
Volatility and Return Forecasting:
time series and options-based

methods

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Xingzhi Yao

Department of Economics

Lancaster University

December 2017



Acknowledgements

I wish to extend my sincere appreciation to many people for their help and support.

First I would like to thank my supervisors Dr. Marwan Izzeldin and Professor

David Peel for their encouragement, support and academic guidance during these

three and a half years. Particular gratitude goes to Dr. Marwan Izzeldin who has

offered me so many wonderful opportunities to participate in the top workshops

and conferences, and to teach in the econometrics labs and tutorials. I must also

thank Mr. Gerry Steele for very helpful editorial suggestions.

I would like to thank Ms. Caren Wareing and the rest of the administrative

staff. A heartfelt thanks to my friends and fellow colleagues who made the

Lancaster experience something special, in particular, Xuguang Li, Summer Guan,

Caroline Khan, Likun Mao, Jinyu Li and Vasileios Pappas. Completing this thesis

without the studentship from the Economic and Social Research Council (ESRC)

would have been impossible.

Lastly and most importantly, I would like to thank my family for their ongoing

love and understanding throughout this period. I am indebted to my best friend,

Xiaoqiang Li, who was always there cheering me up and stood by me through the

good times and bad. Special thanks to my husband, Zhenxiong Li, for his love,

rare patience and company, without whom I would not have been able to balance

my doctoral study with everything else.

1



Declaration of Authorship

I hereby declare that this thesis is my own work and has not been submitted for

the award of a higher degree elsewhere. Part of the second chapter of this thesis has

been accepted for publication in the Journal of Futures Markets (10.1002/fut.21881),

with my main supervisor, Dr. Marwan Izzeldin, as a second author. In addition

to the second chapter, this thesis contains no material previously published or

written by any other person except where references have been made in the thesis.

Xingzhi Yao

October 2017

I confirm that 90% of the work, "Forecasting Using Alternative Measures of

Model-Free Option-Implied Volatility", is conducted by Xingzhi Yao.

Marwan Izzeldin

October 2017

2



Abstract

This thesis attempts to model and forecast returns and realized volatility using

two different methods: time series models that exploit the historical information

set and options-based approach that provides a natural forecast of return variation

from listed option prices. Both univariate and multivariate estimation of the time

series models are considered in our analysis.

Chapter 1: This chapter introduces a modified fractionally co-integrated

vector autoregressive model, M-FCVAR, that caters for systems with I(0) and

I(d) variables under the presence of long memory in the co-integrating residuals.

Model inference of the FCVAR and M-FCVAR are compared using Monte Carlo

simulations and an empirical application. The M-FCVAR is found to yield better

in-sample fit and more precise model estimates. Higher return predictability is

observed over long horizons using the M-FCVAR in the empirical example. In

addition, the shocks associated with the I(0) variables could be permanent or

transitory. We show that particular equation specifications are required to restrict

these shocks when they produce only transitory effects on the I(d) variables.

The simulation results show that the inappropriate treatment of the shock to the

I(0) variable may negatively affect the precision in the estimation of the model

parameters as well as the in-sample fit.

Chapter 2: This chapter evaluates the performance of various measures of

model-free option-implied volatility in predicting returns and realized volatility.

The critical role of the out-of-the money call options is highlighted through an

investigation of the relevance of different components of the model-free implied
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volatility. The Monte Carlo simulations show that: first, volatility forecasting

performance of measures of implied volatility can be enhanced by employing an

interpolation-extrapolation technique; second, for most measures considered, gains

in their predictive power for future returns can be obtained by implementing an

interpolation procedure. An empirical application using SPX options recorded

from 2003 to 2013 further illustrates these claims.

Chapter 3: This chapter compares the performance of various least absolute

shrinkage and selection operator (Lasso) based models in forecasting future log

realized variance (RV) constructed from high-frequency returns. We conduct a

comprehensive empirical study using the SPY and 10 individual stocks selected

from 10 different sectors. In an in-sample analysis, we provide evidence for the

invalidity of the lag structure implied by the heterogeneous autoregressive (HAR)

model which has been heavily adopted in volatility forecast. In our out-of-sample

study considering the full time period, the best forecasting performance is usually

provided by the Lasso-based model and the idea of forecast combination tends to

improve the forecasting accuracy of the Lasso-based model. Among all models of

interest, the ordered Lasso AR using the forecast combination serves as the top

performer most frequently in forecasting RV and its improvements over the HAR

model are, in most cases, significant over monthly horizons. Moreover, we observe a

strong impact of the financial crisis on the performance of the Lasso-based models.

Nevertheless, the ordered Lasso AR with the forecast combination still retains its

advantages in the post-crisis period, especially over long horizons. In line with the

existing study, the superiority of the Lasso-based models is more evident in a larger

forecasting window size. The conclusions outlined above are not affected by the

variation in the sampling frequency upon which the RV series are based. However,

as the sampling frequency increases, there tends to be more situations where the

Lasso-based model achieves the top performance in the full sample analysis.
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Introduction

Volatility of financial time series plays a central role in pricing derivatives, hedging

and computing measures of risk. Volatility forecasting is therefore an important

topic in finance and financial economics, which has held enormous attention of

academics and market investors over the last few decades. The increased availability

of high-frequency data has spurred great interest in the model-free measurement

of variance based upon intraday returns, termed realized variance (RV). On the

other hand, expected returns are considered crucial equity market indicators at

the aggregate market level since they reflect the attitudes of investors towards

risk and should carry predictive power for actual future returns theoretically.

However, it still remains controversial in terms of whether equity returns are indeed

predictable. The diffi culty is that expected returns are not directly observable

and thus one needs to estimate them by means of publicly available information.

This thesis presents various methods to achieve better RV forecast and return

predictions.

Two different approaches are employed to conduct the forecast of returns and

RV. First, we consider time series models that exploit the historical information set

to formulate return and volatility forecasts in chapter 1 and chapter 3, respectively.

Second, in chapter 2, we concentrate on the market’s expectation of future return

variation from listed option prices, which is perceived as a market based volatility

forecast and may possess information content in predicting future market returns.

Specifically, we adopt a model for the analysis of multivariate time series in

Chapter 1 which accommodates both the long-run and short-run movements of
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the variables. Dynamic dependencies in aggregate stock market returns, implied

and realized volatilities can be well captured by this joint modelling framework.

Univariate time series volatility models are used in Chapter 3 where we apply

several model selection devices to select the relevant lags of the RV for the purpose

of better volatility forecasts. In using the time series models, we account for

the long-memory property of volatility, described by fractional integration and

a slow hyperbolic decay in the autocorrelations. In chapter 1, in addition to

the investigation of long memory of volatilities, we also evaluate their long-run

relationship via both parametric and semiparametric testing methods. In chapter

3, the observed long-memory behaviour is approximated by aggregating across

short-memory heterogenous autoregressive processes. In a departure from chapter

1 and 3, chapter 2 constructs volatility forecasts extracted from combinations

of option prices which do not depend on any pricing formula. Since the option

price incorporates all available information in an effi cient market, these model-free

volatility expectations are highly correlated with the future RV and can be seen

as priced risk factors in the cross-section of stock returns.

In chapter 1, we modify the fractionally co-integrated vector autoregressive

(FCVAR) model proposed by Johansen (2008) to allow for the coexistence of

I(0) and I(d) variables under the presence of long memory in the co-integrating

errors. The proposed model is termed the M-FCVAR. We investigate the model

inference of the FCVAR and M-FCVAR in Monte Carlo simulations covering a

wide range of fractional integration orders as well as in an empirical example.

With a more appropriate treatment of the I(0) variable in the system of fractionally

co-integrated processes, the M-FCVAR is found to yield less biased model estimates

and better in-sample fit in the simulation study. In addition to this, we pay

particular attention to the properties of the shocks arising from the I(0) variables

in the (M-)FCVAR framework, which could either be permanent or transitory. The

existing work does not seem to recognize that a particular model design is required

to ensure that the shocks associated with the I(0) variables exert only transitory
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effects on the long-memory variables. Taking into account all the possibilities one

may encounter in practice, we provide equation specifications to restrict the shocks

from the I(0) variables. The simulation evidence suggests that one may obtain

biased model estimates and low in-sample fit if the properties of the shocks to the

I(0) variables are incorrectly accounted for. Our empirical application consists of

the intraday data for the SPX and SPY indices and the daily data for the volatility

index (VIX), where a joint modelling of the three series, i.e. two fractionally

integrated variances and one I(0) returns, is implemented in both the FCVAR and

M-FCVAR. With more precise estimates of the model parameters, i.e. fractional

integration order, degree of fractional co-integration and co-integrating vectors,

returns are shown more predictable under the M-FCVAR over long horizons.

Catering for a mixture of I(0) and I(d) variables, the M-FCVAR can easily find

many applications in finance and financial economics. Apart from the example

using the RV, VIX and market returns introduced above, the M-FCVAR can be

further employed to examine the stock market return predictability suggested by

the fluctuations in the aggregate consumption-wealth ratio. This is motivated

by the work of Lettau and Ludvigson (2001) who indicate that the aggregate

consumption-wealth ratio can be expressed with regard to several fractionally

co-integrated variables and that the transitory deviations from the common trend

in these variables serve as a strong predictor of future returns.

In chapter 2, we examine the performance of various measures of model-free

option-implied volatility in the forecast of future returns and RV. By decomposing

model-free implied volatility into several components with the use of different

segments of option strike range, we investigate the role of each component in

the forecasting practice and highlight the importance of the out-of-the money

call options. In addition, we conduct Monte Carlo simulations to ascertain the

impact of discrete strike prices on the forecasting performance of implied volatility

measures. Simulation results show that: first, volatility forecast improves with

a wider range of strikes; second, the range of strikes produces negative effects

13



on the predictive power of implied volatilities for future returns; third, a finer

partition of strikes leads to better return predictions. These findings warrant the

use of an interpolation and extrapolation procedure as an attempt to enhance the

forecasting power of implied volatilities for future RV while only an interpolation

method is needed in return predictions. In the empirical application based on

SPX options from 2003 to 2013, the aforementioned interpolation/extrapolation

procedure is found to significantly enhance the performance of implied volatilities

for forecasting future RV and lead to better return predictions for most measures

in the post-crisis period. The effectiveness of such procedure is also verified in our

simulation study.

In chapter 3, we evaluate the performance of least absolute shrinkage and

selection operator (Lasso) based models in forecasting future RV. The empirical

study adopts the RV series of the SPY and ten individual stocks. We first show

that the heterogeneous autoregressive (HAR) model does not fully agree with the

Lasso-type models in terms of the lag structure, which brings into question whether

the HAR is appropriate for modelling and forecasting future volatility. Compared

with the HAR and its extensions, the Lasso-based model usually performs best and

the idea of forecast combination tends to improve the accuracy of the volatility

forecast. Among various Lasso-based models, the ordered Lasso AR using the

forecast combination serves as the top performer most frequently and its gains

over the HAR model are generally significant over monthly horizons. The global

financial crisis is found to exert non-trivial impact on the performance of the

Lasso-based models. However, the ordered Lasso AR with the forecast combination

still retains its superiority in the post-crisis period, especially over long forecasting

horizons. We also provide evidence that the Lasso-based models tend to perform

better in a larger window size. Furthermore, as the sampling frequency upon which

the RV series are based increases, the advantages of the Lasso-based models are

more evident using the full sample.
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1.1 Introduction

Many financial and economic variables are appropriately described by a fractionally

integrated process, denoted I(d) (e.g. see the discussion and many references in

Nielsen (2010)). In particular, equity and index volatility are well characterized by

an I(d) process (Andersen and Bollerslev (1997) and Comte and Renault (1998)).

Implied volatility obtained from option prices displays many of the stylized facts

of equity and index volatility and has been found to be a relevant predictor of

the corresponding asset volatility. Implied volatility, the VIX index in particular,

has featured in a number of volatility forecasting exercises using both short- and

long-memory specifications (Bandi and Perron (2006) and Busch, Christensen, and

Nielsen (2011a)). Another use of the implied volatility is to explore the long-run

co-movements between the VIX and the realized volatility of S&P 500, where the

difference between the implied-realized variation measures is termed the ‘variance

risk premium’. This idea has been adopted by Bollerslev et al. (2013) (BOST

hereafter) who are pioneers in predicting stock market returns using a framework

based on the fractionally co-integrated vector autoregressive (FCVAR) model of

Johansen (2008) and Johansen and Nielsen (2012). BOST (2013) show that the

gains of this approach arise from the joint modelling of the multivariate time series

and the capture of the predictability inherent in the variance risk premium.

The FCVAR serves as a direct model of fractional co-integration and provides

a central tool for the analysis of long-run equilibrium relationships among the

I(d) variables. Compared with conventional I(1)/I(0) co-integration, fractional

co-integration allows linear combinations of I(d) processes to give I(d−b) processes

with d ≥ b > 0 and with d and/or b as fractional numbers. The FCVAR has

been applied in several studies. For example: Caporin, Ranaldo, and Santucci

de Magistris (2013) demonstrate the superiority of the FCVAR framework in

forecasting extreme stock prices by accommodating the fractional co-integration

between high and low prices and the daily range obtained from the co-integrating
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residuals; Rossi and Santucci de Magistris (2013) employ the FCVAR to analyze

the long-run relationship between futures and spot range-based volatility measures;

and Jones, Nielsen, and Popiel (2014) exploit the FCVAR to examine the relation

between political support and macroeconomic conditions.

The work of BOST (2013) is uniquely distinctive in that it involves a mixture of

I(d) and I(0) variables. In that presentation, the estimation of the FCVAR model

is simplified by letting d = b; i.e. there is no memory in the co-integrating residuals.

According to Definition 2 in Johansen (2008), the FCVAR allows for variation in

the integration order of the variables within the system. Consequently, when d = b,

the inclusion of the I(0) variables is natural in the FCVAR, which is similar to the

coexistence of the I(1) and I(0) variables in the traditional co-integrated VAR.

However, the case of d > b poses a challenge for the analysis of the FCVAR as the

fractional differencing operator ∆d−b is applied, not only to the real co-integrating

vectors, but also to the I(0) variables serving as pseudo co-integrating vectors.

This results in the anti-persistence of the latter. In addition, assumptions need to

be made with regard to the nature of the shocks emanating from the I(0) variables

when they enter the system of the FCVAR model. Theoretically, the impact of the

shocks associated with the I(0) variables can be either permanent or transitory on

the I(d) variables. However, we show that these shocks exert transitory effects in

the FCVAR, only when particular equation specifications are adopted; otherwise,

the shocks to the I(0) variables would have nonzero long-run impact on the I(d)

variables. The same interaction between the I(0) and I(1) variables has been

observed by Fisher, Huh, and Pagan (2016) (FHP hereafter) but in a VECM

type of framework. FHP (2016) provide specifications for the traditional VECM

that prevent the shocks associated with the I(0) variables from having permanent

effects on the I(1) variables. However, their analysis is limited to situations where

there are equal numbers of exogenous I(1) variables and common factors.

This chapter proposes modifications to the FCVAR model of Johansen (2008)

and Johansen and Nielsen (2012), which are more suitable for systems with I(d)
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and I(0) variables when there exists long memory in the co-integrating residuals;

i.e. d > b. Specifically, the fractional differencing operator (∆d−b) is applied to

the I(d) variables within the system prior to the estimation of the FCVAR model.

This procedure does not alter the representation theorem and the calculation of

maximum likelihood estimators of the FCVAR. Without that adjustment, long

memory is induced in the model-implied I(0) variables, and this may further result

in biased estimates. The chapter also provides the theoretical framework that

outlines the changes required in the specifications to restrict shocks arising from

the I(0) variables, so that their effects on the I(d) variables are only transitory.

Complementary to FHP (2016), the chapter covers a variety of situations where

the number of exogenous variables is fewer than or equal to the number of common

factors or where there are only endogenous variables present.

To the best of our knowledge, this chapter is the first to consider a modified

FCVAR, henceforthM-FCVAR, to allow for inference and prediction in the presence

of I(0) and I(d) variables. In a simulation study, we show that, compared with

the FCVAR, the M-FCVAR generally yields a better in-sample fit and less biased

estimates of parameters d, b and co-integrating vectors in different sample sizes.

In addition, the ignorance of the property of the shock arising from the I(0)

variable may damage the precision in the estimation of model parameters and

lower the in-sample fit. The comparison between the FCVAR and M-FCVAR is

also illustrated using an empirical application based on high-frequency data, in

which case market returns are found more predictable over long horizons under

the suggested M-FCVAR.

The rest of this chapter is organized as follows. Section 1.2 reviews the relevant

literature. Section 1.3 presents methods adopted in this chapter together with the

M-FCVAR model specifications and modifications. The Monte Carlo study is

outlined in section 1.4. Section 1.5 describes the data and reports the empirical

results. Section 1.6 concludes. Algorithms of the impulse response functions and

the model-implied R2 are given in section 1.6.
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1.2 Literature Review

1.2.1 Background

Fractional co-integration, an extension of the co-integration to processes with

fractional degrees of integration, has received substantial research attention recently.

It has been applied in the topics of exchange rates, volatility of financial series,

interest rates, electricity prices and political studies, see Gil-Alana and Hualde

(2009) for an overview of the relevant studies. Despite various applications of the

fractional co-integration, the main focus has been on the long-run relationship

between implied-realized volatilities.

Implied volatility is universally considered the best market expectation of the

future volatility over the remaining life of the relevant option. Not surprisingly,

there has been enormous interest in examining the unbiasedness of the implied

volatility forecast of subsequent realized volatility. The relation between the two

volatility proxies can be evaluated via the regression

σRVt = α + βσIVt + εt (1.1)

where σIVt denotes implied volatility at time t and σRVt represents realized volatility

from t till the option’s expiration time. As noted by Christensen and Nielsen

(2006) and Nielsen (2007), the unbiasedness hypothesis implies a β coeffi cient of

unity. Traditional tests for this hypothesis using the OLS technique generally

result in the conclusion that σIVt provides biased forecast of σRVt by obtaining the

slope parameter β not equal to one, see Christensen and Prabhala (1998) and

Poteshman (2000).

Realized and implied volatilities are found to display long-memory properties,

see Comte and Renault (1998), Comte, Coutin, and Renault (2012), Ray and Tsay

(2000), Andersen et al. (2001a) and Andersen et al. (2001b), among others. The

fractional co-integration between the implied and realized volatilities is documented
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in the work of Bandi and Perron (2006), Christensen and Nielsen (2006) and

Nielsen (2007), among others. The presence of fractional co-integration suggests

that both σRVt and σIVt are fractionally integrated and that εt in equation (1.1)

is serially uncorrelated or displays short memory. Furthermore, the studies listed

above provide evidence for the long-run unbiasedness, i.e. β = 1, using different

frequency domain methods accounting for the fractional property of the volatilities.

Specifically, fractional integration in the region of non-stationarity is found in the

work of Bandi and Perron (2006) whereas the stationary region is indicated in

Christensen and Nielsen (2006) and Nielsen (2007).

It is worth noting that the OLS fails to give consistent estimates of the relation

in equation (1.1) in the case of stationary fractional co-integration. This is due

to the fact that, in such situation, both the regressor and the error exhibit long

memory and thus correlation between them may exist even over long horizons, see

Robinson (1994) and Robinson and Marinucci (2003). In the case of non-stationary

fractional co-integration, the OLS converges slower than the narrow-band least

squares (NBLS) proposed by Robinson (1994), see Robinson and Marinucci (2001)

and Robinson and Marinucci (2003). In addition, the NBLS leads to consistent

estimates but non-standard limit distributions in the non-stationary range. To

sum up, the earlier findings in terms of the biased relation between the two

volatility proxies using the OLS are not reliable since the predictive regression in

(1.1) is usually viewed as stationary fractional co-integration. Similar conclusions

supporting the long-run unbiasedness hypothesis can be found in Kellard, Dunis,

and Sarantis (2010) where the integration order of volatility has confidence intervals

spanning the stationary/non-stationary boundary and Nielsen and Frederiksen

(2011) where the presence of a volatility risk premium, i.e. σRVt − σIVt , correlated

with implied volatility is accounted for to remove the bias in the NBLS estimator

in regression (1.1).

The difference between the implied and realized variances, the so-called variance

risk premium, has been interpreted as a measure of the representative agent’s
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risk aversion, see Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron

(2010), among others. The variance risk premium is found to capture attitudes

toward uncertainty about economic fundamentals and thus predict financial market

risk premia and financial returns. For instance. Bollerslev, Tauchen, and Zhou

(2009) demonstrate that the variance risk premium is able to capture a nontrivial

fraction of variation in quarterly stock market returns and can result in even greater

return predictability when combined with other conventional predictor variables.

BOST (2013) document a non-trivial return predictability over interdaily and

monthly horizons using the FCVAR model based on 5-minute intraday data. They

also show that the observed strong predictive power for future market returns is

explained by the joint modelling of returns and variances within the FCVAR as

well as the predictability contained in the variance risk premium. Furthermore,

Bollerslev et al. (2014) provide evidence that such pronounced return predictability

suggested by the variance risk premium is not induced by the statistical finite

sample biases.

Despite the importance of fractional co-integration from both theoretical and

practical perspectives in economics, the testing and estimation of the fractional

co-integrating relation have encountered many diffi culties. Although the work of

Engle, Lilien, and Robins (1987) provides the concept of common trends between

fractionally integrated processes, subsequent studies are confined to situations

where the variables are integrated of order one. Progress in the area of fractional

co-integration is only achieved when Robinson and Marinucci (2003), Christensen

and Nielsen (2006) and Nielsen and Frederiksen (2011), among others develop the

regression-based semiparametric approach to examine whether two long-memory

processes are fractionally co-integrated. Subsequently, Robinson and Yajima (2002)

and Nielsen and Shimotsu (2007) introduce a testing procedure to investigate the

presence of the co-fractional relation by estimating the co-integrating rank of the

matrix of two, or more, fractionally differenced variables. Studies by Johansen

(2008) and Johansen and Nielsen (2012) have made further improvements in the
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study of fractional co-integration by developing a parametric multivariate FCVAR

model which explicitly captures both the long-run and short-run relationships of

the long-memory processes.

1.2.2 Fractional Integration and Fractional Co-integration

We first introduce the fractional integration processes from which the concept of

fractional co-integration stems. Fractional integration describes a strong dependency

between observations which exhibit high persistence that the standard ARMA

framework is unable to capture. This process is neither an I(1) unit root process

nor an I(0) process but rather an I(d) process, where d is between zero and one,

see Baillie (1996) and Robinson (2003) for more details. Assume a covariance

stationary time series Xt with the spectral density f(λ). The series Xt is a

long-memory process integrated of order d (d 6= 0) if

f(λ) ∼ Gλ−2d, as λ→ 0+ (1.2)

where G ∈ (0,∞) is a finite and nonzero matrix with strictly positive diagonal

elements. The autocovariance functions of Xt decay hyperbolically as shown by

Cov(Xt, Xt−τ ) ∼ τ 2d−1, as τ →∞ (1.3)

The parameter d determines the memory of the process. For 0 < d < 0.5, the

series is covariance stationary and contains long memory, implying that shocks

will decay hyperbolically rather than geometrically. By contrast, for 0.5 < d < 1,

the series is no longer stationary, yet still mean reverting. For −0.5 < d < 0, the

process is stationary but antipersistent, giving rise to the zero spectral density at

the origin frequency instead of infinity.

Applications of long memory to financial and economic data have been extensively

explored with the development of techniques for modelling the fractionally integrated

process and measuring the memory parameter d. The most widely accepted methods
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are the log-periodogram regression of Geweke and Porter-Hudak (1983) and the

local-Whittle likelihood procedure of Kuensch (1987). Both are semiparametric

and thus immune to model mis-specification problems. On the other hand, the

spirit of parametric methods is first to build a long-memory model and then to

jointly estimate the model. Popular models are the fractional Brownian motion

proposed by Mandelbrot and Van Ness (1968), the fractional white noise and the

autoregressive fractionally integrated moving average (ARFIMA) model developed

by Granger (1980), Granger and Joyeux (1980) and Hosking (1981). The ARFIMA

has been heavily employed to capture the long-memory property of the realized

volatility, see Andersen et al. (2003), Choi, Yu, and Zivot (2010) and Degiannakis

and Floros (2013), among others.

Fractional co-integration generalizes the standard co-integration with I(1) series

and I(0) linear co-integrating relationships by allowing for more flexibility in

the order of integration. Specifically, fractional co-integration can be defined by

assuming two series, yt and xt, which are both integrated of order dx, where dx

can be a fractional number rather than integer one as commonly assumed in the

concept of conventional co-integration, and a linear combination, ut = yt − βxt, is

I(du). When 0 6 du < dx, yt and xt are fractionally co-integrated. In particular,

the model with dx− du < 0.5 is characterized as weak fractional co-integration by

Hualde and Robinson (2010). Next, we review some recent studies in testing and

estimating the fractional co-integration from different perspectives.

1.2.3 Testing and Estimation Methods

There is a growing literature devoted to the testing and estimation of fractional

co-integration. A group of contributions is characterized as semiparametric. With

long-run components of each series at origin frequencies, some studies adopt the

regression-based approach to estimate the co-integrating vectors and integration

orders of both regressors and residuals. With the focus on the space of co-integration

rather than the co-integrating regression, other studies estimate the co-integrating
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rank in the long-memory systems and require no knowledge about the co-integrating

vectors or memory parameters. Parametric maximum likelihood techniques have

also been used to provide the joint estimation of the multivariate fractionally

integrated system. However, there seems no consensus on the optimal testing

procedure for fractional co-integration. One may find diffi culties in having consistent

and conclusive outcome when using different methodologies. The following section

provides an overview of popular methods of fractional co-integration analysis and

outlines the problems one may encounter in practice.

Semiparametric Approach

Awidely accepted procedure is to consider a semiparametric approach characterized

by using a degenerating band of low frequencies for estimation. The semiparametric

approach does not require the accurate specification and estimation of the whole

sample, i.e. it achieves consistency without relying on a parametric model. Two

different methods in the semiparametric fashion are introduced below, which only

require information related to the behaviour of the spectral density around the

origin.

Regression-Based Approach Regression-based methods generally extend the

work of Engle and Granger (1987) to the case where the order of integration is

not restrictive to integer one, see Marinucci and Robinson (2001) and Gil-Alana

(2003). The key step is to obtain the integration orders of the underlying series

and the regression residuals from the estimated co-integrating relationship and

then to examine whether the persistence reduces or not. The complication of

the regression-based approach is that, unlike the standard situation under OLS

regression, the regressors and the errors may be both stationary and fractionally

integrated and thus are likely to be correlated in the long term. The implication

then is that the OLS estimator is no longer consistent (Robinson (1994), Robinson

andMarinucci (2003) and Robinson (1997)). To circumvent this problem, Robinson
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(1994) develops a semiparametric narrow-band least squares (NBLS) estimator

in the frequency domain and implements OLS on a degenerating part of the

periodogram around zero frequency, i.e., the so-called narrow-band. In that paper,

Robinson shows that the NBLS estimator is consistent in the stationary case.

Christensen and Nielsen (2006) show that its asymptotic distribution is normal

when dx + du < 0.5 and when the coherence between regressors and errors is zero

at the origin frequency, i.e. in the long run. The results on the NBLS estimator

for the regressors which are non-stationary long memory are provided by Robinson

and Marinucci (2003); and Chen and Hurvich (2003a) add polynomial trends by

using a tapered NBLS estimator based on differenced data. Concentrating on the

periodogram around the origin, this semiparametric approach enjoys the advantage

of being variant to the short- and medium-run dynamics.

Kellard, Dunis, and Sarantis (2010) improve the NBLS estimator by developing

a new fractional co-integration test which is robust in both the stationary and

non-stationary context. The new estimator is shown to be approximately normally

distributed in finite sample, which holds across the stationary and non-stationary

regions. Extending the stationary setting of Christensen and Nielsen (2006) under

a condition of zero long-run coherence between the regressors and co-integrating

errors, Nielsen and Frederiksen (2011) focus on weak fractional co-integration,

including non-stationarity, in the absence of this condition, in which case a bias

term arises in the NBLS estimator. They show that the bias can be estimated

and thus corrected by a fully modified NBLS (FMNBLS) procedure with a careful

choice of bandwidth parameters. The regression-based method is sometimes not

straightforward to implement in empirical studies where integration orders are not

within a particular region as discussed above or where the co-integrating errors

(residuals) are not well defined. By contrast, the co-integrating rank test does

not require estimating the co-integrating vector(s) and thus may serve as a good

alternative.
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Spectral Matrix Approach The co-integrating rank test examines the presence

of the co-fractional relation from the perspective of the long-run covariance matrix.

This approach only requires the spectral density matrix at the origin frequency,

but it displays great sensitivity to the selection of bandwidth parameters. Relative

to the regression-based approach, it does not estimate the co-integrating vectors

and only produces a consistent estimate of the co-integrating rank. The estimate

of the rank greater than one and less than the number of variables indicates the

existence of the co-fractional relation. Hence, this approach is not appropriate

when specific information about the co-fractional relation, e.g. strength of the

relation, is required.

Robinson and Yajima (2002) are the pioneers in implementing the co-integrating

rank estimation in the region of stationarity. Chen and Hurvich (2003b) investigate

the rank of an averaged periodogrammatrix of tapered and differenced observations

and fix the number of frequencies used in the periodogram averages as the sample

size increases, which applies to both stationary and non-stationary situations.

Their assumption of strictly positive rank is relaxed in subsequent work by Chen

and Hurvich (2006) who consider the null of no fractional co-integration, i.e.

rank equal to zero. Nielsen and Shimotsu (2007) also attempt to accommodate

(asymptotically) stationary and nonstationary fractionally integrated processes.

They use the exact local Whittle analysis of Shimotsu and Phillips (2005), which

generalizes the local Whittle estimator of Kuensch (1987) to allow for any value

of the memory parameter d. The estimate of co-integrating rank is achieved by

examining the rank of the spectral density matrix of the dth differenced processes

around the zero frequency.

Parametric Approach

A fully parametric approach is more effi cient in using the entire sample instead

of focusing on the origin frequency of the periodogram only. However, it shows

non-trivial inconsistency if the parametric model is mis-specified. In the traditional
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I(1)/I(0) co-integration, the standard tool to handle the relationship among the

multivariate time series is the vector error correction model (VECM) as introduced

by Engle and Granger (1987). The representation is given by

∆Xt = αβ′Xt−1 + Σk
i=1Γi∆Xt−i + εt (1.4)

where Xt is p−dimensional I(1) series and εt is p−dimensional independent and

identically distributed (i.i.d.) with mean zero and covariance matrix Ω.

Multivariate score tests (or Lagrange multiplier tests) for fractional integration

have been developed by Johansen (1995) and Nielsen (2005), as a prerequisite

for further detailed investigation of fractional co-integration. Substantial efforts

have since been made to improve and optimize the parametric estimation of the

fractional co-integration. The most famous model is the Fractionally Co-integrated

Vector Autoregressive (FCVAR) model (or the so-called Fractional Vector Error

Correction model (FVECM) in some studies) proposed by Johansen (2008) and

further analyzed by Johansen and Nielsen (2012).

Some important studies related to the development of the parametric framework

for fractional co-integration include: Breitung and Hassler (2002) suggest a test for

the rank of fractional co-integration in the FCVAR while assuming the integration

order is known and that the errors are i.i.d. Gaussian; Avarucci and Velasco

(2009) introduce the Wald test to determine the co-integration rank in a system of

nonstationary fractionally integrated variables within the FCVAR-type framework;

Łasak (2010) considers a profile likelihood method to estimate the parameters of

the Granger (1986) model and to test for the null hypothesis of no co-integration.

This estimation method has been extended by Johansen and Nielsen (2012) to

the FCVAR model; Franchi (2010) investigates a richer co-fractional structure by

extending the representation theory of the FCVAR model in Johansen (2008); and

Łasak and Velasco (2015) introduce a novel two-step procedure for co-integrating

rank estimation, which allows different co-integration relations to display different

persistence. This can be seen as an extension of the study by Łasak (2010) and
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Johansen and Nielsen (2012). Essentially the FCVAR is derived by replacing the

lag and difference operators in the VECMmodel with their fractional counterparts.

It has been adopted by BOST(2013), Jones, Nielsen, and Popiel (2014), Dolatabadi,

Nielsen, and Xu (2015) and Dolatabadi, Nielsen, and Xu (2016), among others.

It exhibits the advantage of allowing for multivariate analysis, flexible selection of

parameters and good performance in forecasting.

A mixture of variables with different integration orders in the analysis of

fractional co-integration is frequently encountered in practice. The study by

FHP (2016) considers a VECM model with both I(1) and I(0) variables but

little work has been done in the FCVAR framework with the coexistence of I(d)

and I(0) variables. FHP(2016) classify the shocks arising from the I(0) variables

into the permanent and transitory, termed the P0 and T0 shocks. They show

that, in a system containing I(0) and I(1) variables which are co-integrated,

the co-integration may no longer exist when the T0 shocks become P0 shocks.

A device is suggested by FHP(2016) to calculate the permanent component of

the I(1) variables when the shocks associated with the I(0) variables have either

transitory or permanent effects on the I(1) variables. Furthermore, in order to

restrict the shocks from the I(0) variables to exert only transitory impact on

the other variables, they show that the true error correction terms and the I(0)

variables must appear as differences in the equations of the VECM where the

response variables are permanent components. However, their work is confined

to the situation where there are equal numbers of exogenous I(1) variables and

common factors, i.e. permanent components.

1.3 Methodology

The following section presents the methods adopted in this chapter. We employ

the FCVAR model to accommodate the system of I(d) variables. When moving to

the system of I(d) and I(0) variables, we consider a modified FCVAR, M-FCVAR,

to cater for the introduction of the I(0) variables and allow for long memory in
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the co-integrating error. Properties of the shocks arising from the I(0) variables

are also accounted for in various situations. As an attempt to overcome the

identification problem of the (M-)FCVAR, we obtain the fractional integration

estimate using the exact local Whittle estimator of Shimotsu and Phillips (2005).

The presence of fractional co-integration is examined using the exact local Whittle

rank test by Nielsen and Shimotsu (2007) coupled with a modified Wald test for

the equality of the orders of fractional integration.

1.3.1 Fractional Integration Estimation

Fractional co-integration originates from several variables exhibiting long-memory

properties. Hence, we first introduce the procedure of estimating the order of

fractional integration, which serves as the basis for the subsequent analysis of

co-fractional relations. A fractionally integrated process is defined as I(d) if its

dth difference is integrated of order zero, where d can be any real number. In spite

of a number of approaches proposed to estimate the long-memory parameter d,

the semiparametric procedure has long been widely explored and applied since it

requires no assumptions about the short-run dynamics and thus stays robust to

mis-specification problems. This chapter adopts the exact local Whittle estimator

of Shimotsu and Phillips (2005), which extends the work of local Whittle analysis

by Kuensch (1987) and Robinson (1995) to allow for any value of the fractional

differencing parameter, d.

To define the frequency-domain local Whittle estimator, we assume that a

process Xt has the spectral density, f(λ), defined in equation (1.2). Let the

fractionally integrated Xt be generated by the model

∆dXt = (1− L)dXt = µt1{t > 1}, t = 0,±1, ... (1.5)

where 1{.} represents the indicator function, L is the lag operator and µt is

assumed to be a covariance stationary process whose spectral density, fµ(λ), is

bounded and bounded away from zero at the origin frequency λ = 0, i.e. fµ(λ) ∼ G
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for λ ∼ 0 (Robinson (1995)). An alternative representation of Xt based on

µ1, ..., µn can be derived by inverting and expanding the equation (1.5),

Xt = ∆−dµt1{t > 1} (1.6)

= (1− L)−dµt1{t > 1}

The discrete Fourier transform (DFT), ωx(λj), and the periodogram, Ix(λj) of Xt,

t =1,· · · ,T at the fundamental frequencies can be written as

ωx(λj) = (2πT )−1/2ΣT
t=1Xte

itλj , λj =
2πj

T
, j = 1, ...,m <

T

2
(1.7)

Ix(λj) = |ωx(λj)|2

One advantage of semiparametric estimation over the parametric approach is

that it employs frequencies near the origin only and treats the periodogram away

from the zero nonparametrically. The conventional local Whittle (LW) estimator

by Kuensch (1987) and Robinson (1995) relies on the Gaussian objective function,

Qm(G, d) =
1

m
Σm
j=1[log(Gλ−2d

j ) +
λ2d
j

G
Ix(λj)] (1.8)

where λj = 2πj
T
, j = 1, ...,m < T

2
. The LW estimate is thus derived by minimizing

the function Qm(G, d). Robinson (1995) proves that the asymptotic standard

errors of the LW estimator are
√
m(d̂T,m − d)⇒ N(0, 1

4
). In spite of its enhanced

effi ciency over the GPH estimator (Geweke and Porter-Hudak (1983)) within the

stationary region, both GPH and LW estimators display nonstandard behaviour

when d > 3
4
(Kim and Phillips (2006)).

Shimotsu and Phillips (2005) provide a procedure which can be applied in the

stationary and nonstationary regions and it estimates (G, d) by minimizing the

objective function

Qm(G, d) =
1

m
Σm
j=1[log(Gλ−2d

j ) +
1

G
I∆dx(λj)] (1.9)
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where I∆dx(λj) is the periodogram of ∆dXt. Concentrating Qm(G, d) with respect

to G, we obtain the exact local Whittle (ELW) estimator given by

d̃ = arg min
d∈[∆1,∆2]

R(d) (1.10)

where ∆1 and ∆2 are the lower and upper bounds of the admissible values of d

and

R(d) = log Ĝ(d)− 2d
1

m
Σm
j=1 log λj (1.11)

Ĝ(d) =
1

m
Σm
j=1I∆dx(λj)

This ELW estimator has been proved to be consistent and asymptotically normally

distributed when the underlying value of d ∈ (∆1,∆2) and ∆2 −∆1 ≤ 9
2
with the

mild assumptions on bandwidth m and stationary µt.

The desirable properties of the ELW estimator by Shimotsu and Phillips (2005)

are based on the assumption that Xt is generated by the process in equation

(1.5) and that the mean/initial value of the process is known. When the series

is accompanied by a linear time trend or an unknown mean/initial condition, a

more appropriate choice of estimation is the two-step ELW estimator by Shimotsu

(2010). However, Shimotsu (2010) indicates that the ELW estimator by Shimotsu

and Phillips (2005) remains consistent for d ∈ (−1
2
, 1) and is asymptotically normal

for d ∈ (−1
2
, 3

4
) if the unknown mean is replaced by the sample average. In our case,

the memory estimates of the variance series considered in the empirical study are

within the standard region of ELW estimation, and thus we carry out the empirical

analysis using the ELW estimator of Shimotsu and Phillips (2005).
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1.3.2 Fractional Co-integration Estimation

Exact Local Whittle Rank Test

Before moving to the modelling and estimation of the fractional co-integration

by the FCVAR, we obtain the estimate of the co-integration rank based on an

exact local Whittle approach. Specifically, we determine the co-integrating rank

of the spectral density matrix of the dth differenced process around the origin

frequency. This procedure is first proposed by Robinson and Yajima (2002) and

later extended by Nielsen and Shimotsu (2007), who account for both stationary

and non-stationary situations.

Robinson and Yajima (2002) stress that the test for homogeneity of orders of

fractional integration could deliver misleading conclusions if the co-integration is

not accounted for. Hence, we start the analysis by first estimating the co-integrating

rank. Assume there is a p-vector fractional process Xt where each element is

fractionally integrated of order d1, ..., dp, respectively. The work of Nielsen and

Shimotsu (2007) builds on the assumption of equal integration orders and thus

d1, ..., dp are represented by d∗, where d̃∗ = 1
p

∑p
a=1 d̂a with each d̂a given by

equation 1.10. The consistent estimator of the spectral density at the origin is

given by

Ĝ(d∗) =
1

m1

m1∑
j=1

Re[I∆(L;d∗,...,d∗)x(λj)] (1.12)

where λj = 2πj
T
and I∆(L;d∗,...,d∗)x(λj) is the periodogram of (∆d∗X1t,...,∆

d∗Xpt)
′.

Here, Ĝ(d∗) uses a new bandwidth parameter m1 instead of m present in equation

(1.8). Let δ̂a be the ath eigenvalues of Ĝ(d∗) and the co-integration rank r can be

determined by following the procedure of Robinson and Yajima (2002)

r̂ = arg min
u=0,...,p−1

L(u) (1.13)

L(u) = v(T )(p− u)−
p−u∑
a=1

δ̂a
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where v(T ) should be positive and meet the assumption as follows

v(T ) +
1

m
1/2
1 v(T )

→ 0 (1.14)

Nielsen and Shimotsu (2007) show that a higher rank estimate is more likely to

be selected when a larger v(T ) is applied. In order to obtain a more conservative

estimate of r, we choose to employ a small v(T ) = m−0.4
1 .

Once the presence of the co-fractional relation has been investigated by the rank

estimation, we can examine the equality of the orders of fractional integration by

testing the null H0 : da = d∗, a = 1, ...p. The test statistic is given by

T̂0 = m(Sd̂)′(S
1

4
D̂−1(Ĝ� Ĝ)D̂−1S ′ + h(T )2Ip−1)−1(Sd̂) (1.15)

where � represents the Hadamard product, S = [Ip−1,−ι]′, ι is the (p−1)-vector of

ones, h(T ) = 1/ log(T ) is of more frequent application, and D̂ = diag(Ĝ11, · · · Ĝpp).

The memory estimates d̂ of variables in the vector are derived by the univariate

exact local Whittle estimator by Shimotsu and Phillips (2005), with m Fourier

frequencies being employed. The selection of parameters, (m, m1, v(T )), will be

specified in our empirical example. If variables are not fractionally co-integrated,

T̂0 →d χ
2(p− 1), while T̂0 →p 0 if they are co-integrated.

The FCVAR model

To further examine the long-run and short-run dynamics among the fractionally

integrated I(d) variables, we adopt the framework by Johansen (2008) and Johansen

and Nielsen (2012). Consider a vectorXt ∈ I(d) containing p elements, the FCVAR

model is in the form of

∆dXt = αβ′∆d−bLbXt +
k∑
c=1

Γc∆
dLcbXt + εt (1.16)
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where εt is p−dimensional i.i.d.(0,Ω). Let Lb = 1 − ∆b be the fractional lag

operator and ∆d be the fractional difference operator with ∆d = (1− L)d

(1− L)d =
∞∑
i=0

θi(d)Li, with θi(d) = (−1)i
(
d

i

)
=

Γ(−d+ i)

Γ(−d)Γ(i+ 1)
(1.17)

= 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + · · ·

where Γ(.) is the gamma function. The error correction term is denoted by

β′∆d−bXt, where β is a (p× r) matrix consisting of r co-integrating vectors and r

is the so-called co-integration rank. The linear combination β′Xt is integrated of

order (d − b) with d ≥ b > 0. This suggests that the co-integrating combination

reduces the integration order of Xt by b, where b measures the degree of fractional

co-integration. The matrix α is of order (p × r) and contains the parameters

representing the speed of adjustment towards long-run equilibrium. The short-run

dynamics are measured by the lag coeffi cients (Γ1, . . . ,Γk).

The FCVAR model is estimated by means of a profile likelihood technique (see

Johansen and Nielsen (2012)). The maximum likelihood estimators (MLE) and

maximized likelihood are calculated by minimizing the profile likelihood `(ψ, r) as

a function of ψ = (d, b). Once d and b are determined, all the other parameters,

α̂, β̂, and Γ̂c for c = 1, · · · , k can be concentrated out by regression and reduced

rank regression. Recall the FCVAR in equation (1.16) and define Z0,t = ∆dXt,

Z1,t = (∆d−b −∆d)Xt and Zk,t =
{

∆dLcbXt

}k
c=1
. For fixed ψ = (d, b), the MLE is

found by reduced rank regression of Z0,t on Z1,t corrected for Zk,t. More specifically,

we need to obtain the residuals of the respective regressions of Z0,t and Z1,t on Zk,t,

denoted as R0,t and R1,t, to construct the profile likelihood function `(ψ, r). In

the conventional situation where all the variables are fractional of order d, the

regression of Z0,t on Zk,t is balanced in the sense that both the regressand and

regressor are I(0), while the regression of Z1,t on Zk,t is not balanced with the I(b)

regressand and I(0) regressor, i.e. a reduction of b in the integration order from

LHS to RHS. The choice of β̂ is the choice of linear combinations of Z1,t which
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have the largest squared partial correlations with Z0,t after correcting for fractional

lags.

The likelihood ratio (LR) test can be used to determine the co-integration

rank r. Letting Π = αβ′, we have the LR test statistic of the null hypothesis

Hr : rank(Π) = r against the alternative Hp : rank(Π) = p. The profile likelihood

function is maximized both under the null and alternative hypothesis and then the

LR test statistic is such that

LRT (q) = 2 log(`(ψ̂p, p)/`(ψ̂r, r)) (1.18)

where `(ψ̂p, p) = maxψ `(ψ, p); `(ψ̂r, r) = maxψ `(ψ, r) and q = p − r. Johansen

and Nielsen (2012) show that LRT (q) depends heavily on the parameter b in that

 LRT (q)→ χ2(q2), 0 < b < 1/2 (weak fractional co-integration)

LRT (q) ∼ non-standard, b > 1/2 (strong fractional co-integration)
(1.19)

Due to the non-standard asymptotic distribution of the test statistic in the case of

strong fractional co-integration, we follow the program developed by MacKinnon

and Nielsen (2014) to obtain the asymptotic P values for the LR co-integrating

rank tests. In addition, the selection of lag value k is of critical importance in the

specification of the FCVAR model. We determine the order of lag by following

the BIC information criteria while ensuring that the short-run coeffi cients Γk are

significantly different from zero and that the residuals are stationary and serially

uncorrelated.

A crucial problem of the FCVAR model is the lack of identification on the

likelihood function as suggested by Carlini and Santucci de Magistris (2017), i.e.,

there may exist equivalent sub-models associated with different sets of parameters.

When the lag order, k, is unknown and potentially over-specified, Carlini and

Santucci de Magistris (2017) present a strong relationship between the lag length

and the indeterminacy of the FCVAR. They also provide a necessary and suffi cient
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condition for identification of the FCVARmodel corresponding to any lag structure.

Such condition, F(d), is defined by

|α′⊥Γβ⊥| 6= 0 (1.20)

where α′⊥α = 0, and Γ = I −
∑k

c=1 Γc. When the cointegrating rank is unknown,

they further show that the FCVAR with full rank and k lags is equivalent to

that with rank 0 and k + 1 lags, in which case the F(d) condition delivers no

information in terms of the model identification. Whether the rank is known or

not, the identification issue for any lag greater than one can be solved by imposing a

lower-bound restriction on d where the lower bound is based upon a semiparametric

estimate, e.g. the estimator by Shimotsu and Phillips (2005), of the integration

order, termed as the d̃. The lower bound δmin is given by

δmin = d̃− c× d̃ (1.21)

where c = 0.15 is recommended in the work of Carlini and Santucci de Magistris

(2017).

The M-FCVAR model

This section introduces the M-FCVARmodel and provides the specifications which

ensure that the shocks associated with the I(0) variables do not exert long-run

effects on the I(d) variables.

The FCVAR in equation (1.16) does not require that all components of Xt

exhibit the same order of integration, which accords with the situation where there

can be a mixture of I(1) and I(0) variables in the traditional VECM. For instance,

following Example 3 in Johansen (2008), we construct a system containing two
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I(0.4) variables, X1t and X2t, and one I(0) variable, X3t, given by

X1t = ∆−0.4
+ ε1t −∆−0.2

+ ε2t + ε3t (1.22)

X2t = ∆−0.4
+ ε1t + ∆−0.2

+ ε2t + ε3t

X3t = ε1t + ε2t + ε3t

where Xt = (X1t, X2t, X3t)
′, εt is i.i.d. (0, I3) and ∆−d+ εt =

∑t−1
i=0(−1)i

(−d
i

)
εt−i.

The long-run transfer function for ∆0.4Xt, i.e. the matrix of responses of the

variables to the shocks, is

C(1) =


1 0 0

1 0 0

0 0 0


and the spectrum is C(1)′C(1) 6= 0. Hence, ∆0.4Xt ∈ F(0) and Xt ∈ F(0.4)

according to Definitions 1 and 2 in Johansen (2008), which suggests that the

representation theorem and the properties of MLE of the FCVAR remain unchanged

when the I(0) variables are introduced into the system of fractional variables.

The following section gives an outline of the problem that may arise when the

FCVAR in equation (1.16) is used to accommodate a system containing I(d) and

I(0) variables. As a standard method employed in the literature of treating an

I(0) variable in the VECM, we adopt the idea of ‘pseudo’co-integrating relation.

Specifically, we involve the extra co-integration vector being unit vector with unity

in the position corresponding to the I(0) variable and zeros elsewhere. Without

loss of generality, we assume that there are n I(d) variables and q I(0) variables in

Xt which contains p elements, giving p = n + q. Among the I(d) variables, there

are r co-integrating relations and thus l = n− r permanent components. Here, we

refer to the r co-integrating relations as ‘true’co-integrating relations, as opposed

to the q ‘pseudo’co-integrating relations that arise from the I(0) variables, which

are treated as ‘fractionally co-integrated with themselves’. We let Xt = (x1t, x2t,

x3t)
′ where (x1t, x2t)

′ is the n × 1 vector of I(d) variables which will be classified
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as endogenous or weakly exogenous variables in the subsequent analysis and x3t is

the q × 1 vector of I(0) variables. We then construct

α =


α∗1 δ∗1

α∗2 δ∗2

α∗3 δ∗3


p×(r+q)

β′ =

 β′1 β′2 0

0 0 Iq


(r+q)×p

(1.23)

The first row of block matrices in β′ are the coeffi cients in the ‘true’co-fractional

relations among I(d) variables, while those in the second row correspond to the

‘pseudo’ co-fractional relations. The FCVAR in equation (1.16) is no longer

appropriate for modelling a system containing a mixture of I(d) and I(0) variables

when d > b, in which case the term β′∆d−bXt contains anti-persistent error

correction terms, i.e. terms which are integrated of a negative order, due to the

presence of I(0) variables in Xt. The mis-specification problem can also be seen by

considering the representation theorem of the FCVAR (1.16). Given α and β as

defined in equation (1.23) and Γ = I −
∑k

c=1 Γc, the matrix C = β⊥(α′⊥Γβ⊥)−1α′⊥

contains only zeros in the last q rows corresponding to the q I(0) variables in Xt.

Following the work of Johansen and Nielsen (2012), the FCVAR in equation (1.16)

has the solution

Xt = C∆−d+ εt + ∆
−(d−b)
+ Y +

t + µt (1.24)

for d ≥ 1/2 where the operator ∆−d+ is used to define a nonstationary process and

Yt is fractional of order zero. The solution of the FCVAR model for the last q

equations, i.e. I(0) x3t, then reduces to

xFCV AR3t = e3′∆
−(d−b)
+ Y +

t + e3′µt (1.25)

where e3′ = (0q×n, Iq×q). It is clear that the xFCV AR3t is integrated of order (d− b),

which erroneously exhibits long memory if d > b due to the mis-specifications.

This problem remains in the case of d < 1/2 where the solution of the FCVAR

becomes Xt = C∆−dεt + ∆−(d−b)Yt.
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The M-FCVAR is developed to address the issue described above. We apply

the fractional differencing operator ∆d−b to each of the long-memory variables in

Xt and construct a new system X∗t . Adapting the notation of the FCVAR, we

obtain the M-FCVAR as follows

∆bX∗t = αβ′LbX
∗
t +

k∑
c=1

Γc∆
bLcbX

∗
t + εt (1.26)

Here, the M-FCVAR differs from the FCVAR only in the way that the fractional

I(d) variables have been transformed to I(b) variables. Hence, the representation

theorem of the M-FCVAR in equation (1.26) is the same as that of the FCVAR

except that d is always equal to b. We can then show that the M-FCVAR

model-implied xM−FCV AR3t remains I(0) according to equation (1.25) since d = b.

Both the FCVAR and M-FCVAR are estimated by means of a profile likelihood

technique (see Johansen and Nielsen (2012)). For each fixed combination of

ψ = (d, b) in the estimation of the M-FCVAR, we first construct X∗t by applying

∆(d−b) to the fractionally integrated variables in Xt. We then define Z0,t = ∆bX∗t ,

Z1,t = (1−∆b)X∗t and Zk,t =
{

∆bLcbX
∗
t

}k
c=1
. The MLE is found by reduced rank

regression of Z0,t on Z1,t corrected for Zk,t.

For the case of the coexistence of I(d) and I(0) variables in the system of the

(M-)FCVAR, there will be shocks coming from the I(0) variables. The effects of

those shocks can either be transitory or permanent on the I(d) variables. In the

rest of this section, we show that the shocks associated with the I(0) variables

produce zero long-run impact on the fractional variables only when a particular

model design is considered. We follow the approach of FHP (2016) to control

for the long-run effects of the I(0) variables and extend their work by allowing for

variation in the number of weakly exogenous I(d) variables within the (M-)FCVAR

framework.

For simplicity, we consider the M-FCVAR with only one lag (k = 1) as follows

∆bX∗t = αβ′LbX
∗
t + Γ1∆bLbX

∗
t + εt (1.27)
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We start with the case where only n I(d) variables, x1t and x2t, are present in

the M-FCVAR. Applying the operator ∆d−b to x1t and x2t, we obtain X∗t = (x∗1t,

x∗2t)
′ which is fractionally integrated of order b. We define α′true =

(
α∗1 α∗2

)
and its orthogonal complement α′true⊥ =

(
θ∗ λ∗

)
as a l × n matrix, which

gives α′true⊥αtrue = θ∗α∗1 + λ∗α∗2 = 0. There are a number of different ways of

defining the common stochastic trend. Here, we follow Gonzalo and Granger

(1995) in estimating the permanent and transitory (PT) components of X∗t . As in

equation (1.27), X∗t can be explained with regard to a smaller number, l = n− r,

of I(b) variables, defined as common factors ft = α′true⊥(x∗1t, x
∗
2t)
′ and r I(0)

variables zt = β′(x∗1t, x
∗
2t)
′ conditional on that (α′true⊥, β)′ is nonsingular. The

Gonzalo and Granger (1995) definition requires the I(b) common factors ft to be

linear combinations of the observable variables and also requires that zt does not

Granger-cause ft in the long run. The PT approach exhibits two main advantages

such as: (1) ft is unique and can be easily obtained from the (M-)FCVAR;

(2) hypothesis testing on the common trends is straightforward and follows a

chi-square distribution. The Gonzalo and Granger (1995) decomposition has been

widely applied in various studies such as Baillie et al. (2002), Banerjee, Marcellino,

and Osbat (2004), Blanco, Brennan, and Marsh (2005), Bollerslev et al. (2013) and

Dolatabadi, Nielsen, and Xu (2015), among others.

We then add x3t, the q × 1 I(0) variables, into the system of the M-FCVAR

and adopt α and β specified in equation (1.23). The ‘true’error correction term,

ξt, is given by

ξt = β′1x
∗
1t + β′2x

∗
2t (1.28)

and the ‘pseudo’error correction term is x3t.

Proposition 1 In the equations of the M-FCVAR (1.26) where the I(b) dependent

variables constitute the common component, the ‘pseudo’error correction term, x3t

in levels form, is not present, which ensures that shocks associated with x3t have

only zero long-run effects on the fractionally integrated variables.
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Proposition 1 suggests that: if all the fractional variables, x∗1t and x∗2t, are

endogenous, there is a requirement for δ∗1 = 0 and δ∗2 = 0; if any fractional variables

are weakly exogenous, loadings on the ‘true’error correction term equate to zero for

equations where the response variables are exogenous; and loadings on the ‘pseudo’

error correction term equate to zero for equations where the dependent variables

constitute the permanent components as defined in Gonzalo and Granger (1995).

We take into account each of the three possibilities: (a) all the fractional variables

are endogenous; (b) there are as many weakly exogenous fractional variables as

common trends; (c) the number of weakly exogenous fractional variables are fewer

than the number of common trends. Case (b) is analogous to the example given

by FHP (2016). The remainder of this section discusses how the I(0) variables

should be accounted for in the M-FCVAR model if the shocks to the I(0) variables

produce only transitory impact on the fractional variables. However, it is worth

mentioning that the Proposition 1 also applies to the FCVAR model introduced

earlier since the FCVAR differs from the M-FCVAR only in terms of the integration

orders of the long-memory variables within the system.

Proof. [Case a] To ensure that the shocks arising from the I(0) variables exert

transitory effects only on the I(b) variables, the common permanent components

of a system with a mixture of I(b) and I(0) variables should remain the same as

those in a system containing I(b) variables only given by

ft = α′true⊥

x∗1t
x∗2t

 = θ∗x∗1t + λ∗x∗2t (1.29)

We then extract permanent components within the model (1.27) by multiplication

with the matrix

(
θ∗ λ∗ 0 · · · 0︸ ︷︷ ︸

q

)
. Next, we substitute x∗2t = (β′2)−1(ξt− β′1x

∗
1t)
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and obtain

∆bft = (θ∗δ∗1 + λ∗δ∗2)Lbx3t (1.30)

+
(
θ∗Γ11 + λ∗Γ21 − (θ∗Γ12 + λ∗Γ22)(β′2)−1β′1

)
∆bLbx

∗
1t

+(θ∗Γ12 + λ∗Γ22)(β′2)−1∆bLbξt + (θ∗Γ13 + λ∗Γ23)∆bLbx3t + εft

Let wt = (∆bft, ξt, x3t)
′, so that equation (1.30) can be expressed in the general

form

wt = B1Lbwt +B2L
2
bwt + εt (1.31)

We then substitute equation ft = θ∗x∗1t + λ∗x∗2t into (1.31) and expand it to

∆bft = (B1
12 +B2

12)Lbξt + (B1
13 +B2

13)Lbx3t (1.32)

+
(
B1

11θ
∗ −B2

11λ
∗(β′2)−1β′1 −B1

11β
′
1 +B2

11θ
∗)∆bLbx

∗
1t

+
(
B1

11λ
∗(β′2)−1 −B2

12 +B2
12λ
∗(β′2)−1

)
∆bLbξt −B2

13Lb∆
bx3t

−B2
11θ
∗∆2bLbx

∗
1t −B2

11λ
∗(β′2)−1∆2bLbξt −B2

11λ
∗(β′2)−1β′1∆2bLbx

∗
1t + ε1t

with each term in analogous positions to those in equation (1.30). Comparing

equation (1.32) with (1.30), we have

0 = B1
12 +B2

12 (1.33)

θ∗δ∗1 + λ∗δ∗2 = B1
13 +B2

13

We define the characteristic polynomial of equation (1.31)

B(z) = Ip −B1(1− (1− z)b)−B2(1− (1− z)b)2 (1.34)

and thus B(1) = Ip −B1 −B2.

The moving average representation of wt is given by

wt = B(L)−1εt = C(L)εt (1.35)
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where C(L) = Ip + C1L+ C2L
2 + C3L

3 + · · · , so that

C(1)B(1) = I (1.36)

Shocks associated with the I(0) variables, x3t and ξt, are transitory, suggesting

that the response of the first vector, ft, to shocks arising from x3t and ξt at

infinity should be equal to zero. Thus we should have C12(1) = 0 and C13(1) =

0. Linking these conditions to equation (1.36), we obtain C11(1)B12(1) = 012

and C11(1)B13(1) = 013. The element C11(1) represents the response of x∗1t

to the permanent shock on the long-term run, which is non-zero by definition.

Consequently, we have B12(1) = 012 and B13(1) = 013, which leads to

B1
12 +B2

12 = 0 (1.37)

B1
13 +B2

13 = 0

Substituting equation (1.37) into (1.33), we obtain that δ∗1 = 0 and δ∗2 = 0 since

θ∗ and λ∗ are not null matrices.

If there are as many weakly exogenous long-memory variables as permanent

components (common trends), e.g. x∗1t is the l × 1 I(b) exogenous variables, it

requires that α∗1 = 0 and δ∗1 = 0 for shocks associated with the I(0) x3t to have

transitory effects only. This suggests that, in the equations where the response

variables are exogenous, both ‘true’and ‘pseudo’error correction terms, ξt and

x3t, do not appear.

Proof. [Case b] We now have x∗1t as the l×1 vector of I(b) variables whose shocks

have permanent effects, x∗2t as the r× 1 vector of I(b) variables whose shocks have

transitory effects and x3t as the q×1 vector of I(0) variables whose shocks are also

transitory. Accordingly, α∗1 is an l×r null matrix while α∗2 is an r×r matrix of full

rank. Thus the orthogonal complement of αtrue becomes α′true⊥ =

(
Il×l 0l×r

)
.
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It then follows that equation (1.30) can be written as

∆bft = ∆bx∗1t (1.38)

= α∗1Lbξt + δ∗1Lbx3t + (Γ11 − Γ12(β′2)−1β′1)∆bLbx
∗
1t

+Γ12(β′2)−1∆bLbξt + Γ13∆bLbx3t + εft

Comparing equation (1.32) with (1.38), we obtain

α∗1 = B1
12 +B2

12 (1.39)

δ∗1 = B1
13 +B2

13

Substituting equation (1.37) into (1.39), we conclude that α∗1 = 0 and δ∗1 = 0.

Finally, another possible situation is where there are 0 < j < l weakly exogenous

long-memory variables with respect to the co-integrating relationships. We partition

X∗t and α as

X∗t =



x∗1(j)t

x∗1(l−j)t

x∗2t

x3t


α =



α∗1(j) δ∗1(j)

α∗1(l−j) δ∗1(l−j)

α∗2 δ∗2

α∗3 δ∗3


p×(r+q)

where x∗1(j)t is the (j × 1) vector of exogenous long-memory variables and the rest

of variables are all endogenous. α∗1(j) (α∗1(l−j)) and δ
∗
1(j) (δ∗1(l−j)) are, respectively,

the first j (last (l − j)) rows of α∗1 and δ∗1. It requires that α∗1(j) = 0, δ∗1(j) = 0,

δ∗1(l−j) = 0 and δ∗2 = 0 so that shocks associated with the I(0) x3t have zero

long-run effects only on the other variables.

Proof. [Case c] Given that there are j < l weakly exogenous long-memory

variables, α∗1(j) is the (j × r) null matrix. Therefore, the orthogonal complement
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of αtrue can be written as

α′true⊥ =

 Ij×j 0j×(l−j) 0j×r

0(l−j)×j θ∗(l−j)×(l−j) λ∗(l−j)×r


where θ∗ and λ∗ are not null matrices. We then obtain the common permanent

components of the system as

∆bft = ∆b

(
x∗1(j)t

(
θ∗x∗1(l−j)t + λ∗x∗2t

))′
(1.40)

which can be taken as a combination of cases (a) and (b). We consider the

components x∗1(j)t and
(
θ∗x∗1(l−j)t + λ∗x∗2t

)
separately and require that α∗1(j) = 0,

δ∗1(j) = 0, δ∗1(l−j) = 0 and δ∗2 = 0 by following the procedure described in cases (a)

and (b).

1.4 Simulation Study

To further illustrate the superiority of the M-FCVAR model when applied in a

system with a mixture of I(d) and I(0) variables, a simulation study is conducted

to compare the FCVAR and M-FCVAR in terms of the model fit and parameter

estimation.

We consider a simple fractional and co-fractional process Xt = (X1t, X2t, X3t)
′

similar to Example 3 of Johansen (2008):

X1t = ∆−d+ ε1t + ∆−d+ ε2t + ∆−d+ ε3t −∆
−(d−b)
+ ε2t + ε3t (1.41)

X2t = ∆−d+ ε1t + ∆−d+ ε2t + ∆−d+ ε3t + ∆
−(d−b)
+ ε2t + ε3t

X3t = ε1t + ε2t + ε3t

where εt = (ε1t, ε2t, ε3t)
′ is i.i.d. (0, I3). In equation (1.41), ∆dXt ∈ F(0), which

implies that Xt ∈ F(d). In addition, the shock arising from the I(0) variable

X3t produces non-zero long-run effects on both X1t and X2t and the two fractional
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variablesX1t andX2t are fractionally co-integrated of order CI(d, b). In estimation

of the FCVAR and M-FCVAR models, we employ the natural normalization of the

β matrix as

β′ =

1 β1 0

0 0 1


where β1 = −1 in our case. Here, the relation between X3t and (X1t + β1X2t) is

analogous to the relation between returns and the variance risk premium introduced

earlier. TheMonte Carlo simulation is based on 10000 replications, with the sample

size T =(2500, 1000, 500). It should be noted that the M-FCVAR is equivalent to

the FCVAR only when d = b so that, in practice, it is necessary to determine the

presence of long memory, i.e. d− b, in the co-integrating residuals of the fractional

variables before introducing the I(0) variable into the system. In the simulation,

we vary d in the range 0.4 to 0.8 as commonly seen in the empirical studies and

consider cases with the gap between d and b equal to 0.1 and 0.2. Since the shock

to X3t has permanent effect on the fractional variables in equation (1.41), we do

not impose zero restrictions on the α matrix in the estimation of the FCVAR and

M-FCVAR. In each case, we set rank as two, i.e. one ‘true’co-integrating relation

and one ‘pseudo’co-integrating relation, and let lag equal to zero. The MSE of

model estimates and the BIC are reported in Table 1(a).

In Table 1(a), the estimates of the model parameters, d̂ and β̂1, are shown

to become more precise as the sample size increases. Under the same fractional

integration order d, the precision in the estimates of model parameters as well

as the in-sample fit improve as b increases. The advantage of the M-FCVAR is

more evident in Table 1(b), where the gains are measured by the reduction in the

values of MSE and BIC of the M-FCVAR relative to those of the FCVAR. We find

that the M-FCVAR achieves a better in-sample fit, i.e. lower BIC, and produce

less biased estimates in almost all cases considered. In addition, such superiority

generally improves with the gap between d and b. This example illustrates the

advantages of the M-FCVAR in a mixture of I(d) and I(0) variables under the
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presence of long memory in the co-integrating error. Next, we provide a different

example to justify the usefulness of Proposition 1, i.e. the need to restrict the

impact of the shock to the I(0) variable.

To let the shock arising from the I(0) variable has only transitory effect on the

other variables, we design the experiment as follows

X1t = ∆−d+ ε1t −∆
−(d−b)
+ ε2t (1.42)

X2t = ∆−d+ ε1t + ∆
−(d−b)
+ ε2t

X3t = ε2t + ε3t

where εt is i.i.d. (0, I3). This mimics case (a) in section 1.3.2 where the common

permanent component is made up of X1t and X2t and the shock to X3t has zero

long-run impact on X1t and X2t. According to Proposition 1, zero restrictions

δ∗1 = δ∗2 = 0 are required to prevent the shock associated with X3t from having

permanent effect on X1t and X2t. In this example, we only consider the M-FCVAR

due to its superiority over the FCVAR outlined above. To ascertain the influence

of the properties of the shock to the I(0) variable upon the estimation results,

we implement the M-FCVAR with and without the restrictions δ∗1 = δ∗2 = 0, in

which cases the impact on the I(d) variables of the I(0) variable is transitory

and permanent, respectively. The MSE and BIC of the M-FCVAR in these two

scenarios are reported in Table 2(a) and the percentage gains of the M-FCVARwith

zero restrictions are provided in Table 2(b). In almost all cases, higher precision in

the parameter estimation and better in-sample fit are observed for the M-FCVAR

where the zero restrictions are imposed on the α matrix to restrict the impact of

the shock coming from the I(0) variable.
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1.5 Empirical Study

1.5.1 Data and Volatility Metrics

Our empirical analysis is based on high-frequency data−for the period September

22, 2003 to December 31, 2013−of the aggregate S&P 500 composite index1 and

the SPDR S&P 500 EFT TRUST (SPY) index, and the daily data of the CBOE

VIX volatility index obtained from Tick Data Inc..

The annualized VIX volatility index is transformed into a monthly squared

version

V IX2
t = log

(
30

365
(V IXCBOE

t )2

)
(1.43)

where the time subscript t refers to the daily observation. To obtain the 5-minute

realized variance of the S&P 500 and SPY, we calculate the intraday returns within

each 5-minute interval

rt,j = 100

(
log(pct,j) + log(pot,j+1)

2
−

log(pct,j−1) + log(pot,j)

2

)
(1.44)

where pct,j (p
o
t,j) is the closing (opening) price of the jth intraday interval. The

daily return is thus given by rt =
∑M

j=1 rt,j, where M is the number of intervals

per trading day. Here we rely on a simple realized variance estimator proposed by

Barndorff-Nielsen and Shephard (2002), which equals the sum of intraday squared

returns, rvt =
∑M

j=1 r
2
t,j. In order to measure the return variation during the

overnight period, we add the squared overnight return, derived as the squared

close-to-open logarithmic price change, to the realized variance, rvt, obtained over

the trading day. As indicated by Andersen and Bondarenko (2007), the impact

of the lack of detailed information on the price movement overnight is trivial due

to the relatively low volatility during non-trading periods. Given that the VIX

index reflects market expectations of the one-month cumulative variation of the

corresponding aggregate market index, we compute the one-month forward horizon

1We extend the data employed in BOST (2013) by two years.
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of the variance measure in order to match the VIX. Both V IX2
t and RVt are in

logarithmic form.

RVt = log

(
22∑
i=1

rvt+i

)
(1.45)

With the construction of RVt, loss of one month’s observations at the end of the

period reduces the sample size to 2566 observations.

Standard summary statistics for the return and variance series are reported in

Table 1.3. In line with the existing literature, daily returns are serially uncorrelated

with a mean value approximately equal to zero. However, the variance series show

substantially slow decaying rates in their autocorrelations, which is indicative of

strong long-memory properties. In addition, the mean value of V IX2
t is greater

than that of RV SP500
t and RV SPY

t , suggesting a negative variance risk premium.

1.5.2 Estimation Results

In the subsequent analysis, we first employ a semiparametric approach to estimate

the fractional integration order of each of variances and examine the presence of

the fractional co-integration between the implied-realized variances for the case

of S&P 500 and SPY, respectively. As suggested by Carlini and Santucci de

Magistris (2017), these procedures help to solve the identification problem of the

FCVAR model. We then accommodate the long-run and short-run dynamics

of (RVt, V IX2
t )′ using the FCVAR model. A direct comparison between the

FCVAR andM-FCVAR is provided once returns are introduced to the system (RVt,

V IX2
t )′. Finally, we evaluate the return predictability implied by the FCVAR and

M-FCVAR models. The model estimates for the system (RVt, V IX2
t , rt)

′ cannot

be easily used for the out-of-sample forecasting because the RVt is not known at

time t. Hence, we also estimate the models with (RVt−22, V IX2
t , rt)

′ and the

relation between RVt−22 and V IX2
t is investigated using the same method as we

implement for (RVt, V IX2
t )′. The time span for the case of (RVt−22, V IX2

t , rt)
′ is

from August 21, 2003 to November 27, 2013, so that the total observations remain

2566.
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We begin by determining the fractional integration d of the RVt, RVt−22 and

V IX2
t employing the exact local Whittle estimator of Shimotsu and Phillips (2005).

The results are outlined in Table 1.4 where the selection of the parameter m is

determined by the log-log periodograms of the variance series. To capture the

long-run dependency, we set the truncation parameter2 to jmax = 35, from which

the periodogram of each of the variances drops steeply, as indicated in Figure 1.1.

Table 1.4 suggests that all series considered, RVt, RVt−22 and V IX2
t , exhibit the

long-memory property, where the magnitude of the memory of V IX2
t is greater at

d̂V IX2
t

= 0.765. This is consistent with Bandi and Perron (2006) and Kellard,

Dunis, and Sarantis (2010) who show that the implied and realized volatility

relation may lie in a non-stationary region3 where d̂ ≥ 0.5. As a necessary condition

for the presence of fractional co-integration, we examine the equality of integration

orders of (RVt, V IX2
t )′ and (RVt−22, V IX2

t )′ for both cases of S&P 500 and SPY.

A large value of the test statistic T̂0 is evidence against the null hypothesis of

the equality of d̂. Specifically, in comparing the T̂0 with the 95% critical value

of the χ2(1) distribution (3.841), we accept the null and take the average d̂ as

1
2
(d̂RVt + d̂V IX2

t
) or 1

2
(d̂RVt−22 + d̂V IX2

t
). To solve the identification problem of

the FCVAR framework, we impose a lower-bound restriction on d according to

equation (1.21), i.e. d̂ − 0.15 × d̂. We also set the average d̂ as a starting value

in the numerical optimization of the likelihood function of both the FCVAR and

M-FCVAR. Results of the fractional co-integration determination of Nielsen and

Shimotsu (2007) are presented in columns 5-7 of Table 1.4. Given that L(1) < L(0)

for the (RVt, V IX2
t )′ and (RVt−22, V IX2

t )′ of both S&P 500 and SPY, i.e. r̂ = 1,

we confirm the presence of the co-fractional relation in all cases analyzed from the

perspective of the frequency domain.

Before proceeding to the systems with I(d) and I(0) variables, we first consider

2We choosem = [T 0.45] = jmax = 35 in the univariate exact local Whittle likelihood procedure
of Shimotsu and Phillips (2005).

3It should be noted that lower d estimates of the realized and implied volatility, e.g. below
0.5, are found in Christensen and Nielsen (2006) and BOST (2013) using different volatility
constructions.
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a simple situation containing (RVt, V IX2
t )′ or (RVt−22, V IX2

t )′ while using the

FCVAR with deterministic terms, as suggested by Johansen and Nielsen (2015)

∆d(Xt − µ) = αβ′∆d−bLb(Xt − µ) +

k∑
c=1

Γc∆
dLcb(Xt − µ) + εt (1.46)

where the level parameter µ serves to reduce the effects of pre-sample observations.

Lag k is selected by following a procedure detailed in Dolatabadi, Nielsen, and Xu

(2016). Estimation results of S&P 500 are outlined in Table 1.5 where Panel (A)

and Panel (B) correspond to (RV SP500
t , V IX2

t )′ and (RV SP500
t−22 , V IX2

t )′, respectively.

These serve as a benchmark for comparisons when the I(0) returns are not present.

In Panel (A) using the rank test of Johansen and Nielsen (2012), we first confirm

the presence of fractional co-integration between the RV SP500
t and V IX2

t by having

the rank equal to one, which is consistent with the conclusion obtained from Table

1.4 where a semiparametric method is considered. We then find b̂ < d̂, which

is indicative of long memory in the co-integrating residuals. The adjustment

parameters in matrix α̂ are significantly different from zero with the expected

signs and β′ 6=
(

1 −1

)
. To further evaluate the endogeneity and exogeneity

properties of the RV SP500
t and V IX2

t , and the long-run relation between the two,

we implement Likelihood Ratio (LR) tests of the following hypotheses

Hβ : long-run unbiasedness in implied-realized variances β′ =
(

1 −1

)
H1
α : realized variance is weakly exogenous (α∗1 = 0)

H2
α : implied variance is weakly exogenous (α∗2 = 0)

and list the outcomes in Table 1.5. As Hβ, H1
α and H

2
α are all rejected at the 5%

significance level, this suggests that the RV SP500
t and V IX2

t are both endogenous

and that the V IX2
t is a biased forecast

4 of RV SP500
t . Moving to Panel (B), we

4The latter finding contradicts those of Bandi and Perron (2006) and BOST (2013). This may
arise from two aspects. First, the series of interest are not the same. Where Bandi and Perron
(2006) concentrate on the monthly nonoverlapping observations of the VXO and the RVt of S&P
100 based on the daily returns, BOST (2013) use variance series recorded every 5 minutes. We
use similar data as in BOST (2013) but the RVt is recorded daily. Second, the model specification
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observe similar results such as the presence of fractional co-integration and long

memory in the co-integrating errors. However, we fail to reject Hβ and H2
α at the

5% significance level. First, this supports the hypothesis for the unbiased relation

between RV SP500
t−22 and V IX2

t . Second, it implies that the RV
SP500
t−22 is endogenous

and V IX2
t is weakly exogenous.

Next, we include the I(0) returns into the system of (RV SP500
t , V IX2

t )′ and

in Table 1.6 we present the difference in model estimation between the FCVAR

and M-FCVAR for this situation. Note that we now have one ‘true’co-integrating

relation between the RV SP500
t and V IX2

t and one ‘pseudo’co-integrating relation

arising from the I(0) returns. In addition to the hypothesis of the long-run

unbiasedness between the RV SP500
t and V IX2

t , Hβ, we are also interested in the

nature of the shock arising from returns, which is examined by the following test.

Hδ: shock to returns produces only a transitory effect on the variance series

δ∗1 = δ∗2 = 0

If the impact of the shock to returns on the variances is transitory, we need to

impose zero restrictions on δ∗1 and δ∗2 since both the RV
SP500
t and V IX2

t are

endogenous. According to Proposition 1, the I(0) variable rt does not appear

in levels form in the equations of the FCVAR or M-FCVAR where the RV SP500
t

(V IX2
t ) is the dependent variable to ensure the shock arising from returns only

delivers a zero long-run effect. In our empirical study, we account for the properties

of the shock to returns in both the FCVAR and M-FCVAR because the impact of

the shock to returns on the variances is crucial for the precision in the estimation

of model parameters as shown in the simulation study in section 1.4.

With the results of the likelihood ratio tests in Table 1.6, Hβ is rejected at the

adopted is different. Where Bandi and Perron (2006) apply a semiparametric narrow band least
squares estimator which does not parameterize the short-run dynamics, BOST (2013) estimate
the FCVAR with the fixed value of d and a restricted constant. However, we allow the parameter
d to be jointly estimated with the other parameters and choose to introduce the level parameter
µ as in equation (1.46).
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5% significance level under the M-FCVAR but not under the FCVAR. The latter

finding is different from that obtained in the FCVAR estimation for (RV SP500
t ,

V IX2
t ,)
′ in Table 1.5. In addition, Hδ is rejected under both models, suggesting

that the shock associated with returns has a nonzero long-run effect on the implied

and realized variances. For this case, the parameters δ∗1 and δ
∗
2 capture the long-run

dynamic “leverage effect” and the rejection of Hδ accords with Corsi and Renò

(2012) and Bollerslev, Sizova, and Tauchen (2012). Unlike the FCVAR in Panel

(A), the M-FCVAR in Panel (B) achieves a better in-sample fit by having lower

BIC. Moreover, the estimates (d̂, b̂ and β̂) under the M-FCVAR are much closer

to those listed in Table 1.5 where returns are not added into the system. This

indicates that the M-FCVAR is less sensitive than the FCVAR model to the

introduction of the I(0) returns.

As for the case of (RV SP500
t−22 , V IX2

t , r
SP500
t )′, similar procedures are undertaken

and results are provided in Table 1.7. At the 5% significance level, we fail to reject

Hβ under the FCVAR but reject it under the M-FCVAR. The latter finding seems

inconsistent with that from the case of (RV SP500
t−22 , V IX2

t )′ in Table 1.5. However,

the M-FCVAR dominates the FCVAR in Table 1.7 by providing β̂ much closer to

that obtained from the bivariate case of (RV SP500
t−22 , V IX2

t ) where returns are not

involved. There is only trivial difference in the P value of the Hβ test between

the FCVAR (0.054) in Panel (B) of Table 1.5 and the M-FCVAR (0.046) in Table

1.7. Since the V IX2
t is weakly exogenous and RV

SP500
t−22 is endogenous as suggested

by the results in Table 1.5, we examine whether the shock arising from the I(0)

returns has a permanent impact on the variances by conducting the following test

Hαδ: shock to returns produces only a transitory effect on the variance series

α∗2 = δ∗2 = 0

Under both the FCVAR and M-FCVAR models, we fail to reject Hαδ, indicating

that the shock to returns exerts only a transitory effect on the variance series.

The restrictions α∗2 = δ∗2 = 0 are thus imposed on both models considered in
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order to restrict the impact of the shock associated with returns. Again, we find

that the M-FCVAR achieves a better in-sample fit and that (d̂, b̂ and β̂) given by

the M-FCVAR stays closer to that from Panel (B) of Table 1.5 which serves as a

benchmark model.

In the analysis above with the focus on the case of S&P 500, the superiority

of the M-FCVAR is observed in terms of the in-sample fit and insensitivity to the

introduction of I(0) returns. Next, we consider the case of SPY as a robustness

check. As before, we start with the system containing two variances only in the

estimation of the FCVAR. Panel (A) of Table 1.8 shows that the V IX2
t is an

biased forecast of RV SPY
t and that both V IX2

t and RV
SPY
t are endogenous in the

system of the FCVAR. In Panel (B), although biasedness still holds for (RV SPY
t−22 ,

V IX2
t )′, RV SPY

t−22 is found endogenous whereas V IX2
t is weakly exogenous, similar

to the case of S&P 500. We then account for the situation where returns are

introduced to (RV SPY
t , V IX2

t )′ and present the results of the FCVAR in Panel

(A) and those of the M-FCVAR in Panel (B) of Table 1.9. Under both the FCVAR

and M-FCVARmodels, we show thatHβ andHδ are rejected at the 5% significance

level, indicative of the biased relation between RV SPY
t and V IX2

t as well as the

nonzero long-run effect of the shock to returns on the variance series. In line with

the case of S&P 500, the M-FCVAR results in better in-sample fit compared with

the FCVAR and the estimates (d̂, b̂ and β̂) of the M-FCVAR are much closer to

those obtained from the case of (RV SPY
t , V IX2

t )′ in Table 1.8. Another comparison

between the FCVAR and M-FCVAR is made using the case of (RV SPY
t−22 , V IX

2
t ,

rSPYt )′ in Table 1.10, where the shock coming from returns is found to produce only

a transitory effect on the variances. Conclusions with regard to the superiority of

the M-FCVAR in a mixture of I(d) and I(0) variables remain intact for the system

(RV SPY
t−22 , V IX

2
t , r

SPY
t )′.
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1.5.3 Permanent and Transitory Shocks

To illustrate the dynamic dependencies implied by the FCVAR and M-FCVAR

models, we consider the Impulse Response Functions (IRF) related to three different

shocks within the system. For simplicity, we concentrate on the case of S&P 500

only. To separate the permanent and transitory components, we multiply the εt in

equation (1.46) with the matrix G =

(
α′⊥ β′

)′
following the work of Gonzalo

and Granger (1995), known as the PT decomposition discussed in section 1.3.2.

We then further orthogonalize the shocks using the idea of Gonzalo and Ng (2001),

see more details in Appendix. The implications of the three shocks are now more

apparent. We demonstrate the IRF for variance series in the system of (RV SP500
t ,

V IX2
t , r

SP500
t )′ in Figure 1.2. Under both the FCVAR and M-FCVAR models,

the first shock is permanent and associated with RV SP500
t , V IX2

t and r
SP500
t since

we impose no zero restrictions on the α matrix in Table 1.6. The second shock

is transitory and arises from the ‘true’ error correction term. The third shock

is also transitory and originates from the ‘pseudo’error correction term (rSP500
t )

only. In Figure 1.2, under both the FCVAR and M-FCVAR, the effect of the

permanent shock depicted in the first column persists over long periods while the

two transitory shocks in the second and third columns, respectively, decay at a

faster rate. The third column shows that the shock associated with rt initially

has positive (negative) impact on V IX2
t (RVt) and the effects on the variances

almost dissipate after three months. IRF with respect to the original shocks with

no PT decomposition are plotted in Figure 1.3. It is more evident that the shock

to returns, presented in the third column, delivers nonzero long-run effect on the

variances within the system of (RV SP500
t , V IX2

t , r
SP500
t )′.

In Tables 1.5 and 1.7, we conclude that the RV SP500
t−22 is endogenous and V IX2

t

is weakly exogenous and that the shock to rSP500
t has only a transitory effect

on the common component within the system. A more clear picture in terms

of the impact of the shocks can be found in Figure 1.4 where the IRF for the

two variances with respect to the permanent and transitory shocks, using the PT
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decomposition, are provided. The first shock is permanent and associated with the

V IX2
t only since the V IX

2
t , as a weakly exogenous variable, serves as the common

long-memory component within the system. The transitory shocks in the second

and third column have the same meaning as those in Figure 1.2 for the case of

(RV SP500
t , V IX2

t , r
SP500
t )′. In Figure 1.5 where we consider the IRF with respect

to the original shocks without using the PT decomposition, the shocks to RV SP500
t−22

and rSP500
t exert only transitory effects whereas the effect of the shock to V IX2

t

persists for long time periods.

1.5.4 Return Predictability

To outline the superiority of the M-FCVAR over the FCVAR for predicting future

returns, we calculate the predictive R2(h), where h denotes the time horizon,

using the impulse response functions (IRF) as in the work of BOST (2013), see

more details in Appendix. Values of the R2 represent the fraction of the variance

of the model-implied returns which are predictable. Two benchmark models5, the

long-memory adjusted VAR and AR, are also taken into consideration. We present

the R2(h) for systems of (RVt, V IX2
t , rt)

′ and (RVt−22, V IX2
t , rt)

′ of S&P 500

and SPY in Figures 1.6 and 1.7, respectively, where the horizon h ranges from 1

day to 100 days.

The upper panel of Figure 1.6 gives the values of the R2(h) for the system

of (RV SP500
t , V IX2

t , r
SP500
t )′ and the lower panel corresponds to the system of

(RV SP500
t−22 , V IX2

t , r
SP500
t )′. As compared with the FCVAR and M-FCVAR models,

VAR and AR result in almost no return predictability over all the horizons. The

forecasting superiority of the FCVAR framework, relative to alternative models, is

also documented in BOST (2013). The upper panel also shows that the M-FCVAR

is superior to the FCVAR in the degree of return predictability once h > 4. The

clearest advantages of the M-FCVAR is observed around the one-month horizon,

after which its superiority decreases gradually with the horizon h. The hump

5We include (∆dRVt, ∆dV IX2
t , rt)

′ for VAR estimation and let rt = βrt−1 + et for AR
estimation.

56



shape in the R2 of the FCVAR and M-FCVAR as a function of the horizon h is

consistent with Bollerslev, Tauchen, and Zhou (2009) and Bollerslev et al. (2014).

As for the case of (RV SP500
t−22 , V IX2

t , r
SP500
t )′, the superiority of the M-FCVAR is

evident only when h > 12. Moving to the case of SPY in Figure 1.7, the M-FCVAR

dominates the FCVAR in predicting returns when h > 5 for the system (RV SPY
t ,

V IX2
t , r

SPY
t )′ while such advantage is only observed when h > 32 for the system

(RV SPY
t−22 , V IX

2
t , r

SPY
t )′.

1.6 Conclusion

We modify the fractionally co-integrated VAR (FCVAR) of Johansen (2008) for

modelling systems with I(0) and I(d) variables, where there exists long memory in

the co-integrating residuals. The problem occurring particularly in the use of the

FCVAR with I(0) and I(d) variables is associated with the anti-persistent error

correction term when d > b, which brings fractional property to the model-implied

I(0) variables. To better accommodate the systems with I(0) and I(d) variables

when d > b, we propose a modified FCVAR, i.e., the M-FCVAR model, where the

fractional differencing operator ∆d−b is applied to the fractional I(d) variables. In

addition, we examine the nature of shocks arising from the I(0) variables in the

co-fractional system. We show that the shocks associated with the I(0) variables

have transitory effects on the fractionally integrated variables only when particular

equation specifications are considered and that the long-run impact of such shocks

is nonzero if no parameter restrictions are imposed on the FCVAR (M-FCVAR)

model. Our Monte Carlo study shows that the M-FCVAR delivers less biased

model estimates and better in-sample fit. Apart from this, inappropriate treatment

of the shock to the I(0) variable is found to lower the precision in the estimation of

model parameters as well as the in-sample fit. A comparison between the FCVAR

andM-FCVAR is also undertaken in an empirical application where market returns

are found more predictable using the M-FCVAR over long horizons.
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1.7 Appendix

1.7.1 Impulse Response Functions

We derive Impulse-Response Functions (IRF) below to gain a better understanding

of the dependencies implied by the M-FCVAR. We follow the steps outlined in

BOST (2013) where the FCVAR is adopted. First, we re-write equation (1.26)

by expanding the fractional differencing operator ∆d defined in equation (1.17) as

follows

∞∑
i=0

θi(b)L
iX∗t = αβ′(1−

∞∑
i=0

θi(b)L
i)X∗t +

k∑
c=1

Γc(1−
∞∑
i=0

θi(b)L
i)c

∞∑
i=0

θi(b)L
iX∗t +εt

(1.47)

For the case of lag k = 1, we can demonstrate X∗t in its infinite lag form by

X∗t = −
∞∑
i=1

θi(b)L
iX∗t + αβ′(1− 1−

∞∑
i=1

θi(b)L
i)X∗t (1.48)

+
k∑
c=1

Γc(1− 1−
∞∑
i=1

θi(b)L
i)c

∞∑
i=0

θi(b)L
iX∗t + εt

= −
∞∑
i=1

θi(b)L
iX∗t − αβ′

∞∑
i=1

θi(b)L
iX∗t

−Γ1

∞∑
i=1

(
i−1∑
l=0

θi−l(b)θl(b))L
iX∗t + εt

=
∞∑
i=1

(−Iθi(b)− αβ′θi(b)− Γ1

i−1∑
l=0

θi−l(b)θl(b))L
iX∗t + εt
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Next, we further expand equation (1.48) by allowing for multiple lags, k ≥ 1, and

provide the detailed algorithm below

Lag i 1 2 3 · · ·

|Lb| θ1(b) θ2(b) θ3(b) · · ·∣∣∆bLb
∣∣ = K1,i θ1(b) θ2

1(b) + θ2(b) 2θ1(b)θ2(b) + θ3(b) · · ·∣∣∆bL2
b

∣∣ = K2,i 0 θ1(b)K1,1 θ2(b)K1,1 + θ1(b)K1,2 · · ·∣∣∆bL3
b

∣∣ = K3,i 0 0 θ1(b)K2,2 + θ2(b)K2,1 · · ·
...

...
...

...
...∣∣∆bLcb

∣∣ = Kc,i

∑i−1
l=1 θl(b)Kc−1,i−l

...
...

...
...

...

(1.49)

where each element represents the coeffi cient at the corresponding lag i. Now, X∗t

can be written as

X∗t =
∞∑
i=1

(−Iθi(b)− αβ′θi(b)− Γ1K1,i + Γ2K2,i − Γ3K3,i + · · · )LiX∗t + εt(1.50)

=
∞∑
i=1

(−Iθi(b)− αβ′θi(b) +
k∑
c=1

(−1)cΓcKc,i)L
iX∗t + εt

=

∞∑
i=1

ΞiL
iX∗t + εt

Let e3′ ≡ (0, 0, 1) so that x3t = e3′X∗t . We express the M-FCVAR model-implied

infinite moving average representation for x3t below

x3t = e3′
∞∑
j=0

Φjεt−j (1.51)
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where the impulse responses, Φj can be constructed by the coeffi cients Ξi such as

Φ0 = I (1.52)

Φ1 = Ξ1

Φ2 = Ξ2 + Ξ2
1

...

Φj =

j−1∑
i=0

Ξj−iΦi

for Ξi = −Iθi(b)− αβ′θi(b) +
∑k

c=1(−1)cΓcKc,i.

We can then consider the IRF associated with the shocks to the permanent

and transitory components within the FCVAR or M-FCVAR model. Exploiting

the impulse response matrices that we derive in equation (1.52), we obtain the

following representation

X∗t = Φ(L)εt =


Φ11(L) Φ12(L) Φ13(L)

Φ21(L) Φ22(L) Φ23(L)

Φ31(L) Φ32(L) Φ33(L)



εt1

εt2

εt3

 (1.53)

which suggests that the number of shocks corresponds to the number of variables in

the system. Employing α′⊥, which is the orthogonal complement of α, we construct

G =

α′⊥
β′


Then the l × 1 (l = n− r) vector uPt = α′⊥εt and the (r + q)× 1 vector uTt = β′εt

are the permanent and transitory shocks, respectively; see Gonzalo and Granger

(1995). However, the shocks generated by the system might be mutually correlated

and thus we follow Gonzalo and Ng (2001) to obtain ‘orthogonalized’permanent

and transitory shocks. Let H denote the Cholesky decomposition of cov(Gεt) and

thus η̃t = H−1(Gεt), which is equivalent to imposing p× (p−1)/2 zero restrictions
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on the off-diagonals of cov(η̃t). We can now express X
∗
t as follows

X∗t = Φ(L)G−1HH−1Gεt = D̃(L)η̃t (1.54)

1.7.2 Predictive R-square

To quantify the predictability of the I(0) x3t, e.g. market returns, we write the

M-FCVAR model (1.26) in moving average form. We then further decompose x3t

into an expected and unexpected component and represent the model-implied R2

by the fraction of the variance of x3t which is predictable.

To decompose x3t into the expected and unexpected parts, first recall equation

(1.51) and write it in the form of continuously compounded x3t over h horizons. For

convenience, we replace x3t with xt in the subsequent equations with no confusion

hereinafter.

xht =
h−1∑
j=0

xt+j = e3′
h−1∑
j=0

∞∑
i=0

Φiεt+j−i (1.55)

On the basis of equation (1.55), we derive the decomposition (see Campbell (1991)

for more details)

xht = e3′
h−1∑
j=0

∞∑
i=j+1

Φiεt+j−i︸ ︷︷ ︸
expected

+ e3′
h−1∑
j=0

j∑
i=0

Φiεt+j−i︸ ︷︷ ︸
unexpected

(1.56)

The predictive R2 for the xt over h horizons implied by the model is given by

R2
h =

∑∞
k=1 e3

′(
∑h−1

j=0 Φk+j)Ω(
∑h−1

j=0 Φk+j)
′e3∑∞

k=−(h−1) e3
′(
∑h−1

j=max(0,−k) Φk+j)Ω(
∑h−1

j=max(0,−k) Φk+j)′e3
(1.57)

representing the fraction of the variance of xt which is predictable.
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Chapter 2

Forecasting Using Alternative

Measures of Model-Free

Option-Implied Volatility
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2.1 Introduction

In an effi cient market, the option price embodies all available useful information

about future movements of the underlying asset. Hence, traders and hedge fund

managers are primarily interested in option-implied volatility when making financial

decisions. As a natural forecast of return variation over the remaining life of the

relevant option, option-implied volatility has been frequently used in forecasting

future volatility, see Poon and Granger (2003) for an extensive review of the studies

on this topic. As opposed to the Black-Scholes (BS) implied volatility, model-free

option-implied volatilities have gained substantial popularity because, relying upon

no particular parametric model, they avoid potential mis-specification problems.

See, for example, Britten-Jones and Neuberger (2000), Carr and Wu (2006) and

Taylor, Yadav, and Zhang (2010).

One of the most widely used measures of model-free option-implied volatility is

the V IX volatility index, disseminated by the Chicago Board of Options Exchange

(CBOE). The V IX provides a measure of the expected value of the S&P 500 return

variation under the risk-neutral measure and is designed to closely mimic the

model-free implied volatility (MFIV ). Derived by Britten-Jones and Neuberger

(2000), the MFIV is defined as an integral of cross-section of out-of-the money

(OTM) European style put and call options over an infinite range of strikes for

the given maturity. Jiang and Tian (2005) show that the MFIV is a more

effi cient forecast for future realized volatility than the BS implied volatility and the

historical realized volatility. However, Andersen and Bondarenko (2007) argue that

the MFIV and V IX are biased forecasts of future volatility since they contain

non-trivial and time-varying risk premiums. As a more important part of their

empirical study, Andersen and Bondarenko (2007) investigate the properties of

the corridor implied volatility index (CX), which is obtained from the MFIV

by truncating the integration domain between two barriers. Being less sensitive

to variation in the market variance risk premium, the CX with the narrowest
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corridor width is found to dominate other implied volatility measures in the work

of Andersen and Bondarenko (2007). Another advantage of the CX is that it

is constructed only over intervals of the risk-neutral density (RND) where price

quotes are directly observable. By contrast, the computation requirements for

deriving the MFIV are not satisfied by the existing data as options are traded

only over a finite range of strikes. Andersen, Bondarenko, and Gonzalez-Perez

(2015) further improve the construction of the CX by adopting the concept of

an invariant coverage across time, which ensures that the CX is coherent in the

time series dimension. As compared with the V IX, which is based upon strongly

time-varying coverage of the tails of the RND, the CX uses a consistent range of

strikes, which serves as a more accurate volatility indicator over time.

In addition to the use of implied volatilities in forecasting future volatility,

prior studies also indicate that the V IX may carry some predictive power for

future returns on stock market indices. For example, Giot (2005) finds that future

returns are always positive (negative) for very high (low) levels of the V IX. This

accords with the work of Guo and Whitelaw (2006) who provide evidence for the

positive relationship between market returns and implied volatilities. The positive

relationship between the V IX and future returns is also documented in Banerjee,

Doran, and Peterson (2007) who suggest that both levels and innovations of the

V IX are significantly related to future returns. That finding is indicative of a

negative volatility risk premium, which is consistent with Ang et al. (2006) where

stocks with high past sensitivities to the innovation in the V IX display on average

future decreasing returns. The evidence that the V IX is a priced risk factor in

the time series of returns helps to explain why the V IX may exhibit predictive

power for future returns. Although a substantial empirical literature is devoted

to the investigation of risk-return relations (see, e.g., the discussion in Rossi and

Timmermann (2010), and the many references therein), most rely on the V IX as

a directly observable proxy for risk. Other measures of model-free option-implied

volatility are rarely considered.
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In spite of the increasing popularity of the V IX index, measurement errors in

its construction has been noted by Jiang and Tian (2005). The common problem

inherent in the computation of the V IX as well as other measures of model-free

implied volatility is that only a discrete set of strikes is actually traded in the

market and that very low and high strikes are usually absent. To account for

measurement errors induced by the limited number of strikes, Jiang and Tian

(2005) apply the cubic spline method to interpolate between existing strikes and

exploit a flat extrapolation scheme to infer option prices beyond the truncation

point. Andersen and Bondarenko (2007) address the issue induced by the discrete

set of strikes via the positive convolution approximation method proposed by

Bondarenko (2003). Although interpolation and extrapolation techniques are

widely accepted, it remains unclear how such techniques affect the performance of

implied volatilities in predicting future returns and realized volatility. In addition,

there appears to be no consensus on the roles played by the OTM call and put

options in the forecast of future volatility and returns. Jackwerth (2000), Jones

(2006) and Bates (2008) suggest that the OTM put options may be irrelevant to

known risk factors affecting stock returns. Using a cubic spline interpolation and

flat extrapolation methods, Dotsis and Vlastakis (2016) also find that the OTM

put options, especially deep OTM puts, do not contain important information

with respect to equity volatility risk. They also show that the OTM call options

subsume all useful information embedded in the OTM puts for forecasting future

realized volatility. However, Andersen, Fusari, and Todorov (2015) show that the

left tail risk, driving a substantial part of the OTM put option dynamics, exhibits

strong predictive power for future excess market returns over long horizons.

Against this background, this study examines the performance of model-free

option-implied volatilities in predicting future returns and volatility and contribute

to the existing literature in the following ways. First, this chapter is among the first

to provide simulation evidence to justify the use of the interpolation/extrapolation

procedure for better forecasting performance of implied volatilities. The usefulness
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of this procedure is verified in both the simulation and empirical studies. The

adoption of a stochastic volatility model with both jumps and volatility risk

premium in the present study mimics more closely the observed data dynamics.

This can be seen as an extension of the work of Zhang, Taylor, and Wang (2013)

where a simple square-root model of Cox, Ingersoll, and Ross (1985) is employed

to investigate the number of options upon the information content of the MFIV

in an in-sample analysis. Distinct from Zhang, Taylor, and Wang (2013), this

chapter conducts comprehensive out-of-sample (OOS) volatility forecasts made by

different implied volatility measures including the MFIV .

Second, to ascertain the relevance of the OTM call and put options, this chapter

considers implied volatility measures constructed entirely from the cross-section of

OTM put (call) options and measures which discard the deep OTM put (call)

options. This is achieved by splitting the MFIV into different components with

the use of different intervals of the cross-section of OTM put and call option

prices. Similar constructions of implied volatilities are conducted in Dotsis and

Vlastakis (2016) who examine the price of volatility risk in the cross-section of

stock returns. With a different focus from that of Dotsis and Vlastakis (2016), the

present chapter compares the fraction of the time-series variation in future returns

that are explained by various measures of implied volatility. Return predictability

provided by implied volatilities is investigated in the pre- and post-crisis periods,

respectively. The impact of the recent financial crisis is accounted for since the

crisis represents an informative period during which uncertainty and risk aversion

may have been more evident than the non-crisis period, see Hilal, Poon, and Tawn

(2011) and Bates (2012).

A preview of the main findings of this study is as follows. Simulation results

show that, with a wider range of strikes upon which model-free option-implied

volatilities are based, the OOS volatility forecast becomes more accurate while

returns tend to be less predictable. In addition, a finer partition of strikes usually

leads to greater predictive power of implied volatilities for future returns. These
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findings warrant the application of an interpolation and extrapolation scheme in

the practice of volatility forecast and an interpolation method only in return

predictions. In the empirical study using SPX options from 2003 to 2013, the

aforementioned procedure, i.e. interpolation/extrapolation methods, significantly

improves the performance of different measures of implied volatility considered in

the OOS volatility forecast and gives rise to higher return predictability for most

measures in the post-crisis period. With the use of this procedure, the SPX OTM

call options substantially dominate the OTM put options with regard to their

forecasting performance. The empirical findings outlined above are supported by

the simulation evidence. However, when measures of implied volatility are derived

from the listed options only, the superiority of the OTM put options over the OTM

call options is noted in volatility forecast and post-crisis return predictions.

The rest of this chapter is organized as follows. Section 2.2 provides the

construction of various model-free option-implied volatility measures and realized

volatility considered in this study. Section 2.3 outlines the techniques adopted

to address measurement errors in the construction of various implied volatilities.

Section 2.4 presents the design and settings of the Monte Carlo study along with

the results. Section 2.5 describes the data and section 2.6 reports the empirical

results. Conclusion is provided in section 2.7.

2.2 Construction of Volatility Measures

This section provides an outline of the construction of various measures of volatility.

Section 2.2.1 gives an introduction of theMFIV and its components derived from

OTM calls and OTM puts, respectively. The V IX index is then reviewed as

a close approximation of the MFIV . Section 2.2.2 discusses the computation

of model-free corridor implied volatilities where three different segments of the

cross-section of OTM put and call option prices are adopted. Finally, in section

2.2.3, the high-frequency realized volatility is defined, which is used to obtain an

accurate measure of the ex-post return variation of the underlying asset.
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2.2.1 Model-Free Implied Volatility and VIX

The concept of the MFIV is derived by Britten-Jones and Neuberger (2000).

Its computation for a given maturity involves market prices for a continuum of

European-style options with strikes from zero to infinity, which takes the form

MFIV =

√
2

τ
erτ
[∫ F

0

P (τ ,K)

K2
dK +

∫ ∞
F

C(τ ,K)

K2
dK

]
(2.1)

where r is the annualized risk-free interest rate as measured by the corresponding

U.S. Treasury bill rate, τ is time-to-maturity measured in annual units, F is

the forward price for transaction at maturity τ , P (τ ,K) and C(τ ,K) are the

mid-quotes for European put and call options with strike price K and maturity τ .

By construction, only OTM options (call if K > F and put otherwise) are taken

into account. For a different purpose, Demeterfi et al. (1999) develop the idea of

fair value of future volatility, represented by Vddkz, upon which the VIX is based.

Vddkz is also independent of any option pricing model and can be extracted from

option prices directly such as

Vddkz =

√√√√2

τ

{
rτ −

[
S0
S∗
erτ − 1

]
− ln(S∗/S0) + erτ

∫ S∗

0

P (τ ,K)

K2
dK + erτ

∫ ∞
S∗

C(τ ,K)

K2
dK

}

(2.2)

where S0 is the current asset price and S∗ denotes the stock price close to the

forward price. Jiang and Tian (2007) demonstrate that the Vddkz is conceptually

equivalent to the MFIV .

Motivated by Dotsis and Vlastakis (2016), the MFIV can be further divided

into two components; i.e., that from the OTM call options (V C) and that from

the OTM put options (V P ), which are given by

V C =

√
2

τ
erτ
∫ ∞
F

C(τ ,K)

K2
dK (2.3)
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and

V P =

√
2

τ
erτ
∫ F

0

P (τ ,K)

K2
dK (2.4)

where MFIV 2 = V C2 + V P 2.

The V IX index is based on the idea of fair value of future volatility developed

by Demeterfiet al. (1999). The general formula for computation of the V IX index

is given by

V IX =

√
2

τ

∑
i

∆Ki

K2
i

erτQ(τ ,Ki)−
1

τ
(
F ∗

K0

− 1)2 (2.5)

where τ = 30/365 is the option maturity, Ki is the strike price of the ith OTM

option in the calculation, K0 is the first strike price below the forward index level

F ∗(K0 ≤ F ∗), Q(τ , Ki) is the midpoint of the latest available bid and ask prices

of the OTM option at strike Ki, and ∆Ki stands for the strike price interval as

∆Ki = (Ki+1 −Ki−1)/2. The forward price, F ∗, is calculated from at-the-money

options according to put-call parity, F ∗ = K∗ + erτ [C(K∗, τ) − P (K∗, τ)] and K∗

is determined as the strike price for which the difference between the call and put

prices is minimal. It is worth noting that, at the boundaries of strike prices, ∆Ki

is adjusted as the difference between the two highest (or lowest ) strike prices. In

addition, at the strike price K0, the option price Qi(τ ,Ki) is modified to be the

average of call and put prices. The CBOE computes the VIX from an interpolation

of two volatility indices with respect to two different maturities: τ lt and τ
u
t . The

VIX index is finally obtained by taking a weighted average of these two VIX

measures based on τ lt and τ
u
t

V IX = 100×
√[

w1(V IX2
t (τ lt)τ

l
t) + w2(V IX2

t (τut )τ
u
t )
]
× 365

30
(2.6)

where w1 =
τut −τ
τut −τ lt

and w2 =
τ−τ lt
τut −τ lt

so that w1 + w2 = 1.

Recall equation (2.2), we obtain the approximation below by applying Taylor’s

expansion of log function and discarding terms greater than the second order of

87



moments1.

rτ −
(
S0

S∗
erτ − 1

)
− ln(S∗/S0) = rτ −

(
F

K0

− 1

)
− ln(K0/S0) (2.7)

= ln(F/K0)−
(
F

K0

− 1

)
≈ −1

2

(
F

K0

− 1

)2

where the forward price (F ) at time τ is equal to S0e
rτ and S∗ is chosen as the first

strike price (K0) below the forward price. Replacing the term rτ −
(
S0

S∗
erτ − 1

)
−

ln(S∗/S0) with −1
2

(
F
K0
− 1
)2

, the discrete framework of equation (2.2) is identical

to the general formula for the VIX calculation in equation (2.5).

The VIX in equation (2.5) may give rise to different approximation errors such

as truncation, discretization, expansion and interpolation errors, see details in

Jiang and Tian (2005) and Jiang and Tian (2007). Here, we consider truncation

and discretization errors only since the others are widely regarded as negligible

and are unlikely to have any material impact on the forecasting performance of

implied volatilities.

The truncation error is due to the fact that very low or very high strike prices

are not available in practice. Let KL and KU denote the lowest and highest strikes

for a certain maturity, respectively. The infinite range of strike prices in equation

(2.2) is approximated by the CBOE with a finite range [KL, KU ] as follows

∫ K0

0

P (τ ,K)

K2
dK+

∫ ∞
K0

C(τ ,K)

K2
dK ≈

∫ K0

KL

P (τ ,K)

K2
dK+

∫ KU

K0

C(τ ,K)

K2
dK (2.8)

The magnitude of the truncation error is measured as

δtrunc = −2

τ
erτ
[∫ KL

0

P (τ ,K)

K2
dK +

∫ ∞
KU

C(τ ,K)

K2
dK

]
(2.9)

1The construction of the VIX index is based on the assumption that the stochastic process of
asset returns follow the Geometric Brownian Motion (GBM) and Ito’s Lemma (IL), where both
the GBM and IL assume returns to be continuous and symmetrically distributed and therefore
the moments higher than the variance neither exist nor generate effects on the return process.
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and such type of error gives rise to a downward bias in the computed volatility.

It is noted by Jiang and Tian (2007) that the δtrunc may vary significantly over

time as the interval [KL, KU ] is not fixed. The reasons are twofold. First, the

CBOE usually introduces new strikes when the underlying index is outside the

range of listed strikes. Second, the CBOE utilizes filters to exclude the potentially

problematic options in the VIX computation procedure.

The other type of error of interest is discretization error induced by the numerical

integration conducted using a coarse grid of available strike prices. The CBOE

computes the integrals in equation (2.2) as follows

∫ K0

KL

P (τ ,K)

K2
dK +

∫ KU

K0

C(τ ,K)

K2
dK ≈

∑
i

∆Ki

K2
i

Q(τ ,Ki) (2.10)

The magnitude of the discretization error is

δdisc =
2

τ
erτ

{∑
i

∆Ki

K2
i

Q(τ ,Ki)−
[∫ K0

KL

P (τ ,K)

K2
dK +

∫ KU

K0

C(τ ,K)

K2
dK

]}
(2.11)

Jiang and Tian (2007) provide evidence that the δdisc may lead to an overestimation

of the underlying volatility. In practice, the model-free option-implied volatility

measures are all subject to these measurement errors to some degree, due to the

limited availability of market prices for a continuum of European-style options

with strikes from zero to infinity.

2.2.2 Corridor Implied Volatility

The corridor implied volatility index (CX) is initially analyzed in the empirical

work of Andersen and Bondarenko (2007). Unlike the MFIV , which requires the

availability of options with strikes from zero to infinity, the CX only captures

volatility over a certain segment of the underlying RND. For a fixed coverage [BL,
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BH ], 0 ≤ BL ≤ BH ≤ ∞, the CX is computed as

CX =

√
2erτ

τ

∫ BH

BL

M(K)

K2
dK (2.12)

where the time to maturity τ = 30 days andM(K) stands for the minimum of the

put and call prices at current time such as

M(K) = min(P (τ ,K), C(τ ,K))

In order to ensure an invariant portion of the strike range considered in the CX

across time, Andersen, Bondarenko, and Gonzalez-Perez (2015) propose the ratio

R(K) to determine the integration barriers of the CX in equation (2.12) using

directly observable prices of call and put options only,

R(K) =
P (τ ,K)

P (τ ,K) + C(τ ,K)
(2.13)

For given lower and upper percentiles p, q ∈ (0, 1), BL = Kp = R−1(p) and

BH = K1−q = R−1(1 − q). In the subsequent simulation and empirical studies,

three measures of the CX computed from equation (2.12) are used where [BL,

BH ] takes the values [R−1(0.25), R−1(0.75)], [R−1(0), R−1(0.75)] and [R−1(0.25),

R−1(1)]. These implied volatilities are respectively represented by CXNT , CXLT

and CXRT . The definitions of implied volatilities considered in this chapter are

listed in Table 2.1. All the measures are computed from options across two nearest

maturities (less than 30 days and greater than 30 days) and the 30-day implied

volatilities is computed by interpolating between the two separate maturities.

2.2.3 Realized Volatility

In addition to implied volatilities, this study employs monthly realized volatility

and historical volatility. We employ a simple realized variance estimator proposed

by Barndorff-Nielsen and Shephard (2002), which is equal to the sum of intraday
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squared returns

rvt =
M∑
j=1

r2
t,j (2.14)

where rt,j stands for intraday returns within each 5-minute interval. The realized

variance is then calculated over a period of one month in order to match the

maturities of the corresponding implied volatilities

RVt =
1

22

22∑
i=1

rvt+i (2.15)

The measure RVt is recorded daily but contains monthly (future) variance. The

substantial serial correlation induced by the construction of RVt in equation (2.15)

will be accounted for in the subsequent analysis. Furthermore, the realized variance

on the latest trading day, rvt−1, is used as a proxy for historical variance, which

may contain useful information for future return variation.

2.3 Error Adjustment Mechanisms

As introduced in section 2.2, theMFIV is computed as an integral of option prices

over an infinite range of strikes; and all the measures of implied volatility that are

considered require numerical integration using the trapezoidal rule. However, only

a limited number of strikes are actually traded in the market, which may result

in inaccuracies in the computation of the option-implied volatilities, so further

affecting their performance in predicting future volatility and returns. Specifically,

very low and high strikes are usually not available in practice, which leads to the

so-called truncation errors; and the set of discrete strikes can be rather sparse,

which gives rise to the discretization errors. To account for the measurement

errors discussed above, the use of an interpolation and extrapolation scheme is

essential. The following section provides an introduction of the interpolation and

extrapolation techniques adopted in the present chapter.

We first rely on the interpolation procedure to correct the discretization error
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by employing a suffi ciently fine partition of strikes. Exploiting the BS model to

smooth and interpolate option prices has now become a common practice. Shimko

(1993) pioneers in filling in option prices for a denser set of strikes by converting

option prices into implied volatilities using the BS equation, interpolating and

smoothing the curve with a simple quadratic function, and then translating the

implied volatilities into option prices using the BS model again. It is worth noting

that this procedure is not based on the assumption that the BS model is the

underlying model of option prices and it simply performs as a computational device

to guarantee a one-to-one mapping between option prices and implied volatilities.

The main issue here is how to ensure the smoothness of the interpolated implied

volatilities across a wide range of strikes, which satisfy the no-arbitrage conditions.

Some popular methods heavily adopted in practice are such as the natural cubic

spline (Bates (2000), Jiang and Tian (2005), Jiang and Tian (2007) and Neuberger

(2012)), the clamped cubic spline (Malz (2014)) and the smoothing spline (Bliss

and Panigirtzoglou (2002) and Figlewski (2008)).

Following the work of Jiang and Tian (2005), we choose the natural cubic spline

in this chapter among the available interpolation tools. The natural cubic spline is

applied to the known implied volatilities directly rather than option prices due to

the fact that the relationship between option prices and strikes appears nonlinear.

In the lower and upper price bound [KL,KU ], we construct a differentiable function

f(K) given by

f(Ki) = σ(Ki, τ) (2.16)

for i = 1, 2,· · · ,T , where implied volatilities σ(Ki, τ) are obtained from the BS

formula for a given maturity τ . All known strikes from K2 to KN−1 are taken as

knot points in fitting the cubic splines. As specified by Jiang and Tian (2007), a

natural cubic spline with a different cubic function is employed in each interval

between any two consecutive strikes and the first and second derivatives of the

cubic functions in any two adjacent intervals are set the same at the common knot

points. As a result, the cubic spline fitting procedure provides a smooth implied
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volatility function f(K) between KL and KU with the continuity of the first and

second derivatives at every strike within the interval. The second derivatives at

the endpoints are equal to zero. Below, we detail the procedure of computing the

BS implied volatility σ(Ki, τ).

The prices at time zero of European call and put options on a non-dividend

paying stock are

C = S0N(d1)−Ke−rτN(d2) (2.17)

and

P = Ke−rτN(−d2)− S0N(−d1) (2.18)

where

d1 =
ln(S0/K) + (r + σ2/2)τ

σ/
√
τ

d2 =
ln(S0/K) + (r − σ2/2)τ

σ/
√
τ

= d1 − σ
√
τ

Here, we use the same notation as in the previous section and S0 represents the

current asset price. The function N(x) represents the probability that a variable

with a standard normal distribution, φ(0, 1), will be less than x. The volatility

σ is the so-called BS implied volatility which can be derived once the value of a

option (C or P ), K, S0, r and τ are available.

The interpolation of the option prices within the boundary of actual strikes is

relatively straightforward. The major challenge is how to extrapolate the option

prices towards the tails of the RND with precision. The flat-line extrapolation,

i.e. implied volatilities beyond the truncation points are equal to those observed

for the highest and lowest strikes, is adopted in several empirical studies, see Bliss

and Panigirtzoglou (2002), Bliss and Panigirtzoglou (2004), Jiang and Tian (2005)

and Dotsis and Vlastakis (2016). The flat-line extrapolation produces a lognormal

shape of the tails of the RND, which contradicts with the extensive empirical

evidence of fat tails in return distributions. Hence, the flat-line extrapolation is
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considered inappropriate if the aim is to capture tail events accurately. Jiang and

Tian (2007) further point out the disadvantages of this approach such as: (1) it

results in the underestimation of implied volatilities outside the available strikes

due to the neglect of famous volatility smile or skew; (2) it fails to meet no-arbitrage

conditions. To overcome these drawbacks, Jiang and Tian (2007) impose a smooth

pasting condition at the minimum (KL) and maximum (KU) strikes and adjust

the slope of the extrapolated component to match the corresponding slope of the

existing interior component at KL and KU . The implied volatility extrapolated

this way achieves a linear structure.

A different strategy to extrapolate prices based on the existing options is to

first estimate the RND and then extract prices beyond the truncation points

from the estimated RND. In line with Andersen and Bondarenko (2007), this

chapter estimates the RND using a nonparametric approach, the so-called positive

convolution approximation (PCA) proposed by Bondarenko (2003). The PCA

method for estimating the RND offers several benefits: (1) it guarantees no-arbitrage

density estimates; (2) it avoids overfitting while allowing for small samples; (3)

it involves simple computation algorithm only; (4) it is insensitive to the data

generating process. The main idea of the PCA is to construct a set of admissible

densities containing functions which can be expressed as a convolution of a fixed

positive kernel and another density. The optimal density is that obtained from the

admissible densities which generates the best fit to the listed option prices. The

sub-section below briefly describes the RND estimation using the PCA approach.

The relationship between the RND and call/put options can be expressed as

h0(Sτ ) =
1

e
∫ τ
0 rsds

∂2C(τ ,K)

∂K2

∣∣∣∣
K=Sτ

=
1

e
∫ τ
0 rsds

∂2P (τ ,K)

∂K2

∣∣∣∣
K=Sτ

(2.19)

where Sτ represents the value of an underlying asset on trading date τ and rs is the

risk-free rate. For simplicity, it is assumed that the asset pays no dividends and

rs = 0 and thus e
∫ τ
0 rsds = 1. In the PCA approach, the first step is to construct

the approximating set Wm representing all admissible or candidate densities, from
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which the optimal density is selected. Let Ld denote the set of all probability

densities, i.e., nonnegative functions that integrate to one. For a basis density

φ(K) ∈ Ld, a new density φm(K) := 1
m
φ(K

m
) can be obtained by smoothing φ(K)

with the bandwidth parameter m. Once φm(K) is fixed, the approximating set

Wm = Wφm is given by

Wm :=
{
g ∈ Ld

∣∣ g = φm ∗ µ, for µ ∈ Ld
}

(2.20)

which contains functions g, expressed as a convolution of φm with positive functions

µ. In the work of Bondarenko (2003), the basis density φ(K) is assumed as

the standard normal distribution since different choices for φ(K) result in similar

estimators. Although the space Ld accommodates very general shapes of densities,

Wm is made up of only smooth and well-behaved densities where the bandwidth m

determines the smoothness of densities in the set. If functions h (the true RND)

and g are both integrable, the following equation holds.

h ∗ g :=

∫ ∞
−∞

h(K − y)g(y)dy (2.21)

Next, we search for the optimal density in the set Wm containing all candidate

densities. An estimator of the RND is the function of ĥ(K) ∈ Wm which provides

the best fit to a certain cross-section of put options {Pi} with strikes K1 < · · ·KT ,

i.e. it achieves the objective function as follows

Minimize
ĥ∈Wm

T∑
i=1

(
Pi −D−2ĥ (Ki)

)2

(2.22)

where D−2ĥ (Ki) represents the second integral of ĥ (Ki). To measure how closely

the density h can be approximated by another density in the set, Bondarenko

(2003) defines the distance between h and Wm as

ρ(h,Wm) := inf
g∈Wm

‖h− g‖ = min
g∈Wm

‖h− g‖ (2.23)
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where ‖.‖ = ‖.‖2 is the L2-norm. He further shows that the distance ρ(h,Wm)

exhibits basic properties, e.g. an approximation with a small m is always no worse

than an approximation with a larger m. We first discretize the admissible set Wm

by

W∆z
m :=

{
g ∈ Ld

∣∣ g(K) =
∞∑

j=−∞
ajφm(K − zj), aj ≥ 0,

∞∑
j=−∞

aj = 1

}
(2.24)

where j = 0,±1, · · · , and zj = j∆z with ∆z being the equally-spaced grid

step. Bondarenko (2003) indicates that a suffi ciently small ∆z can lead to a

arbitrarily close distance between theW∆z
m andWm. Finally, the finite-dimensional

approximation of the problem in equation (2.22) can be solved numerically by

Minimize
ĥ∈W∆z

m ([v,w])

T∑
i=1

(
Pi −D−2ĥ (Ki)

)2

(2.25)

where [v, w] is a large but finite interval on which the underlying density h is

approximated. Once the estimated RND is obtained, option prices can be inferred

for a continuum of strikes through the relationship in equation (2.19).

2.4 Monte Carlo Simulation

This section presents a Monte Carlo simulation study where different numbers of

option prices are considered as the strike range and increment vary. The aim of this

experiment is (i) to ascertain the impact of discrete strike prices on the performance

of various implied volatility measures in forecasting future volatility and returns

and (ii) to provide guidance for the use of interpolation and extrapolation technique

in forecasting.

2.4.1 Simulation Design

The simulation exercise conducted in the present chapter is motivated by Zhang,

Taylor, and Wang (2013) who examine the effect of the number of strikes on
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the information content of the MFIV using a simple model without jumps and

volatility risk premium. In a departure from Zhang, Taylor, and Wang (2013),

this study concentrates on the OOS volatility forecasting performance of implied

volatilities and the predictive power of implied volatilities for future returns. A

jump-diffusion model adopted by Duan and Yeh (2010) is used to simulate the

asset price and the latent stochastic volatility by

d lnSt = [r − q + δsVt −
Vt
2

]dt+
√
VtdWt + JtdNt − λµJdt (2.26)

dVt = κ(θ − Vt)dt+ υV γ
t dBt

where Wt and Bt are correlated Wiener processes, having correlation coeffi cient

equal to ρ; Nt denotes a Poisson process with intensity λ, which is independent

of Wt and Bt; Jt is an independent normal random variable with mean µJ and

standard deviation σJ . The price, St, and volatility, Vt, processes are dependent

through the correlated diffusive terms—Wt and Bt. The other parameters, r, q

and δs are the risk-free rate, the dividend yield and the asset risk premium,

respectively2.

Option valuation is implemented using the corresponding model under the

risk-neutral probability measure given by

d lnSt = [r − q − Vt
2

+ λ∗(µ∗J + 1− eµ∗J+σ2
J )]dt+

√
VtdW

∗
t (2.27)

+J∗t dN
∗
t − λ∗µ∗Jdt

dVt = (κθ − κ∗Vt)dt+ υV γ
t dB

∗
t

where κ∗ = κ + δV and B∗t = Bt + δV /υ
∫ t

0
V 1−γ
s ds with δV being the volatility

risk premium. Again, W ∗
t and B

∗
t are the Wiener processes correlated with the

coeffi cient ρ; N∗t is a Poisson process with intensity λ
∗ independent of W ∗

t and B
∗
t ;

the independent normal random variable J∗t has a new mean µ
∗
J but an unchanged

2The mean of JtdNt − λµJdt is zero due to the introduction of the term λµJdt, which serves
to center the Poisson innovation.

97



standard deviation σJ . The theoretical variance expectation under the model

considered above, represented by V IX2
Theo, can be computed as

V IX2
t (τ lt, τ

u
t , n

l
t, n

u
t ) ' V IX2

Theo =
κθ

κ∗

(
1− 1− e−κ∗τ

κ∗τ

)
+ 2φ∗ +

1− e−κ∗τ
κ∗τ

Vt

(2.28)

see Duan and Yeh (2010) for more details. In this simulation experiment, we adopt

the jump risk premiummeasured by δJ = φ∗−φ, where φ∗ = λ∗
(
eµ
∗
J+σ2

J/2 − µ∗J − 1
)

and φ = λ
(
eµJ+σ2

J/2 − µJ − 1
)
. The term δJ reflects the compensation in the

expected return for the jump risk, resulting from the change from the physical

probability measure P to the risk-neutral pricing measure Q.

The empirical martingales simulation (EMS) method developed by Duan and

Simonato (1998) is used to compute option prices, given that there is no closed-form

option pricing formula for equation (2.27). The EMS method, which imposes upon

the simulated sample a martingale property, exhibits two benefits such as: (1) the

price simulated by the EMS satisfies rational option-pricing bounds; (2) it yields

substantial reduction in Monte Carlo errors. Let t0 = 0 be the current time, we

generate the EMS prices at a sequence of future time points, t1, t2,· · · , tm using

the following system

S∗i (tj, n) = S0
Zi(tj, n)

Z0(tj, n)
(2.29)

where

Zi(tj, n) = S∗i (tj−1, n)
Ŝi(tj)

Ŝi(tj−1)
(2.30)

Z0(tj, n) =
1

n
e−rtj

n∑
i=1

Zi(tj, n) (2.31)

Ŝi(t) is the ith simulated asset price at time t prior to the EMS adjustment,

and Ŝi(t0) and S∗i (t0, n) are set equal to S0. At one time, the EMS implements

a simulation of n sample points, where n = 1000 in our case. After the EMS

correction, the simulation proceeds to the next time point, and repeats the whole
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process again. The estimate of the discounted EMS asset price is given by

S∗0(t, n) =
1

n
e−rt

n∑
i=1

S∗i (t, n) (2.32)

and therefore the estimate of the call option price is

C∗0(t, n) =
1

n
e−rt

n∑
i=1

max [S∗i (t, n)−K, 0] (2.33)

The put option prices can be obtained by the put-call parity, i.e. C + Ke−rt =

P + S0.

This study assumes one year has 252 trading days and that one day consists

of 6.5 hours of open trading, as is the case on the NYSE and NASDAQ. A sparse

sampling at a frequency of once every 5 minutes is used in this simulation study and

therefore one day can be divided up into 78 intraday intervals, i.e., 6.5×3600
300

= 78.

A daily series is extracted by sampling once every 78 data points. The asset price

and the latent stochastic volatility are simulated according to the Euler discretized

version3 of equation (2.26). The simulation is simplified by assuming no dividends

and a zero interest rate. The initial stock price (S0) and latent stochastic volatility

(V0) are set respectively as 1000 and 0.08 (or 0.02). Here, we consider two situations

where the magnitude of volatility is relatively low (V0 = 0.02) and high (V0 = 0.08)

in order to evaluate the forecasting performance under different market conditions.

The sample size of daily series is 2000. The parameter values are similar to those

adopted by Duan and Yeh (2010).

3The asset price and volatility path will be discretized into constant-increment time steps of
∆t = 1

78×252 . The discretization for the price and volatility processes through Euler scheme is
given by

Si+1 = Si exp[(r − q + δsVi − 0.5Vi)∆t+
√
Vi∆tWt + JtNt − λµJ∆t]

Vi+1 = Vi + (κθ − κVi)∆t+ ρυV γi
√

∆tWt +
√

1− ρ2υV γi
√

∆tBt

where Jt is i.i.d. N(µJ , σJ), Nt is Poiss(λ∆t), Wt and Bt are two Brownian-motion processes,
and ρ represents the instantaneous correlation between the return process and the volatility
process. As introduced in the main text, S0 = 1000 and V0 = 0.08 (or V0 = 0.02).
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κ θ λ µJ (%) σJ (%) υ ρ γ δs κ∗ φ∗(%) δV δJ (%)

2.500 0.080 55.000 0.300 0.500 1.400 -0.800 0.900 0.420 -13.000 0.035 -15.500 -0.059

Option prices are computed corresponding to two nearby maturities, 23 and

37 days. This experiment considers two fixed strike price increments (∆K=5 and

∆K=1) and attempts with different moneyness ranges ([0.8, 1.2], [0.7, 1.3] and

[0.6, 1.4]).

2.4.2 Simulation Results

Table 2.2 and 2.3 report the summary statistics of various volatility measures

with V0 = 0.08 and V0 = 0.02, respectively. In both scenarios, it is evident that

the mean of the implied volatility estimates increases with the moneyness range.

This accords with the work of Jiang and Tian (2007), where the truncation errors

usually result in an underestimation of the true volatility. The mean of the V IX,

MFIV , CXNT , CXLT and CXRT decreases as the strike increment becomes

smaller, which is consistent with the finding of overestimation of the underlying

volatility induced by discretization errors in Jiang and Tian (2007). For most

measures considered, the mean squared error4 (MSE) tends to decrease with the

strike range. Table 2.2 and 2.3 also show that measures of implied volatility become

more volatile with the range of strikes while they, except the V C, tend to appear

less volatile as the partition of strikes is smaller.

To evaluate the OOS volatility forecasting performance of various option-implied

volatilities, a univariate Mincer-Zarnowitz regression is adopted as follows

yt+1 = α1 + β1xt + µt+1,t (2.34)

where yt+1 represents the realized volatility containing the information of month t+

1 and where xt indicates each volatility estimate among all candidate estimates. To

obtain OOS forecasts of the realized volatility measure, this study employs a rolling

4This is defined as the time-series average of the squared differences between the certain
volatility estimate and the theoretical V IX index, V IXTheo.
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window of 1000 observations for the one-step-ahead forecasts. The daily realized

volatility, i.e. the square root of the realized variance in equation (2.15), contains

substantial induced serial correlation, which seriously affects the standard errors

of the coeffi cient estimates. To overcome this problem, the Bartlett/Newey-West

heteroskedasticity consistent covariance matrix estimator with 44 lags is used, see

Andersen and Bondarenko (2007). Regressions are examined for both volatility and

logarithms of volatility. The forecasts are evaluated by the MSE, which is robust

to the presence of noise in the volatility proxy, see Patton (2011). The OOS R2 of

the Mincer-Zarnowitz regression is also taken into account, which corrects for bias

by reflecting the variance but not the bias-squared component of the MSE.

Forecasting results for the case of V0 = 0.08 are reported in Table 2.4. Clearly,

the V IXTheo dominates all the other candidate measures in terms of the volatility

forecasting performance5. Forecasting performance increases with the strike range

for all the measures, except that of the CXNT and CXLT . It is not surprising

that the CXNT performs the same for different moneyness ranges since the options

within the barriers BL = K0.25 and BH = K0.75 are not affected by the variation

in the strike range. The worse performance of the CXLT with a wider range of

strikes may be attributed to the poor forecasting power of the deep OTM put

options for future volatility. In addition, Table 2.4 shows that the strike increment

∆K tends to have a negative impact on the volatility forecasting power of the V IX,

MFIV , CXNT , CXLT and CXRT but exerts a positive impact on that of the

V C and V P . Overall, the effect of the strike range on the forecasting performance

is considerable and that of the strike increment is negligible. The use of different

loss functions, i.e. MSE and OOS R2, gives the identical conclusion in terms of

the role of the strike range and increment in the forecasting practice as well as

the ranking of forecast performance among implied volatility candidates. These

5In several situations, the rvt−1 outperforms option-implied volatility estimates, which seems
to contradict the findings of Jiang and Tian (2005) and Andersen and Bondarenko (2007). The
explanation is that this experiment considers the case of very high volatility, i.e. V0 = 0.08.
When the initial latent stochastic volatility is set lower, the performance of daily lagged RV falls
as compared with the other implied volatility measures.
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findings motivate the application of an extrapolation procedure to extend the tails

of the RND in an attempt to improve the volatility forecast accuracy. On the

other hand, an interpolation method is considered necessary since the number

of listed options may be rather small in practice. The lack of observed options

may lead to inaccuracies in the estimation of the RND using the PCA method

and thus result in failure in inferring the options beyond the truncation points.

Moreover, the critical role of the OTM call options is noted in Table 2.4 where

the V C serves as the top forecaster and the CXRT substantially outperforms the

CXLT . The deep OTM put options are found to weaken the forecasting power of

the implied volatilities for future volatility due to the poorer performance of the

CXLT relative to the CXNT .

The next step is to apply the natural cubic spline to interpolate between

available strikes and to implement the PCA method in order to obtain the option

values beyond the range of listed strikes. The corresponding measures computed

by options with the use of such procedure are prefixed by CP -. To examine the

performance of the CP -measures in the forecasting practice for future volatility,

this study focuses on the case of ∆K = 5 and moneyness range=[0.8, 1.2] only.

Specifically, a step of one unit of the index is used to numerically compute the

integral in the interpolation procedure and four standard deviations from forward

prices are adopted as an integration range6. The interval of strikes that are needed

to extrapolate is ([F0 − 4SD, Kmin] and [Kmax, F0 + 4SD]) where Kmin(Kmax)

represents the minimum (maximum) listed strike price in the market. Table 2.5

reports the volatility forecast performance, measured by both the MSE and OOS

R2, of various implied volatility measures and their corresponding CP -measures.

The values in parentheses below the MSE are the mean difference of squared

forecasting errors between the original implied volatility and its corresponding

CP -measure. Numbers in bold indicate statistically significant differences at 5%

by the Diebold-Mariano test. Columns 1-4 show that the CP -MFIV , CP -CXRT ,

6The choice of the truncation point is motivated by the finding of Jiang and Tian (2005) who
show that the truncation errors are virtually zero beyond 3.5SD from F0.
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CP -V C and CP -V P achieve significant gains in the forecasting performance for

future volatility and that the ranking of forecasting power of the CP -measures

remains unchanged from that of the original measures. Columns 5-8 present values

of the OOS R2 where the percentage changes of the R2 are represented by the

numbers in parentheses and where the gains of the CP -measures are indicated

in bold. With the single exception of CXNT , the use of the interpolation and

extrapolation method brings higher OOS R2 for all the measures considered.

Our conclusions in terms of the impact of the number of strikes on the OOS

volatility forecast remain intact when moving to the situation of low volatility

with V0 = 0.02. Specifically, in Table 2.6, we find that the accuracy of volatility

forecast improves with a wider range of strikes for all measures considered except

the CXNT . Comparing the values of the loss functions, the OOS R2 in particular,

the strike increment, ∆K, produces trivial and negative effects on the forecasting

power of the V IX, MFIV , CXNT , CXLT and CXRT and positive effects on

that of the V C and V P . Different from the case of high volatility with V0 = 0.08,

the top performance in the OOS volatility forecast is achieved by the CXNT and

CXRT in the low volatility situation. In both cases of high and low volatility,

the superiority of the OTM call options is evident given that the CXRT (V C)

substantially outperforms the CXLT (V P ). As can be observed from Table 2.7,

once we apply the interpolation and extrapolation procedure, the MSE of the

CP -measures are, in most cases, lower than those of their counterparts derived

from the original options although some of these improvements in forecasts are

insignificant. In addition, the interpolation and extrapolation procedure results in

higher OOS R2 for 9 out of 12 measures considered.

Another important application of the implied volatility is to predict future

market returns. As in the work of Banerjee, Doran, and Peterson (2007), the 30-

and 60-day future returns are regressed on daily levels7 of the implied variance

7As a robustness check, the analysis of return predictions is also conducted by regressing
future returns on the innovations of the implied variances, motivated by the work of Banerjee,
Doran, and Peterson (2007). Conclusions remain unchanged.
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estimates as follows
1

h

h∑
j=1

rt+j = α2 + β2vt + ut+h,t (2.35)

where vt indicates each of the measures of implied variance levels. To account

for residual correlation caused by overlapping returns, this study considers the

Newey-West standard errors. The adjusted R2 is employed to indicate the degree

of return predictability; the values are reported in Table 2.8 where a high volatility

scenario (V0 = 0.08) is considered. First, results indicate that the return predictions

by implied volatility measures deteriorate with the strike range. Second, with a

finer partition of strikes, return predictive power generally improves, with the

one exception of V C. From this evidence, only the interpolation method, which

provides a smaller partition of strikes, is needed to achieve better return predictions

by measures of implied volatility. Consistent with the work of Andersen, Fusari,

and Todorov (2015), the deep OTM put options dominate the deep OTM call

options in predicting future returns. This is indicated by the higher R2s given

by the CXLT relative to those by the CXRT . In addition, the V C displays the

strongest predictive power for future returns in most cases while the V P serves as

the top performer only in the case of ∆K = 1 when short horizon is considered.

This suggests that OTM call options exhibit superior predictive power overall to

that of the OTM put options for future returns. This is despite the superiority of

the deep OTM puts over the deep OTM calls in this exercise.

The cubic spline is then applied to achieve a finer partition of strikes in the

case of return predictions. Measures of implied volatility based upon the options

using the interpolation method are prefixed by C-. To examine the effect of the

interpolation procedure on return predictions, this study takes the case of ∆K = 5

and moneyness range=[0.8, 1.2] as an example and reports the results of the return

predictability in Table 2.9. Gains in the predictive power for future returns are only

observed for C-CXNT , C-CXLT , C-CXRT over 30-day and 60-day horizons, and

for C-V P over 30-day horizon.

As a robustness check, we also evaluate the return predictability in a low
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volatility situation with V0 = 0.02. Consistent with the high volatility case, results

in Table 2.10 indicate that the predictive power of various measures drops as

the strike range increases whereas the return predictions tend to improve with a

smaller partition of strikes, with the exceptions of V C over 60-day horizon and

V P over 30-day horizon. In the low volatility scenario, the advantages of the

OTM put options are noted in predicting future returns, suggested by the superior

performance of the V P (CXLT ) over V C (CXRT ). Two points are worth noting

when comparing the forecasting ability of the OTM calls and puts: first, in both

low and high volatility scenarios, there are equal numbers of the OTM call and

put options used in the return predictions. However, when the volatility level is

low, a proportion of the deep OTM options are priced at zero on many trading

days and the number of deep OTM calls with the zero price is substantially greater

than that of the deep OTM puts; second, the deep OTM call and put options both

carry some predictive power for future returns whether the initial volatility is set

to 0.02 or 0.08. This is suggested by the higher R2 delivered by the CXLT and

CXRT relative to that by the CXNT ; see Tables 2.8 and 2.10. Consequently,

the phenomenon of options with zero price present in the low volatility setting

may seriously weaken the power of the OTM calls in forecasting future returns.

However, such phenomenon does not affect the conclusion for the superiority of

the OTM calls in volatility forecasts, where the deep OTM puts are shown to

lower the forecasting accuracy; see Tables 2.4 and 2.6. Options with zero price are

rarely observed when the volatility is high, in which case the roles of the OTM

calls and puts in the forecasting practice are more comparable. To sum up, the

overall simulation evidence is in support of the superiority of the OTM calls in

forecasting future volatility and returns, which is in agreement with our empirical

findings to be discussed later.

As for the effectiveness of the interpolation, gains in return predictability are

observed in 6 out of 12 cases in Table 2.11. However, given the positive impact of

the strike increment on return predictions in Tables 2.8 and 2.10, the interpolation
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procedure is expected to lead to more evident gains in the predictive power of

various implied volatilities for future returns in the empirical case, where the

partition of strikes is often much more sparse, i.e. greater than 5. Findings in

section 2.6 confirm this hypothesis.

2.5 Data

The data sample spans from January 02, 2003—December 31, 2013, encompassing

2769 trading days. Data are taken from several sources. Closing bid and ask SPX

option prices and dividend yield are obtained from Optionmetrics via the WRDS

system. High-frequency data at 5-minute intervals for the SPX8 are collected from

the Tick Data Inc.. Daily one-month and three-month Treasury-bill yields9, taken

as the risk-free rates, are extracted from the Federal Reserve Bulletin. In addition,

the average of bid and ask is taken as the best available measure of the option price

to alleviate the bid-ask bounce problem. For the two nearby maturities, there is an

average of 34 out of 97 (63 out of 97) OTM call (put) option quotes per day. Two

commonly used data filters are applied. First, options with less than seven days

remaining to maturity are excluded. These options may be subject to problems

of liquidity and market microstructure. Second, options violating the boundary

conditions, i.e. with BS implied volatilities below zero or above 100%, are excluded

from the sample. Only OTM options are included since in-the-money options are

less liquid and thus may induce bias into the computation of implied volatilities.

The CBOE calculates the V IX index using option prices updated every five

minutes. However, the Optionmetrics database includes the last daily bid-ask

quote only, which might not correspond to the data published by CBOE for the

final end-of-day computation. Hence, as a more direct benchmark, this chapter

8In order to measure the return variation during the overnight period, the squared overnight
returns, computed as the squared close-to-open logarithmic price change, are added to the
realized variance obtained over the trading day.

9Following the work of Jiang and Tian (2007), the risk-free rate is linearly interpolated between
these two yields. However, when the maturity is shorter (longer) than one (three) month, the
one-month (three-month) yield is adopted.
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derives a replicated V IX index, RX, using the exact CBOE procedure every day.

Thereby, it follows the work of Andersen, Bondarenko, and Gonzalez-Perez (2015).

The RX provides an equivalent of the V IX using the SPX option prices from the

Optionmetrics data set. It is well known that the CBOE adopts a particular rule

to exclude OTM options: once two puts (calls) with consecutive strikes are found

to have zero bid option prices, no puts (calls) with lower (higher) strikes are taken

into account. The model-free implied volatility index with a broader strike range,

denoted by MFIV , can be obtained by discarding any options with a zero bid

price and employing all OTM options with a positive bid quote, i.e. ignoring the

cutoff rule by the CBOE. Hence, the MFIV provides an upper bound for RX.

In addition, the same notations are adopted for the other candidate measures as

those in the simulation study10.

For the 2769 trading days under consideration, the implied volatility measures

are not available at some points due to a variety of reasons, including: (1) the

requirement for the two nearby maturities is not satisfied; (2) the lack of OTM

options; (3) boundary conditions are violated, which reduces the sample size to

2330. The construction of the RVt leads to the loss of one month at the end.

Finally, the sample data under analysis contains 2307 observations, for the period

from January 02, 2003 to November 27, 2013.

2.6 Empirical Results

This section starts by reporting the basic statistical properties of different volatility

measures. It then investigates their performance as predictors of the future realized

volatility and market returns of the underlying S&P 500 index.

Table 2.12 reports the summary statistics11 of the monthly volatility measures

10Throughout the empirical work, this paper makes use of the robust forward F as in the
work of Andersen, Bondarenko, and Gonzalez-Perez (2015) rather than the "implied" forward
F ∗ determined by the CBOE according to put-call parity. However, the F ∗ is still employed in
computing the RX in order to approximate the V IX.
11In the empirical study, the MFIV is computed in the same way as the CBOE VIX in

equation (2.5) but it ignores the cutoff rule by the CBOE. The V C and V P are computed as
equations (2.3) and (2.4). This explains why MFIV 2 6= V C2 + V P 2 in Table 2.12. The reason
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which are annualized and recorded daily. First, the unconditional mean of most

implied volatility measures clearly exceeds the mean of the RV . This is consistent

with the extant literature establishing the presence of a negative volatility risk

premium. Note also that the RV has the highest skewness and kurtosis statistics.

This erratic nature is attributed to the unpredictable innovation term of the RV as

noted in the work of Andersen and Bondarenko (2007). Second, the CXLT (V P ) is

found to be more volatile and higher in magnitude than the CXRT (V C) because

deep OTM puts generally have the highest implied volatility, i.e. volatility smile.

A similar phenomenon is observed in the case of the CP -measures. Such evidence

is also given in Figure 2.1 which depicts the time-variation of various implied

volatility candidates. In particular, the RX overlaps the MFIV closely and thus

high similarity is expected in their forecasting power for future realized volatility

and returns. Finally, all volatility measures exhibit substantial persistence with

extremely slow decay in their autocorrelations.

The correlation between various measures of implied volatility and realized

volatility is provided in Table 2.13. Compared with the measures extracted from

the listed options only, the corresponding CP -measures display higher correlation

with the RV . This is indicative of superior forecasting power for future volatility.

Contrast to the work of Zhang, Taylor, and Wang (2013) and Dotsis and Vlastakis

(2016) who examine the information content of implied volatilities in in-sample

regressions, this study concentrates on the OOS volatility forecasts. The results

of the RV forecasts are presented in Table 2.14 where the forecasting performance

is measured by the MSE and OOS R2. Gains achieved by the CP -measures are

generally more evident than those in the simulation study. In almost all cases, gains

in MSE are significant at 5% level. The CXNT dominates other measures that are

based on the existing options. The CP -CXNT ranks best among all CP -measures.

As shown in the upper panel of Table 2.14, CXLT (V P ) outperforms the CXRT

for the use of the CBOE computation procedure, instead of the traditional MFIV calculation
method, is to make a direct comparison between the MFIV and RX in terms of the forecasting
performance. In doing so, we may ascertain the impact of the cutoff rule of the CBOE on the
forecasting power of the V IX.
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(V C) in the forecasting of future volatility. This can be attributed to the fact

that only a very small number of OTM calls (34 out of 97 per day on average) are

available in this empirical study. However, in the lower panel, where more options

are involved with the use of interpolation and extrapolation scheme, the OTM

call options are superior to the OTM puts, indicated by the better forecasting

performance of the CP -CXRT (CP -V C) than that of the CP -CXLT (CP -V P ).

The evidence for the advantage of the OTM calls is in line with the simulation

result discussed in section 2.4.2. Moreover, conclusions drawn from Table 2.14

remain intact when different loss functions for OOS forecasts are considered.

Finally, the return predictability is evaluated by various implied volatilities

using equation (2.35) where the excess returns are considered as opposed to raw

returns. To better understand the predictive power of implied volatilities for future

returns in different market conditions, this study further splits the data sample

into pre-crisis and post-crisis periods. The beginning of the financial crisis is set

at September 01, 2007. As discussed in the simulation study, only interpolation

is needed in the exercise of return predictions. Values of the adjusted R2 implied

by different return regressions are reported in Table 2.15. In the pre-crisis period,

the interpolation improves the return predictive power for 4 out of 12 measures.

In the post-crisis period, this result holds for 7 out of 12 measures. Moreover, the

C-V C dominates all the other implied volatilities in terms of the performance for

predicting future returns in the post-crisis period. The CXRT performs the best in

such forecasting practice in the pre-crisis period. Hence, the results suggest a few

good substitutes for the V IX index as predictors for future returns. In the upper

panel of Table 2.15, where measures are derived from the observed option prices

only, the OTM call options exhibit greater predictive power for future returns than

the OTM put options in the pre-crisis period while the OTM put options play a

more dominant role in the post-crisis period. In the lower panel, where the cubic

spline is used to interpolate between available strikes, OTM call options outperform

OTM put option in predicting future returns in both pre- and post-crisis periods.
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2.7 Conclusion

This chapter examines the forecasting power of various model-free option-implied

volatilities for future returns and realized volatility using Monte Carlo simulations

and an empirical study. By decomposing the model-free implied volatility into

different components using various segments of the out-of-the money (OTM) put

and call options, this study ascertains the role of each of the components. The

chapter provides a simulation study on the impact of the strike range and increment

on the predictive power of the implied volatilities. Results show that: first, the

forecast accuracy for future volatility improves with the range of strikes; second,

the strike range exerts a negative impact on the predictive power of the implied

volatilities for future returns; third, a smaller partition of strikes tends to result

in greater performance of implied volatilities in predicting returns. These findings

warrant the application of an interpolation and extrapolation scheme in order to

enhance the forecasting power of implied volatilities for future volatility while only

an interpolation method is needed in the case of return predictions.

In both simulation and empirical studies, the superiority of the aforementioned

method, i.e. interpolation/extrapolation techniques, is observed for most measures

considered in forecasts of future returns and volatility. More interestingly, once

this technique is implemented in the empirical case to overcome the problem of

the lack of strikes, the OTM SPX call options clearly exhibit higher forecasting

power than the OTM SPX put options. This accords with the evidence from the

simulation experiment. On the other hand, the advantages of the OTM SPX put

options are noted when implied volatilities are derived from the listed options only.
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Table 2.2: Simulation study with V0 = 0.08: summary Statistics. This table reports the
mean, standard deviation, lower quartile (25%), median (50%), and upper quartile (75%)
of daily annualized volatility estimates over 2000 days. All the values are percentages.
The mean squared estimation error, MSE, is the average of the squared differences
between the volatility estimates and the theoretical V IX index, V IXTheo. The strike
price increment is denoted by ∆K and NK refers to the number of available options on
each estimation day.

Mean StdDev 25% 50% 75% MSE
V IXTheo 39.1297 14.3567 29.4363 35.3602 43.8213
RV 23.6841 9.4726 17.2824 21.5069 26.7618

∆K = 5 NK Moneyness Range
V IX 86 [0.8,1.2] 36.2688 11.3866 28.1721 33.8260 41.4539 29.1182

128 [0.7,1.3] 37.7167 12.9644 28.6248 34.6614 43.2231 16.8826
167 [0.6,1.4] 38.2435 13.8219 28.6925 34.8117 43.7395 14.2855

MFIV 86 [0.8,1.2] 36.9711 11.3161 28.8961 34.5055 42.2275 25.6308
128 [0.7,1.3] 38.6101 13.0396 29.4648 35.5447 44.2569 14.7022
167 [0.6,1.4] 39.2324 13.9959 29.5486 35.7811 44.8681 13.1674

CXNT 86 [0.8,1.2] 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968
128 [0.7,1.3] 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968
167 [0.6,1.4] 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968

CXLT 86 [0.8,1.2] 34.2586 10.9680 26.5616 31.8153 39.0299 47.3269
128 [0.7,1.3] 35.6924 12.3049 27.0270 32.7474 40.9577 30.1992
167 [0.6,1.4] 36.2805 13.1204 27.1798 32.9743 41.6377 24.6749

CXRT 86 [0.8,1.2] 31.2108 10.6210 23.8673 28.6452 35.5908 84.5573
128 [0.7,1.3] 31.5717 11.1677 23.8923 28.7841 36.0049 74.6089
167 [0.6,1.4] 31.6768 11.4019 23.8933 28.8077 36.0561 71.2892

V C 86 [0.8,1.2] 22.9491 7.2992 17.7665 21.2982 26.0928 316.1882
128 [0.7,1.3] 23.4417 8.0621 17.8222 21.4521 26.5423 289.5784
167 [0.6,1.4] 23.5835 8.3822 17.8222 21.4761 26.6604 280.8594

V P 86 [0.8,1.2] 28.4255 8.5915 22.2635 26.6314 32.5155 161.1815
128 [0.7,1.3] 30.1422 10.2282 22.8413 27.8142 34.7325 113.4245
167 [0.6,1.4] 30.8299 11.1983 23.0182 28.0057 35.4366 95.2843

∆K = 1
V IX 422 [0.8,1.2] 36.1206 11.2236 28.1317 33.7444 41.3216 31.0087

629 [0.7,1.3] 37.6563 12.8712 28.6170 34.6308 43.1692 17.3348
1239 [0.6,1.4] 38.2166 13.7685 28.6902 34.8077 43.7299 14.3939

MFIV 422 [0.8,1.2] 36.8572 11.1951 28.8665 34.4344 42.1000 26.8896
629 [0.7,1.3] 38.5635 12.9668 29.4599 35.5384 44.2100 14.9503
1239 [0.6,1.4] 39.2117 13.9525 29.5504 35.7789 44.8443 13.1920

CXNT 422 [0.8,1.2] 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750
629 [0.7,1.3] 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750
1239 [0.6,1.4] 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750

CXLT 422 [0.8,1.2] 34.0638 10.8394 26.4723 31.6732 38.8431 50.1150
629 [0.7,1.3] 35.5644 12.2193 26.9314 32.6610 40.8070 31.4616
1239 [0.6,1.4] 36.1791 13.0634 27.0938 32.8640 41.5633 25.4219

CXRT 422 [0.8,1.2] 31.0706 10.5707 23.7608 28.5266 35.5119 87.1688
629 [0.7,1.3] 31.4414 11.1297 23.8061 28.6810 35.9053 76.8183
1239 [0.6,1.4] 31.5491 11.3691 23.8061 28.6948 35.9247 73.3751

V C 422 [0.8,1.2] 23.2036 7.3257 18.0626 21.5130 26.4031 307.5802
629 [0.7,1.3] 23.7030 8.0965 18.0836 21.6831 26.9452 280.9600
1239 [0.6,1.4] 23.8465 8.4200 18.0880 21.6981 27.0022 272.2445

V P 422 [0.8,1.2] 28.5067 8.5052 22.4153 26.7591 32.5390 160.2375
629 [0.7,1.3] 30.2902 10.1843 23.0286 28.0615 34.8485 110.9583
1239 [0.6,1.4] 31.0050 11.1826 23.1910 28.3104 35.7387 92.3282
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Table 2.3: Simulation study with V0 = 0.02: summary Statistics. This table reports the
mean, standard deviation, lower quartile (25%), median (50%), and upper quartile (75%)
of daily annualized volatility estimates over 2000 days. All the values are percentages.
The mean squared estimation error, MSE, is the average of the squared differences
between the volatility estimates and the theoretical V IX index, V IXTheo. The strike
price increment is denoted by ∆K and NK refers to the number of available options on
each estimation day.

Mean StdDev 25% 50% 75% MSE
V IXTheo 19.3489 7.9989 14.0826 17.1069 21.6287
RV 12.2629 5.1875 8.9082 11.1537 13.6244

∆K = 5 NK Moneyness Range
V IX 86 [0.8,1.2] 19.4806 7.5630 14.3654 17.4954 21.8103 0.6033

128 [0.7,1.3] 19.6859 7.9713 14.3876 17.5196 21.9666 0.4720
167 [0.6,1.4] 19.7411 8.1086 14.3876 17.5284 21.9828 0.5314

MFIV 86 [0.8,1.2] 19.9707 7.6562 14.7781 17.9503 22.3529 0.9571
128 [0.7,1.3] 20.2228 8.1261 14.8095 18.0293 22.5510 1.1804
167 [0.6,1.4] 20.3088 8.2839 14.8144 18.0675 22.5954 1.4096

CXNT 86 [0.8,1.2] 14.5759 5.8987 10.7158 12.9623 16.2147 27.4309
128 [0.7,1.3] 14.5759 5.8987 10.7158 12.9623 16.2147 27.4309
167 [0.6,1.4] 14.5759 5.8987 10.7158 12.9623 16.2147 27.4309

CXLT 86 [0.8,1.2] 18.4638 7.0875 13.6823 16.5993 20.6721 2.0536
128 [0.7,1.3] 18.7123 7.4954 13.7150 16.6840 20.8756 1.0884
167 [0.6,1.4] 18.8203 7.6364 13.8050 16.7368 20.9154 0.8671

CXRT 86 [0.8,1.2] 16.4443 6.5692 12.1027 14.6720 18.3152 10.7190
128 [0.7,1.3] 16.4791 6.6775 12.1027 14.6720 18.3155 10.2120
167 [0.6,1.4] 16.4860 6.7022 12.1027 14.6720 18.3155 10.1080

V C 86 [0.8,1.2] 12.0575 4.8589 8.8248 10.7171 13.4904 63.2844
128 [0.7,1.3] 12.1048 5.0048 8.8248 10.7171 13.4937 61.6739
167 [0.6,1.4] 12.1140 5.0380 8.8248 10.7171 13.4942 61.3412

V P 86 [0.8,1.2] 15.3480 5.8677 11.3534 13.8409 17.2816 21.1217
128 [0.7,1.3] 15.6404 6.3585 11.4077 13.9543 17.5008 16.9690
167 [0.6,1.4] 15.7561 6.5303 11.4673 14.0229 17.5645 15.6137

∆K = 1
V IX 422 [0.8,1.2] 19.4446 7.5112 14.3553 17.4847 21.7785 0.6552

629 [0.7,1.3] 19.6706 7.9527 14.3806 17.5132 21.9565 0.4644
1239 [0.6,1.4] 19.7315 8.1031 14.3806 17.5227 21.9754 0.5222

MFIV 422 [0.8,1.2] 19.9465 7.6143 14.7732 17.9444 22.3339 0.9677
629 [0.7,1.3] 20.2167 8.1086 14.8104 18.0277 22.5428 1.1655
1239 [0.6,1.4] 20.3067 8.2779 14.8143 18.0696 22.5958 1.4007

CXNT 422 [0.8,1.2] 14.3088 5.8672 10.4671 12.7445 15.9307 30.1713
629 [0.7,1.3] 14.3088 5.8672 10.4671 12.7445 15.9307 30.1713
1239 [0.6,1.4] 14.3088 5.8672 10.4671 12.7445 15.9307 30.1713

CXLT 422 [0.8,1.2] 18.3476 7.0362 13.5811 16.5221 20.5653 2.3754
629 [0.7,1.3] 18.6165 7.4680 13.6320 16.6063 20.7757 1.2482
1239 [0.6,1.4] 18.7276 7.6217 13.6817 16.6578 20.8200 0.9822

CXRT 422 [0.8,1.2] 16.3101 6.5466 11.9645 14.5647 18.1740 11.5773
629 [0.7,1.3] 16.3463 6.6585 11.9645 14.5652 18.1789 11.0363
1239 [0.6,1.4] 16.3535 6.6844 11.9645 14.5652 18.1789 10.9242

V C 422 [0.8,1.2] 12.3426 4.8872 9.0802 11.0050 13.7968 58.9506
629 [0.7,1.3] 12.3907 5.0354 9.0803 11.0066 13.8043 57.3536
1239 [0.6,1.4] 12.4002 5.0696 9.0803 11.0066 13.8043 57.0195

V P 422 [0.8,1.2] 15.5492 5.8333 11.5515 14.0358 17.4858 19.6655
629 [0.7,1.3] 15.8618 6.3478 11.5960 14.1653 17.7415 15.3688
1239 [0.6,1.4] 15.9815 6.5320 11.6480 14.2179 17.8116 13.9949
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Table 2.4: Simulation study with V0 = 0.08: out-of-sample forecast losses. This table
reports the ratio of the losses (MSE and R2) for different predictive regressions for
future monthly realized volatility and logarithm of volatility, respectively. Different
strike price increments and ranges of strikes are considered here. Data are obtained for
every trading day and the forecasts are based on re-estimating the parameters of the
different regressions each day with a fixed length Rolling Window (RW ) made up of
the previous 1000 days. Ranking is obtained for different cases of strike increments and
represents the average volatility forecasting performances of implied volatilities across
different strike ranges.

MSE Ranking Out-of-sample R2 (%) Ranking
Vol logVol Vol logVol Vol logVol Vol logVol

V IXTheo 0.0387 0.0190 74.5090 76.8332
rvt−1 0.0558 0.0287 63.2640 65.1061

∆K = 5 NK Moneyness Range
V IX 86 [0.8,1.2] 0.0568 0.0269 5 5 62.6171 67.2937 5 5

128 [0.7,1.3] 0.0553 0.0267 63.5527 67.5413
167 [0.6,1.4] 0.0544 0.0265 64.2093 67.7660

MFIV 86 [0.8,1.2] 0.0564 0.0266 4 4 62.8468 67.6101 4 4
128 [0.7,1.3] 0.0551 0.0265 63.7494 67.7624
167 [0.6,1.4] 0.0541 0.0264 64.3901 67.9136

CXNT 86 [0.8,1.2] 0.0519 0.0258 3 3 65.8194 68.6326 3 3
128 [0.7,1.3] 0.0519 0.0258 65.8194 68.6326
167 [0.6,1.4] 0.0519 0.0258 65.8194 68.6326

CXLT 86 [0.8,1.2] 0.0577 0.0280 6 6 62.0262 65.9059 6 6
128 [0.7,1.3] 0.0582 0.0283 61.6691 65.5402
167 [0.6,1.4] 0.0578 0.0283 61.9562 65.5705

CXRT 86 [0.8,1.2] 0.0504 0.0244 2 2 66.8396 70.3366 2 2
128 [0.7,1.3] 0.0489 0.0239 67.7939 70.9327
167 [0.6,1.4] 0.0483 0.0238 68.1703 71.0847

V C 86 [0.8,1.2] 0.0496 0.0231 1 1 67.3493 71.8709 1 1
128 [0.7,1.3] 0.0467 0.0224 69.2267 72.6933
167 [0.6,1.4] 0.0457 0.0223 69.9102 72.8904

V P 86 [0.8,1.2] 0.0662 0.0311 7 7 56.3911 62.1576 7 7
128 [0.7,1.3] 0.0651 0.0310 57.1374 62.2606
167 [0.6,1.4] 0.0635 0.0307 58.1738 62.6052

∆K = 1
V IX 422 [0.8,1.2] 0.0574 0.0270 5 5 62.1791 67.1571 5 5

629 [0.7,1.3] 0.0556 0.0267 63.3723 67.4821
1239 [0.6,1.4] 0.0545 0.0265 64.1190 67.7361

MFIV 422 [0.8,1.2] 0.0569 0.0267 4 4 62.5251 67.5176 4 4
629 [0.7,1.3] 0.0553 0.0265 63.6167 67.7243
1239 [0.6,1.4] 0.0542 0.0264 64.3310 67.9012

CXNT 422 [0.8,1.2] 0.0522 0.0259 3 3 65.6335 68.4597 3 3
629 [0.7,1.3] 0.0522 0.0259 65.6335 68.4597
1239 [0.6,1.4] 0.0522 0.0259 65.6335 68.4597

CXLT 422 [0.8,1.2] 0.0582 0.0281 6 6 61.6776 65.7394 6 6
629 [0.7,1.3] 0.0586 0.0284 61.4355 65.4086
1239 [0.6,1.4] 0.0580 0.0284 61.8023 65.4760

CXRT 422 [0.8,1.2] 0.0505 0.0244 2 2 66.7138 70.2520 2 2
629 [0.7,1.3] 0.0490 0.0239 67.7127 70.8682
1239 [0.6,1.4] 0.0484 0.0238 68.1058 71.0259

V C 422 [0.8,1.2] 0.0487 0.0227 1 1 67.9035 72.3489 1 1
629 [0.7,1.3] 0.0460 0.0221 69.7165 73.1407
1239 [0.6,1.4] 0.0450 0.0219 70.3702 73.3265

V P 422 [0.8,1.2] 0.0664 0.0310 7 7 56.2748 62.3124 7 7
629 [0.7,1.3] 0.0649 0.0308 57.2576 62.4827
1239 [0.6,1.4] 0.0632 0.0305 58.3920 62.8674
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Table 2.6: Simulation study with V0 = 0.02: out-of-sample forecast losses. This table
reports the ratio of the losses (MSE and R2) for different predictive regressions for
future monthly realized volatility and logarithm of volatility, respectively. Different
strike price increments and ranges of strikes are considered here. Data are obtained for
every trading day and the forecasts are based on re-estimating the parameters of the
different regressions each day with a fixed length Rolling Window (RW ) made up of
the previous 1000 days. Ranking is obtained for different cases of strike increments and
represents the average volatility forecasting performances of implied volatilities across
different strike ranges.

MSE Ranking Out-of-sample R2 (%) Ranking
Vol logVol Vol logVol Vol logVol Vol logVol

V IXTheo 0.0134 0.0267 66.7827 67.9234
rvt−1 0.0258 0.0477 36.0728 42.7877

∆K = 5 NK Moneyness Range
V IX 86 [0.8,1.2] 0.0140 0.0276 3 3 65.2932 66.8613 3 3

128 [0.7,1.3] 0.0139 0.0276 65.6774 66.9107
167 [0.6,1.4] 0.0138 0.0276 65.7816 66.9276

MFIV 86 [0.8,1.2] 0.0141 0.0278 4 4 65.0662 66.7200 4 4
128 [0.7,1.3] 0.0139 0.0277 65.5327 66.7998
167 [0.6,1.4] 0.0138 0.0276 65.7326 66.9340

CXNT 86 [0.8,1.2] 0.0136 0.0272 1 1 66.2040 67.4138 1 1
128 [0.7,1.3] 0.0136 0.0272 66.2040 67.4138
167 [0.6,1.4] 0.0136 0.0272 66.2040 67.4138

CXLT 86 [0.8,1.2] 0.0141 0.0278 5 5 65.1590 66.6712 5 5
128 [0.7,1.3] 0.0140 0.0278 65.4379 66.7029
167 [0.6,1.4] 0.0138 0.0276 65.7044 66.9565

CXRT 86 [0.8,1.2] 0.0137 0.0272 2 2 65.9595 67.3256 2 2
128 [0.7,1.3] 0.0137 0.0272 66.1195 67.3665
167 [0.6,1.4] 0.0137 0.0272 66.1524 67.3752

V C 86 [0.8,1.2] 0.0143 0.0284 6 6 64.4947 65.9123 6 6
128 [0.7,1.3] 0.0142 0.0283 64.8982 66.0272
167 [0.6,1.4] 0.0141 0.0283 64.9679 66.0483

V P 86 [0.8,1.2] 0.0146 0.0288 7 7 63.7524 65.4810 7 7
128 [0.7,1.3] 0.0144 0.0287 64.3786 65.5817
167 [0.6,1.4] 0.0142 0.0284 64.7431 65.8882

∆K = 1
V IX 422 [0.8,1.2] 0.0141 0.0277 4 4 65.1813 66.8135 4 4

629 [0.7,1.3] 0.0139 0.0276 65.6351 66.8826
1239 [0.6,1.4] 0.0138 0.0276 65.7564 66.9033

MFIV 422 [0.8,1.2] 0.0141 0.0278 5 5 64.9976 66.7045 5 5
629 [0.7,1.3] 0.0139 0.0277 65.5190 66.8078
1239 [0.6,1.4] 0.0138 0.0276 65.7180 66.9211

CXNT 422 [0.8,1.2] 0.0137 0.0273 1 2 66.0310 67.2146 1 2
629 [0.7,1.3] 0.0137 0.0273 66.0310 67.2146
1239 [0.6,1.4] 0.0137 0.0273 66.0310 67.2146

CXLT 422 [0.8,1.2] 0.0141 0.0279 6 6 65.0340 66.6037 6 6
629 [0.7,1.3] 0.0140 0.0278 65.3683 66.6738
1239 [0.6,1.4] 0.0139 0.0276 65.6063 66.8678

CXRT 422 [0.8,1.2] 0.0138 0.0274 2 1 65.8512 67.1860 2 1
629 [0.7,1.3] 0.0137 0.0273 66.0201 67.2307
1239 [0.6,1.4] 0.0137 0.0273 66.0544 67.2401

V C 422 [0.8,1.2] 0.0139 0.0276 3 3 65.4487 66.9566 3 3
629 [0.7,1.3] 0.0138 0.0275 65.8075 67.0437
1239 [0.6,1.4] 0.0138 0.0275 65.8692 67.0594

V P 422 [0.8,1.2] 0.0145 0.0283 7 7 64.0916 66.0206 7 7
629 [0.7,1.3] 0.0142 0.0282 64.7965 66.1591
1239 [0.6,1.4] 0.0141 0.0280 65.1224 66.3744
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Table 2.8: Simulation study with V0 = 0.08: multi-period return prediction. This table
shows the adjusted R2 from the daily regressions of the h-period returns on the current
implied variance levels. Ranking is obtained for different cases of strike increments and
represents the average ability of implied volatilities for predicting returns across different
strike ranges.

Return Predictability (Adj R2 %) Ranking
30-day 60-day 30-day 60-day

V IXTheo 0.7611 7.4725
∆K = 5 NK Moneyness Range

V IX 86 [0.8,1.2] 1.4033 8.5224 4 4
128 [0.7,1.3] 1.2048 8.3069
167 [0.6,1.4] 1.0217 8.0018

MFIV 86 [0.8,1.2] 1.4689 8.6001 2 3
128 [0.7,1.3] 1.2625 8.3965
167 [0.6,1.4] 1.0648 8.0852

CXNT 86 [0.8,1.2] 0.7559 7.4092 7 7
128 [0.7,1.3] 0.7559 7.4092
167 [0.6,1.4] 0.7559 7.4092

CXLT 86 [0.8,1.2] 1.1687 8.1426 5 5
128 [0.7,1.3] 1.0992 8.0754
167 [0.6,1.4] 0.9731 7.8621

CXRT 86 [0.8,1.2] 1.0860 8.1113 6 6
128 [0.7,1.3] 0.9967 7.9809
167 [0.6,1.4] 0.9164 7.8265

V C 86 [0.8,1.2] 1.6091 8.8549 1 1
128 [0.7,1.3] 1.3245 8.5471
167 [0.6,1.4] 1.1319 8.2404

V P 86 [0.8,1.2] 1.4520 8.6069 3 2
128 [0.7,1.3] 1.2745 8.4381
167 [0.6,1.4] 1.0611 8.1023

∆K = 1 V IX 422 [0.8,1.2] 1.4875 8.6919 4 4
629 [0.7,1.3] 1.2448 8.3953
1239 [0.6,1.4] 1.0541 8.0624

MFIV 422 [0.8,1.2] 1.5257 8.7259 2 2
629 [0.7,1.3] 1.2881 8.4596
1239 [0.6,1.4] 1.0907 8.1320

CXNT 422 [0.8,1.2] 0.7798 7.4631 7 7
629 [0.7,1.3] 0.7798 7.4631
1239 [0.6,1.4] 0.7798 7.4631

CXLT 422 [0.8,1.2] 1.2324 8.2971 5 5
629 [0.7,1.3] 1.1336 8.1630
1239 [0.6,1.4] 1.0068 7.9322

CXRT 422 [0.8,1.2] 1.1023 8.1470 6 6
629 [0.7,1.3] 1.0128 8.0122
1239 [0.6,1.4] 0.9320 7.8527

V C 422 [0.8,1.2] 1.4980 8.8190 3 1
629 [0.7,1.3] 1.2473 8.5171
1239 [0.6,1.4] 1.0707 8.2103

V P 422 [0.8,1.2] 1.5611 8.6914 1 3
629 [0.7,1.3] 1.3228 8.4411
1239 [0.6,1.4] 1.1071 8.0958
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Table 2.10: Simulation study with V0 = 0.02: multi-period return prediction. This table
shows the adjusted R2 from the daily regressions of the h-period returns on the current
implied variance levels. Ranking is obtained for different cases of strike increments and
represents the average ability of implied volatilities for predicting returns across different
strike ranges.

Return Predictability (Adj R2 %) Ranking
30-day 60-day 30-day 60-day

V IXTheo 0.4238 7.8759
∆K = 5 NK Moneyness Range

V IX 86 [0.8,1.2] 0.6918 8.7715 4 3
128 [0.7,1.3] 0.5330 8.2114
167 [0.6,1.4] 0.4655 7.9451

MFIV 86 [0.8,1.2] 0.7335 8.8962 2 2
128 [0.7,1.3] 0.5546 8.2795
167 [0.6,1.4] 0.4723 7.9776

CXNT 86 [0.8,1.2] 0.4199 7.7976 7 7
128 [0.7,1.3] 0.4199 7.7976
167 [0.6,1.4] 0.4199 7.7976

CXLT 86 [0.8,1.2] 0.6704 8.6732 3 4
128 [0.7,1.3] 0.5506 8.2150
167 [0.6,1.4] 0.4718 7.9499

CXRT 86 [0.8,1.2] 0.5325 8.2695 6 6
128 [0.7,1.3] 0.4519 7.9693
167 [0.6,1.4] 0.4275 7.8649

V C 86 [0.8,1.2] 0.5921 8.7234 5 5
128 [0.7,1.3] 0.4394 8.1503
167 [0.6,1.4] 0.3970 7.9581

V P 86 [0.8,1.2] 0.8565 9.0860 1 1
128 [0.7,1.3] 0.6413 8.3951
167 [0.6,1.4] 0.5217 8.0105

∆K = 1 V IX 422 [0.8,1.2] 0.7290 8.8643 3 3
629 [0.7,1.3] 0.5465 8.2584
1239 [0.6,1.4] 0.4706 7.9638

MFIV 422 [0.8,1.2] 0.7638 8.9634 2 2
629 [0.7,1.3] 0.5665 8.3176
1239 [0.6,1.4] 0.4777 7.9995

CXNT 422 [0.8,1.2] 0.4237 7.8178 7 7
629 [0.7,1.3] 0.4237 7.8178
1239 [0.6,1.4] 0.4237 7.8178

CXLT 422 [0.8,1.2] 0.6992 8.7464 4 4
629 [0.7,1.3] 0.5616 8.2594
1239 [0.6,1.4] 0.4775 7.9851

CXRT 422 [0.8,1.2] 0.5430 8.3001 6 6
629 [0.7,1.3] 0.4595 7.9904
1239 [0.6,1.4] 0.4330 7.8793

V C 422 [0.8,1.2] 0.6338 8.7119 5 5
629 [0.7,1.3] 0.4740 8.1437
1239 [0.6,1.4] 0.4275 7.9471

V P 422 [0.8,1.2] 0.8629 9.1365 1 1
629 [0.7,1.3] 0.6296 8.4181
1239 [0.6,1.4] 0.5068 8.0258
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Chapter 3

Volatility Forecasting Using the

HAR and Lasso-based Models: an

empirical investigation
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3.1 Introduction

Modelling and forecasting volatility is of critical importance for asset and derivative

pricing, asset allocation and risk management. The increasing availability of

high-frequency data has inspired a new line of literature aimed at exploiting

the intraday information in the estimation and forecast of return volatility. This

literature begins with the work of Andersen and Bollerslev (1998) who first propose

to use the cumulative sum of squared intraday returns over short time intervals

during the trading day, as an alternative method of volatility estimation, and term

this measure the realized variance (RV). Compared with the traditional volatilities

built on daily, weekly and monthly frequency data, e.g. the parametric GARCH or

stochastic volatility (SV) models, the RV provides model-free unbiased estimates of

the ex post return variation under certain conditions specified by Barndorff-Nielsen

and Shephard (2002). Although the GARCH and SV models can also be applied to

intraday returns, empirical studies indicate that they fail to capture all information

in high-frequency data; see Andersen and Bollerslev (1998), Blair, Poon, and

Taylor (2001) and Hansen and Lunde (2005). In addition, the RV displays all

the stylized facts of financial volatility documented in the case of latent model

specifications, the long-memory property in particular.

A growing literature has sought to investigate the properties of the RV and

suggest that reliable forecasts can be constructed by high-frequency time-series

models; see Andersen et al. (2001b), Koopman, Jungbacker, and Hol (2005) and

Ghysels and Sinko (2006), among others. A widely adopted model is the heterogeneous

autoregressive, or HAR, model proposed by Corsi (2009). Although the HAR

model is formally not a long-memory model, it is able to replicate the strong

volatility persistence using the sum of RV components aggregated at different

interval sizes. The HAR is easy-to-implement and provides an accurate fit of

financial volatility. These features have made it the preferred specification for the

forecast of RV. In spite of its substantial applications, the HAR model is rather

restrictive in the way that the effect of a volatility shock which occurred two days
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ago is identical to a shock which took place three, four or five days ago. However,

little work has been conducted in terms of the appropriateness of the lag structure

implied by the HAR model, e.g. the maximal autoregressive (AR) lag order and

the arrangement of volatility components.

Applying the least absolute shrinkage and selection operator (Lasso) proposed

by Tibshirani (1996) as a model selection device, Audrino and Knaus (2016) show

that the HAR implied lag structure can be recovered by the Lasso estimator only

if the HAR is the underlying data generating process (DGP). However, with their

empirical application using nine stocks, the Lasso does not completely agree with

the HAR with regard to the lag structure. They also find that the Lasso performs

on a par with the HAR in the out-of-sample (OOS) volatility forecast. The Lasso

approach produces estimated regression coeffi cients which are exactly zero, and

therefore plays an important role in variable selections where only predictors with

nonzero estimates are perceived to be relevant. Although the Lasso is important in

determining a model for forecasting exercise, only a few studies have attempted to

exploit it in the forecast of future RV; e.g. Audrino, Camponovo, and Roth (2015),

Audrino, Huang, and Okhrin (2016) and Wilms, Rombouts, and Croux (2016).

Wilms, Rombouts, and Croux (2016) are the pioneers in using the ordered Lasso

approach together with the idea of forecast combination in an attempt to enhance

the accuracy of forecasts of RV. Compared with the standard AR model estimated

by least squares, the ordered Lasso method achieves a better performance in the

OOS volatility forecast, where the forecast combination only slightly improves the

results.

Against this background, this chapter contributes to the existing literature in

two aspects. First, in the in-sample analysis, we adopt three different Lasso-based

approaches-adaptive Lasso, group Lasso and cluster group Lasso-to verify the

validity of the lag structure implied by the HARmodel. In addition to the maximal

AR lag order as analyzed in Audrino and Knaus (2016), we also investigate whether

the choice of time horizons (daily, weekly and monthly time scales) in the HAR

model, at which lags of RV are aggregated, is inherent to the real data. Second, we
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are among the few to provide a comprehensive empirical study of the performance

of the Lasso-based models in the forecast of future RV. We employ different

Lasso-based models and examine the effectiveness of the forecast combination in

improving the forecasting accuracy of the Lasso-based models. In addition, we also

consider the standard HAR model and the two extensions proposed by Bollerslev

et al. (2016) to draw comparisons with the Lasso-based models. The forecasts

are based on different time horizons and constructed over both a rolling window

and an increasing window. We also account for the impact of the financial crisis

on the forecasting performance of various Lasso-based models. To examine the

robustness of our results, we use the RV computed from intraday returns sampled

at three different frequencies, i.e. 30, 300 and 600 seconds.

Our empirical analysis relies on the high-frequency data of the SPY and ten

individual stocks with the same time span as in the work of Audrino and Knaus

(2016). In summary, we show that the lag structure implied by the HAR model

is not consistent with that given by the model selection devices, which brings into

question whether the HAR model is appropriate for modelling and forecasting RV.

In our OOS forecasting exercises using the full time period, the best performance

is generally provided by the Lasso-based model, where the use of the forecast

combination tends to deliver more accurate volatility forecasts. Among various

models considered, the ordered Lasso AR with the forecast combination serves as

the top performer more frequently than the others. In addition, its improvements

over the benchmark HAR model in terms of the OOS volatility forecast are usually

significant over monthly horizons. Relative to the pre-crisis period, there tends to

be more situations in the post-crisis period where the ordered Lasso AR using the

forecast combination dominates the HAR and produces the lowest forecast loss,

especially over long forecasting horizons. A larger window size is found to result

in a better performance of the Lasso-based models, which is in agreement with the

work of Audrino and Knaus (2016). Moreover, the results summarized above are

not affected by the variation in the sampling frequencies upon which the RV series

are derived. However, as the sampling frequency grows, from 600 seconds to 30
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seconds, the Lasso-based model in the OOS forecast is observed to be superior for

more stocks in the full sample analysis.

The rest of chapter is organized as follows. Section 3.2 provides a review of

relevant studies. Section 3.3 introduces various forecasting models considered in

this chapter together with their estimation methods. Section 3.4 describes the

data and outlines our empirical findings. Conclusion is presented in Section 3.5

3.2 Literature Review

In this section, we first provide an overview of the existing literature on the

development of the RV. We then discuss the nature and construction of the

standard HAR model with its various generalizations and extensions for modelling

and forecasting RV. We also review studies using the Lasso-based methods to

examine the appropriateness of the lag structure implied by the HAR and to

forecast future RV from a model selection point of view.

3.2.1 Realized Variance

The modelling of financial volatility has played a central role in risk management

and asset allocation. This could be attributed to the fact that, although the daily

returns of financial assets are diffi cult to predict, the volatility of returns appears to

be relatively easier to forecast. Since the conditional volatility is latent and thus

not directly observable, some models are developed to capture the dynamics of

volatility while accounting for its popular features, e.g. volatility clustering, slowly

decaying autocorrelations and its non-linear behaviour in response to historical

information. The most famous example is perhaps the (Generalized) Autoregressive

Conditional Heteroskedasticity family of models, (G)ARCH, proposed by Engle

(1982) and Bollerslev (1986). In (G)ARCH-type models, the volatility of a single

day is considered unobservable, and so is computed as a function of the variance

of daily returns over a given time period. In spite of different extensions and

modifications of the GARCHmodel, e.g. Exponential GARCH, Threshold GARCH,
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and GJR-GARCH among others, the basic GARCH(1,1) is found to perform well

in an out-of-sample (OOS) forecast of future conditional volatility; see the work of

Hansen and Lunde (2005). The latent conditional volatility can also be estimated

by stochastic volatility (SV) models (Taylor (1996)) or exponentially weighted

moving averages (EWMA) (Morgan (1996)). However, these models introduced

above fail to simultaneously accommodate some of the stylized facts found in the

time series of financial volatility, as suggested by Bollerslev (1987), Carnero, Peña,

and Ruiz (2004) and Malmsten and Teräsvirta (2010). On the other hand, the

estimation of these models generally depends on daily or coarser frequency data

and therefore the important intraday information is omitted.

As shown by Merton (1980), Nelson (1992) and Foster and Nelson (1996), the

volatility measurement tends to improve with the frequency of data. The use of

high-frequency intraday data in estimating and predicting the conditional volatility

of asset returns is first considered in the work of Andersen and Bollerslev (1998)

who propose using realized volatility, computed from squared intraday returns

sampled at five minutes, as a proxy for ex post daily foreign exchange volatility.

Specifically, assume that an asset price, Pt, displays the dynamics d log(Pt) =

µtdt + σtdWt, where µt and σt represent the drift term and the instantaneous

volatility, respectively; Wt is a standard Brownian motion which is supposed to be

independent of σt. The one-day integrated variance is given by IVt =
∫ t
t−1

σ2
sds.

In practice, σ2
t is not observable. However, the realized variance (RV) obtained by

the sum of intraday returns, RVt =
∑M

i=1 r
2
t,i, where M = 1/∆ and the ∆-period

intraday return is calculated as rt,i = log(Pt−1+i∆) − log(Pt−1+(i−1)∆), provides a

consistent estimator of the IVt as 1/∆→∞.

Based upon the findings of Barndorff-Nielsen and Shephard (2002), Meddahi

(2002) and Andersen et al. (2003) among others, further investigate the properties

of the RV computed from high-frequency data. The superiority of the RV over the

GARCH and SV models in terms of the OOS forecast is documented in the work

of Andersen et al. (2003). Since then, the literature has increasingly concentrated

on the RV estimator. Jacod and Shiryaev (2003) argue that the RV does not
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converge as the sampling frequency grows. The impact of sampling frequency

on the RV has been extensively examined; see Zhang, Mykland, and Aït-Sahalia

(2005), Aït-Sahalia and Mancini (2008) and Bandi and Russell (2008), among

others. The five-minute RV is widely considered an appropriate measure which

avoids the microstructure noise arising from the use of high-frequency observations,

e.g. bid-ask bounce, infrequent trading and price discreteness; see more details in

Madhavan (2000) and Biais, Glosten, and Spatt (2005). To minimize the daily

mean squared error (MSE) of the realized (co-)variance estimator, Bandi, Russell,

and Zhu (2008) show that the optimal sampling frequency is 5 to 30 minutes.

They also allow their optimal sampling frequency to vary across (co-)variances

and over time. On the other hand, De Pooter, Martens, and Van Dijk (2008)

achieve a different finding of around one hour, using a fixed frequency to directly

optimize economic criteria. A general formula for the selection of the optimal

sampling frequency based on the minimization of the MSE can be found in the

work of Zhang, Mykland, and Aït-Sahalia (2005). In addition to the RV, there

are many other approaches for estimating the integrated variance IV: for example,

two-time scales estimator by Zhang, Mykland, and Aït-Sahalia (2005), kernel based

estimator adopted in Zhou (1996) and generalized in Hansen and Lunde (2006),

which are constructed by squared intraday returns, and estimators which rely

on other ingredients of high-frequency data; see an extensive review in Pigorsch,

Pigorsch, and Popov (2012).

3.2.2 HAR and its extensions

It is well established that the RV displays long-memory property, characterized by

fractional integration and hyperbolic decaying rates of autocorrelation functions.

The long-memory feature of the time series of the RV has been traditionally

accommodated by an ARFIMA(p, d, q) process; see Andersen et al. (2003) for

example. An alternative to the ARFIMA is the model which approximates long

memory, i.e. high persistence, by the aggregation of the heterogenous components

observed in the markets. Long-memory effects as a result of the aggregation of
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dynamic heterogenous processes are discussed in detail in the work of Robinson

(1978) and Granger (1980).

Corsi (2009) proposes the heterogenous autoregressive model of RV (HAR),

which parameterizes the RV as a sum of lagged RVs aggregated at different interval

sizes, i.e. daily, weekly and monthly averages of RVs. The HAR model is based on

the heterogenous ARCH (HARCH) model of Müller et al. (1997) and inspired by

the Heterogenous Market Hypothesis (HMH). The HMH suggests that a financial

market is composed of agents, having different perspectives of their investment

horizons, who react to and result in different types of volatility components.

Corsi (2009) assumes that there are three primary trading activities based upon

participants’ trading duration preferences, i.e. short-, medium- and long-term

investment, and thus each investment horizon may lead to a unique volatility. As

a result, a financial market is made up of heterogenous market participants with

a volatility cascade from low frequencies to high frequencies.

The cascade of heterogenous volatility components in the HAR has a simple

AR structure in the RV with economically meaningful coeffi cient restrictions.

Specifically, equality constraints are imposed on the AR coeffi cients representing

a given time horizon. To evaluate whether the coeffi cient restrictions are valid,

Corsi (2009) compares the HAR with the unrestricted AR model and finds that

the former dominates the latter in terms of the in-sample fit. The HAR has

emerged as a preferred specification for modelling and forecasting RV due to its

advantages: first, it can be easily estimated by the OLS technique; and second, it

reproduces the persistence properties of financial volatility and accommodates the

observed long-memory behaviour. Although the HAR does not formally belong to

the class of long-memory models, Corsi et al. (2008) argue that the HAR performs

on a par with the long-memory model, ARFIMA, with regard to forecasting and

model misspecifications and that the HAR might be more preferable in practice as

a result of its straightforward estimation. The simplicity and flexibility of the HAR

model allows for various extensions, which will be introduced in the remainder of

this subsection. Applications of the HAR and its extensions can be found in a
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wide range of areas in finance and economics, e.g. stock market, foreign exchange,

bond market, commodity market and currency market.

Based on the bipower variation (BV) measure provided by Barndorff-Nielsen

(2004), Andersen, Bollerslev, and Diebold (2007) propose the HAR-RV-J model

by modifying the HAR to account for jumps and the HAR-RV-CJ model by

incorporating jumps and continuous sample path variation. The HAR-RV-CJ

model outperforms the HAR from a volatility forecasting perspective. Taking the

analysis of Andersen, Bollerslev, and Diebold (2007) one step further, Andersen,

Bollerslev, and Meddahi (2011) provide the HAR-CJN model by accounting, not

only for the jumps and continuous component of volatility that occur during

the trading day, but also for the overnight return variance using a discrete-time

GARCH model. Results indicate that the popular discrete-time volatility models,

including the GARCH(1, 1) and the HAR, are dominated by the HAR-CJN

model in both in- and out-of-sample forecasts. In a departure from Andersen,

Bollerslev, and Diebold (2007) and Andersen, Bollerslev, and Meddahi (2011),

Bollerslev et al. (2009) adopt a more effi cient maximum likelihood estimation

method to model returns, BV and jumps using a coherent multivariate framework.

The by-product of the study by Bollerslev et al. (2009) is the development of

the HAR-GARCH-BV model. This model helps to explain the time-dependent

conditional heteroskedasticity in the innovations of the BV measure by capturing

the volatility of volatility using a separate GARCH type model.

In addition to the inclusion of jumps considered in the studies discussed above,

Corsi and Renò (2012) extend the heterogenous structure by adding lagged negative

returns over the previous day, week and month as explanatory variables for future

volatility, in which clear evidence of the persistent leverage effect is delivered. From

a different prospective, Corsi et al. (2008) propose two extensions of the HAR

and ARFIMA models to accommodate the observed properties of the innovations,

i.e. non-Gaussianity and volatility clustering. The extended models result in

non-trivial gains in terms of the fit and predictive performance. Under conditions

of continuous prices and the absence of measurement error, RV converges to
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the true IV as the sampling frequency goes to zero. However, RV is subject

to microstructure noise in any given finite sample and therefore ignoring the

measurement error may be problematic. To deal with this issue, Bollerslev, Patton,

and Quaedvlieg (2016) propose a HARQ model to allow the parameter of the HAR

to vary with an estimate of the measurement error variance. The HARQ model

is superior to other widely adopted models in terms of the in- and out-of-sample

forecasts.

Other extensions of the HAR include (but are not restricted to): (1) the

introduction of the nonlinear phenomenon of the RV by McAleer and Medeiros

(2008) who combine the HAR with multiple regime smooth transition, and by

Hillebrand andMedeiros (2010) who consider a log-linear specification based on the

HAR model; (2) a vector heterogenous autoregressive (VecHAR) model proposed

by Busch, Christensen, and Nielsen (2011b) for the joint modelling of implied

volatility, continuous component of volatility and jumps; (3) Panel-based HAR

employed in Bollerslev et al. (2016). Apart from the HAR-Free model where a

more flexible lag structure is considered, Bollerslev et al. (2016) introduce two

novel RV models in the spirit of the HAR. These are denoted as the heterogenous

exponential RV model (HExp) and the Slope HAR model, which are designed to

ensure that the predicted future RV relies on the lagged RVs in a way which is

continuous and decreasing in the lag lengths. As shown by Bollerslev et al. (2016),

the smoothness incorporated in these two models leads to better OOS volatility

forecasts relative to the original unsmoothed HAR model.

3.2.3 Lasso applications in modelling and forecasting RV

In spite of the great popularity and extensive applications of the HAR model, few

studies examine the validity of its heterogenous structure as a result of volatility

cascade. Craioveanu and Hillebrand (2012) extend the standard lag structure

corresponding to a daily, a weekly, and a monthly time horizon employed in

the HAR by allowing for a flexible lag structure. The optimal lag specification

in the HAR model is determined according to two different criteria: in-sample
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fit (maximum likelihood) and OOS fit (MSE of the future volatility forecast).

However, Craioveanu and Hillebrand (2012) suggest that the use of a more flexible

lag structure delivers no gains in OOS volatility forecasts compared to the HAR

by Corsi (2009).

In order to forecast a long-memory process containing structural breaks, an

enhanced forecasting approach based on an AR approximation is proposed by

Wang, Bauwens, and Hsiao (2013). In the context where the series of interest is

a long-memory process subject to breaks, the AR-based method performs better

than the traditional methods in the OOS forecasts. This provides an explanation,

from an econometric perspective, for the empirical success of the HAR model,

which can be seen as a special case of the AR approximation, i.e. an AR(22) model

with only three lag coeffi cients. Another theoretical justification for the superior

performance of the HAR is given by Hwang and Shin (2014). Motivated by the fact

that the HAR (which is a restricted AR(22) process) has short memory, Hwang

and Shin (2014) introduce an infinite-order HAR, i.e. HAR(∞), with exponentially

decaying coeffi cients to obtain the genuine long-memory property. They show that

the forecast errors are mainly due to the estimation of the unknown coeffi cients of

a finite-order HAR(p) model rather than to errors induced by approximating the

underlying HAR(∞) process by the HAR(p).

In light of the studies by Craioveanu and Hillebrand (2012) andWang, Bauwens,

and Hsiao (2013), Audrino and Knaus (2016) examine how much the daily, weekly

and monthly frequencies of the HAR are inherent to the real data and whether

the lag structure can be identified using a model selection method, i.e. the least

absolute shrinkage and selection operator (Lasso) provided by Tibshirani (1996).

Audrino and Knaus (2016) show that, if the HAR model is the underlying DGP,

the Lasso performs well in recovering the lag structure implied by the HAR model.

However, the HAR lag structure cannot be exactly recovered by the Lasso in their

empirical application, which poses some doubts on whether the HAR is appropriate

for the modelling of RV. In addition, the HAR model and the Lasso approach are

found to exhibit indistinguishable performance with regard to the OOS volatility
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forecasts in the work of Audrino and Knaus (2016).

As an extension of Audrino and Knaus (2016), Audrino, Camponovo, and Roth

(2015) adopt the adaptive Lasso estimator and examine the significance of the

estimated coeffi cients. The adaptive Lasso is introduced by Zou (2006) as a refined

Lasso method, which helps to reduce the number of false positives, i.e. the scenario

where too many variables are selected by the Lasso. In confirming the results

of Audrino and Knaus (2016), the lags selected by the adaptive Lasso approach

are generally inconsistent with those implied by the HAR model. Interestingly,

the large lags given by the adaptive Lasso, i.e. lags far beyond the 22nd, are

generally statistically insignificant, which, to some extent, explains the excellent

empirical performance of the HAR model. Distinct from Audrino and Knaus

(2016), who concentrate on lassoing the AR terms, Audrino, Huang, and Okhrin

(2016) consider flexible HAR and HARQ specifications using the adaptive Lasso to

investigate whether the lag structure implied by the HAR can be recovered. Again,

no strong evidence for the hypothesis is observed in their application. In terms

of the OOS forecasts, the proposed flexible HAR model only slightly outperforms

other frequently employed specifications and the gains are not significant.

It is worth noting that the use of the (adaptive) Lasso may not be appropriate

in a group of highly correlated or nearly linearly dependent variables, in which

case the (adaptive) Lasso tends to select one or few variables even if many or all of

them have important explanatory power in explaining the response variable. Such

problem is the so-called false negatives. A possible solution to avoid false negatives

is the use of the Group Lasso proposed by Yuan and Lin (2006) or the Cluster Lasso

by Bühlmann et al. (2013). Group Lasso suggests that, if one group is active, then

all the variables within the group will be active whereas the Cluster Lasso aims for

small canonical correlations between groups. Audrino, Huang, and Okhrin (2016)

divide the lags in AR(50) into four groups namely {1}, {2-5}, {6-22}, {23-50},

where the first three groups are implied by the lag structure of the HAR model.

Applying the Group Lasso, Audrino, Huang, and Okhrin (2016) show that the

hypothesis for the validity of the lag structure of the standard HAR is rejected in
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most cases. They argue that the primary reason for rejection might be due to the

inappropriate arrangement of the groups and that a minor reason is the equality

restrictions imposed on the AR coeffi cients.

Lasso-based approaches are also employed to account for the dynamic nature of

the volatility forecast. Two extensions of the Lasso method that are attempted in

the work of Wilms, Rombouts, and Croux (2016) are termed the Hierarchical

Lasso and the ordered Lasso. The Hierarchical Lasso forces the lower order

lagged AR coeffi cient to be selected before its higher order lagged coeffi cients.

Exhibiting a similar feature to the Hierarchical Lasso, the ordered Lasso strongly

encourages, but does not ensure, that the absolute values of the lagged effects are

monotonically non-increasing, which mimics the hierarchical structure assumed in

the HAR model. Among four estimators (i.e. AR, Lasso AR, Hierarchical Lasso

AR and ordered Lasso AR), Wilms, Rombouts, and Croux (2016) show that the

ordered Lasso AR dominates the others in forecasting future volatility and that

the forecast combination slightly improves the forecast accuracy of the Lasso-type

models.

3.3 Methodology

In this section, we present the methods employed in our study. We start with an

introduction of the HAR model and its two recent extensions. We then describe

the Lasso-based methods considered in this chapter.

3.3.1 HAR

The HAR model proposed by Corsi (2009) is one of the most heavily adopted

specifications for modelling and forecasting RV via the use of different volatility

factors over daily, weekly and monthly horizons representing specific investment

behaviors. To introduce the HAR model, let RV h
t = 1

h

∑h
i=1RVt−i+1 denote the

average RV over the previous h days. Correspondingly, RV W
t = 1

5

∑5
i=1RVt−i+1

andRV M
t = 1

22

∑22
i=1 RVt−i+1 are the weekly (5-day) and monthly (22-day) averages
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of daily RV, respectively. The standard HAR is given by

RVt+1 = β0 + βDRVt + βWRV
W
t + βMRV

M
t + εt+1 (3.1)

where {εt} is a zero mean innovation process. Treating the average realized

volatilities as directly observable, estimates of coeffi cients, β0, βD, βW and βM ,

can be consistently obtained by a standard OLS regression.

Highlighted by Corsi (2009), the HAR model in equation (3.1) is equivalent

to an AR(22) model with imposed equality constraints on the AR coeffi cients as

follows

RVt+1 = β0 +

22∑
i=1

φHARi RVt−i+1 + εt+1 (3.2)

The coeffi cient restrictions implied by the HAR are given by

φHARi =


βD + 1

5
βW + 1

22
βM for i = 1

1
5
βW + 1

22
βM for i = 2,. . . , 5

1
22
βM for i = 6,. . . , 22

(3.3)

To evaluate whether the constraints are valid, Corsi (2009) compares the restricted

HAR with the unrestricted AR(22) model. Corsi (2009) argues that the rejection

of the joint F test for the restriction presented in equation (3.3) is to be expected

due to the large number of restrictions and that the reason for the rejection is

asset dependent. This result also provides an indication that the HAR may not

be successful in fully capturing the observed effects in the real data.

The HAR in (3.1) can be used directly for forecasting the one-day-ahead RV.

For longer-run forecasts, e.g. weekly or monthly horizons, we employ a simple

forecasting approach by replacing the daily RV on the left-hand-side of equation

(3.1) with the RV over h-day horizon as in the work of Bollerslev, Patton, and

Quaedvlieg (2016) and Bollerslev et al. (2016), among others. The predictive

regression is given by

RV h
t+h = βh0 + βhDRVt + βhWRV

W
t + βhMRV

M
t + εht+1 (3.4)
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which, again, can be estimated by a standard OLS technique. This forecasting

method, the so-called direct forecasts in the forecasting literature, is directly

applicable to other volatility forecasting models to be introduced below.

3.3.2 Two extensions of the HAR model

The key idea of this chapter is to examine whether parsimonious models produced

by the Lasso-based estimators can result in superiority over the standard HAR

model in terms of the forecast of future volatility. The parsimonious model

indicates that many of the lagged RVs exert zero impact on the future RV. In other

words, it selects only relevant volatility factors and thus achieves a more flexible

lag structure than the standard HAR model, which may lead to a reduction in the

estimation error. As such, by comparison with the Lasso-based forecast models,

we consider some existing extensions of the HAR model which are designed to

generalize the standard HAR model from the perspective of lag structure.

First, we adopt the HAR-Free1 model proposed by Bollerslev et al. (2016) as

follows

RVt+1 = β0 + β1RVt + β2RVt−1 + β3RVt−2 + β4RVt−3 + β5RVt−4 (3.5)

+β6RVt−5 + βMRV
M
t + εt+1

As an extension of the HAR model, the HAR-Free model allows for the coeffi cients

of the first six daily lagged RVs to be freely estimated. Here, the RV M
t is derived

in the same way as that in equation (3.1).

As argued in Bollerslev et al. (2016), the step-wise nature of the RV W
t and

RV M
t in the HAR model in equation (3.1) may result in sudden changes in the

forecast of RV when a very large/small daily RV is removed from the sums for the

longer-horizon lagged volatility factors with time passing. To overcome this issue,

1Unlike Bollerslev et al. (2016), we do not include the long-run volatility factor to "anchor"
the HAR model since we do not conduct the panel-based estimation. In addition, we do not
involve the annual volatility factor in order to make our analysis directly comparable to the
standard HAR model.
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Bollerslev et al. (2016) propose the slopeHAR model, which can be expressed as

RVt+1 = β0 + βDRVt + βWSlopeRV
W
t + βMSlopeRV

M
t + εt+1 (3.6)

where SlopeRV k
t =

∑k
i=1

(
k−i+1

k+(k−1)+...+1

)
RVt+1−i. The slopeHAR model is smooth

in the sense that the effects on the forecast of future RV of the historical volatilities

are continuous and decreasing with lags. In the same spirit as the slopeHAR

model, Bollerslev et al. (2016) introduce another extended HAR-type model which

depends on a mixture of Exponentially Weighted Moving Averages (EWMA) of

the past RVs. Due to its similar performance to the slopeHAR model in the OOS

volatility forecasts, we only consider the slopeHAR model in this chapter as an

extended smooth HAR model.

3.3.3 Lasso-based Estimators

In the following subsection, we describe the Lasso-based approaches adopted in

this chapter in an attempt to verify the validity of the lag structure implied by the

HAR model and to enhance the performance in forecasting future RV by using a

parsimonious model.

Lasso and adaptive Lasso

The Lasso method developed by Tibshirani (1996) has gained popularity in the

recent econometric literature for model selection in linear and generalized linear

models. As suggested by Friedman, Hastie, and Tibshirani (2010), the great

interest in the Lasso arises from two aspects: first, it conducts model selection

and estimation simultaneously; second, it adopts a highly effi cient algorithm and

is therefore computationally affordable. We describe below the Lasso and its

refinement, i.e. adaptive Lasso in identifying the active lagged RVs in the forecast

of future RV.

As discussed earlier, the HAR model can be expressed as an AR(22) process.

In this subsection, we represent the daily RVt by xt and let (xt,· · · , xt−p+1)′ be
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predictor variables in an AR(p) process:

xt+1 = c+

p∑
j=1

φjxt−j+1 + εt (3.7)

where t = p,· · · , T and {εt} is a sequence of independent and identically distributed

(i.i.d.) innovations with zero mean. The Lasso procedure employs an ` penalty to

obtain a sparse solution as follows

(
ĉLasso, φ̂

Lasso
)

= arg min
c, φ


T∑
t=p

xt+1 − c−
p∑
j=1

φjxt−j+1

2 subject to
p∑
j=1

∣∣φj∣∣ ≤ τ
(3.8)

where τ is a tuning parameter which controls the amount of shrinkage applied to

the estimates. The solution for c is ĉ = x. The parameter c can be removed from

the minimization once we let x = 0 by demeaning the data. The minimization

problem can be solved by

φ̂
Lasso

= arg min
φ

1

2

T∑
t=p

(
xt+1 −

p∑
j=1

φjxt−j+1

)2

+ λ

p∑
j=1

∣∣φj∣∣
 (3.9)

where the parameter λ has a one-to-one relationship with τ in equation (3.8). It

is clear that letting λ = 0 will lead to consistency between the Lasso estimator

and the OLS estimator. However, the use of a strictly positive λ will penalize

all AR coeffi cients which are not equal to zero. Moreover, a higher value of λ

will result in an increasing number of coeffi cients being set exactly to zero. In

short, the selection of the tuning parameter λ causes shrinkage of the solutions

towards zero, where some of the AR coeffi cients may become exactly zero if λ

is suffi ciently large. The active set is defined as S =
{
j, φj 6= 0

}
⊂ {1, . . . , p}

and the nonactive set is Sc = {1, . . . , p} \S. Nardi and Rinaldo (2011) establish

that, under certain conditions, the Lasso is model selection consistent, estimation

consistent and prediction consistent.

Assume that the underlying and unknown coeffi cient parameters to generate
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the AR(p) process in (3.7) are φ∗ = (φ∗1, . . . , φ
∗
p)
′. Model selection consistency is

about precisely identifying S and Sc. Defined by Nardi and Rinaldo (2011), the

sign function is given by

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(3.10)

and sgn(φ) = (sgn(φ1),. . . , sgn(φp)). The estimator φ̂
Lasso

is model selection

consistent if

P (sgn(φ̂
Lasso

) = sgn(φ∗))→ 1 for T →∞ (3.11)

In addition, φ̂
Lasso

is said to be estimation consistent if
∥∥∥φ̂Lasso − φ∗∥∥∥ converges

to zero as T goes to infinity. Prediction consistency holds if
∥∥∥Xφ̂Lasso −Xφ∗∥∥∥

converges to zero as T →∞, where X = (xt,. . . , xt−p+1).

From the earlier discussion, the tuning parameter τ in equation (3.8), or λ in

equation (3.9), is of critical importance for the success of the Lasso. To determine

λ, cross-validation is commonly adopted although the information criteria, i.e.

AIC or BIC, is also considered; see Audrino and Knaus (2016) for an example. As

introduced in Tibshirani (1996), the prediction error for the Lasso approach is first

estimated byK-fold cross-validation. The Lasso is then indexed with regard to the

normalized parameter s = τ/
∑
φ̂

0

j where φ̂
0

j represents the full OLS estimates of

equation (3.7). The prediction error is obtained over a grid of values of s ranging

from zero to one. The ŝ resulting in the minimum error is finally selected.

In the original Lasso introduced above, all the AR coeffi cients are penalized

equally. Zou (2006) provides a refined version of the Lasso allowing for a more

flexible penalization, termed the adaptive Lasso, which helps to reduce the issue

of false positives. The adaptive Lasso estimator is given by

φ̂
AL

= arg min
φ

1

2

T∑
t=p

(
xt+1 −

p∑
j=1

φjxt−j+1

)2

+ λ

p∑
j=1

λj
∣∣φj∣∣

 (3.12)
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with λj being individual weights for each of the coeffi cients. When λj = 1 is set

for all the coeffi cients, the adaptive Lasso becomes the standard Lasso in (3.9). As

suggested by Zou (2006), a possible choice for the weights can be the inverse of the

absolute values of the OLS coeffi cients. Under the condition that the innovations

are i.i.d., Zou (2006) shows that the adaptive Lasso exhibits the oracle properties,

i.e. it asymptotically detects the non-zero coeffi cients and displays the optimal

estimation rate. Furthermore, in the context of linear time series processes, e.g.

the AR process considered in the present chapter, the oracle properties are found

for the adaptive Lasso in the work of Kock (2012) and Medeiros and Mendes

(2012). One common problem of the Lasso and adaptive Lasso is that they are

insensitive to highly correlated predictors and will tend to select one and omit the

rest. The Lasso and adaptive Lasso will fail to produce reliable estimates in the

extreme situation containing identical predictors only. To alleviate this problem,

we consider other Lasso-type methods below.

Group Lasso

As discussed in section 3.2.2, the HAR is an additive cascade model of the RV

aggregated at different time horizons. The cascade of heterogenous volatility

components represents the behavior of market participants of different types. As

such, it is natural to divide the lagged RVs into different groups and, if one group

is active, then all the past RVs within this group should be active. This is the

key idea of the so-called group Lasso proposed by Yuan and Lin (2006), who also

argue that the Lasso can only be used to select individual variables rather than a

group of correlated variables.

We keep the same notation used in the earlier subsection. As suggested by

Yang and Zou (2015), the Group Lasso estimator can be obtained by solving the

penalized least squares as follows

φ̂
Group

= arg min
φ

1

2

T∑
t=p

(
xt+1 −

p∑
j=1

φjxt−j+1

)2

+ λ

K∑
k=1

√
pk

√∑
j∈Ik

φ2
j

 (3.13)
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where the p lagged RVs are divided into K non-overlapping groups such that

(1, 2,. . . , p) = ∪Kk=1Ik, and Ik ∩ Ik′ = ∅ for k 6= k′; the cardinality of index

set Ik is pk. We employ a simple unified algorithm, groupwise majorization

descent (GMD), as proposed by Yang and Zou (2015). This can be used to

solve the group Lasso learning problem if the loss function meets a quadratic

majorization condition. Relative to some existing algorithms, e.g. LARS-type

algorithm, coordinate descent algorithm and a block coordinate gradient descent

algorithm, the GMD dominates primarily in two aspects: first, it does not require

the group-wise orthonormal assumption and can therefore perform cross-validation

or bootstrap analysis of the group Lasso; second, its computation is more effi cient.

Cluster group Lasso

In the estimation of the group Lasso, the group membership is assumed known.

However, this assumption usually does not hold in practice and therefore efforts

need to be made to divide predictors into groups, i.e. homogenous clusters. Cluster

Lasso is often adopted to split variables into groups so that elements in each

group are strongly related to each other and contain similar information. In cases

where predictors display high empirical correlations or near linear dependence, the

invalidity of the Lasso estimator is also suggested by Bühlmann et al. (2013) who

argue that the Lasso approach tends to choose only one variable from the group

of variables and omit the others.

In this chapter, we employ the cluster Lasso proposed by Bühlmann et al.

(2013), which differs from the existing methods of clustering the variables mainly

by the use of canonical correlation. The arrangement of groups based on the

cluster Lasso considered here guarantees identifiability and an oracle inequality

for the group Lasso introduced earlier. Moreover, this procedure is intended to

avoid false negatives, i.e. avoid omitting a variable from the active set. However,

the trade-off is an increase in false positive selections. As argued in Bühlmann

et al. (2013), the cluster Lasso is useful in practice and can be seen as a desirable

screening method. We introduce this method as follows.
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As in equation (3.7), we consider p lagged RVs. We represent the group of

past RVs from a cluster G ⊆ {1, . . . , p} by X{G} = {xt−j; j ∈ G}. The aim

is to determine a partition G∗ into non-overlapping clusters G1,. . . , Gq : G∗ =

{G1, . . . , Gq} with ∪qr=1Gr = {1,. . . , p} and Gr ∩G` = ∅ (r 6= `). For a partition

G∗, we define

ρ̂max(G∗) = max {ρ̂can(Gr, G`); r, ` ∈ {1, . . . , q} , r 6= ` (3.14)

where ρ̂can(Gr, G`) is the empirical canonical correlation between the lagged RVs

from X{Gr} and X{G`}. In the work of Bühlmann et al. (2013), a structure with

ξ-separation between clusters is given by

G∗(ξ) = a partition G∗ of {1, . . . , p} such that ρ̂max(G∗) ≤ ξ (0 < ξ < 1) (3.15)

To ensure that the clustering with ξ-separation has a unique solution, Bühlmann

et al. (2013) further define the finest clustering with ξ-separation, Ĝ∗finest(ξ), as the

one which has a strictly finer structure than any other clustering with the same

separation ξ. In practice, we adopt the hierarchical bottom-up agglomerative

clustering proposed by Bühlmann et al. (2013). Specifically, the procedure begins

with the single variables, i.e. partition in p clusters; it then combines two clusters

with the highest canonical correlation; this procedure is repeated until the criterion

in (3.15) is satisfied. The parameter ξ is of critical importance in the procedure

described above. Bühlmann et al. (2013) recommend the use of the minimal

resulting ξ. To be more detailed, the maximal canonical correlation between

clusters, termed ρ̂max(b) where b is the number of iteration, is recorded in every

iteration of the bottom-up agglomerative clustering algorithm. We adopt the

partition which achieves the criterion arg minb ρ̂max(b). In this chapter, we follow

the cluster group Lasso approach introduced in Bühlmann et al. (2013) to select the

clusters: divide the predictors based on the identified clusters and then estimate

the coeffi cients of predictors using the group Lasso by Yuan and Lin (2006).

147



Ordered Lasso

Finally, we consider a Lasso-type approach to account for the dynamic nature of

the AR process, i.e. a higher order lag is considered only when its lower order

lags are already selected. Two methods for accommodating such features are used

in Wilms, Rombouts, and Croux (2016): the hierarchical Lasso and the ordered

Lasso. As the latter is found to be superior to the former in terms of the volatility

forecasts, we employ only the ordered Lasso in our analysis.

The ordered Lasso is proposed by Tibshirani and Suo (2016) to allow for a

decreasing dependence on regressors in a time-lagged regression, by the introduction

of an additional order restriction on the coeffi cients. The ordered Lasso estimator

is given by

φ̂
order

= arg min
φ

1

2

T∑
t=p

(
xt+1 −

p∑
j=1

(φ+
j − φ−j )xt−j+1

)2

+ λ

p∑
j=1

(φ+
j + φ−j )


(3.16)

subject to φ+
1 ≥ φ+

2 ≥ . . . ≥ φ+
p ≥ 0 and φ−1 ≥ φ−2 ≥ . . . ≥ φ−p ≥ 0, where

φj = φ+
j − φ−j . The use of positive and negative terms in equation (3.16) instead

of absolute values as in the case of Lasso and adaptive Lasso is to make it a

convex problem. It is worth noting that φ+
j and φ

−
j can take positive values at the

same time and therefore the
∣∣φ+
j − φ−j

∣∣ may display non-monotonicity. As shown
in Tibshirani and Suo (2016), the minimization problem in equation (3.16) can

be effi ciently solved by the well-known Pool adjacent Violators algorithm as its

proximal operator.

Forecast Combination

The concept of forecast combination is first introduced by Bates and Granger

(1969). It constructs a new forecast using a linear combination of all forecasts

obtained from individual models. Due to its superiority in terms of the OOS

forecasting accuracy and stabilized forecasts errors, forecast combination has been

applied in a wide range of topics in finance and economics; see Stock and Watson
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(2004), Timmermann (2006), Corte and Tsiakas (2012), Rapach, Strauss, and

Zhou (2013), Li and Chen (2014) and Wilms, Rombouts, and Croux (2016).

As mentioned earlier, the choice of the tuning parameter λ is crucial in the

Lasso-type procedure. Following the work of Wilms, Rombouts, and Croux (2016),

we attempt to combine forecasts produced by the Lasso-based estimators with

several different tuning parameters.

Specifically, we use a logarithmic spaced grid of tuning parameters of length

L = 20 in the interval [λ1, λL] where λ1 = 0 and λL is an estimated parameter

shrinking all the regression coeffi cients to zero. For each λm within the interval, 1 ≤

m ≤ L, we estimate different Lasso-based models and construct their corresponding

forecasts with the estimated coeffi cients. Finally, we obtain the weighted sum of

the L forecasts of volatility given by L different tuning parameters. The calculation

of the weights, wm, is given by

wm =
exp(−0.5BICλm)∑L
m=1 exp(−0.5BICλm)

(3.17)

The widely adopted BIC criterion can be obtained by

BICλm = (T − p)× log(Lossλm) + dfλm × log(T − p) (3.18)

where the Lossλm is the average sum of squared prediction errors using the tuning

parameter λm and dfλm is the number of nonzero regression coeffi cients. This

forecast combination approach is considered more robust to an inappropriate

selection of tuning parameter.

3.3.4 Models

We now list models to be adopted in our subsequent empirical study.

• HAR: the model proposed by Corsi (2009) as in equation (3.1).

• slopeHAR: the slope model proposed by Bollerslev et al. (2016) as in equation

(3.6).
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• freeHAR: the model proposed by Bollerslev et al. (2016) as in equation (3.5).

• adaptive Lasso AR: a model that is similar to that considered by Audrino and

Knaus (2016). In a departure, we apply the adaptive Lasso method rather

than the Lasso to equation (3.7) to determine the lag terms. In addition,

we choose the tuning parameter based on the one standard error rule via

cross-validation. Specifically, we partition the whole sample {1, · · · , T} into

K folds randomly where K is often set to five. Among the K subsamples,

a single subsample is treated as validation observations for examining the

model and the otherK−1 subsamples are employed as training observations.

For each value of λ, we derive the estimate of regression coeffi cients on the

training set and record the squared error on the validation set, denoted

as ek(λ). This procedure is then replicated K folds. We compute the

averaged validation errors in each fold as CVk(λ) = 1
Tk
ek(λ) where Tk is the

number of observations in the kth fold. The sample standard deviation of

CV1(λ), · · · , CVK(λ) is obtained as SD(λ) =
√
var(CV1(λ), · · · , CVK(λ)).

The standard error of CV (λ) is given by SE(λ) = SD(λ)/
√
K. The average

error over all folds is given by

CV (λ) =
1

T

K∑
k=1

ek(λ) (3.19)

We first choose a tuning parameter which minimizes the CV error, i.e.

λ̂=arg minλ∈{λ1,··· ,λm}CV (λ). However, this usually results in insuffi cient

regularization for the purpose of recovering the underlying model. In our

practice, we apply the one standard error rule: change λ in order to increase

regularization until the following is true

CV (λ) ≤ CV (λ̂) + SE(λ̂) (3.20)

In so doing, we obtain the most regularized model which produces the

prediction error within one standard error of the minimal error.
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• adaptive Lasso HAR: a model that is similar to the flexible HAR model

considered by Audrino, Huang, and Okhrin (2016). Assuming that the

number of volatility factors to be added in the model is unknown, we use the

adaptive Lasso procedure to select the active terms in the equation below

RVt+1 = β0 +

p∑
i=1

βi

(
1

i

i∑
j=1

RVt−j+1

)
+ εt+1 (3.21)

• adaptive Lasso slopeHAR: a model which applies the adaptive Lasso method

to the additive model of slope RV defined in section 3.3.2

RVt+1 = β0 +

p∑
i=1

βi

(
i∑

j=1

(
i− j + 1

i+ (i− 1) + . . .+ 1

)
RVt−j+1

)
+ εt+1 (3.22)

• adaptive Lasso freeHAR: a model in which we replace the first six terms in

equation (3.21) with six daily lagged RV and then apply the adaptive Lasso

approach

RVt+1 = β0 +
6∑
i=1

βiRVt−j+1 +

p∑
i=7

βi

(
1

i

i∑
j=1

RVt−j+1

)
+ εt+1 (3.23)

• ordered Lasso AR: a model in which we first implement the variable screening

and then apply the ordered Lasso to the selected lagged RVs. Specifically,

we use the adaptive Lasso technique to select the active terms of equation

(3.7), where we term this active set S1. Since the Lasso method tends to

choose only one or few variables from a group of highly correlated variables,

we also consider the lagged RVs not in S1 but which are correlated with the

variables in S1 where the coeffi cient is greater than 0.65. The new active set

is denoted S2. Section 3.4 shows that the S2 tends to be consistent with the

selection of variables using the cluster group Lasso, which is perceived as a

good screening method in Bühlmann et al. (2013). Finally, we employ the

ordered Lasso method to enforce an order restriction on the coeffi cients of

the variables in S2.
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• Model-FC: the models described above with the suffi x FC are those using

the idea of forecast combination introduced in section 3.3.3.

In the following empirical analysis, we employ the Diebold-Mariano (DM)

test to evaluate the significance of the forecasting differences. The DM test is

considered since the HAR and the Lasso-based approaches are non-nested. First,

the difference of the squared forecasting errors is given by

dt = e2
1,t − e2

2,t, t = N + 1, · · · ,M (3.24)

The DM test statistic is derived as

DM =
1

M−N
∑M

t=N+1 dt√
1

M−N

(
γ̂0 + 2

∑h−1
k=1 γ̂k

) (3.25)

whereM−N is the number of OOS forecasts, γ̂k is the estimated kth autocovariance

of the series dt, and h represents the time horizon. To account for heteroskedastic

autocorrelated errors, the DM test statistic can be estimated using the Newey

and West (1987) corrected standard errors. Under the null of equal forecasting

performance between the HAR and the Lasso-based model, the DM follows an

asymptotic standard normal distribution.

3.4 Empirical Application

In this section, we first examine the appropriateness of the lag structure implied by

the HARmodel in an in-sample analysis using the Lasso-type approaches described

in section 3.3.3. We then compare the performance of the HAR model, its two

extensions introduced in section 3.3.2 and the Lasso-based model2 in the OOS

volatility forecasts. We consider the daily realized variance measure proposed by

Barndorff-Nielsen and Shephard (2002), i.e. the daily RV is equal to the sum of

2Throughout our analysis, the Lasso-based model indicates any model using the Lasso-based
technique, namely, adaptive Lasso AR, adaptive Lasso HAR, adaptive Lasso slopeHAR, adaptive
Lasso freeHAR, ordered Lasso AR and each of these models using the forecast combination.
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intraday squared returns. Throughout our analysis, we employ the SPY index and

ten individual stocks from different sectors sourced from Tick Data Inc..

Our forecasts are based on direct projection in equation (3.4) over different

horizons, i.e. daily, weekly and monthly horizons. Three different sampling

frequencies, 30, 300 and 600 seconds, upon which the RV is based, are used in our

analysis. We construct the forecasts by re-estimating the parameters of various

models every day with a fixed length Rolling Window (RW) and an Increasing

Window (IW).

3.4.1 Data Description

In order to obtain the RV, we employ the intraday data of SPY, an exchange traded

fund (ETF) which tracks the S&P 500 index closely, Microsoft (MSFT), Citigroup

Inc. (C), Pfizer (PFE), General Electric (GE), The Home Depot (HD), Sprint

Nextel Corp (S), ExxonMobil (XOM), Alcoa (AA), Wal-Mart (WMT) and Duke

Energy (DUK). We consider the time span from Jan 02, 2001 to Nov 15, 2010 with

a total of 2483 observations, which is the same as that of the study by Audrino and

Knaus (2016). As in the work of Audrino, Camponovo, and Roth (2015), Audrino

and Knaus (2016) and Wilms, Rombouts, and Croux (2016), we use the realized

variance in logarithmic form, i.e. log RV. In the rest of this chapter, we assume

the use of log RV when mentioning RV unless otherwise noted.

Table 3.1 provides summary statistics of the RV series based upon three different

sampling frequencies for each of the stocks considered. As the sampling frequency

increases, from 600 seconds to 30 seconds, the mean of the RV tends to increase

while the standard deviation generally decreases. Almost all series exhibit positive

skewness and excess kurtosis. The time series movements of the 300-second RV are

presented in Figure 3.1. For the SPY and all individual stocks, an evident increase

occurs in the magnitude of the RV during the financial crisis starting from 2007.
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3.4.2 In-Sample Analysis

We start by investigating the memory property of the RV series under different

market conditions by employing the exact local Whittle estimator of Shimotsu and

Phillips (2005) with a commonly adopted bandwidth parameter m = T 0.6, where

T=2483 is the sample size; see Nielsen and Shimotsu (2007), Garvey and Gallagher

(2012) and Caporin, Ranaldo, and Santucci de Magistris (2013), among others, for

the same choice of the bandwidth parameter. In line with the work of Audrino

and Knaus (2016), we set the beginning of the financial crisis to Sep 01, 2007 and

split the sample into the pre- and post-crisis periods. In Table 3.2, we show that

the long memory estimates, d̂, tend to increase with the sampling frequency, i.e.

from 600 seconds to 30 seconds. In addition, the memory property of each series

generally strengthens in the post-crisis period, except the RV of C andWMT based

on 300- and 600-second frequencies. Values of memory estimates range from 0.6

to 0.8, suggesting the RV series here are non-stationary long-memory processes.

Evidence for the long memory and non-stationarity in volatility is also found by

Bandi and Perron (2006) and Kellard, Dunis, and Sarantis (2010). To summarize,

our results are indicative of substantially different properties of the RV series in pre-

and post-crisis periods, which motivates us to examine separately the forecasting

performance of various models in these two sub-periods. In the work of Audrino

and Knaus (2016), the clear difference in the autocorrelation function (ACF) of

the RV for sub-periods is explained by a structural break in the memory of the

process occurring around the beginning of 2007.

In the following plot analysis, we choose the 300-second RV of each stock as

an illustrative example. Results for other frequencies remain virtually unchanged.

First, we provide plots of the partial autocorrelation function (PACF) of the RV

during the whole sample, and the pre-crisis and post-crisis periods, in Figures 3.2,

3.3 and 3.4, respectively. We find that, for most stocks, there are some lags beyond

22, with the PACF significantly different from zero, suggesting a possible AR(p0)

for the series of RV where p0 > 22. In the rest of our in-sample evaluation, we make
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use of the full sample and adopt various Lasso-based techniques to examine the

appropriateness of the lag structure implied by the standard HAR model proposed

by Corsi (2009). We let xt represent the RVt and p = 100 in equation (3.7). In

each of the Lasso-based models, the dependent variable is xt+1, i.e. our analysis

concentrates on the daily horizons. We then define the HAR implied active set as

SHAR = {xt−1,. . . , xt−22} and the nonactive set as ScHAR = {xt−23,. . . , xt−100}. In

Figure 3.5, we present the AR coeffi cients implied by the HAR model in equation

(3.3) as well as those given by the adaptive Lasso approach. In line with the work

of Audrino and Knaus (2016), we find that not all of the predictors in SHAR are

selected by the adaptive Lasso. Furthermore, for most stocks, a few lags beyond

xt−23, i.e. terms in ScHAR, are selected by the adaptive Lasso as relevant. The

results outlined above indicate that the adaptive Lasso does not completely agree

with the lag structure implied by the HAR model. To gain a closer look at the

lag structure implied by each of the models, in Tables 3.12 and 3.13, we provide

the estimates of the AR coeffi cients for {xt−1,. . . ,xt−100} of the SPY and MSFT

as two examples.

As mentioned in section 3.3.2, Bollerslev et al. (2016) propose two extensions

of the HAR model: the freeHAR and slopeHAR respectively allow for a more

flexible lag structure and avoid the step-wise abrupt changes associated with the

HAR model. In Figure 3.6, we plot their implied AR coeffi cients for all the stocks

considered. First, in contrast to the HAR model in Figure 3.5, the freeHAR does

not impose equality restrictions on the coeffi cients of {xt−2,. . . ,xt−6} but allow

those coeffi cients to be estimated individually by the OLS technique. Second, the

implied AR coeffi cients of the slopeHAR are continuous and decreasing with the

lag length. The enforced smoothness in the dependence of the future RV upon the

historical RVs removes predictable jumps and non-monotonicities in the volatility

forecasts. Such a feature helps to improve the accuracy of the forecasts, as argued

in the work of Bollerslev et al. (2016).

In Figure 3.5, we observe that the lags beyond xt−4 are much less frequently

selected by the adaptive Lasso method. This result may be attributed to the
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invalidity of the adaptive Lasso approach in the context where regressors exhibit

non-trivial correlations or almost linear dependence, as noted in section 3.3.3. To

deal with the false negatives induced by the use of the adaptive Lasso in selecting

relevant predictors, we employ two different Lasso-based methods below.

First, following the work of Audrino, Huang, and Okhrin (2016), we group

the lags in AR(100) as {1}, {2-5}, {6-22}, {23-50}, {51,75} and {76-100} and

adopt the group Lasso proposed by Yuan and Lin (2006) to further investigate

the appropriateness of the lag structure implied by the HAR model. Specifically,

the selection of the groups {1}, {2-5} and {6-22} as active lags can be seen as an

indication of the validity of the HAR lag structure. We demonstrate the results for

the selection of active predictors in Figure 3.7. Since {xt−1,. . . , xt−5} is identified

as relevant predictors for all stocks considered, we only report the coeffi cients for

lags beyond xt−6. As for the group Lasso AR(1, 5, 22, 50, 75, 100), this is found

to be consistent with the HAR lag structure for SPY, PFE, AA, WMT and DUK.

Only lags in groups {1} and {2-5} get selected for XOM. The other stocks all have

nonzero coeffi cients for lags after 22. This evidence suggests that the standard

HAR model may not be appropriate for the modelling and forecasting of volatility.

This is because lags beyond xt−22, which are omitted by the HAR model, may still

carry some predictive power for the future RV.

The group Lasso method discussed above adopts the arrangement of groups

implied by the HARmodel. However, it remains unclear whether such specification

for the heterogenous volatility components is inherent to the underlying data

or not. In order to answer this question, we apply the cluster Lasso method

introduced by Bühlmann et al. (2013) to partition {xt−1,. . . ,xt−100} into different

groups and then select groups as relevant predictors for the future RV using the

group Lasso by Yuan and Lin (2006). In Figure 3.7, it is evident that the cluster

group Lasso AR is inconsistent with the HAR with regard to the selection of the

active lags of the RV for all stocks considered. Furthermore, the cluster group

Lasso AR results in the arrangement of groups, which contradicts that implied by

the standard HAR model, i.e. {1}, {2-5} and {6-22}, in all cases; see SPY and
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MSFT in Tables 3.12 and 3.13 for instance.

Next, we implement the ordered Lasso AR as discussed in section 3.3.4. This

estimator accounts for the dynamic nature of volatility by the tendency for the

absolute values of the estimated AR coeffi cients to be monotonically non-increasing

with the lag length. We demonstrate the comparison between the cluster group

Lasso AR and the ordered Lasso AR in terms of their estimated coeffi cients in

Figure 3.8. The lags of the RV included in the ordered Lasso AR approach are,

in most cases, similar to those selected by the cluster group Lasso AR. Bühlmann

et al. (2013) consider the latter to be a desirable screening method in a group of

highly correlated variables which helps to avoid the problem of false negatives

present in the adaptive Lasso estimator. The similarity between the ordered

Lasso AR and the cluster group Lasso AR with regard to the selection of relevant

predictors can also be found in Tables 3.12 and 3.13. In addition, the ordered

Lasso method results in decreasing effects of the past RVs on the future RV, in

line with the HAR and slopeHAR models.

Finally, we report the BIC in-sample fit for each of the models using the

full sample 300-second RV in Table 3.3. For most stocks over daily and weekly

horizons, the slopeHAR clearly dominates the other candidates by having the

lowest BIC value. However, the superiority of the slopeHAR no long exists over

the monthly horizons, where the adaptive Lasso HAR and the adaptive Lasso

HAR-Free perform best. Furthermore, the ordered Lasso AR achieves better

in-sample fit than the cluster Group Lasso AR and the group Lasso AR(1, 5,

22, 50, 75, 100), especially over weekly and monthly horizons, where the last two

result in rather poor in-sample fit. In the following OOS forecasting exercises, we

do not consider the group Lasso AR(1, 5, 22, 50, 75, 100) and the cluster Group

Lasso AR. This is because the former specifies the arrangement of volatility groups

which may not be appropriate for the underlying data and the latter results in a

selection of variables generally captured by the ordered Lasso AR approach, as

mentioned earlier.
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3.4.3 Out-of-Sample Forecast

In the in-sample analysis above, we provide evidence for the inappropriateness

of the lag structure of the standard HAR model in forecasting future RV. In

the following subsection, we concentrate on the performance of various models

outlined in section 3.3.4 in the OOS volatility forecast. Following Audrino and

Knaus (2016), we make rolling window (RW) forecasts of 1000 and 2000 daily

observations, respectively, and account for the impact of the financial crisis on the

forecasts of future RV. In a departure from the work of Audrino and Knaus (2016),

we consider various Lasso-based models and conduct comprehensive empirical

exercises to evaluate their forecasting ability for future RV.

First, our analysis focuses on the forecast of RV over daily, weekly and monthly

horizons. The forecast is based on direct projection as presented in equation

(3.4) where h = 1, 5 or 22. Here, longer horizons are of more interest since

the HAR model is proposed to accommodate the long-memory properties of the

series. Second, our empirical study involves the RV constructed from 30-second,

300-second and 600-second intraday returns. In doing so, we are able to ascertain

the effect of the sampling frequency on the forecasting performance of the model

selection devices and examine the robustness of our results. Third, we also construct

the forecasts by re-estimating the parameters of the regressions each day with an

increasing window (IW). Specifically, the first training set includes the first 1000

observations with each subsequent training set containing one more observation.

The OOS forecasting performance is measured by the mean square error (MSE).

We standardize the MSE of each of the models by the MSE of the HAR model in

order to highlight the relative gains.

To obtain the general performance of each of the models in forecasting future

RV, we report the results of the SPY in various scenarios in Table 3.4 and present

the average loss ratios across all of the 10 individual stocks in Table 3.5. In line

with Audrino and Knaus (2016), we set the evaluation window for the case of

RW=1000 to May 12, 2009 to Nov 15, 2010, the same as that implied by the case
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where RW=2000, so that the results of the RW=1000 and RW=2000 are directly

comparable. With the crisis, we concentrate on RW=1000 only and compute

the MSE using the maximal evaluation windows in both pre- and post-crisis

periods. In each case, the model with the best forecasting performance, i.e.

lowest relative MSE, is highlighted in bold blue. As for the SPY in Table 3.4,

it is evident that the ordered Lasso AR using the forecast combination provides

the best OOS forecasting performance in most cases considered. However, such

superior performance is not always observed during the pre- and post-crisis periods.

Similar findings in terms of the averaged performance of the models across 10

stocks are shown in Table 3.5. Compared with the case of RW=1000, the averaged

performance of the Lasso-based models relative to the HAR tends to improve

when RW=2000. For the SPY and 10 individual stocks, the forecast gains of the

ordered Lasso AR-FC over the standard HAR generally increase as the forecasting

horizons increase, i.e. from h = 1 to h = 22, except in the pre-crisis period. In

most scenarios, the use of the forecast combination results in a better performance

of the Lasso-based models. A thorough investigation of the forecasting ability of

the Lasso-based models in various situations is presented below.

First, we provide a summary of the forecasting performance of different models

in Tables 3.6 and 3.7. Table 3.6 reports the number of cases where each of the

models achieves the best forecast and Table 3.7 records the number of cases

where the benchmark HAR model is dominated by other candidate. Ordered

Lasso AR and its FC version are highlighted due to their superior performance

over the other Lasso-based models. Values of the MSE of each of the models

against the HAR model are reported in Tables 8(a) to 11(c). We also employ the

Diebold-Mariano test using Newey-West standard errors to assess the statistical

significance of differences in squared forecasting errors between the HAR and each

of the other models. As suggested by Andersen, Bollerslev, and Diebold (2007),

the Newey-West heteroskedasticity consistent covariance matrix estimator with 5,

10, and 44 lags are used for the daily (h = 1), weekly (h = 5) and monthly (h = 22)

forecasts, respectively.
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We start with the forecast of future RV based upon 30-second returns using

the full sample period and RW=1000. As can be seen from Table 3.6, the best

performance in forecasting future RV is delivered by the Lasso-based model for

9/11 stocks over daily horizons, and for 8/11 stocks over weekly and monthly

horizons. Table 3.7 shows that the Lasso-based model using the concept of forecast

combination outperforms the HAR model in many cases and that, over long

forecasting horizons, this occurs much more frequently than the situation where

the extended HAR dominates the standard HAR model. As detailed in Table 8(a),

the forecast combination tends to result in more accurate forecasts of future RV for

the Lasso-based models. However, there is no clear evidence for which Lasso-based

model is consistently the top performer. The superiority of the ordered Lasso

AR-FC over the others is observed for 5/11 stocks over daily horizons and for 6/11

stocks over weekly horizons although such gains relative to the HAR model are

insignificant in most cases. Over monthly horizons, the adaptive Lasso HAR-FC

provides the most accurate forecasts for 4/11 stocks; the ordered Lasso AR and

that using the forecasting combination perform best for 2/11 stocks, where the

improvements in the OOS volatility forecasts relative to the HAR model are all

significant.

We nowmove to the results with the full sample period and RW=2000. Relative

to the case with RW=1000, the Lasso-based model produces the best forecasting

performance for more stocks (see Table 3.6) and there tends to be more Lasso-based

models which dominate the benchmark HAR model (see Table 3.7). The ordered

Lasso AR-FC dominates the other candidates and serves as the top performer

in many cases, i.e. 7/11 stocks over daily horizons and 4/11 stocks over weekly

horizons. Over monthly horizons, the ordered Lasso AR plays the leading role for

4/11 stocks and its FC version ranks highest for 3/11 stocks. In all these 7 cases,

the gains with regard to the forecasting performance are significant.

Given the distinct properties of the RV series in the pre- and post-crisis periods

mentioned earlier, we then examine the forecasts made by various models in each of

these two sub-periods. In Tables 3.6 and 3.7, we find that the Lasso-based models
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lose the forecasting superiority during the pre-crisis period as the forecasting

horizons grow. In the case of h = 22, for 9/11 stocks the best performance is

achieved by either the HAR or the freeHAR. As for the post-crisis period, the

ordered Lasso AR-FCmodel regains its advantages in the forecast of future RV over

different horizons. Specifically, it is superior to the other models for 5/11 stocks

over daily horizons and for 6/11 stocks over weekly as well as monthly horizons.

However, the performance of other Lasso-based models remains disappointing, as

evident from Table 3.7.

Our analysis above focuses on the case where the RV series is constructed from

the 30-second intraday returns. To examine the impact of the sampling frequency

on our results, we next consider the RV computed from the 300-second returns.

Looking at the 300-second RV with RW=1000 in Table 3.6, we find that, over

different horizons, the best forecasting performance for most stocks is offered by

the Lasso-based model. Again, the number of times that the ordered Lasso AR-FC

serves as the top performer is generally greater than the other candidates and its

improvements over the HAR model are all significant over monthly horizons; see

details in Table 9(a). In terms of the results for RW=2000, the conclusions are the

same. Compared with the 30-second RV in RW=1000 and RW=2000, there tends

to be slightly fewer cases where the most accurate RV forecasts are produced by

the Lasso-based model when the RV is based on the 300-second returns.

Next, we split the full sample into the pre- and post-crisis periods. As can

be observed from Table 3.6, in contrast to the pre-crisis output based upon the

30-second RV, the ordered Lasso AR-FC model displays the top performance for

more stocks during the pre-crisis period in forecasting future 300-second RV over

short horizons. It dominates all the other models for 4/11 stocks over daily horizons

and for 6/11 stocks over weekly horizons. Consistent with the corresponding case

of the 30-second RV, during the pre-crisis period, few of the other Lasso-based

models outperform the benchmark HAR model (see Table 3.7) and the superiority

of the ordered Lasso-AR-FC is no longer evident over monthly horizons (see Table

3.6). When looking at the results for the 300-second RV in post-crisis period
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(see Table 3.6), we again find that the ordered Lasso AR-FC model has the best

forecasting performance for most of the stocks considered, i.e. 7/11 over daily

horizons, 8/11 over weekly as well as monthly horizons.

Similar investigations are conducted for the case where the RV series are derived

from 600-second returns. Starting with the 600-second RV using the full sample

and RW=1000, we show that, compared with the situations of 30-second and

300-second RV, the Lasso-based model displays the best forecasting performance

for fewer stocks (see Table 3.6). Among the cases where the Lasso-based model

achieves the best performance, the most frequent top performer is still the ordered

Lasso AR-FC model. Evidence for the role of the Lasso-based model is more clear

for the case of the full sample with RW=2000. As can be observed from Table

3.7, relative to the case of RW=1000, there are generally more situations where

the Lasso-based model dominates the benchmark HAR model when RW=2000.

However, such situations are fewer than those for the case of 30-second and

300-second RV with RW=2000. In Table 3.6, the best forecasting performance

for the 600-second RV with RW=2000 is given by the Lasso-based model for 7/11

stocks over daily and monthly horizons, and for 9/11 stocks over weekly horizons.

Among these cases, the ordered Lasso AR-FC model most frequently provides the

top performance.

As for the impact of the financial crisis on the results of the 600-second RV,

we make two observations. First, during the pre-crisis period, generally more

Lasso-based models are found (see Table 3.7) to perform better than the benchmark

HAR model compared with the case of 300-second RV. In Table 3.6, for the

600-second RV during the pre-crisis period, the superiority of the ordered Lasso

AR-FC model is evident for 7/11 stocks over daily horizons, 6/11 stocks over

weekly horizons, and only 2/11 stocks over monthly horizons. Second, as can be

seen from Table 3.6, during the post-crisis period, the ordered Lasso AR-FC model

regains its leading role in forecasting future 600-second RV over monthly horizons

by serving as the top performer for 8/11 stocks. However, relative to the pre-crisis

period, there are more cases where the slopeHAR provides the best performance
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over daily and weekly horizons. In addition, Table 3.7 shows no clear evidence for

the enhanced performance of the other Lasso-based models as we move from the

pre-crisis period to the post-crisis period.

To sum up, the results from Tables 8(a) to 10(d) show that: first, the ordered

Lasso AR-FC model is superior to the other Lasso-based models in forecasting

future RV by serving as the top performer for a large fraction of the stocks/index.

When the analysis is based on the full sample, for most stocks the gains of the

ordered Lasso AR-FC model relative to the HAR model are significant at 1%

level over monthly horizons. Second, using the idea of the forecast combination,

there tends to be more cases where each of the Lasso-based models dominates the

benchmark HAR model. Third, moving from the case of RW=1000 to RW=2000,

there are more cases where the Lasso-based model provides the best forecasting

performance, which indicates that the Lasso-based model may need a suffi ciently

large window size to display the advantages in terms of the OOS forecast. Here,

our finding is in line with the work of Audrino and Knaus (2016) who show that,

for longer training windows, the Lasso outperforms the HAR in most cases.

Fourth, conclusions outlined above are not affected by the variation in the

sampling frequency upon which the RV series are based. However, as the sampling

frequency increases, i.e. from 600 seconds to 30 seconds, the superiority of the

Lasso-based model is generally apparent for more cases using the full sample,

whichever window size is used. Fifth, considering three sampling frequencies, most

of the Lasso-based models perform rather poorly during the pre-crisis period. The

only exception is the ordered Lasso AR-FC model in the case of 300-second and

600-second RV, where it still dominates the others in many cases over daily and

weekly horizons. During the post-crisis period, the ordered Lasso AR-FC model

regains its superiority by serving as the top performer for far more stocks, especially

when h = 22, compared with its corresponding performance during the pre-crisis

period. However, in the case of 600-second RV, this finding only holds for monthly

horizons.

Finally, as a robustness check, we evaluate the forecasts given by each of the
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models using an IW approach. The earlier findings suggest that the Lasso-based

models display better performance in a larger window size and therefore more

clear evidence for the excellent performance of the Lasso-based models are to be

expected in the following IW practice. Results of the forecasts across different

sampling frequencies are provided in Tables 11(a) to 11(c) and summarized in

Tables 3.6 and 3.7. First, in most cases the concept of the forecast combination

clearly improves the forecasting performance of the Lasso-based models. As a

result (see Table 3.7), compared with the Lasso-based models without using the

forecast combination, there is an increasing number of cases where the Lasso-based

model outperforms the HAR model once the forecast combination is implemented.

In addition, significant gains of the Lasso-based models using the forecasting

combination over the benchmark HAR are more frequently observed over monthly

horizons; see Tables 11(a), 11(b) and 11(c). Second, the ordered Lasso AR-FC is

undoubtedly the most desirable model among all the Lasso-based models, achieving

the best performance in most cases as shown in Table 3.6. Third, the impact of

the sampling frequency is in line with our earlier results. In Table 3.6, as the

sampling frequency increases, i.e. from 600 seconds to 30 seconds, we observe

more scenarios where the Lasso-based model, or the ordered Lasso AR-FC model

specifically, serves as the top performer.

3.5 Conclusion

We have reviewed the performance of various Lasso-based models in forecasting

future (log) realized variance (RV) over different horizons. We employ the RV

series of the SPY and ten individual stocks representing ten different sectors using

the same sample period as that used by Audrino and Knaus (2016), i,e, from 2001

to 2010 with a total of 2483 observations. We consider three different sampling

frequencies upon which the RV is based and construct the forecasts of the RV by

both a rolling window of 1000 and 2000 observations, and an increasing window.

With the financial crisis, the RV exhibits different memory properties in the pre-
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and post-crisis periods. The popular HAR is treated as the benchmark model in

our analysis, which reproduces the documented long-memory behaviour of financial

volatility. Two recent extensions of the HAR are also adopted for the purpose of

comparison.

In our in-sample analysis, we provide evidence, from the perspective of model

selection, for the invalidity of the lag structure implied by the HAR model. Neither

the maximal AR lag order nor the specification of the heterogenous volatility

components of the HAR are in line with those produced by the Lasso-based

approaches. In the out-of-sample forecast of future RV using the full time span,

the top performance is mostly produced by the Lasso-based model. Forecast

combination tends to improve the accuracy of forecasts made by Lasso-based

models and result in more cases where the Lasso-based model dominates the

standard HAR model.

Compared with the other candidates, we note a generally greater number of

occasions in which the ordered Lasso AR using the forecast combination displays

the best forecasting performance. Its gains over the HAR model are, in most

cases, significant over monthly horizons. For the pre- and post-crisis periods,

there are more cases in the post-crisis period where the ordered Lasso AR using

the forecast combination outperforms the HAR and delivers the most superior

performance, especially over longer forecasting horizons. In addition, with a larger

forecasting window size, there tends to be more situations where the Lasso-based

model exhibits the top performance. Finally, our conclusions are unaffected by

different sampling frequencies. However, as the frequency grows, from 600 seconds

to 30 seconds, the superiority of the Lasso-based model becomes more evident over

the full time period.
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ap
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L
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A
R

4
7

6
1

1
3

6
4

0
0

2
3

3
0

0
ad
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L
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H
A
R

4
8

5
0

0
2

3
4

0
0

3
3

3
0

0
ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

2
6

4
0

0
2

3
4

1
0

1
2

5
0

0
ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

3
8

5
0

0
2

4
4

0
0

3
4

4
0

0
or
de
re
d
L
as
so
A
R

5
8

2
1

0
6

8
5

1
2

5
7

4
2

2

ad
ap
ti
ve
L
as
so
A
R
-F
C

6
7

7
1

3
4

5
7

0
2

3
4

6
0

1
ad
ap
ti
ve
L
as
so
H
A
R
-F
C

8
9

6
0

2
7

7
9

0
4

5
5

9
1

4
ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

2
7

5
2

2
3

6
7

1
2

2
5

4
3

1
ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

8
9

6
0

2
6

6
9

0
3

5
5

9
1

3
or
de
re
d
L
as
so
A
R
-F
C

7
9

10
0

8
6

7
10

1
10

5
6
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T
ab
le
8(
a)
:
O
O
S
Fo
re
ca
st
s
ba
se
d
on
Fu
ll
Sa
m
pl
e
30
-s
ec
lo
g
R
V
an
d
R
W
=
10
00
.
T
hi
s
ta
bl
e
re
p
or
ts
th
e
va
lu
es
of
th
e
m
ea
n
sq
ua
re
d
er
ro
r
(M
SE
)
fo
r

di
ff
er
en
t
m
od
el
s
co
ns
id
er
ed
re
la
ti
ve
to
th
e
M
SE

of
th
e
H
A
R
m
od
el
.
Fo
re
ca
st
s
ar
e
co
ns
tr
uc
te
d
by
re
-e
st
im
at
in
g
th
e
pa
ra
m
et
er
s
of
th
e
re
gr
es
si
on
s

ea
ch
da
y
w
it
h
a
fix
ed
le
ng
th
R
ol
lin
g
W
in
do
w
(R
W
).
C
on
si
st
en
t
w
it
h
th
e
w
or
k
of
A
ud
ri
no
an
d
K
na
us
(2
01
6)
,
w
e
se
t
th
e
ev
al
ua
ti
on
w
in
do
w
to

(M
ay
12
,
20
09
to
N
ov
15
,
20
10
),
in
or
de
r
to
m
ak
e
th
e
re
su
lt
s
co
m
pa
ra
bl
e
to
th
os
e
ob
ta
in
ed
fr
om

th
e
R
W
=
20
00
.
W
e
us
e
th
e
D
ie
b
ol
d-
M
ar
ia
no
te
st

to
co
m
pa
re
th
e
pr
ed
ic
ti
ve
ab
ili
ty
b
et
w
ee
n
th
e
b
en
ch
m
ar
k
H
A
R
m
od
el
an
d
ea
ch
of
th
e
ot
he
r
m
od
el
s
(t
w
o
ex
te
ns
io
ns
of
th
e
H
A
R
an
d
L
as
so
-b
as
ed

m
od
el
s)
.
*,
**
,*
**
in
di
ca
te
th
at
th
e
di
ff
er
en
ce
s
in
sq
ua
re
d
fo
re
ca
st
in
g
er
ro
rs
ar
e
si
gn
ifi
ca
nt
at
10
%
,5
%
an
d
1%

le
ve
l,
re
sp
ec
ti
ve
ly
.
Fo
r
ea
ch
ho
ri
zo
n,

th
e
m
od
el
w
it
h
th
e
b
es
t
p
er
fo
rm
an
ce
is
hi
gh
lig
ht
ed
in
b
ol
d
bl
ue
.
T
he
la
st
co
lu
m
n
re
p
or
ts
th
e
nu
m
b
er
of
ti
m
es
th
at
ea
ch
m
od
el
ou
tp
er
fo
rm
s
th
e

b
en
ch
m
ar
k
H
A
R
m
od
el
.

h
o
ri
zo
n
=
1

S
P
Y

M
S
F
T

C
P
F
E

G
E

H
D

S
X
O
M

A
A

W
M
T

D
U
K

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

0.
99
8

1.
00
0

0.
99
3

0.
98
7

0.
99
4

0.
98
9

0.
99
4

1.
00
2

1.
00
5

0.
98
9

0.
99
1

8/
11

fr
ee
H
A
R

0.
99
4

1.
01
0

0
.9
9
1

0.
99
7

0.
99
7

0.
96
6

0
.9
8
5

1.
00
3

0.
99
9

0.
99
2

0.
99
3

9/
11

ad
ap
ti
ve
L
as
so
A
R

1.
07
7

1.
04
2

5.
15
1*
**

1.
03
6

1.
09
7

1.
01
4

2.
26
0*
**

1.
06
8

1.
05
2

1.
07
6

1.
07
9

0/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
03
5

1.
07
8

2.
45
4*
**

1.
08
6

1.
00
9

0.
99
2

1.
38
2*
**

1.
03
2

1.
05
8

1.
01
6

1.
06
2

1/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
11
4

1.
09
7

1.
17
7*
*

1.
06
4

1.
15
4

1.
10
1

1.
20
1*
*

1.
13
7

1.
06
8

1.
09
2

1.
12
1

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
02
9

1.
04
9

2.
43
9*
**

1.
07
7

1.
01
2

1.
00
6

1.
36
0*
**

1.
03
3

1.
01
6

1.
03
0

1.
08
2

3/
11

or
d
er
ed
L
as
so
A
R

0.
99
0

1.
02
9

1.
31
9

1.
03
3

0.
99
2

0.
96
5

1.
09
1

1.
04
0

1.
01
4

1.
16
1

1.
15
0

3/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
01
3

1.
01
7

4.
13
1*
**

0.
99
8

1.
01
0

0.
97
5

1.
87
2*
**

1.
01
0

1.
01
8

1.
01
7

1.
00
7

2/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

0.
99
5

1.
02
1

1.
81
2*
**

0
.9
7
8

0.
98
9*
*

0
.9
5
3

1.
18
0*

0.
99
7

0.
99
0

0
.9
8
5

0.
99
6

8/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
06
3

1.
05
1

1.
12
4

1.
00
5

1.
06
7

1.
02
7

1.
09
1

1.
08
8*
*

1.
02
6

1.
01
0

1.
01
8

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
00
2

1.
00
9

1.
81
4*
**

0.
98
7

0.
99
3

0.
96
4

1.
17
3

1.
01
3

0
.9
7
7
*

0.
99
9

1.
00
5

5/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
8
6

0
.9
9
6

1.
00
5

0.
98
1

0
.9
8
6

0.
96
4

0.
99
8

0
.9
9
6

1.
00
6

0.
99
3

0
.9
8
6

9/
11

h
o
ri
zo
n
=
5

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
2

1.
00
1

1.
00
1

0.
99
3

0.
99
4

1.
00
0

0
.9
9
2

0.
99
8

1.
01
6

0.
99
8

0.
99
1

6/
11

fr
ee
H
A
R

1.
00
2

1.
00
5

0
.9
9
8

0.
99
1

0.
99
4

0.
99
5

1.
00
0

1.
00
0

1.
00
1

0.
99
3

0.
99
2

6/
11

ad
ap
ti
ve
L
as
so
A
R

1.
04
7

1.
02
9

5.
86
6*
**

0.
98
0

1.
11
6

1.
06
0

3.
28
5*
**

1.
03
4

1.
15
0*

1.
15
3

1.
03
5

1/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
06
6

1.
03
8

3.
15
9*
**

1.
00
1

1.
00
7

0.
98
3

1.
50
0*
**

1.
02
8

1.
01
3

1.
02
9

1.
06
8*

1/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
15
1

1.
11
1

1.
34
0*
**

1.
04
2*
*

1.
22
8

1.
15
1*
*

1.
41
2*
**

1.
21
2

1.
16
3*
*

1.
09
9

1.
05
2*

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
06
1*
*

1.
01
9

3.
19
5*
**

1.
02
4

1.
00
9

0.
99
9

1.
50
5*
**

1.
02
3

1.
01
7

1.
04
8

1.
08
2*

1/
11

or
d
er
ed
L
as
so
A
R

0.
98
6

0.
98
7

1.
44
6*
**

0.
95
7*
*

0.
99
7

0.
97
2

1.
16
7*
**

1.
03
9

1.
02
2

1.
29
3

1.
18
7

5/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

0.
99
8

1.
00
7

4.
79
3*
**

0.
94
2

1.
04
3

1.
01
0

2.
69
3*
**

0.
98
9

1.
07
2

1.
07
0

0.
96
7

4/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
00
2

1.
00
4

2.
35
3*
**

0.
95
6*
*

0.
98
9

0
.9
3
7

1.
30
1*
**

0.
97
4

1.
02
3

0
.9
8
4

0.
99
4

6/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
09
5

1.
06
4

1.
29
3*
**

1.
02
1

1.
10
7

1.
04
5

1.
23
8*
**

1.
09
6

1.
07
1

1.
03
3

0.
99
7

1/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
00
8

1.
00
2

2.
35
7*
**

0.
96
4*
*

0.
99
3

0.
94
7

1.
30
6*
**

0.
99
7

1.
02
9

0.
99
8

1.
00
0

5/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
7
8

0
.9
7
3

1.
04
2

0
.9
3
4
*
*

0
.9
7
6

0.
97
3

1.
02
1

0
.9
6
6

1.
00
6

1.
00
9

0
.9
6
3

7/
11

h
o
ri
zo
n
=
2
2

H
A
R

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1
.0
0
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
4

1.
00
2

1.
02
9

0.
99
7

1.
02
1

1.
00
0

1.
02
1*
**

1.
00
3

1.
03
7*
**

0.
99
8

1.
00
4*

2/
11

fr
ee
H
A
R

1.
00
4

1.
00
6

1.
00
0

0.
99
8

1.
00
2

1.
00
2

1.
00
1

1.
00
2

1.
00
5

1.
00
0

0.
99
8

2/
11

ad
ap
ti
ve
L
as
so
A
R

0.
97
5*
*

0.
95
4

3.
95
9*
**

0.
88
8*
**

1.
11
8

0.
97
2

2.
92
3*
**

1.
00
9

1.
13
6*
*

1.
08
3*
*

1.
00
2

4/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
02
9

1.
04
5*
**

2.
51
5*
**

0.
99
3*
**

1.
12
6

0.
99
9

1.
26
0*
**

0.
95
8*
*

0.
99
5*
**

1.
05
4

1.
04
4

4/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
02
4

1.
02
0

1.
18
0*
**

0.
96
2*
**

1.
17
3*

1.
05
9

1.
37
9*
**

1.
04
6

1.
10
0

1.
08
3*
*

0.
99
8*

2/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
01
0

1.
04
3*
*

2.
52
7*
**

0.
99
6*
**

1.
16
4

1.
00
8

1.
25
5*
**

0.
95
0*
**

0.
99
0*
**

1.
06
6

1.
04
3

3/
11

or
d
er
ed
L
as
so
A
R

0.
95
4*
**

0
.8
7
3
*
*
*

1.
44
0*
**

0
.7
8
3
*
*
*

1.
09
0

0.
93
7*
**

1.
19
9*
**

0.
94
7*
**

1.
03
6

1.
23
3*
**

1.
04
9

5/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

0.
96
8*
**

0.
96
8*

3.
39
4*
**

0.
88
8*
**

1.
08
4

0.
97
2

2.
36
7*
**

0.
95
2*
**

1.
08
4

1.
04
4

0.
96
5

6/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

0.
96
5*
**

0.
95
8*
**

1.
91
9*
**

0.
94
7*
**

1.
06
4*

0
.9
1
5
*
*
*

1.
05
1

0
.9
1
5
*
*
*

0
.9
8
8
*
*
*

0
.9
6
3
*
*

0.
99
2*

8/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
00
7

1.
01
1

1.
34
4*
**

1.
00
5*
**

1.
15
4

1.
01
5

1.
28
9*
**

0.
98
4

1.
04
6*

1.
03
5

0.
99
0*

2/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

0.
96
9*
**

0.
96
0*
**

1.
91
4*
**

0.
95
0*
**

1.
06
9*

0.
92
4*
**

1.
05
4

0.
92
6*
**

0.
99
3*
**

0.
97
7

0.
99
2*
*

8/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
3
7
*
*
*

0.
94
3*
**

1.
07
6*

0.
87
3*
**

1.
03
9*

0.
95
0*
*

1.
03
4

0.
92
3*
**

1.
00
0*
*

0.
99
0*

0
.9
5
3
*
*
*
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T
ab
le
8(
b)
:
O
O
S
Fo
re
ca
st
s
ba
se
d
on
Fu
ll
Sa
m
pl
e
30
-s
ec
lo
g
R
V
an
d
R
W
=
20
00
.
T
hi
s
ta
bl
e
re
p
or
ts
th
e
va
lu
es
of
th
e
m
ea
n
sq
ua
re
d
er
ro
r
(M
SE
)
fo
r

di
ff
er
en
t
m
od
el
s
co
ns
id
er
ed
re
la
ti
ve
to
th
e
M
SE

of
th
e
H
A
R
m
od
el
.
Fo
re
ca
st
s
ar
e
co
ns
tr
uc
te
d
by
re
-e
st
im
at
in
g
th
e
pa
ra
m
et
er
s
of
th
e
re
gr
es
si
on
s

ea
ch
da
y
w
it
h
a
fix
ed
le
ng
th
R
ol
lin
g
W
in
do
w
(R
W
).
C
on
si
st
en
t
w
it
h
th
e
w
or
k
of
A
ud
ri
no
an
d
K
na
us
(2
01
6)
,
w
e
se
t
th
e
ev
al
ua
ti
on
w
in
do
w
to
(M
ay

12
,
20
09
to
N
ov
15
,
20
10
).
W
e
us
e
th
e
D
ie
b
ol
d-
M
ar
ia
no
te
st
to
co
m
pa
re
th
e
pr
ed
ic
ti
ve
ab
ili
ty
b
et
w
ee
n
th
e
b
en
ch
m
ar
k
H
A
R
m
od
el
an
d
ea
ch
of

th
e
ot
he
r
m
od
el
s
(t
w
o
ex
te
ns
io
ns
of
th
e
H
A
R
an
d
L
as
so
-b
as
ed
m
od
el
s)
.
*,
**
,
**
*
in
di
ca
te
th
at
th
e
di
ff
er
en
ce
s
in
sq
ua
re
d
fo
re
ca
st
in
g
er
ro
rs
ar
e

si
gn
ifi
ca
nt
at
10
%
,
5%

an
d
1%

le
ve
l,
re
sp
ec
ti
ve
ly
.
Fo
r
ea
ch
ho
ri
zo
n,
th
e
m
od
el
w
it
h
th
e
b
es
t
p
er
fo
rm
an
ce
is
hi
gh
lig
ht
ed
in
b
ol
d
bl
ue
.
T
he
la
st

co
lu
m
n
re
p
or
ts
th
e
nu
m
b
er
of
ti
m
es
th
at
ea
ch
m
od
el
ou
tp
er
fo
rm
s
th
e
b
en
ch
m
ar
k
H
A
R
m
od
el
.

h
o
ri
zo
n
=
1

S
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F
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D
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A
R
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0
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0
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00
0
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00
0
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sl
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3
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fr
ee
H
A
R
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6

0.
99
4

0.
96
8

0.
98
8

0.
99
5

0.
99
3

0.
98
8

0.
99
4

10
/1
1

ad
ap
ti
ve
L
as
so
A
R

1.
02
1

1.
02
7

1.
04
4

0.
97
4

1.
03
4

0.
98
3

1.
04
2

1.
01
5

0.
99
3

1.
02
2

1.
02
2

3/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
04
6

1.
05
0

1.
08
2

1.
18
9

1.
00
7

1.
00
2

1.
08
8

1.
06
5

1.
05
8

1.
04
6

1.
08
0

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
10
6

1.
06
7

1.
09
3

1.
02
7

1.
10
1

1.
02
5

1.
07
1

1.
06
0

0.
99
4

1.
10
1

1.
12
3

1/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
04
5

1.
02
9

1.
09
9

1.
18
5

0.
99
8

1.
00
1

1.
06
1

1.
07
0

1.
00
1

1.
02
1

1.
08
7

1/
11

or
d
er
ed
L
as
so
A
R

0.
98
9

1.
05
3

1.
03
2

1.
03
7

0.
98
8

0.
98
1

0.
98
2*
*

1.
07
5

1.
00
0

1.
24
5

1.
06
5

4/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

0.
99
4

1.
00
7

0
.9
7
2

0.
97
5

0.
98
8

0.
97
3

0.
98
5*

0
.9
8
2

0
.9
8
0

0.
98
8

0.
99
1

10
/1
1

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

0.
99
0

1.
01
3

1.
00
5

1.
01
7

0.
98
5

0.
95
6

0.
98
5

1.
00
1

0.
99
6

0.
99
4

0.
98
9

7/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
05
3

1.
01
4

1.
09
7

1.
00
1

1.
05
4

0.
98
6

1.
00
3

1.
01
0

0.
98
7

1.
00
3

1.
08
3

2/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

0.
99
7

0.
99
8

1.
00
6

1.
01
8

0.
98
7

0.
95
7

0
.9
7
6

1.
01
8

0.
98
3

0.
98
7

0.
99
6

8/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
8
6

0
.9
9
7

0.
99
2*

0
.9
6
7

0
.9
8
3

0
.9
5
9

0.
98
4

0.
99
5

0.
98
6

0
.9
8
6

0
.9
7
8

11
/1
1

h
o
ri
zo
n
=
5

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
4

1.
00
2

1.
00
0

0.
98
7*

0.
99
6

1.
00
3

0.
99
7

1.
00
2

1.
02
2

1.
00
0

0.
99
0

4/
11

fr
ee
H
A
R

1.
00
0

1.
00
0

0
.9
9
3

0.
98
3*

0.
99
2

0.
99
4

1.
00
3

0.
99
5

1.
00
1

0.
99
2

0.
99
2

7/
11

ad
ap
ti
ve
L
as
so
A
R

1.
03
9

1.
01
6

1.
01
1

0
.9
0
8
*
*

1.
06
2

1.
03
6

1.
12
0*
*

0.
99
4

1.
03
8

1.
07
6

0.
99
3

3/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
04
7

1.
01
9

1.
21
2*
**

1.
06
0*

1.
00
5

0.
99
7

0.
97
8*
*

1.
03
2*

0.
99
1

1.
04
5*

1.
04
3*

3/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
14
3

1.
10
0

1.
13
1*
*

1.
13
7*
**

1.
19
8

1.
07
8*

1.
08
0

1.
00
1

1.
04
7

1.
09
2

1.
11
0

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
04
5*

1.
00
9

1.
29
8*
**

1.
04
3

1.
01
4

1.
00
6

0.
98
2*
**

1.
01
1

0.
98
2

1.
05
0*

1.
04
0

2/
11

or
d
er
ed
L
as
so
A
R

0.
98
8

0.
99
6

1.
12
0*
*

0.
94
9*
*

0.
98
8

0.
98
7

0.
98
7*
*

1.
06
6

0.
97
5

1.
42
1

1.
06
8

7/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

0.
99
3

1.
00
7

1.
03
8

0.
92
3*
*

1.
01
0

1.
00
1

1.
02
8

0.
96
7

1.
00
6

1.
02
8

0.
96
1

4/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

0.
98
6

0.
98
3

1.
05
3

0.
97
8*
*

0
.9
7
3
*

0.
96
5

0
.9
7
0
*
*
*

0.
96
5*

0.
97
5*
*

0
.9
9
2

0.
97
2

10
/1
1

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
07
5

1.
05
1

1.
23
4*
**

1.
00
3

1.
07
7

0
.9
6
3

1.
00
7

1.
00
9

1.
02
0

1.
00
8

1.
07
7*

1/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

0.
98
6

0.
97
5

1.
06
9

0.
97
9*
*

0.
97
6*
*

0.
97
1

0.
97
2*
**

0.
98
7

0
.9
7
2
*
*

0.
99
5

0.
97
4

10
/1
1

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
8
2

0
.9
7
4

1.
03
2

0.
93
9*
*

0.
97
4

0.
96
7

0.
98
8*
*

0
.9
6
5
*

0.
98
3

0.
99
6

0
.9
5
1
*

10
/1
1

h
o
ri
zo
n
=
2
2

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
4

1.
00
3

1.
02
6

0.
99
7*

1.
02
3

1.
00
4

1.
02
6*
**

1.
00
6

1.
04
3*
**

0.
99
3

1.
00
1*
*

2/
11

fr
ee
H
A
R

1.
00
3

1.
00
3

0.
99
7

0.
99
6

1.
00
1

1.
00
1

1.
00
2

0.
99
9

1.
00
5

0.
99
7

0.
99
7

5/
11

ad
ap
ti
ve
L
as
so
A
R

0.
96
3*
**

0.
94
9

0
.9
7
0

0.
87
1*
**

1.
07
6

0.
93
8*
**

1.
12
5*
**

0.
96
8*

1.
09
3*
*

1.
01
2

0.
96
7

7/
11

ad
ap
ti
ve
L
as
so
H
A
R

0.
97
9*
*

0.
98
8*
**

1.
34
6*
**

0.
99
8*
**

1.
07
9

0.
97
9*

0.
96
4*
*

0.
94
2*
**

0.
95
2*
**

1.
02
4

0.
94
6*
**

8/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

0.
99
9

0.
98
8

1.
00
4

0.
93
0*
**

1.
15
1

1.
05
4

0.
96
8*
*

0.
98
7

1.
04
7

1.
05
7*
*

0.
96
2

6/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

0.
97
5*
*

0.
97
0*
**

1.
38
1*
**

0.
97
9*
**

1.
10
1

0.
97
5

0.
96
2*
*

0.
90
9*
**

0.
95
7*
**

1.
02
3

0.
93
7*
**

8/
11

or
d
er
ed
L
as
so
A
R

0.
94
1*
**

0
.8
4
1
*
*
*

1.
21
9*
**

0
.8
1
1
*
*
*

1.
03
9*
*

0
.9
0
1
*
*
*

0.
94
3*
**

0.
96
0*
**

0
.8
9
6
*
*
*

1.
22
8

0.
94
6*
**

8/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

0.
95
2*
**

0.
96
6*
*

1.
02
5*

0.
88
3*
**

1.
04
4*

0.
94
1*
**

1.
00
7

0.
92
9*
**

1.
05
5

0.
99
5

0.
92
4*
**

7/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

0.
95
3*
**

0.
94
9*
**

1.
13
8*
*

0.
94
7*
**

1.
02
8*
*

0.
93
1*
**

0
.9
4
1
*
*
*

0.
90
2*
**

0.
97
4*
**

0
.9
2
9
*
*

0.
90
7*
**

9/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

0.
99
6

0.
99
6*
*

1.
21
7*
**

1.
01
0*
*

1.
17
2

1.
02
9

0.
95
7*
**

0.
92
6*
**

0.
98
6*
**

0.
96
9

0.
92
7*
**

7/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

0.
95
6*
**

0.
94
8*
**

1.
13
9*
*

0.
96
1*
**

1.
02
8*
*

0.
93
3*
**

0.
94
2*
**

0.
90
7*
**

0.
97
4*
**

0.
93
7*
*

0.
90
9*
**

9/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
2
9
**
*

0.
93
5*
**

1.
07
8*
*

0.
89
6*
**

1.
00
8*
*

0.
93
4*
**

0.
95
0*
**

0
.9
0
0
**
*

0.
98
7*
**

0.
95
8*
*

0
.9
0
2
**
*

9/
11

174



T
ab
le
8(
c)
:
O
O
S
Fo
re
ca
st
s
ba
se
d
on
P
re
-C
ri
si
s
30
-s
ec
lo
g
R
V
an
d
R
W
=
10
00
.
T
hi
s
ta
bl
e
re
p
or
ts
th
e
va
lu
es
of
th
e
m
ea
n
sq
ua
re
d
er
ro
r
(M
SE
)
fo
r

di
ff
er
en
t
m
od
el
s
co
ns
id
er
ed
re
la
ti
ve
to
th
e
M
SE

of
th
e
H
A
R
m
od
el
.
Fo
re
ca
st
s
ar
e
co
ns
tr
uc
te
d
by
re
-e
st
im
at
in
g
th
e
pa
ra
m
et
er
s
of
th
e
re
gr
es
si
on
s

ea
ch
da
y
w
it
h
a
fix
ed
le
ng
th
R
ol
lin
g
W
in
do
w
(R
W
).
C
on
si
st
en
t
w
it
h
th
e
w
or
k
of
A
ud
ri
no
an
d
K
na
us
(2
01
6)
,
he
re
w
e
se
t
th
e
ev
al
ua
ti
on
w
in
do
w
to

(M
ay
20
,
20
05
to
A
ug
31
,
20
07
),
w
it
h
a
to
ta
l
of
57
5
ob
se
rv
at
io
ns
.
W
e
us
e
th
e
D
ie
b
ol
d-
M
ar
ia
no
te
st
to
co
m
pa
re
th
e
pr
ed
ic
ti
ve
ab
ili
ty
b
et
w
ee
n
th
e

b
en
ch
m
ar
k
H
A
R
m
od
el
an
d
ea
ch
of
th
e
ot
he
r
m
od
el
s
(t
w
o
ex
te
ns
io
ns
of
th
e
H
A
R
an
d
L
as
so
-b
as
ed
m
od
el
s)
.
*,
**
,
**
*
in
di
ca
te
th
at
th
e
di
ff
er
en
ce
s

in
sq
ua
re
d
fo
re
ca
st
in
g
er
ro
rs
ar
e
si
gn
ifi
ca
nt
at
10
%
,
5%

an
d
1%

le
ve
l,
re
sp
ec
ti
ve
ly
.
Fo
r
ea
ch
ho
ri
zo
n,
th
e
m
od
el
w
it
h
th
e
b
es
t
p
er
fo
rm
an
ce
is

hi
gh
lig
ht
ed
in
b
ol
d
bl
ue
.
T
he
la
st
co
lu
m
n
re
p
or
ts
th
e
nu
m
b
er
of
ti
m
es
th
at
ea
ch
m
od
el
ou
tp
er
fo
rm
s
th
e
b
en
ch
m
ar
k
H
A
R
m
od
el
.

h
o
ri
zo
n
=
1

S
P
Y

M
S
F
T

C
P
F
E

G
E

H
D

S
X
O
M

A
A

W
M
T

D
U
K

H
A
R

1.
00
0

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
1

0.
99
3

0.
99
6

1.
00
2

0.
99
8

0.
99
5

0.
99
7

1.
00
6

0.
99
2

0.
99
6

1.
00
0

7/
11

fr
ee
H
A
R

0.
99
7

0
.9
9
2

0.
98
8

1.
00
5

1.
00
5

0.
99
6

1.
00
5

1.
00
3

0.
99
1

1.
00
1

0.
99
8

6/
11

ad
ap
ti
ve
L
as
so
A
R

1.
46
8

1.
49
0*
*

1.
59
0

1.
13
8

1.
72
6

1.
13
9

1.
10
2

0.
99
2

0.
99
7

1.
08
0

1.
13
9

2/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
64
9*

1.
48
6*
*

1.
73
7*

1.
25
4*
**

1.
84
5*

1.
30
9*
*

1.
26
2*

1.
18
7*
*

1.
19
1

1.
24
8*
*

1.
29
9

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
06
3

1.
13
3

1.
05
6

1.
10
7

1.
06
1

1.
03
2

1.
06
9

1.
04
8

1.
01
0

1.
00
9

1.
14
1

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
64
5*

1.
49
3*
*

1.
74
0*

1.
25
6*
*

1.
84
5*

1.
31
5*
*

1.
27
0*

1.
19
2*
**

1.
18
4*

1.
26
3*
**

1.
29
6

0/
11

or
d
er
ed
L
as
so
A
R

1.
13
7

1.
32
4*
*

1.
05
7

1.
19
0

1.
31
6

1.
07
9

1.
03
1

1.
01
6

1.
09
3

1.
07
5

1.
03
4

0/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
32
3

1.
34
4

1.
40
6

1.
03
1

1.
55
3

1.
07
6

1.
01
4

0
.9
8
2

0
.9
7
3

1.
01
6

1.
07
6

2/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
58
3*

1.
41
6*

1.
65
6*

1.
04
0*

1.
72
2

1.
26
3*
*

1.
18
1*
**

1.
04
8*
*

1.
03
8

1.
22
5*
*

1.
26
1

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
00
4

1.
06
6

0
.9
8
1

1.
01
2

0
.9
9
3

0
.9
9
2

0
.9
9
2

1.
03
7

1.
00
0

0
.9
6
5

1.
06
0

5/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
58
4*

1.
42
5*

1.
65
8*

1.
04
3*
*

1.
72
6

1.
27
3*
*

1.
17
2*
**

1.
05
9*
*

1.
01
8

1.
23
0*
*

1.
26
4

0/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
9
2

1.
04
7*

1.
00
0

1.
00
3

1.
12
0

1.
00
2

0.
99
5

0.
99
5

0.
99
8

1.
00
7

0
.9
9
5

5/
11

h
o
ri
zo
n
=
5

H
A
R

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
3

0.
99
3

0
.9
9
5
*

1.
01
0*
*

0
.9
9
8
*

0
.9
8
6

1.
00
5

0.
99
9

0
.9
8
8
*

0.
99
1

0.
99
1

8/
11

fr
ee
H
A
R

1.
00
6

0
.9
9
1

0.
99
7

1.
00
1

1.
00
1

1.
00
1

0.
99
8

0.
99
6

1.
00
2

0.
99
7

1.
00
2

5/
11

ad
ap
ti
ve
L
as
so
A
R

1.
63
7

1.
87
7*
**

1.
77
0

1.
31
1

2.
02
7

1.
38
6

1.
27
0

1.
00
3

1.
07
9

1.
28
7

1.
32
6*

0/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
64
2

1.
97
6*
**

2.
00
6

1.
26
4

2.
12
2

1.
39
5

1.
32
7

1.
38
7*
**

1.
36
2

1.
34
5

1.
28
8*
*

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
14
6

1.
18
9*

1.
12
3

1.
06
4

1.
17
0

1.
10
3

1.
08
5

1.
02
5

1.
10
9

1.
01
3

1.
31
1*
*

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
65
2

1.
97
1*
**

1.
99
9

1.
27
2

2.
13
0

1.
39
1

1.
31
4

1.
40
3*
**

1.
36
4

1.
34
9

1.
29
3*
*

0/
11

or
d
er
ed
L
as
so
A
R

1.
18
6

1.
56
4*
**

1.
17
0*
*

1.
28
5

1.
52
2*
**

1.
14
0*

1.
01
5

0
.9
3
9
*
*
*

1.
16
4

1.
19
7*
**

1.
04
1

1/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
48
8

1.
70
9*
**

1.
57
9

1.
19
9

1.
81
0

1.
31
5

1.
20
0

0.
96
7*

1.
04
0

1.
22
0

1.
25
2

1/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
54
9

1.
81
3*
**

1.
88
5

1.
19
5

1.
92
5

1.
33
1

1.
27
6

1.
29
9*
*

1.
29
7

1.
29
0

1.
23
2*
*

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
05
8

1.
11
2

1.
04
3

0
.9
9
2

1.
08
4

1.
04
8

1.
02
5

0.
99
5

1.
06
8

0
.9
8
7

1.
22
1*

3/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
55
2

1.
82
9*
**

1.
88
1

1.
19
5

1.
92
8

1.
33
0

1.
26
7

1.
29
8*
*

1.
29
1

1.
29
2

1.
22
6*
*

0/
11

or
d
er
ed
L
as
so
A
R
-F
C

1.
00
6

1.
10
5*
**

1.
08
3*
*

1.
02
8

1.
25
0*
**

1.
03
0*

0
.9
8
2

0.
98
7

1.
06
4

1.
08
0*
**

0
.9
9
0

3/
11

h
o
ri
zo
n
=
2
2

H
A
R

1
.0
0
0

1.
00
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1.
00
0

1
.0
0
0

1.
00
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

sl
op
eH
A
R

1.
02
9*
*

1.
01
6*
**

1.
01
7*
*

1.
03
7*
*

1.
03
7*
*

1.
03
8*
*

1.
01
4

1.
01
5*

1.
02
0

1.
06
8

1.
00
4

0/
11

fr
ee
H
A
R

1.
00
6

0
.9
9
8

1.
00
2

1.
00
1

1.
00
6

1.
00
3

1.
00
2

1.
00
3

1.
00
4

1.
00
0

1.
00
1

1/
11

ad
ap
ti
ve
L
as
so
A
R

1.
47
2

1.
71
6*
**

1.
47
8

1.
63
5*
**

1.
99
7*
**

1.
34
9

1.
27
6

0.
95
7*
**

1.
08
5*
*

1.
23
8

1.
30
9*
*

1/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
43
1

1.
83
9*
**

1.
54
2*
**

1.
49
2*
**

2.
02
5*
**

1.
17
5

1.
20
8*

1.
03
5

1.
24
2*
**

1.
06
8*
*

1.
33
3*
**

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
18
7

1.
21
4

1.
14
9

1.
29
0*
**

1.
24
5*

1.
07
3

1.
14
7

1.
00
2

1.
17
1*

1.
05
0

1.
41
6*
**

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
44
4

1.
85
0*
**

1.
54
6*
**

1.
50
5*
**

2.
02
6*
**

1.
17
7

1.
21
9*

1.
03
0

1.
22
9*
**

1.
06
7*
*

1.
32
4*
**

0/
11

or
d
er
ed
L
as
so
A
R

1.
26
3*
**

1.
64
9*
**

1.
24
5*
**

1.
51
8*
**

1.
79
8*
**

1.
23
7*
**

1.
07
4

0
.9
3
5
*
*
*

1.
19
0*

1.
45
3*
**

1.
08
5

1/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
35
9

1.
56
0*

1.
34
0

1.
53
4*
**

1.
80
2*
**

1.
26
4

1.
22
3

0.
96
1*
*

1.
06
6*
*

1.
17
7

1.
27
7*
*

1/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
28
7

1.
68
8*
**

1.
42
8*
*

1.
36
0*
**

1.
79
9*
**

1.
11
1*

1.
14
3*
*

1.
03
3*

1.
17
9*
**

1.
00
5*
**

1.
18
8*
**

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
11
8

1.
14
1

1.
09
5

1.
19
8*
**

1.
18
2*

0
.9
8
1

1.
08
2

0.
98
0

1.
15
3*
*

1.
00
5

1.
36
1*
**

2/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
30
2

1.
69
0*
**

1.
43
0*
*

1.
37
6*
**

1.
79
8*
**

1.
10
8*

1.
14
1*
*

1.
03
3*

1.
17
7*
**

1.
00
4*
**

1.
19
2*
**

0/
11

or
d
er
ed
L
as
so
A
R
-F
C

1.
08
7*
**

1.
21
6*
**

1.
17
0*
**

1.
23
5*
**

1.
51
9*
**

1.
12
7*
**

1.
09
4

1.
00
9*
*

1.
13
1*
*

1.
32
7*
**

1.
02
1*

0/
11

175



T
ab
le
8(
d)
:
O
O
S
Fo
re
ca
st
s
ba
se
d
on
P
os
t-
C
ri
si
s
30
-s
ec
lo
g
R
V
an
d
R
W
=
10
00
.
T
hi
s
ta
bl
e
re
p
or
ts
th
e
va
lu
es
of
th
e
m
ea
n
sq
ua
re
d
er
ro
r
(M
SE
)
fo
r

di
ff
er
en
t
m
od
el
s
co
ns
id
er
ed
re
la
ti
ve
to
th
e
M
SE

of
th
e
H
A
R
m
od
el
.
Fo
re
ca
st
s
ar
e
co
ns
tr
uc
te
d
by
re
-e
st
im
at
in
g
th
e
pa
ra
m
et
er
s
of
th
e
re
gr
es
si
on
s

ea
ch
da
y
w
it
h
a
fix
ed
le
ng
th
R
ol
lin
g
W
in
do
w
(R
W
).
C
on
si
st
en
t
w
it
h
th
e
w
or
k
of
A
ud
ri
no
an
d
K
na
us
(2
01
6)
,
he
re
w
e
se
t
th
e
ev
al
ua
ti
on
w
in
do
w
to

(S
ep
04
,
20
07
to
N
ov
15
,
20
10
),
w
it
h
a
to
ta
l
of
80
8
ob
se
rv
at
io
ns
.
W
e
us
e
th
e
D
ie
b
ol
d-
M
ar
ia
no
te
st
to
co
m
pa
re
th
e
pr
ed
ic
ti
ve
ab
ili
ty
b
et
w
ee
n
th
e

b
en
ch
m
ar
k
H
A
R
m
od
el
an
d
ea
ch
of
th
e
ot
he
r
m
od
el
s
(t
w
o
ex
te
ns
io
ns
of
th
e
H
A
R
an
d
L
as
so
-b
as
ed
m
od
el
s)
.
*,
**
,
**
*
in
di
ca
te
th
at
th
e
di
ff
er
en
ce
s

in
sq
ua
re
d
fo
re
ca
st
in
g
er
ro
rs
ar
e
si
gn
ifi
ca
nt
at
10
%
,
5%

an
d
1%

le
ve
l,
re
sp
ec
ti
ve
ly
.
Fo
r
ea
ch
ho
ri
zo
n,
th
e
m
od
el
w
it
h
th
e
b
es
t
p
er
fo
rm
an
ce
is

hi
gh
lig
ht
ed
in
b
ol
d
bl
ue
.
T
he
la
st
co
lu
m
n
re
p
or
ts
th
e
nu
m
b
er
of
ti
m
es
th
at
ea
ch
m
od
el
ou
tp
er
fo
rm
s
th
e
b
en
ch
m
ar
k
H
A
R
m
od
el
.

h
o
ri
zo
n
=
1

S
P
Y

M
S
F
T

C
P
F
E

G
E

H
D

S
X
O
M

A
A

W
M
T

D
U
K

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

0.
99
8

0.
99
6

0
.9
9
8

0.
98
9*
*

0
.9
9
3

0.
99
3*

0
.9
8
9

1.
00
5

0.
99
0

0.
99
0

0.
98
6*
*

10
/1
1

fr
ee
H
A
R

0.
99
8

1.
00
1

1.
00
0

0.
99
4

0.
99
8

0
.9
7
7

0.
99
0

1.
00
1

0.
98
4

0
.9
8
8
*

0.
98
8

8/
11

ad
ap
ti
ve
L
as
so
A
R

1.
18
3

1.
09
4

3.
81
3*
**

1.
23
1*
*

1.
76
0*
**

1.
08
3

2.
63
4*
**

1.
09
8

1.
10
0*
*

1.
09
6

1.
04
3

0/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
34
8*
**

1.
26
8*
**

4.
21
8*
**

1.
26
0*
*

2.
29
5*
**

1.
23
1*
**

3.
07
1*
**

1.
12
3*
*

1.
36
2*
**

1.
13
4*
*

1.
17
4*
*

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
11
6

1.
11
2

1.
07
1

1.
16
0*
*

1.
10
1

1.
10
1

1.
18
8

1.
12
1

1.
09
6*
*

1.
13
0*
*

1.
07
7

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
35
8*
**

1.
27
4*
**

4.
22
0*
**

1.
27
1*
*

2.
28
1*
**

1.
23
0*
**

3.
05
6*
**

1.
11
6*

1.
34
5*
**

1.
13
3*
*

1.
18
7*
*

0/
11

or
d
er
ed
L
as
so
A
R

1.
04
2

1.
44
2*
**

1.
64
5*
**

1.
66
6*
**

1.
12
5*
*

1.
29
5*
**

1.
21
2

1.
43
4*
*

1.
16
3*
**

1.
54
6*
**

1.
28
7*
*

0/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
09
1

1.
02
6

3.
17
4*
**

1.
05
7

1.
54
7*
**

1.
02
2

2.
19
6*
**

1.
02
4

1.
03
1

1.
04
1

0.
98
1

1/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
24
1*
**

1.
18
6*
**

3.
70
8*
**

1.
05
0

2.
01
2*
**

1.
09
4*
**

2.
62
9*
**

1.
02
7*

1.
18
7*
**

1.
03
5

1.
02
3

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
05
2

1.
04
6

1.
02
6

1.
04
2

1.
05
8

1.
05
4*

1.
12
2

1.
05
5

1.
05
9*

1.
05
9*

1.
02
7

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
25
2*
**

1.
18
9*
*

3.
70
4*
**

1.
05
9

2.
01
1*
**

1.
10
0*
**

2.
62
6*
**

1.
04
6

1.
19
0*
**

1.
04
0

1.
04
3

0/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
9
2

0
.9
9
5

1.
34
1*
**

0
.9
7
7
**

1.
06
8

0.
98
4

1.
15
1

1.
01
1

0
.9
6
8

0.
99
0

0
.9
7
0
**

7/
11

h
o
ri
zo
n
=
5

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

0.
99
4

0.
99
3

1.
00
3*
*

0.
98
5*
*

0
.9
9
3

0.
99
7

0
.9
8
8

0
.9
9
5

0.
99
2

0.
99
4

0.
98
1*
*

10
/1
1

fr
ee
H
A
R

1.
00
3

0.
99
9

0
.9
9
8

0.
99
3

0.
99
9

0.
99
7

0.
99
8

1.
00
0

0.
99
5

0
.9
9
2

0.
99
5

7/
11

ad
ap
ti
ve
L
as
so
A
R

1.
17
9*
**

1.
10
6

3.
56
8*
**

1.
08
3*

1.
81
2*
**

1.
27
2*
**

3.
61
4*
**

1.
09
6*
**

1.
10
6*

1.
08
8

1.
00
3

0/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
42
8*
**

1.
25
4*
**

3.
91
1*
**

1.
28
0*
**

2.
38
4*
**

1.
47
0*
**

4.
42
3*
**

1.
08
1*
**

1.
31
0*
**

1.
07
3*
*

1.
19
1*
**

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
15
3*
**

1.
13
1*
**

1.
09
3

1.
10
8*
**

1.
15
6

1.
16
5*
**

1.
36
9*
*

1.
13
4*
**

1.
14
5*
*

1.
17
1*
**

1.
08
4*
**

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
44
7*
**

1.
23
1*
**

3.
88
4*
**

1.
29
6*
**

2.
39
1*
**

1.
47
6*
**

4.
44
9*
**

1.
06
4*
**

1.
28
6*
**

1.
07
4*
*

1.
18
9*
**

0/
11

or
d
er
ed
L
as
so
A
R

1.
02
8*
*

1.
52
7*
**

1.
48
9*
*

1.
77
5*
**

1.
12
6*
**

1.
35
0*
**

1.
26
5

1.
52
0*
**

1.
18
9*
**

1.
70
4*
**

1.
28
0*
**

0/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
10
7*
**

1.
05
8

3.
02
1*
**

1.
01
4

1.
61
4*
**

1.
17
5*
**

3.
03
3*
**

1.
00
7

1.
08
8*
*

1.
05
4*
*

0.
97
1

1/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
29
8*
**

1.
18
1*
**

3.
45
9*
**

1.
15
9*
**

2.
13
8*
**

1.
33
0*
**

3.
80
5*
**

1.
00
3*
**

1.
19
3*
**

1.
02
8*

1.
09
4*
**

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
10
2*
**

1.
08
1*
**

1.
04
1

1.
03
0*
*

1.
12
4

1.
09
5*
**

1.
26
6*
*

1.
03
8*
*

1.
08
0*

1.
08
0*
*

1.
03
5*
*

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
30
7*
**

1.
18
9*
**

3.
42
7*
**

1.
15
9*
**

2.
13
6*
**

1.
33
6*
**

3.
80
3*
**

1.
01
3*
**

1.
18
5*
**

1.
02
9

1.
06
4*
**

0/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
7
6
**

0
.9
6
9
**

1.
27
3*
*

0
.9
5
4
**
*

1.
05
9

0
.9
9
1

1.
21
5*

1.
00
2

0
.9
7
7

0.
99
3

0
.9
6
0
*
*

7/
11

h
o
ri
zo
n
=
2
2

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

0
.9
8
8
*
*

0.
99
6

1.
04
0*
**

0.
98
5*
*

1.
00
2

1.
00
4

0
.9
7
3

1.
00
4

0.
99
0*

0.
99
9

0.
97
9*
**

7/
11

fr
ee
H
A
R

1.
00
6

1.
00
4

0
.9
9
9

1.
00
0

1.
00
3

1.
00
2

1.
00
1

1.
00
3

1.
00
1

1.
00
1

1.
00
2

1/
11

ad
ap
ti
ve
L
as
so
A
R

1.
01
5

1.
01
8

2.
18
4*
**

1.
01
0*
**

1.
23
2*
**

1.
08
2*
**

2.
57
1*
**

1.
05
7*
**

1.
11
1*
*

1.
08
1*
*

0.
99
4

1/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
13
2*
**

1.
09
2*
*

2.
31
2*
**
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5*
**
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**
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8*
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1*
**
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02
2*
*
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4*
**

1.
07
8

1.
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2*
**

0/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
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02
1*
*

1.
03
9*

1.
09
0*
**

1.
03
7*
**

1.
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1

1.
02
6

1.
33
8*

1.
06
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**

1.
14
2*
*

1.
01
8

1.
02
2*

0/
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ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
13
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**

1.
08
1*
*

2.
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**

1.
16
7*
**
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**
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**

3.
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9*
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0*
*

1.
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0*
**

1.
07
7
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4*
**

0/
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d
er
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L
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so
A
R

1.
05
4*
**

1.
23
5*
**

1.
09
4

1.
44
2*
**

1.
06
8*
**

1.
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3*
**

1.
24
2

1.
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1*
**

1.
13
8*
**

1.
29
9*
**

1.
08
0*
**

0/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
00
2

1.
00
6

1.
91
7*
**

0.
97
5*
*

1.
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7*
**

1.
06
5*

2.
20
7*
**

0.
98
7

1.
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9*
**

1.
05
8*

0.
98
5*

3/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
09
7*
*

1.
01
6

2.
06
0*
**

1.
05
5*
**

1.
50
7*
**

1.
20
7*
**

2.
97
4*
**

0
.9
5
0
**
*

1.
03
4

1.
02
2

0.
96
2*
*

2/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
01
7*
*

1.
03
7

1.
03
5

1.
00
9*
*

1.
00
7

1.
02
0

1.
25
8

0.
98
7

1.
11
0*
**

1.
01
7

0.
99
1*
*

2/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
09
8*
**

1.
02
0

2.
04
1*
**

1.
06
0*
**

1.
51
5*
**

1.
21
1*
**

2.
98
3*
**

0.
96
4

1.
02
6

1.
02
2

0.
96
3*
*

2/
11

or
d
er
ed
L
as
so
A
R
-F
C

0.
99
2

0
.9
8
2
*
*

1.
07
1*

0
.9
5
6
*
*
*

1.
00
9

0
.9
8
8
*
*

1.
26
1*
*

0.
96
2

0
.9
5
8

0
.9
6
6

0
.9
4
9

8/
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T
ab
le
9(
a)
:
O
O
S
Fo
re
ca
st
s
ba
se
d
on
Fu
ll
Sa
m
pl
e
30
0-
se
c
lo
g
R
V
an
d
R
W
=
10
00
.
T
hi
s
ta
bl
e
re
p
or
ts
th
e
va
lu
es
of
th
e
m
ea
n
sq
ua
re
d
er
ro
r
(M
SE
)
fo
r

di
ff
er
en
t
m
od
el
s
co
ns
id
er
ed
re
la
ti
ve
to
th
e
M
SE

of
th
e
H
A
R
m
od
el
.
Fo
re
ca
st
s
ar
e
co
ns
tr
uc
te
d
by
re
-e
st
im
at
in
g
th
e
pa
ra
m
et
er
s
of
th
e
re
gr
es
si
on
s

ea
ch
da
y
w
it
h
a
fix
ed
le
ng
th
R
ol
lin
g
W
in
do
w
(R
W
).
C
on
si
st
en
t
w
it
h
th
e
w
or
k
of
A
ud
ri
no
an
d
K
na
us
(2
01
6)
,
w
e
se
t
th
e
ev
al
ua
ti
on
w
in
do
w
to

(M
ay
12
,
20
09
to
N
ov
15
,
20
10
),
in
or
de
r
to
m
ak
e
th
e
re
su
lt
s
co
m
pa
ra
bl
e
to
th
os
e
ob
ta
in
ed
fr
om

th
e
R
W
=
20
00
.
W
e
us
e
th
e
D
ie
b
ol
d-
M
ar
ia
no
te
st

to
co
m
pa
re
th
e
pr
ed
ic
ti
ve
ab
ili
ty
b
et
w
ee
n
th
e
b
en
ch
m
ar
k
H
A
R
m
od
el
an
d
ea
ch
of
th
e
ot
he
r
m
od
el
s
(t
w
o
ex
te
ns
io
ns
of
th
e
H
A
R
an
d
L
as
so
-b
as
ed

m
od
el
s)
.
*,
**
,*
**
in
di
ca
te
th
at
th
e
di
ff
er
en
ce
s
in
sq
ua
re
d
fo
re
ca
st
in
g
er
ro
rs
ar
e
si
gn
ifi
ca
nt
at
10
%
,5
%
an
d
1%

le
ve
l,
re
sp
ec
ti
ve
ly
.
Fo
r
ea
ch
ho
ri
zo
n,

th
e
m
od
el
w
it
h
th
e
b
es
t
p
er
fo
rm
an
ce
is
hi
gh
lig
ht
ed
in
b
ol
d
bl
ue
.
T
he
la
st
co
lu
m
n
re
p
or
ts
th
e
nu
m
b
er
of
ti
m
es
th
at
ea
ch
m
od
el
ou
tp
er
fo
rm
s
th
e

b
en
ch
m
ar
k
H
A
R
m
od
el
.

h
o
ri
zo
n
=
1

S
P
Y

M
S
F
T

C
P
F
E

G
E

H
D

S
X
O
M

A
A

W
M
T

D
U
K

H
A
R

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

0.
99
8

0.
99
7

0.
99
6

0.
99
1

0.
99
1

0
.9
8
8

0.
99
0

1.
00
2

0.
99
8

0
.9
9
6

0
.9
9
1
*

10
/1
1

fr
ee
H
A
R

1.
00
0

1.
00
7

0
.9
9
1

1.
00
6

0.
99
4

1.
00
1

0.
97
2

1.
00
6

0.
99
3

0.
99
9

0.
99
7

6/
11

ad
ap
ti
ve
L
as
so
A
R

1.
06
1

1.
07
2

1.
01
2

1.
03
4

1.
03
8

1.
01
8

1.
02
4*
*

1.
08
0

1.
00
1

1.
08
2

1.
08
5

0/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
04
9

1.
01
2

1.
18
9*

0.
99
6

1.
03
0

1.
02
7

0.
98
6*

1.
02
7

1.
04
3

1.
03
0

1.
02
8*

2/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
11
8

1.
09
7

1.
07
2

1.
04
8

1.
09
5

1.
03
4

1.
04
5

1.
14
2

1.
00
5

1.
04
9

1.
07
0

0/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
04
4

1.
01
8

1.
18
9*

0.
99
7

1.
01
3

1.
02
9

0.
99
1

1.
02
9

0.
99
9

1.
02
8*
*

1.
03
1*

3/
11

or
d
er
ed
L
as
so
A
R

0.
99
6

0
.9
9
5

1.
02
6

0.
98
7

0.
99
5

0.
99
8

0.
98
2*

1.
00
8

0.
99
6

1.
05
3

1.
04
7

7/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
01
8

1.
03
9

1.
00
5

1.
02
2

1.
00
4

1.
00
7

0.
98
5

1.
02
5

0
.9
8
0

1.
02
4

1.
03
7

2/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
00
2

0.
99
5

1.
08
0

0.
98
3

1.
00
1

1.
00
3

0
.9
6
8
*
*
*

1.
00
5

1.
00
5

1.
00
7

0.
99
9

4/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
06
6

1.
03
2

1.
05
8

1.
01
8

1.
02
3

1.
00
8

0.
98
6

1.
08
4

0.
99
0

1.
00
8

1.
01
3

2/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
00
7

1.
00
4

1.
08
3

0
.9
7
8

0.
99
7

0.
99
0

0.
97
1*
*

1.
01
7

0.
98
6

1.
00
1

1.
00
5

5/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
9
0

0.
99
8

1.
00
8

0.
99
4

0
.9
8
9

0.
99
4

0.
97
5*

1.
00
4

0.
98
7

1.
01
4

1.
01
0

7/
11

h
o
ri
zo
n
=
5

H
A
R

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
2

0.
99
6

1.
01
0

0.
99
0

0.
99
7

1.
00
5

0.
99
5

0.
99
6

1.
01
2

0.
99
9

0.
99
7

7/
11

fr
ee
H
A
R

1.
00
2

1.
00
7

1.
01
5

0.
99
2

0.
99
7

1.
00
2

0.
99
9

0.
99
8

0.
99
9

0.
99
9

0.
99
3

7/
11

ad
ap
ti
ve
L
as
so
A
R

1.
05
6

1.
06
6*

1.
20
7*
**

0.
98
6

1.
06
6

1.
04
4

1.
13
1*
**

1.
04
5

1.
04
5

1.
13
0*
*

1.
06
9

1/
11

ad
ap
ti
ve
L
as
so
H
A
R

1.
05
6*
*

1.
02
5

1.
19
1*

0.
94
1*
**

1.
02
7

1.
00
6

1.
00
0

1.
02
6

0.
96
1*

1.
01
8

1.
03
1*
*

2/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
13
3

1.
08
5

1.
29
8*
**

0.
98
7

1.
13
0*

1.
14
6*
*

1.
06
2*

1.
18
9

1.
05
2

1.
06
5

1.
07
0*

1/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R

1.
06
8*

1.
04
0

1.
18
0

0.
96
1*
*

1.
02
9

1.
00
1

1.
00
5

1.
02
2

0
.9
4
9
*
*
*

1.
02
5

1.
03
4*

2/
11

or
d
er
ed
L
as
so
A
R

0.
97
5

0
.9
7
4

1.
09
9*
**

0
.9
0
9
*
*
*

1.
00
0

1.
00
0

0.
99
9

0.
97
7

1.
01
1

1.
09
7*

1.
03
6

5/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

1.
00
7

1.
04
7

1.
25
4*
**

0.
98
1

1.
04
2

1.
02
4

1.
08
7*
*

0.
99
9

1.
02
9

1.
09
2*
*

1.
02
2

2/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

1.
00
3

0.
99
9

1.
15
8

0.
93
5*
**

0.
99
6*

0
.9
9
1

0.
98
3

0.
99
0

0.
96
8*
*

0
.9
9
3

0.
99
7

9/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
11
2*

1.
06
7

1.
29
3*
**

0.
97
9*

1.
09
0

1.
08
4*
*

0.
98
7

1.
15
7*
*

1.
00
0

1.
01
4

1.
01
8

2/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

1.
00
7

1.
00
7

1.
16
1

0.
93
8*
*

0.
99
8*

1.
00
0

0
.9
7
7

0.
99
5

0.
96
4*
*

1.
00
0

1.
00
3

5/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
6
9
*

0.
98
3

1.
06
2*
**

0.
92
6*
*

0
.9
8
3

0.
99
2

0.
98
6

0
.9
6
7
*

0.
99
6

1.
03
8*

0
.9
9
2

9/
11

h
o
ri
zo
n
=
2
2

H
A
R

1.
00
0

1.
00
0

1
.0
0
0

1.
00
0

1
.0
0
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

sl
op
eH
A
R

1.
00
6

0.
99
2*

1.
01
1

0.
98
9

1.
03
1

0
.9
9
2
*

1.
05
4*
**

1.
00
4

1.
05
1*
*

1.
00
2

1.
01
0

3/
11

fr
ee
H
A
R

1.
00
4

1.
00
4

1.
00
8

1.
00
0

1.
00
3

1.
00
4

1.
00
3

1.
00
2

1.
00
5

1.
00
0

1.
00
0

0/
11

ad
ap
ti
ve
L
as
so
A
R

0.
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0.
96
7

1.
50
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0.
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1*
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1.
09
3

1.
00
8

1.
24
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**

1.
00
9

1.
16
2
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**

1.
06
1

3/
11

ad
ap
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ve
L
as
so
H
A
R

1.
01
3

1.
06
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*

1.
44
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0.
97
1*
**

1.
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6

1.
09
6

1.
01
7*
*

0.
95
6*
*

1.
00
4*
**

1.
07
0*

1.
03
4

2/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R

1.
01
4

1.
07
6

1.
44
7*
**

0.
96
6*
**

1.
18
2*
*

1.
11
9

1.
04
4

1.
07
9

1.
09
7

1.
09
3*
**

0.
99
5

2/
11

ad
ap
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ve
L
as
so
fr
ee
H
A
R

1.
01
1*

1.
07
8*

1.
45
0*
**

0.
96
7*
**

1.
10
7

1.
11
0

1.
02
8

0.
96
7*
**

1.
00
3*
**

1.
07
7*
*

1.
01
6*

2/
11

or
d
er
ed
L
as
so
A
R

0.
93
6*
**

0
.9
5
4
*
*
*

1.
29
1*
**

0
.8
1
4
*
*
*

1.
07
6

1.
03
2

0.
93
6*
**

0.
91
2*
**

1.
10
1

1.
10
0*
**

0.
99
9*
*

6/
11

ad
ap
ti
ve
L
as
so
A
R
-F
C

0.
94
0*
**

0.
99
9

1.
54
0*
**

0.
90
2*
**

1.
10
2

1.
03
0

1.
11
9*

0.
95
2*
**

1.
12
8

1.
08
1*
**

1.
01
2

4/
11

ad
ap
ti
ve
L
as
so
H
A
R
-F
C

0.
96
1*
**

0.
99
0*
**

1.
41
8*
**

0.
94
4*
**

1.
05
9*

1.
02
8*

1.
01
9*
**

0.
93
3*
**

0.
99
9*
*

0
.9
8
0

0.
99
9*

7/
11

ad
ap
ti
ve
L
as
so
sl
op
eH
A
R
-F
C

1.
00
7

1.
10
4

1.
50
1*
**

0.
94
6*
**

1.
19
0

1.
13
5*

0.
99
4

1.
00
0

1.
01
3*
*

1.
03
5*

0.
99
4

3/
11

ad
ap
ti
ve
L
as
so
fr
ee
H
A
R
-F
C

0.
96
9*
**

0.
99
8*
**

1.
44
0*
**

0.
94
6*
**

1.
06
3

1.
04
4

1.
02
2*
*

0.
93
5*
**

0
.9
9
3
**
*

1.
00
1

0.
99
7*

6/
11

or
d
er
ed
L
as
so
A
R
-F
C

0
.9
2
1
**
*

0.
97
6*
**

1.
20
7*
**

0.
86
7*
**

1.
03
7*

1.
01
7*

0
.9
1
2
**
*

0
.9
0
3
**
*

1.
05
9

1.
01
7

0
.9
6
9
**
*
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T
ab
le
9(
b)
:
O
O
S
Fo
re
ca
st
s
ba
se
d
on
Fu
ll
Sa
m
pl
e
30
0-
se
c
lo
g
R
V
an
d
R
W
=
20
00
.
T
hi
s
ta
bl
e
re
p
or
ts
th
e
va
lu
es
of
th
e
m
ea
n
sq
ua
re
d
er
ro
r
(M
SE
)
fo
r

di
ff
er
en
t
m
od
el
s
co
ns
id
er
ed
re
la
ti
ve
to
th
e
M
SE

of
th
e
H
A
R
m
od
el
.
Fo
re
ca
st
s
ar
e
co
ns
tr
uc
te
d
by
re
-e
st
im
at
in
g
th
e
pa
ra
m
et
er
s
of
th
e
re
gr
es
si
on
s

ea
ch
da
y
w
it
h
a
fix
ed
le
ng
th
R
ol
lin
g
W
in
do
w
(R
W
).
C
on
si
st
en
t
w
it
h
th
e
w
or
k
of
A
ud
ri
no
an
d
K
na
us
(2
01
6)
,
w
e
se
t
th
e
ev
al
ua
ti
on
w
in
do
w
to
(M
ay

12
,
20
09
to
N
ov
15
,
20
10
).
W
e
us
e
th
e
D
ie
b
ol
d-
M
ar
ia
no
te
st
to
co
m
pa
re
th
e
pr
ed
ic
ti
ve
ab
ili
ty
b
et
w
ee
n
th
e
b
en
ch
m
ar
k
H
A
R
m
od
el
an
d
ea
ch
of

th
e
ot
he
r
m
od
el
s
(t
w
o
ex
te
ns
io
ns
of
th
e
H
A
R
an
d
L
as
so
-b
as
ed
m
od
el
s)
.
*,
**
,
**
*
in
di
ca
te
th
at
th
e
di
ff
er
en
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p
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Table 3.12: Estimates of AR Coeffi cients for the SPY. This table reports the AR
coeffi cients implied by the HAR, slopeHAR, freeHAR and those given by the adaptive
Lasso AR, Ordered Lasso AR, cluster group Lasso AR as well as by the group Lasso
AR (1, 5, 22, 50, 75, 100). Cluster corresponds to the arrangements of groups of the
lagged RVs identified by the cluster group Lasso method. Models are estimated on the
full sample from Jan 02, 2001 to Nov 15, 2010.

SPY
Lag HAR slopeHAR freeHAR LassoAR orderedLassoAR Cluster ClusterGroupLassoAR GroupLassoAR
1 0.49499 0.47752 0.47122 0.55597 0.46458 1 0.26892 0.47562
2 0.09021 0.13314 0.18840 0.24514 0.18062 1 0.16339 0.10224
3 0.09021 0.10339 0.03674 0 0.05839 1 0.09033 0.08036
4 0.09021 0.07365 0.07820 0.03429 0.05839 1 0.07977 0.08404
5 0.09021 0.04390 0.07687 0.06059 0.05840 1 0.06858 0.08356
6 0.00612 0.01415 0.00572 0 0.01489 1 0.03766 0.00248
7 0.00612 0.01332 0.00647 0 0.01489 1 0.02581 0.00253
8 0.00612 0.01249 0.00647 0 0.01489 1 0.01362 0.00251
9 0.00612 0.01166 0.00647 0 0.01489 1 0.03391 0.00290
10 0.00612 0.01082 0.00647 0 0.01489 1 0.03091 0.00282
11 0.00612 0.00999 0.00647 0 0.01489 1 0.02399 0.00273
12 0.00612 0.00916 0.00647 0 0.00217 1 0.00873 0.00250
13 0.00612 0.00833 0.00647 0 0.00217 1 0.01655 0.00261
14 0.00612 0.00749 0.00647 0 0.00217 1 0.01157 0.00248
15 0.00612 0.00666 0.00647 0 0.00216 1 0.01287 0.00246
16 0.00612 0.00583 0.00647 0 0.00125 1 -0.01814 0.00200
17 0.00612 0.00500 0.00647 0 0.00125 1 -0.00808 0.00221
18 0.00612 0.00416 0.00647 0 0.00125 1 -0.01029 0.00218
19 0.00612 0.00333 0.00647 0.01031 0.00125 1 0.02214 0.00267
20 0.00612 0.00250 0.00647 0 0.00125 1 0.01594 0.00250
21 0.00612 0.00167 0.00647 0 0.00125 1 0.00113 0.00231
22 0.00612 0.00083 0.00647 0 0.00125 1 0.01102 0.00245
23 0 0 0 0 0.00125 1 -0.00128 0
24 0 0 0 0 0.00125 1 -0.00015 0
25 0 0 0 0 0.00125 1 -0.01679 0
26 0 0 0 0 0.00125 1 0.00169 0
27 0 0 0 0 0.00125 1 -0.00457 0
28 0 0 0 0 0.00125 1 0.00283 0
29 0 0 0 0 0.00125 1 0.00302 0
30 0 0 0 0 0.00125 1 -0.00128 0
31 0 0 0 0 0.00125 1 0.00383 0
32 0 0 0 0 0.00125 1 0.00009 0
33 0 0 0 0 0.00125 1 0.00778 0
34 0 0 0 0 0.00125 1 0.00127 0
35 0 0 0 0 0.00125 1 -0.00158 0
36 0 0 0 0 0.00125 1 0.00313 0
37 0 0 0 0 0.00125 1 0.01030 0
38 0 0 0 0.01373 0.00124 1 0.02844 0
39 0 0 0 0 0.00124 1 0.01048 0
40 0 0 0 0 0.00124 1 -0.00739 0
41 0 0 0 0 0.00124 1 -0.01723 0
42 0 0 0 0 0.00124 1 -0.00307 0
43 0 0 0 0 0.00124 1 0.00899 0
44 0 0 0 0 0.00124 1 0.00183 0
45 0 0 0 0 0.00124 1 -0.00484 0
46 0 0 0 0 0.00124 1 -0.00434 0
47 0 0 0 0 0.00124 1 0.00493 0
48 0 0 0 0 0.00124 1 0.00950 0
49 0 0 0 0 0.00124 1 0.01391 0
50 0 0 0 0 0.00075 1 0.00002 0
51 0 0 0 0 0 2 0 0
...

...
...

...
...

...
...

...
...

100 0 0 0 0 0 2 0 0
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Table 3.13: Estimates of AR Coeffi cients for the MSFT. This table reports the AR
coeffi cients implied by the HAR, slopeHAR, freeHAR and those given by the adaptive
Lasso AR, Ordered Lasso AR, cluster group Lasso AR as well as by the group Lasso
AR (1, 5, 22, 50, 75, 100). Cluster corresponds to the arrangements of groups of the
lagged RVs identified by the cluster group Lasso method. Models are estimated on the
full sample from Jan 02, 2001 to Nov 15, 2010.

MSFT
Lag HAR slopeHAR freeHAR LassoAR orderedLassoAR Cluster ClusterGroupLassoAR GroupLassoAR
1 0.40269 0.38889 0.38794 0.49017 0.37446 1 0.21233 0.38573
2 0.09883 0.13804 0.15218 0.19320 0.14251 1 0.13173 0.10470
3 0.09883 0.10885 0.08608 0.04982 0.08002 1 0.09663 0.09280
4 0.09883 0.07966 0.09061 0.12025 0.08003 1 0.08629 0.09189
5 0.09883 0.05047 0.05026 0 0.04187 1 0.06726 0.08614
6 0.00943 0.02128 0.05188 0 0.03769 1 0.05902 0.00582
7 0.00943 0.02002 0.00873 0 0.02136 1 0.05002 0.00578
8 0.00943 0.01877 0.00873 0 0.01920 1 0.03039 0.00520
9 0.00943 0.01752 0.00873 0 0.01920 1 0.04879 0.00601
10 0.00943 0.01627 0.00873 0 0.01920 1 0.03827 0.00552
11 0.00943 0.01502 0.00873 0.03859 0.01920 1 0.05675 0.00608
12 0.00943 0.01377 0.00873 0 0.00104 2 0 0.00496
13 0.00943 0.01252 0.00873 0 0.00104 2 0 0.00515
14 0.00943 0.01126 0.00873 0 0.00104 2 0 0.00524
15 0.00943 0.01001 0.00873 0 0.00104 2 0 0.00505
16 0.00943 0.00876 0.00873 0 0.00104 2 0 0.00522
17 0.00943 0.00751 0.00873 0 0.00104 2 0 0.00442
18 0.00943 0.00626 0.00873 0 0.00104 2 0 0.00447
19 0.00943 0.00501 0.00873 0 0.00104 2 0 0.00459
20 0.00943 0.00375 0.00873 0 0.00104 2 0 0.00489
21 0.00943 0.00250 0.00873 0 0 2 0 0.00513
22 0.00943 0.00125 0.00873 0 0 2 0 0.00517
23 0 0 0 0 0 2 0 0
24 0 0 0 0 0 2 0 0
25 0 0 0 0 0 2 0 0
26 0 0 0 0 0 3 0 0
...

...
...

...
...

...
...

...
...

35 0 0 0 0 0 3 0 0
36 0 0 0 0 0 4 0 0
...

...
...

...
...

...
...

...
...

47 0 0 0 0 0 4 0 0
48 0 0 0 0 0 5 0 0
49 0 0 0 0 0 5 0 0
50 0 0 0 0 0.00103 5 0 0
51 0 0 0 0 0.00102 5 0 0.00025
52 0 0 0 0 0.00102 5 0 0.00023
53 0 0 0 0 0.00102 5 0 0.00026
54 0 0 0 0 0.00102 5 0 0.00024
55 0 0 0 0 0.00102 5 0 0.00024
56 0 0 0 0 0.00102 6 0.00283 0.00024
57 0 0 0 0 0.00102 6 0.00381 0.00027
58 0 0 0 0 0.00102 6 0.00380 0.00027
59 0 0 0 0 0.00102 6 0.00348 0.00026
60 0 0 0 0 0.00102 6 0.00393 0.00027
61 0 0 0 0.00850 0.00102 6 0.00509 0.00030
62 0 0 0 0 0.00102 6 0.00459 0.00028
63 0 0 0 0 0.00102 6 0.00406 0.00027
64 0 0 0 0 0.00102 6 0.00380 0.00026
65 0 0 0 0 0.00101 6 0.00368 0.00026
66 0 0 0 0 0.00101 6 0.00377 0.00026
67 0 0 0 0 0.00101 6 0.00364 0.00026
68 0 0 0 0 0.00101 7 0 0.00028
69 0 0 0 0 -2.27E-11 7 0 0.00024
70 0 0 0 0 -2.27E-11 7 0 0.00026
71 0 0 0 0 -2.27E-11 7 0 0.00023
72 0 0 0 0 -5.97E-12 7 0 0.00022
73 0 0 0 0 0 7 0 0.00022
74 0 0 0 0 0 7 0 0.00022
75 0 0 0 0 0 7 0 0.00023
76 0 0 0 0 0 7 0 0
...

...
...

...
...

...
...

...
...

83 0 0 0 0 0 7 0 0
84 0 0 0 0 0 8 0 0
...

...
...

...
...

...
...

...
...

100 0 0 0 0 0 8 0 0
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Concluding Remarks

This thesis provides different methods of enhancing the modelling and forecasting

of future returns and realized variance (RV). We adopt both time series models

(Chapter 1 and 3) and options-based approach (Chapter 2) in order to achieve

better volatility forecast (Chapter 2 and 3) and return predictions (Chapter 1 and

2). Among the time series techniques considered, both univariate (Chapter 3) and

multivariate (Chapter 1) models are employed.

In Chapter 1, we propose modifications to the fractionally co-integrated vector

autoregressive (FCVAR) model developed by Johansen (2008) to accommodate

systems containing I(d) and I(0) variables under the presence of long memory

in the co-integrating residuals. The proposed model is termed the M-FCVAR.

In the simulation study and empirical application, we show that the M-FCVAR

delivers better inference than the FCVAR. In addition, we investigate the impact

of the shock to the I(0) variable on the I(d) variables within the system, which

could either be permanent or transitory. Particular equation specifications are

outlined to restrict the shock arising from the I(0) variable, so that it exerts only

transitory effect on the I(d) variables. The simulation evidence indicates that

failure in restricting the shock associated with the I(0) variable when its impact

on the I(d) variables is transitory may result in biased model estimates and low

in-sample fit. In the empirical study, the FCVAR and M-FCVAR are used for

a joint modelling of the dynamic dependencies in stock market returns, RV and

option-implied volatility. With less biased estimates of the fractional integration

order, degree of co-integration and the co-integrating relationship, the M-FCVAR

dominates the FCVAR in terms of the return predictions over long horizons.
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In Chapter 2, we evaluate the performance of different measures of model-free

implied volatility in forecasting future returns and RV. TheMonte Carlo simulations

suggest that: first, the out-of-sample volatility forecast can be improved by adopting

an interpolation and extrapolation technique; second, only an interpolation method

is needed in attempt to enhance the predictive power of implied volatilities for

future returns. In the empirical study using SPX options, the aforementioned

procedure, i.e. interpolation/extrapolation approach, is found to work well for

most measures considered. In addition, with the use of this procedure, the SPX

OTM call options outperform the OTM put options in terms of their forecasting

performance for future RV and returns, which is consistent with the simulation

results. However, the advantages of the SPX OTM put options are evident when

implied volatilities are derived from the observed options only.

In Chapter 3, we examine the usefulness of least absolute shrinkage and selection

operator (Lasso) based models in the forecast of future RV using a comprehensive

empirical study containing the SPY and ten individual stocks from different sectors.

The in-sample analysis implies that the popular heterogeneous autoregressive (HAR)

model is not fully consistent with the Lasso-type models with regard to the lag

structure, which casts doubt on the appropriateness of the HAR in modelling the

dynamics of the financial volatility. In the out-of-sample analysis, we find that,

in most cases, the Lasso-based model dominates the other candidates including

the HAR and its extensions and that the forecast combination tends to improve

the accuracy of volatility forecast delivered by the Lasso-based models. The

ordered Lasso AR with the forecast combination provides the top forecast most

frequently and its improvements over the HAR model are generally significant

over monthly forecasting horizons. The global financial crisis is shown to produce

non-trivial impact on the performance of the Lasso-based models. However, the

order Lasso AR using the forecast combination still plays a leading role in the

post crisis period, especially over long horizons. Furthermore, a larger window size

helps the Lasso-based models to display their advantages in the volatility forecast.

Finally, although the variation in the sampling frequency upon which the RV is
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based does not alter the conclusions outlined above, the superior performance of

the Lasso-based model becomes more evident in the full sample as the sampling

frequency increases.
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