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Abstract 35 

 36 

Aims   We investigated whether density fractionation can be used to determine the distribution of 37 

organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM). 38 

Methods   We performed density fractionations using sodium polytungstate solution (specific gravity 39 

1.6 g cm-3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and 40 

a heavy fraction (HF) for each soil.  The fractions were quantified by weight, and analysed for organic 41 

carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference). 42 

Results   Good recoveries of soil mass (96%), OC and TN (both ~ 90%) were obtained, but recovery of 43 

OP only averaged 56%.  The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, 44 

greater than the factor of two obtained for TN:OC.  For the soils studied, the elements of SOM were 45 

predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P. 46 

Conclusions The incomplete recovery of OP demands further work. Nonetheless, the results show that 47 

HF SOM is much richer in P than LF SOM.  48 

 49 
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Introduction 54 

 55 

The N (nitrogen) and P (phosphorus) contents of bulk SOM (soil organic matter) vary appreciably; C:N 56 

ratios can be as low as 8 and higher than 30, while C:P ratios range from c. 20 to 1000 (Tipping et al. 57 

2016).  Such variation arises from differences in the element stoichiometry of input litter, the 58 

processing of elements during decomposition, stabilisation processes, and within-soil transport.  59 

Accounting for the variation is necessary in order to understand and quantify the interlinked 60 

biogeochemical cycles of the elements.  From analysis of data obtained with the Hedley fractionation 61 

procedure (Hedley et al, 1982), Yang and Post (2011) found that C and N in SOM were closely linked, 62 

but that P was correlated to neither C nor N, and they concluded that OP is decoupled from OC and 63 

ON.  However, from an analysis of data for c. 2000 soils, including topsoils and subsoils under both 64 

natural and agricultural vegetation, with %OC ranging from 0.1 to 50%, Tipping et al. (2016) found a 65 

strong positive relationship between the N:C and P:C ratios of SOM.  This was attributed to the 66 

preferential adsorption by mineral matter (i.e. accumulation at mineral surfaces owing to physical and 67 

chemical interactions) of N-rich and P-rich organic compounds.  Therefore, further insight might be 68 

gained by fractionating soils according to density, then analysing the fractions for organic phosphorus. 69 

The physicochemical fractionation of SOM involves the separation of SOM through flotation, 70 

sedimentation and aggregate disturbance. During fractionation, the organic debris including plant and 71 

animal material, referred to here as the light fraction (LF), but sometimes referred to as particulate 72 

organic matter (Zimmermann et al. 2007), is separated from organic material bound to mineral 73 

matter, referred to as the heavy fraction (HF), using a dense solution.  A range of fractionation 74 

methods are available (Sohi et al. 2001; Kirkby et al. 2011; Zimmermann et al. 2007), and there is no 75 

standardised procedure, therefore research into methodological aspects continues (Cerli et al, 2012).  76 

For well-drained soils, the HF is generally regarded as the stable SOM pool, on the basis of stable 77 

isotope (𝛿13C) and radiocarbon (14C) analyses (Trumbore 1993; Swanston et al. 2005; Tan et al. 2007; 78 

Kögel-Knabner et al. 2008).  Almost all studies report a low C:N ratio within the HF whereas the LF 79 

mostly has a high C:N ratio.  We conducted a thorough literature search for reports of measurements 80 

of the distribution of OP between the HF and LF, and found none, although several studies have 81 

reported the OP content of light material (Rodkey et al. 1995; O’Hara et al. 2006; Wick & Tiessen 82 

2008).   83 

    In this study, we investigated the feasibility of using a density fractionation method to 84 

determine the distribution of OP in soils, so as to separate the heavy mineral-rich material from the 85 

lighter free organic matter, and analysing the fractions for organic carbon (OC), total nitrogen (TN), 86 



total phosphorus (TP) and inorganic phosphorus (IP), and obtaining organic phosphorus (OP) by 87 

difference. 88 

Abbreviations are listed in Table 1. 89 

  90 



Methods 91 

 92 

Soil samples had been collected in a survey of the catchments of the Rivers Avon (Hampshire), 93 

Conwy (N Wales), Dee (NE Scotland), and Ribble (NW England) carried out between 2013 and 2015 94 

(Toberman et al. 2016).  Samples had been bulked from 6 or 10 separate cores, and included both 95 

topsoils and subsoils. We chose 20 soils to provide a range of SOM contents, and with sufficient light 96 

material to analyse.  Most soils were under seminatural vegetation, three were from improved 97 

grassland.  Arable soils were not analysed owing to their low contents of light material. 98 

We applied a physicochemical density fractionation method based on the procedure of 99 

Schrumpf et al. (2013), which in turn was derived from those of Golchin et al. (1994) and Sohi et al. 100 

(2001).  Fig 1. is a schematic of the fractionation method.  We distinguished non-occluded and 101 

occluded light fractions (NLF, OLF), which were combined to make the light fraction (LF), and the heavy 102 

fraction (HF).  One fractionation was performed for each soil.  Twenty-five g subsamples of sieved soil 103 

were placed in 400 mL centrifuge bottles, with 250 mL sodium polytungstate (NaPT; Sometu, Belgium) 104 

at a density of 1.6 g cm-3 (Cerli et al. 2012).  The bottles were gently shaken by hand, then centrifuged 105 

at 5500 rpm for 30 minutes. If the quantity of floating material (NLF) was low, it was removed using a 106 

wide-tipped pipette and placed into 60 μm nylon mesh bags. For samples of heathland and forest soil 107 

with higher quantities of NLF, material was removed using a spatula and placed in 60 μm nylon mesh 108 

bags. The remaining suspension was brought back to its initial volume with fresh NaPT (this required 109 

c. 20 mL) re-centrifuged, and then residual light fraction was removed, this procedure being repeated 110 

(no more than twice) until all NLF was accounted for.  The material in the mesh bags was rinsed with 111 

deionised water, and the leachate repeatedly measured for conductivity using a Jenway 4510 probe; 112 

complete removal of excess NaPT was assumed when the conductivity fell below 50 μs cm-1, except 113 

that for calcareous soils conductivities < 200 μs cm-1 were considered acceptable, because of 114 

dissolution of carbonates (Schrumpf et al. 2013). The rinsed samples were weighed, oven dried at 40 115 

oC, weighed again, and once completely dried they were stored in a desiccator until further analysis.  116 

Extraction of OLF was carried out using sonication (Sonics Vibracell CV18 probe). To avoid 117 

aggregate breakdown of the HF, a pilot test for each of the soil types, based on bulk soil texture 118 

(Toberman et al. 2016; Table S1), was carried out to find the optimal sonication energy input, following 119 

the procedure of Schrumpf et al. (2013). For sandy and silty soils (there were no clay rich soils), target 120 

energy inputs of 100 and 300 J mL-1 respectively were used.  The samples were periodically checked 121 

for complete aggregate disruption using a 0.1 mL subsample observed under a microscope at 100x 122 

magnification.  Complete disruption was assumed when no further OLF material could be seen 123 

attached to minerals under the microscope. During sonication, the bottle was submerged in an ice 124 



bath and the temperature of the sample was measured and maintained at < 40 oC (Schrumpf et al. 125 

2013). Once fully sonicated, samples were left to stand for 1 hour and then centrifuged again at 5500 126 

rpm for 30 minutes and the OLF extracted by pipette; if necessary, further centrifugation was 127 

performed (once or twice) to maximise the capture of OLF material. The OLF was added to the NLF in 128 

the 60 μm mesh bags, the resulting LF was rinsed again until conductivity was < 50 or < 200 μs-1, dried 129 

at 40 oC, weighed and ground to a fine powder using a Retsch MM400 mixer mill. 130 

The centrifuge bottles containing the remaining material (HF) were refilled with ultra-pure 131 

deionised water and centrifuged at 5500 rpm for 10 minutes. After each centrifugation, the 132 

supernatant was decanted into plastic beakers and measured for conductivity. This process was 133 

repeated until the waste water had a conductivity of < 50 or < 200 μs-1. The samples were then 134 

transferred into aluminium trays, oven dried at 40 oC and weighed. The dried HFs were ground to a 135 

fine powder using a ceramic pestle and mortar.  136 

We tested for displacement of P forms from soil by NaPT by suspending 25 g subsamples of 137 

four of the sieved soils in 250 mL NaPT at a density of 1.6 g cm-3 in 400 mL centrifuge bottles, as in the 138 

density fractionations.  After sonication and centrifugation, the clear supernatant solution beneath 139 

the suspended light fraction was removed with a pipette and filtered (Whatman GFF).  The solution 140 

was analysed for soluble reactive P (SRP) and total dissolved P (TDP) as described below.    141 

Soil OC and TN were determined by the procedures given by Emmett et al. (2008).  Before analysis 142 

for C and N, any samples that might have contained inorganic carbonate (bulk soil pH > 5.5) were 143 

treated with 0.1 M HCl and observed under microscope until all CO2 release had occurred. These 144 

samples were then re-dried at 40 oC.   Single determinations of total organic carbon (TOC) and total 145 

nitrogen (TN) in milled subsamples were made with a Vario EL elemental analyser.  Repeated 146 

determinations by this method on three representative UK soils over the period of this study gave 147 

relative standard deviations of between 2.1 and 3.6 % for TOC and between 1.7 and 3.1% for TN. 148 

Total P (TP) was determined by the ignition-extraction method as described in Olsen and 149 

Sommers (1982). First, 0.5 g subsamples were ignited in a Pyrotherm muffle furnace at 550 oC for 1-2 150 

hours, placed in 50 mL centrifuge bottles with 25 mL 0.5 M sulphuric acid and shaken for 16 hours. 151 

These were then centrifuged at 10000 rpm for 30 minutes, filtered using Whatman 1573 1/2 (12-25 152 

μm) filter papers and refrigerated at 4 oC until further analysis.  The extracts were analysed for soluble 153 

reactive phosphorus using the molybdate method (Olsen and Sommers, 1982).  Measurements on a 154 

reference sample (ISE sample 921 from Wageningen University, Netherlands) gave an average TP 155 

value that was 96.9% (sd 1.1%, n = 4) of the expected value.  Inorganic P (IP) was determined by 156 

extracting 0.5 g of soil with 25 mL of 0.5 M sulphuric acid, then analysing the extract with molybdate.  157 

Organic P was obtained as the difference between TP and IP.   These analyses were replicated four-158 



fold.  The molybdate method was used to measure SRP in the supernatants of soil/NaPT suspensions 159 

(see above), and concentrations of TDP were also determined with molybdate after digestion with 160 

acid persulphate (Rowland and Haygarth 1997).  The supernatants were diluted 100 times with 161 

deionised water before making the measurements, and at the resulting concentrations of NaPT, no 162 

interference with the molybdate method was found for SRP.  However, acid persulphate digestion of 163 

the dilute NaPT solutions reduced the sensitivity of the molybdate assay, and this was taken into 164 

account in estimating TDP concentrations. 165 

 Bulk analyses of the soils were reported by Toberman et al. (2016), using the same methods 166 

for C, N and IP, but with a different method for TP, involving treatment of the samples with aqua regia 167 

and microwave digestion.  Resource limitations meant that we were unable to determine soil TP by 168 

the same method for both bulk and fractionated soils.  However tests on six bulk soil samples showed 169 

that results from the two TP methods were in agreement; the ratio of TP values from the ignition-170 

extraction method to those from the aqua regia-microwave method ranged from 0.94 to 1.18, with a 171 

mean of 1.02 (not significantly different from 1.00, p > 0.05). 172 

Statistical analyses (t-tests and linear regressions) were performed with Microsoft Excel. 173 

Before conducting linear regression analyses, data were tested for normality using quantile–quantile 174 

plotting.  For t-testing the D’Agostino-Pearson test was used to check for normality.  Non-normal data 175 

were transformed using log transformations where necessary.   176 



Results and discussion 177 

 178 

Performance of the fractionation method 179 

 180 

Good recoveries of soil mass from the density fractionation procedure were achieved for all the 181 

samples, with an average of 96% and a range over the 20 soils of 90 – 105% (Table S2).  Regression 182 

analyses indicated that recovery depended upon neither the amount of material in the heavy fraction, 183 

nor the carbon content of the bulk soil (data not shown).  The average recovery fell between the 184 

averages of 100% obtained by Swanston et al. (2002) for 7 soils, and 83% obtained by Schrumpf et al. 185 

(2013) for 48 samples; we used essentially the same method as these previous studies.  The loss of 186 

some material in these types of methods is probably from some soluble compounds dissolving into 187 

the NaPT solution and some solid material was probably lost during rinsing and collection of the 188 

separate fractions (Cerli et al. 2012).  We found no measurable SRP in the supernatants of four soils 189 

that had been suspended in NaPT and the suspensions sonicated, but small amounts of TDP were 190 

detected, corresponding to between 3 and 8% (average 4.6%) of the soil TP.  The fraction of soil mass 191 

in HF ranged from 78.6 to 98.5 % (Table S2).   192 

Light fraction element concentrations of OC showed only modest variation (relative standard 193 

deviation, RSD, 12%), with a range of 26.5 to 45.5% and a mean of 36.1% (Table S3).  This indicates 194 

that the LF was predominantly but not entirely SOM (%C ~ 55%), i.e. some mineral matter was present.  195 

Crow et al. (2007) reported values of 27 and 29% OC in two soils, and Swanston et al. (2002) obtained 196 

a mean of 25% OC from 7 soils. Cerli et al. (2012) observed decreasing OC content in the light fraction 197 

with increasing sonication time and intensity, suggesting a higher content of mineral matter through 198 

aggregate breakdown.  Thus the fractionation procedure certainly concentrates SOM in the LF, but 199 

some mineral matter is retained.  200 

  201 

Concentrations of P forms in the LF and HF 202 

 203 

Concentration data for TP, IP and OP (by difference) are presented in Fig. 2 and Table S4.  Based on 204 

relative standard errors, the average reproducibility was ± 14% for the LF forms of P, and ± 6% for the 205 

HF forms, which can be considered satisfactory, bearing in mind the several steps that are involved in 206 

the analytical procedure.      207 

For the majority of HF samples, most of the P is organic (range 50 to 97%, average 79%), 208 

whereas in the LF OP and IP are similar (the OP range is 24 to 77%, average 50%).  The IP content of 209 

the LF is surprising, given that this material is thought to consist mainly of plant residues (Six et al. 210 



2002).  One possible explanation is that the strong acid reagent used to extract IP caused hydrolysis 211 

of some of the LF SOM, releasing IP; however, Turner et al. (2005) considered this to apply to only a 212 

small fraction of OP.   To explore this further, we compared the results for the LF with data for “natural 213 

LF”, i.e. the organic horizons of Swiss forest soils (Walthert et al. 2004; Blaser et al. 2005, Zimmermann 214 

et al. 2006) for which IP was analysed by the same method that we used here.  We took data for 16 F 215 

(Oe) and 16 H (Oa) horizons, each dominated by SOM.  For the F horizons the mean IP was 8% of the 216 

total (range 0 - 30%), for the H horizons it was 16% (range 0 - 53%).  Therefore the LF material isolated 217 

by density fractionation in the present study appears to possess a higher fraction of its P in the 218 

inorganic form than high-SOM bulk soils.  One possible explanation is that IP owes its presence in the 219 

LF to the coordination of inorganic phosphate with Al and Fe complexed by the SOM, which occurs to 220 

different extents in the Swiss forest soils and the soils studied here.   Another possibility is that IP is 221 

associated with mineral matter, present at a higher concentration in the LF compared to the F and H 222 

horizon soil samples. 223 

 224 

Element recoveries in the fractionation process 225 

 226 

Recoveries were calculated by combining the mass data with measured element concentrations in 227 

bulk soil and in the two density-separated fractions.  The results are summarized in Table 2 and 228 

detailed in Tables S5 and S6.  Average recoveries of OC and TN were each 91% (Table 2).   The results 229 

for OC fall within the range of published values, 72-101%, which come from data reported for two 230 

soils by Crow et al. (2007), one soil by Cerli et al. (2012), and 48 soils by Schrumpf et al. (2013), all 231 

fractionated by a similar method to that used here; the overall average recovery for all 51 soils was 232 

94%.   Our average recovery of 91% for TN exceeds those of 85% reported for one soil by Cerli et al. 233 

(2012), and 74% reported for two soils by Crow et al. (2007).  Therefore our processing of the soils 234 

with respect to mass, OC and TN achieved similar levels of recovery to those of previous studies. 235 

Average recoveries of TP, IP and OP for individual soils were 62%, 117% and 56% respectively 236 

(Table 2).  In each case the variability in the recoveries is appreciably greater than for OC and TN 237 

(Tables S5 and S6).  However, regressions of the sums of the recovered forms of P in LF and HF against 238 

the starting (bulk) values (Fig. S1) gave highly significant slopes, suggesting some consistency in the 239 

behaviours of the P forms during the fractionation and analytical procedure.  It appears that on 240 

average not much IP was lost, whereas definite losses of TP and OP occurred.  The absolute losses of 241 

TP and OP were similar (OP loss was equal to 90% of TP loss on average), and highly correlated (r2 = 242 

0.90, p <0.001), indicating that most of the loss of TP was due to loss of OP; this follows because OP 243 



was obtained as the difference between TP and IP, because IP was a minor part of TP in HF (see above), 244 

and because overall IP losses were minor.   245 

 246 

Assessment of the methodology for phosphorus 247 

 248 

Two aspects of the results obtained give cause for concern about the methodology, the loss of 249 

appreciable amounts of OP from some soils in the fractionation procedure (Table S6), and the high 250 

variability in percentage recoveries (Tables 2 and S6, Fig. S1).  Since these problems were not found 251 

for OC and TN, they are specific to phosphorus forms, and are presumably due either to the behaviour 252 

of OP during the density fractionation procedure or to errors in the analysis of TP and/or IP (OP is 253 

derived by difference).  Experimental tests for the solubilisation, and therefore loss, of P forms during 254 

extraction revealed only small losses of TP (see above), not at all sufficient to explain the low 255 

recoveries of TP and OP.  This rules out any major displacement of sorbed IP or OP by NaPT, which 256 

seemed plausible in view of the fact that monotungstate can displace inorganic phosphate from 257 

ferrihydrite (Gustafsson 2003).  Therefore it seems unlikely that the fractionation procedure is at fault. 258 

 The analysis procedures for soil P differ from those for OC and TN in two respects.  Firstly, the 259 

concentrations of the P forms are relatively low, being about an order of magnitude less than that of 260 

TN, and two to three orders less than that of OC.  Secondly, the combined analytical method for OC 261 

and TN is simple and reproducible, comprising full combustion and gas analysis (CO2 and NO2 in the 262 

method that we used here).  In contrast, our analytical method for TP involved combustion in a muffle 263 

furnace, extraction of inorganic P into H2SO4, and then determination of the resulting SRP, while 264 

determination of IP omits the combustion step.  Therefore there is more scope for errors to arise.  As 265 

shown by the results in Fig. 2 we obtained quite good reproducibility in the P measurements on 266 

individual soils, which may suggest that the problems arise from variability in the extraction steps, i.e. 267 

the combustion of OM and conversion of OP to IP, or the extraction of the so-formed organic P into 268 

H2SO4.  However, to account for the low recoveries and variabilities, difficulties with the combustion 269 

and extraction would have to apply only to fractionated soil, since full recovery of TP in bulk soils was 270 

achieved (see Methods) and we cannot see an obvious reason why that should occur. 271 

Further work is clearly needed to improve the yields from the density fractionation procedure.  272 

The incomplete recoveries must be borne in mind when interpreting our results, in particular the 273 

consequences of different relative losses of OP from HF and LF. 274 

 275 

Element relationships in LF and HF 276 

 277 



To explore element relationships in SOM, we assume TN (Table S3) is all organic.  According to 278 

Stevenson (1986), inorganic N comprises 10% of TN on average, while Schulten and Schnitzer (1998) 279 

estimated only 5%.  The inorganic contribution is highest in deeper soils and soils poor in SOM, 280 

opposite circumstances to our relatively SOM-rich topsoils.  In this section, for simplicity and clarity 281 

we use N:C , P:C, C:N and C:P to refer to ratios of organic forms of the elements when discussing SOM 282 

compositions.  283 

Table 3 shows averaged OC concentrations and element ratios (g g-1) for LF and HF.  The 284 

average N:C ratio of the HF is significantly (p <0.001) higher than that of the LF, the HF N:C ratio 285 

exceeding the LF ratio for 19 of the 20 soils.  Such a difference also applies for P:C (p < 0.001), again 286 

with 19 of the 20 soils fitting the pattern.  However, the difference is considerably greater for P:C,  287 

since there is nearly six times as much P per unit C in the HF compared to the LF, whereas the factor 288 

for N:C is only 1.9.  Higher N:C ratios (lower C:N ratios) in the HF have been reported before, by Sollins 289 

et al. (2006), Crow et al. (2007), Cerli et al. (2012) and Schrumpf et al. (2013), but we could not find 290 

published information for P:C ratios in density-fractionated soil.  Therefore this appears to be the first 291 

time that the difference between HF and LF has been demonstrated for P:C.   292 

A comparable study is that of Kirkby et al. (2011), who used a dry sieving and winnowing 293 

method to separate light fractions from six Austrailian soils, two natural or semi-natural and four 294 

agricultural.  They obtained an average OC content of 15.1% and average TN:OC and TP:OC ratios of 295 

0.057 and 0.0039 respectively.  The higher element ratios, compared to the values for LF in Table 3, 296 

can be explained in terms of the lower OC concentration, as discussed below.  The remaining soils had 297 

an average OC content of about 3%, and TN:OC and OP:OC ratios of 0.085 and 0.0053 respectively, 298 

similar to the values in Table 3.  Another relevant study is by O’Hara et al. (2006), who used 299 

fractionation with water to obtain LFs from several native eucalypt forest soils in Australia, and 300 

determined their OC and total P concentrations.  The average OC concentration was 45.5% (SD 0.9%), 301 

and the average TP:OC ratio 0.0011 (SD 0.0003) g g-1.   Although the TP:OC ratio must be considered a 302 

maximum estimate of the SOM P:C (since some of the TP could have been IP), the key point is that the 303 

P:C ratio of SOM in these LFs was low, similar to the values in Table 3.  Also relevant are data for the 304 

“natural LF” of Swiss forest soils, considered above in relation to IP contents.  Data for the Oe and Oa 305 

horizons gave an average OC concentration of 36.4 (SD 6.3) % and an average TN:OC ratio of 0.045 306 

(SD 0.007), both very similar to our values for LF shown in Table 3.  For OP:OC, the Swiss forest soils 307 

average was 0.0019 (SD 0.0009), which is about double our LF value (Table 3), but still substantially 308 

lower than the average of 0.0049 that we find for the HF.  The similarities between these literature 309 

data and our values for density-fractionated LF strongly suggest that although losses of OP from LF 310 

material may have contributed to the overall losses of OP in the fractionations, these losses were not 311 



disproportionate, i.e. did not bias the estimated distributions of OP between LF and HF.  In view of the 312 

relatively low levels of OP in the LF, this suggests that most of the OP losses were from the HF. 313 

 Fig. 3 shows how the organic forms of the elements are partitioned into the HF, in relation to 314 

the partitioning of soil mass.  In 18 of the 20 soils C, N and P are predominantly in the heavy fraction, 315 

and the HF percentages are in the order P>N>C.  The preferential occurrences of N and P in the HF 316 

result from both the HF:LF partitioning of organic matter per se, and also the enrichments of the two 317 

elements in HF SOM (see above).  This leads to the especially strong partitioning of OP into the HF. 318 

Stoichiometric relationships among the elements can also be seen in log-log plots of N:C and 319 

P:C against %C (Fig. 4), following the approach of Tipping et al. (2016) in their analysis of bulk C-N-P-S 320 

data for c. 2000 soils.  Tipping et al. (2016) formulated a model of SOM stoichiometry in which the 321 

SOM of a soil is considered to be a mixture of two end-members, nutrient-poor SOM (NPSOM) which 322 

has low N:C and P:C ratios (0.039 and 0.0011 g g-1 respectively), and nutrient-rich SOM (NRSOM) which 323 

has high ratios (0.12, 0.016 g g-1).  All NRSOM is considered to be adsorbed to mineral matter, while 324 

NPSOM may or may not be adsorbed.  All unadsorbed SOM is NPSOM.  Because mineral matter is the 325 

obverse of the measured quantity OC%, the fraction of NPSOM increases linearly with log10 %C, 326 

between limits of 0.1% C and 50% C, and as a result the log10 N:C and log10 P:C values are predicted to 327 

fall with %C as shown by the lines in Fig. 4.  If it is assumed that the adsorption processes responsible 328 

for SOM accumulation on mineral matter are unaffected by the physical fractionation of the soil then 329 

the model should also hold for the results reported here, and the HF and LF N:C and P:C ratios should 330 

follow the predicted relationships, but be separated according to the OC concentrations.  As shown 331 

by the plots in Fig. 4, the expected trends are indeed approximately followed.   Apart from two outliers 332 

(heathland soils), the N:C values fall close to the model line, and this is also true of the P:C values for 333 

HF, while for LF the ratios are somewhat lower than expected.  The heathland outlier HF results may 334 

reflect the sandy nature of the soils, which may limit adsorption.  Overall, we can conclude that the 335 

present results support the Tipping et al. (2016) model.   336 

The key result of this work is that the N:C ratios, and especially the P:C ratios, of the HF are 337 

significantly and substantially higher than those of the LF.  This is consistent with the preferential 338 

adsorption by mineral matter of N- and P-rich compounds, proposed by Tipping et al. (2016) as a 339 

principal mechanism by which NRSOM is formed.  The C-N-P stoichiometry of NRSOM does not reveal 340 

much about its molecular constituents, which could include recognisable biochemicals from plants 341 

and microbes, and their breakdown products.  The material may also comprise larger molecules 342 

produced by humification, perhaps by reactions occurring at the mineral surface (Collins et al. 1995; 343 

Johnson et al. 2016).  Interestingly, McLaren et al. (2015a) presented evidence that about two-thirds 344 

of the OP in five differing topsoils occurred in high molecular weight material.  At least some of the 345 



mineral-associated SOM has accumulated over hundreds to thousands of years, and therefore must 346 

reflect the long-term supply of competing adsorbates, as well as post-adsorption modifications.   347 

Our findings demonstrate that density fractionation is a promising approach to investigate the 348 

interactions governing soil OP and its relationships to OC and ON.  However, as already discussed, in 349 

view of the incomplete recoveries that we obtained, there is a need to improve the basic 350 

methodology.  This might extend to the use of different analytical techniques for the determination 351 

of different chemical forms, in view of recent evidence that the ashing-extraction technique used here 352 

may underestimate TP (McLaren et al. 2015b).  It is also important to recognise the different ways that 353 

organic P might be measured (Olsen and Summers 1982; Turner et al 2005).  Interesting possibilities 354 

to obtain additional information are the coupling of density fractionation with subsequent chemical 355 

fractionation, e.g. by the Hedley scheme (Hedley et al. 1982), and/or size fraction (Makarov et al. 356 

2004). 357 

  358 



Conclusions 359 

 360 

1. The density fractionation method yielded good recoveries of soil mass, OC and TN for 20 semi-361 

natural and pasture soils with OC concentrations ranging from 4.5 to 18%. 362 

2. Average recoveries of TP and OP were relatively low, 62% and 56% respectively (c. 50%), and 363 

further work is need to improve them.   364 

3. Organic matter of the heavy fraction was richer in N and P than that of the light fraction, on 365 

average by a factor of two in N, and by a factor of six in P. 366 

4. The elements of organic matter were predominantly in the heavy fractions of the soils, with 367 

averages of 75% for C, 82% for N and 90% for P. 368 

5. The variations with soil %C of stoichiometric ratios (P:C, N:C) in HF and LF agree approximately 369 

with the predictions of the two end-member mixing model of SOM advanced by Tipping et al. 370 

(2016), in which organic molecules rich in P and N preferentially accumulate on mineral matter 371 

surfaces through strong adsorption. 372 
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Tables  466 

 467 

Table 1.  Abbreviations 468 

 469 

Abbreviation Full title 

C Carbon 
HF heavy fraction 
IP inorganic phosphorus 
LF light fraction 
N Nitrogen 
NaPT sodium polytungstate 
NLF non-occluded light fraction 
NPSOM nutrient-poor soil organic matter 
NRSOM nutrient-rich soil organic matter 
OC organic carbon 
OLF occluded light fraction 
ON organic nitrogen 
OP organic phosphorus 
P Phosphorus 
RSD relative standard deviation 
SD standard deviation 
SOM soil organic matter 
SRP soluble reactive phosphorus 
TDP total dissolved phosphorus 
TN total nitrogen 
TOC total organic carbon 
TP total phosphorus 

 470 
 471 

 472 
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Table 2.  Summary of element recoveries.   474 

 475 

Element Range % Mean % SD % Range % 

IP 28-486 117 105 28-486 

TP 19-121 62 30 19-121 

OP 17-124 56 29 17-124 

OC 61-123 91 18 61-123 

TN 70-110 91 12 70-110 

 476 

 477 

 478 

  479 



Table 3.  Concentrations of OC and ratios of N and P to C (g g-1) in SOM of the LF and HF, for the 20 soil 480 

samples.  The LF and HF ratios are significantly different in all cases (t-test; p < 0.001).  C:N and C:P 481 

ratios are also shown. 482 

 483 

 LF  HF 
 range mean SD  range mean SD 

%OC 26.5-45.5 36.1 4.4  3.2-15.7 8.1 3.7 
        

N:C 0.027-0.054 0.040 0.009  0.039-0.106 0.074 0.017 
P:C 0.00029-0.0019 0.00084 0.00042  0.00080-0.0139 0.0049 0.0033 

        
C:N 18.4-37.0 26.1 6.1  9.4-25.4 14.7 4.2 
C:P 1260-3430 1490 730  72-1260 337 284 

  484 



Figure captions 485 

 486 

Fig. 1  Schematic of the fractionation procedure.  Key: NLF non-occluded light fraction, OLF occluded 487 

light fraction, LF light fraction, HF heavy fraction. 488 

 489 

Fig. 2  Concentrations of total, inorganic and organic phosphorus (TP, IP, OP) in the light and heavy 490 

fractions (LF and HF) of the 20 soil samples.  The error bars indicate standard errors.  Key: B broadleaf 491 

woodland, C conifer plantation, H heathland, IG improved grassland, R rough grassland; d subsoil, s 492 

topsoil. 493 

 494 

Fig. 3  Percentage of OC, TN and OP in the heavy fraction (HF) vs percentage of soil mass in the HF.  495 

Data for two “outliers” (H1s, H4d) that do not fit the general pattern are indicated by dashed outlines.   496 

 497 

Fig. 4  Variations of N:C and P:C in SOM with %C for the light fraction (LF, open circles) and the heavy 498 

fraction (HF, filled circles); ON is assumed equal to TN.  The lines are predictions from the two end-499 

member mixing model of Tipping et al. (2016).   The full range of %C is plotted to show end-member 500 

ratios at ≤ 0.1 %C and ≥ 50% C.   Data for two “outliers” (H1s, H4d) that do not fit the general pattern 501 

for HF are indicated by dashed outlines.   502 

 503 
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Fig. 1 516 
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Fig. 2 518 
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Fig 3.   523 
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Fig. 4   527 
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 528 

Fig. S1  Linear regressions of recovery data, forced through zero.  Only for TN was the Y-intercept significant (p = 0.048), and it was small (2.6 mg). 529 
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Table S1.  Information about the soil samples               

                  

sample ID database ID date lat long MAP MAT land use soil type upper depth lower depth n1 clay silt sand pH2 BDFE
3 OC 

      deg deg mm oC     cm cm   % % %   g cm-3 % 

B1d CW1d 05/08/13 53.19 -3.85 1391 9.9 broadleaf woodland podzol 15 33 10 10.2 50.3 39.5 5.64 0.28 4.52 

B1s CW1s 05/08/13 53.19 -3.85 1391 9.9 broadleaf woodland podzol 0 15 10 11.9 63.7 24.4 5.31 0.22 14.20 

B2s RW1s 25/04/13 54.00 -2.39 1614 7.9 broadleaf woodland surface water gley 0 20 10 9.9 49.6 40.5 6.09 0.57 4.51 

C1s CC1s 06/08/13 53.03 -3.85 2309 7.3 conifer plantation podzol 0 15 10 9.3 64.9 25.8 4.02 0.25 12.00 

C2s RC1s 01/05/13 54.01 -2.40 1614 7.9 conifer plantation surface water gley 0 20 10 9.7 46.2 44.0 4.03 0.45 8.16 

H1s AH1s 23/07/13 50.83 -1.90 863 10.1 heathland groundwater gley 0 15 10 nd4 nd nd 4.15 0.61 10.00 

H2s CH1s 06/08/13 53.26 -3.90 862 10.4 heathland ranker 0 15 10 nd nd nd 4.32 0.50 11.60 

H3s CM1s 29/10/13 53.15 -4.00 2707 5.3 heathland surface water gley 15 26 10 4.3 39.0 56.7 4.40 0.27 15.60 

H4d RH1d 01/05/13 54.18 -2.29 1827 5.9 heathland ranker6 20 38 10 8.3 61.3 30.4 3.68 0.55 11.30 

IG1s AIG4s 24/07/13 51.13 -1.95 865 9.5 improved grassland5 groundwater gley7 0 15 6 11.7 70.0 18.3 7.51 0.67 6.34 

IG2s RIG4s 12/04/13 54.25 -2.32 2053 5.7 improved grassland5 groundwater gley 0 20 10 10.1 52.5 37.3 5.42 0.40 13.80 

IG3s RIG5s 30/04/13 54.00 -2.70 1220 8.4 improved grassland5 groundwater gley 0 20 10 8.0 53.3 38.7 5.92 0.62 7.82 

R1s ACG1s 22/07/13 51.13 -2.00 865 9.5 rough grassland rendzina 0 15 10 nd nd nd 7.24 0.56 10.40 

R2s ACG2s 23/07/13 51.38 -1.85 868 9.2 rough grassland brown earth 0 15 10 24.6 68.6 6.7 6.51 0.58 10.90 

R3d CAG1d 06/08/13 53.08 -3.97 3105 6.1 rough grassland surface water gley 20 44 10 nd nd nd 4.37 0.41 17.40 

R4s CAG3s 29/10/13 53.14 -4.00 3105 6.1 rough grassland ranker 0 15 10 9.9 70.3 19.7 4.95 0.26 15.50 

R5s RAG1s 01/05/13 54.25 -2.32 2053 5.7 rough grassland groundwater gley 0 20 10 nd nd nd 5.60 0.38 9.20 

R6s RAG2s 01/05/13 54.19 -2.35 1943 6.8 rough grassland groundwater gley 0 20 10 11.9 65.1 23.0 5.59 0.33 10.30 

R7s RCG1s 22/02/13 54.14 -2.32 1491 6.8 rough grassland ranker 0 15 10 10.7 56.0 33.4 7.46 0.24 18.30 

R8s RCG2s 25/04/13 54.20 -2.38 1943 6.8 rough grassland ranker 0 20 10 9.7 55.7 34.5 5.40 0.46 5.80 

1 number of cores (48 mm diameter)that were combined to make the sample           

2 pH in H2O                 

3 bulk density of the fine earth (<2mm)              

4 not determined                

5 periodically treated with mineral fertiliser 
             

6 mapped as raw peat, reassigned               

7 mapped as earthy peat, reassigned               
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