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Abstract 

 

Rapid screening technique is important and efficient for routine monitoring of 

chemical pollutants, risk assessment and decision making in dealing with contaminants 

in waters and soils. The focus of this thesis is on developing simple and rapid screening 

methods based on the diffusive gradients in thin films (DGT) technique to assess the 

concentration of phosphorus and metals qualitatively and quantitatively. Firstly, a rapid 

detection technique for phosphorus based on Metsorb DGT devices and a colour 

imaging method using the conventional molybdenum blue were developed and fully 

tested under different conditions. The fully quantitative interpretation of the P 

concentration can be assessed in the linear range of 0.1 to 1.02 μg cm-2 device that 

corresponds to the concentration range of 9 to 98 μg L-1 if the deployment time is 24 

hours and the water temperature is 20o C. Secondly, digital colorimetric analysis using 

a flat-bed scanner was utilised to quantify the Cu, Ni, and Co in water following the 

DGT uptake of metals by Chelex resin gel without involving further reactive reagents. 

The fully quantitative interpretation of the Cu, Ni, and Co concentration can be assessed 

in the linear range of 1.5 to 165 μg cm-2, 2.7 to 153 μg cm-2, and 1.6 to 159.2 μg cm-2, 

respectively, which correspond to the concentration range of 0.05 to 5 mg L-1 for all 

three metals if the deployment time is 24 hours and the water temperature is 20o C. 

Thirdly, a rapid screening technique for Cr(VI) using DGT and a high-resolution CID 
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base on the surface colouration of the N-Methyl-D-glucamine (NMDG) binding gel has 

been developed. The relationship between the accumulation of Cr(VI) in NMDG gels 

and the corresponding change in grayscale intensity was well fitted using a quintic 

polynomial. The fully quantitative interpretation of the Cr(VI) concentration can be 

assessed in the linear range of 0.31 to 2.47 μg cm-2 which correspond to the 

concentration range of 12.5 to 150 μg L-1 if the deployment time is 24 hours and the 

water temperature is 20o C.  

This study has formulated a DGT deployment guide list to determine whether the 

concentration of metals has exceeded the maximum contaminant level allowed based 

on the regulation standards in different countries and regions. The use of both a simple 

visual inspection and a scanner for DGT devices at different deployment times and 

different temperatures will be considered for this list. Moreover, the rapid screening 

technique has been evaluated in water and soil from five regions in China.  

Furthermore, a novel approach with biological material incorporated in the DGT 

(Bio-DGT) was developed to measure the concentrations and toxicity of metals at the 

same time in water and soil. The new method immobilised a whole-cell toxicity 

bioreporter, ADPWH_recA, into a thin layer of agarose gel to replace the 

polyacrylamide gel that is commonly used in DGT. The test results indicated that the 

concentrations of metals measured by Bio-DGT and the cell free DGT have no 

significant differences during a 7-day deployment in synthetic water. A positive metal 

exposure relationship was shown between Bio-DGT accumulation and biological 
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response. Bio-DGT showed a stable response to heavy metals under a wide range of pH 

and ionic strength. The bioluminescent signal of Bio-DGT was maintained at a high 

level during up to 30 days of storage. The deployment of Bio-DGT devices in field soils 

collected from China allowed the measurement of both the available concentration and 

the toxicity of metals. It indicated that the new Bio-DGT can assess the bioavailability 

and toxicity of metals at the same time.  

The newly developed rapid screening technique for P and metals were applied in 

waters and soils in situ in 5 different regions of China. It showed the concentrations of 

P in most of the monitored waters in Beijing were low and the quality of the waters has 

reached the Chinese water quality standards for surface water. The concentration of 

DGT-measured P in the two main rivers run through Tianjing were higher than the 

national water standard in China. The concentrations of Cu in monitored aquatic 

systems of all field areas have also reached the Chinese water quality standards for 

surface water. 
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Chapter 1 Introduction 

 

1.1 Rational of the Study  

For everything we take from the earth, there is always a by-product or consequence. 

Environmental pollution is perhaps a prefiguration of the imbalance of nature. It occurs 

when the natural environment is incapable of destroying an element without creating 

hazard and damage to itself. Some profit from the Earth whereas many others, not only 

humans but also wildlife, suffer from disease, destitution, and harm due to the resulting 

pollution. The problem of the environment must be taken seriously as it poses a threat 

to the essential natural elements such as water, soil, and air, which all living creatures 

rely on for existence on the planet. In today’s world, about 40% of deaths are caused by 

environmental pollution (Lang, 2007). It has been suggested as the cause of the majority 

of human cancers (Tomatis, 1990). Soil and water pollution were also taken as 

encitonmetal carcinogens (Kasprzak et al., 2003).  The carcinogenic chemicals even 

exist in the daily food intake such as the residuum of pollutants used in processed food 

products or pesticides from crops and vegetables. Aside from humans, environmental 

pollution has an enormous impact on plants and animals too. For example, nitrogen and 

phosphates in water could cause toxic algae blooms, which reduce the growth of plants 

in littoral zones, while also decreasing the success of predators that need light to pursue 

and catch prey by reducing the light penetration (Chislock et al., 2013). The heavy 

metals in polluted soil could replace the essential nutrients at cation exchange sites of 
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plants (Chibuike and Obiora, 2014). The hazard of soil pollution could destroy the 

microorganisms, which are the crucial layers of ecosystems and cause more negative 

effects on the upper layers (Ramakrishnan et al., 2011). Contaminants exist in the 

modern environment, many from anthropogenic and sustained release (Rhind, 2009). 

Industrial activities, dumping solid waste, combustion of fossil fuels, agricultural waste, 

and transportation are the major sources of anthropogenic chemical pollutants in the 

environment (Hoffmann, 1993).  

With the constant appearance of the negative issues in the environment, such as 

climate change, people have realised the seriousness of pollution. The 1972 Stockholm 

Declaration proclaimed that ‘the protection and improvement of the human 

environment is a major issue which affects the well-being of peoples and economic 

development throughout the world; it is the urgent desire of the people of the whole 

world and the duty of all Governments’ (UNEP, 1972). In 1992, the largest ever first 

Earth Summit, the United Nations Conference on Environment and Development 

(UNCED, 1992), also known as the Rio de Janeiro Earth Summit, was convened to 

identify ways to halt the disruption of irreplaceable natural resources and root pollution 

of the planet (UNCED, 1992).  

  With the advance of science and technology, a variety of methods and techniques 

were developed to solve the problem of environmental pollution. Preventing potentially 

harmful substances from reaching the harmful level of pollution is an efficient way to 

prevent pollution entirely, which requires the monitoring of areas at risk. However, once 
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prevention has proven unsuccessful, the remediation must be performed in the polluted 

area, accompanied by further monitoring to verify recovery. Therefore, monitoring is a 

key element in the protection of the environment, which is essential in preventing and 

remediating the pollution. A critical part of the monitoring process is collecting the 

representative samples of the environment to ensure the accuracy of the monitoring and 

to quantify the contamination (Strobl and Robillard, 2008). Generally, pollutants can be 

measured in flux or concentration, with in situ, on-site, automatic, and grab sampling. 

The choice of sampling methods are usually based on budget constraints, the availability 

of people, and the goals of the assessment programme (Erickson et al., 2013).  

  Grab sampling is when the samples are manually collected in the field and transported 

back to a laboratory for analysis; it is the most common sampling technique in water 

and soil monitoring. This method is the cheapest and the easiest to operate. However, 

the main drawback of this approach is that only a snap shot of the concentration of 

pollutants is provided during a small amount of time, and due to the concentration of 

analytes in the environment varying over time it can produce an inaccurate 

measurement. Some unpredictable variations may also occur in samples during 

transportation and storage. Due to the issues associated with grab sampling, in situ 

sampling as a more accurate and quicker alternative to the traditional approach. In in 

situ measurement, sensors or probes are placed in the environment and accumulate 

pollutants continuously. In situ measuring devices provide time-series data that 

reproduce the natural process at the maximum extent.   
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  The in situ passive sampling technique of diffusive gradients in thin-films (DGT) has 

been used in various fields of research, including water quality monitoring (Schintu et 

al., 2010b, Sherwood et al., 2009), chemical speciation in solution (Balistrieri and Blank, 

2008, Pesavento et al., 2009), dynamic processes in waters and soils (Town et al., 2009, 

Warnken et al., 2007, Dahlqvist et al., 2007, Oporto et al., 2009, Ernstberger et al., 2005), 

and bioavailability in waters and soils (Ferreira et al., 2008, Bradac et al., 2009, Cattani 

et al., 2009, Pérez and Anderson, 2009). Compared to the commonly used active 

sampling methods, the DGT technique has specific advantages, including its convenient 

deployment for obtaining time-integrated concentrations of analytes and its low 

effective detection limits for trace species (Panther et al., 2008, Guan et al., 2015). 

Although DGT has been successfully developed in many fields, most of the methods 

still need the complicated and expensive instrumental analysis in a laboratory, 

especially for metals. Therefore development of DGT combined with other techniques 

such as the rapid screening technique, rather than the conventional analysis method, is 

important for the further use of DGT in more visible, efficient, and cost-effective in situ 

monitoring.   

 

1.2 Research Aim 

The aim of this study was to develop a rapid screening technique combining the DGT 

device with colour development and colour intensity measurements for phosphorus and 

metals contaminants, with a view to them being used routinely in monitoring and risk 
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assessment of waters and soils. It is necessary to test out various binding phases and 

colour reagents with DGT devices that may perform differently in P and metals 

measurements. Once a suitable binding phase has been found, DGT is able to assess P 

and metals quantitatively by colour response with or without colour reagents. Instead 

of analysis by ICP-MS or other complicated instruments in the laboratory, the 

concentration of P and metals were determined by a flat-bed scanner directly.    

In order to implement a rapid and cost-effective monitoring of P and metals in water, 

this technique was used to determine if the concentration of P and metals reach the safe 

concentration level of regulations and standards set by different countries. As well as 

using a scanner, visual inspection was also considered in order to achieve easier and 

quicker monitoring.  

  In addition to developing DGT combined with the colorimetric method, this study 

also investigated the feasibility of using DGT to measure in situ labile metal 

concentration and toxicity simultaneously. A novel Bio-DGT has been developed by 

immobilising bioreporters in the diffusive gel layer of the DGT devices, various 

conditions of bioreporter immobilisation and viability, and environmental factors need 

to be tested in order to ensure the stable performance of Bio-DGT.    

The newly developed rapid screen technique was applied in waters and soils for the 

chemical monitoring by combining DGT and colorimetry, in situ in different 

environmental conditions of waters and soils. As the research developed, it became 

clear that the rapid screening devices based on the DGT technique for assessing P and 
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metal concentrations qualitatively and quantitatively is a reliable tool in environmental 

monitoring.  

 

1.3 Structure of the Thesis  

The thesis has seven chapters. 

Chapter 1 is an introduction to the thesis. It sets out the rationale of the study and the 

research aim. The serious problem of environmental pollution is introduced briefly. The 

harmful effects of environmental pollution have received more attention in the last few 

decades, and actions and responses have been undertaken around the world. The 

introductory chapter describes the importance of using suitable monitoring methods in 

order to prevent environmental pollution.    

  Chapter 2 presents the background literature, including a brief review of the 

environmental role of trace metals and P, their toxicity in high concentration, existing 

in situ monitoring techniques and rapid screening techniques in environmental 

monitoring, DGT theory and application, development in colorimetric DGT, and 

methodological needs for risk assessment. 

  In Chapter 3, a rapid screening and detection technique for phosphorus based on well-

tested Metsorb DGT devices and a colour imaging method using the conventional 

molybdenum blue has been developed and fully tested under different conditions. 

Precise interpretation and quantification of the phosphorus concentrations are carried 

out in this chapter. Comparison between the pervious DGT method, using the similar 
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scanning technique and this rapid detection technique, has been undertaken. It 

demonstrated how this technique was simplified and modified. Finally, the developed 

approach was applied to the in situ monitoring of P in natural water.  

  Chapter 4 demonstrates a rapid screening device based on the DGT technique for 

assessing metal concentration qualitatively and quantitatively. The potential of using 

Chelex DGT and high resolution Computer Imaging Densitometry (CID) to make a 

rapid estimation of metal concentrations in waters was investigated. Since a distinctive 

colour will appear on the binding gel when the amount of metals (copper, nickel and 

cobalt) accumulate at a certain level, no further colour reagent was involved in this study. 

The performance of the technique was tested in different conditions. A DGT 

deployment guide list was formulated to determine if the concentration of metals has 

exceeded the Maximum Contaminant Level, based on the regulation standards in 

different countries and regions. Additionally, a rapid screening technique for Cr (VI) 

using DGT and a high resolution CID base on the surface colouration of the N-Methyl-

D-glucamine (NMDG) binding gel reacting with the diphenylcarbazide in an acidic 

solution was developed. 

In Chapter 5, a novel approach with biological material incorporated in the DGT 

(Bio-DGT) was developed to measure in situ labile metal concentrations and toxicity 

simultaneously. Whole-cell toxicity bioreporter ADPWH_recA was immobilised in the 

diffusive gel. The performance of the technique under different environmental 

conditions was fully tested in laboratory solutions and in soil samples collected from 
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China. 

Chapter 6 focuses on the application of the rapid screening technique in field sites. 

Different types of DGT were applied in five regions of China. The field applicability of 

the DGT with colorimetry approach for measuring P and metals was investigated. The 

efficiency and accuracy of DGT devices in distinguishing different degrees and types 

of contamination in various water systems was also evaluated.  

  The work is concluded in the final chapter (chapter 7) by summarising major findings 

from each chapter. The limitations of the study are discussed, and the potential solutions 

are recommended along with the avenues for further research.    
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Chapter 2. Literature Review  

 

2.1 Heavy Metals in Water and Soil 

  Heavy metals exist in waters and soils naturally. However, they can be toxic or 

poisonous at high concentrations. The main threats heavy metals pose to human health 

are associated with exposure to lead, cadmium, mercury, and arsenic(Jarup, 2003). 

Some metals may be beneficial to living organisms in trace amounts, since they are used 

to stabilize protein structures, facilitate electron transfer reactions and catalyze 

enzymatic reactions. For example, copper, zinc, and iron are all essential constituents 

of the catalytic sites of several enzymes (Ash and Stone, 2003). Other metals, however, 

such as lead, mercury, and cadmium may displace or take the place of an essential trace 

metal, and interfere with the proper functioning of enzymes and associated cofactors. 

Heavy metals are bioaccumulative, which makes them hazardous to biotic systems. 

Heavy metals are widely used in electronics, machines and other artefacts of everyday 

life. Other high-tech applications also rely on their various chemical properties to 

function. As a result, they are able to enter into aquatic systems and food chains from 

numerous anthropogenic sources as well as from the natural geochemical weathering of 

soil and rocks.  

Metals are usually present at low or very low concentrations in the oceans, however, 

in coastal waters, metals can occur at much higher concentrations, probably due to 

inputs from river systems (Torres et al., 2008). Mining wastes, landfill leaches, civil 
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wastewater, urban runoff and industrial wastewaters are the main sources of 

contamination in water (Gautam et al., 2015). With an increasing demand for new and 

better technologies and increasing industrial development, the metal pollution as a result 

of waste disposal is becoming more and more serious. Many aquatic environments are 

confronted with metal concentrations that exceed the water quality standards formulated 

to protect the environment, animals and human beings. For example, New Caledonia is 

among the five major nickel producers in the world and extended portions of its fringing 

reefs are impacted by extensive nickel mining activities (Wantiez, 2008), which 

contribute primarily to metal discharges (Fichez et al., 2005, Hédouin et al., 2006, 

Metian et al., 2008). Among these metals, cobalt is associated with nickel in the laterites 

of the mining sites and the most recent mines in New Caledonia, and throughout the 

world, launch the mining of cobalt, as a by-product of the treatment of nickel.  

  The heavy metal pollution of aquatic environments has attracted much attention 

due to its environmental toxicity, abundance and persistence (Islam et al., 2015), 

Generally, heavily polluted aquatic sites are impoverished or completed denuded in 

flora and fauna, thus the pollution adversely affects aquatic biodiversity(Kelly et al., 

2012). Some heavy metals were used as a pesticide such as copper sulphate which can 

kill bacteria, algae, molluscs, and fungi that demonstrated it is highly toxic to plants and 

aquatic organisms (Rojik et al., 1983, Domogalla, 1956). The toxicity of copper 

sulphate relies on the copper content. In fact, copper is one of the most toxic metals to 

aquatic organisms and ecosystems (Solomon, 2009)   
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Bioaccumulation of heavy metals in tissues of animals has received considerable 

attention because of the lethal and sublethal effects of such accumulation(Burger et al., 

1994). Birds have treated as early warnings for a Varity of environmental contaminants 

such as DDT, pesticides and heavy metals. Their feathers are ideal for assessment of 

heavy metals because they accumulate certain heavy metals in proportion to blood 

levels at the time of feather formation (Burger, 1993). Except harmful effect on fauna, 

the heavy metals in polluted soil could replace the essential nutrients at cation exchange 

sites of plants (Chibuike and Obiora, 2014). The hazard of heavy metals could destruct 

the microorganisms, which was the crucial layers of ecosystem and causing more 

negative effect on the upper layers (Ramakrishnan et al., 2011, Giller et al., 1998).  

In addition, heavy metals and metalloids may accumulate in soils through emissions 

from the rapidly expanding industrial areas; mine tailings; disposal of high metal wastes; 

use of leaded gasoline and paints; application of fertilisers and animal manures; sewage 

sludge; pesticides; wastewater irrigation; coal combustion residues; spillage of 

petrochemicals; and atmospheric deposition(Chen et al., 2005, Zhang et al., 2010). For 

example, Democratic Republic of Congo (DRC) produces about half of the world’s 

cobalt and is Africa’s largest copper producer. Water in DRC is unfit for human 

consumption and agriculture because soil and water in the immediate vicinity of the 

mines are polluted by discharges of wastewater. Precious research has shown that 

people living close to DRC’s mines had 43 times the level of cobalt in their urine than 

is considered normal (Fleur et al., 2016). 
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Soils may become contaminated by the accumulation of heavy metals and metalloids 

through emissions from the rapidly expanding industrial areas, mine tailings, disposal 

of high metal wastes, leaded gasoline and paints, land application of fertilizers, animal 

manures, sewage sludge, pesticides, wastewater irrigation, coal combustion residues, 

spillage of petrochemicals, and atmospheric deposition (Khan et al., 2008, Zhang et al., 

2010) .  

In recent years, heavy metal contamination in China's urban and agricultural soils is 

rapidly getting worse with the development of industrial activities. According to 

Bulletin on National Survey of Soil Contamination, jointly issued by the Ministry of 

Environmental Protection and the Ministry of Land Resources nearly 4 million of 

hectares of arable lands have been contaminated moderately or severely, which accounts 

for about 2.9% of China’s arable lands. 16.1% of soils were exceeds environmental 

standard. Most of soil contamination is inorganic (82.8%), seconded by organic, and the 

third is complex contamination. The main contaminants in arable land soil are Cd, Ni, 

Cu, As, Hg, Pb, DDT and PAHs. (Su et al., 2014b).  

  When the concentration of metals is higher than the required range, even essential 

trace elements might have a harmful effect on the human body. For example, high-level 

exposure to copper dust can cause nose, eyes and mouth irritation and may cause nausea 

and diarrhoea. Continuous exposure to such conditions may result in kidney damage 

and even death. Copper is also toxic to various aquatic living beings, even at very low 

concentrations. Another essential element, zinc, can cause nausea and vomiting in 



13 

 

children when they are exposed to it in large amounts. In higher concentrations, zinc 

may cause anaemia and cholesterol problems in human beings (Gautam et al., 2015).  

  There are many other toxic effects caused by heavy metals. The diseases named Itai-

itai and Minamata, which are found in Japan, were caused by relatively low 

concentrations of Cadmium and Mercury. Chromium, commonly used in leather and 

tanning industries as well as paper and rubber manufacturing applications, is also toxic 

and exposure to it adversely affects the central nervous system and may result in liver 

and kidney damage or skin ulceration (Gautam et al., 2015). Extensive use of chromium 

compounds in industrial applications has created a dramatic increase in the amount of 

wastewater discharged into aquatic systems, which contains toxic chromium species.  

 

2.2 Phosphorus in Water and Soil 

Phosphorus (P) is a key element in biological reactions. Consequently, changes in 

phosphorus availability could have great influences on the function and structure of an 

ecosystem(Tiessen, 2001). Phosphorus moves in a cycle through rocks, water, soil, 

sediments and organisms. Unlike many other biogeochemical cycles, the atmosphere 

does not play a significant role in the movements of phosphorus because phosphorus 

and phosphorus-based compounds are usually solid within the typical temperature and 

pressure ranges found on Earth. Most naturally occurring phosphorus takes the form of 

phosphate (PO4). Phosphates are a component of DNA, RNA, ATP and the 

phospholipids, which makes phosphorus an essential element for life. A reduced 
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concentration of phosphate in the blood serum is a disorder known as 

hypophosphatemia. Phosphorus deficiency may cause bone diseases such as rickets in 

children and osteomalacia in adults. An improper balance of phosphorus and calcium 

may cause osteoporosis (Darshana, 2010).  

  Phosphorus is also an essential element in modern agriculture on account of its 

importance to plant growth and seed production (USDO, 2011). In Agriculture, the most 

common use of P is as a fertiliser for crops. The appropriate use of phosphorus leads to 

higher grain production, improved crop quality, greater stalk strength, increased root 

growth and earlier crop maturity (Douglas and Philip). In the last five years over 40 

million tonnes of phosphorus fertiliser has been used yearly to support crop production 

systems all over the world (FAO, 2015). As a result, Phosphorus cannot be substituted 

by any other element in these biological functions. It has also been used extensively in 

fertilisers to meet food production requirements, which continue to increase due to the 

tremendous growth of the global population. Early sources of P used in agricultural 

production were organic materials. In the past, bones and guano (seabird droppings) 

were the most important sources of fertiliser within the commercial industry (Jacob, 

1964). Since then, the use of phosphorous in soils for crop production has become 

increasingly widespread. Now, phosphate rock is the main raw material used in the 

production of practically all phosphate fertilisers in modern agriculture (Sims and 

Sharpley, 2005). 

 It takes about one tonne of phosphate to produce 130 tonnes of grain, although this 
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figure is highly variable depending on soil conditions, farm history, crop type, and 

fertilising efficiency (Vaccari, 2009). This figure, coupled with the importance of 

phosphorus as an agricultural resource, highlights the immense pressure the world’s 

mineral reserves are placed under. About two-thirds of the world’s phosphate rock is 

mined by only three countries: China, the United States and Morocco. China imposed 

a 135% export tariff.in 2008, and the reserves of the United States are expected to 

deplete within the next 25 years (Vaccari, 2009). Both countries are two of the largest 

consumers of phosphorus. The largest reserves of phosphorus are controlled by 

Morocco, a country that, contrary to the United Nations resolutions, annexed the 

Western Sahara in the 1970s to gain control of these reserves. Since the global 

production rate of phosphate rock is expected to increase incrementally from 223 

million tonnes in 2015 to 255 million tonnes in 2019 (Stephen, 2016) and the U.S. 

Geological Survey (USGS) estimates global phosphate reserves at 71,000Mt (Jasinski, 

2012), it is estimated that current production levels will exhaust these reserves in less 

than 80 years. 

In natural environments, phosphorus is mainly present in its particulate form as a 

mineral with low solubility. Many aquatic ecosystems are controlled by a restricted 

availability of phosphorus, which represents one important factor for high biodiversity. 

In upland waters, where there is limited P input from diffuse or point discharge, the 

concentration of soluble reactive P (SRP) can be less than 10 μg L-1 which restricts 

biological productivity (Mainstone and Parr, 2002). However, the anthropogenic 
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discharge of phosphorus into fresh water bodies (lakes, rivers, and reservoirs) and 

coastal waters increases the level of nutrients in these waters, which has caused 

undesirable changes in their ecology and the balance of species (plants, fish, etc.). For 

example, P concentration can dramatically increase the productivity of phytoplanktonic 

algae. The decaying algae uses up vast quantities of dissolved oxygen, which affects 

fish populations and can produce low-oxygen dead zones (Mark, 2009). This 

phenomenon results in a dense growth of algae, which is known as eutrophication. The 

main anthropogenic sources of phosphorus within the aquatic environment are 

municipal and industrial waste waters, drainage from agricultural land, excreta from 

livestock, and diffuse urban drainage (Helmut Kroiss, 2011). Most particularly, human 

excreta, phosphorus containing household detergents, and some industrial and trade 

effluents constitute the main sources of phosphorus contamination in wastewater. Run-

off P from over-fertilised and manure-rich farmland is the main source of P 

contamination in water bodies (Chen et al., 2014, Sharpley et al., 2003). It is also 

important to note that excessive application of P-fertiliser is a key contributor to the 

major phosphorus pollution of agriculture soil. As well as undermining farmers’ ability 

to produce sustainable food and energy from their fields, the use of fertiliser contributes 

towards air pollution, soil acidification and degradation, water eutrophication, and crop 

yield reduction (Carpenter, 2008). Since the early 1980s, pH has declined from 0.2 to 

0.8 across China, mostly due to the overuse of fertiliser (Guo et al., 2010).   

Thus, although some of these metals are essential for life, high concentrations of 
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heavy metals and phosphates in water or soil can cause serious environmental problems 

if their levels exceed the admissible range. Consequently, heavy metal and phosphate 

concentrations need to be monitored for assessment and remediation purposes.     

    

2.3 Importance of Environmental Monitoring 

Water pollution is one of the major environmental problems in today’s world. It 

poses a threat to human welfare and obstructs the sustainable development of both 

society and economy. According to the United Nations World Water Assessment 

Programme, every day, 2 million tonnes of sewage, industrial and, agricultural waste 

are discharged into the world’s water (UN, 2010). In addition, unsafe or inadequate 

water, sanitation, and hygiene cause approximately 3.1% of all deaths and 3.7% of 

DALYs (disability adjusted life years) worldwide (WHO, 2002). In 2012, over 800,000 

deaths worldwide were caused by contaminated drinking water, inadequate hand-

washing facilities, and inappropriate sanitation services. In the seas and oceans, there is 

a growing number of de-oxygenated dead zones caused by the discharge of untreated 

wastewater. They affect an estimated 245,000 km2 of marine ecosystems, impact 

fisheries, peoples’ livelihoods, and various food chains (UN, 2017).  

Water pollution is not the only threat to the environment. Soil, food, and water 

contamination is caused by the toxic chemicals used in and created by agriculture, as 

well as ever increasing amounts of domestic and industrial solid waste. According to 

the EU, the most frequent contaminants of Europe are heavy metals and mineral oil, 
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and it is estimated that approximately 3 million sites have been affected by activities 

that can pollute the soil (Science  Communication  Unit, 2013). Of these sites, 

approximately 250,000 are in need of urgent remediation. More seriously, arable land 

is turning to desert and becoming non-arable at ever-increasing rates. This is due, in 

part, to global warming and the use of agricultural fertilisers and pesticides. In 1990s, 

the United Nations Food and Agricultural Organisation states that 75 billion tonnes of 

fertile soil, the equivalent of nearly 10 million hectares of arable land, is lost to erosion, 

waterlogging and salination every year. Another 20 million hectares is abandoned 

because its soil quality has been degraded (Pimentel and Burgess, 2013). A two-year 

study further reports that if the current rate of soil loss in China continues over the next 

50 years, food production will decrease by 40% (Jie, 2010) . However, the chemical 

pollution of soil is an insidious risk because it is harder to observe than many other soil 

degradation processes, such as those caused by mining and industrial activity or by 

sewer and waste mismanagement. The hazards posed by the chemical pollution of soil 

depend on how soil’s properties affect the behaviour of the chemicals and the speed at 

which they enter ecosystems. 

 The existence of heavy metals, chemical toxins, and organic or inorganic pollutants 

in water and soil needs to be monitored constantly to protect the population’s supply of 

clean drinking water and control the impact of these pollutants on the environment and 

the ecosystem (Wang, 2013). Here, ‘monitoring’ is defined as a routine assessment of 

environmental quality, which involves using a sound experimental design to measure 
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causes (pollutants) and effects (ecosystem impact) over a number of years (Karydis, 

2013).  

 Since a number of international conventions, treaties and laws were passed to protect 

and govern regional seas and coastal areas, monitoring has become a powerful and 

decisive tool in environmental policy (DiMento, 2012). Laws and regulations such as 

the Urban Waste Water Treatment Directive (C.E.C., 1991) and the Water Framework 

Directive (C.E.C, 2002) have proved successful in protecting the aquatic environment 

largely as a result of good monitoring systems. There is a wide variety of methods that 

can be used to monitor water quality and identify a range of different water pollutants 

in the aquatic environment. Accurate, intensive and long-term data is key to assessing 

the circumstances of the world’s water resources and creating a fully functioning and 

successful preservation or renovation program. 

Pollutants found in soil are generally more difficult to measure than those found in 

water because of the way that the contaminants interact with soil particles (Aelion, 

2004). The best techniques, generally speaking, are those that are inexpensive and 

relatively easy to carry out using field-sampling instruments. However, the accuracy 

and reliability of the measurements by using those instruments may far less than using 

more difficult, time consuming and expensive techniques. Conventional methods, such 

as the extraction methods used in laboratories, often involve time-consuming sample 

preparations, which are no longer attractive for monitoring of contaminated soils in situ. 

Some fast and novel methods have been investigated, such as the infrared reflectance 
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spectroscopy, and X-ray fluorescence, which was used to estimate heavy metal pollution 

in soils (dos Anjos et al., 2000, Shi et al., 2014). 

 

2.4 Importance of in situ Monitoring  

Over years, a variety of monitoring methods and techniques have been developed to 

meet the problem of heavy metals and P pollutions assessment. Traditionally, water-

sampling techniques are mostly based on taking water samples away from their 

environment and into a laboratory for analysis. Since this technique can only measure 

the concentration of contaminants in the sampled water at the time of analysis, use of 

this approach is not suitable for monitoring purpose owing to temporal and spatial 

restrictions. For example, the levels of heavy metal or phosphorus found in water bodies 

will fluctuate temporally depending on natural occurrences, in response to human 

activity, or natural changes within the population of aquatic plants and animals 

(Goldman, 1983). Increasing sampling frequency is not always feasible because of its 

high cost and impracticality when accessing remote sites. Furthermore, the quality of 

samples may be compromised by inaccurate manual operation caused by holding the 

samples for too long before analysis or avoidable wastage in transportation. These 

operational mistakes may result in changes to chemical speciation. If only total 

concentrations are required, speciation changes are not a big issue. However, further 

information on chemical speciation is required, as it is known to have an impact on 

mobility, bioavailability and related eco-toxicity of elements (Yuan et al., 2011).  
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  To overcome the shortcomings mentioned above, there has been a recent increase in 

the number of monitoring programs developed for in situ measurement. Many new in 

situ hydrological technologies have been developed that can be interfaced with cost-

effective, real-time monitoring networks. These techniques use a range of deployment 

times and allow for constant monitoring so that changes and trends of metals and 

nutrients can be detected rapidly (Divis et al., 2005, Glasgow et al., 2004). Compared 

with the traditional monitoring techniques, this approach has several advantages. 

Streamlining the data collection process conceivably reduces human errors and working 

time, decreasing the total cost of data collection, and increasing the quantity and quality 

of temporal and spatial scales. Another major advantage of in situ measurement is its 

ability to measure any slight fluctuations caused by the dynamic processes, which 

contribute and sustain the concentrations of heavy metals and phosphorus. Various in 

situ sensors have been conspicuous in real-time monitoring owing to their splendid 

properties and rapid development in last decades. For example, Electrochemical-based 

instruments are among the most widely used devices for in situ chemical analysis and 

include conductometric, potentiometric and Amperometric/Voltammetric electrode 

systems (Denuault, 2009). The Voltammetric In-situ Profiling System (VIP System) was 

developed for continuous, real-time monitoring of trace elements in fresh and seawater 

at up to 500 meters depth. The VIP System allows one to perform direct in-situ 

measurement of the mobile fractions of CuII, PbII, CdII and ZnII as well as MnII and FeII 

using either Square Wave Anodic Stripping Voltammetry (SWASV) or Square Wave 
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Cathodic Sweep Voltammetry (SWCSV) (Howell et al., 2003, Tercier-Waeber and 

Taillefert, 2008). In addition, a high resolution in situ UV spectrophotometer was used 

to measure nitrate, bisulphite, and bromine in the sea (since these species have 

distinctive UV absorption spectra) and can be deployed for over three months at the 

depths of 2km without any degradation of performance due to biofouling or 

instrumental drift (Johnson and Coletti, 2002, Johnson et al., 2006). Moreover, there are 

plenty of electrochemical sensing techniques that have been investigated to determine 

phosphate in aqueous solutions as well (Villalba et al., 2009, Warwick et al., 2014). 

Additionally, a Molecularly Imprinted Polymer (MIP) based receptor, which can 

selectively bind phosphate, has been developed (Warwick et al., 2014) to overcome the 

poor selectivity of most sensors when measuring the range of P concentrations in 

wastewater (0.1-15mg L-1) (Modi et al., 2011, Tafesse and Enemchukwu, 2011, Kumar 

et al., 2010).  

Other than chemical monitoring, biomonitoring has become a beneficial and widely 

used technique that is based on the sensitivity of organisms to subtle currents or chronic 

exposure to heavy metals. The deleterious effects of altered biochemical and/or 

physiological states of organisms are reflected faster and at lower levels. These 

techniques employ biomonitoring or bioindicators with attractive advantages compared 

to traditional methods (Zhou et al., 2008, Sures, 2004, Nachev et al., 2010). Aquatic 

insects and other benthic invertebrates are the most widely used organisms in freshwater 

biomonitoring of human impact. For instance, talitrus saltators and barnacles are used 
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as biomonitors to detect trace metals (Cd, Hg, Cr, Cu, Fe, Mn and Zn) in coastal waters 

(Fialkowski et al., 2009, Kuklina et al., 2013). Fish, crayfish, and mussels are also been 

used as bioindicators to monitor water quality (Brumbaugh et al., 2005, Kuklina et al., 

2013). There is reported use of plants for monitoring trace metals and inorganic 

substances as well (Whitton and Kelly, 1995, Demars and Thiebaut, 2008).  There are 

a number of factors can influence the results of these kinds of tests, including the 

metabolism, depuration rates, excretion, stress, viability, and condition of the test 

organism. Biomonitoring is limited by confounding factors that are not related to 

pollution and these should be carefully considered when interpreting biomarker data 

(van der Oost et al., 2003). Furthermore, the extraction of analytes from the tissue of 

animals prior to instrumental analysis is complex (Vrana et al., 2005). 

In the future, in situ methods are expected to be taken for environmental monitoring and 

thus improve scientific understanding of ecosystems and protect the environment.  

     

2.5 Passive Sampling 

A critical part of the monitoring process is collecting the representative samples of 

the environment to ensure the accuracy of the monitoring and to quantify the 

contaminations (Strobl and Robillard, 2008). Heretofore, many alternatives have 

been sought to overcome some of the difficulties of on-site monitoring. Of these, 

passive sampling methods have shown much promise as tools for measuring aqueous 

concentrations of a wide range of priority pollutants. 
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2.5.1 The Principle of Passive Sampler 

 Passive sampling is based on the unassisted molecular diffusion of sample matrix  

(analytes) through a diffusive surface to a receiving phase (Greenwood et al., 2007). 

After sampling, the adsorbed analytes are desorbed from the adsorbent by a solvent 

or through thermal desorption. Put simply, a passive sampling device is placed in the 

environment and accumulates analytes based on the interaction of the bulk solution 

with the collection medium of the device. Unlike active sampling, passive samplers 

require no electricity, have no moving parts and are simple to use.  

Despite its relatively long history (over 20 years), passive sampling is still 

developing and in the last few years, remarkable progress has been made in passive 

device design, calibration methods, and quality commitment. Publications on passive 

sampling have grown substantially since the 1990s, with over 200 journal 

publications a year as of 2008 (Zabiegala et al., 2010). There are two general 

sampling regimes that determine analyte uptake in passive samplers, and they are the 

equilibrium-base and kinetic-base samplers. The sampling process is similar for both 

types of samplers (Figure 2.1) (Mayer et al., 2003, Vrana et al., 2005).  
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Figure 2.1 Concentration of passive samplers in two sampling regimes. 

Once they are exposed to the medium being examined, they collect the analyte 

molecules that reach the collecting medium by diffusion through a static layer of the 

examined medium, which is contained in the well-defined openings of the sampler, 

or by penetrating a nonporous membrane. In both cases, the driving force for the 

transport is the difference in chemical potential of the analyte on both sides of the 

barrier. Ultimately equilibrium is obtained between the collecting medium and the 

bulk solution, and then the collecting medium is removed and analysed. Equilibrium 

passive sampling does not provide quantitative information on the concentrations of 

the pollutants in the environment, but it indicates the level of contamination in the 

monitored compartment of the environment. The first passive sampling methods 

were created for aquatic systems in 1974 and used to monitor the concentrations of 
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dissolved trace metals in natural water by measuring equilibrium concentrations in 

the water enclosed by the dialysis membranes (Beneš and Steinnes, 1974). Since this 

experiment, Semipermeable Membrane Devices (SPMD) have become the most 

frequently used equilibrium passive sampler in water quality control. In 1990 it was 

reported that SPMD were able to indicate the bioavailability of organic pollutants 

(Huckins et al., 1990). It also has been applied in soils to determine the relationship 

between the partial pressure and mobility for monoaromatic and polyaromatic 

pollutions (Hayes and Soni, 2006). A screening methodology based on SPMD to 

determine the bioavailable petroleum hydrocarbons (BPHs) has many benefits, 

including a reduced reliance on the use of live test organisms and reduced cost of 

estimating the bioavailability of non-polar organic contaminants in soils (Lanno et 

al., 2000)  

On the other hand, kinetic-based samplers do not reach equilibrium; instead, they 

assume that the sampling rate maintains constant throughout the period of sampling 

and the relationship between the concentration of target analytes in the sample matrix 

and the amount of analytes extracted is linear. Under the kinetic regime, a passive 

sampler provides the Time-weighted Average concentration (TWA) of the analyte in 

the sampled environment over a known period of time (Zabiegala et al., 2010). A 

crucial advantage of kinetic based passive sampling is the use of an in situ pre-

concentration of the analyte, which improves the detection limit of the method used 

for analysis. In addition, kinetic-based samplers can response to pollution from 



27 

 

occasional events normally not detected with spot sampling. This characteristic of 

the method is a valid improvement to the accuracy of monitoring areas where the 

concentration of contaminants in water are variable (Vrana et al., 2005). When a 

receiving phase, such as a chelating resin, which has a high affinity for the species 

measurement, was added to equilibrium dialysis, the diffusion rate is theoretically 

directly proportional to the concentration of metals in the water being sampled (Beneš, 

1980). If the receiving phase is selected properly, the bioavailable metal species can 

be separated. In these circumstances, diffusion through the dialysis membrane may 

imitate metal transport processes through biological barriers. Chelex 100, which is 

typically used as the chelating resin, showed an efficient, measurable uptake of 

soluble heavy metal at very low contamination concentrations. Besides, Supported 

Liquid Membrane devices (SLM), chemcatchers and Gradient in Thin-film (DGT) 

devices are the kinetic-based passive samplers that are most frequently used in water 

monitoring for inorganic compounds. 

 

2.5.2 Frequently-used Passive Samplers for Inorganic Pollutants 

  Liquid Membranes (LMs) is a sample pre-treatment technique based on Liquid-

Liquid Extraction (LLE) and Solid-Phase Extraction (SPE) techniques. LMs borrow 

from these two techniques for their abilities to perform analyte enrichment and sample-

matrix separation compared to the two former techniques, LMs have multiple 

advantages such as lower sample volumes, decreased cost and time of analysis, higher 
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analyte-enrichment factors and selectivity (Jonsson and Mathiasson, 2001, Keith et al., 

2007). LMs are generally classified into three basic types: bulk LMs (BLMs); emulsion 

LMs (ELMs); and supported LMs (SLMs) (Lopez-Lopez et al., 2010). The SLM 

process was a promising technology since it possesses many attractive features. It has 

high selectivity and combines extraction and stripping into one single stage. The SLM 

is a non-dispersive type of LM, whose membrane phase is immobilized in the pores of 

a porous polymer. The polymeric support, which usually consists of microporous 

hydrophobic polymers, does not play an active role in the separation, but provides a 

structural support for the membrane phase (organic extractants), which is the active 

component in the separation (Parhi, 2013). It is a promising separation and pre-

concentration technique that is well suited for trace metal speciation in natural water 

(Ndungu et al., 2005). SLM devices have been used to measure metals (Zn, Ni, Co, Cd, 

Mn, Cu and Pb) in natural waters. Effects of turbulence, pH and concentration variations 

on the performance of SLM devices have been reported (Parthasarathy et al., 1999, 

Slaveykova, 2004, Parthasarathy et al., 2004). The Permeation Liquid Membrane 

technique (PLM), which is based on the carrier-mediated transport of metals across a 

hydrophobic membrane and developed to further improve SLMs, is used to determine 

trace metal speciation and concentrations (Slaveykova, 2004). However, its stability is 

one of the biggest limitation of SLM. It also suffer from the liquid phase evaporation 

(Dżygiel and Wieczorek, 2010). 

Another passive sampler, Chemcatcher, followed the principle and design of the DGT 
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(diffusive gradient in thin-films) and developed in the early 2000. It comprises a 

polypropylene body with a receiving phase (47 mm diameter disk), a cellulose acetate 

diffusion limiting membrane, and a protective, open mesh. A chelating resin or bound 

chromatographic stationary phase  (e.g., C8 or C18) is used to monitor metal species in 

aquatic environments (Persson et al., 2001). The working principle of the chemcatcher 

is based on Fick’s first law of diffusion: the sorbent is supposed to be sufficiently high 

to maintain a zero concentration at the surface of the receiving phase. 

m = −𝐷
𝑑𝐶

𝑑𝑥
                              (2.1) 

Where m is the mass flux (g cm-2s-1), D is the diffusion coefficient (cm2s-1), C is the 

concentration of the compound (g cm-3), x is the distance in the axial direction (cm), 

and dC/dx is the concentration gradient across the diffusion path x (cm). 

    It follows that mass transfer across an area can be described by equation 2.2. 

𝑀̇ ≡
𝑑𝑀

dt
= −D

dC

𝑑𝑥
𝐴                        (2.2) 

Where 𝑀̇ is the mass flow (g s-1), A is the cross-sectional area (cm2) of diffusion, and 

M is the mass (g). The chemcatcher has been used to monitor the time-averaged 

concentrations of trace metals  (Pb, Cd, Cu, Hg etc.) and inorganic compounds like 

nitrate (NO3
-) and phosphate (HPO42-) in a wide range of aquatic environments, such 

as storm water and wastewater (Aguilar-Martinez et al., 2008, Sanchez-Bayo et al., 

2013). However, this technique is relatively sensitive to variation in water turbulence 

which may cause inaccuracy in water monitoring. The physical conformation (cavity) 

and relatively thin diffusion membrane of the latter suggest that changes in the thickness 
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of the diffusive boundary layer ensuing from variations in turbulence may result in 

significant changes in uptake rates (Allan et al., 2008, Allan et al., 2007). 

 Of these techniques, DGTs are one of the most flexible and accurate for aqueous 

metal sampling (Sigg et al., 2006).     

                

2.6 DGT Application 

2.6.1 Principles of DGT  

Sampling for organic compounds in aquatic environments gained more attention in 

the late 1990s when there was an increasing number of publications on the subject. The 

application of passive samplers to inorganic species has been slower, but the 

development of Diffusive Gradients in Thin-film (DGT) samplers in 1994 accelerated 

scientific interest in the passive sampling of inorganic chemicals, and since then there 

has been widespread interest in such monitoring techniques. The DGT technique 

provides in situ quantitative speciation measurements in waters, soils, and sediments. 

  Typically, the DGT device comprises a filter membrane, a diffusive gel, and a binding 

phase, as shown in Figure 2.1. During a given time, ions are continuously accumulated 

in the DGT and a steady-state linear concentration gradient is established between the 

solution and the binding phase. This drives solutes to move from the bulk solution to an 

effective zero concentration at the interface between the diffusive gel and the binding 

phase. These three layers are then assembled into a plastic, water-sealed device 

comprised of a cap and a base, which has a 3.14 cm2 or 2.54 cm2 window that exposes 
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the filter membrane to the solution or soil. After diffusing through the filter membrane 

and the diffusive gel, the solutes irreversibly taken by the binding phase. The diffusion 

of large molecules is partly impeded by the hydrogel in DGT, but simple metal ions can 

diffuse almost freely with the molecular diffusion coefficient from solution.  

 

Figure 2.2 The DGT device consists of a base and cap, which contains the pre-filter, 

diffusive gel and binding phase. The Diffusive Boundary Layer (DBL) extends out from 

the device’s face into the bulk water where the concentration is Csol. 

  

   The DGT technique is based on Fick’s first law of diffusion. A binding agent such as 

a resin, selective to the target ions in the solution, is immobilised in a thin layer of 

hydrogel (binding-gel). It is separated from the bulk solution by an ion-permeable gel 

membrane of thickness ∆g as shown in Figure 2.2. Between the gel layer and the bulk 

solution, there is a Diffusive Boundary Layer (DBL), of thickness δ, where the transport 

of ions is solely by molecular diffusion. If δ is negligibly small compared to ∆g, the 
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flux, J, of metal ions diffusing through the gel layer to the resin can be expressed by 

equation 2.3.  

J=D
C- C'

∆g
                            (2.3) 

Where D is the diffusion coefficient in the gel, C the free concentration of a metal ion 

in bulk solution, and C′ is the free concentration of the metal ion in the binding phase. 

If the free metal ions are in rapid equilibrium with the resin, with a large binding 

constant, C′ is effectively zero providing the binding phase is not saturated. The DBL is 

a water film between the bulk solution and the DGT’s surface, where ion transfer is 

solely by diffusion. The thickness of the DBL depends on the fluid velocity and the 

shape and dimensions of the sampler. For accurate interpretations its thickness needs to 

be considered, the ∆g is effectively increased when there is an extended diffusion layer.  

  Direct measurement of the total mass accumulated in the binding phases is possible 

with techniques capable of analysing solids, such as laser ablation inductively coupled 

plasma mass spectroscopy (LA-ICP-MS), or X-ray fluorescence (XRF). Alternatively, 

metal ions in the resin layer can be eluted using a known volume of acid or base (Ve). 

The concentration of ions in the eluent, Ce, can then be measured by ICP-MS or UV-

spectrophotometry. In practice, only a fraction of the bound metal is eluted. The ratio 

of the eluted to bound metal is known as the elution factor, fe. Taking the elution factor 

into account, the accumulated mass, M, of ions in the binding phase can be calculated 

from equation 2.4 where Vg is the volume of gel in the binding phase. 

M=
Ce  (Ve +Vg)

fe
                          (2.4) 
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M can be used to calculate the flux through the known sampling area, A. 

J=
M

At
                             (2.5) 

By equating equations 2.3 and 2.5 and rearranging the solute concentration in the bulk 

solution can be obtained by equation 2.6: 

CDGT =
M∆g

DAt
                           (2.6) 

As the known value of the sampling area, A, the diffusive layer thickness, △g, and the 

relationship between M and bulk water concentration, C, is only controlled by the 

deployment time, t, and the diffusion coefficient, D, of solute in the diffusive layer. 

 

2.6.2 Application of the DGT Technique in Environmental Monitoring 

There is a need to develop new monitoring tools for the evaluation of chemicals in 

water that are able to comply with the requirements of the Water Framework Directive 

(WFD). In this sense, DGTs provide an alternative that overcomes the shortcomings of 

traditional water sampling. DGTs have been used for the evaluation of trace metals in 

rivers (Divis et al., 2007, Dragun et al., 2008),lakes (Gimpel et al., 2003), 

estuaries(Dunn et al., 2003, Wallner-Kersanach et al., 2009, Wu et al., 2011) and coastal 

waters(Schintu et al., 2008, Slaveykova et al., 2009, Schintu et al., 2010a). After a series 

of studies, it is recognized that trace metal bioavailability and toxicity depends on their 

speciation (Alfaro-De la Torre et al., 2000, Meyer, 2002, Peijnenburg and Jager, 2003). 

Therefore, the time-integrated concentration measured using DGTs refers to the labile 

metal fraction, which includes free ions, inorganic complexes, and labile organic 
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complexes (Zhang and Davison, 2000, Twiss and Moffett, 2002).The labile metal 

fraction is considered a better proxy for determining potential biological adverse effects 

than the total dissolved metal concentrations measured using spot sampling. The 

speciation of metals with the DGT device relies on two effects: the relative difference 

in diffusion coefficients, and the relative difference in affinity of the binding agent and 

the species to be characterised. It is possible to differentiate between inorganic labile 

species and organic labile species by systematically using a variety of different diffusion 

gels with different pore sizes. This results in a size-discriminating uptake, which is 

similar to voltammetry. However, the diffusion coefficients of the model species have 

to be determined individually so that accurate measurements of the concentration of 

labile species can be taken (Zhang and Davison, 2000). Over the past few years, DGTs 

are increasingly being used for the determination of metal speciation in a wide variety 

of media, such as natural waters and wastewater. According to available reports, DGTs 

were applied to a variety of labile metal fractions currently monitored in waterworks, 

such as Al，Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn (Meylan et al., 2004, Gaabass et 

al., 2009, Liu et al., 2013). Moreover, it has been reported that there is potential for 

DGTs to predict metal accumulation in organisms and their possible toxicity (Tusseau-

Vuillemin et al., 2004, Royset et al., 2005). In addition, DGTs helped select an adequate 

sampling strategy for the monitoring of transitional water bodies (Montero et al., 2012).  

DGT provide an indirect way to measure the maximum available concentration of 

pollutants in soil and water, and consequently an estimation of potential uptake by plants 
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when exposed to soil solution (Zhang et al., 1998b, Lombi et al., 2002, Zhang et al., 

2001, Degryse et al., 2009). Comparing the DGT assessed fraction (DGT estimated 

concentration, CE) with soil solution (soluble concentration, Cs) has been related to the 

resupply rate, Rdiff, which increases as the soil is able to resupply elements to the soil 

solution upon depletion (Williams et al., 2011). It is a stimulating parameter in 

agricultural soils where plants are continuously exploiting available nutrient resources 

from the soil (Menezes-Blackburn et al., 2016). Besides, compared to other techniques, 

such as soil extraction, the DGT technique was one of the most widely applicable 

methods for the assessment of heavy metal bioavailability in various soils affected by 

different sources metal pollution (Soriano-Disla et al., 2010).  

DGTs have also been used to assess phosphorus in water and soils widely. The first 

binding agent for measuring phosphorus with a DGT device was the ferrihydrite gel, 

which had a strong affinity for phosphorus and was used to measure labile phosphorus 

(Zhang et al., 1998a). Following this, a titanium dioxide gel-assembled DGT was used 

to measure phosphorus, arsenic and other metals simultaneously (Panther et al., 2010, 

Bennett et al., 2010, Panther et al., 2013). A Zr oxide gel was developed to measure 

phosphorus and inorganic arsenic with high capacities (Ding et al., 2010, Sun et al., 

2014). Since the development of a binding gel for P analyses, DGTs have been used to 

assess P levels in soils in numerous studies, and this technique has successfully 

demonstrated the effect that P fertilisers have on the yield of crops like wheat, tomato, 

and maize (McBeath et al., 2005, Mason et al., 2010, Menzies et al., 2005). Recently, 
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the DGT technique used an iron oxide based binding gel to successfully determined 

both DRP and low molecular weight organic P species such as adenosine 

monophosphate (AMP) (Mohr et al., 2015). 

  

2.7 Colourimetric Application  

In situ quantification, i.e. measurement of a response in the binding phase, would 

provide an opportunity to further simplify the passive sampling technique. For example, 

the incorporation of colourimetric reagents into the passive sampler, to permit direct 

colourimetric quantification of the adsorbed analyte, would enable in-field 

quantification of the passive samplers. In the late 1970s, Yoshimura et al. have proposed 

“ion-exchanger absorptiometry” as a way of increasing the sensitivity of colourimetric 

analyses, with the sample species being adsorbed onto a resin, and absorption 

spectrophotometry measurements made directly on the resin-bound complexes 

(Yoshimura et al., 1978). Colourimetric spot tests and semi-quantitative tests have long 

been used(Feigl and Anger, 1972), but unfortunately, many of these commercial test 

strips are effective at mg L−1 concentrations, whereas environment guidelines require 

measurements at μg L−1 concentrations (Takahashi et al., 2006). As a commercial 

example, the Merckoquant® Test measures a selection of common inorganic ions 

through the use of ‘dip sticks’, in which colour intensity is dependent on analyte 

concentration. The results can be obtained to mg L-1 levels when it is combined with a 

hand-held reflectance spectrophotometer (Wetselaar et al., 1998).   
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Combining this type of technique with the pre-concentration abilities of the DGT 

technique has the potential to improve detection limits significantly. It can also provide 

an accurate in situ analysis of time-weighted average metal concentrations, without 

further time and financial expenses of taking analyses in the laboratory. Numerous 

colour-responding metal dyes have been found and discussed (Cheng et al., 1982). DGT 

samplers enable in situ colourimetric quantification of the metal ions accumulated in 

the DGT binding phase by using resin-bound dyes that provide a metal-specific 

response. Cu(II) has been successfully determined by Methylthymol blue (MTB) and 

the immobilisation of diphenylcarbazide(DPC), both of which are widely used for the 

detection of many metal ions (McGifford et al., 2010, Feng et al., 2011). Furthermore, 

it has been reported that a combined DGT-colourtimetric DET technique has been used 

to investigate the distributions of inorganic As and Fe(II) (Bennett et al., 2012). 

Recently, a colourimetric sensor, which can eliminate the need for analytical 

instruments, has attracting a lot of attention (Wallace, 2009, Moores and Goettmann, 

2006). The development of colourimetric metal ion sensors is commonly based on 

manipulating Au NPs, which possess intrinsically strong surface plasmon resonance   

(SPR) absorptions, with extremely high extinction coefficients (108−1010 M−1 cm−1) in 

the visible wavelength range and different sensing elements such as DNA, enzymes, 

proteins (Wang and Ma, 2009). Since these colourmetric sensors require several steps 

of preparation before they can be used, the technique is complex and relatively 

expensive to undertake. Modification-free Au NP-based colourimetric sensors have 
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been developed to simplify the detection process (Nath and Chilkoti, 2004, Lee et al., 

2008). For example, a label-free alkanethiol/Au NPs-based sensor was developed for 

selective colourimetric detection of Hg, Ag, and Pb in water and soil by recording their 

UV-vis absorption spectra using a μ-Quant microplate reader (Hung et al., 2010). 

Moreover, a β-galactosidase(B-GAL)-based colourimetric paper sensor for rapid, 

selective, and sensitive detection of heavy metals has been highly discussed (Hossain 

and Brennan, 2011). This sensor is a solid-phase bioactive lab-on-paper sensor that was 

inkjet printed with sol–gel entrapped reagents to allow colourimetric visualisation of 

the enzymatic activity of B-GAL. The colour intensity of the sensing areas was 

monitored either by the naked eye, by obtaining a digital camera or by using a flat-bed 

scanner, with ImageJ software used to analyse the Jpeg images in the latter two cases. 

 

2.8 XRF and Computer Imaging Densitometry Analysis as Rapid 

Scanning Techniques 

  Traditionally, the levels of trace elements in soils and waters have been measured 

using Atomic Absorption Spectrometry (AAS), or Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS), or Inductively Coupled Plasma Optical Emission 

Spectrometer (ICP-OES) after acid digestion of the samples (Han et al., 2006, Butcher, 

2010). These methods are very sensitive and relatively accurate, nevertheless, 

hazardous water was produced, and there were significant time and high running costs, 

particularly when large numbers of samples were tested.  
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  The X-ray Fluorescence spectrometer (XRF), which is considered to be a rapid 

screening tool for locating hot spots of uncontaminated field soils and sediment, has 

attracted much more attention (McComb et al., 2014). Though XRF analysers are not 

as sensitive in detecting most and trace elements, such as ICP-OES or ICP-MS, they 

can provide non-destructive, faster, cleaner and more affordable results for a wide range 

of elements, which require limited soil sample preparation (Marina and Lopez, 2001). 

As a result, the Total Reflection X-ray Fluorescence (TXRF) has become a versatile 

tool for a fast and simple screening of heavy metals and trace elements in contaminated 

water, soil, and sediment samples (Stosnach, 2005). Good correlations between the 

certified and measured values were achieved for Mg, S, Cl, K, Ca, V, Cr, Mn, Co, Ni, 

Cu, As, Se, Br, Rb, Sr, Ba, Pb in water. In addition, the XRF technique was used to 

determine the average concentrations of toxic metals in the region, and the associations 

between different toxic elements and their spatial distribution (Gowd et al., 2010). It 

has also been reported that this technique is a rapid, safe and accurate procedure for the 

simultaneous, non-consumptive analysis of Si and phosphorus in as little as 0.1 g dried 

and ground plant material using a portable X-ray Fluorescence Spectrometer (P-XRF) 

(Reidinger et al., 2012). Apart from the advantages of XRF mentioned above, the P-

XRF was able to analyse smaller amounts of plant material, as well as being very 

compact and easy to store. The P-XRF was a particularly valuable instrument for many 

laboratories because of its ability to accurately analyse elemental levels in soil as well 

as plants, both in situ and in vitro. However, XRF analyses cannot distinguish ions of 
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the same element in different valence states. In practice, most commercially available 

instruments are very limited in their ability to precisely and accurately measure the 

abundances of elements with Z<11 in most natural earth materials (Wirth, 2017).  

In addition to the laboratory instruments, a conventional flat-bed scanner was used in 

a rapid scanning technique to determine the concentration of analyte related to the 

colour intensity, such as the B-GAL-based colourimetric paper sensor mentioned above. 

The computer-imaging system used to analyse the colour ‘density’ was termed 

‘Computer Imaging Densitometry’ (Teasdale et al., 1999). ‘Density’, in this case, refers 

to the amount of ‘colour’ in a system, for example in a greyscale range, white is 

considered as no density and black was maximum density. The inverse of this concept 

is luminosity, the quantifying value for CID work, where a white sample provides 

maximum luminosity. A desktop scanner was first used to quantify the colour in the 

National Institute of Health (NIH) Image by using the luminosity value obtained when 

the image was examined by the computer-imaging system. Following this, Shishkin and 

co-worker took solid-phase colourimetric analysis a step further by investigating the 

possibility of using a desktop scanner and digital processing software to quantify 

coloured substances adsorbed on polyurethane foam (Shishkin et al., 2004). In the past 

few decades, the conventional flat-bed scanner was combined with readily available 

image manipulation software to provide a simple, flexible, and effective way to analyse 

colour intensity (Adu et al., 2014, Göröcs and Ozcan, 2014). In a similar manner, 

measuring dissolved sulphide concentrations quickly has been achieved using a grey-
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scale measurement of the AgS formed by an AgI impregnated DGT sampler (Teasdale 

et al., 1999, Naylor et al., 2004). This has recently been extended to measuring sulphide 

and Fe (II) using colourimetric techniques, with the colour being quantified using a 

conventional flat-bed scanner and image processing software (Jezequel et al., 2007). 

The DGT technique also successfully determined the accumulated mass of labile 

phosphorus in sediments and soils by measuring the greyscale intensity on the gel 

surface using CID (Ding et al., 2013).   

 

2.9 Summary 

The importance of in situ monitoring and passive sampling was demonstrated in this 

review. A variety of methods and techniques have been discussed for monitoring heavy 

metals and phosphorus in waters and soils. The developemnt of a novel rapid screening 

technique based on DGT and colorimetry has been the ultimate goal of this work. The 

most appropriate method for achieving this goal would be considered and tested with 

the wide variety of DGT methods and screening techniques. The methods evaluated and 

the results of the development are discussed in the following chapters.   
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Chapter 3. Rapid in situ Detection of Available 

Phosphorus in Waters and Soils by Combining DGT 

and Colourimetry 

 

3.1 Introduction 

3.1.1 Phosphorus Contamination in Waters and Soils 

The use of chemical phosphorus fertiliser has had a dual effect. On the one hand, as 

a critical component of the “green revolution”, the dramatic increase in production and 

use of phosphorus fertiliser has contributed considerably towards increasing 

agricultural productivity and reducing hunger worldwide (Tilman, 1998). One of the 

side effects of using a chemical phosphorus fertiliser is phosphoric acid, a chemical 

compound which acidifies the soil. When Chinese farmers acidify their soil by applying 

fertiliser they impede crop growth by restricting themselves to growing acid tolerant 

species and varieties, thus reducing profitable market opportunities. Since the early 

1980s, pH has declined from 0.2 to 0.8 across China, mostly due to the overuse of 

fertiliser (Guo et al., 2010). Beginning in the 1970s, ever-increasing amounts of 

fertiliser were used across China to achieve the Chinese farmers’ dream of bigger 

harvests. However, this increased use of fertilizer has led to rising in water pollution 

(Hvistendahl, 2010). Phosphorus is rarely found in high concentrations in freshwaters 

as it is actively taken up by plants. However, the transfer of P from agricultural systems 

to surface water exacerbates the potential for eutrophication (Cooper et al., 2002). 
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In the Midwestern United States, over-fertilisation was the norm from the 1970s until 

the mid-1990s. During that period, tonnes of excess nitrogen and phosphorus entered 

the Mississippi River Basin and drained into the Gulf of Mexico, where the large influx 

of nutrients has triggered huge algal blooms. The decaying algae use up vast quantities 

of dissolved oxygen, producing a seasonal low-oxygen dead zone in the Gulf that 

reaches a size bigger than the state of Connecticut in some years (Mark, 2009). In China, 

livestock seems to be the largest contributor to run-off pollution and is responsible for 

56% of phosphorus discharges. This excess of phosphorus has caused eutrophication in 

many of China’s lakes, coastal waters and rivers (Qiu, 2010a, Qiu, 2010b). The 

International Lake Environment Committee (ILEC), in cooperation with the United 

Nations Environment Programme (UNEP), undertook a project entitled “Survey of the 

State of the World Lakes”. In it, almost all 217 lakes show increasing eutrophication, 

including Lake Dianchi and Lake Taihu in China. These lakes suffer from the most 

extreme eutrophication; almost all native water plants and many fish species have been 

killed. Even large lakes like Lake Victoria in Africa, or Lake Baikal, the largest 

freshwater body in the world, show signs of eutrophication (UNEP, 1994). Increased 

algae production in rivers and lakes has had a huge ecological impact, reducing the 

diversity of flora and fauna, reducing oxygen in water and cause death of fishes during 

the summer time. Also, the growth of more toxic microbial species can be hazardous 

and pose a considerable threat to livestock and human health (Sharpley et al., 2003).  

Since the balance of environmental quality and crop yield is teetering on a point, 
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precision agriculture has become a hot field of research in international agriculture 

science (Chandrajith et al., 2010, LJ and TL, 2005). Precision agriculture combines 

existing agricultural production measures with new, specialised technology, such as 

Global Positioning System (GPS), Geographic Information System (GIS), miniaturised 

computer components, automatic control, in-field and remote sensing, mobile 

computing, advanced information processing, and telecommunications (Jess, 2004, 

Gibbons, 2000). Precision agriculture aims to optimise field-level management with 

regards to crop science, environmental protection and economics, for example, 

fertilisation decision, irrigation water control, crop planting density (Zhang et al., 2002). 

 

3.1.2 Monitoring Phosphorus in Waters and Soils 

Therefore, monitoring phosphorus is important as an early warning system which 

highlights signs of water eutrophication and plays an irreplaceable role in precision 

agriculture (Hakanson et al., 2007, Sims et al., 1998). In addition, given the 

accumulation of P in soils and its corresponding environmental threat, the development 

of effective soil monitoring has become necessary (Lemercier, 2008).  

The soil tests used to measure P levels vary according to land uses, cropping regimes, 

soil types (Wheeler et al., 2004, Skinner and Todd, 1998, Cahoon and Ensign, 2004). 

Olsen, Colwell, Bray P1, Mehlich I and Mehlich III are the most commonly used soil P 

test methods (Wolf and Baker, 1985, Quirine and Pete, 2010, Sarker et al., 2014, Moody, 

2007). The advantages and disadvantages of these extraction procedures and their 
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effects on the resolution of 31P NMR spectra, which enables the quantitative 

identification of various P species in environmental samples (Cade-Menun and Liu, 

2014, Turner et al., 2003, Vestergren et al., 2012) have been discussed extensively in 

previous studies (Cade-Menun and Preston, 1996, Turner et al., 2005, Cade-Menun and 

Liu, 2014). Nowadays, one of the most common extraction protocols involves shaking 

the soil with 0.25 mol L-1 NaOH and 0.05 mol L-1 Na2EDTA for 16h, followed by 

lyophilisation. However, as with any alkaline treatment, this protocol risks sample 

alteration. The alteration include the distortion of the original distribution of P 

compounds in the samples because of selective extraction of certain P species, 

compound-specific vulnerability to alkaline hydrolyses (especially digester), possible 

mobilisation of unavailable orthophosphate from soil P minerals (e.g., Ca-, Fe-, and Al- 

phosphates) and P complexed at surfaces which would result in an overestimation of 

the soil orthophosphate pool as a result of strongly alkaline conditions (Kruse et al., 

2015). It has also been identified that measuring the total concentration of phosphorus 

in soils does not provide sufficient information to assess its bioavailability. Established 

soil testing methods used to assess the availability of P, such as Colwell and Olsen, have 

difficulties reliably predicting plant P requirements within a range of soil types (Holford 

et al., 1985, McBeath et al., 2005, Mason et al., 2010). Owing to the current failure of 

existing soil test methods to predict plant responsiveness to applied P, it is necessary to 

find a more accurate test for plant-available P (Tandy et al., 2011).  

One of the newly developed technique is Diffusive Gradients in Thin-film (DGT). 
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DGT has been developed to assess bioavailable trace elements, P in waters and soils 

(Zhang et al., 1998b, Zhang et al., 2001, Menzies et al., 2005, Zhang et al., 2014). The 

first binding agent for phosphorus DGT was the ferrihydrite gel which had a strong 

affinity for phosphorus and was used to measure labile phosphorus (Zhang et al., 1998a). 

Following this, a titanium dioxide gel-assembled DGT has been used to measure 

phosphorus, arsenic and metals simultaneously (Panther et al., 2010, Bennett et al., 2010, 

Panther et al., 2013), and Zr-oxide as binding gel was developed to measure phosphorus 

and inorganic arsenic with higher capacities (Ding et al., 2010, Sun et al., 2014). Since 

the development of the DGT technique for P, it has been used to assess P in soils in a 

wide range of studies. The technique has successfully demonstrated its effectiveness in 

predicting use of P fertilisers on obtaining the optimum yields of crops like wheat, 

tomato and maize (McBeath et al., 2005, Mason et al., 2010, Menzies et al., 2005). 

For phosphorus in water, monitoring commonly involves two basic steps, collecting 

water samples, and analysing them in the field or in laboratories. This seems to be a 

simple methodology, however, many studies have shown that the accuracy of the 

calculated P load is highly dependent on the choice of sampling protocols, analytical 

protocols, and sampling frequency (Sims and Sharpley, 2005). Furthermore, the 

commonly used analytical method is based on the molybdate phosphate complex 

formation whose ultraviolet-visible absorbance corresponds to the phosphate 

concentrations rather than on a true reflection of the P lability (Reynolds and Davies, 

2001). The fact that nonpoint P sources contribute significantly to P levels in some 



47 

 

aqueous systems makes measuring and regulating P even more difficult and challenging 

(Carpenter et al., 1998). Most aquatic monitoring programmes depend on collecting 

discrete spot samples of water at a given time. With the frequent garb sampling, the 

representative flows and the fluctuant concentrations of phosphorus may be captured.  

However, grab sampling has limitations. For example, in water systems that are prone 

to flash flooding, the lack of instantaneous water sampling means that the polluting 

effects of flooding cannot be measured easily and are often missed (Cassidy and Jordan, 

2011, Vrana et al., 2005). In addition, it is difficult to measure naturally occurring 

phosphate concentrations which may be very low (W. et al., 2000). There are methods 

for measuring phosphorus on-site and frequently such as Flow injection-capillary 

electrophoresis (FI-CE) systems and the autonomous microfluidic sensor, which were 

developed to improve sampling protocols, but these methods are still limited in the 

following areas: automation, continuity and detection (Kuban et al., 2004, Andrew et 

al., 1994, Cleary et al.). In the past few decades, alternatives have been sought to 

overcome these difficulties. The diffusive gradients in thin films (DGT) has been 

successfully developed for determining kinetically labile dissolved phosphorus in 

aquatic systems including both freshwaters and marine waters (Pichette et al., 2009, Li 

et al., 2014, Huo et al., 2014, Panther et al., 2010)  

However, these DGT methods require an elution of phosphate from the binding gels 

by placing the gel in acid or base overnight before measuring the pre-concentrated 

amount of phosphate in DGT devices. This step and the subsequent analysis make the 
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process more complex and delay data acquisition. The advantages of DGT, such as 

accumulation and fixation through binding on the resin gels, and the colour 

development for P analysis can have the potential to eliminate the slow processes 

mentioned above. Some research have been successfully conducted and reported  in 

combining DGT methods with a scanning technique to directly measure the analytes in 

the binding gels, such as DGT with silver iodide for sulphides (Teasdale et al., 1999) 

and DGT with Methylthymol blue absorbed Dowex 1×8 for Cu (McGifford et al., 

2010). Another method of measuring P by computer imaging densitometry based on Zr-

oxide DGT was also developed recently (Ding et al., 2013). However, the process of 

making Zr-oxide gel was complicated with poor reproducibility and the sample pre-

treatment for colour development required 5 days, unrealistically long time for using in 

monitoring.  

 

3.1.3 Aim of This Work 

In this study, a rapid detection technique for phosphorus based on well tested DGT 

devices and a colour imaging method using the conventional molybdenum blue has 

been developed and fully tested under different conditions. Precise interpretation and 

quantification of the phosphorus concentrations were carried out. This paper has also 

demonstrated how this technique was simplified and modified. The developed approach 

was applied to the in situ monitoring of P in waters and the measurement of labile P in 

soils.  
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3.2 Materials and Methods 

3.2.1 Reagents, Materials and Solution 

Milli-Q water was used to prepare all solutions. Potassium dihydrogen phosphate was 

used to prepare the P stock solution (1000 mg L-1) for carrying out all the testing 

experiments. Metsorb gels were prepared in Lancaster University laboratory. Metsorb 

is an agglomerated nanocrystalline titanium dioxide based adsorbent was identified by 

Bennett and co-workers as an alternative binding phase for the DGT measurement of 

inorganic arsenic and selenium in water (Bennett et al., 2010). Plastic containers were 

used for experimental work and for the preparation and storage of solutions. All DGT 

components (including materials used to prepare DGT gels) were acid-cleaned in 10% 

(v/v) HNO3 (AR grade, VWR) and rinsed thoroughly with deionized water prior to use. 

All chemicals used to prepare solutions were AR grade or higher.  

The mixed reagent used to determine P was the molybdenum blue method based on 

Murphy and Riley (Murphy and Riley, 1962). The proportion of the mixed reagent was 

slightly adjusted to increase the sensitivity of coloration. It was prepared by using 24g 

ammonium molybdate tetrahydrate and 0.14 g potassium antimonyl tartrate each in 

100ml MQ water. Aliquot of 99.2 mL concentrated sulfuric acid (18M) was slowly 

mixed well with the above solution. After cooling to room temperature, the mixed 

solution was diluted to 1000 ml using deionized water. Prior to colorimetric analysis, 

1.76 g ascorbic acid was added to 100ml deionized water. It must be prepare freshly and 

used within 2h.  For 10mL final mixed reagent for P determination, 3mL ascorbic acid 
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and 7ml mixed stock solution are needed. This final reagent contained 0.017 M MoO4
2- 

and had a pH value of 0.5±0.02. 

    

3.2.2 Preparation of the DGT Assemblies  

The Metsorb binding gels were prepared according to (Bennett et al., 2010). The gel 

sheet was cut into discs with a diameter of 2.5 cm. The piston-type DGT holder with a 

2-cm diameter exposure window and space for 0.04 cm diffusive gel was supplied from 

DGT Research Limited (Lancaster, UK). The diffusive gel was omitted in this work to 

enhance the sensitivity of the technique. A 0.04 cm thickness PTFE spacer which was 

acid-cleaned in 10% (v/v) HNO3 (AR grade, VWR) was used to fill the gap and to make 

sure the window edge was sealed. In the DGT assembly, the binding gel was placed in 

the middle of two 0.14-mm hydrophilic polyethersulfone filter membranes (0.45 μm 

pore size, Acrodisc). The PTFE spacer was placed underneath binding gel and the filter 

membranes to make sure the binding gel was tightly held in the DGT device. The 

membrane filters were cleaned three times using MQ Water before use. Zr-oxide 

binding gels were tested for comparison. The details of the two preparation procedures 

for preparation of Zr-oxide gel has been described previously (Ding et al., 2010). ZrO 

DGT was assembled with the same procedure as for Metsorb DGT. DGT samplers were 

assembled in a Class 100 laminar flow cabinet within a Class 1000 clean room.  
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3.2.3 General Procedures 

3.2.3.1 The Uptake of P by DGT   

The DGT devices were deployed into 2L well-stirred solutions containing 0.01 mol 

L-1 NaNO3 and with different concentration of P (20 μg L-1, 200μg L-1, 2000μg L-1) for 

different length of time (up to 24h), depending on the purposes of each respective 

experiment. This process was carried out in triplicate for each binding gel at each P 

concentration.  

 

3.2.3.2 Colour Development 

The deployed DGT devices were rinsed with deionized water before being placed in 

a 100 mL straight Polystyrene sample tube containing 20 mL of mixed reagent for direct 

colour development without disassemble the device as pervious study (Ding et al., 

2013). Different reaction time (10 min, 20 min and 30 min) were test at room 

temperature (20-22 oC)  

 

3.2.3.3 CID Analysis  

After retrieval from the mixed reagent, the binding gel discs and the downside filter 

membrane were peeled from the DGT. The Metsorb gel discs were rinsed using cool 

deionized water and immersed in cool water for 5 min to stop further colour 

development. The water adhering to the surface of the gels was removed gently using 

hydrophilic polyethersulfone filter paper. Both Metsorb and ZrO gel discs were then 
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scanned using a flat-bed scanner (HP G3110) at a resolution of 300 dpi with the side of 

the gel surfaces where titanium dioxide and Zr-oxide had settled. The grayscale 

intensity of the scanned images corresponding to the open window of the solution DGT 

unit was finally analysed with Image J 1.48. 

 

3.2.4 Calculation  

The concentrations of P were calculated using the DGT equation 2.6. Specifically, 

the mass, M, in this study could be calculated from the calibration curve (Figure 3.1) 

using the directly measured grayscale intensity on the gel surface and also can be 

calculated by equation 2.4 with a known eluted volume of 1M NaOH (Ve).  

 

3.2.5 Validation of Metsorb DGT and Colouration Technique  

3.2.5.1 Calibrating the P Measurement.  

Calibrating the P measurement was performed by establishing the relationship 

between the grayscale intensities of the Metsorb gel and its accumulated masses of P 

after the DGT deployments. It was tested by deploying eight sets of six replicate DGT 

devices in 2L of well-stirred solutions containing 0.01mol L-1 NaNO3 with different 

concentrations of P (20 μg L-1, 200μg L-1, 2000μg L-1). The pH of the solution was 

adjusted and maintained at pH 6.5±0.5, and the solution samples were taken after the 

removal of each set of the DGT devices. They were removed after 6 h, 12 h and 24 h 

deployments, then rinsed with deionized water. Three Metsorb gels were eluted in 1.5 
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ml of 1mol L-1 NaOH for 24 h with an elution efficiency of 92±5% (Panther et al., 2010). 

The other three DGT units were immersed in 20 ml of the mixed reagent at room 

temperature (20-22 oC) for 20 minutes. After a brief rinse with MQ water, the binding 

gel discs were retrieved from the devices and placed on a flat scanner for the grayscale 

intensities measurement using CID, as described earlier. The relationship between the 

masses of P accumulated in the gels and their corresponding grayscale intensities was 

fitted using an exponential equation for the whole range and a linear equation for the 

lower mass part.   

 

3.2.5.2 DGT Detection Limits 

DGT detection limits were calculated as three times the standard deviation of the DGT 

blanks (n=12). DGT blanks were prepared in the same protocol as the deployed DGT 

devices expect for deployment. Blank analyses were assessed as follow: 12 DGT 

devices were placed in a deployment tank with 8 L of 0.01 M NaNO3 solution for 24h. 

6 Metsorb binding gels were eluted in 1M NaOH for mass measurement and the 

grayscale intensities on the surface of the other 6 gels were analysed following the same 

colouration and CID method of deployed DGT samplers. 

 

3.2.5.3 Reaction Time of Colour Development 

The optimal time of colour development was tested by deploying five sets of 

triplicates DGT devices in 2L of well-stirred solutions containing 0.01mol L-1 NaNO3 
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with different concentrations of P (20 μg L-1, 200μg L-1). The mass of accumulated P in 

DGT is in a range of 0.16 to 3.2 μg after 6 h, 12 h and 24 h deployments. Each of the 

Metsorb disc was placed in the 100 mL sample tubes containing 20 mL of mixed reagent. 

Different reaction time (10 min, 20 min and 30 min) were tested at the room temperature 

(20-22 oC). 

 

3.2.5.4 Effect of pH on P Measurements  

The effect of solution pH on the accumulation of P was tested by deploying 

quadruplicate DGT devices in solutions of different pH. Devices were deployed for 24 

h in 2L of continuously stirred 0.01 M NaNO3 containing 20 μg L-1 of P. The 

measurements were carried out at pH 4.0, 6.0 and 8.0 and the effect of the pH was 

assessed. Diluted HNO3 or NaHCO3 was used to adjust solutions to the desired pH. 

 

3.2.5.5 Potential Interference from Oxyanion Metals 

To investigate the possible interference of oxyanion metals on the measurements of 

P, As was chosen as a testing element. Interference that could affect the colouration of 

P uptake by Metsorb DGT, the performance of the DGT devices, in terms of uptake and 

colour development, was tested in 200 μg L-1P solutions (0.01 mol L-1 NaNO3) 

containing As in a range of 40-1000 μg L-1 at pH 6±0.5 and at room temperature(20 

oC) for 6 h. 
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3.2.5.6 Comparison of the Performance of the ZrO and Metsorb Binding Agents in 

Colouration. 

The Zr-oxide DGT devices were prepared by Ding and co-workers (Ding et al., 2013). 

Zr-oxide DGT was immersed in 2L well-stirred solutions containing 0.01mol L-1 

NaNO3 and a certain concentration of P (20 μg L-1, 200μg L-1, 2000μg L-1) at pH 6.0±0.5. 

Pistons were removed after 6 h, 12 h and 24 h deployments and the binding gel disc was 

placed in the 100 ml vessel (with the side where Zr-oxide settled facing up) containing 

the 20mL of the mixed reagent for colouration. The vessel was kept at room temperature 

(20-22 oC) for 45 min. 

 

3.2.6 Field Application. 

DGT samplers were deployed in situ at three field sites in Tianjin, China. The first 

field site included five freshwater streams. The second site included three fish and 

shrimp farms. The third site was a reservoir for collecting wastewater from a hog farm. 

Three DGT were deployed at each place for approximately five hours to measure the 

concentration of P in the waters. The deployment time was calculated based on the 

variant of Equation 3.1. Where the mass, M, set as 0.64 μg which is the minimum 

amount of P on gel surface can be observed distinctly and homogeneously. The 

predefined concentration of P is 0.2 mg L-1 which is the standard level of P of Chinese 

surface water. With a known exposure area, A, the thickness of the diffusive layer, ∆g, 

and the diffusion coefficient in the gel, D, the deployment time can easy to obtain. After 
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development, the Metsorb DGT devices were rinsed with deionized water and stored in 

clean plastic bags at 4°C in a fridge until analysis. The sample treatment and analysis 

are the same as described above for laboratory testing DGT devices. The mass of P 

accumulated on each device was obtained using the calibration provided and the 

concentration of P in water was calculated using equation 2.6. Water samples were 

collect at the beginning and end of DGT deployments. The turbid water samples were 

pre-filtered through a 0.45μm membrane filters prior to acidification with Sulphuric 

Acid (pH<2). Samplers were then kept at 4°C until analysis.  

 

3.3 Results and Discussion 

The DGT technique of phosphorus colorimetric analysis based on gel surface 

colouration using the conventional molybdenum blue method has been reported using 

Zr-oxide binding gel (Ding et al., 2013). Although this technique offers advantages, 

since colouration equipment is common in most laboratories and the preparation of 

colouration is simple and easily learned, it still has some drawbacks. First, the process 

of making Zr-oxide gel is complicated. It’s difficult to manufacture using common 

equipment found in chemical laboratories. Secondly, the pre-treatment of Zr-oxide gel 

disc is demanding. A 5-day of heating gel disc before CID analysis and a repaid 

technique is inconformity. In this study, a similar but more practical and simpler 

combination of DGT with CID is developed by using a Metsorb binding gel in water. 
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3.3.1 Calibration  

The calibration standard in mass of P and the corresponding colour on each binding 

gel and grayscale intensity measurements are presented in Figure 3.1. It shows that there 

is a logarithmic increase of grayscale intensity with the accumulating mass of P in the 

binding gel. The grayscale intensity increased rapidly first and then slower down and 

reach a plateau. At the accumulated mass < 3.23 μg P, the calibration demonstrates a 

linear relationship between grayscale intensity and the accumulated mass of P in the 

Metsorb binding gel. The calibration ranges of grayscale intensity increases from 28 at 

the background level to 186 at the saturation level. There is no further obvious increase 

in grayscale intensity with increasing P loading above a mass of 35 μg. The capacity of 

the Metsorb binding phase for DGT, calculated according to Panther and co-workers 

(Panther et al., 2011), was ~37μg P per device (3.14 cm2), which is about 12 μg cm-2.   

The relationship between the accumulation of P in Metsorb binding gels and the 

corresponding changes in greyscale intensity was fitted using an exponential equation, 

as shown in Figure 3.1. The Relative Standard Deviation (RSD) of grayscale intensities 

were in the range of 1% to 11%. The colouration was uniformly distributed on the gels 

with a low RSD, mostly within 4%. However, for the fully quantitative interpretation 

of P concentration in water using this approach, the linear calibration is necessary. The 

linear range of 0.3 μg to 3.2 μg correspond to the concentration range of 9 to 98 μg L-1 

if the deployment time is 24 hours and the water temperature is 20oC. This is for the 

DGT devices without diffusive gel, which means the diffusion layer thickness is 
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0.014cm (the filter membrane thickness only). If longer deployment time is needed, for 

example one week, the standard DGT devices with 0.08cm diffusive gel could be used. 

The concentration range can be detected fully quantitatively is 9 to 94μg L-1. This range 

can be extended to 62 to 661μg L-1using shorter deployment time of 24 hours with the 

standard DGT devices. In summary, the linear range for fully quantitative measurement 

of P is sufficient for environmental monitoring of water with low P of a few ppb level 

to waters with high P of several hundreds of ppb P.  
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3.3.2 Detection limits and Precision 

The DGT measured blank for P was 0.75±0.11μg L-1. The blank of grayscale intensity 

on the gel surface was 28.2±2.7. The method detection limit (MDL) of the DGT 

technique was calculated as three times the standard deviation of the blank value was 

0.44 μg L-1. This detection limits are specific to DGT combined with the molybdenum-

blue detection method used in this study. The method precision for data obtained by 

DGT-measured mass was 9 % and grayscale intensity on gel surface was 13%. 

 

3.3.3 Reaction Time of Colour Development  

The grayscale intensity on gel surface increased with the exposure time up to 20 min 

and followed by a constant state. A liner range of 0.3 μg to 3.2 μg was inspected in 

reaction time of colour development (Figure 3.2A). Since the grayscale intensity on the 

high P-loaded gel surface was reached the near maximum of coloration (186) at 20 min 

(Figure 3.2B), the optional time for colour development was set as 20 min.      



61 

 

  

Figure 3.2A Optimization of the reaction time of colour development for coloration 

based on the changes of grayscale intensity on the surface of the Metsorb gels (0.3 μg 

to 3.2 μg). The uncertainties associated with each datum point is the standard deviation 

of the mean from triplicate DGT samples. 
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Figure 3.2B Optimization of the reaction time of colour development for coloration 

based on the grayscale intensity on the surface of the Metsorb gels (33μg). The 

uncertainties associated with each datum point is the standard deviation of the mean 

from triplicate DGT samples.  

 

3.3.4 Effect of pH Colouration and Measurements 

 The effect of pH on the colour development and on the P measurements have been 

investigated in solutions with different pH. The results were presented in Figure 3.4, 

showing the greyscale intensity of P-loaded binding gel at different pH values. No 

significant change has been observed within the pH range of 4-8, indicating the 

measurements and colour development are not affected by the pH of the water body.  
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Figure 3.3 The grayscale intensity on the gel surface after it was deployed for 24 h in 

2L of continuously stirred 0.01 M NaNO3 containing 20 μg L-1 of P at pH 4.0, 6.0 and 

8.0 and kept at room temperature (20 oC). 

 

3.3.5 Potential Interference of Oxyanion Metals 

  Arsenic and phosphorus are both in group VA of the periodic table and they have the 

similar chemical properties. Arsenate was found to form blue complexes with 

ammonium molybdate under similar conditions as phosphate. An over estimation of the 

concentration would be obtained for the determination of phosphate until arsenate was 

removed before forming the phosphomolybdenum complex (Pett, 1933, Harvey, 1948). 

The results of greyscale intensity measured on the DGT binding gels loaded with P 

in the presence of different concentrations of As are presented in Figure 3.3. No 
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significant various were observed, suggesting As does not interfere with the colour 

development and the P measurements at high concentration of 1000 μg L-1 level. 

However, the China’s standard determining method of P suggested that if the 

concentration of As > 2mg L-1 in solution, the interference need to be eliminated by 

Na2S2O3 (MEP, 1990).  

   

 

Figure 3.4 The grayscale intensity on the gel surface after it was deployed for 6h in 200 

μg L-1 P solutions (0.01 mol L-1 NaNO3) containing As in a range of 40-1000 μg L-1 at 

pH 6 and kept at room temperature(20°C).  

 

3.3.6 Comparison of Zr-oxide DGT and Metsorb DGT  
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phosphorus based on the surface coloration of the binding gel. However, it only applied 

in sediment and soil. It is interesting to compare the performance of ZrO DGT and 

Metsorb DGT in water. All pre-treatment which required in pervious ZrO DGT 

experiments (Ding et al., 2013) was been omiited. Firstly, the grayscale intensity on the 

blank ZrO gel was reported to 65 (Ding et al., 2013) which is more than twice of the 

Metsorb gel in this study. Compared the performances between Metsorb DGT and ZrO 

DGT in the linear range of calibration, the gradient of colour was significant different 

(Figure 3.5). The grayscale intensity of ZrO gel and Metsorb gel were from 75 to 110 

and 55 to 137 respectively. If the colour on the gel surface cannot be distinguished 

obviously, the potential error will increase (Appendix1). The result indicated that the 

Metsorb DGT has more reliability and operability of P measurement in natural water. 

With a higher capacity of P, ZrO DGT was reported to assess the measurement in 

sediment and soil combined the screening technique with a long time pre-treatment. 

However, it is difficult to ensure the accuracy of measurement when using a non-linear 

calibration. In addition, the 5 days heating treatment prior to coloration, makes the ZrO 

DGT method opposite to the rapid screening technique. 
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Figure 3.5 The grayscale intensity on the gel surface as a linear function of the mass of 

P accumulated by Metsorb and ZrO gel. The scope of the linear trend line is 27 and 12 

of Metsorb gel and ZrO gel respectively. The uncertainties associated with each datum 

point is the standard deviation of the mean from triplicate DGT samples. 

 

3.3.7 Field Application  

DGT samplers were deployed at three sites: freshwater streams, fish farms and a 

reservoir in Tianjin, China. The standard level of Chinese surface water of P is 0.2 mg 
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small and it has to be considered in calculation of the CDGT. The measured concentration, 
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                            CDGT=
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DAt
                                (3.1) 
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rivers and streams, and the effective resin gel area was used as 3.80 cm2 in this case 

(Warnken et al., 2006, Zhang et al., 1998a). In this work, the same parameters were 

adopted.  

Since conventional monitoring for a water system on a large scale is time consuming, 

costly, non-representative and non-reflective, the DGT samples were deployed for 4 to 

5 h for a fast in-situ pre-measurement before further quantitative analysis. The grayscale 

intensity, mass and the concentration of P measured by DGT was demonstrated in Table 

3.1. The example images of P-loaded gels were given in Figure 3.6. The grayscale 

intensity of sample 2 was 184, exceeding the maximum intensity of 183 that can be 

meaningfully measured. Therefore, the concentration of the P cannot be accurately 

estimated from the grayscale intensity. Meanwhile, the grayscale intensity of sample 1 

and sample 3 were beyond the linear range of calibration (intensity of 137 and mass up 

to 3.3μg) and the concentrations obtained may not be accurate. 
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Table 3.1 The grayscale intensity, massa and CDGT of samples, the Csol  in water 

system analysis by Continuous flow analysis(CFA) and Ammonium molybdate 

spectrophotometry 

Sampleb Grayscale intensity Mass (μg) CDGT (mg L-1) Csol (mg L-1) 

1 141.81 3.20 0.37 1.12 

2 183.95 / / 2.24 

3 151.65 3.57 0.41 0.97 

4 129.02 2.72 0.31 0.51 

5 66.88 0.40 0.05 0.24 

6 104.91 1.82 0.21 0.48 

7 93.43 1.39 0.16 0.36 

8 89.84 1.26 0.14 0.28 

9 86.42 1.13 0.13 0.37 

a Mass of P accumulated on the gel surface was calculated using the linear calibration ; 
b Sample 1,6,7 are fish and shrimp farms; sample 3,4,5,8,9 are freshwater streams in 

Tianjin City and Sample 2 is the wastewater reservoir. 

 

 

Figure 3.6 Examples images of the coloured P-loaded gels. Three DGT were deployed 

at each point as triplicate The Relative Standard Deviation (RSD) of the grayscale 

intensities were in the range of 2% to 9%.   

   

Mass of P accumulated on the gel surface enable to obtain from the linear calibration 

directly when the grayscale intensity on the gel surface within the range. As the 

grayscale intensity measured in samples 4 to 9 are all in the linear range, the mass of P 

in these samples can be accurately calculated. With a known mass, M, the concentration 

of DGT-measured P can be obtained from the equation 3.1. Compared to the 

concentration of P in water samples, the concentration of DGT-measured P were 
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generally lower. It’s mainly because of the P species in the water system. Metsorb DGT 

could only measure the dissolved reactive phosphorus (DRP) (also called soluble or 

filterable reactive phosphorus) in the natural water. The Relative Standard Deviation 

(RSD) of the grayscale intensities were in the range of 2% to 9%. Therefore, the RSDs 

of the concentration of DGT-measured P was within 9%.      

   

3.4 Conclusion 

  This chapter has demonstrated the feasibility of combining the Metsorb DGT method 

with colour development and computer imaging densitometry (CID) as a rapid 

screening technique to assess the phosphorus levels in natural water. The calibration 

standard in mass of P and the corresponding colour on each binding gel and grayscale 

intensity measurements which fitting an exponential equation was presented. The 

calibration ranges of grayscale intensity increases from 28 at the background level to 

186 at the saturation level. There is no further obvious increase in grayscale intensity 

with increasing P loading above a mass of 16 μg. The colouration was uniformly 

distributed on the gels with a low RSD, mostly within 4%. The fully quantitative 

interpretation of P concentration can be assessed in the linear range of 0.3 to 3.2μg per 

device. The effect of pH and interference of oxyanion metals (As) colour development 

and the DGT measurements are insignificant.  

  The comparison of the performance of the ZrO and Metsorb binding agents in 

colouration was made since the former is also being used in DGT technique combined 

with CID of P measurement. As a long-term treatment prior to colouration was required 
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and less sensitivity was performed in P measurements, ZrO DGT was not suitable for 

rapid screening technique in natural water. 

  The field evaluation of the suitability of this technique for monitoring P in natural 

waters was carried in three waterbodies in Tianjin, China. Provided the mass of P 

accumulated on the gel were within the linear range of the colour calibration, the 

concentration of P can be easily and accurately obtained by Metsorb DGT. The RSDs 

of the concentrations of DGT-measured P were between within 2% to 9%. 

  This newly developed approach provides several advantages over the traditional DGT 

technique. Firstly, in contrast with the use of UV-spectrophotometer or ICP-MS in 

previous studies, this method uses a scanner, equipment commonly found in most 

laboratories. Secondly, a more efficient analysing process of P measurement has been 

provided as the elution step was eliminated. The future work may put interest on 

enhance the capacity of Metsorb binding phase, for example, pressing the resin into an 

adhesive paper disc directly as new approach of binding layer preparation. To further 

enhance the efficiency of the technique, smart phone may be used for colour intensity 

recording and data processing and transferring.        
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Chapter 4. Rapid Screening Technique for Heavy 

Metal Pollution and Risk Assessment in Water and 

Soils 

 

4.1 Introduction 

4.1.1 Water Standards and Regulations  

  Water is essential to sustain life, and an adequate, safe and accessible supply must be 

available to all. Improving access to safe drinking water can lead to definite health 

benefits. Thus, every effort should be made to achieve an access to clean water. With 

this purpose in mind, over the past fifty years, the World Health Organization (WHO, 

2011) has built on water quality guidelines which are widely accepted by nation across 

the world (WHO, 2011). The nature and form of drinking water standards may vary 

among countries and regions. Approaches that may work in one country or region will 

not necessarily work in other countries or regions. Therefore, it is essential that each 

country reviews its needs and capacities when developing a regulatory framework.  

  In addition, WHO formulates the standards and regulations for other classes of water 

as well. For example, standard quality of surface water, ground water, irrigation water, 

integrated wastewater discharge, etc. are strictly established around the world.  

 

4.1.2 Monitoring of Cu(II), Ni(II), Co(II) and Cr (VI) in Waters and Soils 

In order to prevent or reduce the health risks or hazards that heavy metal pollution 
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poses to humans and other living creatures in the ecosystem (the review of metal 

contaminations and toxicity see Chapter 2), it is important to explore the various 

techniques that could efficiently determine the occurrence and the concentrations of 

heavy metals in the environment. A number of approaches developed by several 

regulatory agencies and research laboratories are applied routinely to monitor and assess 

the quality of water, soil and sediments.  

Generally heavy metals are analysed by discrete sampling of waters either manually 

or by automatic samplers. However, discrete samples only provide information 

regarding the sampled source at the certain time of sampling which is not suitable for 

monitoring and evaluating the full extent of the problem owing to temporal and spatial 

limitation. Voltammetric sensors are promising candidates for real-time, simultaneous 

measurements, as they can acquire continuous information with minimal or limited 

sample pre-treatment (Tercier-Waeber and Taillefert, 2008). However voltammetric 

sensors suffer from some drawbacks, such as lack of specificity and reproducibility, 

formation of intermetallic compounds in measurements, and the doubts of sensibility 

and stability (March et al., 2015). A variety of extraction methods, including simple and 

sequential have been proposed for measuring the forms of heavy metals in soil (Garcia 

et al., 1996, Abollino et al., 2002, Feng et al., 2005). However those extraction methods 

have limitations such as inaccuracy of quantitative sampling, redistribution of metals 

during fractionation, requirements of complemented analytical technique, and may not 

be suitable for phytoavailable metal contents evaluation investigations (Rao et al., 2008, 
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Zimmerman and Weindorf, 2010).   

  

4.1.3 Application of DGT for Cu(II), Ni(II), Co(II) and Cr (VI) Measurement 

As mentioned in Chapter 2, DGT is a robust in situ monitoring device that can be 

easily applied in remote areas, provide time-integrated concentration and speciation 

information.  

   The DGT was first used to measure metals (Cd, Zn, Cu, Ni, Mn, Fe) in an aqueous 

solution using Chelex-100 as binding layer (Zhang and Davison, 1995). Then, the first 

fully quantitative in situ measurements were taken of the potential resupply flux of 

metals (Cd, Zn, Cu, Ni)) from soil to solution, provided by Chelex-100 DGT (Zhang et 

al., 1998b). The fluxes of trace elements were first measured by DGT in a sludge-treated 

soil to evaluate the effect of soil moisture on DGT performance in soils (Hooda et al., 

1999). 

The expanding demand for DGT as an in situ environment monitoring technique has 

resulted in the development of numerous binding phases for the measurement of 

different metals and their speciation. The Whatman P81 cellulose phosphate ion exchange 

membrane has been successfully used as a binding phase for DGT applications to determine 

Cu and Cd. This overcomes many of the problems that arose from using hydrogel based 

binding phases (Li et al., 2002). Suspended particulate reagent-iminodiacetate (SPR-IDA) 

was chosen as an alternative binding agent due to its smaller bead size to achieve a more 

homogeneous distribution than the Chelex-100 in resin gel layer (Warnken et al., 2004). 
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Using polyvinyl alcohol as a liquid binding phase with the liquid-DGT devices provided a 

selective measurement of Cu (Fan et al., 2009). Another liquid-type DGT which can 

strongly coordinate to Ni with sodium poly (aspartic acid) was designed (Chen et al., 2013). 

Additionally, direct colourimetric detection of Cu(II) was achieved using the DGT 

technique by employing methylthymol blue as a chelating and chromogenic agent 

(McGifford et al., 2010). Although various binding material have been developed to 

make measurements of cations, DGT with Chelex-100 resin as binding layer remains 

the most conventional and authoritative method for measuring divalent metals. 

However, as a strong binding phase for metals, Chelex-100 has difficulty to absorb 

Cr(VI). The first selective measurement of Cr(VI) in water was developed using 

polyquaternary ammonium salt (PQAS) as a binding agent combined with ICP-MS analysis. 

Subsequently a high capacitive N-Methyl-D-glucamine (NMDG) functional resin was 

incorporated into the DGT binding phase for selective measurement of Cr(VI). It 

successfully provided an accurate measurement of time-averaged Cr(VI) in both 

uncontaminated natural and contaminated waters (Pan et al., 2015).  

 

4.1.4 The Aim and the Objectives  

The aim of this work was to develop rapid screening devices based on DGT technique 

to assess metal concentrations qualitatively and quantitatively. Copper, nickel and 

cobalt, which are highly soluble in water, can exist in waters and soils at high 

concentrations. They accumulate on the binding gel of DGT device with deployment 
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time. When the amount of a metal on the binding gel reaches certain level, a distinctive 

colour will appear on the gel. The intensity of the colour will be directly proportional 

to the amount of metal accumulated. The intensity can be quantified using a computer-

imaging densitometry (CID). Base on the calibration, a relationship between the amount 

of metal on the gel and the colour intensity, the mass accumulated by DGT can be fully 

quantified and the concentration of metal measured by DGT can be calculated using the 

DGT equation. The objectives of this work were: 

1) Investigate the potential of using Chelex-100 type DGT and high resolution CID 

measurement for rapid estimation of metal concentrations in waters. 

2) Test the performance of the technique under different conditions. 

3) Base on the regulation standards in different countries and regions, formulate a 

DGT deployment guide list to determine if the concentration of metals has 

exceeded Maximum Contaminant Level. Using both a simple visual inspection 

and a scanner for DGT devices at different deployment times and different 

temperatures will be considered for this list. 

4) Develop a rapid screening technique for Cr (VI) using DGT and high resolution 

CID base on the surface colouration of the N-Methyl-D-glucamine (NMDG) 

binding gel reacting with the diphenylcarbazide in an acidic solution.  
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4.2 Materials and Methods 

4.2.1 General Chemicals 

All experimental and reagent solutions were prepared using Milli-Q water (18MΩ).  

The metal salts used were all of analytical grade and were (with water of hydration 

omitted): CuSO4，Ni(NO3)2, Co(NO3)2, Na2CrO4 (VWR, UK). Chelex-100 resin was 

obtained from Bio-Rad, US. NMDG was purchased from Sinopharm Chemical Reagent 

Co. Ltd., China. All containers, glass plates and sample tubes were acid-washed using 

a 10% v/v HNO3 bath and rinsed thoroughly with Milli-Q water prior to use.  

 

4.2.2 Preparation of Gels and Assembling DGT Devices   

Diffusive gel was prepared by mixing 3.75ml of acrylamide solution (40% w/w) 

(BDH, Electran) and 4.75 mL of MQ water with 1.5 mL of DGT cross-linker (0.3%, 

measured by weighing 1.5 g). This 10 mL of gel solution was well mixed and then 70μL 

of freshly made ammonium persulfate solution (10% w/v) (BDH Electran) and 25 μL 

of N,N,N’N’- tetramethylenediamine (TEMED) (99%) (BDH Electran) were added. 

After well mixed using a pipette, it was immediately cast between two glass plates 

which were separated by a 0.5 or 0.25 mm plastic spacer (for a hydrated gel of 0.78 mm 

or 0.4mm thickness) and held together with plastic clips. The assembly was 

immediately placed in oven at 45 ºC for at least 1 hour. Once the gel was completely 

set, it was removed from the glass plates and placed into a deionized water (two gel 

sheets per litre of deionized water, which was changed repeatedly until all the excess 
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polymerization products were removed, for example the pH of the washed solution is 

equal to that of the deionized water stored in. Finally, the gel was stored in 0.03 mol L-

1 NaNO3 solution until its use (Warnken et al., 2005).  

  The Chelex 100 resin-gel used in this work (for Cu, Co, Ni) was prepared by mixing 

4g Chelex 100 resin (200-400 mesh) (wet weight) available from Bio-Rad (UK) into 10 

mL of gel solution consisting of 3.75ml of acrylamide solution (40% w/w) (BDH 

Electran) and 4.75 mL of MilliQ (MQ) water with 1.5 mL of DGT cross-linker. Sixty 

microliter of ammonium persulfate solution (10% w/v) and 15 μL of TEMED (99%) 

were then added to the mixture. After mixing them well, the resin-gel solution was 

immediately cast between two glass plates, which separated by a 0.25mm plastic spacer 

(for a hydrated gel of 0.04mm). Gel setting, hydration and storage procedures then 

followed those for the diffusive gel. However, the Chelex gels were only washed once 

before storage.  

  The NMDG binding gel used in this work (for Cr) was prepared by bis(acrylamide)–

cross-linked polyacrylamide instead of the conventional agarose cross-linked 

polyacrylamide to achieve a uniform distribution of the NMDG resin. Dry weight of 2.5 

g of NMDG resin was added to 10 mL gel solution consisting of 28.5% acrylamide 

solution (w/v) (BDH Electran) and 1.5% N,N-methylene bis(acylamide). After mixing 

them well, 250 μL of freshly made ammonium persulfate solution (10% w/v) (BDH 

Electran) and 10 μL of TEMED (99%) (BDH Electran) were added. Mixing them 

properly again, the mixture was immediately cast between two glass plates separated 
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by a 0.4 mm plastic spacer. The glass plate assembly was placed horizontally in a freezer 

at 4 ºC for 30 min to allow the NMDG resin to settle by gravity to one side of the gel, 

and then transferred to an oven at 50 ºC for 1h. Hydration procedures then followed 

those for the diffusive gel and storage the NMDG resin gel in a fridge at 4 ºC (Pan et 

al., 2015). The DGT assembling procedure has been described in Chapter 3.2.2.  

 

4.2.3 Metal Uptake by DGT 

The DGT devices were deployed in 2 L well stirred solution, containing 0.01 mol L-

1 NaNO3 and different concentrations of Cu, Ni, Co (up to 5 mg each metal ions L-1) 

separately for different deployment times (up to 24 h), depending on the purpose of the 

respective experiments. Three replicates were deployed in all experiments. 

The uptake of Cr(VI) was evaluated by developing the NMDG-DGT in 8 L of solution 

containing 50 μg L-1 of Cr(VI) in 0.01mol L-1 NaNO3 for 6 h to 144 h. Six replicates 

were deployed in Cr(VI) measurements. 

 

4.2.4 Colour Development for Cr(VI) 

  For the determination of hexavalent chromium, spectrophotometric method with 

diphenylcarbazide (DPC) was adopted. Cr(VI) reacts with DPC to form reddish violet 

complex and the reaction is selective and very sensitive for chromium.  

It was prepared by dissolving 250 mg 1,5-diphenylcarbazide in 100 mL 

acetone(analytical reagent grade). This stock solution was stored in a brown bottle and 
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discarded when it was discoloured. Prior to colorimetric analysis, 100 mL of 2.5 mol L-

1 H2SO4 solution was slowly added to 100 mL of stock solution of DPC, after which the 

solution was diluted to 400 mL with deionized water. The pH of the solution was about 

2. 

  The DGT devices were rinsed with deionized water after deployment. For colour 

development, carefully peeled off the filter membrane and reassembled the DGT device. 

Placed the reassembled DGT sampler upside down in a 100 mL plastic pot containing 

20 mL of mixed reagent for 10-15 min at room temperature until full colour 

development.   

 

4.2.5 CID Analysis 

  After DGT deployment in solutions, the Chelex gel discs and the downside filter 

membranes were retrieved from the DGT device. They were rinsed using cool deionized 

water stored in fridge and the water adhering to the surface of the gels was removed 

gently using poly filter paper. After transferred into a clean plastic bag, the side of the 

gel surface where the Chelex beads had settled was then scanned using a flat-bed 

scanner (HP G3110) at a resolution of 300 dpi. The grayscale of the scanned images 

corresponding to the exposure of the DGT devices was analysed with ImageJ 

1.48(download from https://imagej.nih.gov/ij/). 

   Similar to the procedure of Chelex-DGT, the NMDG gel disc and the down side 

filter membrane were retrieved form the DGT device after colour development in the 

https://imagej.nih.gov/ij/
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mixed reagent solution. The NMDG gel discs were rinsed using cool deionized water 

and then immersed in cool water for 5 min to stop further colour development. The 

water adhering to the surface was removed using poly filter paper. The side of the gel 

surface where NMDG resin had settled was then scanned using the same flat-bed 

scanner (HP G3110) at a resolution of 300 dpi. The grayscale intensity of the scanned 

images corresponding to the open window of the solution DGT device was analysed 

with ImageJ 1.48.      

   

4.2.6 Calibrations for Quantification  

4.2.6.1 Calibrations of Cu, Co, Ni 

  The calibration curves of Cu, Co and Ni in standard solution were obtained by 

establishing the relationship between the grayscales intensity of Chelex gel and its 

accumulated massed of metal ions after the DGT deployments. It was tested by 

deploying seven sets of six replicate DGT devices in a 2 L of well-stirred solution 

containing 0.01 mol L-1 NaNO3 and different concentration of Cu, Co, Ni (500μg L-1, 

2mg L-1, 5mg L-1 respectively). The pH of the solution was adjusted and maintained at 

6.0±0.5, and solution samples were taken at the beginning and end of the deployment. 

The deployment time varied from 2.4h to 24h. After rinsed with deionized water, the 

gel discs were retrieval from the DGT devices. Three Chelex gel discs were eluted in 

1ml of 1 mol L-1 HNO3 for 24h followed by ICP-MS analysis (Zhang and Davison, 

1995). The grayscale of the gel surfaces of other three Chelex discs were measured 
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using CID, as described earlier. The relationship between the metal mass of 

accumulated in the DGT and their corresponding grayscale amount was fitted using a 

linear equation.   

 

4.2.6.2 Calibration of Cr (VI) 

  The calibration of Cr(VI) in standard solutions was obtained by establishing the 

relationship between the grayscale intensities of the NMDG resin gel and its 

accumulated massed of Cr(VI) after the DGT deployments. It was carried out by 

deploying eight sets of six replicate DGT in two of 8 L well-stirred 0.01mol L-1 NaNO3 

solution spiked with 50μg L-1 Cr(VI). Each set of six DGT replicates were removed at 

deployment time of 6, 12, 24, 48, 72, 96, 120 and 144 hours. To confirm the stability of 

Cr species, samples of solution were taken after the removal of each set of devices and 

analysed for total Cr using ICP-MS and for Cr(VI) using the DPC method. Chromium 

accumulated in the three binding gels was eluted using 1 mL of 1 mol L-1 HNO3. The 

other three DGT units were immersed in 100 ml plastic pot containing 20 ml of the 

mixed reagent after removed the filter membrane as described in the section for colour 

development. The DGT units were kept in the mixed reagent at room temperature (20 

oC) for 15 minutes. After a brief rinse with MQ water, the gel discs were peeled off and 

scanned. The relationship between the masses of Cr accumulated in the gels and their 

corresponding grayscale intensities was fitted using both a linear equation and an 

exponential equation.    
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4.2.7 Calculation of DGT 

The concentrations of metals were calculated using the DGT equation 2.6. The 

corresponding accumulated mass can also be calculated by equation 2.4 as described in 

section 2.5.1.   

 

4.3 Results and Discussion 

4.3.1 Calibration of Cu 

  The calibration standard in mass per unit area (μg cm-2) for Cu and the corresponding 

colour on chelex-100 binding and grayscale intensity measurements are presented in 

Figure 4.1. It shows that there is a linear increase of grayscale intensity with the 

accumulating mass of Cu in the binding gel. The calibration ranges of grayscale 

intensity increase from 28.7 to 117.1. The linear range of 1.5μg cm-2 to 165μg cm-2 

correspond to the concentration range of 0.05 to 5 mg L-1 if the deployment time is 24 

hours and the water temperature is 20oC. This is for the DGT devices without diffusive 

gel, which means the diffusion layer thickness is 0.014cm (the filter membrane 

thickness only). If longer deployment time is needed, for example one week, the 

standard DGT devices with 0.08cm diffusive gel could be used (same as Ni and Co).   

  The DGT measured blank for Cu was 0.44 ng cm-2. The blank of grayscale 

intensity on the gel surface was 13. The method detection limit (MDL) of the DGT 

technique and CID analysis were calculated as three times the standard deviation of the 

blank value. The MDL of DGT was 0.13μg L-1
 when DGT devices are deployed for 24 
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hours and 0.018 μg L-1 if the deployment time is 7 days. The MDL of CID analysis was 

calculated as three times the standard deviation of the blank value was 1.9 in grayscale 

intensity. The method precision for data obtained by DGT-measured mass was 5 % and 

grayscale intensity on gel surface was 11%.  

In this work, the colour of Cu, Ni and Co on the gel surface was detected by both 

scanner and visual inspection. The detection limit by visual inspection depends on 

person and may also affected by different light. The colour of Cu could be detected by 

visual inspection when the mass accumulated reach around 16 μg cm-2 as a reference.   

 

Figure 4.1 The DGT colour calibration curve for Cu, in standard solution scanning by 

the flat-bed scanner in 300dpi (left). Examples of scanned images of the coloured metal 

ions-loaded gels (right). The uncertainties associated with each datum point is the 

standard deviation of the mean from triplicate DGT samples. 
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4.3.2 Calibration of Ni 

The calibration standard in μg cm-2 mass of Ni and the corresponding colour on 

chelex-100 binding and grayscale intensity measurements are presented in Figure 4.2. 

It demonstrated that there is a linear increase of grayscale intensity with the 

accumulating mass of Ni in the binding gel. The calibration range of grayscale intensity 

increase from 16.9 to 33.3. The linear range of 2.7 μg cm-2 to 153 μg cm-2 correspond 

to the concentration range of 0.05 to 5 mg L-1 if the deployment time is 24 hours and 

the water temperature is 20oC.  

  The DGT measured blank for Ni was 0.31μg cm-2. The grayscale intensity on the 

blank gel surface was 13. The MDL of the DGT technique was 0.10 μg L-1
 for 24 hours 

deployment and 0.014 μg L-1 for 7 days deployment at 20oC. The MDL of the CID 

analysis was 1.9 in grayscale intensity. The method precision for data obtained by DGT-

measured mass was 5 % and grayscale intensity on gel surface was 7 %.  

The colour of Ni could be detected by visual inspection when the mass accumulated 

reach around 32 μg cm-2 as a reference. 
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Figure 4.2 The DGT colour calibration curve for Ni, in standard solution scanning by 

the flat-bed scanner in 300dpi (left). Examples of scanned images of the coloured metal 

ions-loaded gels (right). The uncertainties associated with each datum point is the 

standard deviation of the mean from triplicate DGT samples. 

 

4.3.3 Calibration of Co 

The calibration standard in μg cm-2 mass of Co and the corresponding colour on 

chelex-100 binding and grayscale intensity measurements are presented in Figure 4.3. 

It indicated that there is a linear increase of grayscale intensity with the accumulating 

mass of Co in the binding gel. The calibration ranges of grayscale intensity increase 

from 23 to 44. The linear range of 1.6 μg cm-2 to 159.2 μg cm-2 corresponds to the 

concentration range of 0.05 to 5 mg L-1 if the deployment time is 24 hours and the water 

temperature is 20 oC.  

The DGT measured blank for Co was 0.019μg cm-2. The blank of grayscale 
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intensity on the gel surface was 13. The MDL of the DGT measurement of Co was 0.006 

μg L-1
 for 24 hours deployment and 0.001 μg L-1 for 7 days deployment at 20 oC. The 

MDL of the CID analysis was 1.9 in grayscale intensity. The method precision for data 

obtained by DGT-measured mass was 4 % and grayscale intensity on gel surface was 

14 %.  

The colour of Co could be detected by visual inspection when the mass accumulated 

reach around 32 μg cm-2 as a reference. 

 
Figure 4.3 The DGT colour calibration curve for Ni, in standard solution scanning by 

the flat-bed scanner in 300dpi (left). Examples of scanned images of the coloured metal 

ions-loaded gels (right). The uncertainties associated with each datum point is the 

standard deviation of the mean from triplicate DGT samples. 
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4.3.4 Calibration of Cr (VI) 

  The relationship between the accumulation of Cr(VI) in NMDG gels and the 

corresponding change in greyscale intensity on the gel surface was fitted using a quintic 

polynomial in the whole range and fitted using a linear equation when the accumulated 

mass of Cr(VI) was below 2.47μg cm-2 as shown in Figure 4.4. The calibration ranges 

of grayscale intensity increases from 15 at the background level to 96 when the mass of 

Cr (VI) is 13.7 μg cm-2 on the gel disc. The calibration range of grayscale intensity for 

the linear increase from 15 to 63. Due to the DPC method is being very sensitive, the 

performance of coloration on the gel surface is unstable in higher mass accumulation.  

  The accumulated mass of Cr(VI) in the blank gel was 0.59 ng cm-2 after 72h. The 

MDL for NMDG-DGT was calculated by three times standard deviations of 12 blank 

measurements was0.16 μg L-1
 of 24 hours deployment and 0.002 μg L-1 for 7 days 

deployment at 20 oC. The detection limit of DPC method for Cr (VI) measurement was 

approximately 5 μg L-1 (Babel and Kurniawan, 2004). Three NMDG gel disc was been 

analysis by CID after colouration at each point. The RSD of grayscale intensities were 

in the range of 1% to 10%. The colouration was uniformly distributed on the gels with 

a low RSD, mostly within 5%. 
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Figure 4.4 The grayscale intensity on the gel surface as a function of the mass of Cr(VI) 

accumulated by NMDG gel (left). Mass of Cr(VI) accumulated by DGT in a range of 

0.31-13.9 μg cm-2. Examples of scanned images of the coloured Cr(VI)-loaded gels 

(right). The uncertainties associated with each datum point is the standard deviation of 

the mean from triplicate DGT samples. 

 

According to Pan and co-worker (Pan et al., 2015) the good performance over a wide 

pH range of 3-10 indicates that both HCrO4
– and CrO4

2– can be effectively measured by 

NMDG-DGT. DGT measurements were within 10% of predicted values when the 

supporting electrolyte of NaNO3 was in the range of 0.1–50 mmol L–1. 

The Cr reaction with DPC is usually free from interferences (EPA). However, certain 

substances may effect if the concentration of Cr is relatively low. Mo(VI) and Hg also 

react to form colour with the reagent, but the red-violet intensities produced are much 

lower than those for Cr at the specified pH. The optimized pH is 2±0.4. If the pH is 

too low, the reaction will be unstable. Conversely, the colour development won’t 

complete if the pH is higher.  
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4.3.5 Using DGT as a Diagnosis Tool for Contamination Level 

With increasing urban populations and aging infrastructure, poor water quality can 

have a large impact on public health. Modern water management requires more reliable 

and quicker characterization of contaminants, to allow for a more timely response. DGT 

combined with CID analysis can serve as a rapid screening technique and can estimate 

metal concentrations in waters. It can provide a quick and visual measurement of metals 

without complicated and expensive analysis in laboratory. The elution step of 

conventional DGT measurement has also been eliminated which has dramatically 

decreases the response time of monitoring. If the colour on the gel surface was detected 

by visual inspection, this technique can achieve the goal of in situ and on site assessment 

of heavy metals (Cu, Ni, Co) pollution in water systems.   

In this study, the new DGT approach was used to estimate whether the concentration 

of Cu, Ni, Co in the water meet the acceptable level of different standards and 

regulations in UK/EU, US and China for waters. The deployment time of DGT at 

different temperature was calculated using equation 2.6. CDGT, is set as the standard 

concentration of metals in different water standard and regulation. With the different 

temperature in water, different diffusion coefficient, D, was used in calculating (see 

Appendix 2). At the end of the deployment, any colour observed either by naked eyes 

(visually) or by a scanner will indicate the concentration of trace metals in the water 

body has exceeded the Maximum Contaminant Level (MCL) based on each regulation 

or standard (see Appendix 3). Different temperature were discussed in two modalities, 



90 

 

visual and scanning (Table 4.1-4.4). As shown in Table 4.1, the lower the standard 

concentration of metals is the longer deployment time of DGT device require. In order 

to meet the goal of rapid screening technique, the deployment time should be rational 

(few hours to 1 day). Therefore, this technique may not be suitable for determining the 

concentration of Cu in drinking water in UK. The UK MCL of Cu in drinking water is 

20 times lower than of China. The Cu concentration in UK’s drinking water may be 

detected by using a scanner because of the low detection limit. 

  In table 4.2, the DGT deployment time needed for determining Ni and Co in drinking 

and surface waters were too long due to the strict standard level of Ni and Co in both 

UK and China. DGT can assess the concentration of Ni and Co in the effluent in both 

UK and China by deploying the devices for 24 hours. If there is any colour observed by 

naked eyes on the gel surface, the concentration of Ni and Co was exceeded the MCL 

of regulation standards of these two countries. 

Compared to results in Table 4.1 and 4.2, when using a scanner to detect colour 

change on surface, the deployment time of DGT devices were much shorter than using 

visual inspection (Table 4.3 and Table 4.4). Due to the initial establishment of the steady 

state in the DGT diffusive gel, the minimum deployment time is one hour (W Davison, 

1998). Therefore, a diffusive layer should be added into the DGT device to extend the 

deployment time when determining Cu concentration in drinking water of US and China, 

and the Co concentration in China’s effluent. The deployment time could be 

recalculated by equation 2.6. 
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The results in table 4.1-4.4 indicate that DGT can be used for rapid scanning of Cu in 

all cases considered, except for UK/EU drinking water when the colour of the samples 

was inspected visually. For Co and Ni, this method only adapted to detecting the 

contamination in Chinese effluents in which the Maximum Contaminant Level is higher 

compared to other water standards. When the scanner is used for colour detection, DGT 

could be used for monitoring Co in UK and China drinking water. 
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Table 4.1 DGT deployment time (hours) needed for determining Cu concentration 

exceeding regulation standards using visual inspection of colour change 
 UK /EU standard a US b CN c 

Temp(℃) Drinking water MCLG Drinking water Effluent 

6 8.9 14.8 21.5 35.5 

7 8.6 14.2 20.7 34.3 

8 8.3 13.7 20.0 33.2 

9 8.0 13.2 19.3 32.1 

10 7.8 12.8 18.6 31.0 

11 7.5 12.4 18.0 30.0 

12 7.3 11.9 17.4 29.1 

13 7.0 11.5 16.8 28.2 

14 6.8 11.2 16.3 27.3 

15 6.6 10.8 15.8 26.5 

16 6.4 10.5 15.3 25.7 

17 6.2 10.1 14.8 24.9 

18 6.1 9.8 14.3 24.2 

19 5.9 9.5 13.9 23.5 

20 5.7 9.2 13.5 22.8 

21 5.5 9.0 13.1 22.2 

22 5.4 8.7 12.7 21.6 

23 5.2 8.5 12.3 21.0 

24 5.1 8.2 12.0 20.4 

25 5.0 8.0 11.6 19.9 

26 4.8 7.8 11.3 19.4 

27 4.7 7.6 11.0 18.8 

28 4.6 7.3 10.7 18.4 

29 4.5 7.2 10.4 17.9 

30 4.4 7.0 10.1 17.4 

a UK standard: Drinking water: Cu: 2.0mg/L. Water Supply (Water Quality) 

Regulations 2000 EU standard: Human Consumption: Cu: 2.0mg/L Council 

Directive on the quality of water intended for human consumption (Drinking 

Water Directive) 
b US standard: National Primary Drinking Water Regulations MCLG: 

Maximum Contaminant Level Goal Cu: 1.3mg/L. 
c CN standard: Drinking Water: Cu: 1.0mg/L. Drinking water quality 

standards GB5749－2006  

Effluent: Cu: 0.5mg/L Emission standard of pollutants for copper, nickel, 

cobalt industry GB 25467-2010  
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Table 4.2 DGT deployment time (hours) needed for determining Ni and Co  

concentrations exceeding regulation standards using visual inspection of colour 

change 

         Ni   Co  
 UK/EU a              CN b  UK a CN b 

Temp(˚C) Drinking water Effluent Surface Water Drinking water Effluent 

6 1918.5 38.4 372.7 745.4 37.3 

7 1853.2 37.1 360.0 720.1 36.0 

8 1791.1 35.8 348.0 695.9 34.8 

9 1731.9 34.6 336.5 672.9 33.6 

10 1675.5 33.5 325.5 651.0 32.6 

11 1621.7 32.4 315.1 630.1 31.5 

12 1570.3 31.4 305.1 610.2 30.5 

13 1521.3 30.4 295.6 591.1 29.6 

14 1474.4 29.5 286.5 572.9 28.6 

15 1429.6 28.6 277.7 555.5 27.8 

16 1386.8 27.7 269.4 538.8 26.9 

17 1345.8 26.9 261.5 522.9 26.1 

18 1306.5 26.1 253.8 507.6 25.4 

19 1268.8 25.4 246.5 493.0 24.7 

20 1232.7 24.7 239.5 479.0 23.9 

21 1198.1 24.0 232.8 465.5 23.3 

22 1164.9 23.3 226.3 452.6 22.6 

23 1133.0 22.7 220.1 440.2 22.0 

24 1102.4 22.0 214.2 428.3 21.4 

25 1072.9 21.5 208.4 416.9 20.8 

26 1044.6 20.9 202.9 405.9 20.3 

27 1017.4 20.3 197.7 395.3 19.8 

28 991.2 19.8 192.6 385.1 19.3 

29 966.0 19.3 187.7 375.3 18.8 

30 941.7 18.8 183.0 365.9 18.3 

a UK standard: drinking water: Ni: 0.02mg/L. Water Supply (Water Quality) Regulations 

2000  EU standard: drinking water: Ni: 0.02mg/L, Co: 0.1mg/L Council Directive on the 

quality of water intended for human consumption (Drinking Water Directive) 

b CN standard: Drinking Water: Ni: 0.02 mg/L. Drinking water quality standards GB5749

－2006 Co: 0.05mg/L Quality standard for ground water GB/T 14848-9  

Effluent: Ni: 1mg/L, Co: 1mg/L Emission standard of pollutants for copper, nickel, cobalt 

industry GB 25467-2010 Surface water: Co: 0.1mg/L Council Directive on pollution caused 

by certain dangerous substances discharged into the aquatic environment of the 

Community (Dangerous Substances Directive) - List II substance 

 



94 

 

Table 4.3 DGT deployment time (hours) needed for determining Cu concentration 

exceeding regulation standards using scanner for detecting colour change 
 UK /EU standard  US CN 

Temp(˚C) Drinking Water   MCLG Drinking water Effluent 

6 0.9 1.5 2.2 3.6 

7 0.9 1.4 2.1 3.4 

8 0.8 1.4 2.0 3.3 

9 0.8 1.3 1.9 3.2 

10 0.8 1.3 1.9 3.1 

11 0.8 1.2 1.8 3.0 

12 0.7 1.2 1.7 2.9 

13 0.7 1.2 1.7 2.8 

14 0.7 1.1 1.6 2.7 

15 0.7 1.1 1.6 2.6 

16 0.6 1.0 1.5 2.6 

17 0.6 1.0 1.5 2.5 

18 0.6 1.0 1.4 2.4 

19 0.6 1.0 1.4 2.4 

20 0.6 0.9 1.3 2.3 

21 0.6 0.9 1.3 2.2 

22 0.5 0.9 1.3 2.2 

23 0.5 0.8 1.2 2.1 

24 0.5 0.8 1.2 2.0 

25 0.5 0.8 1.2 2.0 

26 0.5 0.8 1.1 1.9 

27 0.5 0.8 1.1 1.9 

28 0.5 0.7 1.1 1.8 

29 0.4 0.7 1.0 1.8 

30 0.4 0.7 1.0 1.7 
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Table 4.4 DGT deployment time (hours) needed for determining Ni and Co 

concentrations exceeding regulation standards using scanner for detecting colour 

change 

        Ni    Co  
 UK CN  UK CN 

Temp(℃) 
Drinking 

Water 

Drinking 

water 
effluent 

 Drinking 

Water 

Drinking 

water 
effluent 

6 191.8 191.8 3.8  18.6 37.3 1.9 

7 185.3 185.3 3.7  18.0 36.0 1.8 

8 179.1 179.1 3.6  17.4 34.8 1.7 

9 173.2 173.2 3.5  16.8 33.6 1.7 

10 167.5 167.5 3.4  16.3 32.6 1.6 

11 162.2 162.2 3.2  15.8 31.5 1.6 

12 157.0 157.0 3.1  15.3 30.5 1.5 

13 152.1 152.1 3.0  14.8 29.6 1.5 

14 147.4 147.4 2.9  14.3 28.6 1.4 

15 143.0 143.0 2.9  13.9 27.8 1.4 

16 138.7 138.7 2.8  13.5 26.9 1.3 

17 134.6 134.6 2.7  13.1 26.1 1.3 

18 130.6 130.6 2.6  12.7 25.4 1.3 

19 126.9 126.9 2.5  12.3 24.7 1.2 

20 123.3 123.3 2.5  12.0 23.9 1.2 

21 119.8 119.8 2.4  11.6 23.3 1.2 

22 116.5 116.5 2.3  11.3 22.6 1.1 

23 113.3 113.3 2.3  11.0 22.0 1.1 

24 110.2 110.2 2.2  10.7 21.4 1.1 

25 107.3 107.3 2.1  10.4 20.8 1.0 

26 104.5 104.5 2.1  10.1 20.3 1.0 

27 101.7 101.7 2.0  9.9 19.8 1.0 

28 99.1 99.1 2.0  9.6 19.3 1.0 

29 96.6 96.6 1.9  9.4 18.8 0.9 

30 94.2 94.2 1.9  9.1 18.3 0.9 
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4.4 Conclusions and Implication   

One of the significant advantage of DGT is it passively accumulates labile species 

from solution while deployed in situ and therefore contamination problems associated 

with conventional water sample collection and filtration procedures are eliminated. 

DGT can be used as a rapid screening technique. Compare to the existing DGT method 

for metals, this study provided a more practicable and time saving approach for 

environmental monitoring and risk assessment.  

  The calibration curves of copper, cobalt and nickel demonstrated the linear increases 

in the grayscale intensities with the accumulation metal mass. The calibration ranges of 

grayscale intensity of Cu increase from 28.7 to 117.1. The calibration ranges of 

grayscale intensity of Ni increase from 16.9 to 33.3. The calibration ranges of grayscale 

intensity of Co increase from 23 to 44. The linear range of mass accumulation of Cu , 

Ni and Co were 1.5μg cm-2 to 165μg cm-2, 2.7 μg cm-2 to 153 μg cm-2, 1.6 μg cm-2 to 

159.2 μg cm-2 correspond to the concentration range of 0.05 to 5 mg L-1 if the 

deployment time is 24 hours and the water temperature is 20 oC respectively. The 

method precision for data obtained by DGT-measured mass was 5% and grayscale 

intensity on the gel surface is in a range of 7% to 14%. Subsequently, a guide list for 

using DGT to determine if the concentration of metals has exceeded Maximum 

Contaminant Level based on regulation standards set by different countries and regions. 

Because of the intense coloration on the gel surface, both using simple visual inspection 

and using a scanner for DGT devices at different deployment time and different 
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temperature have been considered in the list. DGT applying to the guide list presented 

a simple and fast in situ pre-measurement before further complicated and costly 

quantitative analysis in drinking water and effluent monitoring. In this guide list, DGT 

can be used for rapid scanning of Cu in all cases considered. For Co and Ni, this method 

only adapted to determining the contamination in Chinese effluents in which the 

Maximum Contaminant Level is higher compared to other water standards. When a 

scanner is used for colour detection, DGT could be used for monitoring Co in UK and 

China drinking water. Due to the Chelex binding phase was able to accumulate various 

trace metal cations, this method may not adapt to complex polluted environment. It was 

more suitable for deploying in the single targeted and extremely contaminated area such 

as copper mining area (see Chapter 6). The following work may focus deploying 

selective binding phase for Cu, Ni and Co, in order to improve the performance of this 

rapid screening technique in complex environment.   

  For Cr(VI), the relationship between the accumulation of Cr(VI) in NMDG gels and 

the corresponding change in grayscale intensity was perfectly fitted using a quintic 

polynomial in whole range and fitted using a linear equation when the mass of Cr(VI) 

up to 2.47μg cm-2 on the gel surface. With its good selectivity for Cr(VI) and strong 

reddish colour appeared on the white opaque gel, NMDG-DGT combined with 

colorimetric method will be very useful in monitoring of Cr(VI) in aquatic systems. 

Further work can be carried out to improve the stability of the coloration in higher Cr(VI) 

concentration.  
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Chapter 5. Determination of Heavy Metal Toxicity by 

Biological Diffusive Gradient in Thin Films (Bio-DGT) 

Using Acinetobacter Whole-cell Bioreporters 

 

5.1 Introduction 

5.1.1 Heavy Metal Contamination and Toxicity 

Due to the rapid industrial development and urbanization to cope with large world 

population, heavy metal pollution has become an increasingly significant environmental 

issue, posing a threat to human health and ecosystem because of their toxicity, 

accumulation in the food chain and persistence in nature (Jarup, 2003b). The main 

sources of anthropogenic heavy metals in natural environments are industrial wastes, 

mining activities, sewage irrigation, atmospheric deposition, fertilizers and pesticides 

(DeVolder et al., 2003, Jones and Jarvis, 1981, Khan et al., 2008a, Kumar Sharma et al., 

2007, Zhang et al., 2010b, Wuana and Okieimen, 2011, Zhang et al., 2011, Satarug et 

al., 2003). Heavy metal contamination is widely distributed and has pervaded globally, 

especially in developing countries such as China and India. In China, the average 

concentrations of Cu, Zn, Cd and As in agricultural soils are 10, 2.5, 13 and 24 times 

than the standard soil quality (Yang and Sun, 2009, Wang et al., 2011).  

The enzymatic activities and metabolic activities of microbes can reflect the quality 

of soils sensitively, which is suggested that low concentrations of heavy metals can 

stimulate the microbial biomass, while excess amounts can lead to dramatic decrease of 
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microbial biomass (Fliepbach et al., 1994, Lee et al., 1996). The toxicity of soil heavy 

metals in plants varies with metal concentrations, metal species and plant species 

(Nagajyoti et al., 2010). Heavy metals in low concentration, no matter the heavy metal 

is important or unimportant for plant growths, possess little effects on plants (Su et al., 

2014). Some heavy metals including arsenic, mercury and cadmium can destroy the 

metal-sensitive enzymes, which results in the growth inhibition or even death of plants. 

Heavy metal contamination is generally considered to be carcinogenic, mutagenic and 

teratogenic to mammals (Jarup, 2003a). Hazardous impacts of heavy metals on human 

can be enlarged by ecological accumulation through food chains. Inorganic arsenic can 

lead to cardiovascular disturbances, central nervous systems disruption and 

gastrointestinal synptoms (Jarup, 2003b, Bissen and Frimmel, 2003). Higher than 0.01 

ppm time-weight average (TWA) concentration of cadmium can result in renal tubular 

damage and blood pressure increase. TWA concentration Cadmium at 2-3 mg per kg in 

creatinine leads to kidney damage (Buchet et al., 1990).  

The existence of heavy metal varies under different environmental conditions. 

Particularly in soil, the availability and toxicity of metals are significantly dependent on 

soil physical and chemical characteristics, like pH, redox conditions, organic matters, 

carbonate and clay contents (Zhang and Zhang, 2007, Satarug et al., 2003, Kabata-

Pendias, 1992). Chemical processes, such as adsorption-desorption, precipitation-

dissolution, mineralization-immobilization determine the behaviour of metals in soils 

(Buekers, 2007, Levy et al., 1992, Shiowatana et al., 2001). This makes it difficult to 
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evaluate the real formation and impacts of heavy metal contamination in soils. The 

occurrence and fate of metal contaminants need to be monitored. The appropriate 

concentrations which reflect bioavailability need to be measured for controlling 

pollution and protecting the environment.  

 

5.1.2 Chemical Sensors and Biosensors in Environmental Monitoring 

Some chemical sensors based on electrochemistry (Hulanicki et al., 1991) and 

Chemiluminescence (CL) have been developed in recent years order to provide better 

tools for environmental monitoring. In addition, they have not been used for in situ 

measurement in soils.  

The use of biosensor in environmental pollution monitoring has been a growing 

interest in the last decade, as these devices using whole-cell bioreporter to evaluate 

bioavailability and toxicity of contaminants via living microorganisms (Rodriguez-

Mozaz et al., 2006, Farre et al., 2010, Lagarde and Jaffrezic-Renault, 2011). With 

genetically engineered bacteria, yeast, fungi, or animal cells, the biological signals of 

whole-cell bioreporter are initiated by phenotypic colour (lacZ), fluorescent (gfp/yfp) 

or bioluminescent (luc/lux) genes (Sanseverino et al., 2005, Van Dyk et al., 2001, 

Dunlap, 2014). It offers highly sensitive, rapidly analytic, easy operation and cost-

effective feasibility for in situ pollutants assessment (D'Souza, 2001). Some whole-cell 

bioreporters specifically sense the heavy metal molecules (Rasmussen et al., 2000) or 

their cytotoxicity/genotoxicity (Rodriguez-Mozaz et al., 2006) However, most of the 
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bioreporters suffered from the low limit of detection and far away from application in 

the field situations. Meanwhile, whole-cell bioreporter can only assess the synergetic 

effects of all the pollutants, not able to distinguish the toxicity of heavy metals from the 

others. It is important to broaden the feasibility of whole-cell bioreporters and achieve 

selective assessment of heavy metal toxicity. 

Since the assessment of the metal toxicity requires consideration of their speciation 

and bioavailability, the most advanced in situ speciation technique, DGT has the 

potential of combining with biosensor to form a unique new bio-chemical sensor. The 

DGT technique can quantitatively measure labile species in situ in waters, soils and 

sediments with high selectivity, high precision and low detection limits (W. et al., 2000, 

Alcock et al., 2003, Zhang et al., 1998b). Pervious study have shown that bacteria can 

be effectively incorporated into modified DGTs and the impact on the measured 

accumulated metal was generally small (Baker et al., 2015).  

 

5.1.3 Aim of This Work  

The aim of this study is to develop a novel biological diffusive gradient in thin films 

(Bio-DGT) by immobilizing whole-cell toxicity bioreporter ADPWH_recA in the 

diffusive gel to measure in situ labile metal concentrations and toxicity of metals 

simultaneously. The performance of the technique under different environmental 

conditions will be fully tested in laboratory solutions and in soil samples.  
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5.2 Materials and Methods 

5.2.1 Bioreporter Strain and Cultivation 

The whole-cell bioreporter ADPWH_recA was constructed with the luxCDABE gene 

fused on the chromosome of Acinetobacter baylyi ADP1 host (Song et al., 2009). It was 

utilised as an effective biological device to assess the cytoxicity and genotoxicity of 

specific chemicals or environmental samples (Zhang et al., 2013). After cultivated in 

Luria-Bertani (LB) medium supplemented with 10 μg mL-1 kanamycin at 30°C 

overnight, the 1.0 mL bioreporter strain was harvested by 10 minutes centrifugation at 

3000 rpm. The bacterial pellet was resuspended in 10.0 mL fresh LB medium for direct 

toxicity measurement or in 1.0 mL sterile deionized water for Bio-DGT immobilization. 

 

5.2.2 Preparation of Gels and Bio-DGT 

All chemicals were analytical grade reagents from Sigma-Aldrich without specific 

statement. All glass plates, spacers and DGT devices had been soaked in 10% HNO3 

acid for several hours and then thoroughly rinsed in ultrapure water (MQ at 18.2 MΏ 

cm) until pH 6. 

An agarose suspension (1.2%, w/v) was prepared by adding 1.2 g agarose in 100 mL 

deionized water and autoclave at 121°C for 15 min. For the diffusive gel discs of Bio-

DGT, after cooled to 50°C, the 0.9 mL agarose gel solution was mixed with 0.1 mL 

ADPWH_recA whole-cell bioreporter suspension which was washed and resuspended 

in deionized water. The mixture was stirred for 1 min and then injected between two 
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pre-heated glass plates separated by a 0.5 mm PTFE spacer. After set at the room 

temperature, the discs (2.2 cm in diameter and 0.5 mm thickness) were cut from the gel 

sheet. They were gently eased off the glass plate into MQ water. For the diffusive gel 

discs of control DGT, they were prepared as previously described except the 

immobilization of whole-cell bioreporters. Preparing procedure of Chelex gels and 

DGT assembly have been described in section 4.2.2.  

 

5.2.3 Bio-DGT Deployment and Measurements 

Both control DGT devices and bio-DGT devices were deployed in triplicates in either 

2 L or 8 L stirred solutions of different pH, ionic strengths and for different times. They 

were carefully rinsed with MQ water after retrieval. The devices were disassembled and 

the Chelex-100 binding gels were removed and eluted in 1ml of 1M HNO3 overnight 

before carrying out analysis by ICP- MS (Thermo Scientific). The eluents were diluted 

at least 10 times to a final volume of 1ml to a final concentration in the range of ICP-

MS calibration.  

For the biological response, the agarose diffusive gel discs from Bio-DGT and control 

DGT were placed into the 12 well cluster flat bottom culture plates containing 2ml LB 

medium in each well. The bioluminescent signals of each well were measured by a 

FLUOstar Omega microplate reader (BMG Labtech, UK). Throughout the 

measurement process, the bioreporters were incubated at 30°C with continuous shaking 

at 100 rpm and the relative bioluminescence unit (RLU) was measured every 10 min. 
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The bioluminescent induction was obtained by averaging the RLU from 250 minutes to 

300 minutes, which was the best responsive time for ADPWH_recA bioreporter. The 

bioluminescent response ratio was evaluated to estimate the cytoxicity and genotoxicity 

of targeting samples by the ratio of the bioluminescent induction of samples to that of 

control treatment (non-induced samples). 

For direct measurement of heavy metal toxicity, 180 μL of ADPWH_recA bioreporter 

suspension (washed and resuspended in LB medium) was transferred into the well of 

black clear-bottom 96-well microplate (Corning Costa, USA). After addition of 20 μL 

of mitomycin C (standard genotoxin) or heavy metal solution, the plate was cultivated 

at 30°C for 8 hrs with continuous shaking at 100 rpm. Both RLU and OD600 were 

measured every 10 minutes. The normalized RLU was calculated by dividing induced 

RLU by OD600. Three biological replicates were undertaken for each sample.  

 

5.2.4 Bio-DGT Performance and Validation 

Without specific statement, all the performance test and validation experiments were 

carried out in 0.01M NaNO3 solution containing 10 μg L-1 Cd. 

 

5.2.4.1 Whole-cell Bioreporter Immobilization and Viability  

To evaluate bioreporter viability and achieve the optimal immobilization temperature, 

when casting the diffusive gel, the agarose suspension was cooled to 100°C, 80°C, 60°C, 

50°C and 40°C respectively before mixing with the bioreporter suspension. The 
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obtained agarose diffusive gel discs were then placed into the 12-well flat bottom cell 

culture plates containing 2 mL of LB medium and exposed to 1 μM mitomycin C. The 

following bioluminescent signal measurement followed the same procedure as 

described above. 

 

5.2.4.2 Bioluminescent Distribution of Bio-DGT 

To test the uniformity of bioluminescent signals of Bio-DGT, the agarose diffusive 

gel discs were placed into the 6-well flat bottom cell culture plates containing 5 mL of 

LB medium. After adding ultrapure water (negative control) or mitomycin C to final 

concentration of 1 μM, the plate was cultivated at 30°C for 8 hrs without shaking. The 

bioluminescent signals were obtained every 10 min by the FLUOstar Omega microplate 

reader via the scanning mode with 625 measurement points per disc (25×25). Control 

DGT gel discs were used as the blank control. Triplicated biological were undertaken 

for each treatment. 

 

5.2.4.3 Effect of Deployment Time  

  The effect of bioreporter on the general performance of DGT and the effect of 

deployment time on bioreporter were investigated by deploying triplicate bio-DGT 

together with control DGT devices in 8 litres of Cd solution. The pH of the solution was 

maintained at 6.0 ± 0.5 using 1M NaOH and 1M HNO3. Solution samples were taken 

at the beginning, the middle and the end of the experiments. After 24, 48, 72, 96, 120, 

144, 168 hours of deployment, Bio-DGT and control DGT devices were removed and 
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rinsed with MQ water.  

 

5.2.4.4 Effect of pH and Ionic Strengthen  

The effect of solution pH on the uptake of metal by bio-DGT and on the stability of 

bioreporter were tested by deploying DGT devices in the Cd solution with different pH 

of 4, 6 and 8. The effects of ionic strength were investigated by deploying DGT devices 

in Cd solution with different ionic strength of 0.001, 0.01, 0.1 and 0.5M using NaNO3. 

Four devices were used for each tests and the deployment time was 48 hours.  

 

5.2.4.5 Effect of Storage Time 

The viability and sensitivity of the whole-cell bioreporter ADPWH_recA in a long 

storage time were evaluated by placing the agarose discs with live cells in 0.01M 

NaNO3 and stored at <4 oC for at least 60 days. The bioluminescent response of the 

bioreporter were measured initially and then at day 5, 10, 20, 30, 40 and 60.  

 

5.2.4.6 Detection Limits and Precision 

The detection limits of DGT were first calculated as three times the standard 

deviation of the DGT blanks, expressed in ng/disc of resin gel. It is then calculated using 

DGT equation, for certain temperature and deployment, to obtain the detection limits in 

concentration (ng L-1 or μg L-1). The blank DGT devices were assembled at the same 

time using the same batch of gels as DGT devices for the experiments. They were kept 

in plastic bags and the resin gels were retrieved and eluted at the same time following 
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the same procedure as for devices being deployed in solutions. The precision of Bio-

DGT was determined by measuring triplicate devices in each experiment and presented 

as the relative standard deviation (RSD).   

 

5.2.5 Application in Soils 

Four soil samples were collected from Guangzhou, China. Samples were air dried 

and passed through a 2mm mesh sieve for the DGT measurements.  

The DGT deployments were carried out using a standard procedure (Ernstberger et 

al., 2002) on soil slurries and the soil moisture was maintained at about 80% of water 

holding capacity (WHC) during the experiment. The soil slurries were prepared two 

days before DGT deployment to allow equilibrium between the soil solution and solid 

phase. The slurries were divided into three portions and transferred into 60mm petri 

dishes. One DGT device was placed on the surface of the each soil slurry carefully, 

making sure that good contact between soil and DGT device. After 8 hours of 

deployment, DGT devices were retrieved from the soil slurries and rinsed with MQ 

water to remove soil particles. After disassembling the devices, Chelex gel discs were 

eluted in 1ml of 1M HNO3 solution and subsequently measured by ICP-MS. The 

bioluminescent response in diffusive gel discs (with cell) were measured by microplate 

reader (VLB = 3mL).  

The soils were of the same geological origin but differ in terms of soil properties. Soil 

properties, including pH, texture, cation exchange capacity (CEC), organic matter (OM), 
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total concentration of Cd and other metals were measured using standard soil analysis 

methods recommended by Chinese MEP (MEP, 1995) (Table 5.1).  

 

Table 5.1 Properties of soil samples and DGT measured concentration of metals. 

Soil samples  1 2 3 4 

Texture Sandy Clay Sandy Clay Silt Loam Silt Loam 

pH 5.73 4.86 6.59 5.77 

CEC(cmol kg-1) 3.72 4.63 3.42 3.43 

OM(g kg-1) 50.72 66.01 10.48 26.37 

Cdtot(mg kg-1) 4.58 3.01 1.24 1.09 

Pbtot(mg kg-1) 240.89 39.78 59.58 30.27 

Mntot(mg kg-1) 41.17 27.42 281.07 193.61 

Fetot(g kg-1) 7.29 6.94 13.06 13.67 

CdDGT (μg L-1)  1.79 17 0.44 8.58 

PbDGT (μg L-1)  4.06 62.18 0.64 8.20 

MnDGT (μg L-1)  30.08 56.44 94.68 87.02 

FeDGT (μg L-1)  153.45 177.77 1.41 31.85 

 

Besides, to eliminate the potential contribution of Mn to the toxicity of Cd, a simple 

test was carried out using the diffusive agarose gels (with cell) in solution of Mn, Cd 

and the mixture of the two. The agarose gel was placed in 20 ml of i) 100 μg L-1 Cd 
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solution, ii) 100 mg L-1 Mn solution and iii) the mixture of Cd/Mn solution with 100 

μg L-1 Cd and 100 mg L-1 Mn, respectively. After eight hours immersion, the 

bioluminescent response on the gels was measured by microplate reader.  

 

5.2.6 Data Analysis 

The DGT measured concentration of metals was calculated using the standard DGT 

equation 2.6. The 0.05 cm agarose gel used as a diffusive gel. Previous studies have 

shown that there is an assumption that cells have negligible effect on the diffusion 

coefficient, D, within the agarose gel (Westrin, 1990). The mass of metal accumulated 

on the resin gel of a DGT device was calculated from the ICP-MS measurement by 

equation 2.4 (details see Chapter 2). 

  The bioluminescent response was predicted by the previously developed gene 

regulation model (Al-Anizi et al., 2014, Zhang et al., 2012) with some modifications to 

simulate the heavy metal accumulation and flux in the film with bioreporter 

immobilization. SOS response represents the global response of bacterial cells to 

carcinogens and the subsequent process of DNA repair (Sancar, 1996), including the 

three key steps as mutagenesis by heavy metals, single stranded DNA (ssDNA) 

stimulation and DNA repair activation (Foster, 2007, Krishna et al., 2007). The 

formation of methylated or alkylated ( 𝐾𝑚𝑒𝑡𝑎𝑙 ) double stranded DNA (dsDNA) 

consequently resulted in the synthesis of ssDNA (𝑘𝑚𝑒𝑡𝑎𝑙) and the cleavage of LexA-

like SOS repressor (LSR, cell-1). In the transcriptional cross-regulation model (Zhang et 

al., 2012), the DNA damage and SOS box promotion is expressed in Equation 5.1 and 
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5.2, where 𝑘𝑠𝑠𝐷𝑁𝐴 represents the cleavage reaction constant of 𝐿𝑆𝑅 dimer by RecA 

protein, and the equilibrium of LSR dimer (𝐾𝑑𝐿𝑆𝑅) and monomer (𝐾𝑠𝐿𝑆𝑅) determines 

SOS expression rate (𝑘𝑑𝑆𝐿𝑅  and 𝑘𝑠𝐿𝑆𝑅 , respectively). The SOS response level is 

expressed in Equation 5.3. 

[𝑑𝐿𝑆𝑅] + [𝑆𝑂𝑆 − 𝑏𝑜𝑥]
𝐾𝑑𝐿𝑆𝑅
⇔   [𝑑𝑆𝐿𝑅 − 𝑆𝑂𝑆]

𝑘𝑑𝑆𝐿𝑅
→   𝑆𝑂𝑆 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  

 (5.1) 

[𝑠𝐿𝑆𝑅] + [𝑆𝑂𝑆 − 𝑏𝑜𝑥]
𝐾𝑠𝐿𝑆𝑅
⇔   [𝑆𝑂𝑆]

𝑘𝑠𝐿𝑆𝑅
→   𝑆𝑂𝑆 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛    

 (5.2) 

𝑆𝑂𝑆𝑠 = (
𝑘𝑠𝑠𝐷𝑁𝐴∙𝑘𝑑𝑆𝐿𝑅

1+𝑘𝑠𝑠𝐷𝑁𝐴
∙ [𝐿𝑆𝑅]𝑡𝑜𝑡𝑎𝑙) ∙

[𝑑𝐿𝑆𝑅]

𝐾𝑑𝐿𝑆𝑅
−1 +[𝑑𝐿𝑆𝑅]

+ (
𝑘𝑑𝑆𝐿𝑅

2∙(1+𝑘𝑠𝑠𝐷𝑁𝐴)
∙ [𝐿𝑆𝑅]𝑡𝑜𝑡𝑎𝑙) ∙

[𝑠𝐿𝑆𝑅]

𝐾𝑠𝐿𝑆𝑅
−1 +[𝑠𝐿𝑆𝑅]

 (5.3) 

𝑆𝑂𝑆𝑟,𝑠 = 1 + (
𝑘𝑑𝑆𝐿𝑅

2∙(1+𝑘𝑠𝑠𝐷𝑁𝐴)
∙ [𝐿𝑆𝑅]𝑡𝑜𝑡𝑎𝑙) ∙

∫ [𝑀𝑒𝑡𝑎𝑙]𝑑𝑡
𝑛
𝑡=0

(𝐾𝑠𝐿𝑆𝑅∙𝐾𝑚𝑒𝑡𝑎𝑙∙𝑘𝑠𝑠𝐷𝑁𝐴∙𝑘𝑚𝑒𝑡𝑎𝑙)
−1+∫ [𝑀𝑒𝑡𝑎𝑙]𝑑𝑡

𝑛
𝑡=0

 

  (5.4) 

Here, 𝑑𝐿𝑆𝑅  (cell-1) and 𝑠𝐿𝑆𝑅  (cell-1) refer to 𝐿𝑆𝑅  dimer and monomer 

respectively, showing unique repression and activation on the SOS box. [𝐿𝑆𝑅]𝑡𝑜𝑡𝑎𝑙 

(cell-1) represents the total amount of SOS protein in terms of monomer. 𝑆𝑂𝑆𝑠 

represents the intensity of SOS response (cell-1). Compared with the bioluminescent 

baseline absence of genotoxins, the relative SOS response ratio, 𝑆𝑂𝑆𝑟,𝑠, is expressed in 

Equation 5.4. The SOS response coefficient is defined as 𝐾𝑠𝐿𝑆𝑅 ∙ 𝐾𝑀𝑂 ∙ 𝑘𝑠𝑠𝐷𝑁𝐴 ∙ 𝑘𝑀𝑂, 

referring to the combined efficiency of genotoxin DNA damage, ssDNA recognition 

and SOS box promotion. 𝐾𝐺𝑒𝑛𝑜𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦  is the SOS responsive intensity of specific 

carcinogens and refers to the coefficient of genotoxicity impacts, representing 
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𝑘𝑑𝑆𝐿𝑅

2∙(1+𝑘𝑠𝑠𝐷𝑁𝐴)
∙ [𝐿𝑆𝑅]𝑡𝑜𝑡𝑎𝑙. 

The cytoxicity is caused by direct inhibition effects of cytotoxic compounds, 

consequently resulting in the suppression of cell activities. Various types of cytotoxic 

effect can be identified, such as membrane integrity loss as the result of cell lysis and 

protein activity inhibition. Particularly, with the dynamic cytotoxic coefficient 

(𝑘𝑐𝑦𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦), the protein inhibition can be expressed in the following Equation 5.5. 

[𝑀𝑒𝑡𝑎𝑙] + [𝑝𝑟𝑜𝑡𝑒𝑖𝑛]
𝑘𝑐𝑦𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦
⇔      [𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛]      (5.5) 

𝐾𝑐𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐 𝑖𝑡𝑦 = exp (−𝑘𝑐𝑦𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 ∫ [𝑀𝑒𝑡𝑎𝑙]𝑑𝑡
𝑛

𝑡=0
)       (5.6) 

Considering the equilibrium reaction state, the cytotoxic inhibition ratio is therefore 

associated with the exposed cytotoxic chemicals, as expressed in Equation 5.6. 

Consequently, the cytoxicity also affects cell metabolism, causing damage to enzymes 

and cell activities, or even apoptosis (Joiner et al., 1999). The remaining cell activities, 

as defined in Equation 5.7, are characterised by the constant expressed luxCDABE gene 

on the chromosome of Acinetobacter baylyi ADP1, which is linked to the function of 

cellular proteins. 

𝑆𝑂𝑆𝑟,𝑠 ∙ 𝐾𝑐𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐 𝑖𝑡𝑦 = [1 + (
𝑘𝑑𝑆𝐿𝑅

2∙(1+𝑘𝑠𝑠𝐷𝑁𝐴)
∙ [𝐿𝑆𝑅]𝑡𝑜𝑡𝑎𝑙) ∙

∫ [𝑀𝑒𝑡𝑎𝑙]𝑑𝑡
𝑛
𝑡=0

(𝐾𝑠𝐿𝑆𝑅∙𝐾𝑚𝑒𝑡𝑎𝑙∙𝑘𝑠𝑠𝐷𝑁𝐴∙𝑘𝑚𝑒𝑡𝑎𝑙)
−1+∫ [𝑀𝑒𝑡𝑎𝑙]𝑑𝑡

𝑛
𝑡=0

] ∙ exp (−𝑘𝑐𝑦𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 ∫ [𝑀𝑒𝑡𝑎𝑙]𝑑𝑡
𝑛

𝑡=0
)    (5.7) 
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5.3 Results and Discussions 

5.3.1 Whole-cell Bioreporter Immobilization and Viability 

The viability of whole-cell bioreporter ADPWH_recA remained satisfactory when 

immobilized in agarose thin film at different temperatures (Figure 5.1A). At 100ºC, all 

the ADPWH_recA bioreporter cells were dead without producing any bioluminescent 

signal or response. When the immobilization temperature was 60 ºC or less, the 

bioreporter viability ranged from 60% to 85%. Meanwhile, the bioluminescent response 

of ADPWH_recA to 1 μM mitomycin C was positively correlated with the 

immobilization temperature (Figure 5.1B), attributing to the heat-shock inducible SOS 

activation (Benndorf et al., 1999). Above 60ºC, the bioreporter strains were seriously 

damaged and its SOS response was inhibited. As a soil bacterium, Acinetobacter baylyi 

is extremely robust to environmental variation, including temperature. 

 

 

Figure 5.1 (A) Bioreporter viability test for Bio-DGT immobilization at different 

temperatures. (B) Bioreporter response to mitomycin C (1 µM) after Bio-DGT 

immobilization at different temperatures. 
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Post exposure to 1 μM mitomycin C, Bio-DGT showed high uniformity in 

bioluminescence throughout the induction time (Figure 5.2). No significant 

bioluminescent signals were detectable for negative control (DGT discs), and they 

followed the normal distribution between 0 to 300 RLU which was the same as the 

background. In blank treatment (no mitomycin C exposure), a weak bioluminescent 

signal (5,000-10,000 RLU) was detected and it gradually increased with time. After 

exposure to 1µM mitomycin C, Bio-DGT showed the strong bioluminescence, 

averaging 13,535±1,620 RLU, with the normal distribution pattern across the film. The 

responsive ratio 2.3 compared to the blank. 

 

Figure 5.2 Bioluminescent distribution of control DGT, blank Bio-DGT and Bio-DGT 

postexposure to 1 μM mitomycin C 

 

5.3.2. Deployment Time and Mass Accumulation 

  The mass of Cd accumulated on the resin gels of Bio-DGT and control DGT devices 

were measured and compared for different deployment times up to 7 days. The mass 

increased linearly with deployment time and there was no significant difference 
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between Bio-DGT and control DGT, as demonstrated in Figure 5.3. The results obtained 

by both DGT devices are very close to theoretical line predicted by DGT equation. 

Though slight deviations are observed for longer deployment times, they are all less 

than 10%. These indicate that the live cells in the diffusive gel layer did not affect the 

performance of the Bio-DGT devices. The Cd concentration obtained by DGT (CDGT) 

calculated using DGT equation were 4.93 μg L-1, very close to the Cd concentration 

(Csoln) in solution (5.35 μg L-1). The concentration of Cd that was measured by Bio-

DGT containing cells grown in LB was slightly higher, 5.12 μg L-1, compared with the 

Cd concentration measured by control DGT devices. The ratios of CDGT and Csoln were 

0.92 and 0.95, within the acceptable range that indicating good performance of the Bio-

DGT devices. 
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Figure 5.3 Mass of Cd accumulated by control DGT and Bio-DGT devices as a function 

of time in solution. Both DGT devices were immersed in a well-stirred solution of 10 

μg L-1 Cd(II) ( I= 0.01mol L-1 NaNO3, pH=6.0, 25±0.5℃).  

 

5.3.3 Response Dynamics and Performance of Bio-DGT 

  The real-time bioluminescent curve of Bio-DGT was illustrated in Figure 5.4A. There 

was low biological signal within 6 hours detection. The immobilized bioreporter cells 

needed a certain time to adapt the cultivation medium and activate their gene expression. 

In this period, the recA gene was not activated and the bioluminescent signal 

represented the viability of whole-cell bioreporter cells. It was therefore used to evaluate 

the cytoxicity of heavy metals on bioreporter cells. In the present study, low cytoxicity 

of Cd was observed in Bio-DGT. There was no significant cytoxicity identified for all 
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the treatments, except for the 7-day deployment treatment in which a slight activity 

reduction (13%) of the Bio-DGT device was found. For DGT without bioreporter 

immobilization, no significant bioluminescent signal variation is observed in the 

treatments of different deployment time. 

The response of bioreporter ADPWH_recA followed the toxicity gene expression 

model, which was the combination of cytoxicity and genotoxicity (Figure 5.4B). The 

significantly increasing bioluminescence from 6 to 10 hours indicated the expression of 

recA gene, triggered by the heavy metal genotoxicity and DNA damage. Figure 5.4B 

showed significant genotoxicity effects with different deployment time. Genotoxicity is 

positively related to the deployment time from 0 to 5 days, showing the accumulated 

Cd causing more severe DNA damage and genotoxicity. After 6-day deployment, the 

biological response becomes saturated and decreased, hinting the over-exposure causes 

less activity and death of bioreporter cells, fitting with the cytoxicity assessment. 

Without bioreporter immobilization, DGT has minimal bioluminescent signal (< 25,000 

RLU) for all the treatments. The bioluminescence of Bio-DGT ranges from 3,700 RLU 

to 9,900 RLU at 0 h, increasing to over 300,000 RLU after 10 h induction. The 

significant bioluminescence inhibition in the first 6 hours attributed to the cytoxicity 

effects of heavy metals on bacterial activities, and the positive response from 8 h to 10 

h was caused by the heavy metal genotoxicity and the activation of SOS response and 

recA gene expression. After 10 hours detection, the bioluminescent response ratio 

maintained stable, indicating the late exponential phase and saturated expression of recA 
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gene. 

The increasing bioluminescent response of Bio-DGT with deployment time was 

attributed to the integrals of heavy metal flux. The activation of SOS-related recA gene 

was regulated by the ssDNA caused by DNA damage, and it reflected the impacts of 

heavy metal exposure and could be quantified by the total flux of heavy metal. In Bio-

DGT treatment, the increasing bioluminescent signals was used to calculate the integral 

heavy metal flux at different deployment time. The good fitting curve (Figure 5.4C) 

suggested the positive heavy metal exposure relationship between Bio-DGT 

accumulation and biological response. 
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 Figure 5.4 Bioluminescence dynamics (A) and bioluminescent response ratio (B) of 

Bio-DGT under different deployment treatments (0 to 7 days). (C) Dose-effect 

correlation between bioluminescent response ratio and heavy metal (Cd) concentrations. 
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5.3.4 Effects of pH and Ionic Strength 

The wide variety of environmental variables in real samples might affect the 

performance of bioreporter. The feasibility needs to be validated for environmental 

sample detection. The robustness of Bio-DGT has been tested under different pH and 

ionic strength conditions. 

The effect of pH on bioreporter response was examined in the pH range of 4 to 8, 

most relevant to natural waters and soils (Fig. 5.5). The difference of bioluminescent 

signals of pH 4.0 to 8.0 were within 7%, similar to the previous research on the pH 

influence on A. baylyi ADP1 and ADPWH_recA  that Acinetobacter based bioreporter 

could tolerate large pH variation (Jia et al., 2016, Li et al., 2009). The ratios of Cd 

concentration measured by Bio-DGT to the concentration measured by ICP-MS were 

illustrated in Figure 5.5A for each tested pH. All three results were in the accepted range 

of 0.9 to 1.1 confirming the accuracy of Bio-DGT measurements under natural 

environmental pH ranges for waters and soils. The bioluminescent response of Bio-

DGT did not change significantly under different pH, attributing to the robustness of 

the Acinetobacter strain.  

The effect of ionic strength was investigated by deploying Bio-DGT devices in 

solutions containing 1mM, 10mM, 0.1M and 0.5M NaNO3. High ionic strength 

significantly inhibited the bioreporter viability and reduced the response sensitivity, as 

illustrated in Figure 5.6. The bioreporters are difficult to survive in high salinity 

environment may due to plasmolysis appeared in the cells. The Cd concentrations 



120 

 

measured by DGT and directly by ICP-MS in deployment solutions were in good 

agreement for all ionic strengths, similar results as previously published work (Figure 

5.6) (Gimpel et al., 2001).  

 

Figure 5.5 Effect of pH on Bio-DGT performance. Deployment solution containing 

10μg L-1 of Cd(II); I=0.01mol L-1 NaNO3 at various pH levels, and pH=6.0 at various 

ionic strengths; t=2 d; T=25±0.5℃. 
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Figure 5.6 Effect of ionic strength on Bio-DGT performance. Deployment solution 

containing 10μg L-1 Cd(II); I=0.01mol L-1 NaNO3 at various pH levels, and pH=6.0 at 

various ionic strengths; t=2 d; T=25±0.5℃. 
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(Figure 5.7) before significant reduction at 40 days. The test was carried out for 60 days. 

Slight reduction of bioluminescent signal with time was observed after 30 days. The 

results indicate the robustness and reasonable long shelf life of the Bio-DGT, making it 

viable for applications in environmental monitoring. 

 

  

Figure 5.7 The bioluminescent signal and viability of Bio-DGT devices in response to 

storage time for up to 40 days at 4°C. They were measured in 0.01 M NaNO3. 
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devices are deployed for 1 day at 20 oC, the MDLs for control DGT and Bio-DGT would 

be 0.15 and 0.20 μg L-1, respectively. For 7 days deployment at 20℃, the MDLs would 

be 0.02 and 0.03μg/L, respectively. The method precision for data obtained by Bio-

DGTs was between 1% to 10% in all performance test experiments and 6% to 17% in 

soil applications presented in section 5.3.8.  

 

5.3.7 Bio-DGT Application in Soils 

The results of bioluminescent response in the diffusive gels of the Bio-DGT devices 

and the DGT measured Cd concentrations in soil samples are presented in Figure 5.8. 

The bioluminescent response ratio was calculated by dividing the RLU of Bio-DGT 

which deployed in soil samples by the blank Bio-DGT. A positive correlation between 

the bioluminescent response ratio and the concentration of Cd measured by Bio-DGT 

can be observed in Figure 5.8. The soil with greater available Cd concentration has 

higher response ratio indicating more toxic situation with possible DNA damage to the 

cells in Bio-DGT.    
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Figure 5.8 The bioluminescent response in the diffusive gels of the Bio-DGT devices 

and the DGT measured Cd concentrations in soil samples. 
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difference even though the concentration of Mn was 1000 times higher than that of Cd. 

There was lack of literature on Mn affects the bioreporter and no direct evidence shows 

Mn will damage RecA gene. 
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5.4 Conclusions 

This study was to develop a new DGT technique, Bio-DGT that can measure in situ 

labile metal concentrations and toxicity of metals simultaneously. As a robust and 

adaptable bacteria, ADPWH_recA was successfully grow in agarose gel as the diffusive 

layer during the deployment. Bio-DGT showed high uniformity in bioluminescence 

throughout the induction time and the optimal immobilization temperature was set as 

50 ºC. It also demonstrated that the metal ions associated with ADPWH_recA have 

negligible effect on the measurements of metals by DGT. The novel Bio-DGT has 

achieved a reliable and stable measurement of metals in a wide range of pH and ionic 

strength except the high salinity.    

The application in soils, showed the Bio-DGT can provide a simple and effective way 

to measure toxicity and concentration of heavy metals at same time in the same location. 

A positive correlation was obtained between the bioluminescent response ratio and the 

concentration of Cd measured by Bio-DGT in soils with a wide range of properties. 

Although there are more tests need to be done on combining microorganisms and DGT, 

this work has demonstrated a significant step forward from the previous study (Baker 

et al., 2015). It successfully build a bridge between chemical monitoring and biological 

monitoring. Future studies could be focused on developing more selective and sensitive 

biosensor to improve the effectiveness of Bio-DGT. Bio-DGT could be used widely for 

continuous monitoring of heavy metals in both contamination level and toxicity effect 

to biota in the environment. 
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Chapter 6 Field Applications of DGT as Rapid 

Screening Technology for Metals and P 

 

6.1 Introduction  

6.1.1 Field Evaluation of DGT  

  Passive sampling, as an alternative to overcome some of difficulties of traditional 

sampling, has been widely used for monitoring a variety of pollutants (Seethapathy et 

al., 2008). Passive samplers avoid many of the problems mentioned above, since they 

collect the target analytes in situ and without affecting the bulk solution. Diffusive 

gradients in thin films (DGT) is a in situ passive sampling technique, which has been 

successfully applied in a variety of environmental monitoring projects on hazardous 

radionuclides, trace metals, nutrients, organic contaminants and pharmaceuticals 

(Mengistu et al., 2012). DGT samplers have also been deployed to assess levels of 

aluminium pollution in the fish populations of Norway and to determine the source of 

elevated the metal successfully. DGT measured Al made a better prediction of the fish 

gill uptake and the aluminium-induced physiological stress responses of fishes than 

laboratory-determined labile monomeric aluminium (Royset et al., 2005). Monitoring 

the changes in heavy metal concentrations using DGT measurements also demonstrates 

how various cycles and events within estuaries are related. DGT measurements were 

taken at twelve sites in Broadwater, south-east Queensland, Australia for 6 hours over 

a 4 week period (Dunn et al., 2007). By choosing the probes deployment period 
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carefully, changes in heavy metal concentration due to estuarine events (storm water 

run-off, recreational boating season) and cycles (tidal currents and flushing) were 

observed using the DGT technique. In addition, DGT samplers have been used to 

evaluate the concentration of metals in the water of thirteen estuaries in the south-

eastern Bay of Biscay, France (Montero et al., 2012). The results demonstrate that DGTs 

can measure labile metal concentrations in a reproducible way, providing a 

representative average labile metal concentration in highly fluctuating systems, such as 

estuaries. This reaffirms the potential of using DGT for the chemical evaluation of 

transitional water bodies within the Water Framework Directive (WFD). Moreover, 

DGT has been confirmed as reliable tool to evaluate metal fractionation in wastewater 

which successfully distinguished between labile and inert forms of metals in wastewater 

(Buzier et al., 2006). The DGT technique was also effective at taking in situ 

measurements of reactive phosphorus in freshwater aquaculture. However, the high 

concentration of phosphorus and suspended matter in aquaculture freshwaters can lead 

to biofilm build up on the surface of the filter membrane of DGT samplers. As a result, 

DGT must only be deployed for a maximum of four days to ensure the technique yields 

a good response (Pichette et al., 2009). Besides, in other scenarios, the DGT technique 

excels. For example, when determining the bioavailability of heavy metals in wheat 

fields where the soils are affected by different sources of metal pollution, the DGT 

technique is by far the most widely applicable method used to assess heavy metal 

bioavailability in soils. It has successfully predicted the in root concentration of Cu, Ni, 
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Pb and Zn, and it was able to distinguish between low and high Cr concentration 

(Soriano-Disla et al., 2010).  

 

6.1.2 Aim of Work 

  In this chapter, Metsorb DGT, ZrO DGT and Chelex DGT have been applied in five 

regions of China, including upstream of a water reservoir, in fish and shrimp farms, in 

agricultural soil, and in mining areas. The concentration of P was measured by Metsorb 

DGT and ZrO DGT followed by the conventional molybdenum blue method as 

described in Chapter 3. The concentration of metals was measured by Chelex DGT as 

described in Chapter 4. The aim of the study was to apply the newly developed rapid 

screen technique, for the chemical monitoring by combining DGT and colorimetry, in 

situ in different environmental conditions. The specific objectives of this work were (i) 

to investigate the field applicability of the new DGT approach with colorimetry for 

measuring metals and P, (ii) to assess how efficient DGT devices are at distinguishing 

different concentrations and types of contamination in various aquatic systems.    

 

6.2 Field Sites 

To test the applicability of the DGT devices, five different field sites in different 

parts of China were chosen.  

6.2.1 Rivers in Suburb of Beijing  

The River Chao is located in Miyun County, which is eighty kilometres northeast of 
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downtown Beijing. The Miyun Reservoir divides the river into two parts. The upstream 

of River Chao stretches 24 kilometres and the drainage area, which is located in a hilly 

area, is 234.5 kilometres square. The eight sites were distributed across two different 

villages, two bridges and a hydrometric station. The Miyun Reservoir is one of Beijing’s 

main sources of potable water. It has a catchment area of 15,788 square kilometres and 

a maximum storage capacity of 4.375 billion cubic metres.    

 
Figure 6.1 Location of field sites where phosphorus was monitored by ZrO-DGT in 

Beijing, China. Sites 1-4 are located upstream in the River Chao and sites 5-8 on the 

River Qingshui. River Qingshui is a tributary of the River Chao. The latter goes to the 

Miyun Reservoir.  

   

6.2.2 Rivers near Tianjing 

The Yongding, Chaobai and Jiyun rivers are tributaries of the Hai River, which 

flows into the Bohai Sea. The Yongding River is 650 kilometres in length and drains an 

area of 47,016 kilometres square. It emerges from Shanxi province and flows northeast 

into Inner Mongolia, then heads southeast into Hebei Province. Well known as the 

largest river to flow through Beijing, the water quality of the Yongding River has 
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received a lot of attention. Many researchers reported P pollution in the Yonding River 

being very severe (Xiaowen, 2010, Tao). The Chaobai River originates in Beijing at the 

confluence of its two main tributaries, the Chao and Bai River, about 3 kilometres south 

of the town of Miyun and 16 kilometres south of the Miyun Reservoir, Beijing. Sites 4-

6 are located on the new Chaobai River, which is the southeast branch of the Chaobai 

River, which meets the Yongding River at Tianjin before it empties into the Bohai Sea. 

The Chaobai River has a length of 275 kilometres and the New Chaobai River has a 

length of 180 kilometres.  

 

 

 

Figure 6.2 Location of field sites for monitoring of phosphorus by Metsorb DGT in 

Tianjing, China. Site 1 and 7 are located on fish and shrimp farms. Site 2 is located on 

a wastewater reservoir. Site 3 is located on the Yongding River. Site 4 is situated on the 

confluence of the Yongding and Chaobai River. Site 5 is located on the Chaobai River. 

Site 6 is located on the Qilihai Reservoir, which is filled by the Chaobai River. Site 8 is 

located on the Jiyun River. Site 9 is located on the Yanghuzi River.  
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6.2.3 Lakes and Fsh-farms near Yueyang  

Dongting Lake is a large, shallow lake located in the northeast of Hunan province, 

China (28° 30'-30° 20' North, 110° 40' - 113° 10' East). It is a flood basin of the Yangtze 

River. Hence, the size of lake depends on the season. The surface usually is 2,820 

kilometres square and may increase to 20,000 kilometres square during flood season 

(July to September). 

Due to the rapid development of industries in the surrounding areas, 100 million 

tonnes of wastewater from over 200 paper manufacturers is dumped into the lake each 

year (2011a). Before 2003, the water from this lake mostly belonged in class III of the 

water quality identification index, but after 2003, the water quality dropped into class 

IV (LI Zhongwu, 2013).     
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Figure 6.3 Location of field sites for monitoring Copper in Yueyang, Hunnai, China. 

Site 1 is located on the Dongting Lake. Site 2 is located on the Nan Lake. Sites 3-9 are 

located in the fish farms of different villages in Yueyang. 

 

6.2.4 Mining Sites in Yunnan 

Dongchuan copper ore field is the third largest copper mining area in China. It 

extends over an area of about 660 kilometres square around Dongchuan city, about 120 

kilometres north of Kunming (26° 10' 48'' N, 103° 3' 35'' E). It includes the Tangdan, 

Luoxue, Yinmin, Xintang, Lanniping-Baixila, Lanniping-Suoyipo and Shijiangjun 

copper mines, of which the Tangdan and Luoxue mines are the largest. It is estimated 

that the Tangdan mine alone reaches almost 5 million tonnes of copper ore deposit. 
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Figure 6.4 Location of field sites for monitoring Cu in water in Tangdan Copper ore 

field, Dongchuan,  Yunan, China. Sites 1 and 4 are located on tailing ponds. Sites 2 and 

3 are located on streams which run through the Copper ore field. Site 5 is located on the 

freshwater stream in Tangdan Town.  
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Figure 6.5 Location of field sites for monitoring Cu in Soil in Dongchuan Copper ore 

field, Yunan, China. Sample 1 was collected at tailings of Tangdan copper mines. 

Samples 2-4 were collected at Tangdan in the opencast mining area. Sample 5 was 

collected in a hole of the ore field. Samples 6-11 were collected from the agricultural 

soil near the ore field. Sample 11 was collected in the green area near the Tangdan 

concentrator plant.  
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6.2.5 Agriculture Field Sites. 

  Eight soils were collected from Zhangliang experimental station, Tianshui municipal 

agricultural science institute, Tianshui, Gansu province (34°05′ N，104°05′ E). In this 

area the highest temperature reaches 35 °C and the lowest temperature -19 °C. The 

average annual temperature of this sample site is 11 °C. The texture of the soil was silty 

clay and the pH of the soil was around 8. Eight soils were collected from different split-

plot experimental areas. Four soils had 0 tonnes km-2 (no fertilizer added), 7.5 tonnes 

km-2, 15 tonnes km-2, 22.5 tonnes km-2 P fertilizer applied. Another four soils had the 

same gradients of P fertilization but with a 750 tonnes km-2 chicken manure added.   

 

 

Figure 6.6 Location of field sites for monitoring P in Soil in Tianshui, Gansu, China. 
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6.3 The Design for Field Deployment 

The DGT devices were deployed in several fish and shrimp farms in Tianjing and 

Yueyang. To prevent fish from interfering with the measurements, the DGT devices 

were deployed between two plastic baskets (the DGT devices were fixed on one basket 

and another basket covered it to form a sphere) (Figure 6.7), attached to a rope and float, 

then weighted to the river bed. These DGT stations were deployed 2-3 metres from the 

river bed.      

 

   

 

 

 

Figure 6.7 (Left) Photograph of DGT units held in place by a plastic basket. Prior to 

deployment, another plastic basket was used to cover the devices, thus forming a 

spherical shape. The basket held up to six devices at each sampling site. (Middle) DGT 

deployment in fish farm in Tianjing. (Right) DGT deployment in the fish farm in 

Yueyang. 

 

6.4 Materials and Methods 

6.4.1 Materials and Preparation of DGT  

All experimental and reagent solutions were prepared using MQ water (18MΩ). 

Chemicals were of analytical grade or higher. Sampling bottles and containers were 

acid-washed using a 10% v/v HNO3 bath and rinsed thoroughly with MQ water prior to 

use.  
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  The production of diffusive gel and Chelex-100 resin gel was described in Chapter 

4.2.2. The Metsorb binding gel was prepared as described in Chapter 3. 

 The ZrO binding gel was prepared according to published procedure (Ding et al., 2010). 

Briefly, 2 g of the half-dried Zr-oxide was added to 4 ml of the gel solution composed 

of 28.5% acrylamide (w/v) and 1.5% N, Ń-methylene bisacrylamide (w/v). This mixture 

was then dispersed in an ultrasonic disruptor after it was thoroughly ground in an agate 

mortar. After removing the settled particles, 3.0 μL TEMED catalyst and 75 μL freshly 

prepared ammonium persulfate initiator (10%, w/v) were added to the mixture. The 

solution was cast between glass plates, which were separated by 0.4-mm plastic spacers. 

The glass plate assembly was placed in an incubator at 10 ± 1 °C for 30 minutes to allow 

the Zr-oxide to settle to one side of the gel. It was then transferred to an oven at 45 ± 

1 °C to polymerize for 30 minutes. The gel sheet removed from the glass plates was 

soaked in MQ water for at least 24 h (the water was replaced 2−3 times) and stored in 

MQ water prior to use.  

  The devices were assembled using the method detailed in Chapter 4 and stored at 

4 °C in zip lock plastic bags, containing 0.5 mL of 0.01 M NaNO3 solution (ionic 

strength matched to freshwater deployment site) to ensure the diffusion properties of 

the gels were not altered, and to prevent the gels from drying out.  
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6.4.2 DGT Deployment in Waters  

  Different types of DGT devices were deployed to determine P and metals in waters 

in China (Table 6.1)  

Table 6.1 Information of DGT deployment in water 

Site 

location 
Water type DGT type 

Average 

Temperature (°C) 

Deployment 

time 

Beijing Rivers ZrO-DGT 23 2 d 

Tianjing 
Rivers and fish-

farms 

Metsorb-

DGT 
25 5 h 

Yueyang 
Lakes and fish-

farms 

Chelex-

DGT 
17 8 h 

Dongchuan mining site 
Chelex-

DGT 
16 18 h 

 

  ZrO DGT devices were deployed in streams for two days in September 2015 in River 

Chao and River Qingshui in Beijing, China. The DGT devices were deployed at around 

0.5 m depth. The water temperatures were 21 to 25 °C. Metsorb DGT devices were 

deployed in Yongding, Chanbai, Jiyun and Yanghuzi River, and fish and shrimp farms  

for approximately 5 hours in May 2017 in Tianjing, China. The water temperatures were 

20 to 29 °C. The deployment times for P were calculated based on the Chinese 

Environmental Quality Standards for P for surface water. Chelex-DGT devices were 

deployed in lakes and fish farms at 1 m of depth and collected after approximately 10 h 

of deployment in September 2016 in Yueyang, China. The water temperatures were 16 

to 20 °C. Further Chelex-DGT devices were deployed in streams that flowed through 

copper ore fields for approximately 18 h in May 2017 in Dongchuan, China. The water 
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temperatures were 16 to 17 °C. Three DGT devices were deployed at each sampling 

site. At each deployment and retrieval of the DGT devices, water samples were 

collected into 1L PE bottles and their temperatures were recorded. When retrieved, the 

DGT exposition window was cleaned with MQ water to remove any particles adhered 

to the surface, and each device was stored in an individual zip lock plastic bag. The 

DGT devices were transported to the laboratory and stored at 4 °C until further sample 

treatment and analysis.   

 

6.4.3 DGT Deployment in Soils 

  Surface soil samples were collected from the surface of the sites. They were air dried 

and then passed through a 2mm mesh sieve for the DGT measurements. All DGT 

deployments were carried out using a standard procedure was described in Chapter 5.2.5. 

 

6.4.4 Colour Development on Binding gels  

The mixed reagent used to determine P was the molybdenum blue method based on 

Murphy and Riley’s research(Murphy and Riley, 1962), which is described in Chapter 

3. The Metsorb DGT was rinsed with MQ water before being placed in a 100 mL 

container with 20 mL of mixed reagent. It was then tested for colouration directly 

without disassembling the device. They were kept at room temperature (20-22 °C) for 

20 min.  

For the ZrO DGT devices, the binding gel disc was removed from the DGT sampler 
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and rinsed with MQ water before being placed in a 100 mL container with 20 mL of 

mixed reagent for colour development. 

 

6.4.5 CID Analysis 

The steps of CID analysis using flat-bed scanner and Image J 1.48 were described in 

Chapter 3 and Chapter 4. 

 

6.4.6 Gel Elution 

  The steps of gel Elution and elution efficiency was described in Chapter 3 and 

Chapter 4.  

 

6.4.7 Water Sampling during DGT Deployments 

Water sampling was carried out by collecting 1 L of water at a depth of 0.5m from 

the surface as the same depth of DGT deployment for all sites at the beginning and end 

of DGT deployments. The PE sample bottles were filled with 0.1% HCl to reduce the 

risk of metals binding to the container walls during transportation into the field. Prior 

to sampling, the 0.1% HCl was discarded and the bottles were rinsed thoroughly with 

sample water to ensure that all acid was removed. At each site during DGT deployment 

and retrieval, the waters’ temperatures were measured. The turbid water samples were 

pre-filtered through a 0.45μm membrane filters prior to acidification with Sulphuric 

Acid (pH<2). Samplers were then kept at 4°C until analysis.   
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  Based on the Chinese water environment quality standards, the total level of 

phosphorus in the water was determined by the ammonium molybdate 

spectrophotometric method. The total level of copper in the water was determined by 

ICP-MS. 

 

6.4.8 Soil Analysis  

Soil samples for chemical analyses were dried at 35 °C in an air drying cabinet. They 

were then ground in a roller mill until it could pass through a 2-mm sieve. Where a test 

uses a small sample weight, a more homogeneous subsample was prepared by further 

grinding using a ring and puck mill. When measuring P in the soil, the soil was ground 

until it could pass through a 0.25-mm sieve. When measuring Cu in the soil, the soil 

was ground until it could pass through a 0.18-mm sieve.  

The total level of copper in the soil was determined by flame atomic absorption 

spectrometry after HCl- HNO3-HClO4 digestion (MEP, 1995). The total level of P in 

the soil was determined by the alkali fusion-Mo-Sb Anti spectrophotometric method 

and the total level of available P was determined by Mo-Sb anti spectrophotometric 

method (molybdenum blue method) after the Sodium hydrogen carbonate solution 

extraction (Protection, 2011, Protection, 2014).    
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6.5 Results and Discussions  

6.5.1 Assessing the Concentration of P in Rivers using ZrO DGT Samplers  

ZrO-DGT samplers were deployed for two days at eight sites in two rivers that run 

through four different villages before flowing into a reservoir. After deployment, their 

grayscale intensities were obtained according to the procedure described earlier. The 

results of grayscale intensity, mass and the concentration of P obtained by DGT and by 

direct water sample analysis are presented in Table 6.2. The scanned images of the 

coloured P-loaded gels of each sample are shown in Figure 6.8.  

As the diffusive gel layer was omitted for enhancing the sensitivity, the diffusive 

boundary layer thickness, δ, cannot be assumed as negligibly small. The measured 

concentration, C, is, therefore, calculated by equation 3.1. 

A Diffusive Boundary Layer (DBL) thickness of 0.39mm was indicated in previous 

work for a typical flow of river and stream of 0.02 m sec-1, and the effective resin gel 

area was used as 3.80 cm2 in this case (Warnken et al., 2006, Zhang et al., 1998a). As 

the water flow of the two rivers were similar to the typical flow, DBL of 0.39 mm and 

an effective surface area of 3.80 cm2 were used for calculations in this work. It is worth 

noting that site 5 was lost because the river was closed on the day of retrieval to clean 

up of the upstream river bed. The grayscale intensity of sample 1 and sample 7 were out 

of the linear range of calibration (up to 116) and the results may not be accurate. 
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Table 6.2 The grayscale intensity, massa and CDGT of samples, the Csol  in water 

system analysis by Continuous flow analysis(CFA) and Ammonium molybdate 

spectrophotometry 

Siteb Grayscale intensity Mass (μg) CDGT (mg L-1) Csol (mg L-1) 

1 168.14 7.18 0.078 0.201 

2 104.97 2.08 0.022 0.042 

3 122.88 3.52 0.038 0.042 

4 112.69 2.70 0.029 0.046 

6 106.95 2.24 0.024 0.043 

7 209.08 10.49 0.113 0.43 

8 117.07 3.05 0.033 0.046 

a Mass of P accumulated on the gel surface was calculated using the linear calibration ; 
b Sites 1-4 are located upstream in the River Chao and sites 6-8 on the River Qingshui. 

River Qingshui is a tributary of the River Chao. The latter goes to the Miyun Reservoir. 

 

 

Figure 6.8 The scanned images of the coloured P-loaded gels of each sample after 

colouration treatment. Three DGT devices were deployed at each site. The Relative 

Standard Deviation (RSD) of the grayscale intensities ranged between 4% and 11%. 

 

  Compared to the concentration of P in water samples, the concentration of DGT-

measured P were generally lower. There are two possible explanations for this: i) DGT 

was assessing the measurement of bioavailable P rather than total P, ii) the larger size 

particles may exist in a different aquatic system and they were not able to diffuse into 

the DGT because the much smaller pore size of the gel that coated the surface of the 

resin.   

In these two rivers, the concentration of P was mostly up to national standard except 
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for site 7. Site 7 was located in the vicinity of a village so it is possible that the 

concentration of P in the stream was higher due to runoff from agricultural land with 

excessive P fertilisation and treated or untreated sewage. Additionally, the rivers where 

the samples were taken run through the Hebei province and up to Beijing, where there 

are numerous big farms and industries. The colour on the gel surfaces deployed in site 

1 and site 7, which were located upstream near Hebei province, were significantly 

darker than other sites. This was mainly caused by contamination from the Hebei 

province. However, the amount of P found in other sites were below the regulation limits 

set by Chinese authority, which is 0.2 mg L-1. The concentration of P in the rivers have 

been effectively reduced by an ecological purification system in Beijing (Figure 6.9).  
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Figure 6.9 Photo of eco-purification of Chao River in Beijing, China. Bulrush and reeds 

extract phosphorus from the river. Weirs retain the water in a sequence of basins while 

the ecosystem cleans the water of impurities. Water is aerated upon exit to increase the 

amount of oxygen dissolved in the water.  

 

6.5.2 Assessing the Concentration of P in Waters and Soils Using Metsorb DGT 

Samplers 

Metsorb DGT devices were used to measure P in rivers in Tianjing for a duration of 

between 4-5 h. The exact length of time the DGT deployment varied according to the 

different water temperatures. The time of monitoring was determined according to the 

Maximum Contaminant Level of P based on the standard which was explained in 

chapter 3.4.7. The results of grayscale intensity, mass and the concentration of P 

measured by DGT and by direct water sample analysis are presented in Table 6.3. The 

example images of P-loaded binding gel was given in Figure 6.10. The grayscale 
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intensity of sample 2 exceeded the maximum intensity of colour development where 

the intensity was no long respond to the P mass.  Therefore, the mass accumulated on 

the surface of gel cannot be obtained from the grayscale intensity. The grayscale 

intensity of sample 1 and sample 3 were outside of the linear range of the calibration 

(up to 3.3μg) and the results obtained may not be accurate. The calculation of mass of 

P in sample 4 to 9 is eligible as they are all within the linear range of the calibration. 

With a known mass, M, the concentration of DGT-measured P can obtain from the 

equation 2.6. The scanned images of the coloured P-loaded gels have obvious 

differences from each sites. 

 

Table 6.3 The grayscale intensity, massa and CDGT of samples, the Csol in water 

system analysis by Continuous flow analysis(CFA) and Ammonium molybdate 

spectrophotometry 

Sampleb Grayscale intensity Mass (μg) CDGT (mg L-1) Csol (mg L-1) 

1 141.81 3.20 0.37 1.12 

2 182.95 / / 2.24 

3 151.65 3.57 0.41 0.97 

4 129.02 2.72 0.31 0.51 

5 66.88 0.40 0.05 0.24 

6 104.91 1.82 0.21 0.48 

7 93.43 1.39 0.16 0.36 

8 89.84 1.26 0.14 0.28 

9 86.42 1.13 0.13 0.37 

a Mass of P accumulated on the gel surface was calculated using the linear calibration ; 
b Sample 1,6,7 are fish and shrimp farms; sample 3,4,5,8,9 are freshwater streams in 

Tianjin City and Sample 2 is the wastewater reservoir. 
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Figure 6.10 The scanned images of the coloured P-loaded gels from each sample. Three 

DGT units were deployed at each site as triplicate. The Relative Standard Deviation 

(RSD) of the grayscale intensities were in the range of 2% to 9%.  

 

Sites 1-3 were 1.5 to 2 times higher than the national water standard in China. 

According to DGT-measured result, P concentration of other sites is slightly higher or 

just about the standard limit. As reported in the Telegraph, the harmful effects of nutrient 

pollution from fish farms is as serious as sewage (Clover, 2000). Phosphorus (P) is the 

main end-product of fish loading, and it can affect not only the rearing water, but also 

the whole environment (Lazzari and Baldisserotto, 2008). The concentration of P in the 

two main rivers which run through Tianjing (Yongding and Chaobai River) were higher 

than other streams. The untreated household sewage from the dense residential areas by 

riverside may become the main resource of the P contamination in the two rivers.  

Compared to the concentration of P in water samples, the concentration of DGT-

measured P were generally lower. It’s mainly because of the P species in the water 

system. Metsorb DGT could only measure the dissolved reactive phosphorus (DRP) 

(also called soluble reactive phosphorus) in the natural water. Therefore, when the CDGT 

is close to the standard level, it is necessary to using other analysis method to ensure 

the total P concentration.  

  For soil application, Metsorb DGT devices were deployed for 24 h in eight soils 

collected from Tianshui, Gansu. The soils correspond to a wide range of P statuses, 
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which is reflected in the parameters shown in Table 6.4. Olsen P ranged from 21.7 to 

115.7 mg kg-1. CK is original soil without fertilization. P5, P10, P15 were with the P 

fertilizer applied at the amount of 7.5 tonnes km-2, 15 tonnes km-2, 22.5 tonnes km-2 P 

fertilizer applied respectively. M, MP5, MP10, MP15 had the same gradients of P 

fertilization but with a750 tonnes km-2 chicken manure addition.   

  After obtaining the grayscale intensity of each gel surface by scanning it, the mass of 

P accumulated in the gel was calculated using the equation of calibration mentioned in 

Chapter 3. The concentration of DGT measured P was calculated using equation 2.6.  

  

Table 6.4 Phosphorus Concentrations in Ptot, POlsen, PDGT  

Soil CK P5 P10 P15 M MP5 MP10 MP15 

CPOlsen(mg kg-1)a 21.7 39.7 56.8 68.8 61.5 67.4 115.7 103.6 

CPtot (mg kg-1)b 867.1 929.0 1053.6 1066.9 987.4 1031.2 1168.1 1182.5 

CPDGT(mg L-1)c 0.09±0.01 0.14±0.02 0.24±0.1 0.31±0.07 0.17±0.01 0.22±0.06 0.35±0.07 0.37±0.1 

a CPOlsen is measured by the sodium hydrogen carbonate solution-Mo-Sb anti 

spectrophotometric method. 
b CPtot is measured by the alkali fusion-Mo-Sb anti spectrophotometric method 
c CPDGT is calculated from the grayscale intensity of the gel surface. Three DGT units were 

deployed at each site as a triplicate.  

   

The difference between PDGT and POlsen is not surprising. The DGT measured P 

includes P from the solution and resupply from the solid phase. However, P extraction 

methods just consider P to maintain an equilibrium with a constant solid to solution 

ratio (Menezes-Blackburn et al., 2016).  
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There is a significant relationship between the phosphorus concentration in PDGT and 

POlsen (Figure 6.11) as they share a similar trend. The amount of available phosphorus is 

very low compared with the total amount of phosphorus in the soil. However, the 

bioavailable P measured by DGT and Olsen P extraction displayed a similar tendency 

towards the gradients of fertilization.  

 

Figure 6.11 The concentration of Olsen-P and DGT-measured P in different soil 

samples. 

  

Compared to the deployment of DGT units in freshwater, the grayscale intensity on 

the gel surface varied slightly where there were high concentrations of P in the soil. The 

Relative Standard Deviation (RSD) of the grayscale intensities ranged between 4% and 

17%, which was considerably higher than measurements taken in the freshwater stream. 
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The RSD of concentration in PDGT ranged between 9% and 23%.  

         

6.5.3 Assessing the Concentration of Cu in Waters and Soils Using Chelex-DGT 

Samplers 

The Chelex-DGT devices were deployed in various aquatic system including fish 

farms, lakes and freshwater streams for a certain amount of time, which varied 

according to the temperature of the water. The deployment time was determined by 

using the guild standard list (Table 4.1). Two things were needed to assess whether or 

not the concentration of Cu in the water exceeded standard regulations: the DGT 

deployment time (hours) and the visual inspection of colour change, formulated and 

described in Chapter 4.  

  After recommended deployment time, there was no visible blue colour or other colour 

observed on all gel discs. This means all the concentrations of Cu were below the 

standard regulation level. To identify the exact concentrations of Cu measured by DGT, 

the gel discs were eluted by 1M HNO3 and determined by ICP-MS. Water samples taken 

at the time of deployment were analyzed for total dissolved Cu. Results show 

considerable variability in both Cu concentration and speciation (Figure 6.12, Figure 

6.13). 

Triplicate Chelex-DGT devices were deployed for approximately 8 h at an average 

temperature of 17 °C in Yueyang, Hunan, China. All DGT-labile Cu accounted for over 

75% of the total dissolved concentrations and dominated the dissolved fraction. The 
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RSD of the concentration of DGT-liable Cu ranged between 0.9% and 12%, with an 

average of 6%. The concentrations of copper reached the Environmental Quality 

Standards for Surface Water of China (<10 μg L-1 for fish farming), which was 

consistent with the result obtained from the rapid screening technique.   

 

Figure 6.12 Total dissolved and DGT-labile Cu in lakes, ponds, and fish farms in 

Yueyang, Hunan in September 2015. Sites 1 and 2 are located on a lake; sites 3-8 are 

located on fish farms.  

 

Triplicate Chelex-DGT devices were deployed for 17 to 18 h at an average 

temperature of 16 °C in Dongchuan, China and the results are presented in Figure 6.13. 

In the tailing ponds and the streams that flow through the copper ore field, DGT-labile 

Cu accounted for more than 70% of the total concentrations and dominated the 

dissolved fraction. The DGT-labile Cu in the freshwater stream that flows through the 

town only accounts for 7% of the total dissolved concentrations. DGT measures labile 

metals species that can pass through the pores of the diffusive layer. Both small 
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inorganic metal species and complex metal substances can pass through the gel, but 

large colloidal species cannot. 

 

Figure 6.13 Total dissolved and DGT-labile Cu in different bodies of water in the 

Tangdan copper ore field in May 2017. Sites 1 and 4 are located on the tailing ponds. 

Sites 2 and 3 are located on streams that flow through the copper ore field. Site 5 is 

located on the freshwater steam in Tangdan Town, Dongchuan, China.  

 

A precision of 10% or better has been claimed for the DGT method(Zhang and 

Davison, 1995). The biggest uncertainty is usually associated with the handling of 

samples (sample treatment, elution, dilution and analysis), but there are also 

uncertainties in the diffusion coefficient (D), the proportion of metal extracted from the 

resin (fe) and the gel thickness (Δg). The RSD of the concentration of DGT-liable Cu 

was within 11%, with an average of 8%.  

The concentrations of copper were within the Environmental Quality Standards for 
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Surface Water of China (<1 mg L-1), which is consistent with the result obtained from 

the rapid screening technique.   

 

Soils The soils collected for this study correspond to a wide range of Cu statuses, which 

is reflected in the parameters displayed in Table 6.4. Available Cu measured by DETA 

extraction ranges from 8 to 1309 mg kg-1. In this study half of the soils contained very 

high available Cu (>200mg kg-1). All of the soils had intense colour of dark brown 

except for site 1 (tailings). After a 24 h deployment, the blue colour was only observed 

on the surface of the gel in sample 1. The concentration of DGT-measured Cu is 1.87 

mg L-1 (29 μM). Since generally the Cu concertation beyond 10.5 μM was toxic to plant 

growth (Cook et al., 1998), soils in site 1 should not be exposed outside mining site 

without treatment. For other samples, only the brown colour were observed on the 

surface of the gel which transformed from the soils with dark brown colour, possibly 

due to high OM content (Figure 6.14).       
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Figure 6.14 a) The scanned image of the coloured Cu-loaded gels from sample 1. b) A 

sample of scanned images of gel deployed in other soils (site 5). c) Photo of soil slurry 

found in site 1. d) Photo of soil slurry found in site 5.  

 

A possible explanation of the result may be attributed to the dissimilarity of soil 

texture. The influence of soil texture on metal solubility in soils is best expressed in 

terms of the division of soils into clay, silt and sand fractions. In previous studies, the 

extractability of Cu by ammonium acetated was always lower in loamy soils than in 

sandy soils (Scokart et al., 1983).  Besides, in the study of soil texture in relation to 

the extractable (0.1 M HCl and DTPA) concentration of Cu, which was generally 

enriched in the clay fraction. By comparison, relatively large amounts of available Cu 

was recorded in the fine sand fraction (Qian et al., 1996). Moreover, a high degree of 

extractability was also observed in the sand fractions of the soil. This was attributed to 

the low binding strength of these fractions (Rieuwerts et al., 1998). In addition, the 
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bioavailability of metals from soil decreases with increasing pH (Morel, 1997). 

Therefore, the bioavailability of copper may be suppressed due to the high pH in these 

soil samples.   

  

6.6 Conclusions 

It is important to develop new monitoring tools for water and soil chemical evaluation 

that are able to comply with the demands of the environmental quality standards or 

regulations of different countries. DGT provides an alternative that overcomes the 

deficiencies of traditional water sampling.   

  All DGT devices were successfully deployed in situ in waters and soils in field sites 

selected in China.  

The deployment of ZrO DGT devices in suburb of Beijing showed the P 

concentration in upstream near Hebei province were exceed the water standard in China 

due to the contamination from Hebei province. After an ecological purification system 

in Beijing, the P concentration in rivers was significantly decreased and reach the water 

standard. 

The deployment of Metsorb DGT devices in Tianjing demonstrated the concentration 

of P in fish farms and rivers near area with dense population were much higher. 

Therefore, fish farms and sanitary wastewater may be the main source of P 

contamination in rivers which run through Tianjing.  

Compared to the concentration of P in water samples, the concentration of DGT-
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measured P were generally lower due to speciation. The larger size particles may exist 

in water samples and they were not able to diffuse into the DGT because the much 

smaller pore size of the gel that coated the surface of the resin. The RSD of grayscale 

intensities in ranged from 2% to 11%.  

 Metsorb DGT devices were deployed in soils from Tianshui, Gansu. Though no 

significant relationship between the phosphorus concentration in PDGT and POlsen was 

demonstrated, the bioavailable P measured by DGT and Olsen P extraction displayed 

the similar tendencies for the gradients of fertilization. The RSD of the grayscale 

intensities and DGT measured concentrations were significantly higher than those of 

deployment in waters.  . 

Chelex DGT devices were deployed in Yueyang and Dongchuan to assess rapidly the 

contamination level of Cu in extremely polluted waters and effluents using colour 

directly from metal ion itself due to accumulation of ions at high concentrations. No 

colour was observed on the surface of the gel after deployment in the water, indicating 

that the quality of the monitored water reached the acceptable water standards. DGT-

labile Cu accounted for more than 70% of the total dissolved concentrations. The results 

produced an average precision for 7% of Cu measured in different rivers, lakes and 

ponds. 

Deployment of Chelex DGT devices on soils showed the possibility of using the 

colour directly from the Cu ions to assess the concentration in sandy soils. Soils with 

dark colour may affect the direct colour reading and may not be suitable for using the 
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rapid screening method developed in this work. One possible solution is adding 

diffusive layer to DGT device since there is no diffusive layer (only filters) used in this 

work. The diffusive layer can resist some organic matters such as humic acid which 

contributed to the dark brown colour in soil. The overall results from the field 

measurements showed the concentrations of P in most of the monitored waters in 

Beijing were low and the quality of the waters has reached the Chinese water quality 

standards for surface water. The concentrations of Cu in monitored aquatic systems of 

all field areas have also reached the Chinese water quality standards for surface water. 
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Chapter 7. Conclusions and Future Work  

 

  With the booming use of diffusive gradient in thin films (DGT) in recent years, a 

variety of novel techniques based on DGT have been developed to enhance the diversity 

and feasibility of DGT application. A number of new types of resin phase (Bennett et 

al., 2010, Baker et al., 2015, Guan et al., 2015, Pan et al., 2015) and analysis methods 

(McGifford et al., 2010, Ding et al., 2013, Kruse et al., 2015) of phosphorus and metals 

have been developed successfully.  

In this study, two novel DGT techniques were developed. Firstly, a rapid screening 

technique based on DGT devices and colour imaging method for assessing phosphorus 

and metal concentrations qualitatively and quantitatively has been developed. Secondly, 

a novel technique with biological material incorporated in the DGT (Bio-DGT) has been 

developed by immobilizing whole-cell toxicity bioreporter ADPWH_recA in the 

diffusive gel to simultaneously measure in situ labile metal concentrations and toxicity 

of metals.  

   

7.1 Rapid in situ Detection of Available Phosphorus and Metals in 

Waters and Soils by Combining DGT and CID. 

This newly developed approach provides several advantages over the traditional 

DGT technique. Firstly, in contrast with the use of UV-spectrophotometer or ICP-MS 

in previous studies, this method uses a scanner, equipment commonly found in most 
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laboratories. Secondly, a more efficient analysing process of P and metals measurement 

has been provided as the elution step was eliminated. 

 

7.1.1 Phosphorus 

The feasibility of combining the Metsorb-DGT method with colour development and 

computer imaging densitometry (CID) as a rapid screening technique to assess the 

phosphorus levels in natural water has been demonstrated in this study. The calibration 

standard in mass of P and the corresponding colour on each binding gel and grayscale 

intensity measurements were fitting with an exponential equation. The calibration 

ranges of grayscale intensity increases from 28 at the background level to 186 at the 

saturation level. There is no further obvious increase in grayscale intensity with 

increasing P loading above a mass of 16 μg. The colouration was uniformly distributed 

on the gels with a low RSD, mostly within 4%. The fully quantitative interpretation of 

P concentration can be assessed in the linear range of 0.3 to 3.2 μg per device. The effect 

of pH and interference of oxyanion metals (As) colour development and the DGT 

measurements are insignificant.  

  The comparison of the performance of the ZrO and Metsorb binding agents in 

colouration was made since the former is also being used in DGT technique combined 

with CID of P measurement. ZrO-DGT was seems not suitable for rapid screening 

technique in natural water due to its 5-day pre-treatment for colour developed and less 

sensitive P calibration. 
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  The field evaluation of the suitability of this technique for monitoring P in natural 

waters was carried in three waterbodies in Tianjin, China. Provided the mass of P 

accumulated on the gel were within the linear range of the colour calibration, the 

concentration of P can be easily and accurately obtained by Metsorb-DGT. The RSDs 

of the concentrations of DGT-measured P were 2% to 9%. 

 

7.1.2 Copper, Nickel and Cobalt  

A Chelex-100 type DGT and high resolution CID measurement for rapid detection of 

metal concentrations in waters has been investigated. Since the amount of copper, nickel 

and cobalt on the binding gel reaches certain level, a distinctive colour will appear on 

the gel, no colour reagent was involved in this technique.  

The calibration curves of copper, cobalt and nickel demonstrated the linear increases 

of the grayscale intensities with the accumulation mass of each metal ion. The 

calibration ranges of grayscale intensity of Cu increase from 28.7 to 117.1. The 

calibration ranges of grayscale intensity of Ni increase from 16.9 to 33.3. The 

calibration ranges of grayscale intensity of Co increase from 23 to 44. The linear range 

of mass accumulation of Cu, Ni and Co were 1.5μg cm-2 to 165μg cm-2, 2.7 μg cm-2 to 

153 μg cm-2, 1.6 μg cm-2 to 159.2 μg cm-2 , respectively, correspond to the concentration 

range of 0.05 to 5 mg L-1 for all three metals if the deployment time is 24 hours and the 

water temperature is 20oC respectively. The method precision for data obtained by DGT-

measured mass was 5% and grayscale intensity on the gel surface is in a range of 7% to 
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14%. 

7.1.3 Cr(VI)  

A rapid screening technique for Cr (VI) using DGT and high resolution CID base on 

the surface colouration of the N-Methyl-D-glucamine (NMDG) binding gel reacting 

with the diphenylcarbazide in an acidic solution has been developed. 

 The relationship between the accumulation of Cr(VI) in NMDG gels and the 

corresponding change in grayscale intensity was perfectly fitted using a quintic 

polynomial in whole range and fitted using a linear equation when the mass of Cr(VI) 

up to 2.47μg cm-2 on the gel surface. With its good selectivity for Cr(VI) and strong 

reddish colour appeared on the white opaque gel, NMDG-DGT combined with 

colorimetric method will be very useful in monitoring of Cr(VI) in aquatic systems. 

 

7.1.4 Use the Simple Screening Technique in Monitoring and in Risk Assessment in 

Waters and Soils 

A guide list for using DGT at different deployment times has been produced to 

determine if the concentration of metals has exceeded Maximum Contaminant Level 

based on regulation standards set by different countries and regions. Because of the 

intense coloration on the gel surface, both using simple visual inspection and using a 

scanner for DGT devices at different deployment time and different temperature have 

been considered in the list. DGT applying to the guide list presented a simple and fast 

in situ pre-measurement before further complicated and costly quantitative analysis in 
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drinking water and effluent monitoring. In this guide list, DGT can be used for rapid 

scanning of Cu in all cases considered, except for UK and EU drinking water when 

detecting by visual inspection. For Co and Ni, this method is adapted to determining the 

contamination in Chinese effluents in which the Maximum Contaminant Level is higher 

compared to other water standards. When a scanner is used for colour detection, DGT 

could be used for monitoring Co in UK and China drinking water. 

  This newly developed rapid screen technique also has been applied for in situ 

monitoring in different waters and soils in China. The overall results from the field 

measurements showed the concentrations of P in most of the monitored waters in 

Beijing were low and the quality of the waters has reached the Chinese water quality 

standards for surface water. The concentrations of Cu in monitored aquatic systems of 

all field areas have also reached the Chinese water quality standards for surface water.  

The deployment of ZrO-DGT devices in suburb of Beijing showed the P 

concentration in upstream near Hebei province were exceed the water standard in China 

due to the contamination from Hebei province. After an ecological purification system 

in Beijing, the P concentration in rivers was significantly decreased and reach the water 

standard. 

Metsorb-DGT devices were deployed in soils from Tianshui, Gansu. Though no 

significant relationship between the phosphorus concentration in PDGT and POlsen was 

demonstrated, the bioavailable P measured by DGT and Olsen P extraction displayed 

the similar tendencies for the gradients of fertilization. The RSD of the grayscale 



164 

 

intensities and DGT measured concentrations were significantly higher than those of 

deployment in waters. 

Chelex-DGT devices were deployed in copper ore area to assess rapidly the 

contamination level of Cu in extremely polluted waters and effluents using colour 

directly from metal ion itself due to accumulation of ions at high concentrations. No 

colour was observed on the surface of the gel after deployment in the water, indicating 

that the quality of the monitored water reached the acceptable water standards. DGT-

labile Cu accounted for more than 70% of the total dissolved concentrations. The results 

produced an average precision for 7% of Cu measured in different rivers, lakes and 

reservoirs. 

Deployment of Chelex-DGT devices on soils showed the possibility of using the 

colour directly from the Cu ions to assess the concentration in sandy soils. Soils with 

dark brown colour may affect the direct colour reading and may not be suitable for using 

the rapid screening method developed in this work. One possible solution is adding 

diffusive layer to DGT device since there is no diffusive layer (only filters) used in this 

work. The diffusive layer can resist some organic matters such as humic acid which 

contributed to the dark brown colour in soil.  

 

7.2 Bio-DGT, a Bridge Between Chemical Monitoring and Biological 

Monitoring. 

This study has developed a new DGT technique, Bio-DGT that can measure in situ 
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labile metal concentrations and toxicity of metals simultaneously. As a robust and 

adaptable bacteria, ADPWH_recA was successfully grow in agarose gel as the diffusive 

layer during the deployment. Bio-DGT showed high uniformity in bioluminescence 

throughout the induction time and the optimal immobilization temperature was set as 

50 ºC. It also demonstrated that the metal ions associated with ADPWH_recA have 

negligible effect on the measurements of metals by DGT. The novel Bio-DGT has 

achieved a reliable and stable measurement of metals in a wide range of pH and ionic 

strength except the high salinity.   

The application in soils, showed the Bio-DGT can provide a simple and effective way 

to measure toxicity and concentration of heavy metals at same time in the same location. 

A positive correlation was obtained between the bioluminescent response ratio and the 

concentration of Cd measured by Bio-DGT in soils with a wide range of properties. 

Although there are more tests need to be done on combining microorganisms and DGT, 

this work has demonstrated a significant step forward from the previous study. 

 

7.3 Future Work 

  This study has provided strong evidence that the new DGT technique can be used in 

a wide range of condition encountered in natural environments for determined metals 

and phosphate. However, there are still some works to improve. For phosphorus, it may 

put interest on enhance the capacity of Metsorb binding phase, for example, pressing 

the resin into an adhesive paper disc directly as new approach of binding layer 
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preparation. For Chelex-DGT measured metals, it may focus deploying colours with 

chemical reagents for Cu, Ni and Co, in order to improve the sensitivity and 

performance of this rapid screening technique in complex environment. For Cr(VI)， 

the stability of the coloration in higher Cr(VI) concentration needs to be improved.  

  In routine monitoring, where precision is not the first priority, the colour developed 

on binding gels could be scanned by smartphone and analysed by mobile applications. 

Rapid cost-efficient monitoring system as seen in Figure 7.1.  

 

   

Figure 7.1 A rapid cost-efficient monitoring system combined with rapid scanning 

technique and mobile data networks.  

  

 In addition, the more selective and sensitive biosensor to improve the feasibility of 

Bio-DGT need be investigated. Also the study of performance of Bio-DGT samplers in 

complex environment samples need to be done. Positively, Bio-DGT could be used 

widely for monitoring of heavy metals in both quantitative and toxicity measurements. 
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Appendix 

 

Appendix 1 Examples images of the coloured P-loaded Metsorb gel discs and ZrO 

gel discs.  

 

 

Figure A1 Examples images of the coloured P-loaded Metsorb gel discs and ZrO gel 

discs.  

  The gradients of colour development have a huge difference between the gel surfaces 

of Metsorb and ZrO discs. The colour changed on Metsorb gel discs was visible to 

naked eyes. The difference of colour on ZrO gel was difficult to distinguish, to the 

contrary.  
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Appendix 2 The Diffusion coefficients of Cu, Ni, Co in DGT gel (open pore) at 

different temperatures from 6 to 30 oC  

 

  D (E-6 cm2/sec) 

T (oC) Cu Ni Co 

6 3.48 3.23 3.32 

7 3.61 3.34 3.44 

8 3.73 3.46 3.56 

9 3.86 3.58 3.68 

10 3.99 3.70 3.80 

11 4.12 3.82 3.93 

12 4.26 3.94 4.06 

13 4.39 4.07 4.19 

14 4.53 4.20 4.32 

15 4.68 4.33 4.46 

16 4.82 4.47 4.60 

17 4.97 4.60 4.74 

18 5.12 4.74 4.88 

19 5.27 4.88 5.02 

20 5.42 5.02 5.17 

21 5.58 5.17 5.32 

22 5.74 5.32 5.47 

23 5.90 5.47 5.63 

24 6.06 5.62 5.78 

25 6.23 5.77 5.94 

26 6.40 5.93 6.10 

27 6.57 6.09 6.27 

28 6.74 6.25 6.43 

29 6.92 6.41 6.60 

30 7.10 6.58 6.77 
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Appendix 3 The water regulation standards in different countries and regions 

Countries  Type of Water Cu (mg L-1) Ni (mg L-1) Co (mg L-1) 

UK 

Drinking water 0.05   

Human Consumption 2.0 0.02  

EU Human Consumption 2.0 0.02 0.1 

US Drinking water 1.3   

CN 

Drinking water  1.0 0.02 0.05 

Effluent (Surface water) 0.5 1.0 1.0 (0.1) 

  

  

 

 

 


