approach that provides a natural forecast of return variation
from listed option prices. Both univariate and multivariate estimation of the time
series models are considered in our analysis.

Chapter 1: This chapter introduces a modified fractionally co-integrated
vector autoregressive model, M-FCVAR, that caters for systems with 7(0) and
I(d) variables under the presence of long memory in the co-integrating residuals.
Model inference of the FCVAR and M-FCVAR are compared using Monte Carlo
simulations and an empirical application. The M-FCVAR is found to yield better
in-sample fit and more precise model estimates. Higher return predictability is
observed over long horizons using the M-FCVAR in the empirical example. In
addition, the shocks associated with the I(0) variables could be permanent or
transitory. We show that particular equation specifications are required to restrict
these shocks when they produce only transitory effects on the I(d) variables.
The simulation results show that the inappropriate treatment of the shock to the
I(0) variable may negatively affect the precision in the estimation of the model
parameters as well as the in-sample fit.

Chapter 2: This chapter evaluates the performance of various measures of
model-free option-implied volatility in predicting returns and realized volatility.
The critical role of the out-of-the money call options is highlighted through an

investigation of the relevance of different components of the model-free implied



volatility. The Monte Carlo simulations show that: first, volatility forecasting
performance of measures of implied volatility can be enhanced by employing an
interpolation-extrapolation technique; second, for most measures considered, gains
in their predictive power for future returns can be obtained by implementing an
interpolation procedure. An empirical application using SPX options recorded
from 2003 to 2013 further illustrates these claims.

Chapter 3: This chapter compares the performance of various least absolute
shrinkage and selection operator (Lasso) based models in forecasting future log
realized variance (RV) constructed from high-frequency returns. We conduct a
comprehensive empirical study using the SPY and 10 individual stocks selected
from 10 different sectors. In an in-sample analysis, we provide evidence for the
invalidity of the lag structure implied by the heterogeneous autoregressive (HAR)
model which has been heavily adopted in volatility forecast. In our out-of-sample
study considering the full time period, the best forecasting performance is usually
provided by the Lasso-based model and the idea of forecast combination tends to
improve the forecasting accuracy of the Lasso-based model. Among all models of
interest, the ordered Lasso AR using the forecast combination serves as the top
performer most frequently in forecasting RV and its improvements over the HAR
model are, in most cases, significant over monthly horizons. Moreover, we observe a
strong impact of the financial crisis on the performance of the Lasso-based models.
Nevertheless, the ordered Lasso AR with the forecast combination still retains its
advantages in the post-crisis period, especially over long horizons. In line with the
existing study, the superiority of the Lasso-based models is more evident in a larger
forecasting window size. The conclusions outlined above are not affected by the
variation in the sampling frequency upon which the RV series are based. However,
as the sampling frequency increases, there tends to be more situations where the

Lasso-based model achieves the top performance in the full sample analysis.
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Introduction

Volatility of financial time series plays a central role in pricing derivatives, hedging
and computing measures of risk. Volatility forecasting is therefore an important
topic in finance and financial economics, which has held enormous attention of
academics and market investors over the last few decades. The increased availability
of high-frequency data has spurred great interest in the model-free measurement
of variance based upon intraday returns, termed realized variance (RV). On the
other hand, expected returns are considered crucial equity market indicators at
the aggregate market level since they reflect the attitudes of investors towards
risk and should carry predictive power for actual future returns theoretically.
However, it still remains controversial in terms of whether equity returns are indeed
predictable. The difficulty is that expected returns are not directly observable
and thus one needs to estimate them by means of publicly available information.
This thesis presents various methods to achieve better RV forecast and return
predictions.

Two different approaches are employed to conduct the forecast of returns and
RV. First, we consider time series models that exploit the historical information set
to formulate return and volatility forecasts in chapter 1 and chapter 3, respectively.
Second, in chapter 2, we concentrate on the market’s expectation of future return
variation from listed option prices, which is perceived as a market based volatility
forecast and may possess information content in predicting future market returns.

Specifically, we adopt a model for the analysis of multivariate time series in

Chapter 1 which accommodates both the long-run and short-run movements of
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the variables. Dynamic dependencies in aggregate stock market returns, implied
and realized volatilities can be well captured by this joint modelling framework.
Univariate time series volatility models are used in Chapter 3 where we apply
several model selection devices to select the relevant lags of the RV for the purpose
of better volatility forecasts. In using the time series models, we account for
the long-memory property of volatility, described by fractional integration and
a slow hyperbolic decay in the autocorrelations. In chapter 1, in addition to
the investigation of long memory of volatilities, we also evaluate their long-run
relationship via both parametric and semiparametric testing methods. In chapter
3, the observed long-memory behaviour is approximated by aggregating across
short-memory heterogenous autoregressive processes. In a departure from chapter
1 and 3, chapter 2 constructs volatility forecasts extracted from combinations
of option prices which do not depend on any pricing formula. Since the option
price incorporates all available information in an efficient market, these model-free
volatility expectations are highly correlated with the future RV and can be seen
as priced risk factors in the cross-section of stock returns.

In chapter 1, we modify the fractionally co-integrated vector autoregressive
(FCVAR) model proposed by Johansen (2008) to allow for the coexistence of
1(0) and I(d) variables under the presence of long memory in the co-integrating
errors. The proposed model is termed the M-FCVAR. We investigate the model
inference of the FCVAR and M-FCVAR in Monte Carlo simulations covering a
wide range of fractional integration orders as well as in an empirical example.
With a more appropriate treatment of the 7(0) variable in the system of fractionally
co-integrated processes, the M-FCVAR is found to yield less biased model estimates
and better in-sample fit in the simulation study. In addition to this, we pay
particular attention to the properties of the shocks arising from the 7(0) variables
in the (M-)FCVAR framework, which could either be permanent or transitory. The
existing work does not seem to recognize that a particular model design is required

to ensure that the shocks associated with the 7(0) variables exert only transitory
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effects on the long-memory variables. Taking into account all the possibilities one
may encounter in practice, we provide equation specifications to restrict the shocks
from the I(0) variables. The simulation evidence suggests that one may obtain
biased model estimates and low in-sample fit if the properties of the shocks to the
I(0) variables are incorrectly accounted for. Our empirical application consists of
the intraday data for the SPX and SPY indices and the daily data for the volatility
index (VIX), where a joint modelling of the three series, i.e. two fractionally
integrated variances and one I(0) returns, is implemented in both the FCVAR and
M-FCVAR. With more precise estimates of the model parameters, i.e. fractional
integration order, degree of fractional co-integration and co-integrating vectors,
returns are shown more predictable under the M-FCVAR over long horizons.

Catering for a mixture of 1(0) and /(d) variables, the M-FCVAR can easily find
many applications in finance and financial economics. Apart from the example
using the RV, VIX and market returns introduced above, the M-FCVAR can be
further employed to examine the stock market return predictability suggested by
the fluctuations in the aggregate consumption-wealth ratio. This is motivated
by the work of Lettau and Ludvigson (2001) who indicate that the aggregate
consumption-wealth ratio can be expressed with regard to several fractionally
co-integrated variables and that the transitory deviations from the common trend
in these variables serve as a strong predictor of future returns.

In chapter 2, we examine the performance of various measures of model-free
option-implied volatility in the forecast of future returns and RV. By decomposing
model-free implied volatility into several components with the use of different
segments of option strike range, we investigate the role of each component in
the forecasting practice and highlight the importance of the out-of-the money
call options. In addition, we conduct Monte Carlo simulations to ascertain the
impact of discrete strike prices on the forecasting performance of implied volatility
measures. Simulation results show that: first, volatility forecast improves with

a wider range of strikes; second, the range of strikes produces negative effects
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on the predictive power of implied volatilities for future returns; third, a finer
partition of strikes leads to better return predictions. These findings warrant the
use of an interpolation and extrapolation procedure as an attempt to enhance the
forecasting power of implied volatilities for future RV while only an interpolation
method is needed in return predictions. In the empirical application based on
SPX options from 2003 to 2013, the aforementioned interpolation/extrapolation
procedure is found to significantly enhance the performance of implied volatilities
for forecasting future RV and lead to better return predictions for most measures
in the post-crisis period. The effectiveness of such procedure is also verified in our
simulation study.

In chapter 3, we evaluate the performance of least absolute shrinkage and
selection operator (Lasso) based models in forecasting future RV. The empirical
study adopts the RV series of the SPY and ten individual stocks. We first show
that the heterogeneous autoregressive (HAR) model does not fully agree with the
Lasso-type models in terms of the lag structure, which brings into question whether
the HAR is appropriate for modelling and forecasting future volatility. Compared
with the HAR and its extensions, the Lasso-based model usually performs best and
the idea of forecast combination tends to improve the accuracy of the volatility
forecast. Among various Lasso-based models, the ordered Lasso AR using the
forecast combination serves as the top performer most frequently and its gains
over the HAR model are generally significant over monthly horizons. The global
financial crisis is found to exert non-trivial impact on the performance of the
Lasso-based models. However, the ordered Lasso AR with the forecast combination
still retains its superiority in the post-crisis period, especially over long forecasting
horizons. We also provide evidence that the Lasso-based models tend to perform
better in a larger window size. Furthermore, as the sampling frequency upon which
the RV series are based increases, the advantages of the Lasso-based models are

more evident using the full sample.
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Chapter 1

A Modified Fractionally
Co-integrated VAR for Modelling
Systems with /(d) and 7(0)
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1.1 Introduction

Many financial and economic variables are appropriately described by a fractionally
integrated process, denoted I(d) (e.g. see the discussion and many references in
Nielsen (2010)). In particular, equity and index volatility are well characterized by
an I(d) process (Andersen and Bollerslev (1997) and Comte and Renault (1998)).
Implied volatility obtained from option prices displays many of the stylized facts
of equity and index volatility and has been found to be a relevant predictor of
the corresponding asset volatility. Implied volatility, the VIX index in particular,
has featured in a number of volatility forecasting exercises using both short- and
long-memory specifications (Bandi and Perron (2006) and Busch, Christensen, and
Nielsen (2011a)). Another use of the implied volatility is to explore the long-run
co-movements between the VIX and the realized volatility of S&P 500, where the
difference between the implied-realized variation measures is termed the ‘variance
risk premium’. This idea has been adopted by Bollerslev et al. (2013) (BOST
hereafter) who are pioneers in predicting stock market returns using a framework
based on the fractionally co-integrated vector autoregressive (FCVAR) model of
Johansen (2008) and Johansen and Nielsen (2012). BOST (2013) show that the
gains of this approach arise from the joint modelling of the multivariate time series
and the capture of the predictability inherent in the variance risk premium.

The FCVAR serves as a direct model of fractional co-integration and provides
a central tool for the analysis of long-run equilibrium relationships among the
I(d) variables. Compared with conventional I(1)/1(0) co-integration, fractional
co-integration allows linear combinations of I(d) processes to give I(d—b) processes
with d > b > 0 and with d and/or b as fractional numbers. The FCVAR has
been applied in several studies. For example: Caporin, Ranaldo, and Santucci
de Magistris (2013) demonstrate the superiority of the FCVAR framework in
forecasting extreme stock prices by accommodating the fractional co-integration

between high and low prices and the daily range obtained from the co-integrating
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residuals; Rossi and Santucci de Magistris (2013) employ the FCVAR to analyze
the long-run relationship between futures and spot range-based volatility measures;
and Jones, Nielsen, and Popiel (2014) exploit the FCVAR to examine the relation
between political support and macroeconomic conditions.

The work of BOST (2013) is uniquely distinctive in that it involves a mixture of
I(d) and I(0) variables. In that presentation, the estimation of the FCVAR model
is simplified by letting d = b; i.e. there is no memory in the co-integrating residuals.
According to Definition 2 in Johansen (2008), the FCVAR allows for variation in
the integration order of the variables within the system. Consequently, when d = b,
the inclusion of the 7(0) variables is natural in the FCVAR, which is similar to the
coexistence of the I(1) and I(0) variables in the traditional co-integrated VAR.
However, the case of d > b poses a challenge for the analysis of the FCVAR as the
fractional differencing operator A%~ is applied, not only to the real co-integrating
vectors, but also to the I(0) variables serving as pseudo co-integrating vectors.
This results in the anti-persistence of the latter. In addition, assumptions need to
be made with regard to the nature of the shocks emanating from the 7(0) variables
when they enter the system of the FCVAR model. Theoretically, the impact of the
shocks associated with the 7(0) variables can be either permanent or transitory on
the I(d) variables. However, we show that these shocks exert transitory effects in
the FCVAR, only when particular equation specifications are adopted; otherwise,
the shocks to the /(0) variables would have nonzero long-run impact on the I(d)
variables. The same interaction between the [(0) and I(1) variables has been
observed by Fisher, Huh, and Pagan (2016) (FHP hereafter) but in a VECM
type of framework. FHP (2016) provide specifications for the traditional VECM
that prevent the shocks associated with the 7(0) variables from having permanent
effects on the I(1) variables. However, their analysis is limited to situations where
there are equal numbers of exogenous /(1) variables and common factors.

This chapter proposes modifications to the FCVAR model of Johansen (2008)

and Johansen and Nielsen (2012), which are more suitable for systems with (d)
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and I(0) variables when there exists long memory in the co-integrating residuals;
i.e. d > b. Specifically, the fractional differencing operator (A9~?) is applied to
the I(d) variables within the system prior to the estimation of the FCVAR model.
This procedure does not alter the representation theorem and the calculation of
maximum likelihood estimators of the FCVAR. Without that adjustment, long
memory is induced in the model-implied 7(0) variables, and this may further result
in biased estimates. The chapter also provides the theoretical framework that
outlines the changes required in the specifications to restrict shocks arising from
the 7(0) variables, so that their effects on the I(d) variables are only transitory.
Complementary to FHP (2016), the chapter covers a variety of situations where
the number of exogenous variables is fewer than or equal to the number of common
factors or where there are only endogenous variables present.

To the best of our knowledge, this chapter is the first to consider a modified
FCVAR, henceforth M-FCVAR, to allow for inference and prediction in the presence
of I(0) and I(d) variables. In a simulation study, we show that, compared with
the FCVAR, the M-FCVAR generally yields a better in-sample fit and less biased
estimates of parameters d, b and co-integrating vectors in different sample sizes.
In addition, the ignorance of the property of the shock arising from the 1(0)
variable may damage the precision in the estimation of model parameters and
lower the in-sample fit. The comparison between the FCVAR and M-FCVAR is
also illustrated using an empirical application based on high-frequency data, in
which case market returns are found more predictable over long horizons under
the suggested M-FCVAR.

The rest of this chapter is organized as follows. Section 1.2 reviews the relevant
literature. Section 1.3 presents methods adopted in this chapter together with the
M-FCVAR model specifications and modifications. The Monte Carlo study is
outlined in section 1.4. Section 1.5 describes the data and reports the empirical
results. Section 1.6 concludes. Algorithms of the impulse response functions and

the model-implied R? are given in section 1.6.
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1.2 Literature Review

1.2.1 Background

Fractional co-integration, an extension of the co-integration to processes with
fractional degrees of integration, has received substantial research attention recently.
It has been applied in the topics of exchange rates, volatility of financial series,
interest rates, electricity prices and political studies, see Gil-Alana and Hualde
(2009) for an overview of the relevant studies. Despite various applications of the
fractional co-integration, the main focus has been on the long-run relationship
between implied-realized volatilities.

Implied volatility is universally considered the best market expectation of the
future volatility over the remaining life of the relevant option. Not surprisingly,
there has been enormous interest in examining the unbiasedness of the implied
volatility forecast of subsequent realized volatility. The relation between the two

volatility proxies can be evaluated via the regression

oV =a+ B’ +& (1.1)

where 0!V denotes implied volatility at time ¢ and oV represents realized volatility
from ¢t till the option’s expiration time. As noted by Christensen and Nielsen
(2006) and Nielsen (2007), the unbiasedness hypothesis implies a 3 coefficient of
unity. Traditional tests for this hypothesis using the OLS technique generally
result in the conclusion that oV provides biased forecast of ¢V by obtaining the
slope parameter [ not equal to one, see Christensen and Prabhala (1998) and
Poteshman (2000).

Realized and implied volatilities are found to display long-memory properties,
see Comte and Renault (1998), Comte, Coutin, and Renault (2012), Ray and Tsay
(2000), Andersen et al. (2001a) and Andersen et al. (2001b), among others. The

fractional co-integration between the implied and realized volatilities is documented
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in the work of Bandi and Perron (2006), Christensen and Nielsen (2006) and
Nielsen (2007), among others. The presence of fractional co-integration suggests
that both oV and ¢!V are fractionally integrated and that &; in equation (1.1)
is serially uncorrelated or displays short memory. Furthermore, the studies listed
above provide evidence for the long-run unbiasedness, i.e. § = 1, using different
frequency domain methods accounting for the fractional property of the volatilities.
Specifically, fractional integration in the region of non-stationarity is found in the
work of Bandi and Perron (2006) whereas the stationary region is indicated in
Christensen and Nielsen (2006) and Nielsen (2007).

It is worth noting that the OLS fails to give consistent estimates of the relation
in equation (1.1) in the case of stationary fractional co-integration. This is due
to the fact that, in such situation, both the regressor and the error exhibit long
memory and thus correlation between them may exist even over long horizons, see
Robinson (1994) and Robinson and Marinucci (2003). In the case of non-stationary
fractional co-integration, the OLS converges slower than the narrow-band least
squares (NBLS) proposed by Robinson (1994), see Robinson and Marinucci (2001)
and Robinson and Marinucci (2003). In addition, the NBLS leads to consistent
estimates but non-standard limit distributions in the non-stationary range. To
sum up, the earlier findings in terms of the biased relation between the two
volatility proxies using the OLS are not reliable since the predictive regression in
(1.1) is usually viewed as stationary fractional co-integration. Similar conclusions
supporting the long-run unbiasedness hypothesis can be found in Kellard, Dunis,
and Sarantis (2010) where the integration order of volatility has confidence intervals
spanning the stationary/non-stationary boundary and Nielsen and Frederiksen

RV — 51V correlated

(2011) where the presence of a volatility risk premium, i.e. o
with implied volatility is accounted for to remove the bias in the NBLS estimator
in regression (1.1).

The difference between the implied and realized variances, the so-called variance

risk premium, has been interpreted as a measure of the representative agent’s
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risk aversion, see Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron
(2010), among others. The variance risk premium is found to capture attitudes
toward uncertainty about economic fundamentals and thus predict financial market
risk premia and financial returns. For instance. Bollerslev, Tauchen, and Zhou
(2009) demonstrate that the variance risk premium is able to capture a nontrivial
fraction of variation in quarterly stock market returns and can result in even greater
return predictability when combined with other conventional predictor variables.
BOST (2013) document a non-trivial return predictability over interdaily and
monthly horizons using the FCVAR model based on 5-minute intraday data. They
also show that the observed strong predictive power for future market returns is
explained by the joint modelling of returns and variances within the FCVAR as
well as the predictability contained in the variance risk premium. Furthermore,
Bollerslev et al. (2014) provide evidence that such pronounced return predictability
suggested by the variance risk premium is not induced by the statistical finite
sample biases.

Despite the importance of fractional co-integration from both theoretical and
practical perspectives in economics, the testing and estimation of the fractional
co-integrating relation have encountered many difficulties. Although the work of
Engle, Lilien, and Robins (1987) provides the concept of common trends between
fractionally integrated processes, subsequent studies are confined to situations
where the variables are integrated of order one. Progress in the area of fractional
co-integration is only achieved when Robinson and Marinucci (2003), Christensen
and Nielsen (2006) and Nielsen and Frederiksen (2011), among others develop the
regression-based semiparametric approach to examine whether two long-memory
processes are fractionally co-integrated. Subsequently, Robinson and Yajima (2002)
and Nielsen and Shimotsu (2007) introduce a testing procedure to investigate the
presence of the co-fractional relation by estimating the co-integrating rank of the
matrix of two, or more, fractionally differenced variables. Studies by Johansen

(2008) and Johansen and Nielsen (2012) have made further improvements in the
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study of fractional co-integration by developing a parametric multivariate FCVAR
model which explicitly captures both the long-run and short-run relationships of

the long-memory processes.

1.2.2 Fractional Integration and Fractional Co-integration

We first introduce the fractional integration processes from which the concept of
fractional co-integration stems. Fractional integration describes a strong dependency
between observations which exhibit high persistence that the standard ARMA
framework is unable to capture. This process is neither an /(1) unit root process
nor an /(0) process but rather an I(d) process, where d is between zero and one,
see Baillie (1996) and Robinson (2003) for more details. Assume a covariance
stationary time series X; with the spectral density f(A). The series X; is a

long-memory process integrated of order d (d # 0) if

FO) ~GX 2 as A — 0, (1.2)

where G € (0,00) is a finite and nonzero matrix with strictly positive diagonal

elements. The autocovariance functions of X; decay hyperbolically as shown by

Cov(Xy, Xy 7))~ as 7 — o0 (1.3)

The parameter d determines the memory of the process. For 0 < d < 0.5, the
series is covariance stationary and contains long memory, implying that shocks
will decay hyperbolically rather than geometrically. By contrast, for 0.5 < d < 1,
the series is no longer stationary, yet still mean reverting. For —0.5 < d < 0, the
process is stationary but antipersistent, giving rise to the zero spectral density at
the origin frequency instead of infinity.

Applications of long memory to financial and economic data have been extensively
explored with the development of techniques for modelling the fractionally integrated

process and measuring the memory parameter d. The most widely accepted methods
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are the log-periodogram regression of Geweke and Porter-Hudak (1983) and the
local-Whittle likelihood procedure of Kuensch (1987). Both are semiparametric
and thus immune to model mis-specification problems. On the other hand, the
spirit of parametric methods is first to build a long-memory model and then to
jointly estimate the model. Popular models are the fractional Brownian motion
proposed by Mandelbrot and Van Ness (1968), the fractional white noise and the
autoregressive fractionally integrated moving average (ARFIMA) model developed
by Granger (1980), Granger and Joyeux (1980) and Hosking (1981). The ARFIMA
has been heavily employed to capture the long-memory property of the realized
volatility, see Andersen et al. (2003), Choi, Yu, and Zivot (2010) and Degiannakis
and Floros (2013), among others.

Fractional co-integration generalizes the standard co-integration with /(1) series
and 7(0) linear co-integrating relationships by allowing for more flexibility in
the order of integration. Specifically, fractional co-integration can be defined by
assuming two series, y; and z;, which are both integrated of order d,, where d,
can be a fractional number rather than integer one as commonly assumed in the
concept of conventional co-integration, and a linear combination, u; = y; — By, is
I(d,). When 0 < d, < d,, y; and z; are fractionally co-integrated. In particular,
the model with d, — d, < 0.5 is characterized as weak fractional co-integration by
Hualde and Robinson (2010). Next, we review some recent studies in testing and

estimating the fractional co-integration from different perspectives.

1.2.3 Testing and Estimation Methods

There is a growing literature devoted to the testing and estimation of fractional
co-integration. A group of contributions is characterized as semiparametric. With
long-run components of each series at origin frequencies, some studies adopt the
regression-based approach to estimate the co-integrating vectors and integration
orders of both regressors and residuals. With the focus on the space of co-integration

rather than the co-integrating regression, other studies estimate the co-integrating
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rank in the long-memory systems and require no knowledge about the co-integrating
vectors or memory parameters. Parametric maximum likelihood techniques have
also been used to provide the joint estimation of the multivariate fractionally
integrated system. However, there seems no consensus on the optimal testing
procedure for fractional co-integration. One may find difficulties in having consistent
and conclusive outcome when using different methodologies. The following section
provides an overview of popular methods of fractional co-integration analysis and

outlines the problems one may encounter in practice.

Semiparametric Approach

A widely accepted procedure is to consider a semiparametric approach characterized
by using a degenerating band of low frequencies for estimation. The semiparametric
approach does not require the accurate specification and estimation of the whole
sample, i.e. it achieves consistency without relying on a parametric model. Two
different methods in the semiparametric fashion are introduced below, which only
require information related to the behaviour of the spectral density around the

origin.

Regression-Based Approach Regression-based methods generally extend the
work of Engle and Granger (1987) to the case where the order of integration is
not restrictive to integer one, see Marinucci and Robinson (2001) and Gil-Alana
(2003). The key step is to obtain the integration orders of the underlying series
and the regression residuals from the estimated co-integrating relationship and
then to examine whether the persistence reduces or not. The complication of
the regression-based approach is that, unlike the standard situation under OLS
regression, the regressors and the errors may be both stationary and fractionally
integrated and thus are likely to be correlated in the long term. The implication
then is that the OLS estimator is no longer consistent (Robinson (1994), Robinson

and Marinucci (2003) and Robinson (1997)). To circumvent this problem, Robinson
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(1994) develops a semiparametric narrow-band least squares (NBLS) estimator
in the frequency domain and implements OLS on a degenerating part of the
periodogram around zero frequency, i.e., the so-called narrow-band. In that paper,
Robinson shows that the NBLS estimator is consistent in the stationary case.
Christensen and Nielsen (2006) show that its asymptotic distribution is normal
when d, + d, < 0.5 and when the coherence between regressors and errors is zero
at the origin frequency, i.e. in the long run. The results on the NBLS estimator
for the regressors which are non-stationary long memory are provided by Robinson
and Marinucci (2003); and Chen and Hurvich (2003a) add polynomial trends by
using a tapered NBLS estimator based on differenced data. Concentrating on the
periodogram around the origin, this semiparametric approach enjoys the advantage
of being variant to the short- and medium-run dynamics.

Kellard, Dunis, and Sarantis (2010) improve the NBLS estimator by developing
a new fractional co-integration test which is robust in both the stationary and
non-stationary context. The new estimator is shown to be approximately normally
distributed in finite sample, which holds across the stationary and non-stationary
regions. Extending the stationary setting of Christensen and Nielsen (2006) under
a condition of zero long-run coherence between the regressors and co-integrating
errors, Nielsen and Frederiksen (2011) focus on weak fractional co-integration,
including non-stationarity, in the absence of this condition, in which case a bias
term arises in the NBLS estimator. They show that the bias can be estimated
and thus corrected by a fully modified NBLS (FMNBLS) procedure with a careful
choice of bandwidth parameters. The regression-based method is sometimes not
straightforward to implement in empirical studies where integration orders are not
within a particular region as discussed above or where the co-integrating errors
(residuals) are not well defined. By contrast, the co-integrating rank test does
not require estimating the co-integrating vector(s) and thus may serve as a good

alternative.
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Spectral Matrix Approach The co-integrating rank test examines the presence
of the co-fractional relation from the perspective of the long-run covariance matrix.
This approach only requires the spectral density matrix at the origin frequency,
but it displays great sensitivity to the selection of bandwidth parameters. Relative
to the regression-based approach, it does not estimate the co-integrating vectors
and only produces a consistent estimate of the co-integrating rank. The estimate
of the rank greater than one and less than the number of variables indicates the
existence of the co-fractional relation. Hence, this approach is not appropriate
when specific information about the co-fractional relation, e.g. strength of the
relation, is required.

Robinson and Yajima (2002) are the pioneers in implementing the co-integrating
rank estimation in the region of stationarity. Chen and Hurvich (2003b) investigate
the rank of an averaged periodogram matrix of tapered and differenced observations
and fix the number of frequencies used in the periodogram averages as the sample
size increases, which applies to both stationary and non-stationary situations.
Their assumption of strictly positive rank is relaxed in subsequent work by Chen
and Hurvich (2006) who consider the null of no fractional co-integration, i.e.
rank equal to zero. Nielsen and Shimotsu (2007) also attempt to accommodate
(asymptotically) stationary and nonstationary fractionally integrated processes.
They use the exact local Whittle analysis of Shimotsu and Phillips (2005), which
generalizes the local Whittle estimator of Kuensch (1987) to allow for any value
of the memory parameter d. The estimate of co-integrating rank is achieved by
examining the rank of the spectral density matrix of the d** differenced processes

around the zero frequency.

Parametric Approach

A fully parametric approach is more efficient in using the entire sample instead
of focusing on the origin frequency of the periodogram only. However, it shows

non-trivial inconsistency if the parametric model is mis-specified. In the traditional
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I(1)/1(0) co-integration, the standard tool to handle the relationship among the
multivariate time series is the vector error correction model (VECM) as introduced

by Engle and Granger (1987). The representation is given by

AXt = Oéﬁ/Xt_l + ZleriAXt—i + & (14)

where X; is p—dimensional /(1) series and ¢; is p—dimensional independent and
identically distributed (i.i.d.) with mean zero and covariance matrix .

Multivariate score tests (or Lagrange multiplier tests) for fractional integration
have been developed by Johansen (1995) and Nielsen (2005), as a prerequisite
for further detailed investigation of fractional co-integration. Substantial efforts
have since been made to improve and optimize the parametric estimation of the
fractional co-integration. The most famous model is the Fractionally Co-integrated
Vector Autoregressive (FCVAR) model (or the so-called Fractional Vector Error
Correction model (FVECM) in some studies) proposed by Johansen (2008) and
further analyzed by Johansen and Nielsen (2012).

Some important studies related to the development of the parametric framework
for fractional co-integration include: Breitung and Hassler (2002) suggest a test for
the rank of fractional co-integration in the FCVAR while assuming the integration
order is known and that the errors are i.i.d. Gaussian; Avarucci and Velasco
(2009) introduce the Wald test to determine the co-integration rank in a system of
nonstationary fractionally integrated variables within the FCVAR-type framework;
Lasak (2010) considers a profile likelihood method to estimate the parameters of
the Granger (1986) model and to test for the null hypothesis of no co-integration.
This estimation method has been extended by Johansen and Nielsen (2012) to
the FCVAR model; Franchi (2010) investigates a richer co-fractional structure by
extending the representation theory of the FCVAR model in Johansen (2008); and
Lasak and Velasco (2015) introduce a novel two-step procedure for co-integrating
rank estimation, which allows different co-integration relations to display different

persistence. This can be seen as an extension of the study by Lasak (2010) and
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Johansen and Nielsen (2012). Essentially the FCVAR is derived by replacing the
lag and difference operators in the VECM model with their fractional counterparts.
It has been adopted by BOST(2013), Jones, Nielsen, and Popiel (2014), Dolatabadi,
Nielsen, and Xu (2015) and Dolatabadi, Nielsen, and Xu (2016), among others.
It exhibits the advantage of allowing for multivariate analysis, flexible selection of
parameters and good performance in forecasting.

A mixture of variables with different integration orders in the analysis of
fractional co-integration is frequently encountered in practice. The study by
FHP (2016) considers a VECM model with both I(1) and 7(0) variables but
little work has been done in the FCVAR framework with the coexistence of I(d)
and /(0) variables. FHP(2016) classify the shocks arising from the I(0) variables
into the permanent and transitory, termed the PO and TO shocks. They show
that, in a system containing /(0) and I(1) variables which are co-integrated,
the co-integration may no longer exist when the TO shocks become PO shocks.
A device is suggested by FHP(2016) to calculate the permanent component of
the (1) variables when the shocks associated with the /(0) variables have either
transitory or permanent effects on the /(1) variables. Furthermore, in order to
restrict the shocks from the [(0) variables to exert only transitory impact on
the other variables, they show that the true error correction terms and the 7(0)
variables must appear as differences in the equations of the VECM where the
response variables are permanent components. However, their work is confined
to the situation where there are equal numbers of exogenous I(1) variables and

common factors, i.e. permanent components.

1.3 Methodology

The following section presents the methods adopted in this chapter. We employ
the FCVAR model to accommodate the system of I(d) variables. When moving to
the system of I(d) and I(0) variables, we consider a modified FCVAR, M-FCVAR,

to cater for the introduction of the I(0) variables and allow for long memory in
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the co-integrating error. Properties of the shocks arising from the I(0) variables
are also accounted for in various situations. As an attempt to overcome the
identification problem of the (M-)FCVAR, we obtain the fractional integration
estimate using the exact local Whittle estimator of Shimotsu and Phillips (2005).
The presence of fractional co-integration is examined using the exact local Whittle
rank test by Nielsen and Shimotsu (2007) coupled with a modified Wald test for

the equality of the orders of fractional integration.

1.3.1 Fractional Integration Estimation

Fractional co-integration originates from several variables exhibiting long-memory
properties. Hence, we first introduce the procedure of estimating the order of
fractional integration, which serves as the basis for the subsequent analysis of
co-fractional relations. A fractionally integrated process is defined as I(d) if its
dth difference is integrated of order zero, where d can be any real number. In spite
of a number of approaches proposed to estimate the long-memory parameter d,
the semiparametric procedure has long been widely explored and applied since it
requires no assumptions about the short-run dynamics and thus stays robust to
mis-specification problems. This chapter adopts the exact local Whittle estimator
of Shimotsu and Phillips (2005), which extends the work of local Whittle analysis
by Kuensch (1987) and Robinson (1995) to allow for any value of the fractional
differencing parameter, d.

To define the frequency-domain local Whittle estimator, we assume that a
process X; has the spectral density, f(\), defined in equation (1.2). Let the

fractionally integrated X; be generated by the model

AX, = (1 - L)X, = p1{t >1},t=0,%1, ... (1.5)

where 1{.} represents the indicator function, L is the lag operator and , is
assumed to be a covariance stationary process whose spectral density, f,(}), is

bounded and bounded away from zero at the origin frequency A = 0,i.e. f,(A\) ~ G
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for A ~ 0 (Robinson (1995)). An alternative representation of X; based on

[y, - Iy, can be derived by inverting and expanding the equation (1.5),

X = Apl{t>1} (1.6)

= (1-L)"p1{t>1}

The discrete Fourier transform (DFT), w,();), and the periodogram, I, ();) of X,

t =1,---,T at the fundamental frequencies can be written as
. 217 T
) = @rT) MR X, 0y = T = lm< S ()

L) = |w.(\)

One advantage of semiparametric estimation over the parametric approach is
that it employs frequencies near the origin only and treats the periodogram away
from the zero nonparametrically. The conventional local Whittle (LW) estimator

by Kuensch (1987) and Robinson (1995) relies on the Gaussian objective function,

2d

1 _ y
QG = 57 [log(GA;*) + 21 (\)] (18)
where \; = %, j=1..m< % The LW estimate is thus derived by minimizing

the function @,,(G,d). Robinson (1995) proves that the asymptotic standard
errors of the LW estimator are \/m(c/l\Tm —d) = N(0,1). In spite of its enhanced
efficiency over the GPH estimator (Geweke and Porter-Hudak (1983)) within the
stationary region, both GPH and LW estimators display nonstandard behaviour
when d > 2 (Kim and Phillips (2006)).

Shimotsu and Phillips (2005) provide a procedure which can be applied in the
stationary and nonstationary regions and it estimates (G, d) by minimizing the

objective function

QG d) = 1 loB(GAT) + Tac () (1.9)
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where Ixa,();) is the periodogram of AX;. Concentrating Q,,(G, d) with respect

to G, we obtain the exact local Whittle (ELW) estimator given by

d = argmin R(d) (1.10)
de[Al,AQ}

where A; and A, are the lower and upper bounds of the admissible values of d

and

R(d) = 1og@(d)—2di2;”:110gAj (1.11)
m

~ 1 m
G(d) = EzjzllAdx()\j)

This ELW estimator has been proved to be consistent and asymptotically normally
distributed when the underlying value of d € (A1, Ay) and Ay — Ay < g with the
mild assumptions on bandwidth m and stationary p,.

The desirable properties of the ELW estimator by Shimotsu and Phillips (2005)
are based on the assumption that X, is generated by the process in equation
(1.5) and that the mean/initial value of the process is known. When the series
is accompanied by a linear time trend or an unknown mean/initial condition, a
more appropriate choice of estimation is the two-step ELW estimator by Shimotsu
(2010). However, Shimotsu (2010) indicates that the ELW estimator by Shimotsu
and Phillips (2005) remains consistent for d € (—3,1) and is asymptotically normal
ford € (—%, %) if the unknown mean is replaced by the sample average. In our case,
the memory estimates of the variance series considered in the empirical study are
within the standard region of ELW estimation, and thus we carry out the empirical

analysis using the ELW estimator of Shimotsu and Phillips (2005).
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1.3.2 Fractional Co-integration Estimation

Exact Local Whittle Rank Test

Before moving to the modelling and estimation of the fractional co-integration
by the FCVAR, we obtain the estimate of the co-integration rank based on an
exact local Whittle approach. Specifically, we determine the co-integrating rank
of the spectral density matrix of the dth differenced process around the origin
frequency. This procedure is first proposed by Robinson and Yajima (2002) and
later extended by Nielsen and Shimotsu (2007), who account for both stationary
and non-stationary situations.

Robinson and Yajima (2002) stress that the test for homogeneity of orders of
fractional integration could deliver misleading conclusions if the co-integration is
not accounted for. Hence, we start the analysis by first estimating the co-integrating
rank. Assume there is a p-vector fractional process X; where each element is
fractionally integrated of order dy, ..., d,, respectively. The work of Nielsen and

Shimotsu (2007) builds on the assumption of equal integration orders and thus

1\5P
p a=1

dy,...,d, are represented by d., where 67* = (fa with each c/l\a given by
equation 1.10. The consistent estimator of the spectral density at the origin is
given by

~ 1 X
G(d.) = p— Z Re[la(Ld.,...d)z(Aj)] (1.12)
=1

where \; = 2 and Ia(za,.. a.)2(};) is the periodogram of (A% Xy, A%X,,).

Here, G (d.) uses a new bandwidth parameter m; instead of m present in equation
(1.8). Let 0, be the ath eigenvalues of G (d,) and the co-integration rank r can be

determined by following the procedure of Robinson and Yajima (2002)

r o= arguzg?.igilL(u) (1.13)
Lw = oT)p-u) -3 5,

32



where v(T") should be positive and meet the assumption as follows

o(T) + m 0 (1.14)

Nielsen and Shimotsu (2007) show that a higher rank estimate is more likely to
be selected when a larger v(7') is applied. In order to obtain a more conservative
estimate of r, we choose to employ a small v(T) = my .

Once the presence of the co-fractional relation has been investigated by the rank

estimation, we can examine the equality of the orders of fractional integration by

testing the null Hy : d, = d,, a = 1,...p. The test statistic is given by

A~ A~

Ty = m(Sd)(S=DY(G ® G)D~'S" + h(T)*I,_,) "} (Sd) (1.15)

1
4
where ® represents the Hadamard product, S = [1,_1, —¢]’, ¢ is the (p—1)-vector of
ones, h(T) = 1/log(T) is of more frequent application, and D= dz’ag(@ll, e @pp).
The memory estimates d of variables in the vector are derived by the univariate
exact local Whittle estimator by Shimotsu and Phillips (2005), with m Fourier
frequencies being employed. The selection of parameters, (m, mq, v(T)), will be
specified in our empirical example. If variables are not fractionally co-integrated,

To —a 2(p — 1), while To —, 0 if they are co-integrated.

The FCVAR model

To further examine the long-run and short-run dynamics among the fractionally
integrated I(d) variables, we adopt the framework by Johansen (2008) and Johansen
and Nielsen (2012). Consider a vector X; € I(d) containing p elements, the FCVAR

model is in the form of

k
AX; = aff ATVLX, + Y TALEX, + gy (1.16)

c=1
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where ¢; is p—dimensional 7.i.d.(0,9). Let L, = 1 — A’ be the fractional lag

operator and A? be the fractional difference operator with A% = (1 — L)@

-1y = ;Qi(d)Lﬂ with 0:(d) (-1)%’(?) _ F(F_;Icf(ji)l) (1.17)

dd—1) , d(d—1)(d—2
4D dd=16-2)

= 1—dL+ L? +

where I'(.) is the gamma function. The error correction term is denoted by
B'A?PX,, where 3 is a (p X r) matrix consisting of r co-integrating vectors and
is the so-called co-integration rank. The linear combination 5’'X; is integrated of
order (d — b) with d > b > 0. This suggests that the co-integrating combination
reduces the integration order of X; by b, where b measures the degree of fractional
co-integration. The matrix « is of order (p x r) and contains the parameters
representing the speed of adjustment towards long-run equilibrium. The short-run
dynamics are measured by the lag coefficients (I'y,..., ;).

The FCVAR model is estimated by means of a profile likelihood technique (see
Johansen and Nielsen (2012)). The maximum likelihood estimators (MLE) and
maximized likelihood are calculated by minimizing the profile likelihood ¢(v, r) as
a function of ¥ = (d, b). Once d and b are determined, all the other parameters,
a, B, and fc for ¢ = 1,--- ,k can be concentrated out by regression and reduced
rank regression. Recall the FCVAR in equation (1.16) and define Zy; = AYX,,
Z1y = (A — AYX, and Zy, = {A’LX,}"_ . For fixed ¢ = (d, b), the MLE is
found by reduced rank regression of Zj,; on Z; ; corrected for Zj ;. More specifically,
we need to obtain the residuals of the respective regressions of Zy; and Z; ; on Zj 4,
denoted as Ry; and R;;, to construct the profile likelihood function ¢(¢, 7). In
the conventional situation where all the variables are fractional of order d, the
regression of Zy; on Z, is balanced in the sense that both the regressand and
regressor are [(0), while the regression of Z; ; on Zj; is not balanced with the I(b)
regressand and [(0) regressor, i.e. a reduction of b in the integration order from

LHS to RHS. The choice of B is the choice of linear combinations of Z;; which
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have the largest squared partial correlations with Z,; after correcting for fractional
lags.

The likelihood ratio (LR) test can be used to determine the co-integration
rank r. Letting IT = «of’, we have the LR test statistic of the null hypothesis
H, : rank(Il) = r against the alternative H, : rank(Il) = p. The profile likelihood
function is maximized both under the null and alternative hypothesis and then the

LR test statistic is such that

LRr(q) = 21og({(d,, p) /L(d,, 7)) (1.18)

-~

where £(¢,, p) = maxy £(, p); E(@r,r) = maxy (¢, ) and ¢ = p — r. Johansen

and Nielsen (2012) show that LRr(q) depends heavily on the parameter b in that

LR7(q) — x*(¢?), 0 < b < 1/2 (weak fractional co-integration) (1.19)

LRr(q) ~ non-standard, b > 1/2 (strong fractional co-integration)

Due to the non-standard asymptotic distribution of the test statistic in the case of
strong fractional co-integration, we follow the program developed by MacKinnon
and Nielsen (2014) to obtain the asymptotic P values for the LR co-integrating
rank tests. In addition, the selection of lag value k is of critical importance in the
specification of the FCVAR model. We determine the order of lag by following
the BIC' information criteria while ensuring that the short-run coefficients I';, are
significantly different from zero and that the residuals are stationary and serially
uncorrelated.

A crucial problem of the FCVAR model is the lack of identification on the
likelihood function as suggested by Carlini and Santucci de Magistris (2017), i.e.,
there may exist equivalent sub-models associated with different sets of parameters.
When the lag order, k, is unknown and potentially over-specified, Carlini and
Santucci de Magistris (2017) present a strong relationship between the lag length

and the indeterminacy of the FCVAR. They also provide a necessary and sufficient
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condition for identification of the FCVAR model corresponding to any lag structure.

Such condition, F(d), is defined by

[, B[ #0 (1.20)

where o/, a =0, and I' = I — 25:1 ['.. When the cointegrating rank is unknown,
they further show that the FCVAR with full rank and £ lags is equivalent to
that with rank 0 and k + 1 lags, in which case the F(d) condition delivers no
information in terms of the model identification. Whether the rank is known or
not, the identification issue for any lag greater than one can be solved by imposing a
lower-bound restriction on d where the lower bound is based upon a semiparametric
estimate, e.g. the estimator by Shimotsu and Phillips (2005), of the integration

order, termed as the d. The lower bound Omin 1S given by
min =d —cxd (1.21)

where ¢ = 0.15 is recommended in the work of Carlini and Santucci de Magistris

(2017).

The M-FCVAR model

This section introduces the M-FCVAR model and provides the specifications which
ensure that the shocks associated with the I(0) variables do not exert long-run
effects on the I(d) variables.

The FCVAR in equation (1.16) does not require that all components of X;
exhibit the same order of integration, which accords with the situation where there
can be a mixture of /(1) and I(0) variables in the traditional VECM. For instance,

following Example 3 in Johansen (2008), we construct a system containing two
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1(0.4) variables, X7; and Xy, and one /(0) variable, X3, given by

Xlt = A_T_O'4€1t — A;0.2€2t + €3 (122)
Xo = A%+ A%y + 3

X3 = entey+tey
where X; = (X1, Xop, X31)', & is i.4.d. (0, I3) and Ajrdgt = Zﬁ;é(—l)i(_id)gt,i.
The long-run transfer function for A%*X,, i.e. the matrix of responses of the

variables to the shocks, is

100
C)=110 0

000

and the spectrum is C'(1)'C(1) # 0. Hence, A%X, € F(0) and X; € F(0.4)
according to Definitions 1 and 2 in Johansen (2008), which suggests that the
representation theorem and the properties of MLE of the FCVAR remain unchanged
when the 7(0) variables are introduced into the system of fractional variables.
The following section gives an outline of the problem that may arise when the
FCVAR in equation (1.16) is used to accommodate a system containing I(d) and
I(0) variables. As a standard method employed in the literature of treating an
1(0) variable in the VECM, we adopt the idea of ‘pseudo’ co-integrating relation.
Specifically, we involve the extra co-integration vector being unit vector with unity
in the position corresponding to the /(0) variable and zeros elsewhere. Without
loss of generality, we assume that there are n I(d) variables and ¢ 1(0) variables in
X; which contains p elements, giving p = n + ¢. Among the I(d) variables, there
are r co-integrating relations and thus [ = n — r permanent components. Here, we
refer to the r co-integrating relations as ‘true’ co-integrating relations, as opposed
to the ¢ ‘pseudo’ co-integrating relations that arise from the I(0) variables, which
are treated as ‘fractionally co-integrated with themselves’. We let X; = (214, oo,

xg) where (214, x2)" is the n x 1 vector of I(d) variables which will be classified
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as endogenous or weakly exogenous variables in the subsequent analysis and x3; is

the g x 1 vector of 1(0) variables. We then construct

aF 0] 5 4 o
1 P2
a=|a; & g = N (1.23)
q
ook (r+q)xp
% % px(r+q)

The first row of block matrices in 5" are the coefficients in the ‘true’ co-fractional
relations among I(d) variables, while those in the second row correspond to the
‘pseudo’ co-fractional relations. The FCVAR in equation (1.16) is no longer
appropriate for modelling a system containing a mixture of I(d) and 7(0) variables
when d > b, in which case the term ’A%°X, contains anti-persistent error
correction terms, i.e. terms which are integrated of a negative order, due to the
presence of I(0) variables in X;. The mis-specification problem can also be seen by
considering the representation theorem of the FCVAR (1.16). Given a and 3 as
defined in equation (1.23) and ' = I — S2%_ T, the matrix C' = 3, (o/, T8, ) o/,
contains only zeros in the last ¢ rows corresponding to the ¢ I(0) variables in X;.
Following the work of Johansen and Nielsen (2012), the FCVAR in equation (1.16)
has the solution

X, = CA%e, + ATV 4, (1.24)

for d > 1/2 where the operator Ajrd is used to define a nonstationary process and
Y; is fractional of order zero. The solution of the FCVAR model for the last ¢

equations, i.e. 1(0) xg;, then reduces to
gECVAR — e ATy o3y, (1.25)

where €3’ = (0yxn, Iyxq)- It is clear that the z5VA% is integrated of order (d —b),
which erroneously exhibits long memory if d > b due to the mis-specifications.
This problem remains in the case of d < 1/2 where the solution of the FCVAR

becomes X; = CA~%, + A~(@-b)y,,
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The M-FCVAR is developed to address the issue described above. We apply
the fractional differencing operator AY~? to each of the long-memory variables in

X; and construct a new system X;. Adapting the notation of the FCVAR, we
obtain the M-FCVAR as follows

A X} = aB Ly X] + zk: TAPLEX) + & (1.26)
=1

Here, the M-FCVAR differs from the FCVAR only in the way that the fractional
I(d) variables have been transformed to (b) variables. Hence, the representation
theorem of the M-FCVAR in equation (1.26) is the same as that of the FCVAR
except that d is always equal to b. We can then show that the M-FCVAR
model-implied x5! ~F“VA% remains 1(0) according to equation (1.25) since d = b.
Both the FCVAR and M-FCVAR are estimated by means of a profile likelihood
technique (see Johansen and Nielsen (2012)). For each fixed combination of
1 = (d, b) in the estimation of the M-FCVAR, we first construct X, by applying
A=Y to the fractionally integrated variables in X,. We then define Zot = AbXt*,
Ziy= (1 - AMX; and Zy; = {APLEX; ) . The MLE is found by reduced rank
regression of Zy; on Z;, corrected for Zj ;.

For the case of the coexistence of I(d) and I(0) variables in the system of the
(M-)FCVAR, there will be shocks coming from the 7(0) variables. The effects of
those shocks can either be transitory or permanent on the /(d) variables. In the
rest of this section, we show that the shocks associated with the I(0) variables
produce zero long-run impact on the fractional variables only when a particular
model design is considered. We follow the approach of FHP (2016) to control
for the long-run effects of the I(0) variables and extend their work by allowing for
variation in the number of weakly exogenous I (d) variables within the (M-)FCVAR
framework.

For simplicity, we consider the M-FCVAR with only one lag (k = 1) as follows

A’ X = af Ly X +TIAPLX + ¢, (1.27)

39



We start with the case where only n I(d) variables, xy; and x9, are present in
the M-FCVAR. Applying the operator A%~ to x1; and xy;, we obtain X; = (2%,

x3,) which is fractionally integrated of order b. We define «},.,, = (0[{ a;)

and its orthogonal complement o). ., = (9* )\*) as a [ X n matrix, which
gives o0 Curue = 0705 + X"y = 0. There are a number of different ways of
defining the common stochastic trend. Here, we follow Gonzalo and Granger
(1995) in estimating the permanent and transitory (PT) components of X;. As in
equation (1.27), X; can be explained with regard to a smaller number, [ =n —r,
of I(b) variables, defined as common factors f; = o}, (2}, z3) and r 1(0)
variables z; = ('(z},, x3,) conditional on that (), , 8) is nonsingular. The
Gonzalo and Granger (1995) definition requires the /(b) common factors f; to be
linear combinations of the observable variables and also requires that z; does not
Granger-cause f; in the long run. The PT approach exhibits two main advantages
such as: (1) f; is unique and can be easily obtained from the (M-)FCVAR;
(2) hypothesis testing on the common trends is straightforward and follows a
chi-square distribution. The Gonzalo and Granger (1995) decomposition has been
widely applied in various studies such as Baillie et al. (2002), Banerjee, Marcellino,
and Osbat (2004), Blanco, Brennan, and Marsh (2005), Bollerslev et al. (2013) and
Dolatabadi, Nielsen, and Xu (2015), among others.

We then add 3, the ¢ x 1 1(0) variables, into the system of the M-FCVAR
and adopt o and f specified in equation (1.23). The ‘true’ error correction term,
&, is given by

§ = llxﬁft + 6/2$§t (1-28)

and the ‘pseudo’ error correction term is xs;.

Proposition 1 In the equations of the M-FCVAR (1.26) where the I1(b) dependent
variables constitute the common component, the ‘pseudo’ error correction term, Ts;
in levels form, is not present, which ensures that shocks associated with xs; have

only zero long-run effects on the fractionally integrated variables.

40



Proposition 1 suggests that: if all the fractional variables, =}, and x3,, are
endogenous, there is a requirement for 47 = 0 and 05 = 0; if any fractional variables
are weakly exogenous, loadings on the ‘true’ error correction term equate to zero for
equations where the response variables are exogenous; and loadings on the ‘pseudo’
error correction term equate to zero for equations where the dependent variables
constitute the permanent components as defined in Gonzalo and Granger (1995).
We take into account each of the three possibilities: (a) all the fractional variables
are endogenous; (b) there are as many weakly exogenous fractional variables as
common trends; (c) the number of weakly exogenous fractional variables are fewer
than the number of common trends. Case (b) is analogous to the example given
by FHP (2016). The remainder of this section discusses how the 7(0) variables
should be accounted for in the M-FCVAR model if the shocks to the I(0) variables
produce only transitory impact on the fractional variables. However, it is worth
mentioning that the Proposition 1 also applies to the FCVAR model introduced
earlier since the FCVAR differs from the M-FCVAR only in terms of the integration
orders of the long-memory variables within the system.

Proof. [Case a] To ensure that the shocks arising from the I(0) variables exert
transitory effects only on the I(b) variables, the common permanent components
of a system with a mixture of /(b) and I(0) variables should remain the same as

those in a system containing /(b) variables only given by

*
Ty

ft = O‘/i‘rueL - e*x){t + A*x;t (129)

*
Loy

We then extract permanent components within the model (1.27) by multiplication

with the matrix (9* A" U) Next, we substitute x3, = (85)*(£,— B1x3,)
q
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and obtain

APf, = (0°6T 4+ N'63) Lyxs, (1.30)
+ (0°T11 + A Tay — (0°T12 + XTa2)(85) 7' 87) A Lya},

+(9*F12 + )\*Fgg)(512>71AbLb€t =+ (G*Flg + )\*Fgg)Abbegt + Etf

Let w; = (A%f;, &, x3;)', so that equation (1.30) can be expressed in the general
form

Wy = Blwat + Bngwt + & (131)

We then substitute equation f; = 0"z}, + \*z3, into (1.31) and expand it to

Abft = (Biz + B%2>Lb€t + (3%3 + B%?,)Lb%t (1.32)
+ (BLO" — BLA (85781 — BB + BL0¥) ALy,
+ (BLA (87! = BYy + B (85) ") ALeé, — Bis LA xs,

—BLO" AP Lyx, — BN (B) T AP Ly&, — BRA(By) ™ B1AY Lya, + e

with each term in analogous positions to those in equation (1.30). Comparing

equation (1.32) with (1.30), we have

0 = Bj,+ B} (1.33)

0°6; + \'05 = DBis+ B
We define the characteristic polynomial of equation (1.31)
B(z) =1, — Bi(1 — (1 —2)") — By(1 — (1 — 2)")? (1.34)

and thus B(1) = I, — By — Ba.

The moving average representation of w; is given by

w, = B(L) e, = O(L)g, (1.35)
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where C(L) = I, + C1 L + CoL? + C3L? + - - - | so that
C(1)B(1) =1 (1.36)

Shocks associated with the 7(0) variables, 3 and &,, are transitory, suggesting
that the response of the first vector, f;, to shocks arising from z3 and &, at
infinity should be equal to zero. Thus we should have Ci5(1) = 0 and Cy3(1) =
0. Linking these conditions to equation (1.36), we obtain Cy1(1)Bi2(1) = 019
and C11(1)Bi3(1) = 013. The element Cj;(1) represents the response of zf,
to the permanent shock on the long-term run, which is non-zero by definition.

Consequently, we have Bjs(1) = 012 and By3(1) = 013, which leads to

Bl,+ B =0 (1.37)

By +Bi; = 0

Substituting equation (1.37) into (1.33), we obtain that 7 = 0 and §5 = O since
0* and \* are not null matrices. W

If there are as many weakly exogenous long-memory variables as permanent
components (common trends), e.g. xj, is the | x 1 I(b) exogenous variables, it
requires that af = 0 and 6] = 0 for shocks associated with the 7(0) z3; to have
transitory effects only. This suggests that, in the equations where the response
variables are exogenous, both ‘true’ and ‘pseudo’ error correction terms, &, and
x3, do not appear.
Proof. [Case b] We now have z7, as the [ x 1 vector of I(b) variables whose shocks
have permanent effects, x3, as the r x 1 vector of () variables whose shocks have
transitory effects and z3; as the ¢ x 1 vector of 1(0) variables whose shocks are also
transitory. Accordingly, o] is an [ x r null matrix while o3 is an 7 X r matrix of full

rank. Thus the orthogonal complement of oy, becomes «j,,., = ( I~ 01w>'
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It then follows that equation (1.30) can be written as

A'fy = Alaj, (1.38)
= aiLy&, + 07 Lyws + (T1n — Dia(By) ' 8Y) ALy},

+F12(ﬂ/2)71AbLb£t + FlgAbLbQ}gt —+ 8{
Comparing equation (1.32) with (1.38), we obtain

of = Bi,+ B3 (1.39)

‘ﬁ = B%3+Bf3

Substituting equation (1.37) into (1.39), we conclude that af = 0 and 4] = 0. W
Finally, another possible situation is where there are 0 < j < [ weakly exogenous
long-memory variables with respect to the co-integrating relationships. We partition

X} and « as

L10j)e Y1) 1()

T ot 0t

X; = 1(1—g)t o= 1(1—9) 1(1* 7)
Ty a3 05
T3t ol 05

px(r+q)

where Ty 18 the (j x 1) vector of exogenous long-memory variables and the rest
of variables are all endogenous. of ;) (o_;) and 07(;) (6},_j)) are, respectively,
the first j (last (I — j)) rows of af and 67. It requires that aj ;) = 0, 0j; = 0,

10— = 0 and &3 = 0 so that shocks associated with the I(0) xs; have zero
long-run effects only on the other variables.

Proof. [Case c|] Given that there are j < [ weakly exogenous long-memory

variables, a’l‘(j) is the (7 x r) null matrix. Therefore, the orthogonal complement
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of avyrye can be written as

, Lixj Ojxa-  Ojxr
Oét’r’uej_: .
Ou—i)xi Ol—jyxa—y) Na—jyxr

where 60* and \* are not null matrices. We then obtain the common permanent

components of the system as
/
b _ b * k% k* _x
A'fe=A (xl(j)t (9 Ty T A $2t>> (1.40)

which can be taken as a combination of cases (a) and (b). We consider the
components x{(j)t and (9*x’{(l_j)t + )\*mgt) separately and require that oq(j) =0,
1) = 0, 87;_; = 0 and d; = 0 by following the procedure described in cases (a)
and (b). W

1.4 Simulation Study

To further illustrate the superiority of the M-FCVAR model when applied in a
system with a mixture of I(d) and I(0) variables, a simulation study is conducted
to compare the FCVAR and M-FCVAR in terms of the model fit and parameter
estimation.

We consider a simple fractional and co-fractional process X; = (X1, Xos, X3;)

similar to Example 3 of Johansen (2008):

Xlt = A_T_dé‘lt + A_T_d€2t + A_T_dégt — A;(d_b)€2t + €3¢ (141)
Xoy = A%+ A% + A% + Al(d_b)@t + e3¢

X3t = e +eotey

where ¢; = (ey4, €9t, €3)" is i.i.d. (0, I3). In equation (1.41), A?X; € F(0), which
implies that X; € F(d). In addition, the shock arising from the I(0) variable

X3¢ produces non-zero long-run effects on both X3; and X5, and the two fractional
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variables X1, and Xy, are fractionally co-integrated of order C'I(d, b). In estimation
of the FCVAR and M-FCVAR models, we employ the natural normalization of the

£ matrix as

g 1 B8, 0
0O 0 1
where 3; = —1 in our case. Here, the relation between X3, and (X3, + £, Xy) is

analogous to the relation between returns and the variance risk premium introduced
earlier. The Monte Carlo simulation is based on 10000 replications, with the sample
size T' =(2500, 1000, 500). It should be noted that the M-FCVAR is equivalent to
the FCVAR only when d = b so that, in practice, it is necessary to determine the
presence of long memory, i.e. d— b, in the co-integrating residuals of the fractional
variables before introducing the 7(0) variable into the system. In the simulation,
we vary d in the range 0.4 to 0.8 as commonly seen in the empirical studies and
consider cases with the gap between d and b equal to 0.1 and 0.2. Since the shock
to X3 has permanent effect on the fractional variables in equation (1.41), we do
not impose zero restrictions on the o matrix in the estimation of the FCVAR and
M-FCVAR. In each case, we set rank as two, i.e. one ‘true’ co-integrating relation
and one ‘pseudo’ co-integrating relation, and let lag equal to zero. The MSE of
model estimates and the BIC are reported in Table 1(a).

In Table 1(a), the estimates of the model parameters, d and Bl, are shown
to become more precise as the sample size increases. Under the same fractional
integration order d, the precision in the estimates of model parameters as well
as the in-sample fit improve as b increases. The advantage of the M-FCVAR is
more evident in Table 1(b), where the gains are measured by the reduction in the
values of MSE and BIC of the M-FCVAR relative to those of the FCVAR. We find
that the M-FCVAR achieves a better in-sample fit, i.e. lower BIC, and produce
less biased estimates in almost all cases considered. In addition, such superiority
generally improves with the gap between d and 0. This example illustrates the

advantages of the M-FCVAR in a mixture of I(d) and I(0) variables under the
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presence of long memory in the co-integrating error. Next, we provide a different
example to justify the usefulness of Proposition 1, i.e. the need to restrict the
impact of the shock to the I(0) variable.

To let the shock arising from the 7(0) variable has only transitory effect on the

other variables, we design the experiment as follows

Xy = A7y — AT Ve, (1.42)
th = A;d€1t+AI_(d_b)€2t

Xg = &9 +e3t

where &; is i.i.d. (0, I3). This mimics case (a) in section 1.3.2 where the common
permanent component is made up of X7, and X5, and the shock to X3; has zero
long-run impact on X;; and Xs;. According to Proposition 1, zero restrictions
01 = 05 = 0 are required to prevent the shock associated with Xs; from having
permanent effect on X7; and Xy;. In this example, we only consider the M-FCVAR
due to its superiority over the FCVAR outlined above. To ascertain the influence
of the properties of the shock to the I(0) variable upon the estimation results,
we implement the M-FCVAR with and without the restrictions 7 = d5 = 0, in
which cases the impact on the I(d) variables of the I(0) variable is transitory
and permanent, respectively. The MSE and BIC of the M-FCVAR in these two
scenarios are reported in Table 2(a) and the percentage gains of the M-FCVAR with
zero restrictions are provided in Table 2(b). In almost all cases, higher precision in
the parameter estimation and better in-sample fit are observed for the M-FCVAR
where the zero restrictions are imposed on the o matrix to restrict the impact of

the shock coming from the /(0) variable.
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1.5 Empirical Study

1.5.1 Data and Volatility Metrics

Our empirical analysis is based on high-frequency data—for the period September
22, 2003 to December 31, 2013—of the aggregate S&P 500 composite index! and
the SPDR S&P 500 EFT TRUST (SPY) index, and the daily data of the CBOE
VIX volatility index obtained from Tick Data Inc..

The annualized VIX volatility index is transformed into a monthly squared

version

30
VIX? = log <%(VIXFBOE)2) (1.43)

where the time subscript ¢ refers to the daily observation. To obtain the 5-minute
realized variance of the S&P 500 and SPY, we calculate the intraday returns within

each b-minute interval

(1.44)

B log(py;) +log(p?; 1)  log(pi;_1) + log(pf;)
Tt,j =100 9 - 9

¢ ) is the closing (opening) price of the jth intraday interval. The

where pf ; (S g

daily return is thus given by r; = Zj\il Tt;, where M is the number of intervals
per trading day. Here we rely on a simple realized variance estimator proposed by
Barndorff-Nielsen and Shephard (2002), which equals the sum of intraday squared
returns, rv; = Z]M:1 r7;. In order to measure the return variation during the
overnight period, we add the squared overnight return, derived as the squared
close-to-open logarithmic price change, to the realized variance, rv;, obtained over
the trading day. As indicated by Andersen and Bondarenko (2007), the impact
of the lack of detailed information on the price movement overnight is trivial due
to the relatively low volatility during non-trading periods. Given that the VIX

index reflects market expectations of the one-month cumulative variation of the

corresponding aggregate market index, we compute the one-month forward horizon

'We extend the data employed in BOST (2013) by two years.
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of the variance measure in order to match the VIX. Both VIX? and RV, are in

logarithmic form.
22
RV, = log (Z rvtﬂ) (1.45)
i=1

With the construction of RV;, loss of one month’s observations at the end of the
period reduces the sample size to 2566 observations.

Standard summary statistics for the return and variance series are reported in
Table 1.3. In line with the existing literature, daily returns are serially uncorrelated
with a mean value approximately equal to zero. However, the variance series show
substantially slow decaying rates in their autocorrelations, which is indicative of
strong long-memory properties. In addition, the mean value of VIX? is greater

than that of RV;°7°% and RV,°TY | suggesting a negative variance risk premium.

1.5.2 Estimation Results

In the subsequent analysis, we first employ a semiparametric approach to estimate
the fractional integration order of each of variances and examine the presence of
the fractional co-integration between the implied-realized variances for the case
of S&P 500 and SPY, respectively. As suggested by Carlini and Santucci de
Magistris (2017), these procedures help to solve the identification problem of the
FCVAR model. We then accommodate the long-run and short-run dynamics
of (RV;, VIX?)" using the FCVAR model. A direct comparison between the
FCVAR and M-FCVAR is provided once returns are introduced to the system (RV,
VIX}?). Finally, we evaluate the return predictability implied by the FCVAR and
M-FCVAR models. The model estimates for the system (RV;, VIX?, r;)' cannot
be easily used for the out-of-sample forecasting because the RV, is not known at
time ¢. Hence, we also estimate the models with (RV; o9, VIX?, 7;) and the
relation between RV; 5, and VIX? is investigated using the same method as we
implement for (RV;, VIX?)'. The time span for the case of (RV; g9, VIX?, 1) is
from August 21, 2003 to November 27, 2013, so that the total observations remain

2566.
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We begin by determining the fractional integration d of the RV;, RV;_ 9 and
VIX} employing the exact local Whittle estimator of Shimotsu and Phillips (2005).
The results are outlined in Table 1.4 where the selection of the parameter m is
determined by the log-log periodograms of the variance series. To capture the
long-run dependency, we set the truncation parameter? to jmax = 35, from which
the periodogram of each of the variances drops steeply, as indicated in Figure 1.1.

Table 1.4 suggests that all series considered, RV;, RV;_ 9 and VI X2, exhibit the
long-memory property, where the magnitude of the memory of VI X? is greater at
c/l\VIth = 0.765. This is consistent with Bandi and Perron (2006) and Kellard,
Dunis, and Sarantis (2010) who show that the implied and realized volatility
relation may lie in a non-stationary region® where d > 0.5. As anecessary condition
for the presence of fractional co-integration, we examine the equality of integration
orders of (RV;, VIX?) and (RV,_ g2, VIX}) for both cases of S&P 500 and SPY.
A large value of the test statistic fg is evidence against the null hypothesis of
the equality of d. Specifically, in comparing the fo with the 95% critical value
of the x2(1) distribution (3.841), we accept the null and take the average d as
%(E[th + c/l\wxg) or %(JR%_M + c/i\VIth). To solve the identification problem of
the FCVAR framework, we impose a lower-bound restriction on d according to
equation (1.21), i.e. d —0.15 x d. We also set the average d as a starting value
in the numerical optimization of the likelihood function of both the FCVAR and
M-FCVAR. Results of the fractional co-integration determination of Nielsen and
Shimotsu (2007) are presented in columns 5-7 of Table 1.4. Given that L(1) < L(0)
for the (RV;, VIX?) and (RV;_2, VIX?)" of both S&P 500 and SPY, i.e. 7 =1,
we confirm the presence of the co-fractional relation in all cases analyzed from the
perspective of the frequency domain.

Before proceeding to the systems with I(d) and 1(0) variables, we first consider

2We choose m = [T 0'45] = Jmax = 39 in the univariate exact local Whittle likelihood procedure
of Shimotsu and Phillips (2005).

31t should be noted that lower d estimates of the realized and implied volatility, e.g. below
0.5, are found in Christensen and Nielsen (2006) and BOST (2013) using different volatility
constructions.
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a simple situation containing (RV;, VIX?)" or (RV,_ g2, VIX?) while using the

FCVAR with deterministic terms, as suggested by Johansen and Nielsen (2015)

k
ANX = p) = o' ALy (X — ) + Y T ALY(X, — ) + &4 (1.46)

c=1

where the level parameter 1 serves to reduce the effects of pre-sample observations.
Lag k is selected by following a procedure detailed in Dolatabadi, Nielsen, and Xu
(2016). Estimation results of S&P 500 are outlined in Table 1.5 where Panel (A)
and Panel (B) correspond to (RV;*F%% VIX2) and (RV,553%0 VIX2)' respectively.
These serve as a benchmark for comparisons when the /(0) returns are not present.
In Panel (A) using the rank test of Johansen and Nielsen (2012), we first confirm
the presence of fractional co-integration between the RV;7%% and VI X? by having
the rank equal to one, which is consistent with the conclusion obtained from Table
1.4 where a semiparametric method is considered. We then find b < c/l\, which
is indicative of long memory in the co-integrating residuals. The adjustment
parameters in matrix a are significantly different from zero with the expected
signs and 3’ # <1 _1). To further evaluate the endogeneity and exogeneity
properties of the RV,°7%% and VIX?2, and the long-run relation between the two,

we implement Likelihood Ratio (LR) tests of the following hypotheses

Hg : long-run unbiasedness in implied-realized variances 3’ = (1 _1>
H! : realized variance is weakly exogenous (a} = 0)
H? : implied variance is weakly exogenous (aj = 0)

and list the outcomes in Table 1.5. As Hg, H! and H? are all rejected at the 5%
significance level, this suggests that the RV;575% and VIX? are both endogenous

and that the VIX? is a biased forecast* of RV,575%°. Moving to Panel (B), we

4The latter finding contradicts those of Bandi and Perron (2006) and BOST (2013). This may
arise from two aspects. First, the series of interest are not the same. Where Bandi and Perron
(2006) concentrate on the monthly nonoverlapping observations of the VXO and the RV; of S&P
100 based on the daily returns, BOST (2013) use variance series recorded every 5 minutes. We
use similar data as in BOST (2013) but the RV} is recorded daily. Second, the model specification
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observe similar results such as the presence of fractional co-integration and long
memory in the co-integrating errors. However, we fail to reject Hg and H2 at the
5% significance level. First, this supports the hypothesis for the unbiased relation
between RV553%° and VIXZ2. Second, it implies that the RV;53% is endogenous
and VIX? is weakly exogenous.

Next, we include the I(0) returns into the system of (RV,55% VIX2) and
in Table 1.6 we present the difference in model estimation between the FCVAR
and M-FCVAR for this situation. Note that we now have one ‘true’ co-integrating
relation between the RV;*F%% and VIX? and one ‘pseudo’ co-integrating relation
arising from the 7(0) returns. In addition to the hypothesis of the long-run
unbiasedness between the RV,°F5% and VIX?, Hg, we are also interested in the

nature of the shock arising from returns, which is examined by the following test.

Hj: shock to returns produces only a transitory effect on the variance series

51 =0,=0

If the impact of the shock to returns on the variances is transitory, we need to
impose zero restrictions on d} and % since both the RV, %% and VIX? are
endogenous. According to Proposition 1, the I(0) variable r; does not appear
in levels form in the equations of the FCVAR or M-FCVAR where the RV,57500
(VIX}?) is the dependent variable to ensure the shock arising from returns only
delivers a zero long-run effect. In our empirical study, we account for the properties
of the shock to returns in both the FCVAR and M-FCVAR because the impact of
the shock to returns on the variances is crucial for the precision in the estimation
of model parameters as shown in the simulation study in section 1.4.

With the results of the likelihood ratio tests in Table 1.6, Hj is rejected at the

adopted is different. Where Bandi and Perron (2006) apply a semiparametric narrow band least
squares estimator which does not parameterize the short-run dynamics, BOST (2013) estimate
the FCVAR with the fixed value of d and a restricted constant. However, we allow the parameter
d to be jointly estimated with the other parameters and choose to introduce the level parameter
4 as in equation (1.46).
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5% significance level under the M-FCVAR but not under the FCVAR. The latter
finding is different from that obtained in the FCVAR estimation for (RV,%F5%0
VIX?)" in Table 1.5. In addition, H; is rejected under both models, suggesting
that the shock associated with returns has a nonzero long-run effect on the implied
and realized variances. For this case, the parameters §] and 05 capture the long-run
dynamic “leverage effect” and the rejection of Hs accords with Corsi and Reno
(2012) and Bollerslev, Sizova, and Tauchen (2012). Unlike the FCVAR in Panel
(A), the M-FCVAR in Panel (B) achieves a better in-sample fit by having lower
BIC. Moreover, the estimates ((;l\, b and 3) under the M-FCVAR are much closer
to those listed in Table 1.5 where returns are not added into the system. This
indicates that the M-FCVAR is less sensitive than the FCVAR model to the
introduction of the I(0) returns.

As for the case of (RV,555%0, VX2 roF590) similar procedures are undertaken
and results are provided in Table 1.7. At the 5% significance level, we fail to reject
Hpg under the FCVAR but reject it under the M-FCVAR. The latter finding seems
inconsistent with that from the case of (RV,°53% VI1X?2) in Table 1.5. However,
the M-FCVAR dominates the FCVAR in Table 1.7 by providing B much closer to
that obtained from the bivariate case of (RV,555%° VIX2) where returns are not
involved. There is only trivial difference in the P value of the Hg test between
the FCVAR (0.054) in Panel (B) of Table 1.5 and the M-FCVAR (0.046) in Table
1.7. Since the VI X? is weakly exogenous and RV,°L3% is endogenous as suggested
by the results in Table 1.5, we examine whether the shock arising from the 7(0)

returns has a permanent impact on the variances by conducting the following test

H,s: shock to returns produces only a transitory effect on the variance series

ay=05=0

Under both the FCVAR and M-FCVAR models, we fail to reject H,s, indicating
that the shock to returns exerts only a transitory effect on the variance series.

The restrictions aj = 05 = 0 are thus imposed on both models considered in
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order to restrict the impact of the shock associated with returns. Again, we find
that the M-FCVAR achieves a better in-sample fit and that (c?, b and B) given by
the M-FCVAR stays closer to that from Panel (B) of Table 1.5 which serves as a
benchmark model.

In the analysis above with the focus on the case of S&P 500, the superiority
of the M-FCVAR is observed in terms of the in-sample fit and insensitivity to the
introduction of I(0) returns. Next, we consider the case of SPY as a robustness
check. As before, we start with the system containing two variances only in the
estimation of the FCVAR. Panel (A) of Table 1.8 shows that the VIX? is an
biased forecast of RV,*FY and that both VIX?2 and RV,’FY are endogenous in the
system of the FCVAR. In Panel (B), although biasedness still holds for (RV,°4Y
VIX}), RVSEY is found endogenous whereas VIX? is weakly exogenous, similar
to the case of S&P 500. We then account for the situation where returns are
introduced to (RV,5FY | VIX?) and present the results of the FCVAR in Panel
(A) and those of the M-FCVAR in Panel (B) of Table 1.9. Under both the FCVAR
and M-FCVAR models, we show that Hsz and H; are rejected at the 5% significance
level, indicative of the biased relation between RV;°TY and VIX? as well as the
nonzero long-run effect of the shock to returns on the variance series. In line with
the case of S&P 500, the M-FCVAR results in better in-sample fit compared with
the FCVAR and the estimates (c/l\, b and /AB) of the M-FCVAR are much closer to
those obtained from the case of (RV,%FY | VIX?2)" in Table 1.8. Another comparison
between the FCVAR and M-FCVAR is made using the case of (RV;°5Y VIX2
r2PY) in Table 1.10, where the shock coming from returns is found to produce only
a transitory effect on the variances. Conclusions with regard to the superiority of
the M-FCVAR in a mixture of /(d) and /(0) variables remain intact for the system
(RV25S, VIXE, r?PY).
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1.5.3 Permanent and Transitory Shocks

To illustrate the dynamic dependencies implied by the FCVAR and M-FCVAR
models, we consider the Impulse Response Functions (IRF) related to three different
shocks within the system. For simplicity, we concentrate on the case of S&P 500
only. To separate the permanent and transitory components, we multiply the ¢, in
equation (1.46) with the matrix G = < o B ), following the work of Gonzalo
and Granger (1995), known as the PT decomposition discussed in section 1.3.2.
We then further orthogonalize the shocks using the idea of Gonzalo and Ng (2001),
see more details in Appendix. The implications of the three shocks are now more
apparent. We demonstrate the IRF for variance series in the system of (RV,%5%0
VIXZ r7P590) in Figure 1.2. Under both the FCVAR and M-FCVAR models,
the first shock is permanent and associated with RV;570° V1 X2 and r?T5% since
we impose no zero restrictions on the o matrix in Table 1.6. The second shock
is transitory and arises from the ‘true’ error correction term. The third shock

is also transitory and originates from the ‘pseudo’ error correction term (r2F5%0)

only. In Figure 1.2, under both the FCVAR and M-FCVAR, the effect of the
permanent shock depicted in the first column persists over long periods while the
two transitory shocks in the second and third columns, respectively, decay at a
faster rate. The third column shows that the shock associated with r, initially
has positive (negative) impact on VIX? (RV;) and the effects on the variances
almost dissipate after three months. IRF with respect to the original shocks with
no PT decomposition are plotted in Figure 1.3. It is more evident that the shock
to returns, presented in the third column, delivers nonzero long-run effect on the
variances within the system of (RV, 57500 VX2 roF500),

In Tables 1.5 and 1.7, we conclude that the RV,°55% is endogenous and VI X?
is weakly exogenous and that the shock to r77°% has only a transitory effect
on the common component within the system. A more clear picture in terms
of the impact of the shocks can be found in Figure 1.4 where the IRF for the

two variances with respect to the permanent and transitory shocks, using the PT
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decomposition, are provided. The first shock is permanent and associated with the

VIX? only since the VIX?2, as a weakly exogenous variable, serves as the common

long-memory component within the system. The transitory shocks in the second

and third column have the same meaning as those in Figure 1.2 for the case of

(RV,SPR00 VX2 rdFP590) In Figure 1.5 where we consider the IRF with respect

to the original shocks without using the PT decomposition, the shocks to RV,555%
SP500

and 7} exert only transitory effects whereas the effect of the shock to VIX?

persists for long time periods.

1.5.4 Return Predictability

To outline the superiority of the M-FCVAR over the FCVAR for predicting future
returns, we calculate the predictive R?*(h), where h denotes the time horizon,
using the impulse response functions (IRF) as in the work of BOST (2013), see
more details in Appendix. Values of the R? represent the fraction of the variance
of the model-implied returns which are predictable. Two benchmark models®, the
long-memory adjusted VAR and AR, are also taken into consideration. We present
the R?(h) for systems of (RV;, VIX?, r;) and (RV;_ g9, VIX?, 1;) of S&P 500
and SPY in Figures 1.6 and 1.7, respectively, where the horizon h ranges from 1
day to 100 days.

The upper panel of Figure 1.6 gives the values of the R%*(h) for the system
of (RVST00 VX2 rSP500) and the lower panel corresponds to the system of
(RVSLS00 VX2 ¢5P500Y - A compared with the FCVAR and M-FCVAR models,
VAR and AR result in almost no return predictability over all the horizons. The
forecasting superiority of the FCVAR framework, relative to alternative models, is
also documented in BOST (2013). The upper panel also shows that the M-FCVAR
is superior to the FCVAR in the degree of return predictability once h > 4. The
clearest advantages of the M-FCVAR is observed around the one-month horizon,

after which its superiority decreases gradually with the horizon h. The hump

®We include (AYRV;, AWIXZ2, ry) for VAR estimation and let r, = Bry_; + e; for AR
estimation.
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shape in the R? of the FCVAR and M-FCVAR as a function of the horizon h is
consistent with Bollerslev, Tauchen, and Zhou (2009) and Bollerslev et al. (2014).
As for the case of (RV,753%0, VX2, r?P500Y the superiority of the M-FCVAR is
evident only when A > 12. Moving to the case of SPY in Figure 1.7, the M-FCVAR
dominates the FCVAR in predicting returns when h > 5 for the system (RV, 57V

VIXZ, r7PY) while such advantage is only observed when h > 32 for the system

(RVESS, VIXE, mp™).

1.6 Conclusion

We modify the fractionally co-integrated VAR (FCVAR) of Johansen (2008) for
modelling systems with 7(0) and I(d) variables, where there exists long memory in
the co-integrating residuals. The problem occurring particularly in the use of the
FCVAR with 7(0) and I(d) variables is associated with the anti-persistent error
correction term when d > b, which brings fractional property to the model-implied
I(0) variables. To better accommodate the systems with /(0) and I(d) variables
when d > b, we propose a modified FCVAR, i.e., the M-FCVAR model, where the
fractional differencing operator A?~" is applied to the fractional (d) variables. In
addition, we examine the nature of shocks arising from the /(0) variables in the
co-fractional system. We show that the shocks associated with the I(0) variables
have transitory effects on the fractionally integrated variables only when particular
equation specifications are considered and that the long-run impact of such shocks
is nonzero if no parameter restrictions are imposed on the FCVAR (M-FCVAR)
model. Our Monte Carlo study shows that the M-FCVAR delivers less biased
model estimates and better in-sample fit. Apart from this, inappropriate treatment
of the shock to the 7(0) variable is found to lower the precision in the estimation of
model parameters as well as the in-sample fit. A comparison between the FCVAR
and M-FCVAR is also undertaken in an empirical application where market returns

are found more predictable using the M-FCVAR over long horizons.
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1.7 Appendix

1.7.1 Impulse Response Functions

We derive Impulse-Response Functions (IRF) below to gain a better understanding
of the dependencies implied by the M-FCVAR. We follow the steps outlined in
BOST (2013) where the FCVAR is adopted. First, we re-write equation (1.26)

by expanding the fractional differencing operator A? defined in equation (1.17) as

follows
S 0M)LIX; =aB (1= 0:(0)L)X;+Y Te(1=3 (b)) Y 0:(b)L'X] +¢
i=0 i=0 =1 =0 i=0
(1.47)
For the case of lag k = 1, we can demonstrate X in its infinite lag form by
X; o= =) 6OLX +af(1-1-> 6;(b)L)X; (1.48)
i=1 i=1

o

k 00
+D T(1=1=> 0;(b) L) 0:(b)L'X] + &
c=1 =1 =0

= =) 6;(O)L'X; —aBf > 0;(b)L'X;
i=1 =1

~I, Z(i 0:_1(b)0,(b)) L X} + &

o0

— Z(—]Qi(b) —af'0;(b) — Ty i 0;1(0)0,; (b)) L' X} + &

i=1
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Next, we further expand equation (1.48) by allowing for multiple lags, k£ > 1, and

provide the detailed algorithm below

Lag i 1 2 3

| Ls| 01(b) 02(b) 05(b)

|APLy| =Kq;  61(b) 67(b) +62(b)  261(b)6a(b) + O5(b)
ALY =Ky; O 0,(0)Ki1  Oa(0)Kyq + 0:1(0)K 2
ALY =K;3; 0

(1.49)
0 Ql(b)KZQ + 92<b)K2,1

}AbLg} =K., E;i 01(0)Ke—1,i—1

where each element represents the coefficient at the corresponding lag . Now, X

can be written as

o0

X7 o= ) (—10:(b) — af'0;(b) — T1Ky,; + ToKy; — DsKs; + -+ )L'X; +(£50)
=1

00 k

= D (=16;(b) — aB0:(b) + Y (—1)TKei)L'X] + &
i=1 c=1

= EZIJZ)(I;k + &
i=1

Let e3' = (0,0,1) so that z3; = €3’ X;". We express the M-FCVAR model-implied

infinite moving average representation for x3; below

T3t — 63/ Z q)jgtfj (151)
j=0
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where the impulse responses, ®; can be constructed by the coefficients =; such as

q)[):

~

(1.52)

@1 —

[1]

(1)2 = ‘:2+‘:l

for Z; = —10;(b) — af'6;(b) + SF_ (=1)T K.,.

We can then consider the IRF associated with the shocks to the permanent
and transitory components within the FCVAR or M-FCVAR model. Exploiting
the impulse response matrices that we derive in equation (1.52), we obtain the

following representation

CI)H(L) @12([/) @13([/) o
X =0(L)e = o1 (L) Poo(L) Dos(L) €12 (1.53)
‘1)31(L) (1)32(L) @33(11) €t3

which suggests that the number of shocks corresponds to the number of variables in
the system. Employing o, , which is the orthogonal complement of «, we construct

!
Q)

G =
/8/

Then the [ x 1 (I =n —r) vector ul’ = o/, &; and the (r + q) x 1 vector ul = 3¢,
are the permanent and transitory shocks, respectively; see Gonzalo and Granger
(1995). However, the shocks generated by the system might be mutually correlated
and thus we follow Gonzalo and Ng (2001) to obtain ‘orthogonalized’ permanent
and transitory shocks. Let H denote the Cholesky decomposition of cov(Ge;) and

thus 77, = H'(Ge;), which is equivalent to imposing p x (p— 1)/2 zero restrictions
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on the off-diagonals of cov(7),). We can now express X as follows

X; = ®(L)G'HH 'Ge, = D(L)7, (1.54)

1.7.2 Predictive R-square

To quantify the predictability of the I(0) x3;, e.g. market returns, we write the
M-FCVAR model (1.26) in moving average form. We then further decompose 3
into an expected and unexpected component and represent the model-implied 12
by the fraction of the variance of x3; which is predictable.

To decompose x3; into the expected and unexpected parts, first recall equation
(1.51) and write it in the form of continuously compounded z3; over h horizons. For
convenience, we replace x3; with z; in the subsequent equations with no confusion

hereinafter.
h—1 oo

thﬂ =e3' ) > Piery (1.55)

7=0 =0
On the basis of equation (1.55), we derive the decomposition (see Campbell (1991)

for more details)

0o h—1 j
/ /
—63 E E Dieryji + €3 E Dicpyji (1.56)
7=0 i=5+1 7=0 =0
TV ~ TV
expected unexpected

The predictive R? for the x; over h horizons implied by the model is given by

o) h— _
D ket € '(zj—é O U2y P j)'ed
D e (h—1) 63/(23 max(0,—k) (I’kﬂ)Q(Z? ]ilax(o —k) Py j)'ed

R? = (1.57)

representing the fraction of the variance of x; which is predictable.
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Chapter 2

Forecasting Using Alternative
Measures of Model-Free

Option-Implied Volatility
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2.1 Introduction

In an efficient market, the option price embodies all available useful information
about future movements of the underlying asset. Hence, traders and hedge fund
managers are primarily interested in option-implied volatility when making financial
decisions. As a natural forecast of return variation over the remaining life of the
relevant option, option-implied volatility has been frequently used in forecasting
future volatility, see Poon and Granger (2003) for an extensive review of the studies
on this topic. As opposed to the Black-Scholes (BS) implied volatility, model-free
option-implied volatilities have gained substantial popularity because, relying upon
no particular parametric model, they avoid potential mis-specification problems.
See, for example, Britten-Jones and Neuberger (2000), Carr and Wu (2006) and
Taylor, Yadav, and Zhang (2010).

One of the most widely used measures of model-free option-implied volatility is
the VI X volatility index, disseminated by the Chicago Board of Options Exchange
(CBOE). The VIX provides a measure of the expected value of the S&P 500 return
variation under the risk-neutral measure and is designed to closely mimic the
model-free implied volatility (M FIV'). Derived by Britten-Jones and Neuberger
(2000), the MFIV is defined as an integral of cross-section of out-of-the money
(OTM) European style put and call options over an infinite range of strikes for
the given maturity. Jiang and Tian (2005) show that the MFIV is a more
efficient forecast for future realized volatility than the BS implied volatility and the
historical realized volatility. However, Andersen and Bondarenko (2007) argue that
the MFIV and VIX are biased forecasts of future volatility since they contain
non-trivial and time-varying risk premiums. As a more important part of their
empirical study, Andersen and Bondarenko (2007) investigate the properties of
the corridor implied volatility index (C'X), which is obtained from the MFIV
by truncating the integration domain between two barriers. Being less sensitive

to variation in the market variance risk premium, the C'X with the narrowest
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corridor width is found to dominate other implied volatility measures in the work
of Andersen and Bondarenko (2007). Another advantage of the C'X is that it
is constructed only over intervals of the risk-neutral density (RND) where price
quotes are directly observable. By contrast, the computation requirements for
deriving the M FIV are not satisfied by the existing data as options are traded
only over a finite range of strikes. Andersen, Bondarenko, and Gonzalez-Perez
(2015) further improve the construction of the C'X by adopting the concept of
an invariant coverage across time, which ensures that the C'X is coherent in the
time series dimension. As compared with the V' I.X, which is based upon strongly
time-varying coverage of the tails of the RND, the C'X uses a consistent range of
strikes, which serves as a more accurate volatility indicator over time.

In addition to the use of implied volatilities in forecasting future volatility,
prior studies also indicate that the VIX may carry some predictive power for
future returns on stock market indices. For example, Giot (2005) finds that future
returns are always positive (negative) for very high (low) levels of the VI X. This
accords with the work of Guo and Whitelaw (2006) who provide evidence for the
positive relationship between market returns and implied volatilities. The positive
relationship between the VI X and future returns is also documented in Banerjee,
Doran, and Peterson (2007) who suggest that both levels and innovations of the
VIX are significantly related to future returns. That finding is indicative of a
negative volatility risk premium, which is consistent with Ang et al. (2006) where
stocks with high past sensitivities to the innovation in the VI X display on average
future decreasing returns. The evidence that the VIX is a priced risk factor in
the time series of returns helps to explain why the VX may exhibit predictive
power for future returns. Although a substantial empirical literature is devoted
to the investigation of risk-return relations (see, e.g., the discussion in Rossi and
Timmermann (2010), and the many references therein), most rely on the VIX as
a directly observable proxy for risk. Other measures of model-free option-implied

volatility are rarely considered.

82



In spite of the increasing popularity of the VIX index, measurement errors in
its construction has been noted by Jiang and Tian (2005). The common problem
inherent in the computation of the VIX as well as other measures of model-free
implied volatility is that only a discrete set of strikes is actually traded in the
market and that very low and high strikes are usually absent. To account for
measurement errors induced by the limited number of strikes, Jiang and Tian
(2005) apply the cubic spline method to interpolate between existing strikes and
exploit a flat extrapolation scheme to infer option prices beyond the truncation
point. Andersen and Bondarenko (2007) address the issue induced by the discrete
set of strikes via the positive convolution approximation method proposed by
Bondarenko (2003). Although interpolation and extrapolation techniques are
widely accepted, it remains unclear how such techniques affect the performance of
implied volatilities in predicting future returns and realized volatility. In addition,
there appears to be no consensus on the roles played by the OTM call and put
options in the forecast of future volatility and returns. Jackwerth (2000), Jones
(2006) and Bates (2008) suggest that the OTM put options may be irrelevant to
known risk factors affecting stock returns. Using a cubic spline interpolation and
flat extrapolation methods, Dotsis and Vlastakis (2016) also find that the OTM
put options, especially deep OTM puts, do not contain important information
with respect to equity volatility risk. They also show that the OTM call options
subsume all useful information embedded in the OTM puts for forecasting future
realized volatility. However, Andersen, Fusari, and Todorov (2015) show that the
left tail risk, driving a substantial part of the OTM put option dynamics, exhibits
strong predictive power for future excess market returns over long horizons.

Against this background, this study examines the performance of model-free
option-implied volatilities in predicting future returns and volatility and contribute
to the existing literature in the following ways. First, this chapter is among the first
to provide simulation evidence to justify the use of the interpolation/extrapolation

procedure for better forecasting performance of implied volatilities. The usefulness
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of this procedure is verified in both the simulation and empirical studies. The
adoption of a stochastic volatility model with both jumps and volatility risk
premium in the present study mimics more closely the observed data dynamics.
This can be seen as an extension of the work of Zhang, Taylor, and Wang (2013)
where a simple square-root model of Cox, Ingersoll, and Ross (1985) is employed
to investigate the number of options upon the information content of the M F IV
in an in-sample analysis. Distinct from Zhang, Taylor, and Wang (2013), this
chapter conducts comprehensive out-of-sample (OOS) volatility forecasts made by
different implied volatility measures including the M FIV .

Second, to ascertain the relevance of the OTM call and put options, this chapter
considers implied volatility measures constructed entirely from the cross-section of
OTM put (call) options and measures which discard the deep OTM put (call)
options. This is achieved by splitting the M FIV into different components with
the use of different intervals of the cross-section of OTM put and call option
prices. Similar constructions of implied volatilities are conducted in Dotsis and
Vlastakis (2016) who examine the price of volatility risk in the cross-section of
stock returns. With a different focus from that of Dotsis and Vlastakis (2016), the
present chapter compares the fraction of the time-series variation in future returns
that are explained by various measures of implied volatility. Return predictability
provided by implied volatilities is investigated in the pre- and post-crisis periods,
respectively. The impact of the recent financial crisis is accounted for since the
crisis represents an informative period during which uncertainty and risk aversion
may have been more evident than the non-crisis period, see Hilal, Poon, and Tawn
(2011) and Bates (2012).

A preview of the main findings of this study is as follows. Simulation results
show that, with a wider range of strikes upon which model-free option-implied
volatilities are based, the OOS volatility forecast becomes more accurate while
returns tend to be less predictable. In addition, a finer partition of strikes usually

leads to greater predictive power of implied volatilities for future returns. These
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findings warrant the application of an interpolation and extrapolation scheme in
the practice of volatility forecast and an interpolation method only in return
predictions. In the empirical study using SPX options from 2003 to 2013, the
aforementioned procedure, i.e. interpolation/extrapolation methods, significantly
improves the performance of different measures of implied volatility considered in
the OOS volatility forecast and gives rise to higher return predictability for most
measures in the post-crisis period. With the use of this procedure, the SPX OTM
call options substantially dominate the OTM put options with regard to their
forecasting performance. The empirical findings outlined above are supported by
the simulation evidence. However, when measures of implied volatility are derived
from the listed options only, the superiority of the OTM put options over the OTM
call options is noted in volatility forecast and post-crisis return predictions.

The rest of this chapter is organized as follows. Section 2.2 provides the
construction of various model-free option-implied volatility measures and realized
volatility considered in this study. Section 2.3 outlines the techniques adopted
to address measurement errors in the construction of various implied volatilities.
Section 2.4 presents the design and settings of the Monte Carlo study along with
the results. Section 2.5 describes the data and section 2.6 reports the empirical

results. Conclusion is provided in section 2.7.

2.2 Construction of Volatility Measures

This section provides an outline of the construction of various measures of volatility.
Section 2.2.1 gives an introduction of the M F'IV and its components derived from
OTM calls and OTM puts, respectively. The VIX index is then reviewed as
a close approximation of the M FIV. Section 2.2.2 discusses the computation
of model-free corridor implied volatilities where three different segments of the
cross-section of OTM put and call option prices are adopted. Finally, in section
2.2.3, the high-frequency realized volatility is defined, which is used to obtain an

accurate measure of the ex-post return variation of the underlying asset.
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2.2.1 Model-Free Implied Volatility and VIX

The concept of the MFIV is derived by Britten-Jones and Neuberger (2000).
Its computation for a given maturity involves market prices for a continuum of

European-style options with strikes from zero to infinity, which takes the form

MFIV = \/ge” [/OF %dl{ + /Foo %d}(} (2.1)

T

where r is the annualized risk-free interest rate as measured by the corresponding
U.S. Treasury bill rate, 7 is time-to-maturity measured in annual units, F' is
the forward price for transaction at maturity 7, P(7, K) and C(7, K) are the
mid-quotes for European put and call options with strike price K and maturity 7.
By construction, only OTM options (call if K > F' and put otherwise) are taken
into account. For a different purpose, Demeterfi et al. (1999) develop the idea of
fair value of future volatility, represented by V4., upon which the VIX is based.
Vaak- 18 also independent of any option pricing model and can be extracted from

option prices directly such as

2 So .. . [% P(r,K) . [*C(r,K)
Vddkz\JT{'rT {Se 1} —In(S./S0) + ¢ /0 7 dK +e /S* e dK

(2.2)
where Sy is the current asset price and S, denotes the stock price close to the
forward price. Jiang and Tian (2007) demonstrate that the V4, is conceptually
equivalent to the M FIV.

Motivated by Dotsis and Vlastakis (2016), the M FIV can be further divided
into two components; i.e., that from the OTM call options (VC) and that from

the OTM put options (V' P), which are given by

|2 [ C(1,K)
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and

2 FP(r,K)
P=y|Zem | —L2dK 2.4
1% \/ —e /O e (2.4)

where MFIV? =V(C? + VP2
The VIX index is based on the idea of fair value of future volatility developed
by Demeterfi et al. (1999). The general formula for computation of the V7. X index

is given by

VIX = \/g Z AK?"@TTQ(T, K;) - %(20 —1)2 (2.5)
where 7 = 30/365 is the option maturity, K; is the strike price of the ith OTM
option in the calculation, K| is the first strike price below the forward index level
F*(Ky < F*), Q(7, K;) is the midpoint of the latest available bid and ask prices
of the OTM option at strike K;, and AK; stands for the strike price interval as
AK; = (K;y1 — K;_1)/2. The forward price, F**, is calculated from at-the-money
options according to put-call parity, ["* = K, + ¢"7[C(K,,T) — P(K,,7)] and K,
is determined as the strike price for which the difference between the call and put
prices is minimal. It is worth noting that, at the boundaries of strike prices, AK;
is adjusted as the difference between the two highest (or lowest ) strike prices. In
addition, at the strike price Ky, the option price @Q;(7, K;) is modified to be the
average of call and put prices. The CBOE computes the VIX from an interpolation
of two volatility indices with respect to two different maturities: 71 and 7. The
VIX index is finally obtained by taking a weighted average of these two VIX

measures based on 7! and 7Y

365
VIX =100 x \/ (w1 (VIXE(rh)7}) + wa(VIXE ()71 x 30 (2.6)
T —T Tt
where w; = —t— and wy = ——% so that w; +wy = 1.

Recall equation (2.2), we obtain the approximation below by applying Taylor’s

expansion of log function and discarding terms greater than the second order of
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moments!.

i (Gem 1) —miss) = - (- 1) - niElS) @)

= W(F/Ky) — (% . 1)

0

|

N | =
N\
=)

|
~

where the forward price (F') at time 7 is equal to Spe’” and S, is chosen as the first
strike price (K¢) below the forward price. Replacing the term r7 — (%‘ie” — 1) —
In(S./Sp) with —1 (Kio - 1)2, the discrete framework of equation (2.2) is identical
to the general formula for the VIX calculation in equation (2.5).

The VIX in equation (2.5) may give rise to different approximation errors such
as truncation, discretization, expansion and interpolation errors, see details in
Jiang and Tian (2005) and Jiang and Tian (2007). Here, we consider truncation
and discretization errors only since the others are widely regarded as negligible
and are unlikely to have any material impact on the forecasting performance of
implied volatilities.

The truncation error is due to the fact that very low or very high strike prices
are not available in practice. Let K and Ky denote the lowest and highest strikes
for a certain maturity, respectively. The infinite range of strike prices in equation
(2.2) is approximated by the CBOE with a finite range [K, Ky] as follows

Ko p(r, K) > (1, K) Ko p(r, K) v C(r, K)
K AR & K K (2.
/0 e TR P I P R

The magnitude of the truncation error is measured as

2 KL p(r, K) > O(r,K)
=——€' — L 2dK — L 2dK 2.
6trunc 7_6 [A K2 + Ko K2 :| ( 9)

IThe construction of the VIX index is based on the assumption that the stochastic process of
asset returns follow the Geometric Brownian Motion (GBM) and Ito’s Lemma (IL), where both
the GBM and IL assume returns to be continuous and symmetrically distributed and therefore
the moments higher than the variance neither exist nor generate effects on the return process.
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and such type of error gives rise to a downward bias in the computed volatility.
It is noted by Jiang and Tian (2007) that the 0., may vary significantly over
time as the interval [K, Ky| is not fixed. The reasons are twofold. First, the
CBOE usually introduces new strikes when the underlying index is outside the
range of listed strikes. Second, the CBOE utilizes filters to exclude the potentially
problematic options in the VIX computation procedure.

The other type of error of interest is discretization error induced by the numerical
integration conducted using a coarse grid of available strike prices. The CBOE
computes the integrals in equation (2.2) as follows

/KO P(r, K)dK Ku C Z
K, K2 Ko K?

Q (2.10)

The magnitude of the discretization error is

%o P(r, K) R C(r, K)
5disc=— {Z K2Q —UKL —ga K+ | Tdf(”
(2.11)
Jiang and Tian (2007) provide evidence that the d 4. may lead to an overestimation
of the underlying volatility. In practice, the model-free option-implied volatility
measures are all subject to these measurement errors to some degree, due to the
limited availability of market prices for a continuum of European-style options

with strikes from zero to infinity.

2.2.2 Corridor Implied Volatility

The corridor implied volatility index (C'X) is initially analyzed in the empirical
work of Andersen and Bondarenko (2007). Unlike the M F IV, which requires the
availability of options with strikes from zero to infinity, the C'X only captures

volatility over a certain segment of the underlying RND. For a fixed coverage [B,

89



Bpul, 0 < Br, < By < o0, the CX is computed as

rT Bu
CX = \/ 2e M (2.12)

where the time to maturity 7 = 30 days and M (K) stands for the minimum of the

put and call prices at current time such as
M(K) = min(P(r, K), C(7,K))

In order to ensure an invariant portion of the strike range considered in the C'X
across time, Andersen, Bondarenko, and Gonzalez-Perez (2015) propose the ratio
R(K) to determine the integration barriers of the C'X in equation (2.12) using

directly observable prices of call and put options only,

R(K) = (2.13)

For given lower and upper percentiles p, ¢ € (0,1), B, = K, = R7'(p) and
By = K1, = R7'(1 — ¢). In the subsequent simulation and empirical studies,
three measures of the C'X computed from equation (2.12) are used where [By,
Bpg]| takes the values [R71(0.25), R~1(0.75)], [R~'(0), R7*(0.75)] and [R™1(0.25),
R7'(1)]. These implied volatilities are respectively represented by CXNT, CX LT
and CX RT. The definitions of implied volatilities considered in this chapter are
listed in Table 2.1. All the measures are computed from options across two nearest
maturities (less than 30 days and greater than 30 days) and the 30-day implied

volatilities is computed by interpolating between the two separate maturities.

2.2.3 Realized Volatility

In addition to implied volatilities, this study employs monthly realized volatility
and historical volatility. We employ a simple realized variance estimator proposed

by Barndorff-Nielsen and Shephard (2002), which is equal to the sum of intraday
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squared returns
M

TV = erij (2.14)

j=1
where 7, ; stands for intraday returns within each 5-minute interval. The realized
variance is then calculated over a period of one month in order to match the

maturities of the corresponding implied volatilities

22

1
RV, = ; P (2.15)

The measure RV; is recorded daily but contains monthly (future) variance. The
substantial serial correlation induced by the construction of RV; in equation (2.15)
will be accounted for in the subsequent analysis. Furthermore, the realized variance
on the latest trading day, rv,_1, is used as a proxy for historical variance, which

may contain useful information for future return variation.

2.3 Error Adjustment Mechanisms

As introduced in section 2.2, the M F IV is computed as an integral of option prices
over an infinite range of strikes; and all the measures of implied volatility that are
considered require numerical integration using the trapezoidal rule. However, only
a limited number of strikes are actually traded in the market, which may result
in inaccuracies in the computation of the option-implied volatilities, so further
affecting their performance in predicting future volatility and returns. Specifically,
very low and high strikes are usually not available in practice, which leads to the
so-called truncation errors; and the set of discrete strikes can be rather sparse,
which gives rise to the discretization errors. To account for the measurement
errors discussed above, the use of an interpolation and extrapolation scheme is
essential. The following section provides an introduction of the interpolation and
extrapolation techniques adopted in the present chapter.

We first rely on the interpolation procedure to correct the discretization error
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by employing a sufficiently fine partition of strikes. Exploiting the BS model to
smooth and interpolate option prices has now become a common practice. Shimko
(1993) pioneers in filling in option prices for a denser set of strikes by converting
option prices into implied volatilities using the BS equation, interpolating and
smoothing the curve with a simple quadratic function, and then translating the
implied volatilities into option prices using the BS model again. It is worth noting
that this procedure is not based on the assumption that the BS model is the
underlying model of option prices and it simply performs as a computational device
to guarantee a one-to-one mapping between option prices and implied volatilities.
The main issue here is how to ensure the smoothness of the interpolated implied
volatilities across a wide range of strikes, which satisfy the no-arbitrage conditions.
Some popular methods heavily adopted in practice are such as the natural cubic
spline (Bates (2000), Jiang and Tian (2005), Jiang and Tian (2007) and Neuberger
(2012)), the clamped cubic spline (Malz (2014)) and the smoothing spline (Bliss
and Panigirtzoglou (2002) and Figlewski (2008)).

Following the work of Jiang and Tian (2005), we choose the natural cubic spline
in this chapter among the available interpolation tools. The natural cubic spline is
applied to the known implied volatilities directly rather than option prices due to
the fact that the relationship between option prices and strikes appears nonlinear.
In the lower and upper price bound [K,, Ky, we construct a differentiable function
f(K) given by

f(K;) =0o(K;,T) (2.16)

for i = 1, 2,---,T, where implied volatilities o(K;, 7) are obtained from the BS
formula for a given maturity 7. All known strikes from K5 to Ky_; are taken as
knot points in fitting the cubic splines. As specified by Jiang and Tian (2007), a
natural cubic spline with a different cubic function is employed in each interval
between any two consecutive strikes and the first and second derivatives of the
cubic functions in any two adjacent intervals are set the same at the common knot

points. As a result, the cubic spline fitting procedure provides a smooth implied
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volatility function f(K) between K and Ky with the continuity of the first and
second derivatives at every strike within the interval. The second derivatives at
the endpoints are equal to zero. Below, we detail the procedure of computing the
BS implied volatility o (K, 7).

The prices at time zero of European call and put options on a non-dividend
paying stock are

O == S()N(dl) — KB_TTN<CZ2) (217)

and

P = KG_TTN<—d2) - SON<—d1) (218)
where

In(So/K) + (r +02/2)7
a/\T

ln(So/K)+(7"—a2/2)7'_ -
oIV —hmovT

dy =

Here, we use the same notation as in the previous section and Sy represents the
current asset price. The function N(z) represents the probability that a variable
with a standard normal distribution, ¢(0,1), will be less than x. The volatility
o is the so-called BS implied volatility which can be derived once the value of a
option (C or P), K, Sy, r and T are available.

The interpolation of the option prices within the boundary of actual strikes is
relatively straightforward. The major challenge is how to extrapolate the option
prices towards the tails of the RND with precision. The flat-line extrapolation,
i.e. implied volatilities beyond the truncation points are equal to those observed
for the highest and lowest strikes, is adopted in several empirical studies, see Bliss
and Panigirtzoglou (2002), Bliss and Panigirtzoglou (2004), Jiang and Tian (2005)
and Dotsis and Vlastakis (2016). The flat-line extrapolation produces a lognormal
shape of the tails of the RND, which contradicts with the extensive empirical

evidence of fat tails in return distributions. Hence, the flat-line extrapolation is
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considered inappropriate if the aim is to capture tail events accurately. Jiang and
Tian (2007) further point out the disadvantages of this approach such as: (1) it
results in the underestimation of implied volatilities outside the available strikes
due to the neglect of famous volatility smile or skew; (2) it fails to meet no-arbitrage
conditions. To overcome these drawbacks, Jiang and Tian (2007) impose a smooth
pasting condition at the minimum (K) and maximum (Kp) strikes and adjust
the slope of the extrapolated component to match the corresponding slope of the
existing interior component at K and Ky. The implied volatility extrapolated
this way achieves a linear structure.

A different strategy to extrapolate prices based on the existing options is to
first estimate the RND and then extract prices beyond the truncation points
from the estimated RND. In line with Andersen and Bondarenko (2007), this
chapter estimates the RND using a nonparametric approach, the so-called positive
convolution approximation (PCA) proposed by Bondarenko (2003). The PCA
method for estimating the RND offers several benefits: (1) it guarantees no-arbitrage
density estimates; (2) it avoids overfitting while allowing for small samples; (3)
it involves simple computation algorithm only; (4) it is insensitive to the data
generating process. The main idea of the PCA is to construct a set of admissible
densities containing functions which can be expressed as a convolution of a fixed
positive kernel and another density. The optimal density is that obtained from the
admissible densities which generates the best fit to the listed option prices. The
sub-section below briefly describes the RND estimation using the PCA approach.

The relationship between the RND and call/put options can be expressed as

1 0?C (1, K) 1 9?P(t,K)
ho(S:) = oJo rsds OK2 s = J reds OK?2 . (2.19)

where S represents the value of an underlying asset on trading date 7 and 7 is the
risk-free rate. For simplicity, it is assumed that the asset pays no dividends and
rs = 0 and thus elo ™% = 1. In the PCA approach, the first step is to construct

the approximating set W,,, representing all admissible or candidate densities, from
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which the optimal density is selected. Let L? denote the set of all probability
densities, i.e., nonnegative functions that integrate to one. For a basis density
¢(K) € L?, a new density ¢,,(K) := L¢(£) can be obtained by smoothing ¢(K)
with the bandwidth parameter m. Once ¢,,(K) is fixed, the approximating set

W,, = Wy is given by
Wy i={g€L%g=¢,*pn, for pec L'} (2.20)

which contains functions g, expressed as a convolution of ¢,,, with positive functions
p. In the work of Bondarenko (2003), the basis density ¢(K) is assumed as
the standard normal distribution since different choices for ¢(K) result in similar
estimators. Although the space L¢ accommodates very general shapes of densities,
W, is made up of only smooth and well-behaved densities where the bandwidth m
determines the smoothness of densities in the set. If functions A (the true RND)

and ¢ are both integrable, the following equation holds.

hxg:= /oo h(K —y)g(y)dy (2.21)

—00

Next, we search for the optimal density in the set W, containing all candidate
densities. An estimator of the RND is the function of E(K ) € W, which provides
the best fit to a certain cross-section of put options {P;} with strikes K; < --- K7,
i.e. it achieves the objective function as follows

T A 2
Minimize (H D% (Kz-)> (2.22)
where D~2h (K;) represents the second integral of h (K;). To measure how closely

the density h can be approximated by another density in the set, Bondarenko

(2003) defines the distance between h and W, as
= inf ||h—g| = min ||k — 2.2
plh, Win) := inf |[h—gl| = min |[h—g]| (2.23)

95



where ||.|| = ||.||* is the Ly-norm. He further shows that the distance p(h, W,,)
exhibits basic properties, e.g. an approximation with a small m is always no worse

than an approximation with a larger m. We first discretize the admissible set W,

by

Whe .= {g € LY g(K) = i ajo, (K — z;), a; >0, f: a; = 1} (2.24)

j=—o00 j=—o00

where j = 0,£1,---, and z; = jAz with Az being the equally-spaced grid
step. Bondarenko (2003) indicates that a sufficiently small Az can lead to a
arbitrarily close distance between the W2# and W,,,. Finally, the finite-dimensional

approximation of the problem in equation (2.22) can be solved numerically by

T
Minimize Y (a ~ D% (K,-))2 (2.25)

heWA (b)) =5
where [v,w] is a large but finite interval on which the underlying density h is
approximated. Once the estimated RND is obtained, option prices can be inferred

for a continuum of strikes through the relationship in equation (2.19).

2.4 Monte Carlo Simulation

This section presents a Monte Carlo simulation study where different numbers of
option prices are considered as the strike range and increment vary. The aim of this
experiment is (i) to ascertain the impact of discrete strike prices on the performance
of various implied volatility measures in forecasting future volatility and returns
and (ii) to provide guidance for the use of interpolation and extrapolation technique

in forecasting.

2.4.1 Simulation Design

The simulation exercise conducted in the present chapter is motivated by Zhang,

Taylor, and Wang (2013) who examine the effect of the number of strikes on
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the information content of the M F IV using a simple model without jumps and
volatility risk premium. In a departure from Zhang, Taylor, and Wang (2013),
this study concentrates on the OOS volatility forecasting performance of implied
volatilities and the predictive power of implied volatilities for future returns. A
jump-diffusion model adopted by Duan and Yeh (2010) is used to simulate the

asset price and the latent stochastic volatility by

dlnS, = [r—q+0,V,— %]dt + Vi dW, + J,dN, — A,dt - (2.26)

AV, = k(0 —V,)dt+ vV, dB,

where W, and B, are correlated Wiener processes, having correlation coefficient
equal to p; N; denotes a Poisson process with intensity A, which is independent
of W, and By; J; is an independent normal random variable with mean p; and
standard deviation o ;. The price, S;, and volatility, V;, processes are dependent
through the correlated diffusive terms-W; and B;. The other parameters, r, ¢
and 0, are the risk-free rate, the dividend yield and the asset risk premium,
respectively?.
Option valuation is implemented using the corresponding model under the
risk-neutral probability measure given by
Vi .2
dinS; = [r—q-— 5+ N (41— e dt + /V,dWy (2.27)
+JF AN — N phdt

AV, = (k0 — Kk*V;)dt + 0V, dB;

where k* = k + 0y and B} = B, + dy /v [, V}“ds with Jy being the volatility
risk premium. Again, W} and B} are the Wiener processes correlated with the
coefficient p; N/ is a Poisson process with intensity A* independent of W} and B;;

the independent normal random variable J; has a new mean p% but an unchanged

2The mean of J;dN; — A\ sdt is zero due to the introduction of the term Ay ;dt, which serves
to center the Poisson innovation.
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standard deviation o;. The theoretical variance expectation under the model

considered above, represented by VIX2, ' can be computed as

heo?

K0 1—e "7 . l—erT

VIXE (i, 7y, ng) = VIXE,, = P (1 - T) +20"+ ———VW

(2.28)
see Duan and Yeh (2010) for more details. In this simulation experiment, we adopt
the jump risk premium measured by § ; = ¢*—¢, where ¢* = \* <e“3+"3/ s 1)
and ¢ = A (e“J+”3/2 — g — 1). The term 0 ; reflects the compensation in the
expected return for the jump risk, resulting from the change from the physical
probability measure P to the risk-neutral pricing measure Q).

The empirical martingales simulation (EMS) method developed by Duan and
Simonato (1998) is used to compute option prices, given that there is no closed-form
option pricing formula for equation (2.27). The EMS method, which imposes upon
the simulated sample a martingale property, exhibits two benefits such as: (1) the
price simulated by the EMS satisfies rational option-pricing bounds; (2) it yields
substantial reduction in Monte Carlo errors. Let t5 = 0 be the current time, we

generate the EMS prices at a sequence of future time points, ¢y, tg, - - ,t,, using

the following system

Z;i(t;, n)
(1, n) = Sy ) 2.2
Sz (t]7 n) SOZo(tj, n) ( 9)
where
Si(t;)
Zi(ts, n) = SH(ti_y, n)—nl 2.30
(] ) (] 1 )Si(tj—l) ( )
1,
Z()(tj, n) = 56 t ‘_El Zi(tj, TL) (231)

:5’\1(15) is the ith simulated asset price at time ¢ prior to the EMS adjustment,
and §,~(t0) and S} (to, n) are set equal to Sy. At one time, the EMS implements
a simulation of n sample points, where n = 1000 in our case. After the EMS

correction, the simulation proceeds to the next time point, and repeats the whole
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process again. The estimate of the discounted EMS asset price is given by

1 n
Sglt, n)=—e") SHt 2.32
0( ) Tl) ne ; z( ) TL) ( )
and therefore the estimate of the call option price is

Ci(t, n) = le’” imax [S(t, n) — K, 0] (2.33)

n -
=1

—rt

The put option prices can be obtained by the put-call parity, i.e. C' + Ke™™ =
P+ 5.

This study assumes one year has 252 trading days and that one day consists
of 6.5 hours of open trading, as is the case on the NYSE and NASDAQ. A sparse

sampling at a frequency of once every 5 minutes is used in this simulation study and

6.5x3600 _ =g

therefore one day can be divided up into 78 intraday intervals, i.e., =225

A daily series is extracted by sampling once every 78 data points. The asset price
and the latent stochastic volatility are simulated according to the Euler discretized
version® of equation (2.26). The simulation is simplified by assuming no dividends
and a zero interest rate. The initial stock price (Sp) and latent stochastic volatility
(Vo) are set respectively as 1000 and 0.08 (or 0.02). Here, we consider two situations
where the magnitude of volatility is relatively low (V5 = 0.02) and high (V5 = 0.08)
in order to evaluate the forecasting performance under different market conditions.
The sample size of daily series is 2000. The parameter values are similar to those

adopted by Duan and Yeh (2010).

3The asset price and volatility path will be discretized into constant-increment time steps of

At = m. The discretization for the price and volatility processes through Euler scheme is
given by

Siv1 = Siexp[(r —q+ 35V — 0.5V))At + / VAW, + J Ny — Ay At

Vier = Vit (k0 — V) At + po V) VAW, + /1 — p?0V,'V At B,

where J; is i.i.d. N(py, 05), Nt is Poiss(AAt), W; and B; are two Brownian-motion processes,
and p represents the instantaneous correlation between the return process and the volatility
process. As introduced in the main text, Sy = 1000 and Vo = 0.08 (or Vo = 0.02).
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K 0 A ny (%) o5 (%) v p Y s K* " (%) Sy 6. (%)

2.500  0.080  55.000 0.300 0.500 1.400  -0.800  0.900 0.420  -13.000 0.035 -15.500 -0.059

Option prices are computed corresponding to two nearby maturities, 23 and
37 days. This experiment considers two fixed strike price increments (AK=5 and
AK=1) and attempts with different moneyness ranges ([0.8, 1.2], [0.7, 1.3] and

0.6, 1.4]).

2.4.2 Simulation Results

Table 2.2 and 2.3 report the summary statistics of various volatility measures
with Vo = 0.08 and V, = 0.02, respectively. In both scenarios, it is evident that
the mean of the implied volatility estimates increases with the moneyness range.
This accords with the work of Jiang and Tian (2007), where the truncation errors
usually result in an underestimation of the true volatility. The mean of the VIX,
MFIV, CXNT, CXLT and CXRT decreases as the strike increment becomes
smaller, which is consistent with the finding of overestimation of the underlying
volatility induced by discretization errors in Jiang and Tian (2007). For most
measures considered, the mean squared error! (MSE) tends to decrease with the
strike range. Table 2.2 and 2.3 also show that measures of implied volatility become
more volatile with the range of strikes while they, except the V' (', tend to appear
less volatile as the partition of strikes is smaller.

To evaluate the OOS volatility forecasting performance of various option-implied

volatilities, a univariate Mincer-Zarnowitz regression is adopted as follows

Y41 = Q1 + let + /’Lt—‘rl,t (2.34)

where 1, 1 represents the realized volatility containing the information of month ¢+
1 and where x; indicates each volatility estimate among all candidate estimates. To

obtain OOS forecasts of the realized volatility measure, this study employs a rolling

4This is defined as the time-series average of the squared differences between the certain
volatility estimate and the theoretical VIX index, VIXrpeo-
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window of 1000 observations for the one-step-ahead forecasts. The daily realized
volatility, i.e. the square root of the realized variance in equation (2.15), contains
substantial induced serial correlation, which seriously affects the standard errors
of the coefficient estimates. To overcome this problem, the Bartlett/Newey-West
heteroskedasticity consistent covariance matrix estimator with 44 lags is used, see
Andersen and Bondarenko (2007). Regressions are examined for both volatility and
logarithms of volatility. The forecasts are evaluated by the MSE, which is robust
to the presence of noise in the volatility proxy, see Patton (2011). The OOS R? of
the Mincer-Zarnowitz regression is also taken into account, which corrects for bias
by reflecting the variance but not the bias-squared component of the MSE.
Forecasting results for the case of Vj = 0.08 are reported in Table 2.4. Clearly,
the VIX7p., dominates all the other candidate measures in terms of the volatility
forecasting performance®. Forecasting performance increases with the strike range
for all the measures, except that of the CXNT and C'XLT. It is not surprising
that the C X NT performs the same for different moneyness ranges since the options
within the barriers B;, = Kjyo5 and By = Ky 75 are not affected by the variation
in the strike range. The worse performance of the C X LT with a wider range of
strikes may be attributed to the poor forecasting power of the deep OTM put
options for future volatility. In addition, Table 2.4 shows that the strike increment
AK tends to have a negative impact on the volatility forecasting power of the VIX,
MFIV, CXNT, CXLT and CXRT but exerts a positive impact on that of the
V' and V P. Overall, the effect of the strike range on the forecasting performance
is considerable and that of the strike increment is negligible. The use of different
loss functions, i.e. MSE and OOS R2, gives the identical conclusion in terms of
the role of the strike range and increment in the forecasting practice as well as

the ranking of forecast performance among implied volatility candidates. These

5In several situations, the rv;_; outperforms option-implied volatility estimates, which seems
to contradict the findings of Jiang and Tian (2005) and Andersen and Bondarenko (2007). The
explanation is that this experiment considers the case of very high volatility, i.e. V5 = 0.08.
When the initial latent stochastic volatility is set lower, the performance of daily lagged RV falls
as compared with the other implied volatility measures.
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findings motivate the application of an extrapolation procedure to extend the tails
of the RND in an attempt to improve the volatility forecast accuracy. On the
other hand, an interpolation method is considered necessary since the number
of listed options may be rather small in practice. The lack of observed options
may lead to inaccuracies in the estimation of the RND using the PCA method
and thus result in failure in inferring the options beyond the truncation points.
Moreover, the critical role of the OTM call options is noted in Table 2.4 where
the VC serves as the top forecaster and the C' X RT substantially outperforms the
CXLT. The deep OTM put options are found to weaken the forecasting power of
the implied volatilities for future volatility due to the poorer performance of the
CX LT relative to the CXNT.

The next step is to apply the natural cubic spline to interpolate between
available strikes and to implement the PCA method in order to obtain the option
values beyond the range of listed strikes. The corresponding measures computed
by options with the use of such procedure are prefixed by C'P-. To examine the
performance of the C'P-measures in the forecasting practice for future volatility,
this study focuses on the case of AK = 5 and moneyness range=|[0.8, 1.2] only.
Specifically, a step of one unit of the index is used to numerically compute the
integral in the interpolation procedure and four standard deviations from forward
prices are adopted as an integration range®. The interval of strikes that are needed
to extrapolate is ([Fy —4SD, Kuyin) and [Kpax, Fo +4SD]) where Kyin(Kmax)
represents the minimum (maximum) listed strike price in the market. Table 2.5
reports the volatility forecast performance, measured by both the MSE and OOS
R2?, of various implied volatility measures and their corresponding C'P-measures.
The values in parentheses below the MSE are the mean difference of squared
forecasting errors between the original implied volatility and its corresponding
C P-measure. Numbers in bold indicate statistically significant differences at 5%

by the Diebold-Mariano test. Columns 1-4 show that the CP-M FIV, CP-CXRT,

6The choice of the truncation point is motivated by the finding of Jiang and Tian (2005) who
show that the truncation errors are virtually zero beyond 3.55D from Fy.
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CP-VC and CP-V P achieve significant gains in the forecasting performance for
future volatility and that the ranking of forecasting power of the C'P-measures
remains unchanged from that of the original measures. Columns 5-8 present values
of the OOS R? where the percentage changes of the R? are represented by the
numbers in parentheses and where the gains of the C'P-measures are indicated
in bold. With the single exception of C X NT', the use of the interpolation and
extrapolation method brings higher OOS R? for all the measures considered.

Our conclusions in terms of the impact of the number of strikes on the OOS
volatility forecast remain intact when moving to the situation of low volatility
with V5 = 0.02. Specifically, in Table 2.6, we find that the accuracy of volatility
forecast improves with a wider range of strikes for all measures considered except
the CXNT. Comparing the values of the loss functions, the OOS R? in particular,
the strike increment, AK, produces trivial and negative effects on the forecasting
power of the VIX, MFIV, CXNT, CXLT and CXRT and positive effects on
that of the VC and V P. Different from the case of high volatility with V{, = 0.08,
the top performance in the OOS volatility forecast is achieved by the C X NT and
CXRT in the low volatility situation. In both cases of high and low volatility,
the superiority of the OTM call options is evident given that the CXRT (V)
substantially outperforms the CXLT (V P). As can be observed from Table 2.7,
once we apply the interpolation and extrapolation procedure, the MSE of the
C P-measures are, in most cases, lower than those of their counterparts derived
from the original options although some of these improvements in forecasts are
insignificant. In addition, the interpolation and extrapolation procedure results in
higher OOS R? for 9 out of 12 measures considered.

Another important application of the implied volatility is to predict future
market returns. As in the work of Banerjee, Doran, and Peterson (2007), the 30-

and 60-day future returns are regressed on daily levels” of the implied variance

TAs a robustness check, the analysis of return predictions is also conducted by regressing
future returns on the innovations of the implied variances, motivated by the work of Banerjee,
Doran, and Peterson (2007). Conclusions remain unchanged.
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estimates as follows
h

1
h Z Tiyj = Q2 + Byl + Urgng (2.35)

j=1
where v, indicates each of the measures of implied variance levels. To account
for residual correlation caused by overlapping returns, this study considers the
Newey-West standard errors. The adjusted R? is employed to indicate the degree
of return predictability; the values are reported in Table 2.8 where a high volatility
scenario (Vo = 0.08) is considered. First, results indicate that the return predictions
by implied volatility measures deteriorate with the strike range. Second, with a
finer partition of strikes, return predictive power generally improves, with the
one exception of V. From this evidence, only the interpolation method, which
provides a smaller partition of strikes, is needed to achieve better return predictions
by measures of implied volatility. Consistent with the work of Andersen, Fusari,
and Todorov (2015), the deep OTM put options dominate the deep OTM call
options in predicting future returns. This is indicated by the higher R%s given
by the CX LT relative to those by the CX RT. In addition, the V' displays the
strongest predictive power for future returns in most cases while the V P serves as
the top performer only in the case of AK = 1 when short horizon is considered.
This suggests that OTM call options exhibit superior predictive power overall to
that of the OTM put options for future returns. This is despite the superiority of
the deep OTM puts over the deep OTM calls in this exercise.

The cubic spline is then applied to achieve a finer partition of strikes in the
case of return predictions. Measures of implied volatility based upon the options
using the interpolation method are prefixed by C-. To examine the effect of the
interpolation procedure on return predictions, this study takes the case of AK =5
and moneyness range=[0.8, 1.2] as an example and reports the results of the return
predictability in Table 2.9. Gains in the predictive power for future returns are only
observed for C-C X NT, C-CX LT, C-C X RT over 30-day and 60-day horizons, and
for C-V P over 30-day horizon.

As a robustness check, we also evaluate the return predictability in a low
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volatility situation with V4 = 0.02. Consistent with the high volatility case, results
in Table 2.10 indicate that the predictive power of various measures drops as
the strike range increases whereas the return predictions tend to improve with a
smaller partition of strikes, with the exceptions of V' over 60-day horizon and
V' P over 30-day horizon. In the low volatility scenario, the advantages of the
OTM put options are noted in predicting future returns, suggested by the superior
performance of the VP (CXLT) over VC (CXRT). Two points are worth noting
when comparing the forecasting ability of the OTM calls and puts: first, in both
low and high volatility scenarios, there are equal numbers of the OTM call and
put options used in the return predictions. However, when the volatility level is
low, a proportion of the deep OTM options are priced at zero on many trading
days and the number of deep OTM calls with the zero price is substantially greater
than that of the deep OTM puts; second, the deep OTM call and put options both
carry some predictive power for future returns whether the initial volatility is set
to 0.02 or 0.08. This is suggested by the higher R? delivered by the CX LT and
CXRT relative to that by the CXNT; see Tables 2.8 and 2.10. Consequently,
the phenomenon of options with zero price present in the low volatility setting
may seriously weaken the power of the OTM calls in forecasting future returns.
However, such phenomenon does not affect the conclusion for the superiority of
the OTM calls in volatility forecasts, where the deep OTM puts are shown to
lower the forecasting accuracy; see Tables 2.4 and 2.6. Options with zero price are
rarely observed when the volatility is high, in which case the roles of the OTM
calls and puts in the forecasting practice are more comparable. To sum up, the
overall simulation evidence is in support of the superiority of the OTM calls in
forecasting future volatility and returns, which is in agreement with our empirical
findings to be discussed later.

As for the effectiveness of the interpolation, gains in return predictability are
observed in 6 out of 12 cases in Table 2.11. However, given the positive impact of

the strike increment on return predictions in Tables 2.8 and 2.10, the interpolation
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procedure is expected to lead to more evident gains in the predictive power of
various implied volatilities for future returns in the empirical case, where the
partition of strikes is often much more sparse, i.e. greater than 5. Findings in

section 2.6 confirm this hypothesis.

2.5 Data

The data sample spans from January 02, 2003—December 31, 2013, encompassing
2769 trading days. Data are taken from several sources. Closing bid and ask SPX
option prices and dividend yield are obtained from Optionmetrics via the WRDS
system. High-frequency data at 5-minute intervals for the SPX® are collected from
the Tick Data Inc.. Daily one-month and three-month Treasury-bill yields®, taken
as the risk-free rates, are extracted from the Federal Reserve Bulletin. In addition,
the average of bid and ask is taken as the best available measure of the option price
to alleviate the bid-ask bounce problem. For the two nearby maturities, there is an
average of 34 out of 97 (63 out of 97) OTM call (put) option quotes per day. Two
commonly used data filters are applied. First, options with less than seven days
remaining to maturity are excluded. These options may be subject to problems
of liquidity and market microstructure. Second, options violating the boundary
conditions, i.e. with BS implied volatilities below zero or above 100%, are excluded
from the sample. Only OTM options are included since in-the-money options are
less liquid and thus may induce bias into the computation of implied volatilities.
The CBOE calculates the VI X index using option prices updated every five
minutes. However, the Optionmetrics database includes the last daily bid-ask
quote only, which might not correspond to the data published by CBOE for the

final end-of-day computation. Hence, as a more direct benchmark, this chapter

81n order to measure the return variation during the overnight period, the squared overnight
returns, computed as the squared close-to-open logarithmic price change, are added to the
realized variance obtained over the trading day.

9Following the work of Jiang and Tian (2007), the risk-free rate is linearly interpolated between
these two yields. However, when the maturity is shorter (longer) than one (three) month, the
one-month (three-month) yield is adopted.
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derives a replicated VIX index, RX, using the exact CBOE procedure every day.
Thereby, it follows the work of Andersen, Bondarenko, and Gonzalez-Perez (2015).
The RX provides an equivalent of the V I.X using the SPX option prices from the
Optionmetrics data set. It is well known that the CBOE adopts a particular rule
to exclude OTM options: once two puts (calls) with consecutive strikes are found
to have zero bid option prices, no puts (calls) with lower (higher) strikes are taken
into account. The model-free implied volatility index with a broader strike range,
denoted by M FIV, can be obtained by discarding any options with a zero bid
price and employing all OTM options with a positive bid quote, i.e. ignoring the
cutoff rule by the CBOE. Hence, the M FIV provides an upper bound for RX.
In addition, the same notations are adopted for the other candidate measures as
those in the simulation study!’.

For the 2769 trading days under consideration, the implied volatility measures
are not available at some points due to a variety of reasons, including: (1) the
requirement for the two nearby maturities is not satisfied; (2) the lack of OTM
options; (3) boundary conditions are violated, which reduces the sample size to
2330. The construction of the RV, leads to the loss of one month at the end.
Finally, the sample data under analysis contains 2307 observations, for the period

from January 02, 2003 to November 27, 2013.

2.6 Empirical Results

This section starts by reporting the basic statistical properties of different volatility
measures. It then investigates their performance as predictors of the future realized
volatility and market returns of the underlying S&P 500 index.

Table 2.12 reports the summary statistics!' of the monthly volatility measures

10T hroughout the empirical work, this paper makes use of the robust forward F as in the
work of Andersen, Bondarenko, and Gonzalez-Perez (2015) rather than the "implied" forward
F* determined by the CBOE according to put-call parity. However, the F'* is still employed in
computing the RX in order to approximate the VIX.

"n the empirical study, the MFIV is computed in the same way as the CBOE VIX in
equation (2.5) but it ignores the cutoff rule by the CBOE. The VC and VP are computed as
equations (2.3) and (2.4). This explains why MFIV? # VC? + V P? in Table 2.12. The reason
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which are annualized and recorded daily. First, the unconditional mean of most
implied volatility measures clearly exceeds the mean of the RV. This is consistent
with the extant literature establishing the presence of a negative volatility risk
premium. Note also that the RV has the highest skewness and kurtosis statistics.
This erratic nature is attributed to the unpredictable innovation term of the RV as
noted in the work of Andersen and Bondarenko (2007). Second, the CX LT (V P) is
found to be more volatile and higher in magnitude than the CX RT (V C) because
deep OTM puts generally have the highest implied volatility, i.e. volatility smile.
A similar phenomenon is observed in the case of the C' P-measures. Such evidence
is also given in Figure 2.1 which depicts the time-variation of various implied
volatility candidates. In particular, the RX overlaps the M FIV closely and thus
high similarity is expected in their forecasting power for future realized volatility
and returns. Finally, all volatility measures exhibit substantial persistence with
extremely slow decay in their autocorrelations.

The correlation between various measures of implied volatility and realized
volatility is provided in Table 2.13. Compared with the measures extracted from
the listed options only, the corresponding C' P-measures display higher correlation
with the RV. This is indicative of superior forecasting power for future volatility.
Contrast to the work of Zhang, Taylor, and Wang (2013) and Dotsis and Vlastakis
(2016) who examine the information content of implied volatilities in in-sample
regressions, this study concentrates on the OOS volatility forecasts. The results
of the RV forecasts are presented in Table 2.14 where the forecasting performance
is measured by the MSE and OOS R?. Gains achieved by the C' P-measures are
generally more evident than those in the simulation study. In almost all cases, gains
in MSE are significant at 5% level. The C' X NT dominates other measures that are
based on the existing options. The C'P-C'X NT ranks best among all C' P-measures.
As shown in the upper panel of Table 2.14, CX LT (V P) outperforms the C X RT

for the use of the CBOE computation procedure, instead of the traditional M FIV calculation
method, is to make a direct comparison between the M FIV and RX in terms of the forecasting
performance. In doing so, we may ascertain the impact of the cutoff rule of the CBOE on the
forecasting power of the VIX.
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(VC) in the forecasting of future volatility. This can be attributed to the fact
that only a very small number of OTM calls (34 out of 97 per day on average) are
available in this empirical study. However, in the lower panel, where more options
are involved with the use of interpolation and extrapolation scheme, the OTM
call options are superior to the OTM puts, indicated by the better forecasting
performance of the CP-CX RT (C'P-V ) than that of the CP-CXLT (CP-V P).
The evidence for the advantage of the OTM calls is in line with the simulation
result discussed in section 2.4.2. Moreover, conclusions drawn from Table 2.14
remain intact when different loss functions for OOS forecasts are considered.
Finally, the return predictability is evaluated by various implied volatilities
using equation (2.35) where the excess returns are considered as opposed to raw
returns. To better understand the predictive power of implied volatilities for future
returns in different market conditions, this study further splits the data sample
into pre-crisis and post-crisis periods. The beginning of the financial crisis is set
at September 01, 2007. As discussed in the simulation study, only interpolation
is needed in the exercise of return predictions. Values of the adjusted R? implied
by different return regressions are reported in Table 2.15. In the pre-crisis period,
the interpolation improves the return predictive power for 4 out of 12 measures.
In the post-crisis period, this result holds for 7 out of 12 measures. Moreover, the
C-V (' dominates all the other implied volatilities in terms of the performance for
predicting future returns in the post-crisis period. The C' X RT performs the best in
such forecasting practice in the pre-crisis period. Hence, the results suggest a few
good substitutes for the VIX index as predictors for future returns. In the upper
panel of Table 2.15, where measures are derived from the observed option prices
only, the OTM call options exhibit greater predictive power for future returns than
the OTM put options in the pre-crisis period while the OTM put options play a
more dominant role in the post-crisis period. In the lower panel, where the cubic
spline is used to interpolate between available strikes, OTM call options outperform

OTM put option in predicting future returns in both pre- and post-crisis periods.
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2.7 Conclusion

This chapter examines the forecasting power of various model-free option-implied
volatilities for future returns and realized volatility using Monte Carlo simulations
and an empirical study. By decomposing the model-free implied volatility into
different components using various segments of the out-of-the money (OTM) put
and call options, this study ascertains the role of each of the components. The
chapter provides a simulation study on the impact of the strike range and increment
on the predictive power of the implied volatilities. Results show that: first, the
forecast accuracy for future volatility improves with the range of strikes; second,
the strike range exerts a negative impact on the predictive power of the implied
volatilities for future returns; third, a smaller partition of strikes tends to result
in greater performance of implied volatilities in predicting returns. These findings
warrant the application of an interpolation and extrapolation scheme in order to
enhance the forecasting power of implied volatilities for future volatility while only
an interpolation method is needed in the case of return predictions.

In both simulation and empirical studies, the superiority of the aforementioned
method, i.e. interpolation/extrapolation techniques, is observed for most measures
considered in forecasts of future returns and volatility. More interestingly, once
this technique is implemented in the empirical case to overcome the problem of
the lack of strikes, the OTM SPX call options clearly exhibit higher forecasting
power than the OTM SPX put options. This accords with the evidence from the
simulation experiment. On the other hand, the advantages of the OTM SPX put

options are noted when implied volatilities are derived from the listed options only.
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Table 2.2: Simulation study with Vp = 0.08: summary Statistics. This table reports the
mean, standard deviation, lower quartile (25%), median (50%), and upper quartile (75%)
of daily annualized volatility estimates over 2000 days. All the values are percentages.
The mean squared estimation error, MSE, is the average of the squared differences
between the volatility estimates and the theoretical VIX index, VIXppe,. The strike
price increment is denoted by AK and Ny refers to the number of available options on
each estimation day.

Mean StdDev  25% 50% 5% MSE
VIXTheo . . . 5. .
RV 23.6841 9.4726 17.2824 21.5069 26.7618
AK =5 Nk Moneyness Range
VIX 86 0.8,1.2 36.2688 11.3866 28.1721 33.8260 41.4539 29.1182
128 0.7,1.3 37.7167 12.9644 28.6248 34.6614 43.2231 16.8826
167 0.6,1.4 38.2435 13.8219 28.6925 34.8117 43.7395 14.2855
MFIV 86 0.8,1.2 36.9711 11.3161 28.8961 34.5055 42.2275 25.6308
128 0.7,1.3 38.6101 13.0396 29.4648 35.5447 44.2569 14.7022
167 0.6,1.4 39.2324 13.9959 29.5486 35.7811 44.8681 13.1674
CXNT 86 0.8,1.2 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968
128 0.7,1.3 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968
167 0.6,1.4 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968
CXLT 86 0.8,1.2 34.2586 10.9680 26.5616 31.8153 39.0299 47.3269
128 0.7,1.3 35.6924 12.3049 27.0270 32.7474 40.9577  30.1992
167 0.6,1.4 36.2805 13.1204 27.1798 32.9743 41.6377 24.6749
CXRT 86 0.8,1.2 31.2108 10.6210 23.8673 28.6452 35.5908 84.5573
128 0.7,1.3 31.5717 11.1677 23.8923 28.7841 36.0049 74.6089
167 0.6,1.4 31.6768 11.4019 23.8933 28.8077 36.0561 71.2892
Ve 86 0.8,1.2 229491 7.2992 17.7665 21.2982 26.0928 316.1882
128 0.7,1.3 23.4417 8.0621 17.8222 21.4521 26.5423 289.5784
167 0.6,1.4 23.5835 8.3822 17.8222 21.4761 26.6604 280.8594
vpP 86 0.8,1.2 28.4255 8.5915 22.2635 26.6314 32.5155 161.1815
128 0.7,1.3 30.1422  10.2282 22.8413 27.8142 34.7325 113.4245
167 0.6,1.4 30.8299 11.1983 23.0182 28.0057 35.4366 95.2843
AK =1
VIX 422 0.8,1.2 36.1206 11.2236 28.1317 33.7444 41.3216 31.0087
629 0.7,1.3 37.6563 12.8712 28.6170 34.6308 43.1692 17.3348
1239 0.6,1.4 38.2166 13.7685 28.6902 34.8077 43.7299 14.3939
MFIV 422 0.8,1.2 36.8572 11.1951 28.8665 34.4344 42.1000 26.8896
629 0.7,1.3 38.5635 12.9668 29.4599 35.5384 44.2100 14.9503
1239 0.6,1.4 39.2117 13.9525 29.5504 35.7789 44.8443 13.1920
CXNT 422 0.8,1.2 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750
629 0.7,1.3 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750
1239 0.6,1.4 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750
CXLT 422 0.8,1.2 34.0638 10.8394 26.4723 31.6732 38.8431 50.1150
629 0.7,1.3 35.5644 12.2193 26.9314 32.6610 40.8070 31.4616
1239 0.6,1.4 36.1791 13.0634 27.0938 32.8640 41.5633 25.4219
CXRT 422 0.8,1.2 31.0706 10.5707 23.7608 28.5266 35.5119 87.1688
629 0.7,1.3 31.4414 11.1297 23.8061 28.6810 35.9053 76.8183
1239 0.6,1.4 31.5491 11.3691 23.8061 28.6948 35.9247 73.3751
ve 422 0.8,1.2 23.2036  7.3257 18.0626 21.5130 26.4031 307.5802
629 0.7,1.3 23.7030 8.0965 18.0836 21.6831 26.9452 280.9600
1239 0.6,1.4 23.8465 8.4200 18.0880 21.6981 27.0022 272.2445
VP 422 0.8,1.2 28.5067 8.5052 22.4153 26.7591 32.5390 160.2375
629 0.7,1.3 30.2902 10.1843 23.0286 28.0615 34.8485 110.9583
1239 0.6,1.4 31.0050 11.1826 23.1910 28.3104 35.7387 92.3282
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Table 2.3: Simulation study with Vp = 0.02: summary Statistics. This table reports the
mean, standard deviation, lower quartile (25%), median (50%), and upper quartile (75%)
of daily annualized volatility estimates over 2000 days. All the values are percentages.
The mean squared estimation error, MSE, is the average of the squared differences
between the volatility estimates and the theoretical VIX index, VIXppe,. The strike
price increment is denoted by AK and Ny refers to the number of available options on
each estimation day.

Mean StdDev  25% 50% 75% MSE
VIXTheo . . . . .
RV 12.2629 5.1875  8.9082 11.1537 13.6244
AK =5 Nk Moneyness Range
VIX 86 0.8,1.2 19.4806 7.5630 14.36564 17.4954 21.8103 0.6033
128 0.7,1.3 19.6859 7.9713 14.3876 17.5196 21.9666 0.4720
167 0.6,1.4 19.7411 8.1086 14.3876 17.5284 21.9828 0.5314
MFIV 86 0.8,1.2 19.9707 7.6562 14.7781 17.9503 22.3529 0.9571
128 0.7,1.3 20.2228 8.1261 14.8095 18.0293 22.5510 1.1804
167 0.6,1.4 20.3088 8.2839 14.8144 18.0675 22.5954 1.4096
CXNT 86 0.8,1.2 14.5759 5.8987 10.7158 12.9623 16.2147 27.4309
128 0.7,1.3 14.5759 5.8987 10.7158 12.9623 16.2147 27.4309
167 0.6,1.4 14.5759 5.8987 10.7158 12.9623 16.2147 27.4309
CXLT 86 0.8,1.2 18.4638 7.0875 13.6823 16.5993 20.6721 2.0536
128 0.7,1.3 18.7123 7.4954 13.7150 16.6840 20.8756 1.0884
167 0.6,1.4 18.8203 7.6364 13.8050 16.7368 20.9154 0.8671
CXRT 86 0.8,1.2 16.4443 6.5692 12.1027 14.6720 18.3152 10.7190
128 0.7,1.3 16.4791 6.6775 12.1027 14.6720 18.3155 10.2120
167 0.6,1.4 16.4860 6.7022 12.1027 14.6720 18.3155 10.1080
ve 86 0.8,1.2 12.0575 4.8589  8.8248 10.7171 13.4904 63.2844
128 0.7,1.3 12.1048 5.0048  8.8248 10.7171 13.4937 61.6739
167 0.6,1.4 12.1140 5.0380  8.8248 10.7171 13.4942 61.3412
vpP 86 0.8,1.2 15.3480 5.8677 11.3534 13.8409 17.2816 21.1217
128 0.7,1.3 15.6404 6.3585 11.4077 13.9543 17.5008 16.9690
167 0.6,1.4 15.7561 6.5303 11.4673 14.0229 17.5645 15.6137
AK =1
VIX 422 0.8,1.2 19.4446 7.5112 14.3553 17.4847 21.7785 0.6552
629 0.7,1.3 19.6706 7.9527 14.3806 17.5132 21.9565 0.4644
1239 0.6,1.4 19.7315 8.1031 14.3806 17.5227 21.9754 0.5222
MFIV 422 0.8,1.2 19.9465 7.6143 14.7732 17.9444 22.3339 0.9677
629 0.7,1.3 20.2167 8.1086 14.8104 18.0277 22.5428 1.1655
1239 0.6,1.4 20.3067 8.2779 14.8143 18.0696 22.5958 1.4007
CXNT 422 0.8,1.2 14.3088 5.8672 10.4671 12.7445 15.9307 30.1713
629 0.7,1.3 14.3088 5.8672 10.4671 12.7445 15.9307 30.1713
1239 0.6,1.4 14.3088 5.8672 10.4671 12.7445 15.9307 30.1713
CXLT 422 0.8,1.2 18.3476 7.0362 13.5811 16.5221 20.5653 2.3754
629 0.7,1.3 18.6165 7.4680 13.6320 16.6063 20.7757 1.2482
1239 0.6,1.4 18.7276  7.6217 13.6817 16.6578 20.8200 0.9822
CXRT 422 0.8,1.2 16.3101 6.5466 11.9645 14.5647 18.1740 11.5773
629 0.7,1.3 16.3463 6.6585 11.9645 14.5652 18.1789 11.0363
1239 0.6,1.4 16.3535 6.6844 11.9645 14.5652 18.1789 10.9242
ve 422 0.8,1.2 12.3426 4.8872  9.0802 11.0050 13.7968 58.9506
629 0.7,1.3 12.3907 5.0354 9.0803 11.0066 13.8043 57.3536
1239 0.6,1.4 12.4002 5.0696  9.0803 11.0066 13.8043 57.0195
VP 422 0.8,1.2 15.5492 5.8333 11.5515 14.0358 17.4858 19.6655
629 0.7,1.3 15.8618 6.3478 11.5960 14.1653 17.7415 15.3688
1239 0.6,1.4 15.9815 6.5320 11.6480 14.2179 17.8116 13.9949
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Table 2.4: Simulation study with Vp = 0.08: out-of-sample forecast losses. This table
reports the ratio of the losses (MSE and R?) for different predictive regressions for
future monthly realized volatility and logarithm of volatility, respectively. Different
strike price increments and ranges of strikes are considered here. Data are obtained for
every trading day and the forecasts are based on re-estimating the parameters of the
different regressions each day with a fixed length Rolling Window (RW) made up of
the previous 1000 days. Ranking is obtained for different cases of strike increments and
represents the average volatility forecasting performances of implied volatilities across
different strike ranges.

MSE Ranking Out-of-sample RZ (%) Ranking
Vol logVol Vol logVol Vol logVol Vol logVol

VIXTheo 0.0387 0.0190 74.5090 76.8332

rUi—1 0.0558 0.0287 63.2640 65.1061

AK =5 Ng Moneyness Range

VIX 86 0.8,1.2 0.0568 0.0269 5 5 62.6171 67.2937 5 5
128 0.7,1.3 0.0553 0.0267 63.5527 67.5413
167 0.6,1.4 0.0544 0.0265 64.2093 67.7660

MFIV 86 0.8,1.2 0.0564 0.0266 4 4 62.8468 67.6101 4 4
128 0.7,1.3 0.0551 0.0265 63.7494 67.7624
167 0.6,1.4 0.0541 0.0264 64.3901 67.9136

CXNT 86 0.8,1.2 0.0519 0.0258 3 3 65.8194 68.6326 3 3
128 0.7,1.3 0.0519 0.0258 65.8194 68.6326
167 0.6,1.4 0.0519 0.0258 65.8194 68.6326

CXLT 86 0.8,1.2 0.0577 0.0280 6 6 62.0262 65.9059 6 6
128 0.7,1.3 0.0582 0.0283 61.6691 65.5402
167 0.6,1.4 0.0578 0.0283 61.9562 65.5705

CXRT 86 0.8,1.2 0.0504 0.0244 2 2 66.8396 70.3366 2 2
128 0.7,1.3 0.0489 0.0239 67.7939 70.9327
167 0.6,1.4 0.0483 0.0238 68.1703 71.0847

vc 86 0.8,1.2 0.0496 0.0231 1 1 67.3493 71.8709 1 1
128 0.7,1.3 0.0467 0.0224 69.2267 72.6933
167 0.6,1.4 0.0457 0.0223 69.9102 72.8904

VP 86 0.8,1.2 0.0662 0.0311 7 7 56.3911 62.1576 7 7
128 0.7,1.3 0.0651 0.0310 57.1374 62.2606
167 0.6,1.4 0.0635 0.0307 58.1738 62.6052

AK =1

VIX 422 0.8,1.2 0.0574 0.0270 5 5 62.1791 67.1571 5 5
629 0.7,1.3 0.0556 0.0267 63.3723 67.4821
1239 0.6,1.4 0.0545 0.0265 64.1190 67.7361

MFIV 422 0.8,1.2 0.0569 0.0267 4 4 62.5251 67.5176 4 4
629 0.7,1.3 0.0553 0.0265 63.6167 67.7243
1239 0.6,1.4 0.0542 0.0264 64.3310 67.9012

CXNT 422 0.8,1.2 0.0522 0.0259 3 3 65.6335 68.4597 3 3
629 0.7,1.3 0.0522 0.0259 65.6335 68.4597
1239 0.6,1.4 0.0522 0.0259 65.6335 68.4597

CXLT 422 0.8,1.2 0.0582 0.0281 6 6 61.6776 65.7394 6 6
629 0.7,1.3 0.0586 0.0284 61.4355 65.4086
1239 0.6,1.4 0.0580 0.0284 61.8023 65.4760

CXRT 422 0.8,1.2 0.0505 0.0244 2 2 66.7138 70.2520 2 2
629 0.7,1.3 0.0490 0.0239 67.7127 70.8682
1239 0.6,1.4 0.0484 0.0238 68.1058 71.0259

vc 422 0.8,1.2 0.0487 0.0227 1 1 67.9035 72.3489 1 1
629 0.7,1.3 0.0460 0.0221 69.7165 73.1407
1239 0.6,1.4 0.0450 0.0219 70.3702 73.3265

VP 422 0.8,1.2 0.0664 0.0310 7 7 56.2748 62.3124 7 7
629 0.7,1.3 0.0649 0.0308 57.2576 62.4827
1239 0.6,1.4 0.0632 0.0305 58.3920 62.8674
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Table 2.6: Simulation study with V5 = 0.02: out-of-sample forecast losses. This table
reports the ratio of the losses (MSE and R?) for different predictive regressions for
future monthly realized volatility and logarithm of volatility, respectively. Different
strike price increments and ranges of strikes are considered here. Data are obtained for
every trading day and the forecasts are based on re-estimating the parameters of the
different regressions each day with a fixed length Rolling Window (RW) made up of
the previous 1000 days. Ranking is obtained for different cases of strike increments and
represents the average volatility forecasting performances of implied volatilities across
different strike ranges.

MSE Ranking Out-of-sample RZ (%) Ranking
Vol logVol Vol logVol Vol logVol Vol logVol

VIXTheo 0.0134 0.0267 66.7827 67.9234

rUi—1 0.0258 0.0477 36.0728 42.7877

AK =5 Ng Moneyness Range

VIX 86 0.8,1.2 0.0140 0.0276 3 3 65.2932 66.8613 3 3
128 0.7,1.3 0.0139 0.0276 65.6774 66.9107
167 0.6,1.4 0.0138 0.0276 65.7816 66.9276

MFIV 86 0.8,1.2 0.0141 0.0278 4 4 65.0662 66.7200 4 4
128 0.7,1.3 0.0139 0.0277 65.5327 66.7998
167 0.6,1.4 0.0138 0.0276 65.7326 66.9340

CXNT 86 0.8,1.2 0.0136 0.0272 1 1 66.2040 67.4138 1 1
128 0.7,1.3 0.0136 0.0272 66.2040 67.4138
167 0.6,1.4 0.0136 0.0272 66.2040 67.4138

CXLT 86 0.8,1.2 0.0141 0.0278 5 5 65.1590 66.6712 5 5
128 0.7,1.3 0.0140 0.0278 65.4379 66.7029
167 0.6,1.4 0.0138 0.0276 65.7044 66.9565

CXRT 86 0.8,1.2 0.0137 0.0272 2 2 65.9595 67.3256 2 2
128 0.7,1.3 0.0137 0.0272 66.1195 67.3665
167 0.6,1.4 0.0137 0.0272 66.1524 67.3752

vc 86 0.8,1.2 0.0143 0.0284 6 6 64.4947 65.9123 6 6
128 0.7,1.3 0.0142 0.0283 64.8982 66.0272
167 0.6,1.4 0.0141 0.0283 64.9679 66.0483

VP 86 0.8,1.2 0.0146 0.0288 7 7 63.7524 65.4810 7 7
128 0.7,1.3 0.0144 0.0287 64.3786 65.5817
167 0.6,1.4 0.0142 0.0284 64.7431 65.8882

AK =1

VIX 422 0.8,1.2 0.0141 0.0277 4 4 65.1813 66.8135 4 4
629 0.7,1.3 0.0139 0.0276 65.6351 66.8826
1239 0.6,1.4 0.0138 0.0276 65.7564 66.9033

MFIV 422 0.8,1.2 0.0141 0.0278 5 5 64.9976 66.7045 5 5
629 0.7,1.3 0.0139 0.0277 65.5190 66.8078
1239 0.6,1.4 0.0138 0.0276 65.7180 66.9211

CXNT 422 0.8,1.2 0.0137 0.0273 1 2 66.0310 67.2146 1 2
629 0.7,1.3 0.0137 0.0273 66.0310 67.2146
1239 0.6,1.4 0.0137 0.0273 66.0310 67.2146

CXLT 422 0.8,1.2 0.0141 0.0279 6 6 65.0340 66.6037 6 6
629 0.7,1.3 0.0140 0.0278 65.3683 66.6738
1239 0.6,1.4 0.0139 0.0276 65.6063 66.8678

CXRT 422 0.8,1.2 0.0138 0.0274 2 1 65.8512 67.1860 2 1
629 0.7,1.3 0.0137 0.0273 66.0201 67.2307
1239 0.6,1.4 0.0137 0.0273 66.0544 67.2401

vc 422 0.8,1.2 0.0139 0.0276 3 3 65.4487 66.9566 3 3
629 0.7,1.3 0.0138 0.0275 65.8075 67.0437
1239 0.6,1.4 0.0138 0.0275 65.8692 67.0594

VP 422 0.8,1.2 0.0145 0.0283 7 7 64.0916 66.0206 7 7
629 0.7,1.3 0.0142 0.0282 64.7965 66.1591
1239 0.6,1.4 0.0141 0.0280 65.1224 66.3744
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Table 2.8: Simulation study with Vj = 0.08: multi-period return prediction. This table
shows the adjusted R? from the daily regressions of the h-period returns on the current
implied variance levels. Ranking is obtained for different cases of strike increments and
represents the average ability of implied volatilities for predicting returns across different

strike ranges.
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Return Predictability (Adj RZ %)

Ranking

30-day 60-day 30-day 60-day
0.7611 7.4725

1.4033 8.5224 4 4
1.2048 8.3069

1.0217 8.0018

1.4689 8.6001 2 3
1.2625 8.3965

1.0648 8.0852

0.7559 7.4092 7 7
0.7559 7.4092

0.7559 7.4092

1.1687 8.1426 5 5
1.0992 8.0754

0.9731 7.8621

1.0860 8.1113 6 6
0.9967 7.9809

0.9164 7.8265

1.6091 8.8549 1 1
1.3245 8.5471

1.1319 8.2404

1.4520 8.6069 3 2
1.2745 8.4381

1.0611 8.1023

1.4875 8.6919 4 4
1.2448 8.3953

1.0541 8.0624

1.5257 8.7259 2 2
1.2881 8.4596

1.0907 8.1320

0.7798 7.4631 7 7
0.7798 7.4631

0.7798 7.4631

1.2324 8.2971 5 5
1.1336 8.1630

1.0068 7.9322

1.1023 8.1470 6 6
1.0128 8.0122

0.9320 7.8527

1.4980 8.8190 3 1
1.2473 8.5171

1.0707 8.2103

1.5611 8.6914 1 3
1.3228 8.4411

1.1071 8.0958
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Table 2.10: Simulation study with Vi = 0.02: multi-period return prediction. This table
shows the adjusted R? from the daily regressions of the h-period returns on the current
implied variance levels. Ranking is obtained for different cases of strike increments and
represents the average ability of implied volatilities for predicting returns across different

strike ranges.
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Return Predictability (Adj RZ %)

Ranking

30-day 60-day 30-day 60-day
0.4238 7.8759

0.6918 8.7715 4 3
0.5330 8.2114

0.4655 7.9451

0.7335 8.8962 2 2
0.5546 8.2795

0.4723 7.9776

0.4199 7.7976 7 7
0.4199 7.7976

0.4199 7.7976

0.6704 8.6732 3 4
0.5506 8.2150

0.4718 7.9499

0.5325 8.2695 6 6
0.4519 7.9693

0.4275 7.8649

0.5921 8.7234 5 5
0.4394 8.1503

0.3970 7.9581

0.8565 9.0860 1 1
0.6413 8.3951

0.5217 8.0105

0.7290 8.8643 3 3
0.5465 8.2584

0.4706 7.9638

0.7638 8.9634 2 2
0.5665 8.3176

0.4777 7.9995

0.4237 7.8178 7 7
0.4237 7.8178

0.4237 7.8178

0.6992 8.7464 4 4
0.5616 8.2594

0.4775 7.9851

0.5430 8.3001 6 6
0.4595 7.9904

0.4330 7.8793

0.6338 8.7119 5 5
0.4740 8.1437

0.4275 7.9471

0.8629 9.1365 1 1
0.6296 8.4181

0.5068 8.0258

120



(%¥50-) (%€0°6-)

I T 89€0°6 PEIS 0 dAD
(%T1¥°0-) (%26°2)

¢ i 8189'S zL29°0 DAD
(%£2°0) (%9¢€°'1)

G G G888 L6€S0  LUXDD
(%80°0) (%€0°0-)

i ¢ G089'S 2090  ITIXOD
(%82°0) (%26°0)

9 9 G618'L 8ETF0  INXOD
(%80°0-) (%82°0-)

e ¢ 8888'8 GIEL0  ATAIN-D

I T 0980°6 G9G8°0 dA

i G veTL's 126570 DA

9 9 66938 GTe80 TIXO

G i 2€L9°'8 70L9°0 LTIX0D

L L 9L6L"L 66170 INXD

e ¢ 29688 ceeL’0 ATAIN

¢ ¢ GTLL'S 8169°0 XTA

6GL8"L 8€TH0 LY T A

Aep-09  Aep-0g Aep-09 Aep-0g

Sup[uey (% ¢4 [PV) Aypiqejorpord wmjey]

"Afoarpoodsor ‘uoryerodrojur Jo osn oy} Yirm soorid
Aq pue A[uo suorjdo poAIdsqo AQ PaIdoNIISUOD dIe SOINSEOUL 219U M Sosed I0J paurelqo sI Suruey] ‘seInseawr —,) a3 Aq AIiqeldrpald WIngol o) Ul
sure$ oy} JYSIYSIY p[oq Ul soquuiny Ao suorpdo PoAIISqO UO Paseq SOINSBIW SUIPUOdsoLIoD I0Y) 0} SAIJR[DI SOINSBIW-) 93} JO ;37 pojsnlpe oy jo
sogueyd ogejusdtod oy} jussordal sisoyjusled Ul SIOQUINN “S[OAJ[ 9OURLIBA POI[dWI JUSIIND 9} UO SUINdI PoLod-y o) JO SUOISSOIZaI A[IRpP oY) WOIJ
4 Ppossulpe oyy smoys orqey sy, "uorgorpard wimjer poued-1juul :poyewt uore[odiojur Jo osn oYy Yim (g0'0 = %) Apnjs uonenuIg 11°g O[qR],

121



EVS o 01620 161670 668€°6 809T1°C TLEG°GT GCI8'TT ¢06¢°6 ¢LGE9 T90G°€T dA-dO

6695°0 6018°0 LLL6°0 6¢96°8 0STT'C ¥€06°0T 07€0°8 G6.7°9 €L6ET Gviv'6 OAdDO
1€95°0 7,080 8086°0 GOP8'8 ¢860°¢ LOVG VT 86€L°0T Gce9's 9048°G ¢196¢l LEXO-dO
¥¢S40 168L°0 0186°0 60¢0°6 ¢I11°¢ PaI8LT T9.7°€1 €2.86°01 crer’L €08¢€°4T LTXO-dO
18640 8€08°0 €186°0 1L60°6 16¢T°¢ 0978°¢I €LTV°6 LLEGL 6€LT°¢G LETOTT INXO-dO
86450 10080 0186°0 €616'8 Pa0T'C 9CET 61 68TV V1 €LLETT €EV9°L 697591 ATAN-dD
LV87°0 17EL 0 92960 L6696 €8€CC Y.Ly 0¢ €ILT91 SYreel L8108 ¢yaee sl dA
779570 96€L°0 8¢46°0 €240°9 VLE9'T E€870°GT €8G0°TT 16G€'8 96€¢'9 969.L°CT OA
€VLS°0 €¥46L°0 0296°0 1G88°G 6119°T Gr1€0¢ GI9T1E"GT (4! 9L1¢'8 9PGE LT LHXO
2009°0 G87.L°0 6,960 LIP8'8 E€ve1e TTLL €S €0¢L 8T 6C1¥°G1 94188 L8G0°T¢e LTXDO
0L66°0 91080 €6.6°0 €908°8 66,0°C LECCET V8LL°6 Lv06°L LELT'S 60V 1T INXO
€9499°0 02080 6086°0 LTEBT'6 GTvar'e 6S7G61 88V¢ AT TTGT°¢T GET9'L GCVe LT ATAN
€949°0 €208°0 0186°0 GOET'6 GGv1'e 607561 980¢°GT 9¢erel €L79°L P80C LT XY
1€47°0 129L°0 1866°0 ¢r68°G1 Ggae1'€ €c0¢¢l 06188 ¥¥756°9 601¢'L €OET'TT A
&9 Ied td SISOLINY] SSOUMONG %SL %09 %S¢ as UeIN

"J0€Z 0} S9dNPal SUOI}RAISSCO JO IOUINU O] ‘[9Ad] A[YIUOUWL 0} A}[1}R[OA
pozijeal Surjessisse 10y ‘SUOIIRAIISQO ()EEE JO [RI01 ® UM ‘€T0Z ‘TE€ 99(T 0% €00C ‘0O Ue[ WOIj soSuel SISA[eUe Iopun ejep oy, sosejusorod
9Ie SIoquINU oY) [[y ‘soinseawl AJI[I)e[oA SNoOLIeA I0J soIys1je)s Arewrwuns sjpiodor o[qe) SIYJ, -sorpsije)s Arewrwns :Apngs [eourdwr] :g1°g 9[9RL

122



0000°T
8196°0
G186°0
L1060
06.6°0
GL06°0
¢L86°0
6€96°0
1¢86°0
€LL6°0
1986°0
0886°0
¢986°0
S0¥L°0

0000°T
L6€6°0
¢c06°0
LL€6°0
GG68°0
L976°0
81.L6°0
617670
Gce6°0
16976°0
0046°0
887670
87¢L 0

0000°T
8006°0
G186°0
0506°0
96160
¢cr6°0
8¥86°0
¥786°0
66.6°0
¥4L6°0
¥4L6°0
01620

0000°T
1668°0
€296°0
L7680
6£68°0
0€68°0
9688°0
8968°0
0606°0
1706°0
662¢9°0

0000°T
6916°0
7€66°0
8¢96°0
16660
¢L66°0
¢966°0
9166°0
9166°0
809.°0

0000°T
16160
¥cc60
¥416°0
9¢16°0
90260
T0€6°0
06¢6°0
00990

0000°T
¢896°0
6566°0
G166°0
96660
8966°0
6966°0
6TGL°0

0000°T
1896°0
1866°0
2296°0
9¢L6°0
V1L6°0
68€L°0

0000°T
€L66°0
¥2.66°0
9€66°0
9€66°0
629L°0

0000°T
L€66°0
€686°0
G686°0
G8GL°0

0000°T
L966°0
L966°0
9€6L°0

0000°T
6666°0 0000°T

L87L°0 €8PL°0 0000°T

dAdD
dA
OAdD
0A
LIXO-dD
THXD
LTXOdO
LTXO
INXO-dO
INXD
ATAN-dO
ATAN
X4

A

dAdD dA DAdD DA IMXOdD IdXD IIXD-dD IT1XD INXOdD INXD AIAN-dD AIIN XY
'SUOTIRATBSAO L(ET JO 810} ® YIIM ‘€107 ‘AON LZ 0} €007 ‘G0 wep woiy st portod ojdures oy ], “XIL1}R]\ UORIOII0)) €1°g O[RL

Ad

123



(%90°0T) (%86°6T) (%12°'1-) (%99°2-)
9 9 ¥6L2°SY GT9¢ 6¥ 9 9 61710 92G1°0 dA-dD
(%86°42T) (%gL6ST) (%50°8-) (%90°6-)
€ q 7882°2S V.L76°67 € g 60€T°0 LGST°0 DA-dD
(%0%°28) (%£2°66) (%¥2°9-) (%06° %)
z z C6TL'TS 2L00' TG z e L621°0 ¥2S1°0 IHXO-dD
(%8%'8) (%9¢°61) (%20°1-) (%€8°2-)
q iz 62GL 67 GT2T 0 q i 8LET'0 67ST°0 LTIXDdD
(%82°1) (%gz'€) (%81°0-) (%0¢5°0-)
1 1 0£€0°€G 812L°1G 1 1 8821°0 Z0GT'0 INXD-dD
(%.2€°2) (%69°0) (%z€e0-) (%60°0-)
id € 0£0¢°09 THSee 0 i ¢ 8GET'0 GFST0 ATAN-dD
(S0£=49N ‘S0£=°N) (80£=9N ‘S0£=°N)
q q 6798°€F Yy IF q g 0%ST°0 1€8T°0 dA
L ) VCE6°CT 7G€8°0C ) )] VI1Z0 €97Z°0 DA
9 9 LIET'8T 6109°GC 9 9 TL6T0 GTET 0 TIXD
id i 7G98°GY 06L0°C¥ i i AN 20810 ITXD
T 1 ¥H9¢°2G 9z01°0G 1 T 90€T°0 TGGT0 INXD
e z LGEE 6 7090°0G z e 06£T°0 ¥Ge10 AT
¢ ¢ €20z 6 1200°0G ¢ ¢ €6£1°0 96GT°0 Xy
96£9°62 G19¢°L€ 0£61°0 £761°0 1=t
(€9=9N ‘FE€=5°N) (€9=dN ‘FE€=°N)
[0ASO] [OA [OASO[ 10A [OAS0[ [OA [0AS0] 10A
Jupjuey (%) ¢4 ddures-jo-mQ Supyuey HSIN

‘suorydo nd N T,0 JO Ioquinu dY) I0J spue)s ¢\; pue poajoAul
suorydo [[ed A T,O JO Iequinu o) sojouap A7 ‘A[eArpoadsar ‘uoryejoder)xe pue uorjejodiojur Jo asn o) 3m sootid Aq pue Auo suorjdo parlasqo £q
POIONIISUOD OIR SOINSLOW 9I9UM S9SRD I0J Poure}qo SI SUmuRY °SOINSeoW-J)) 93 JO sured oy} JYSIYSIY P[Og Ul sIoquunu :ATUO suorjdo poAIssqo oY}
UO poseq SoINseatl SUIpuodsorIod oY) 0) dATIR[OI SOINSBIW-J) 93} JO soSued oFejuodtod oy} oI sisoyjuored Ul SIOQUINU Y} ‘37 JO SONRA I0] 18]
OURLIRI\-P[OQOI(] oY} A( POIRIIPUL ‘[OAS] 044G @ SEOULIPIP JueOYIUSIS juasaidor pjoq ul senfea ‘uorjejoderixs pue uorje[odIajul Jo POYIoW O [YIIM
9501} PUR SOII[I13R[OA PaI[dul MRI 97} U0oM)9( ‘SIOLID SUISLIVIOJ PaIenbs ‘SoOUIOPIP SAT)R[DI o1} oIe sIsoyjuared Ul sIoqUIMU oY} ‘SN JO Son[eA Ioq
‘sAep 0OOT snotaaxd o) Jo dn epeut (4137) MOPUIAN SUI[[OY [[ISUS] PoOXT & )M ABD DS SUOISSEIZAI JUSISHIP oY) Jo siojourered 1) SUIJRUIIISO-01 UO
Poseq oIe $1SeIDI0J ) puR ARp SUIpRI} AIOAS IO PouIR)qo oIe viRe(] ‘A[PAI}00dsol ‘A)I[IIR[OA JO WIILIRSO] puR AJI[I}R[OA POZI[ROI A[JIUOW 9ININJ I0]
SUOIS801801 9A1OIPAId JUSIOPIP 10§ (L PUR SN ) SOSSO[ 04 JO o1jer 9y s310dol o[qey SIY [, "sosso jsedor0y ofdures-jo-4no :£pnjys reoradwy] H1°g 9[qeL,

124



(%8L°7%) (%€z9-) (%¥1°02T) (%€eP°18)

9 9 9 9 600L 7T 9¢9¥'8 98239 9198°9 dA-D
(%15'%9) (%10°912) (%€0¥2) (%207
T I I I VL1L°0T v260°CT 87.8°0T LE6L6 DA-D
(%2L¥9) (%¥%0°90%) (%e168-) (%6591~
z z é z eFTL 61 8T8 el 06126 8€8L'S T X000
(%9g°¢) (%8L°1-) (%61°92) (%¥6°12)
g g g g ¢000°9T 6ETL6 TES6'9 918¢"L ITXDD
(%15°0-) (%62L°€) (%69°61-) (%59°7T1-)
¢ ¢ i i 129061 ¥910°¢T ¥208°L 18782 INXDD
(%¥¥2") (%¥9°1-) (%€g°2-) (%5z¢)
id id ¢ ¢ 802891 1896°01 ¥1G6°L £6€0°S ATAND
(9TE=9N ‘L6E=°N) (126=9N ‘98T=°N)
g g L L 862071 80€6'S G6T8T 6I8LE dA
L 9 z z GE6S°TT 09LL°V TrIE VI zr0g 01 OA
9 L 1 I G8TLTT €LIGF 0Z1°GT 80€5°01 JIXD
i id 9 9 T0SH'ST 66886 6£€5°S 7£50°9 ITXD
I I € € L6GT 61 6075°CT €12L'6 €561°6 INXD
4 4 i i 9T¥T LT 8T¥L°01 88648 L60€'8 ATAIN
g ¢ G g LETT LT 80001 0785’8 GEVT'S Xy
Lep-09  Aep-0g Lep-09  Aep-0g Lep-09 Lep-0g Lep-09 Lep-0g
(28=9N ‘GE=°N) (Ge=9N ‘61=°N)
mMmCOL-wOnH mﬁmhmuuo.ﬁnﬂ mmmﬂmuuumonﬂ mﬂm.HOAV.HnH
Sunjuey (% 4 [PV) AIqedrpatd wmiay

‘suorpdo nd NI, JO Ioquinu oy} I0j spueys dnr pue peafoaur suorydo [[€d N I,0 JO IOQUINU 9} SOI0UIP
N “AA1yoadser ‘uoryeiodiojur Jo osn o1 Yim seotid Aq pue Ao suorjdo paAlasqo Aq PoIoNIISUOd oIR SOINSLRIU 9I9YM SOSeD I0] Paule1qo ST SUL{urR}Y]
‘soInseow —;) 9y} Aq A[rqeiorpard WwIngor oY) Ul sures oy} JYSIUSIY P[Og Ul sIoquny ‘AJuo suoljdo PoAIdsqo U0 Pask( SoINseaw Surpuodsariod I1ey)
0} 9AIJR[AI SOINSLIUI-)) B} JO 37 Pajsnipe oty jo soguerpd oFejusdrad o1y jussordar sisarjjuared Ul STOQUINN S[9AJ] ddURLIRA POI[dWI JUSIIMND I} UO
sumjal porrad-y 9} JO SUOISSIIZAI ATrep 9} WOy ;37 pajsnlpe ayy smoys o[qey sIy], ‘uordipard winjar porad-nur Apnjs reorrdwy] GT°g SR,

125



14

ajeq

[| Ldx0dd ——
LTK2dd———
MR g ——

ol

0z

0e

Apieops, pandu)

[

| 03

. 1]

ale(g

1Ty ———
ANRD —

al

= ) ) =
w = m (]
Ao pandu

]
fix]

=]

"€10Z ‘1€ 29 03 00T ‘20

aleq

i3

0z

0e

Apnejo panduw)

ar

0%

diAdd ———
INdD) ——

Juz]

alEq

ak

0z

oe

ar

Anejos panduwy

0%

Juz]

0s

ue[ Jo porod oy} S10A00 ®ye(] 's10[d SOLIOS oL,

ajeq

[AN0
I AldWdD ———
W —
aleq
L0z
I AW ———
A —
:1°7 9Ing1q

al

0z

0e

ar

0%

04

0L

ab

0z

oe

ar

0%

Juz]

0L

fyiie oA panduy

Aueiaa pandu

126



Chapter 3

Volatility Forecasting Using the
HAR and Lasso-based Models: an

empirical investigation
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3.1 Introduction

Modelling and forecasting volatility is of critical importance for asset and derivative
pricing, asset allocation and risk management. The increasing availability of
high-frequency data has inspired a new line of literature aimed at exploiting
the intraday information in the estimation and forecast of return volatility. This
literature begins with the work of Andersen and Bollerslev (1998) who first propose
to use the cumulative sum of squared intraday returns over short time intervals
during the trading day, as an alternative method of volatility estimation, and term
this measure the realized variance (RV). Compared with the traditional volatilities
built on daily, weekly and monthly frequency data, e.g. the parametric GARCH or
stochastic volatility (SV) models, the RV provides model-free unbiased estimates of
the ex post return variation under certain conditions specified by Barndorff-Nielsen
and Shephard (2002). Although the GARCH and SV models can also be applied to
intraday returns, empirical studies indicate that they fail to capture all information
in high-frequency data; see Andersen and Bollerslev (1998), Blair, Poon, and
Taylor (2001) and Hansen and Lunde (2005). In addition, the RV displays all
the stylized facts of financial volatility documented in the case of latent model
specifications, the long-memory property in particular.

A growing literature has sought to investigate the properties of the RV and
suggest that reliable forecasts can be constructed by high-frequency time-series
models; see Andersen et al. (2001b), Koopman, Jungbacker, and Hol (2005) and
Ghysels and Sinko (2006), among others. A widely adopted model is the heterogeneous
autoregressive, or HAR, model proposed by Corsi (2009). Although the HAR
model is formally not a long-memory model, it is able to replicate the strong
volatility persistence using the sum of RV components aggregated at different
interval sizes. The HAR is easy-to-implement and provides an accurate fit of
financial volatility. These features have made it the preferred specification for the
forecast of RV. In spite of its substantial applications, the HAR model is rather

restrictive in the way that the effect of a volatility shock which occurred two days
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ago is identical to a shock which took place three, four or five days ago. However,
little work has been conducted in terms of the appropriateness of the lag structure
implied by the HAR model, e.g. the maximal autoregressive (AR) lag order and
the arrangement of volatility components.

Applying the least absolute shrinkage and selection operator (Lasso) proposed
by Tibshirani (1996) as a model selection device, Audrino and Knaus (2016) show
that the HAR implied lag structure can be recovered by the Lasso estimator only
if the HAR is the underlying data generating process (DGP). However, with their
empirical application using nine stocks, the Lasso does not completely agree with
the HAR with regard to the lag structure. They also find that the Lasso performs
on a par with the HAR in the out-of-sample (OOS) volatility forecast. The Lasso
approach produces estimated regression coefficients which are exactly zero, and
therefore plays an important role in variable selections where only predictors with
nonzero estimates are perceived to be relevant. Although the Lasso is important in
determining a model for forecasting exercise, only a few studies have attempted to
exploit it in the forecast of future RV; e.g. Audrino, Camponovo, and Roth (2015),
Audrino, Huang, and Okhrin (2016) and Wilms, Rombouts, and Croux (2016).
Wilms, Rombouts, and Croux (2016) are the pioneers in using the ordered Lasso
approach together with the idea of forecast combination in an attempt to enhance
the accuracy of forecasts of RV. Compared with the standard AR model estimated
by least squares, the ordered Lasso method achieves a better performance in the
OOS volatility forecast, where the forecast combination only slightly improves the
results.

Against this background, this chapter contributes to the existing literature in
two aspects. First, in the in-sample analysis, we adopt three different Lasso-based
approaches-adaptive Lasso, group Lasso and cluster group Lasso-to verify the
validity of the lag structure implied by the HAR model. In addition to the maximal
AR lag order as analyzed in Audrino and Knaus (2016), we also investigate whether
the choice of time horizons (daily, weekly and monthly time scales) in the HAR

model, at which lags of RV are aggregated, is inherent to the real data. Second, we
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are among the few to provide a comprehensive empirical study of the performance
of the Lasso-based models in the forecast of future RV. We employ different
Lasso-based models and examine the effectiveness of the forecast combination in
improving the forecasting accuracy of the Lasso-based models. In addition, we also
consider the standard HAR model and the two extensions proposed by Bollerslev
et al. (2016) to draw comparisons with the Lasso-based models. The forecasts
are based on different time horizons and constructed over both a rolling window
and an increasing window. We also account for the impact of the financial crisis
on the forecasting performance of various Lasso-based models. To examine the
robustness of our results, we use the RV computed from intraday returns sampled
at three different frequencies, i.e. 30, 300 and 600 seconds.

Our empirical analysis relies on the high-frequency data of the SPY and ten
individual stocks with the same time span as in the work of Audrino and Knaus
(2016). In summary, we show that the lag structure implied by the HAR model
is not consistent with that given by the model selection devices, which brings into
question whether the HAR model is appropriate for modelling and forecasting RV.
In our OOS forecasting exercises using the full time period, the best performance
is generally provided by the Lasso-based model, where the use of the forecast
combination tends to deliver more accurate volatility forecasts. Among various
models considered, the ordered Lasso AR with the forecast combination serves as
the top performer more frequently than the others. In addition, its improvements
over the benchmark HAR model in terms of the OOS volatility forecast are usually
significant over monthly horizons. Relative to the pre-crisis period, there tends to
be more situations in the post-crisis period where the ordered Lasso AR using the
forecast combination dominates the HAR and produces the lowest forecast loss,
especially over long forecasting horizons. A larger window size is found to result
in a better performance of the Lasso-based models, which is in agreement with the
work of Audrino and Knaus (2016). Moreover, the results summarized above are
not affected by the variation in the sampling frequencies upon which the RV series

are derived. However, as the sampling frequency grows, from 600 seconds to 30
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seconds, the Lasso-based model in the OOS forecast is observed to be superior for
more stocks in the full sample analysis.

The rest of chapter is organized as follows. Section 3.2 provides a review of
relevant studies. Section 3.3 introduces various forecasting models considered in
this chapter together with their estimation methods. Section 3.4 describes the

data and outlines our empirical findings. Conclusion is presented in Section 3.5

3.2 Literature Review

In this section, we first provide an overview of the existing literature on the
development of the RV. We then discuss the nature and construction of the
standard HAR model with its various generalizations and extensions for modelling
and forecasting RV. We also review studies using the Lasso-based methods to
examine the appropriateness of the lag structure implied by the HAR and to

forecast future RV from a model selection point of view.

3.2.1 Realized Variance

The modelling of financial volatility has played a central role in risk management
and asset allocation. This could be attributed to the fact that, although the daily
returns of financial assets are difficult to predict, the volatility of returns appears to
be relatively easier to forecast. Since the conditional volatility is latent and thus
not directly observable, some models are developed to capture the dynamics of
volatility while accounting for its popular features, e.g. volatility clustering, slowly
decaying autocorrelations and its non-linear behaviour in response to historical
information. The most famous example is perhaps the (Generalized) Autoregressive
Conditional Heteroskedasticity family of models, (G)ARCH, proposed by Engle
(1982) and Bollerslev (1986). In (G)ARCH-type models, the volatility of a single
day is considered unobservable, and so is computed as a function of the variance

of daily returns over a given time period. In spite of different extensions and

modifications of the GARCH model, e.g. Exponential GARCH, Threshold GARCH,
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and GJR-GARCH among others, the basic GARCH(1,1) is found to perform well
in an out-of-sample (OOS) forecast of future conditional volatility; see the work of
Hansen and Lunde (2005). The latent conditional volatility can also be estimated
by stochastic volatility (SV) models (Taylor (1996)) or exponentially weighted
moving averages (EWMA) (Morgan (1996)). However, these models introduced
above fail to simultaneously accommodate some of the stylized facts found in the
time series of financial volatility, as suggested by Bollerslev (1987), Carnero, Pena,
and Ruiz (2004) and Malmsten and Terisvirta (2010). On the other hand, the
estimation of these models generally depends on daily or coarser frequency data
and therefore the important intraday information is omitted.

As shown by Merton (1980), Nelson (1992) and Foster and Nelson (1996), the
volatility measurement tends to improve with the frequency of data. The use of
high-frequency intraday data in estimating and predicting the conditional volatility
of asset returns is first considered in the work of Andersen and Bollerslev (1998)
who propose using realized volatility, computed from squared intraday returns
sampled at five minutes, as a proxy for ex post daily foreign exchange volatility.
Specifically, assume that an asset price, P;, displays the dynamics dlog(F;) =
wdt + o dWy, where pu, and oy represent the drift term and the instantaneous
volatility, respectively; W, is a standard Brownian motion which is supposed to be
independent of o,. The one-day integrated variance is given by IV, = .[;tt—l o2ds.
In practice, o7 is not observable. However, the realized variance (RV) obtained by
the sum of intraday returns, RV, = Ef\il r7;, where M = 1/A and the A-period
intraday return is calculated as r;; = log(Pi—14ia) — log(Pi—14@-1)a), provides a
consistent estimator of the IV, as 1/A — oc.

Based upon the findings of Barndorff-Nielsen and Shephard (2002), Meddahi
(2002) and Andersen et al. (2003) among others, further investigate the properties
of the RV computed from high-frequency data. The superiority of the RV over the
GARCH and SV models in terms of the OOS forecast is documented in the work
of Andersen et al. (2003). Since then, the literature has increasingly concentrated

on the RV estimator. Jacod and Shiryaev (2003) argue that the RV does not
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converge as the sampling frequency grows. The impact of sampling frequency
on the RV has been extensively examined; see Zhang, Mykland, and Ait-Sahalia
(2005), Ait-Sahalia and Mancini (2008) and Bandi and Russell (2008), among
others. The five-minute RV is widely considered an appropriate measure which
avoids the microstructure noise arising from the use of high-frequency observations,
e.g. bid-ask bounce, infrequent trading and price discreteness; see more details in
Madhavan (2000) and Biais, Glosten, and Spatt (2005). To minimize the daily
mean squared error (MSE) of the realized (co-)variance estimator, Bandi, Russell,
and Zhu (2008) show that the optimal sampling frequency is 5 to 30 minutes.
They also allow their optimal sampling frequency to vary across (co-)variances
and over time. On the other hand, De Pooter, Martens, and Van Dijk (2008)
achieve a different finding of around one hour, using a fixed frequency to directly
optimize economic criteria. A general formula for the selection of the optimal
sampling frequency based on the minimization of the MSE can be found in the
work of Zhang, Mykland, and Ait-Sahalia (2005). In addition to the RV, there
are many other approaches for estimating the integrated variance IV: for example,
two-time scales estimator by Zhang, Mykland, and Ait-Sahalia (2005), kernel based
estimator adopted in Zhou (1996) and generalized in Hansen and Lunde (2006),
which are constructed by squared intraday returns, and estimators which rely
on other ingredients of high-frequency data; see an extensive review in Pigorsch,

Pigorsch, and Popov (2012).

3.2.2 HAR and its extensions

It is well established that the RV displays long-memory property, characterized by
fractional integration and hyperbolic decaying rates of autocorrelation functions.
The long-memory feature of the time series of the RV has been traditionally
accommodated by an ARFIMA(p, d, q) process; see Andersen et al. (2003) for
example. An alternative to the ARFIMA is the model which approximates long
memory, i.e. high persistence, by the aggregation of the heterogenous components

observed in the markets. Long-memory effects as a result of the aggregation of
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dynamic heterogenous processes are discussed in detail in the work of Robinson
(1978) and Granger (1980).

Corsi (2009) proposes the heterogenous autoregressive model of RV (HAR),
which parameterizes the RV as a sum of lagged RV's aggregated at different interval
sizes, i.e. daily, weekly and monthly averages of RVs. The HAR model is based on
the heterogenous ARCH (HARCH) model of Miiller et al. (1997) and inspired by
the Heterogenous Market Hypothesis (HMH). The HMH suggests that a financial
market is composed of agents, having different perspectives of their investment
horizons, who react to and result in different types of volatility components.
Corsi (2009) assumes that there are three primary trading activities based upon
participants’ trading duration preferences, i.e. short-, medium- and long-term
investment, and thus each investment horizon may lead to a unique volatility. As
a result, a financial market is made up of heterogenous market participants with
a volatility cascade from low frequencies to high frequencies.

The cascade of heterogenous volatility components in the HAR has a simple
AR structure in the RV with economically meaningful coefficient restrictions.
Specifically, equality constraints are imposed on the AR coefficients representing
a given time horizon. To evaluate whether the coefficient restrictions are valid,
Corsi (2009) compares the HAR with the unrestricted AR model and finds that
the former dominates the latter in terms of the in-sample fit. The HAR has
emerged as a preferred specification for modelling and forecasting RV due to its
advantages: first, it can be easily estimated by the OLS technique; and second, it
reproduces the persistence properties of financial volatility and accommodates the
observed long-memory behaviour. Although the HAR does not formally belong to
the class of long-memory models, Corsi et al. (2008) argue that the HAR performs
on a par with the long-memory model, ARFIMA, with regard to forecasting and
model misspecifications and that the HAR might be more preferable in practice as
a result of its straightforward estimation. The simplicity and flexibility of the HAR
model allows for various extensions, which will be introduced in the remainder of

this subsection. Applications of the HAR and its extensions can be found in a
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wide range of areas in finance and economics, e.g. stock market, foreign exchange,
bond market, commodity market and currency market.

Based on the bipower variation (BV) measure provided by Barndorff-Nielsen
(2004), Andersen, Bollerslev, and Diebold (2007) propose the HAR-RV-J model
by modifying the HAR to account for jumps and the HAR-RV-CJ model by
incorporating jumps and continuous sample path variation. The HAR-RV-CJ
model outperforms the HAR from a volatility forecasting perspective. Taking the
analysis of Andersen, Bollerslev, and Diebold (2007) one step further, Andersen,
Bollerslev, and Meddahi (2011) provide the HAR-CJN model by accounting, not
only for the jumps and continuous component of volatility that occur during
the trading day, but also for the overnight return variance using a discrete-time
GARCH model. Results indicate that the popular discrete-time volatility models,
including the GARCH(1, 1) and the HAR, are dominated by the HAR-CJN
model in both in- and out-of-sample forecasts. In a departure from Andersen,
Bollerslev, and Diebold (2007) and Andersen, Bollerslev, and Meddahi (2011),
Bollerslev et al. (2009) adopt a more efficient maximum likelihood estimation
method to model returns, BV and jumps using a coherent multivariate framework.
The by-product of the study by Bollerslev et al. (2009) is the development of
the HAR-GARCH-BV model. This model helps to explain the time-dependent
conditional heteroskedasticity in the innovations of the BV measure by capturing
the volatility of volatility using a separate GARCH type model.

In addition to the inclusion of jumps considered in the studies discussed above,
Corsi and Reno (2012) extend the heterogenous structure by adding lagged negative
returns over the previous day, week and month as explanatory variables for future
volatility, in which clear evidence of the persistent leverage effect is delivered. From
a different prospective, Corsi et al. (2008) propose two extensions of the HAR
and ARFIMA models to accommodate the observed properties of the innovations,
i.e. non-Gaussianity and volatility clustering. The extended models result in
non-trivial gains in terms of the fit and predictive performance. Under conditions

of continuous prices and the absence of measurement error, RV converges to
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the true IV as the sampling frequency goes to zero. However, RV is subject
to microstructure noise in any given finite sample and therefore ignoring the
measurement error may be problematic. To deal with this issue, Bollerslev, Patton,
and Quaedvlieg (2016) propose a HARQ model to allow the parameter of the HAR
to vary with an estimate of the measurement error variance. The HARQ model
is superior to other widely adopted models in terms of the in- and out-of-sample
forecasts.

Other extensions of the HAR include (but are not restricted to): (1) the
introduction of the nonlinear phenomenon of the RV by McAleer and Medeiros
(2008) who combine the HAR with multiple regime smooth transition, and by
Hillebrand and Medeiros (2010) who consider a log-linear specification based on the
HAR model; (2) a vector heterogenous autoregressive (VecHAR) model proposed
by Busch, Christensen, and Nielsen (2011b) for the joint modelling of implied
volatility, continuous component of volatility and jumps; (3) Panel-based HAR
employed in Bollerslev et al. (2016). Apart from the HAR-Free model where a
more flexible lag structure is considered, Bollerslev et al. (2016) introduce two
novel RV models in the spirit of the HAR. These are denoted as the heterogenous
exponential RV model (HExp) and the Slope HAR model, which are designed to
ensure that the predicted future RV relies on the lagged RVs in a way which is
continuous and decreasing in the lag lengths. As shown by Bollerslev et al. (2016),
the smoothness incorporated in these two models leads to better OOS volatility

forecasts relative to the original unsmoothed HAR model.

3.2.3 Lasso applications in modelling and forecasting RV

In spite of the great popularity and extensive applications of the HAR model, few
studies examine the validity of its heterogenous structure as a result of volatility
cascade. Craioveanu and Hillebrand (2012) extend the standard lag structure
corresponding to a daily, a weekly, and a monthly time horizon employed in
the HAR by allowing for a flexible lag structure. The optimal lag specification

in the HAR model is determined according to two different criteria: in-sample
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fit (maximum likelihood) and OOS fit (MSE of the future volatility forecast).
However, Craioveanu and Hillebrand (2012) suggest that the use of a more flexible
lag structure delivers no gains in OOS volatility forecasts compared to the HAR
by Corsi (2009).

In order to forecast a long-memory process containing structural breaks, an
enhanced forecasting approach based on an AR approximation is proposed by
Wang, Bauwens, and Hsiao (2013). In the context where the series of interest is
a long-memory process subject to breaks, the AR-based method performs better
than the traditional methods in the OOS forecasts. This provides an explanation,
from an econometric perspective, for the empirical success of the HAR model,
which can be seen as a special case of the AR approximation, i.e. an AR(22) model
with only three lag coefficients. Another theoretical justification for the superior
performance of the HAR is given by Hwang and Shin (2014). Motivated by the fact
that the HAR (which is a restricted AR(22) process) has short memory, Hwang
and Shin (2014) introduce an infinite-order HAR, i.e. HAR(o0), with exponentially
decaying coefficients to obtain the genuine long-memory property. They show that
the forecast errors are mainly due to the estimation of the unknown coefficients of
a finite-order HAR(p) model rather than to errors induced by approximating the
underlying HAR(c0) process by the HAR(p).

In light of the studies by Craioveanu and Hillebrand (2012) and Wang, Bauwens,
and Hsiao (2013), Audrino and Knaus (2016) examine how much the daily, weekly
and monthly frequencies of the HAR are inherent to the real data and whether
the lag structure can be identified using a model selection method, i.e. the least
absolute shrinkage and selection operator (Lasso) provided by Tibshirani (1996).
Audrino and Knaus (2016) show that, if the HAR model is the underlying DGP,
the Lasso performs well in recovering the lag structure implied by the HAR model.
However, the HAR lag structure cannot be exactly recovered by the Lasso in their
empirical application, which poses some doubts on whether the HAR is appropriate
for the modelling of RV. In addition, the HAR model and the Lasso approach are

found to exhibit indistinguishable performance with regard to the OOS volatility
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forecasts in the work of Audrino and Knaus (2016).

As an extension of Audrino and Knaus (2016), Audrino, Camponovo, and Roth
(2015) adopt the adaptive Lasso estimator and examine the significance of the
estimated coefficients. The adaptive Lasso is introduced by Zou (2006) as a refined
Lasso method, which helps to reduce the number of false positives, i.e. the scenario
where too many variables are selected by the Lasso. In confirming the results
of Audrino and Knaus (2016), the lags selected by the adaptive Lasso approach
are generally inconsistent with those implied by the HAR model. Interestingly,
the large lags given by the adaptive Lasso, i.e. lags far beyond the 22nd, are
generally statistically insignificant, which, to some extent, explains the excellent
empirical performance of the HAR model. Distinct from Audrino and Knaus
(2016), who concentrate on lassoing the AR terms, Audrino, Huang, and Okhrin
(2016) consider flexible HAR and HARQ specifications using the adaptive Lasso to
investigate whether the lag structure implied by the HAR can be recovered. Again,
no strong evidence for the hypothesis is observed in their application. In terms
of the OOS forecasts, the proposed flexible HAR model only slightly outperforms
other frequently employed specifications and the gains are not significant.

It is worth noting that the use of the (adaptive) Lasso may not be appropriate
in a group of highly correlated or nearly linearly dependent variables, in which
case the (adaptive) Lasso tends to select one or few variables even if many or all of
them have important explanatory power in explaining the response variable. Such
problem is the so-called false negatives. A possible solution to avoid false negatives
is the use of the Group Lasso proposed by Yuan and Lin (2006) or the Cluster Lasso
by Biihlmann et al. (2013). Group Lasso suggests that, if one group is active, then
all the variables within the group will be active whereas the Cluster Lasso aims for
small canonical correlations between groups. Audrino, Huang, and Okhrin (2016)
divide the lags in AR(50) into four groups namely {1}, {2-5}, {6-22}, {23-50},
where the first three groups are implied by the lag structure of the HAR model.
Applying the Group Lasso, Audrino, Huang, and Okhrin (2016) show that the

hypothesis for the validity of the lag structure of the standard HAR is rejected in
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most cases. They argue that the primary reason for rejection might be due to the
inappropriate arrangement of the groups and that a minor reason is the equality
restrictions imposed on the AR coefficients.

Lasso-based approaches are also employed to account for the dynamic nature of
the volatility forecast. Two extensions of the Lasso method that are attempted in
the work of Wilms, Rombouts, and Croux (2016) are termed the Hierarchical
Lasso and the ordered Lasso. The Hierarchical Lasso forces the lower order
lagged AR coefficient to be selected before its higher order lagged coefficients.
Exhibiting a similar feature to the Hierarchical Lasso, the ordered Lasso strongly
encourages, but does not ensure, that the absolute values of the lagged effects are
monotonically non-increasing, which mimics the hierarchical structure assumed in
the HAR model. Among four estimators (i.e. AR, Lasso AR, Hierarchical Lasso
AR and ordered Lasso AR), Wilms, Rombouts, and Croux (2016) show that the
ordered Lasso AR dominates the others in forecasting future volatility and that
the forecast combination slightly improves the forecast accuracy of the Lasso-type

models.

3.3 Methodology

In this section, we present the methods employed in our study. We start with an
introduction of the HAR model and its two recent extensions. We then describe

the Lasso-based methods considered in this chapter.

3.3.1 HAR

The HAR model proposed by Corsi (2009) is one of the most heavily adopted
specifications for modelling and forecasting RV via the use of different volatility
factors over daily, weekly and monthly horizons representing specific investment
behaviors. To introduce the HAR model, let RV;h = %Z?:l RV;_;11 denote the
average RV over the previous h days. Correspondingly, RV, = %Zle RVi_iq
and RVM = Zfil RV,_;.1 are the weekly (5-day) and monthly (22-day) averages
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of daily RV, respectively. The standard HAR is given by
RVii1 = By + BpRVi + By RV + By RV + 6444 (3.1)

where {g;} is a zero mean innovation process. Treating the average realized
volatilities as directly observable, estimates of coefficients, 3., Bp, By and B,,,
can be consistently obtained by a standard OLS regression.

Highlighted by Corsi (2009), the HAR model in equation (3.1) is equivalent
to an AR(22) model with imposed equality constraints on the AR coefficients as

follows
22

RVir = B+ ) 07 RV + er (3:2)
i=1

The coefficient restrictions implied by the HAR are given by

Bp+ 8w + 550y fori=1
AR — 18w + %Bu fori=2,...,5 (3.3)
16, fori —6,...,22

To evaluate whether the constraints are valid, Corsi (2009) compares the restricted
HAR with the unrestricted AR(22) model. Corsi (2009) argues that the rejection
of the joint F' test for the restriction presented in equation (3.3) is to be expected
due to the large number of restrictions and that the reason for the rejection is
asset dependent. This result also provides an indication that the HAR may not
be successful in fully capturing the observed effects in the real data.

The HAR in (3.1) can be used directly for forecasting the one-day-ahead RV.
For longer-run forecasts, e.g. weekly or monthly horizons, we employ a simple
forecasting approach by replacing the daily RV on the left-hand-side of equation
(3.1) with the RV over h-day horizon as in the work of Bollerslev, Patton, and
Quaedvlieg (2016) and Bollerslev et al. (2016), among others. The predictive

regression is given by

RV, = By + BLRV; + By RV,Y + Bl RVM + €}, (3.4)
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which, again, can be estimated by a standard OLS technique. This forecasting
method, the so-called direct forecasts in the forecasting literature, is directly

applicable to other volatility forecasting models to be introduced below.

3.3.2 Two extensions of the HAR model

The key idea of this chapter is to examine whether parsimonious models produced
by the Lasso-based estimators can result in superiority over the standard HAR
model in terms of the forecast of future volatility. The parsimonious model
indicates that many of the lagged RVs exert zero impact on the future RV. In other
words, it selects only relevant volatility factors and thus achieves a more flexible
lag structure than the standard HAR model, which may lead to a reduction in the
estimation error. As such, by comparison with the Lasso-based forecast models,
we consider some existing extensions of the HAR model which are designed to
generalize the standard HAR model from the perspective of lag structure.

First, we adopt the HAR-Free' model proposed by Bollerslev et al. (2016) as

follows

RV;,+1 = ﬁo + 61RV‘, + BQRW—l + ﬁgRVt—2 + B4th—3 + B5th—4 (3-5)

+B6RVi—5 + BMRV;M + €1

As an extension of the HAR model, the HAR-Free model allows for the coefficients
of the first six daily lagged RVs to be freely estimated. Here, the RV,M is derived
in the same way as that in equation (3.1).

As argued in Bollerslev et al. (2016), the step-wise nature of the RV, and
RVM in the HAR model in equation (3.1) may result in sudden changes in the
forecast of RV when a very large/small daily RV is removed from the sums for the

longer-horizon lagged volatility factors with time passing. To overcome this issue,

!'Unlike Bollerslev et al. (2016), we do not include the long-run volatility factor to "anchor"
the HAR model since we do not conduct the panel-based estimation. In addition, we do not
involve the annual volatility factor in order to make our analysis directly comparable to the
standard HAR model.
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Bollerslev et al. (2016) propose the slopeHAR model, which can be expressed as
RViyy = By + BpRV; + By Slope RV, + 3, Slope RV;M + €14 (3.6)

where Slope RVt’~C = Zf: . (%) RV, 1_;. The slopeHAR model is smooth
in the sense that the effects on the forecast of future RV of the historical volatilities
are continuous and decreasing with lags. In the same spirit as the slopeHAR
model, Bollerslev et al. (2016) introduce another extended HAR-type model which
depends on a mixture of Exponentially Weighted Moving Averages (EWMA) of
the past RVs. Due to its similar performance to the slopeHAR model in the OOS

volatility forecasts, we only consider the slopeHAR model in this chapter as an

extended smooth HAR model.

3.3.3 Lasso-based Estimators

In the following subsection, we describe the Lasso-based approaches adopted in
this chapter in an attempt to verify the validity of the lag structure implied by the
HAR model and to enhance the performance in forecasting future RV by using a

parsimonious model.

Lasso and adaptive Lasso

The Lasso method developed by Tibshirani (1996) has gained popularity in the
recent econometric literature for model selection in linear and generalized linear
models. As suggested by Friedman, Hastie, and Tibshirani (2010), the great
interest in the Lasso arises from two aspects: first, it conducts model selection
and estimation simultaneously; second, it adopts a highly efficient algorithm and
is therefore computationally affordable. We describe below the Lasso and its
refinement, i.e. adaptive Lasso in identifying the active lagged RVs in the forecast
of future RV.

As discussed earlier, the HAR model can be expressed as an AR(22) process.

In this subsection, we represent the daily RV; by x; and let (xy,- -+, x4_p+1) be
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predictor variables in an AR(p) process:

p
Tip1 = C + Z ¢jxt*j+1 + & (37)
j=1
where t = p,---, T and {&,;} is a sequence of independent and identically distributed

(i.i.d.) innovations with zero mean. The Lasso procedure employs an ¢ penalty to

obtain a sparse solution as follows

2

T P P
% ~Lasso . 1
(CLa3507 P) ) = arg min E Tip1 —C— g GjTt—j+1 subject to E ‘qu‘ <T

(3.8)
where 7 is a tuning parameter which controls the amount of shrinkage applied to
the estimates. The solution for ¢ is ¢ = T. The parameter ¢ can be removed from
the minimization once we let * = 0 by demeaning the data. The minimization
problem can be solved by

~Lasso 1 < i ’ u
o = arg m(gn 5 Z <$t+1 — Z ¢jxt_j+1> + A Z |¢j} (3.9)
t=p j=1 j=1
where the parameter A has a one-to-one relationship with 7 in equation (3.8). It
is clear that letting A = 0 will lead to consistency between the Lasso estimator
and the OLS estimator. However, the use of a strictly positive A will penalize
all AR coefficients which are not equal to zero. Moreover, a higher value of A
will result in an increasing number of coefficients being set exactly to zero. In
short, the selection of the tuning parameter A causes shrinkage of the solutions
towards zero, where some of the AR coefficients may become exactly zero if A
is sufficiently large. The active set is defined as S = {j, ¢; # 0} c {1,...,p}
and the nonactive set is S = {1,...,p} \S. Nardi and Rinaldo (2011) establish
that, under certain conditions, the Lasso is model selection consistent, estimation
consistent and prediction consistent.

Assume that the underlying and unknown coefficient parameters to generate
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the AR(p) process in (3.7) are ¢" = (¢7,...,¢,)". Model selection consistency is
about precisely identifying S and S¢. Defined by Nardi and Rinaldo (2011), the

sign function is given by

-1 ifz <0
sgn(x) = 0 ifz=0 (3.10)
1 ifx>0

~Lasso

and sgn(¢) = (sgn(¢,),..., sgn(¢,)). The estimator ¢ is model selection

consistent if

~Lasso

P(sgn(¢ ) =sgn(¢")) — 1 for T — oo (3.11)
In addition, gAbLaSSO is said to be estimation consistent if HgAbLasso — qb*H converges
to zero as T goes to infinity. Prediction consistency holds if HX %Lasso — Xo*
converges to zero as T — oo, where X = (24,. .., Tt_py1)-

From the earlier discussion, the tuning parameter 7 in equation (3.8), or A in
equation (3.9), is of critical importance for the success of the Lasso. To determine
A, cross-validation is commonly adopted although the information criteria, i.e.
AIC or BIC, is also considered; see Audrino and Knaus (2016) for an example. As
introduced in Tibshirani (1996), the prediction error for the Lasso approach is first
estimated by K-fold cross-validation. The Lasso is then indexed with regard to the
normalized parameter s =7/ 53 where 52 represents the full OLS estimates of
equation (3.7). The prediction error is obtained over a grid of values of s ranging
from zero to one. The § resulting in the minimum error is finally selected.

In the original Lasso introduced above, all the AR coefficients are penalized
equally. Zou (2006) provides a refined version of the Lasso allowing for a more
flexible penalization, termed the adaptive Lasso, which helps to reduce the issue

of false positives. The adaptive Lasso estimator is given by

R 1 T p 2 p
¢AL = arg m¢i11 5 Z <$t+1 — Z quxt—j—kl) + A Z )\j |¢j| (312)
t=p j=1 j=1
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with ); being individual weights for each of the coefficients. When \; = 1 is set
for all the coefficients, the adaptive Lasso becomes the standard Lasso in (3.9). As
suggested by Zou (2006), a possible choice for the weights can be the inverse of the
absolute values of the OLS coefficients. Under the condition that the innovations
are i.i.d., Zou (2006) shows that the adaptive Lasso exhibits the oracle properties,
i.e. it asymptotically detects the non-zero coefficients and displays the optimal
estimation rate. Furthermore, in the context of linear time series processes, e.g.
the AR process considered in the present chapter, the oracle properties are found
for the adaptive Lasso in the work of Kock (2012) and Medeiros and Mendes
(2012). Ome common problem of the Lasso and adaptive Lasso is that they are
insensitive to highly correlated predictors and will tend to select one and omit the
rest. The Lasso and adaptive Lasso will fail to produce reliable estimates in the
extreme situation containing identical predictors only. To alleviate this problem,

we consider other Lasso-type methods below.

Group Lasso

As discussed in section 3.2.2, the HAR is an additive cascade model of the RV
aggregated at different time horizons. The cascade of heterogenous volatility
components represents the behavior of market participants of different types. As
such, it is natural to divide the lagged RVs into different groups and, if one group
is active, then all the past RVs within this group should be active. This is the
key idea of the so-called group Lasso proposed by Yuan and Lin (2006), who also
argue that the Lasso can only be used to select individual variables rather than a
group of correlated variables.

We keep the same notation used in the earlier subsection. As suggested by
Yang and Zou (2015), the Group Lasso estimator can be obtained by solving the

penalized least squares as follows

T D 2 K
~Group . 1
& =argmin{ o Z <xt+1 — ¢>jxtj+1) +A Z N ; ¢3 (3.13)
\ sl

t=p j=1 k=1
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where the p lagged RVs are divided into K non-overlapping groups such that
(1,2,...,p) = U I}, and I, N I}y = @ for k # k; the cardinality of index
set Iy is pr. We employ a simple unified algorithm, groupwise majorization
descent (GMD), as proposed by Yang and Zou (2015). This can be used to
solve the group Lasso learning problem if the loss function meets a quadratic
majorization condition. Relative to some existing algorithms, e.g. LARS-type
algorithm, coordinate descent algorithm and a block coordinate gradient descent
algorithm, the GMD dominates primarily in two aspects: first, it does not require
the group-wise orthonormal assumption and can therefore perform cross-validation

or bootstrap analysis of the group Lasso; second, its computation is more efficient.

Cluster group Lasso

In the estimation of the group Lasso, the group membership is assumed known.
However, this assumption usually does not hold in practice and therefore efforts
need to be made to divide predictors into groups, i.e. homogenous clusters. Cluster
Lasso is often adopted to split variables into groups so that elements in each
group are strongly related to each other and contain similar information. In cases
where predictors display high empirical correlations or near linear dependence, the
invalidity of the Lasso estimator is also suggested by Biihlmann et al. (2013) who
argue that the Lasso approach tends to choose only one variable from the group
of variables and omit the others.

In this chapter, we employ the cluster Lasso proposed by Biihlmann et al.
(2013), which differs from the existing methods of clustering the variables mainly
by the use of canonical correlation. The arrangement of groups based on the
cluster Lasso considered here guarantees identifiability and an oracle inequality
for the group Lasso introduced earlier. Moreover, this procedure is intended to
avoid false negatives, i.e. avoid omitting a variable from the active set. However,
the trade-off is an increase in false positive selections. As argued in Biihlmann
et al. (2013), the cluster Lasso is useful in practice and can be seen as a desirable

screening method. We introduce this method as follows.
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As in equation (3.7), we consider p lagged RVs. We represent the group of
past RVs from a cluster G C {1,...,p} by X = {2, ;; j € G}. The aim
is to determine a partition G* into non-overlapping clusters Gi,..., G, : G* =
{Gy,...,G,} with U!_,G, ={1,..., p} and G, NG, = & (r # (). For a partition
G*, we define

ﬁmax(G*) = max {/p\can(G“ Gf); r7€ E {17 st 7q} ? r # g (3'14)

where p,,,(G,, G¢) is the empirical canonical correlation between the lagged RVs
from X{%} and X{%} In the work of Bithlmann et al. (2013), a structure with

&-separation between clusters is given by
G* (&) = a partition G* of {1,...,p} such that p_, . (G*) <& (0 <& < 1) (3.15)

To ensure that the clustering with £-separation has a unique solution, Biihlmann
et al. (2013) further define the finest clustering with £-separation, @’}mest(f ), as the
one which has a strictly finer structure than any other clustering with the same
separation £. In practice, we adopt the hierarchical bottom-up agglomerative
clustering proposed by Biihlmann et al. (2013). Specifically, the procedure begins
with the single variables, i.e. partition in p clusters; it then combines two clusters
with the highest canonical correlation; this procedure is repeated until the criterion
in (3.15) is satisfied. The parameter ¢ is of critical importance in the procedure
described above. Biithlmann et al. (2013) recommend the use of the minimal
resulting £&. To be more detailed, the maximal canonical correlation between
clusters, termed p,,..(b) where b is the number of iteration, is recorded in every
iteration of the bottom-up agglomerative clustering algorithm. We adopt the
partition which achieves the criterion argmin, p,,..(b). In this chapter, we follow
the cluster group Lasso approach introduced in Bithlmann et al. (2013) to select the

clusters: divide the predictors based on the identified clusters and then estimate

the coefficients of predictors using the group Lasso by Yuan and Lin (2006).
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Ordered Lasso

Finally, we consider a Lasso-type approach to account for the dynamic nature of
the AR process, i.e. a higher order lag is considered only when its lower order
lags are already selected. Two methods for accommodating such features are used
in Wilms, Rombouts, and Croux (2016): the hierarchical Lasso and the ordered
Lasso. As the latter is found to be superior to the former in terms of the volatility
forecasts, we employ only the ordered Lasso in our analysis.

The ordered Lasso is proposed by Tibshirani and Suo (2016) to allow for a
decreasing dependence on regressors in a time-lagged regression, by the introduction

of an additional order restriction on the coefficients. The ordered Lasso estimator

is given by
o 1 T P 2 p
3" = argmin ¢ 5> <xt+l =D (o] ~ ¢;)xt_j+1) +AY (0 +9;)
t=p j=1 J=1

(3.16)
subject to ¢1+ > gb%r > > (b;j > 0and ¢; > ¢, > ... > qﬁ; > 0, where
¢; = qu — ¢; . The use of positive and negative terms in equation (3.16) instead
of absolute values as in the case of Lasso and adaptive Lasso is to make it a
convex problem. It is worth noting that gbj and ¢; can take positive values at the
same time and therefore the ‘gb;r — gb]_‘ may display non-monotonicity. As shown
in Tibshirani and Suo (2016), the minimization problem in equation (3.16) can

be efficiently solved by the well-known Pool adjacent Violators algorithm as its

proximal operator.

Forecast Combination

The concept of forecast combination is first introduced by Bates and Granger
(1969). It constructs a new forecast using a linear combination of all forecasts
obtained from individual models. Due to its superiority in terms of the OOS
forecasting accuracy and stabilized forecasts errors, forecast combination has been

applied in a wide range of topics in finance and economics; see Stock and Watson
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(2004), Timmermann (2006), Corte and Tsiakas (2012), Rapach, Strauss, and
Zhou (2013), Li and Chen (2014) and Wilms, Rombouts, and Croux (2016).

As mentioned earlier, the choice of the tuning parameter A is crucial in the
Lasso-type procedure. Following the work of Wilms, Rombouts, and Croux (2016),
we attempt to combine forecasts produced by the Lasso-based estimators with
several different tuning parameters.

Specifically, we use a logarithmic spaced grid of tuning parameters of length
L = 20 in the interval [\, A\;] where \; = 0 and A is an estimated parameter
shrinking all the regression coefficients to zero. For each \,, within the interval, 1 <
m < L, we estimate different Lasso-based models and construct their corresponding
forecasts with the estimated coefficients. Finally, we obtain the weighted sum of
the L forecasts of volatility given by L different tuning parameters. The calculation

of the weights, w,,, is given by

exp(—0.5BIC,,,)

> _1exp(—0.5BIC,,,)
The widely adopted BIC criterion can be obtained by
BIC),, = (T — p) x log(Lossy,,) + df,, x log(T — p) (3.18)

where the Loss,,  is the average sum of squared prediction errors using the tuning
parameter \,, and df,, is the number of nonzero regression coefficients. This
forecast combination approach is considered more robust to an inappropriate

selection of tuning parameter.

3.3.4 Models
We now list models to be adopted in our subsequent empirical study.
e HAR: the model proposed by Corsi (2009) as in equation (3.1).

e slopeHAR: the slope model proposed by Bollerslev et al. (2016) as in equation
(3.6).
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e freeHAR: the model proposed by Bollerslev et al. (2016) as in equation (3.5).

e adaptive Lasso AR: a model that is similar to that considered by Audrino and
Knaus (2016). In a departure, we apply the adaptive Lasso method rather
than the Lasso to equation (3.7) to determine the lag terms. In addition,
we choose the tuning parameter based on the one standard error rule via
cross-validation. Specifically, we partition the whole sample {1,--- , T} into
K folds randomly where K is often set to five. Among the K subsamples,
a single subsample is treated as validation observations for examining the
model and the other K —1 subsamples are employed as training observations.
For each value of \, we derive the estimate of regression coefficients on the
training set and record the squared error on the validation set, denoted
as eg(A). This procedure is then replicated K folds. We compute the
averaged validation errors in each fold as CVi(\) = Tikek()\) where T} is the

number of observations in the kth fold. The sample standard deviation of

CVi(N),- -+ ,CVik(N) is obtained as SD(A\) = /var(CVi()), -+ ,CVk(N)).
The standard error of C'V()) is given by SE(A\) = SD(A\)/VK. The average

error over all folds is given by

CV()) = %Z ex(\) (3.19)

We first choose a tuning parameter which minimizes the CV error, i.e.
A=arg minye (a2 CV(A). However, this usually results in insufficient
regularization for the purpose of recovering the underlying model. In our

practice, we apply the one standard error rule: change A in order to increase

regularization until the following is true
CV(\) < CV(A) + SE(N) (3.20)

In so doing, we obtain the most regularized model which produces the

prediction error within one standard error of the minimal error.
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e adaptive Lasso HAR: a model that is similar to the flexible HAR model
considered by Audrino, Huang, and Okhrin (2016). Assuming that the
number of volatility factors to be added in the model is unknown, we use the

adaptive Lasso procedure to select the active terms in the equation below
I4 1 4
RVip1 = By + 2; B i 2 RVi_ji1 | + et (3.21)
1= j=

e adaptive Lasso slopeHAR: a model which applies the adaptive Lasso method

to the additive model of slope RV defined in section 3.3.2

p 7 . .
1—J7+1
R‘/;—i-l:ﬁo‘i‘g ﬁz(g (Z"I—(Z.—l)—l-...—f-l)RV%_j_H)+€t+1 (322)
=1

=1

e adaptive Lasso freeHAR: a model in which we replace the first six terms in
equation (3.21) with six daily lagged RV and then apply the adaptive Lasso

approach

6 p i

RViy1 = Bo + ; BiRV—ji1 + ; B; G ; RX/;J-H) ten (3.23)

e ordered Lasso AR: a model in which we first implement the variable screening
and then apply the ordered Lasso to the selected lagged RVs. Specifically,
we use the adaptive Lasso technique to select the active terms of equation
(3.7), where we term this active set S;. Since the Lasso method tends to
choose only one or few variables from a group of highly correlated variables,
we also consider the lagged RVs not in S; but which are correlated with the
variables in S7 where the coefficient is greater than 0.65. The new active set
is denoted S5. Section 3.4 shows that the Sy tends to be consistent with the
selection of variables using the cluster group Lasso, which is perceived as a
good screening method in Biihlmann et al. (2013). Finally, we employ the
ordered Lasso method to enforce an order restriction on the coefficients of

the variables in S,.
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e Model-FC: the models described above with the suffix FC are those using

the idea of forecast combination introduced in section 3.3.3.

In the following empirical analysis, we employ the Diebold-Mariano (DM)
test to evaluate the significance of the forecasting differences. The DM test is
considered since the HAR and the Lasso-based approaches are non-nested. First,

the difference of the squared forecasting errors is given by
dy=el,—€e3, t=N+1,--- M (3.24)

The DM test statistic is derived as

1 M
M—N Zt:NJrl dt

DM =
\/MiN (77\/0 + 2 Zz;i ﬁk)

(3.25)

where M — N is the number of OOS forecasts, 7, is the estimated kth autocovariance
of the series d;, and h represents the time horizon. To account for heteroskedastic
autocorrelated errors, the DM test statistic can be estimated using the Newey
and West (1987) corrected standard errors. Under the null of equal forecasting
performance between the HAR and the Lasso-based model, the DM follows an

asymptotic standard normal distribution.

3.4 Empirical Application

In this section, we first examine the appropriateness of the lag structure implied by
the HAR model in an in-sample analysis using the Lasso-type approaches described
in section 3.3.3. We then compare the performance of the HAR model, its two
extensions introduced in section 3.3.2 and the Lasso-based model®> in the OOS
volatility forecasts. We consider the daily realized variance measure proposed by

Barndorff-Nielsen and Shephard (2002), i.e. the daily RV is equal to the sum of

2Throughout our analysis, the Lasso-based model indicates any model using the Lasso-based
technique, namely, adaptive Lasso AR, adaptive Lasso HAR, adaptive Lasso slopeHAR, adaptive
Lasso freeHAR, ordered Lasso AR and each of these models using the forecast combination.
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intraday squared returns. Throughout our analysis, we employ the SPY index and
ten individual stocks from different sectors sourced from Tick Data Inc..

Our forecasts are based on direct projection in equation (3.4) over different
horizons, i.e. daily, weekly and monthly horizons. Three different sampling
frequencies, 30, 300 and 600 seconds, upon which the RV is based, are used in our
analysis. We construct the forecasts by re-estimating the parameters of various
models every day with a fixed length Rolling Window (RW) and an Increasing
Window (IW).

3.4.1 Data Description

In order to obtain the RV, we employ the intraday data of SPY, an exchange traded
fund (ETF) which tracks the S&P 500 index closely, Microsoft (MSFT), Citigroup
Inc. (C), Pfizer (PFE), General Electric (GE), The Home Depot (HD), Sprint
Nextel Corp (S), ExxonMobil (XOM), Alcoa (AA), Wal-Mart (WMT) and Duke
Energy (DUK). We consider the time span from Jan 02, 2001 to Nov 15, 2010 with
a total of 2483 observations, which is the same as that of the study by Audrino and
Knaus (2016). As in the work of Audrino, Camponovo, and Roth (2015), Audrino
and Knaus (2016) and Wilms, Rombouts, and Croux (2016), we use the realized
variance in logarithmic form, i.e. log RV. In the rest of this chapter, we assume
the use of log RV when mentioning RV unless otherwise noted.

Table 3.1 provides summary statistics of the RV series based upon three different
sampling frequencies for each of the stocks considered. As the sampling frequency
increases, from 600 seconds to 30 seconds, the mean of the RV tends to increase
while the standard deviation generally decreases. Almost all series exhibit positive
skewness and excess kurtosis. The time series movements of the 300-second RV are
presented in Figure 3.1. For the SPY and all individual stocks, an evident increase

occurs in the magnitude of the RV during the financial crisis starting from 2007.
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3.4.2 In-Sample Analysis

We start by investigating the memory property of the RV series under different
market conditions by employing the exact local Whittle estimator of Shimotsu and
Phillips (2005) with a commonly adopted bandwidth parameter m = T°¢, where
T'=2483 is the sample size; see Nielsen and Shimotsu (2007), Garvey and Gallagher
(2012) and Caporin, Ranaldo, and Santucci de Magistris (2013), among others, for
the same choice of the bandwidth parameter. In line with the work of Audrino
and Knaus (2016), we set the beginning of the financial crisis to Sep 01, 2007 and
split the sample into the pre- and post-crisis periods. In Table 3.2, we show that
the long memory estimates, ci, tend to increase with the sampling frequency, i.e.
from 600 seconds to 30 seconds. In addition, the memory property of each series
generally strengthens in the post-crisis period, except the RV of C and WMT based
on 300- and 600-second frequencies. Values of memory estimates range from 0.6
to 0.8, suggesting the RV series here are non-stationary long-memory processes.
Evidence for the long memory and non-stationarity in volatility is also found by
Bandi and Perron (2006) and Kellard, Dunis, and Sarantis (2010). To summarize,
our results are indicative of substantially different properties of the RV series in pre-
and post-crisis periods, which motivates us to examine separately the forecasting
performance of various models in these two sub-periods. In the work of Audrino
and Knaus (2016), the clear difference in the autocorrelation function (ACF) of
the RV for sub-periods is explained by a structural break in the memory of the
process occurring around the beginning of 2007.

In the following plot analysis, we choose the 300-second RV of each stock as
an illustrative example. Results for other frequencies remain virtually unchanged.
First, we provide plots of the partial autocorrelation function (PACF) of the RV
during the whole sample, and the pre-crisis and post-crisis periods, in Figures 3.2,
3.3 and 3.4, respectively. We find that, for most stocks, there are some lags beyond
22, with the PACF significantly different from zero, suggesting a possible AR(p?)

for the series of RV where p° > 22. In the rest of our in-sample evaluation, we make
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use of the full sample and adopt various Lasso-based techniques to examine the
appropriateness of the lag structure implied by the standard HAR model proposed
by Corsi (2009). We let z; represent the RV, and p = 100 in equation (3.7). In
each of the Lasso-based models, the dependent variable is x;1, i.e. our analysis
concentrates on the daily horizons. We then define the HAR implied active set as
Suar = {x1-1,..., T1_22} and the nonactive set as S§ 45 = {Tt—23,- .., Tt—100}. In
Figure 3.5, we present the AR coefficients implied by the HAR model in equation
(3.3) as well as those given by the adaptive Lasso approach. In line with the work
of Audrino and Knaus (2016), we find that not all of the predictors in Syar are
selected by the adaptive Lasso. Furthermore, for most stocks, a few lags beyond
Ty_o3, i.e. terms in S ,p, are selected by the adaptive Lasso as relevant. The
results outlined above indicate that the adaptive Lasso does not completely agree
with the lag structure implied by the HAR model. To gain a closer look at the
lag structure implied by each of the models, in Tables 3.12 and 3.13, we provide
the estimates of the AR coefficients for {z;_1,...,2;_100} of the SPY and MSFT
as two examples.

As mentioned in section 3.3.2, Bollerslev et al. (2016) propose two extensions
of the HAR model: the freeHAR and slopeHAR respectively allow for a more
flexible lag structure and avoid the step-wise abrupt changes associated with the
HAR model. In Figure 3.6, we plot their implied AR coefficients for all the stocks
considered. First, in contrast to the HAR model in Figure 3.5, the freeHAR. does
not impose equality restrictions on the coefficients of {z;_o,...,r;_¢} but allow
those coefficients to be estimated individually by the OLS technique. Second, the
implied AR coefficients of the slopeHAR are continuous and decreasing with the
lag length. The enforced smoothness in the dependence of the future RV upon the
historical RVs removes predictable jumps and non-monotonicities in the volatility
forecasts. Such a feature helps to improve the accuracy of the forecasts, as argued
in the work of Bollerslev et al. (2016).

In Figure 3.5, we observe that the lags beyond x; 4 are much less frequently

selected by the adaptive Lasso method. This result may be attributed to the
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invalidity of the adaptive Lasso approach in the context where regressors exhibit
non-trivial correlations or almost linear dependence, as noted in section 3.3.3. To
deal with the false negatives induced by the use of the adaptive Lasso in selecting
relevant predictors, we employ two different Lasso-based methods below.

First, following the work of Audrino, Huang, and Okhrin (2016), we group
the lags in AR(100) as {1}, {2-5}, {6-22}, {23-50}, {51,75} and {76-100} and
adopt the group Lasso proposed by Yuan and Lin (2006) to further investigate
the appropriateness of the lag structure implied by the HAR model. Specifically,
the selection of the groups {1}, {2-5} and {6-22} as active lags can be seen as an
indication of the validity of the HAR lag structure. We demonstrate the results for
the selection of active predictors in Figure 3.7. Since {x;_1,..., ;_5} is identified
as relevant predictors for all stocks considered, we only report the coefficients for
lags beyond z;_¢. As for the group Lasso AR(1, 5, 22, 50, 75, 100), this is found
to be consistent with the HAR lag structure for SPY, PFE, AA, WMT and DUK.
Only lags in groups {1} and {2-5} get selected for XOM. The other stocks all have
nonzero coefficients for lags after 22. This evidence suggests that the standard
HAR model may not be appropriate for the modelling and forecasting of volatility.
This is because lags beyond x; s, which are omitted by the HAR model, may still
carry some predictive power for the future RV.

The group Lasso method discussed above adopts the arrangement of groups
implied by the HAR model. However, it remains unclear whether such specification
for the heterogenous volatility components is inherent to the underlying data
or not. In order to answer this question, we apply the cluster Lasso method
introduced by Biihlmann et al. (2013) to partition {x;_1,...,Z¢—100} into different
groups and then select groups as relevant predictors for the future RV using the
group Lasso by Yuan and Lin (2006). In Figure 3.7, it is evident that the cluster
group Lasso AR is inconsistent with the HAR with regard to the selection of the
active lags of the RV for all stocks considered. Furthermore, the cluster group
Lasso AR results in the arrangement of groups, which contradicts that implied by

the standard HAR model, i.e. {1}, {2-5} and {6-22}, in all cases; see SPY and
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MSFT in Tables 3.12 and 3.13 for instance.

Next, we implement the ordered Lasso AR as discussed in section 3.3.4. This
estimator accounts for the dynamic nature of volatility by the tendency for the
absolute values of the estimated AR coefficients to be monotonically non-increasing
with the lag length. We demonstrate the comparison between the cluster group
Lasso AR and the ordered Lasso AR in terms of their estimated coefficients in
Figure 3.8. The lags of the RV included in the ordered Lasso AR approach are,
in most cases, similar to those selected by the cluster group Lasso AR. Biihlmann
et al. (2013) consider the latter to be a desirable screening method in a group of
highly correlated variables which helps to avoid the problem of false negatives
present in the adaptive Lasso estimator. The similarity between the ordered
Lasso AR and the cluster group Lasso AR with regard to the selection of relevant
predictors can also be found in Tables 3.12 and 3.13. In addition, the ordered
Lasso method results in decreasing effects of the past RVs on the future RV, in
line with the HAR and slopeHAR models.

Finally, we report the BIC in-sample fit for each of the models using the
full sample 300-second RV in Table 3.3. For most stocks over daily and weekly
horizons, the slopeHAR clearly dominates the other candidates by having the
lowest BIC value. However, the superiority of the slopeHAR no long exists over
the monthly horizons, where the adaptive Lasso HAR and the adaptive Lasso
HAR-Free perform best. Furthermore, the ordered Lasso AR achieves better
in-sample fit than the cluster Group Lasso AR and the group Lasso AR(1, 5,
22, 50, 75, 100), especially over weekly and monthly horizons, where the last two
result in rather poor in-sample fit. In the following OOS forecasting exercises, we
do not consider the group Lasso AR(1, 5, 22, 50, 75, 100) and the cluster Group
Lasso AR. This is because the former specifies the arrangement of volatility groups
which may not be appropriate for the underlying data and the latter results in a
selection of variables generally captured by the ordered Lasso AR approach, as

mentioned earlier.
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3.4.3 Out-of-Sample Forecast

In the in-sample analysis above, we provide evidence for the inappropriateness
of the lag structure of the standard HAR model in forecasting future RV. In
the following subsection, we concentrate on the performance of various models
outlined in section 3.3.4 in the OOS volatility forecast. Following Audrino and
Knaus (2016), we make rolling window (RW) forecasts of 1000 and 2000 daily
observations, respectively, and account for the impact of the financial crisis on the
forecasts of future RV. In a departure from the work of Audrino and Knaus (2016),
we consider various Lasso-based models and conduct comprehensive empirical
exercises to evaluate their forecasting ability for future RV.

First, our analysis focuses on the forecast of RV over daily, weekly and monthly
horizons. The forecast is based on direct projection as presented in equation
(3.4) where h = 1, 5 or 22. Here, longer horizons are of more interest since
the HAR model is proposed to accommodate the long-memory properties of the
series. Second, our empirical study involves the RV constructed from 30-second,
300-second and 600-second intraday returns. In doing so, we are able to ascertain
the effect of the sampling frequency on the forecasting performance of the model
selection devices and examine the robustness of our results. Third, we also construct
the forecasts by re-estimating the parameters of the regressions each day with an
increasing window (IW). Specifically, the first training set includes the first 1000
observations with each subsequent training set containing one more observation.
The OOS forecasting performance is measured by the mean square error (MSE).
We standardize the MSE of each of the models by the MSE of the HAR model in
order to highlight the relative gains.

To obtain the general performance of each of the models in forecasting future
RV, we report the results of the SPY in various scenarios in Table 3.4 and present
the average loss ratios across all of the 10 individual stocks in Table 3.5. In line
with Audrino and Knaus (2016), we set the evaluation window for the case of

RW=1000 to May 12, 2009 to Nov 15, 2010, the same as that implied by the case
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where RW=2000, so that the results of the RW=1000 and RW=2000 are directly
comparable. With the crisis, we concentrate on RW=1000 only and compute
the MSE using the maximal evaluation windows in both pre- and post-crisis
periods. In each case, the model with the best forecasting performance, i.e.
lowest relative MSE, is highlighted in bold blue. As for the SPY in Table 3.4,
it is evident that the ordered Lasso AR using the forecast combination provides
the best OOS forecasting performance in most cases considered. However, such
superior performance is not always observed during the pre- and post-crisis periods.
Similar findings in terms of the averaged performance of the models across 10
stocks are shown in Table 3.5. Compared with the case of RW=1000, the averaged
performance of the Lasso-based models relative to the HAR tends to improve
when RW=2000. For the SPY and 10 individual stocks, the forecast gains of the
ordered Lasso AR-FC over the standard HAR generally increase as the forecasting
horizons increase, i.e. from h = 1 to h = 22, except in the pre-crisis period. In
most scenarios, the use of the forecast combination results in a better performance
of the Lasso-based models. A thorough investigation of the forecasting ability of
the Lasso-based models in various situations is presented below.

First, we provide a summary of the forecasting performance of different models
in Tables 3.6 and 3.7. Table 3.6 reports the number of cases where each of the
models achieves the best forecast and Table 3.7 records the number of cases
where the benchmark HAR model is dominated by other candidate. Ordered
Lasso AR and its FC version are highlighted due to their superior performance
over the other Lasso-based models. Values of the MSE of each of the models
against the HAR model are reported in Tables 8(a) to 11(c). We also employ the
Diebold-Mariano test using Newey-West standard errors to assess the statistical
significance of differences in squared forecasting errors between the HAR and each
of the other models. As suggested by Andersen, Bollerslev, and Diebold (2007),
the Newey-West heteroskedasticity consistent covariance matrix estimator with 5,
10, and 44 lags are used for the daily (h = 1), weekly (h = 5) and monthly (h = 22)

forecasts, respectively.
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We start with the forecast of future RV based upon 30-second returns using
the full sample period and RW=1000. As can be seen from Table 3.6, the best
performance in forecasting future RV is delivered by the Lasso-based model for
9/11 stocks over daily horizons, and for 8/11 stocks over weekly and monthly
horizons. Table 3.7 shows that the Lasso-based model using the concept of forecast
combination outperforms the HAR model in many cases and that, over long
forecasting horizons, this occurs much more frequently than the situation where
the extended HAR dominates the standard HAR model. As detailed in Table 8(a),
the forecast combination tends to result in more accurate forecasts of future RV for
the Lasso-based models. However, there is no clear evidence for which Lasso-based
model is consistently the top performer. The superiority of the ordered Lasso
AR-FC over the others is observed for 5/11 stocks over daily horizons and for 6/11
stocks over weekly horizons although such gains relative to the HAR model are
insignificant in most cases. Over monthly horizons, the adaptive Lasso HAR-FC
provides the most accurate forecasts for 4/11 stocks; the ordered Lasso AR and
that using the forecasting combination perform best for 2/11 stocks, where the
improvements in the OOS volatility forecasts relative to the HAR model are all
significant.

We now move to the results with the full sample period and RW=2000. Relative
to the case with RW=1000, the Lasso-based model produces the best forecasting
performance for more stocks (see Table 3.6) and there tends to be more Lasso-based
models which dominate the benchmark HAR model (see Table 3.7). The ordered
Lasso AR-FC dominates the other candidates and serves as the top performer
in many cases, i.e. 7/11 stocks over daily horizons and 4/11 stocks over weekly
horizons. Over monthly horizons, the ordered Lasso AR plays the leading role for
4/11 stocks and its FC version ranks highest for 3/11 stocks. In all these 7 cases,
the gains with regard to the forecasting performance are significant.

Given the distinct properties of the RV series in the pre- and post-crisis periods
mentioned earlier, we then examine the forecasts made by various models in each of

these two sub-periods. In Tables 3.6 and 3.7, we find that the Lasso-based models
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lose the forecasting superiority during the pre-crisis period as the forecasting
horizons grow. In the case of h = 22, for 9/11 stocks the best performance is
achieved by either the HAR or the freeHAR. As for the post-crisis period, the
ordered Lasso AR-FC model regains its advantages in the forecast of future RV over
different horizons. Specifically, it is superior to the other models for 5/11 stocks
over daily horizons and for 6/11 stocks over weekly as well as monthly horizons.
However, the performance of other Lasso-based models remains disappointing, as
evident from Table 3.7.

Our analysis above focuses on the case where the RV series is constructed from
the 30-second intraday returns. To examine the impact of the sampling frequency
on our results, we next consider the RV computed from the 300-second returns.
Looking at the 300-second RV with RW=1000 in Table 3.6, we find that, over
different horizons, the best forecasting performance for most stocks is offered by
the Lasso-based model. Again, the number of times that the ordered Lasso AR-FC
serves as the top performer is generally greater than the other candidates and its
improvements over the HAR model are all significant over monthly horizons; see
details in Table 9(a). In terms of the results for RW=2000, the conclusions are the
same. Compared with the 30-second RV in RW=1000 and RW=2000, there tends
to be slightly fewer cases where the most accurate RV forecasts are produced by
the Lasso-based model when the RV is based on the 300-second returns.

Next, we split the full sample into the pre- and post-crisis periods. As can
be observed from Table 3.6, in contrast to the pre-crisis output based upon the
30-second RV, the ordered Lasso AR-FC model displays the top performance for
more stocks during the pre-crisis period in forecasting future 300-second RV over
short horizons. It dominates all the other models for 4/11 stocks over daily horizons
and for 6/11 stocks over weekly horizons. Consistent with the corresponding case
of the 30-second RV, during the pre-crisis period, few of the other Lasso-based
models outperform the benchmark HAR model (see Table 3.7) and the superiority
of the ordered Lasso-AR-FC is no longer evident over monthly horizons (see Table

3.6). When looking at the results for the 300-second RV in post-crisis period
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(see Table 3.6), we again find that the ordered Lasso AR-FC model has the best
forecasting performance for most of the stocks considered, i.e. 7/11 over daily
horizons, 8/11 over weekly as well as monthly horizons.

Similar investigations are conducted for the case where the RV series are derived
from 600-second returns. Starting with the 600-second RV using the full sample
and RW=1000, we show that, compared with the situations of 30-second and
300-second RV, the Lasso-based model displays the best forecasting performance
for fewer stocks (see Table 3.6). Among the cases where the Lasso-based model
achieves the best performance, the most frequent top performer is still the ordered
Lasso AR-FC model. Evidence for the role of the Lasso-based model is more clear
for the case of the full sample with RW=2000. As can be observed from Table
3.7, relative to the case of RW=1000, there are generally more situations where
the Lasso-based model dominates the benchmark HAR model when RW=2000.
However, such situations are fewer than those for the case of 30-second and
300-second RV with RW=2000. In Table 3.6, the best forecasting performance
for the 600-second RV with RW=2000 is given by the Lasso-based model for 7/11
stocks over daily and monthly horizons, and for 9/11 stocks over weekly horizons.
Among these cases, the ordered Lasso AR-FC model most frequently provides the
top performance.

As for the impact of the financial crisis on the results of the 600-second RV,
we make two observations. First, during the pre-crisis period, generally more
Lasso-based models are found (see Table 3.7) to perform better than the benchmark
HAR model compared with the case of 300-second RV. In Table 3.6, for the
600-second RV during the pre-crisis period, the superiority of the ordered Lasso
AR-FC model is evident for 7/11 stocks over daily horizons, 6/11 stocks over
weekly horizons, and only 2/11 stocks over monthly horizons. Second, as can be
seen from Table 3.6, during the post-crisis period, the ordered Lasso AR-FC model
regains its leading role in forecasting future 600-second RV over monthly horizons
by serving as the top performer for 8/11 stocks. However, relative to the pre-crisis

period, there are more cases where the slopeHAR provides the best performance
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over daily and weekly horizons. In addition, Table 3.7 shows no clear evidence for
the enhanced performance of the other Lasso-based models as we move from the
pre-crisis period to the post-crisis period.

To sum up, the results from Tables 8(a) to 10(d) show that: first, the ordered
Lasso AR-FC model is superior to the other Lasso-based models in forecasting
future RV by serving as the top performer for a large fraction of the stocks/index.
When the analysis is based on the full sample, for most stocks the gains of the
ordered Lasso AR-FC model relative to the HAR model are significant at 1%
level over monthly horizons. Second, using the idea of the forecast combination,
there tends to be more cases where each of the Lasso-based models dominates the
benchmark HAR model. Third, moving from the case of RW=1000 to RW=2000,
there are more cases where the Lasso-based model provides the best forecasting
performance, which indicates that the Lasso-based model may need a sufficiently
large window size to display the advantages in terms of the OOS forecast. Here,
our finding is in line with the work of Audrino and Knaus (2016) who show that,
for longer training windows, the Lasso outperforms the HAR in most cases.

Fourth, conclusions outlined above are not affected by the variation in the
sampling frequency upon which the RV series are based. However, as the sampling
frequency increases, i.e. from 600 seconds to 30 seconds, the superiority of the
Lasso-based model is generally apparent for more cases using the full sample,
whichever window size is used. Fifth, considering three sampling frequencies, most
of the Lasso-based models perform rather poorly during the pre-crisis period. The
only exception is the ordered Lasso AR-FC model in the case of 300-second and
600-second RV, where it still dominates the others in many cases over daily and
weekly horizons. During the post-crisis period, the ordered Lasso AR-FC model
regains its superiority by serving as the top performer for far more stocks, especially
when h = 22, compared with its corresponding performance during the pre-crisis
period. However, in the case of 600-second RV, this finding only holds for monthly
horizons.

Finally, as a robustness check, we evaluate the forecasts given by each of the
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models using an IW approach. The earlier findings suggest that the Lasso-based
models display better performance in a larger window size and therefore more
clear evidence for the excellent performance of the Lasso-based models are to be
expected in the following IW practice. Results of the forecasts across different
sampling frequencies are provided in Tables 11(a) to 11(c) and summarized in
Tables 3.6 and 3.7. First, in most cases the concept of the forecast combination
clearly improves the forecasting performance of the Lasso-based models. As a
result (see Table 3.7), compared with the Lasso-based models without using the
forecast combination, there is an increasing number of cases where the Lasso-based
model outperforms the HAR model once the forecast combination is implemented.
In addition, significant gains of the Lasso-based models using the forecasting
combination over the benchmark HAR are more frequently observed over monthly
horizons; see Tables 11(a), 11(b) and 11(c). Second, the ordered Lasso AR-FC is
undoubtedly the most desirable model among all the Lasso-based models, achieving
the best performance in most cases as shown in Table 3.6. Third, the impact of
the sampling frequency is in line with our earlier results. In Table 3.6, as the
sampling frequency increases, i.e. from 600 seconds to 30 seconds, we observe
more scenarios where the Lasso-based model, or the ordered Lasso AR-FC model

specifically, serves as the top performer.

3.5 Conclusion

We have reviewed the performance of various Lasso-based models in forecasting
future (log) realized variance (RV) over different horizons. We employ the RV
series of the SPY and ten individual stocks representing ten different sectors using
the same sample period as that used by Audrino and Knaus (2016), i,e, from 2001
to 2010 with a total of 2483 observations. We consider three different sampling
frequencies upon which the RV is based and construct the forecasts of the RV by
both a rolling window of 1000 and 2000 observations, and an increasing window.

With the financial crisis, the RV exhibits different memory properties in the pre-
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and post-crisis periods. The popular HAR is treated as the benchmark model in
our analysis, which reproduces the documented long-memory behaviour of financial
volatility. Two recent extensions of the HAR are also adopted for the purpose of
comparison.

In our in-sample analysis, we provide evidence, from the perspective of model
selection, for the invalidity of the lag structure implied by the HAR model. Neither
the maximal AR lag order nor the specification of the heterogenous volatility
components of the HAR are in line with those produced by the Lasso-based
approaches. In the out-of-sample forecast of future RV using the full time span,
the top performance is mostly produced by the Lasso-based model. Forecast
combination tends to improve the accuracy of forecasts made by Lasso-based
models and result in more cases where the Lasso-based model dominates the
standard HAR model.

Compared with the other candidates, we note a generally greater number of
occasions in which the ordered Lasso AR using the forecast combination displays
the best forecasting performance. Its gains over the HAR model are, in most
cases, significant over monthly horizons. For the pre- and post-crisis periods,
there are more cases in the post-crisis period where the ordered Lasso AR using
the forecast combination outperforms the HAR and delivers the most superior
performance, especially over longer forecasting horizons. In addition, with a larger
forecasting window size, there tends to be more situations where the Lasso-based
model exhibits the top performance. Finally, our conclusions are unaffected by
different sampling frequencies. However, as the frequency grows, from 600 seconds
to 30 seconds, the superiority of the Lasso-based model becomes more evident over

the full time period.
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Table 3.12: Estimates of AR Coefficients for the SPY. This table reports the AR
coefficients implied by the HAR, slopeHAR, freeHAR and those given by the adaptive
Lasso AR, Ordered Lasso AR, cluster group Lasso AR as well as by the group Lasso
AR (1, 5, 22, 50, 75, 100). Cluster corresponds to the arrangements of groups of the
lagged RVs identified by the cluster group Lasso method. Models are estimated on the
full sample from Jan 02, 2001 to Nov 15, 2010.

SPY

Lag HAR slopeHAR freeHAR LassoAR orderedLassoAR Cluster ClusterGroupLassoAR GroupLassoAR
1 0.49499 0.47752  0.47122  0.55597 0.46458 1 0.26892 0.47562
2 0.09021 0.13314  0.18840 0.24514 0.18062 1 0.16339 0.10224
3 0.09021 0.10339  0.03674 0 0.05839 1 0.09033 0.08036
4 0.09021 0.07365 0.07820  0.03429 0.05839 1 0.07977 0.08404
5 0.09021 0.04390  0.07687  0.06059 0.05840 1 0.06858 0.08356
6 0.00612 0.01415  0.00572 0 0.01489 1 0.03766 0.00248
7 0.00612 0.01332  0.00647 0 0.01489 1 0.02581 0.00253
8 0.00612 0.01249  0.00647 0 0.01489 1 0.01362 0.00251
9 0.00612 0.01166  0.00647 0 0.01489 1 0.03391 0.00290
10 0.00612 0.01082  0.00647 0 0.01489 1 0.03091 0.00282
11 0.00612 0.00999  0.00647 0 0.01489 1 0.02399 0.00273
12 0.00612 0.00916  0.00647 0 0.00217 1 0.00873 0.00250
13 0.00612 0.00833  0.00647 0 0.00217 1 0.01655 0.00261
14 0.00612 0.00749  0.00647 0 0.00217 1 0.01157 0.00248
15 0.00612 0.00666  0.00647 0 0.00216 1 0.01287 0.00246
16 0.00612 0.00583  0.00647 0 0.00125 1 -0.01814 0.00200
17 0.00612 0.00500  0.00647 0 0.00125 1 -0.00808 0.00221
18 0.00612 0.00416  0.00647 0 0.00125 1 -0.01029 0.00218
19 0.00612 0.00333 0.00647 0.01031 0.00125 1 0.02214 0.00267
20 0.00612 0.00250  0.00647 0 0.00125 1 0.01594 0.00250
21 0.00612 0.00167  0.00647 0 0.00125 1 0.00113 0.00231
22 0.00612 0.00083  0.00647 0 0.00125 1 0.01102 0.00245
23 0 0 0 0 0.00125 1 -0.00128 0

24 0 0 0 0 0.00125 1 -0.00015 0

25 0 0 0 0 0.00125 1 -0.01679 0

26 0 0 0 0 0.00125 1 0.00169 0

27 0 0 0 0 0.00125 1 -0.00457 0

28 0 0 0 0 0.00125 1 0.00283 0

29 0 0 0 0 0.00125 1 0.00302 0

30 0 0 0 0 0.00125 1 -0.00128 0

31 0 0 0 0 0.00125 1 0.00383 0

32 0 0 0 0 0.00125 1 0.00009 0

33 0 0 0 0 0.00125 1 0.00778 0

34 0 0 0 0 0.00125 1 0.00127 0

35 0 0 0 0 0.00125 1 -0.00158 0

36 0 0 0 0 0.00125 1 0.00313 0

37 0 0 0 0 0.00125 1 0.01030 0

38 0 0 0 0.01373 0.00124 1 0.02844 0

39 0 0 0 0 0.00124 1 0.01048 0

40 0 0 0 0 0.00124 1 -0.00739 0

41 0 0 0 0 0.00124 1 -0.01723 0

42 0 0 0 0 0.00124 1 -0.00307 0

43 0 0 0 0 0.00124 1 0.00899 0

44 0 0 0 0 0.00124 1 0.00183 0

45 0 0 0 0 0.00124 1 -0.00484 0

46 0 0 0 0 0.00124 1 -0.00434 0

47 0 0 0 0 0.00124 1 0.00493 0

48 0 0 0 0 0.00124 1 0.00950 0

49 0 0 0 0 0.00124 1 0.01391 0

50 0 0 0 0 0.00075 1 0.00002 0

51 0 0 0 0 0 2 0 0
100 0 0 0 0 0 2 0 0
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Table 3.13: Estimates of AR Coefficients for the MSFT. This table reports the AR
coefficients implied by the HAR, slopeHAR, freeHAR and those given by the adaptive
Lasso AR, Ordered Lasso AR, cluster group Lasso AR as well as by the group Lasso
AR (1, 5, 22, 50, 75, 100). Cluster corresponds to the arrangements of groups of the
lagged RVs identified by the cluster group Lasso method. Models are estimated on the
full sample from Jan 02, 2001 to Nov 15, 2010.

MSFT

Lag slope 3 rdere SS ste sterGroupLasso roupLasso
1 0.40269 0.38889  0.38794 0.49017 0.37446 ).21233 0.38573
2 0.09883 0.13804  0.15218 0.19320 0.14251 1 0.13173 0.10470
3 0.09883 0.10885  0.08608  0.04982 0.08002 1 0.09663 0.09280
4 0.09883  0.07966  0.09061  0.12025 0.08003 1 0.08629 0.09189
5 0.09883  0.05047  0.05026 0 0.04187 1 0.06726 0.08614
6 0.00943 0.02128  0.05188 0 0.03769 1 0.05902 0.00582
7 0.00943  0.02002  0.00873 0 0.02136 1 0.05002 0.00578
8 0.00943 0.01877  0.00873 0 0.01920 1 0.03039 0.00520
9 0.00943 0.01752  0.00873 0 0.01920 1 0.04879 0.00601
10 0.00943 0.01627  0.00873 0 0.01920 1 0.03827 0.00552
11 0.00943 0.01502  0.00873  0.03859 0.01920 1 0.05675 0.00608
12 0.00943 0.01377  0.00873 0 0.00104 2 0 0.00496
13 0.00943 0.01252  0.00873 0 0.00104 2 0 0.00515
14 0.00943 0.01126  0.00873 0 0.00104 2 0 0.00524
15 0.00943 0.01001  0.00873 0 0.00104 2 0 0.00505
16  0.00943 0.00876  0.00873 0 0.00104 2 0 0.00522
17 0.00943 0.00751  0.00873 0 0.00104 2 0 0.00442
18 0.00943 0.00626  0.00873 0 0.00104 2 0 0.00447
19 0.00943 0.00501  0.00873 0 0.00104 2 0 0.00459
20 0.00943 0.00375  0.00873 0 0.00104 2 0 0.00489
21 0.00943 0.00250  0.00873 0 0 2 0 0.00513
22 0.00943 0.00125  0.00873 0 0 2 0 0.00517
23 0 0 0 0 0 2 0 0

24 0 0 0 0 0 2 0 0

25 0 0 0 0 0 2 0 0

26 0 0 0 0 0 3 0 0

35 0 0 0 0 3 0

36 0 0 0 0 4 0

47 0 0 0 0 0 4 0 0

48 0 0 0 0 0 5 0 0

49 0 0 0 0 0 5 0 0

50 0 0 0 0 0.00103 5 0 0

51 0 0 0 0 0.00102 5 0 0.00025
52 0 0 0 0 0.00102 5 0 0.00023
53 0 0 0 0 0.00102 5 0 0.00026
54 0 0 0 0 0.00102 5 0 0.00024
55 0 0 0 0 0.00102 5 0 0.00024
56 0 0 0 0 0.00102 6 0.00283 0.00024
57 0 0 0 0 0.00102 6 0.00381 0.00027
58 0 0 0 0 0.00102 6 0.00380 0.00027
59 0 0 0 0 0.00102 6 0.00348 0.00026
60 0 0 0 0 0.00102 6 0.00393 0.00027
61 0 0 0 0.00850 0.00102 6 0.00509 0.00030
62 0 0 0 0 0.00102 6 0.00459 0.00028
63 0 0 0 0 0.00102 6 0.00406 0.00027
64 0 0 0 0 0.00102 6 0.00380 0.00026
65 0 0 0 0 0.00101 6 0.00368 0.00026
66 0 0 0 0 0.00101 6 0.00377 0.00026
67 0 0 0 0 0.00101 6 0.00364 0.00026
68 0 0 0 0 0.00101 7 0 0.00028
69 0 0 0 0 -2.27E-11 7 0 0.00024
70 0 0 0 0 -2.27E-11 7 0 0.00026
71 0 0 0 0 -2.27E-11 7 0 0.00023
72 0 0 0 0 -5.97E-12 7 0 0.00022
73 0 0 0 0 0 7 0 0.00022
74 0 0 0 0 0 7 0 0.00022
75 0 0 0 0 0 7 0 0.00023
76 0 0 0 0 0 7 0 0

83 0 0 0 0 0 7 0 0

84 0 0 0 0 0 8 0 0

100 0 0 0 0 0 8 0 0
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Figure 3.2
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Concluding Remarks

This thesis provides different methods of enhancing the modelling and forecasting
of future returns and realized variance (RV). We adopt both time series models
(Chapter 1 and 3) and options-based approach (Chapter 2) in order to achieve
better volatility forecast (Chapter 2 and 3) and return predictions (Chapter 1 and
2). Among the time series techniques considered, both univariate (Chapter 3) and
multivariate (Chapter 1) models are employed.

In Chapter 1, we propose modifications to the fractionally co-integrated vector
autoregressive (FCVAR) model developed by Johansen (2008) to accommodate
systems containing I(d) and I(0) variables under the presence of long memory
in the co-integrating residuals. The proposed model is termed the M-FCVAR.
In the simulation study and empirical application, we show that the M-FCVAR
delivers better inference than the FCVAR. In addition, we investigate the impact
of the shock to the I(0) variable on the I(d) variables within the system, which
could either be permanent or transitory. Particular equation specifications are
outlined to restrict the shock arising from the 7(0) variable, so that it exerts only
transitory effect on the I(d) variables. The simulation evidence indicates that
failure in restricting the shock associated with the I(0) variable when its impact
on the I(d) variables is transitory may result in biased model estimates and low
in-sample fit. In the empirical study, the FCVAR and M-FCVAR are used for
a joint modelling of the dynamic dependencies in stock market returns, RV and
option-implied volatility. With less biased estimates of the fractional integration
order, degree of co-integration and the co-integrating relationship, the M-FCVAR

dominates the FCVAR in terms of the return predictions over long horizons.
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In Chapter 2, we evaluate the performance of different measures of model-free
implied volatility in forecasting future returns and RV. The Monte Carlo simulations
suggest that: first, the out-of-sample volatility forecast can be improved by adopting
an interpolation and extrapolation technique; second, only an interpolation method
is needed in attempt to enhance the predictive power of implied volatilities for
future returns. In the empirical study using SPX options, the aforementioned
procedure, i.e. interpolation/extrapolation approach, is found to work well for
most measures considered. In addition, with the use of this procedure, the SPX
OTM call options outperform the OTM put options in terms of their forecasting
performance for future RV and returns, which is consistent with the simulation
results. However, the advantages of the SPX OTM put options are evident when
implied volatilities are derived from the observed options only.

In Chapter 3, we examine the usefulness of least absolute shrinkage and selection
operator (Lasso) based models in the forecast of future RV using a comprehensive
empirical study containing the SPY and ten individual stocks from different sectors.
The in-sample analysis implies that the popular heterogeneous autoregressive (HAR)
model is not fully consistent with the Lasso-type models with regard to the lag
structure, which casts doubt on the appropriateness of the HAR in modelling the
dynamics of the financial volatility. In the out-of-sample analysis, we find that,
in most cases, the Lasso-based model dominates the other candidates including
the HAR and its extensions and that the forecast combination tends to improve
the accuracy of volatility forecast delivered by the Lasso-based models. The
ordered Lasso AR with the forecast combination provides the top forecast most
frequently and its improvements over the HAR model are generally significant
over monthly forecasting horizons. The global financial crisis is shown to produce
non-trivial impact on the performance of the Lasso-based models. However, the
order Lasso AR using the forecast combination still plays a leading role in the
post crisis period, especially over long horizons. Furthermore, a larger window size
helps the Lasso-based models to display their advantages in the volatility forecast.

Finally, although the variation in the sampling frequency upon which the RV is
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based does not alter the conclusions outlined above, the superior performance of
the Lasso-based model becomes more evident in the full sample as the sampling

frequency increases.
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