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Abstract	
Utilising Reverse Hydrology to quantify and improve the spatio-temporal 

information content of catchment rainfall estimates for flood modelling 

Ann Kretzschmar BSc, MSc, PGCE, MSc, Lancaster Environment Centre, Lancaster 

University, July 2017 

 

Reverse Hydrology is a term describing methods for estimating rainfall from 

streamflow. The method presented here is based on combining inversion of a causal 

rainfall-runoff model with regularisation. This novel method, 

termed RegDer,  combines a continuous-time transfer function model with regularised 

derivative estimates and is compared with an alternative method for direct inversion of 

a discrete-time transfer function using sub-hourly data from two catchments with 

contrasting rainfall and catchment storage characteristics.  It has been demonstrated to 

recover the prominent features of the observed rainfall enabling it to generate a 

streamflow hydrograph indistinguishable from the observed catchment outflow. The 

loss of temporal resolution of the resultant rainfall series is the price paid for the 

numerical stability of the RegDer method, however this does not affect its ability to 

capture the dynamics required for streamflow generation. The inferred rainfall series 

was initially interpreted as an estimate of catchment rainfall but was later more 

precisely described as the rainfall necessary for generating streamflow – Discharge 

Generating Rainfall (DGR).  The spatial aspect of the method was investigated using 

data from a densely gauged catchment. Frequency domain aspects of RegDer dual 

interpretation as a composite spectral decomposition method are analysed and 

discussed in the context of catchment data. Potential applications and developments of 

the approach include in-filling and extending rainfall records, reducing uncertainty in 

both gauged and ungauged catchments by improving rainfall estimates, assessing and 

refining rain gauge networks and re-evaluating areal rainfall estimation. 
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Chapter	1 Introduction	

1.1.      Flooding and climate change 

Floods are the most common and often the most destructive of natural disasters. Almost 

everywhere on Earth where it rains is vulnerable to flooding. Although flooding is most 

commonly a result of heavy rainfall, it can be caused by rivers, dam failures, changes 

in groundwater, inadequate drainage (sewer flooding), rapid ice-melt or coastal 

flooding in the form of extreme high tides and or storm surges and combinations of 

these (Dale, 2005). Most floods take time to evolve giving time for areas likely to be 

affected to be evacuated, however fast developing and flash floods are highly 

damaging, destructive and dangerous and leave little time for defensive measures to be 

taken. The consequences of flooding are aggravated by man’s wish to live close to water 

and the building of both commercial and residential property on natural floodplains 

(Merz et al., 2010). Due to climate change, extreme flood events are expected to occur 

more frequently (Huntington,	2006) and a warmer climate means that the atmosphere 

can carry more moisture with more energy available to generate more extreme storms. 

Heavy rainfall, snowfall and heatwaves have become more frequent (Royal Society, 

2017) and the frequency of floods has increased (Milly et al, 2002). Attributing 

individual events to anthropogenic warming is difficult due to natural variability, 

however exposure to flooding is likely to increase as the degree of warming increases 

(Hirabayashi et al., 2013) and short-term regional variations become more extreme. It 

is becoming apparent that atmospheric rivers play an important role in storms and 

floods in the Pacific south-west US (Dettinger, 2011) whilst many of the largest winter 

flood events in the UK have been linked to atmospheric rivers (Lavers et al., 2011) 

including Storm Desmond which brought record rainfall and river levels and severe 

disruption to the northern UK in December 2015 (JBAtrust, 2016). The projected 

increases in extreme rainfall and associated flooding mean that accurate predictions of 

rainfall and streamflow will become even more important in the future. It is unlikely 

that flooding can be eliminated, the challenge is to manage and reduce the risk (Shaw 

et al., 2011). 

 

Rainfall is the key driver of flood generation processes (Nijssen and Lettenmaier, 2004) 

and is the major input to most hydrological models however it is highly variable in both 
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time and space.  The total amount of rainfall over a catchment is important but so is its 

spatial location and intensity as it may affect localised flood risk and operational 

decisions such as flow releases from reservoirs (Croke, 2006) or estimation of over-

bank flows. Linsley	 (1967)	stated	 that,	 if	 the	 right	data	 is	available,	 streamflow	

hydrographs	can	be	generated	that	are	as	accurate	as	the	input	data.	Rainfall	is	the	

major	input	and	has	the	greatest	variability	so	how	well	the	hydrograph	can	be	

simulated	may	be	dependent	on	how	well	the	variation	is	understood	and	can	be	

defined	(Xu	and	Singh,	1998).	

 

Deriving the relationship between rainfall and flow is a fundamental problem (Xu and 

Singh, 1998) not least because many of the processes of water flow in a catchment take 

place underground and are difficult or impossible to measure (Beven, 2012a). Much of 

what is understood about these processes is inferred from point measurements which, 

due to variability, only provide a limited picture of what is happening (Cole and Moore, 

2008). How a catchment responds varies from event to event or even within the same 

event due to variations in antecedent conditions and the type of storm (Chappell et al., 

2017b). The heterogeneity of catchment characteristics interacts with rainfall properties 

such as intensity, volume and storm movement resulting in different areas of the 

catchment generating different amounts of flow (Shankar et al., 2002). Catchment 

characteristics may include antecedent wetness, topography, soil types and structures, 

regolith and rock types, channel density and human influence. Not all rainfall 

contributes directly to the storm hydrograph as some is lost by evaporation.  

1.2.      Flow generation processes and pathways 

The shape of a streamflow hydrograph results from the integration of all flow processes 

which happen upstream as a result of rainfall and, thus, it is not a localised event but a 

catchment-wide response.  The complex interactions between catchment and rainfall 

characteristics result in a wide range of flow generation mechanisms. Water may take 

a combination of pathways through the catchment, which may vary in both time and 

space affecting the final hydrograph shape (Brutsaert, 2005). Stormflow generating 

processes may involve overland flow as a result of precipitation in excess of the 

infiltration capacity of the soil (Horton, 1933), however this assumes the infiltration 

rate to be less than the precipitation rate over the whole catchment and that stormflow 
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is the result of overland flow. Overland flow does not occur everywhere but is the main 

mechanism in impervious areas. Saturation excess runoff (Dunne and Black, 1970) is a 

rapid transport mechanism where soils are saturated by emerging sub-surface outflow 

or perched water tables. It may occur with subsurface flow, the relative importance of 

each being dependent on the catchment and precipitation rates. Lowdermilk (1934) and 

Hursh (1936) suggested that sub-surface flow could be the main storm flow generation 

mechanism. Later studies suggested it might be the only mechanism (Hewlett and 

Hibbert, 1963; Whipkey, 1965). Weyman (1970) showed that soil did not have to be 

completely saturated for saturation excess contributions to occur but could be a result 

of lower soil horizons having a reduced permeability. Sub-surface pathways include 

preferential flow paths through percolines (a network of old root channels, soil cracks 

and animal burrows - Bunting, 1961) and soil pipes (Beven and Germann, 1982) that 

by-pass slower mechanisms such as flow through the soil matrix. Sub-surface flow may 

also occur along boundaries between permeable and less permeable layers (Bonnell and 

Gilmour, 1978). None of these mechanisms are mutually exclusive and they may occur 

in different parts of the catchment at different times or in different areas during the same 

storm (Dunne, 1978). The original assumption was that storm runoff was due to water 

generated by the current event. Work using tracers (Sklash et al., 1996) revealed that 

some flow comes from displaced ‘old’ water that has previously been stored and is 

rapidly released during a storm event (Kirchner, 2003). This concept has importance 

for the understanding of hillslope hydrology, water quality variations and the ecological 

impact of storms. 

 

The relationship between rainfall and flow is time dependent. At long time scales, for 

example, annual, the relationship may show direct correlation between rainfall and flow 

volumes. As the timescale under consideration shortens, the relationship becomes more 

complex and more non-linear in character (Skøien et al, 2003). A linear relationship is 

one in which the same amount of rainfall will always generate the same amount of flow. 

Under non-linearity, the relationship is more complex and it cannot be assumed that the 

same amount of flow will result from the same amount of rainfall. This was 

demonstrated by Minshall (1960) who showed how the shape of the unit hydrograph 

changed with different volumes of rainfall input. The causes of non-linearity in the 

rainfall-runoff relationship include antecedent conditions (the amount of soil moisture 

present, evaporation, infiltration rates, groundwater flow) and the effect of routing 
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within the catchment, that is, the time taken for runoff to reach the measurement point 

(McDonnell, 2003).  

1.3.      Scaling and measurement in space and time 

The timescale of a rainfall-runoff relationship should be determined by its purpose, for 

instance, a monthly or annual time-step may be adequate for determining overall 

catchment water yield. However measurements may need to be made at a much smaller 

interval then aggregated in order to get accurate estimates at the required time period. 

This may be particularly important in small catchments or those susceptible to flash 

flooding. If flood peak or water quality assessment is the purpose, then small time steps 

are also required so that the detail can be captured (Chappell et al, 2017a). The effects 

of sparse data sampling (in both space and time) are a major source of uncertainty in 

rainfall-runoff relationships (Kavetski et al, 2011). Catchment size also has an effect 

with both small relatively homogeneous catchments (for example, urban areas) and 

large catchments over long time periods, where local variations in rainfall and runoff 

are smoothed out, having relatively simple rainfall-runoff relationships. More 

generally, intermediate size catchments measured at short time periods with 

intermittent rainfall and variations in catchment characteristics show complex, non-

linear relationships (Shaw et al., 2011). 

 

Improvements have been made in rainfall measurement techniques, for example, 

rainfall radar, remote sensing or improved rain-gauge design however much reliance 

must still be placed on, often sparse, rain-gauge networks. Many rain-gauges only 

measure at a daily time-step and thus may miss the detail of individual storm events 

both temporally and spatially. This is especially important in small catchments or those 

with a fast response time. Rainfall radar can give a much better indication of the spatial 

distribution of rainfall than a sparse rain-gauge network but must be calibrated, often 

against rain-gauge measurements (Wood et al., 2000). Radar can be an accurate and 

valuable source of rainfall data over a large area however robust radar calibration is 

reliant on good rainfall estimates (Moore et al., 2000). Spatial resolution could be more 

important than temporal in large catchments (Beven, 2012a), however it has been 

argued that errors due to spatial variability may be much less than those from other 
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assumptions (Jakeman et al, 1990). Whatever model is used; its predictions are only as 

good as the input data (Shaw et al., 2011). 

 

Thus, it can be seen that it is important to have reliable estimates of the rainfall over a 

catchment. It is often the case that a single rain-gauge or a sparse rain-gauge network 

is assumed to represent the spatially and temporally variable rainfall field. The design 

and density of rain-gauge networks has been the subject of research over a long period 

and was one of the drivers for the set-up of the Brue experimental catchment (Bell and 

Moore, 2000). Rain-gauges may also be subject to measurement errors, for example, 

under-catch (Pollock et al, 2014) and can only provide a measurement of rainfall over 

a limited area that may or may not be representative of the rainfall over the whole 

catchment. The rain that falls on the catchment that becomes streamflow can be 

measured at the outlet. The measured streamflow contains information not just about 

the rainfall but the way the catchment damps the rainfall signal as it is converted to 

streamflow. If this information could be extracted, it might be possible to improve 

rainfall forecasts and thus provide less uncertain flood predictions. Existing methods 

for estimating catchment rainfall, for example, the Thiessen polygon approach (Shaw 

et al., 2011, p167) only make use of the rainfall signal. Thiessen weights for each rain 

gauge are computed by their relative area of influence and the area of each polygon 

used to weight the rainfall amount of the station in the center of the polygon. If any 

station is missing, the polygons must be recalculated. Thiessen polygons do not take 

elevation effects into account and are not related to streamflow generating processes 

(Schumann, 1998). Reverse hydrology takes the information present in the streamflow, 

that incorporates catchment information, and uses it to infer the rainfall that generates 

the discharge and thus could result in a better estimate of the flow hydrograph.  

1.4.      Hydrological modelling – a brief introduction 

Hydrological processes are extremely complex. This complexity is obvious but requires 

simplifications, which must be stated, in order to describe them mathematically. It is 

also the reason why there is no common approach to hydrological modelling (Beven, 

2012a). There are a wide range of hydrological models available with the choice often 

being down to the purpose of the modelling exercise (Todini, 2007). Often modelling 

is carried out to extrapolate existing data in both space and time, for example, into 
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ungauged catchments or into the future to assess the effects of change, as compensation 

for weaknesses in measurement techniques. It is often very difficult or impossible to 

measure all the processes and states required to describe and understand the system, for 

example, storage. Modelling for research purposes aims to improve understanding of 

the processes involved in the hydrological system with most being learnt when the data 

does not support existing theories which then have to be modified (Beven, 2012a). The 

ultimate aim of most modelling is to improve decision making in, for example, water 

resource management, flood control, pollution mitigation or to supply boundary 

conditions to atmospheric circulation models (Wagener et al, 2004). 

 

Models range from physics-based distributed models, with many parameters that try to 

reproduce the heterogeneity of the catchment characteristics and hydrological 

processes, to black-box models with very few parameters based only on the 

observations of inputs and outputs without any reference to physical reality of the 

processes involved. In between these extremes are lumped physics-based models that 

assume that the processes and characteristics can be averaged over the catchment, and 

grey-box models based on the relationship between the system inputs and outputs but 

with some physical interpretation. Data-based mechanistic (DBM) modelling used in 

this study falls into the latter category (see section 2.4). 

 

Physics based models assume that mass and momentum are conserved. Model 

parameters may be derived, at least in part, from catchment characteristics. 

Theoretically, distributed models route runoff through the stream network enabling 

predictions to be made at any point in the network, however many parameters are 

required to calibrate the model. Fully distributed models can have many parameters 

which must be estimated and even measurable parameters may lose their realism once 

adjusted so that the model produces acceptable results (Vieux et al, 2014). Geospatial 

data, now widely available, may provide future improvements in parameterisation, 

however overlays based on soil and vegetation do not directly describe the rainfall 

transformation processes in the catchment (Beven, 2012a). Geographical Information 

Systems (GIS) can also be used to incorporate remote sensing data (Brocca, 2014). SHE 

(Système Hydrologique Européen) is an example of a fully distributed model. It can 

incorporate information on topography, vegetation and soils and may be used to 
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investigate the effects of land-use change on flooding or water quality (Abbott et al., 

1986).  

 

Semi-distributed models lump the characteristics of similar areas of catchments 

together (may be described as Hydrological Response Units (HRUs) - Flügel, 1995). 

This has the effect of reducing the number of parameters that need to be estimated. 

HRUs may be defined using GIS data. A grid-based approach can also be used where 

calculations are made based on every grid element, for example, LISFLOOD (De Roo 

et al, 2000). Parameters are averaged for each HRU or grid so they can be thought of 

as a collection of small scale lumped models (Beven, 1989).  HRUs can be mapped 

back into space using GIS but scale dependence of the parameters and calibration can 

be a problem (Vinogradov et al., 2010). 

 

Lumped physics based models regard the catchment as a single unit using average 

parameter values that are assumed to be representative of the whole catchment. They 

have only a few parameters however spatial variation cannot be represented by a single 

value (Sharma and Luxmoore, 1979). Calibration can be automated but there is a danger 

of over-parametrisation and problems may be caused by parameter inter-action (Ibbitt 

and O’Donnell, 1971). It has been suggested that 5 parameters explain most of the 

information contained in hydrological data (Hornberger et al., 1985). 

 

All models are simplifications of the ‘real world’ and, as such, are ‘wrong’, however 

they are often useful (Box, 1976) as long as they are used for the purpose for which 

they were developed and all limitations and simplifications are stated. Currently, there 

is no evidence that highly parameterised, process based models deliver better results 

than simpler stochastic models based on mathematical and statistical concepts (Shaw 

et al., 2011), however this may change if reliable measurements of processes currently 

unmeasurable should become feasible. Many models can be defined by the calibration 

data that will perform well in practice – the problem of equifinality (Beven, 2006) – 

however it is questionable whether a model having no physical explanation should be 

accepted even if the results are satisfactory. A model may produce acceptable results 

for the conditions used to define it but, unless it has hydrological validity, it is difficult 

to have confidence in the results outside these limits (Kirchner, 2006).  
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Not only the time-step but also the choice of model should be defined by the purpose 

of the modelling exercise. If the aim is to predict discharge from rainfall without any 

consideration of the processes involved, then a simple black box model may be good 

enough. Black box models are usually lumped at catchment scale and, in contrast to 

distributed physics based models only have a very few parameters. These models 

attempt to extract as much information as possible from the available data by relating 

the inputs to the outputs, that is, the problem becomes one of systems analysis (Young, 

1998). It can be argued that the data may not be good enough to identify a complex 

highly parameterised model (Jakeman and Hornberger, 1993) so successfully 

transforming the inputs into outputs without any knowledge of the processes by which 

this occurs is good enough. This is data-based modelling. It is dependent on suitable 

data being available so this approach could not be used in ungauged catchments. The 

concept has been extended by suggesting that the models identified should have some 

physical explanation (Young and Beven, 1994). The objective approaches used in black 

box modelling are used to identify a range of parsimonious models from the data. Only 

models that have a physical interpretation are retained (Young and Lees, 1993). This is 

Data-Based Mechanistic modelling. It combines elements of white box, physics based 

models with black box techniques and is often termed grey box modelling (Lees, 2000). 

 

As models are approximations of the real world (Oreskes and Belitz, 2001) they have 

built-in uncertainties which may include the modeller’s perception of the system, the 

simplifications involved in building the mathematical model, model structure, 

parameter estimates, the scale of the processes involved (do micro-level physical laws 

apply at catchment scale?), the time interval (does a model that has been calibrated for 

one time interval apply to another?), spatial scale (does a model calibrated for one 

catchment apply to another one?), the non-linearity of hydrological processes and the 

quality of the data. In order for the results from the modelling process to be useful, 

some measure of the uncertainties involved is needed to supply some indication of the 

limitations to its applicability. These uncertainties must be communicated in a way that 

is easily understandable to the non-expert. 

 

Beven (2012a) describes the modelling process from perceptual through conceptual, 

procedural, calibration and evaluation stages. An adaption of his flow diagram showing 

the steps of the modelling process in order of increasing approximation is shown in 
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Figure 1-1. The perceptual model is the ‘Big Picture’ in the mind of the modeller. It 

will be unique to the individual, being the way they perceive the complexity of the 

hydrological system. The conceptual model is the mathematical simplification of this 

concept and the procedural model is the code needed to run it. Calibration uses observed 

data to determine model parameters whilst evaluation may use a different set of data to 

evaluate whether the model produces acceptable results. Measures used to assess model 

performance may be objective, for example, the Young Information Criterion (YIC) 

(Young, 1984, 2011) or Nash-Sutcliffe Efficiency (Rt
2 or NSE) or subjective based on 

the experience of the modeller with reference to the model’s purpose. Acceptance 

requires not just that a model is a good fit but also has a physical explanation. If the 

criteria for acceptance are not met at any stage, then modifications may be made and 

the model reassessed. It can be argued that it is not possible to prove that a model is 

valid, only that it is wrong - the concept of falsification (Wagener et al, 2004). 

 

 

Figure	1-1:	Schematic	showing	the	steps	in	model	development/	selection	in	order	of	

increasing	approximation	(adapted	from	Beven,	2012a) 

DBM modelling takes a top-down approach to model identification and parameter 

estimation. Models are identified from the data (in this study, rainfall and streamflow) 

that have as few parameters as are necessary to adequately define the dominant 

processes of the (hydrologic) system. Model structure is identified using objective 

systems analysis methods that minimise the bias introduced by prior assumptions 

(Taylor et al., 2007) and enable the dominant modes of a system to be identified 

(Ockenden, 2010). Models are only accepted if they have a physical explanation 

(Young and Beven, 1994). DBM modelling often makes use of linear transfer functions 

however no real-world process is truly linear although it may be treated as such over a 

limited range of conditions (Leedal, 2006). If this is not the case, some means of 
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accounting for the non-linearity must be applied before identifying the parameters of 

the linearised system.  

1.5.      Why reverse hydrology? 

Managing and reducing flood risk is becoming more important due to man’s increased 

vulnerability. Deriving a relationship between rainfall and flow is key but extremely 

complex and, because many of the processes involved are unmeasurable, often inferred 

from point or laboratory measurements. It is necessary to think laterally about the way 

models are identified and novel approaches such as the one presented in this thesis are 

necessary to provide new insights into the processes and their identification. Although 

rainfall is the key driver and often the major input to hydrological models, it is only 

part of the story. Streamflow contains information about both the rainfall and the 

catchment processes that generated it. Inversion utilises the information in both rainfall 

and streamflow so could be a tool to aid improved understanding of flow generation 

and its links to rainfall, leading to more reliable flood predictions. 

 

The terms ‘inverse’ and ‘reverse’ are often used interchangeably but this is not strictly 

correct. Inversion of a system has a different meaning to reversing the system, which is 

known in Information Science as unknown input estimation, and in Control 

Engineering as the Input Observer technique (Bhattacharyya, 1978). In order to invert 

a model, the transformation between the system inputs and outputs, usually the structure 

and parameters of the model, must first be identified from the observations. These 

parameters may have physical significance but are often difficult to measure accurately 

or at all.  Estimation of the Unit Hydrograph, a widely used technique, is an example 

of this (Laurenson and O’Donnell, 1969; Boorman, 1989). Other examples may be 

found in areas such as astronomy, medicine, meteorology, geophysics, sub-surface 

hydrology and inverse streamflow routing (c.f., Günther et al, 2006; Pasquier and 

Marquotte, 2006; De Campos Velho et al., 2007; Devaney, 2012; Pan and Wood, 2013). 

Once identified, the system model is inverted enabling it to be run backwards – this is 

‘reverse hydrology’. For example, instead of using rainfall and the identified model to 

produce an estimate of streamflow, streamflow is used to infer the rainfall that has 

generated it by use of an inverted model. The integrative dynamics of the process mean 

that it is not feasible to simply fit a model ‘in reverse’ (that is, identify a model that 
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takes streamflow as its input and generates rainfall as its output) because it is 

numerically poorly defined, particularly for non-linear systems, and, very importantly, 

because the catchment processes involve differentiation in both space and time. A 

forward model, linking the conversion of rainfall to streamflow, must first be identified 

and inverted to obtain a reverse model. Reverse hydrology does ‘hydrology backwards’ 

using an inverted model allowing rainfall to be inferred from streamflow (Kirchner, 

2009). 

 

Reverse hydrology takes the information present in the streamflow that incorporates 

catchment information, and uses it to infer Discharge Generating Rainfall for the 

catchment. Accurate streamflow hydrograph simulation depends on the availability of 

highly sampled rainfall data and also its spatial distribution (Littlewood and Croke, 

2013). Estimating the short-term rainfall characteristics which are important in 

producing the hydrograph (Obled et al., 1994) may be useful for filling gaps in existing 

rainfall records, for example, due to equipment malfunction or periods when snow is 

the dominant precipitation (Hudson et al, 1997), where corresponding flow records 

exist and extending rainfall series for catchments which have long streamflow but only 

short rainfall records.  

 

The proposed method utilises the DBM methodology (for example, Young, 1998, 1999; 

Young and Garnier, 2006) to identify a simple, parsimonious model of the catchment 

dynamics based on the data (rainfall and streamflow) sampled at sub-hourly intervals. 

Non-linearity (c.f. section 2.3) is applied as a separate step using the bi-linear power 

law (Beven, 2012a). Other methods for accounting for non-linearity exist, for example, 

the non-linear loss model used by the IHACRES model (Jakeman et al., 1990), which 

included a power law relationship between soil moisture index and effective rainfall 

(Ye et al., 1997) and was updated by Evans and Jakeman (1998) to a catchment 

moisture deficit version and modified by Croke and Jakeman (2004), or the approach 

taken in the Bedford-Ouse model (Whitehead et al., 1979) which modulates rainfall by 

a temperature dependent factor that is then filtered to give a measure of soil moisture 

content and used to modulate the modified rainfall. These approaches require extra data 

to be available so it was decided to use the simpler bi-linear power law in this study. A 

linear continuous time transfer function (CT-TF) model describes the relationship 

between the linearised rainfall and streamflow. The term ‘linearised’ is used in 
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preference to ‘effective’ rainfall here because the bi-linear transform has been applied 

to the rainfall data so that a linear TF can be identified. Effective rainfall is defined by 

Beven (2012a) as the part of the rainfall that is equal to the volume of streamflow 

generated. This is not the same as the linearised rainfall calculated here.   

 

Continuous time models are used because their parameters have a direct physical 

interpretation and allow a wide range of system dynamics typical of hydrological 

systems to be modelled – so called ‘stiff’ systems where there is a wide range in the 

time constants (Young, 2010). Given that sampling is frequent enough to capture the 

system dynamics, parameters are not sampling interval dependent. The rational transfer 

function model is trivially inverted (c.f. section 2.5 and Chapter 4). Where the resultant 

model would be ‘improper’, that is, the order of the numerator of the CT-TF is greater 

than that of the denominator, the inversion requires derivatives of the streamflow. 

Regularised Derivatives are used, hence the algorithm has been called RegDer. 

Application of the regularisation procedure (described in sections 4.2 and 4.3) makes 

inversion possible without amplification of the noise in the inferred rainfall series. The 

general approach used could be applied within any DBM or top-down modelling 

framework.  

 

The rainfall sequence inferred by the RegDer method from a single gauge (Kretzschmar 

et al., 2016) may indicate that any one gauge may not be providing full information 

(Andrews et al, 2011). The RegDer method of inversion could be used to assess the 

positioning and efficacy of rain-gauges in a network. Examination and comparison of 

the flow sequences generated from observed rainfall, catchment average rainfall and 

inferred rainfall may be able to highlight periods when flow is influenced by rainfall 

not captured by the rain-gauge or times when rainfall is registered but the flow does not 

respond (for example, when the catchment is wetting-up after a dry period). Periods of 

inconsistent data could influence the initial model identification but also help promote 

understanding of the rainfall distribution and integration processes especially if 

combined with a network of rain-gauges. The temporal resolution of the inferred 

rainfall appears to be affected by the slow time constant, the rainfall regime and the 

goodness-of-fit of the forward model. A well-fitting forward model that inverts well 

should be robust in terms of replicating the catchment system. 
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Possible applications and benefits of reverse hydrology include: 
 

1) Filling	gaps	in	rainfall	records	

2) Assessing	rain-gauge	networks	(no.	and	position	of	gauges)	

3) Identifying	inconsistent	or	uninformative	rainfall	or	flow	data		

4) Improved	understanding	of	catchment	processes	

5) Improved	understanding	of	rainfall	distribution	

6) Extraction	of	the	essential	rainfall	dynamics	required	to	generate	flow	

from	the	broad-spectrum	input	signal.	

7) For	identifying	convective	storm	cells	or	snowmelt	events	that	effect	the	

streamflow	exiting	the	catchment	but	are	not	represented	by	the	rain-gauge	

record	(Kirchner,	2009).	
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1.6.      Aims and objectives 

This study aimed to: 

1) Improve understanding of the information content of space-time distributed 

rainfall data for flood modelling 

2) Develop tools and techniques for improving rainfall datasets for catchment 

modelling 

These aims will be met by the following objectives: 

1.i Develop a new method for inferring rainfall from sub-hourly streamflow data 

based on a novel regularisation technique 

1.ii Evaluate the regularisation technique by comparison with existing inversion 

methods utilising data from two catchments with contrasting rainfall 

characteristics and flow-paths using a range of metrics 

1.iii Assess the ability of the regularisation technique to capture the dominant 

modes of the rainfall-runoff behaviour using methods of temporal aggregation 

and spectral analysis 

1.iv Assess the ability of the regularisation technique to capture the spatio-temporal 

structure of catchment rainfall 

 

2.i Quantify local rainfall records that are misinformative for flood modelling 

2.ii Quantify the spectral components of the rainfall signal responsible for flood 

generation 

2.iii Develop a new technique for in-filling and extending rainfall records based on 

a combination of regularisation and spectral decomposition 

1.7.      The story so far ..... 

This thesis is based on a number of articles, either already published or prepared for 

publication (Chapters 4-8): 

 

Chapter 2 provides background to the methodology used in the following papers. The 

data and catchments used for testing are described in chapter 3. Five papers which tell 

the story of this project are presented in chapters 4-8 followed by an overall summary 

and conclusions with recommendations for follow-up work in Chapter 9. A 

consolidated reference list covering all chapters follows. 
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Chapter 4 (Kretzschmar et al., 2014) presents the novel inversion method utilising 

regularised derivatives (RegDer) and compares it with an existing method using the 

direct inversion of a discrete transfer function (InvTF). Tests are carried out using data 

from two contrasting catchments – the tropical Baru catchment in Borneo and the 

temperate Blind Beck, a tributary of the River Eden, in North-west England. Using both 

methods, the hydrograph generated from the inferred rainfall is much closer to the 

observed hydrograph than one generated using the forward model. However, the direct 

inverse method shows evidence of high frequency artefacts which would cause it to fail 

the criteria for DBM modelling. The output from the RegDer method shows evidence 

of loss of resolution however tests show that the essential catchment dynamics are being 

captured. 

 

This theme is continued into Chapter 5 (Kretzschmar et al, 2015) where spectral 

analysis was used to confirm that despite the loss of time resolution in the rainfall 

output from the RegDer method, the catchment dynamics necessary for streamflow 

generation are being captured. Estimates of time resolution from spectral analysis are 

compared with estimation of the time resolution from aggregation of the observed 

rainfall time-series. Both confirm that the essential dynamics are being captured and 

that the loss of resolution is the price paid for numerical stability of the inversion 

process. 

 

Chapter 6 (Kretzschmar et al., 2016) continues this topic but this time applied to the 

heavily instrumented Brue experimental catchment in south-west England. The spatial 

element of catchment rainfall is picked up and it is demonstrated that the loss of time-

resolution and representation of the essential rainfall characteristics applies 

everywhere in the catchment. 

 

Chapter 7 resumes the spatial theme presented in chapter 6 and introduces the concept 

of Discharge Generating Rainfall (DGR), the part of the rainfall required to generate 

discharge. DBM modelling and the DGR concept are applied to the identification of 

which rain-gauge or gauges are representative of the catchment as a whole. This 

approach has been the subject of two conference presentations (Hydro-informatics 

2016; EGU 2017). How well a model fits a rainfall-runoff combination is taken to 
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indicate its representativeness. A hydrograph generated using DGR shows an improved 

fit to the observed hydrograph over using a forward model and observed rainfall.  

 

Chapter 8 takes the concept of Discharge Generating Rainfall and applies a Spectral 

Decomposition approach to the problem of generation of a new rainfall sequence that 

may be used to fill in gaps in the rainfall record or extend existing records (if flow 

records exist where rainfall does not). 
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Chapter	2 Background	to	methods	used	

2.1.      Introduction 

This chapter aims to introduce the ideas and methods used throughout the papers 

included in this thesis. The pertinent methods are included in each paper but are of 

necessity often lacking in detail. The relevant sections will be referred to where 

appropriate. 

2.2.      Spatial and temporal variability  

Rainfall is the key driver of flow generation processes, however it is highly variable in 

both space and time. The effect of spatial variability on streamflow hydrograph 

generation has been widely investigated over many years resulting in varying 

conclusions which have yet to be resolved (Emmanuel et al., 2015). Every catchment 

and every rainfall event is different which, when coupled with errors, that may be large 

enough to obscure any patterns, lead to a complexity which make it difficult to draw 

any general conclusions (Emmanuel et al., 2015; Segond et al., 2007). Timescale and 

sampling interval may also have an impact.  

 

Rainfall variability in both space and time over the 135 km2 Brue catchment in South-

west England is illustrated in Figure 2-1 below. The Brue catchment is unusual due to 

density of the rain-gauge network. It has 49 rain-gauges in a catchment of 135 km2. 

Many of the gauges are very close together and therefore highly correlated (see Figure 

7-3 in chapter 7). The 23 gauges used in this study, a density of 1 gauge per 5.9 km2, 

maintain geographical coverage. In practice, it is likely that a catchment of this size 

would only have a network of 2 or maybe 3 gauges (in 2010, the UK average was one 

gauge per 76 km2, Met. Office, 2010). The density of the gauge network makes it ideal 

for investigating the effect of spatial rainfall distribution on flow generation. It was set 

up as part of the Hydrological Radar Experiment (HYREX) by the UK Natural 

Environment Research Council (NERC) that ran from May 1993 to April 1997. The 

broad aim of HYREX was to gain a better understanding of rainfall variability, as 

sensed by weather radar, and how this variability impacts on river flow at the catchment 

scale (Moore et al., 2000). For further discussion, see chapter 3, section 3.3.     
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Figure	2-1:	Maps	of	
rainfall	over	the	Brue	
catchment	showing	the	
variability	in	time	and	
space.	The	brighter	the	
color,	the	higher	the	
rainfall.	The	pie	chart	at	
top	right	shows	the	
proportion	of		gauges	
measuring	rain	in	the	
illustrated	time	step	
(more	yellow	-	more	
gauges	with	rain).		

  

  

Time step 8, max. 0.4 mm, mean 0.06 mm Time step 164, max. 3.2 mm, mean 0.55 mm 

Time step 2540, max 5.2, mm, mean 2.42 mm 
mmn 2.42 mm 

Time step 2674, max 3.6 mm, mean 1.36 mm 
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Beven and Hornberger (1982) suggested, on the basis of a simulation study, that spatial 

variability is important, leading to significant differences in peak timing, distributions 

of peak flow and affecting volume - getting the volume right seems to be most 

important. The effects of spatial variation are tied to the question of how many gauges 

are needed to achieve an accurate estimate of catchment rainfall (Adhikary et al., 2015). 

Dense gauge networks which might be expected to give a better estimate are expensive 

to install and maintain but sparse networks may miss the detail of rainfall variation 

especially under convective conditions. There is an example of two gauges only 300m 

apart in Walnut Gulch, Arizona showing a difference of 10mm from one convective 

storm (Faurès et al., 1995). A large body of research exists aimed at answering the 

question of rain gauge location and network density. A very brief overview is given 

here. For further details, refer to the referenced literature.  

 

The variability of rainfall is damped by the catchment processes so streamflow shows 

less variability. If rainfall variability is not organised enough to overcome the damping 

effect, then spatial variation need not be taken into account however reliable 

information on spatial patterns is important in order to make accurate estimates of total 

volume. This may be more important than spatial variation in itself (Obled et al., 1994; 

Segond et al., 2007). The importance of spatial variation may be catchment specific 

and dependent on the characteristics of the catchment and the rainfall regime. Younger 

et al., (2009) studied the effect of rainfall input on model output on an event-by-event 

basis in the Brue catchment. They concluded that errors in the rainfall can lead to 

changes in the estimated model parameters to compensate for these observation errors. 

This may lead to a set of parameters for a single average model  that is uniquely adjusted 

to simulate the erroneously observed event or events.   

 

A well-designed network is required to evaluate an accurate estimate of the rainfall 

(Adhikary et al., 2015), one that is dense enough to give a good estimate with gauges 

in the right locations but without redundancy. One of the earliest studies of the effect 

of network density was carried out by Eagleson (1967) using a combination of harmonic 

analysis and distributed linear systems (having some similarity to the techniques used 

in this study). He claimed that incorporating catchment dynamics into network design 

reduces the number of gauges required. Bras and Rodriguez-Iturbe (1976) used a multi-

variate state-space rainfall model together with a runoff model to investigate how 
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detailed the description of the rainfall field needed to be. Both Eagleson and Bras and 

Rodriguez-Iturbe concluded that gauge location appeared to be important and that 

catchments are more sensitive to storms dominated by over-land flow near their outlets. 

The HYREX experiment (Moore et al., 2000) was set up to investigate rainfall 

variability and its impact on catchment scale flow regimes by combining radar and 

remote sensing data with information derived from a dense rain gauge network over the 

Brue catchment. Zhang and Han (2017) investigated spatial variability using the same 

catchment as a case study. They presented a framework for assessing spatial variation 

based on a combination of Coefficient of Variation and Moran’s I (Moran, 1950) and 

concluded that a simple lumped model was adequate for simulating simple events but 

models with higher spatial resolution were required for more complex spatially variable 

events. 

 

Lebel et al., (1987) used scaled estimation error variance to compare Thiessen polygon, 

spline and Kriging interpolation methods for a range of network densities. Lebel et al., 

(1987), Obled et al., (1994) and Shah et al (1996) all stated that a dense network has 

advantages over sparse networks whilst Sugawara (1992) said that rain gauge weighting 

should be by meteorological conditions rather than location. Several other studies 

looked at the impact of the density of gauge networks on rainfall estimation and 

hydrograph generation (c.f. for example, Anctil et al., 2006; Bardossy and Das, 2008). 

The introduction of weather radar and other remote sensing techniques has led to 

several studies aimed at reducing uncertainties in rainfall forecasts by combining radar 

and remote sensing data with information derived from rain gauges (c.f. for example, 

Moore et al., 2000; Bradley et al., 2002; Brocca et al., 2013). Chandler and Wheater 

(2002) applied Generalised Linear Models (GLM) to a cluster of flood events in western 

Ireland and suggested that GLMs could be a powerful tool for analyzing historical 

records for rainfall variability patterns potentially associated with climate change. With 

advances in Geographical Information Systems (GIS), greater use is being made of 

geostatistical techniques both to investigate the effects of rainfall variability and to 

improve rainfall estimates (c.f. for example, Naoum and Tsanis, 2004; Yeh et al., 2011; 

Shaghagian and Abedini, 2013; Adhikary et al., 2015) however these techniques 

require that a large number of gauges are available for analysis. 
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It is often the case that a single gauge or sparse gauge network is assumed to represent 

the catchment as a whole. In this study, a method for assessing which gauges are 

representative using DBM modelling is proposed (see Chapter 7). It can be shown that 

representativeness varies with time due to the movement of rainfall over the catchment. 

The method highlights that spatial rainfall distribution does indeed have an impact on 

runoff (surface and sub-surface) generation. It is proposed, in Chapter 7, that reverse 

hydrology can be used to overcome this problem.  

2.3.      Non-linearity 

Hydrological processes are highly non-linear. The same amount of rainfall does not 

always generate the same amount of streamflow. If the rainfall follows a dry period, 

soil moisture will be low and initially rainfall will be used in ‘wetting-up’ the catchment 

before its effects can be seen in the runoff. If soil moisture is high, runoff will occur 

much more quickly and more of the rainfall will be operative in producing runoff. The 

reason why storm Desmond (5/6th December 2015) caused so much damage in the U.K. 

was because record amounts of rain fell on already saturated soils. Had that much rain 

fallen 2 months earlier, following a dry spell, it is possible that the effects would not 

have been so devastating. 

 

A transfer function is a linear dynamic relationship, in this case between rainfall and 

streamflow. As stated above, the relationship between rainfall and streamflow is, in 

reality, highly non-linear so it must be ‘linearised,’ that is, the non-linearity accounted 

for in a separate step before the TF model is identified. (see Figure 6-2 for workflow 

diagram). This approach to compartmentalising a non-linear system into a static non-

linearity and linear dynamics is known as a Hammerstein structure. This study uses a 

bi-linear power law relationship (Equation 2-1) between rainfall and flow (Young and 

Beven, 1994; Beven, 2012a; Young, 2003) with flow being used as an index of 

antecedent wetness, that is, the wetness of the catchment at the start of a rainfall event 

or period. This process introduces an extra parameter that determines the variable 

fraction of rainfall converted into flow which must also be estimated from the data. The 

power law coefficient (a) estimation is carried out ‘off-line’ and the non-linearity, as a 

power function, can easily be inverted when applied in the reverse modelling process. 
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The power law is given by: 

!e= !#$% ∗ 	(#$%
)    (Equation	2-1)	

where Pobs is the measured rainfall, Qobs is the measured catchment outflow in the 

previous time period and α the parameter of the power law determining the fraction of 

the rainfall that generates discharge. Pe is the resultant linearised rainfall (often termed 

‘effective rainfall’ but as this term has other connotations, the term ‘linearised rainfall’ 

is mainly used in this study). The higher the value of alpha, the greater the non-linearity 

and the less linearised rain there is available for discharge generation. If a=0, linearised 

rainfall and measured rainfall are the same and the system can be said to be linear. At 

first sight, using flow as a surrogate for soil moisture might seem unusual, however it 

makes physical sense, that is, when flow is low, catchment storage is low and will be 

filled before runoff occurs – less of the rainfall is effective in influencing the flow – 

conversely, when flow is high, soil moisture (catchment storage) is high and runoff will 

occur more quickly – more of the rainfall is effective (Ratto et al., 2007) in generating 

discharge. To avoid confusion and to correspond with chapter 7, the term Discharge 

Generating Rainfall (DGR) is introduced here. It is not the same as linearised rainfall 

but is the part of the rainfall effective in generating flow. 

2.4.      Data-Based Mechanistic (DBM) modelling  

Data Based Mechanistic modelling (Young and Lees, 1993) was first applied to water 

quality modelling and river flow by Young and Beck (1974) and Young (1974). It was 

developed over a number of years and now has been applied in areas as diverse as 

ecology and economics (Young, 2011). In contrast to physically based models, which 

are often complex and have many parameters that need to be defined, data based models 

have a simple structure and as few parameters as can be justified by the data (they are 

parsimonious). DBM modelling is often based on transfer functions which exemplify 

this philosophy however, any model class where model structure can be identified from 

the data could be used (Young, 1993, page 137). 

 

The first stage of DBM modelling is effectively ‘black-box’ modelling, that is, models 

are fitted using statistical or systems analysis techniques with no consideration given to 

whether they have any physical explanation (Young et al, 2004), and only once this 
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stage is complete are models accepted or rejected according to whether they have a 

meaningful physical explanation with respect to the system in question and the 

modelling objectives. DBM modelling requires that sufficient data be available at the 

scale under consideration and that prior assumptions (perceptions) about model 

structure and complexity are minimized. The model structure and necessary complexity 

is identified from the data and is often based on linear transfer function models, hence 

the necessity for linearising the input (depending on the existing catchment 

nonlinearity). It is the physically meaningful interpretation of the models which 

differentiates DBM modelling from black-box modelling. Many models may be 

identified that fit the input data equally well (the equifinality concept of Beven, 2006). 

However, if models do not have a physically meaningful explanation (that is, they are 

not behavioural) they are rejected.  

 

Transfer function models may be defined in both discrete and continuous time (CT). 

Hydrological time-series are usually sampled at discrete time-intervals so it would seem 

that discrete-time (DT) models are ideal for modelling. They are widely used and can 

be applied easily to numerical methods of data assimilation and forecasting, for 

example, using the Kalman filter and fixed interval smoothing. CT formulations have 

several advantages over DT models, however historically they were difficult to 

estimate, so they tend to have been avoided. CT models can provide an insight into the 

properties of the system and the model’s parameters have direct physical interpretation 

that is not related to the sampling interval as is the case for DT models. CT modelling 

allows a wide range of time constants, characterising dynamic modes typical of 

hydrological systems (termed stiff systems), to be modelled and can be better estimated 

from data with a high sampling frequency such as the data used in this study. A CT 

model, as it is sampling rate independent, can be converted into a DT model with the 

same dynamic properties at any sampling interval. 

 

A transfer function (TF), a ratio of polynomials, can be described by their orders, the 

absolute time delay and the parameter alpha which is used to measure non-linearity. 

Most TF models, as identified and applied in hydrology, have orders of 3 or less – 

higher orders are difficult to describe mechanistically and are therefore rejected by the 

DBM philosophy. The general structure of a TF can be defined by: 
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*+ = 	 [-,/, 0]∝      (Equation	2-2)	

where n is the order of the denominator polynomial and m the order of the numerator 

polynomial. δ is the pure time-delay in time-units and α the coefficient of the power-

law function that indicates the strength of the non-linearity in the system – higher values 

of α indicate a more non-linear system. Both DT and CT formulations are included for 

completeness and because the novel RegDer inversion method (Kretzschmar et al., 

2014) is compared to the direct inversion of a discrete model (Andrews et al., 2010). 

 

A general DT-TF can be written as: 

4 5 = 	 6(8
9:)

<(89:)
	=(5 − 0)  (Equation	2-3)	

where u(k) is the input at the kth time interval and y(k) is the output at the same interval. 

d is the pure time delay in the system. The polynomials A and B are defined as: 

? @AB = 	1 +	EB@AB +	EF@AF + ⋯+	EH@AH (Equation	2-4)	

and 

I @AB = 	JK +	JB@AB +	JF@AF + ⋯+	JL@AL (Equation	2-5)	

where z-i is the backward shift operator, that is, z-I y(k) = y(k - i). The orders of the 

polynomials are n and m respectively.  

 

CT-TF models are similarly formulated but in terms of s where s ~ d/dt, the Laplace 

operator of derivative: 

M(N) = 	 6 %

< %
	O(N)PA%Q  (Equation	2-6)	

Polynomials A and B are defined as: 

?(N) = 	 NH +	EBNHAB +	EFNHAF + ⋯+	EHNK (Equation	2-7)	

and 
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I(N) = 	JKNLAB +	JBNLAF +	JFNLAR + ⋯+	JLNK (Equation	2-8)	

while M(N) and O N  (denoted often simply as Y and U) are Laplace transforms of = 5  

and y(k) respectively, and PA%Q is the Laplace transform of time delay t. The process of 

model structure identification is described in chapter 4. 

2.4.1. Physical interpretation 

The important aspect of DBM modelling that sets it apart from black-box modelling is 

the requirement that the model has a physically meaningful interpretation. The time and 

frequency domain properties, model decomposition and how these might be interpreted 

in hydrological terms are explored in this section (Young, 2011). Only first and second 

order models are considered as models of a higher order have not been used as they 

failed the final criteria for the objectives of this study – they could not be successfully 

inverted. 

 

 As previously stated, one of the advantages of using a CT model formulation is that 

the parameters have direct physical interpretation independent of the model’s sampling 

rate (Young, 2010). The continuous time model formulation for a 1st-order model is 

given by: � 

M = 	 $S
TU	V:

	OPA%Q = 	 TTW

%XYUB
OPA%Q	  (Equation	2-9)	

where the steady state gain (SSG) for this first order system is given by: 

ZZ[ = 	 $S
V:

  (Equation	2-10)

 	

and the time constant (TC) by: 

*\ = 	 B
V:

  (Equation	2-11)	

A 2nd order model is given by: 

M	 = 	 $S%U	$:
%]U	V:%UV]

	OPA%Q  (Equation	2-12)	

which must have negative real roots for the system to be stable and non-oscillatory – if 

these conditions are not met, the model has failed DBM criteria for catchment systems 
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and must be rejected. Assuming these criteria have been met, a 2nd order system can be 

decomposed by partial fraction expansion into two first order systems whose SSG and 

TC can be determined using Equation 2-10 and Equation 2-11 (Young, 2011). Stable 

higher order systems may also be decomposed in the same way. 

 

Equation 2-12 can be rewritten as: 

M	 = 	
TTW: %U

:
^_]

U	TTW](%U
:

^_:
)

(%U	
:

^_:
)(%U	

:
^_]

)
OPA%Q  (Equation	2-13)	

 

 where TC1 and TC2 are the system time constants and are often significantly different 

– a ‘stiff’ system. TC1 and TC2 are often referred to as the fast (or quick) and slow 

pathways and designated TCq and TCs. The model can be decomposed into a parallel 

form: 

M =
TTW`

BU	XY`%
+	 TTWa

BU	XYa%
OPA%Q  (Equation	2-14)	

where SSGq and TCq are the steady state gain and time constant of the fast response 

component and SSGs and TCs are the steady state gain and time constant of the slow 

response component. The total SSG of the system is given by:  

ZZ[b = 	ZZ[c + ZZ[%  (Equation	2-15)	

where SSGt is the total gain of system. The fraction of the flow along each pathway can 

be calculated from: 

!c = 	
TTW`
TTWd

			!% = 	
TTWa
TTWd

			   (Equation	2-16)	

 

 

Figure	2-2	-	Block	diagram	of	a	basic	first	order	system	

A simple first order model can be represented by the block diagram in Figure 2-2. A 

second order system can be decomposed into two first order systems. These may be 

!!"#
$%#	s + 1

U Y
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connected in a number of ways as shown in Figure 2-3. Higher order TF can be broken 

down in the same way but the number and the nature of connections become more 

complex.  

 

 

Second order 
decomposed 

into two 
parallel 

connected 
pathways 

 

Second order 
decomposed 

into two 
serially 

connected 
pathways 

 

 

Second order 
decomposed 
into feedback 

system I 

 

Second order 
decomposed 
into feedback 

system II 

Figure	2-3	-	Decomposition	of	a	second	order	TF	into	first	order	systems	connected	by	
different	pathways.	

Similar analysis can be carried out on discrete time systems c.f. Beven (2012a, p108). 

Although the system pathways are referred to as ‘fast’ (or ‘quick’) and ‘slow’ these do 
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not generally correspond directly to surface runoff and baseflow. The fast pathway may 

include some near surface flow and the slow pathway may include any sub-surface flow 

not just baseflow.  For further discussion, see section 5.8.    

	

2.5.      Transfer function inversion methodology  

In order to obtain a well-defined inverse transformation, the transformation itself must 

be well-defined and it must characterise the system without excessive complexity. 

Inversion is based on differentiation and is, therefore, numerically poorly defined by 

definition. In this study, a novel solution to estimating Discharge Generating Rainfall 

has been proposed utilising the inverse of a continuous-time transfer function and 

regularisation, termed the RegDer method (Kretzschmar et al., 2014). It is compared to 

the direct inverse of a transfer function (Andrews et al., 2010) termed InvTF in chapter 

4.  

 

The general inversion of a linear system, as described in Section 1.3, is shown in Figure 

2-4. If G ([:O	−> M) is a true representation of the system and G-1 ([AB:	O∗	−> 	M∗) 

is the true dynamic inverse then the overall system input, U, is the same as the output, 

Y* (Buchholz and Grünhagen, 2004) 

 

 

Figure		2-4	-	A	schematic	representation	of	a	general	identity	system	assuming	a	perfect	
model	and	a	perfect	inverse.	In	the	ideal	case,	the	system	input	U	is	identical	to	the	system	
output	Y*	(adapted	from	Buchholz	and	Grünhagen,	2004)	

The general system, G, can be represented a transfer function of the form: 

[ = 	6(%)
<(%)

  (Equation	2-17)	

with A and B polynomials of orders n and m respectively. Transfer functions are linear 

operators so once the time delay and parameters have been identified, the model can be 

rewritten as: 

GU Y*G-1
Y	=	U*
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[AB = <(%)

6(%)
  (Equation	2-18)	

from which a series of linearised rainfalls may be inferred. As shown in Figure 2-4, in 

an ideal situation, the series of inferred rainfalls would exactly equal the rainfall inputs 

to the system. In the real world, this is unlikely and how well Y* matches U is 

dependent on the rainfall regime, the catchment dynamics, the quality of the data and 

how well the model represents the physical processes as well as the efficiency of the 

inversion. 

 

A ‘proper’ transfer function depends on the relative orders of the numerator (order m) 

and denominator (order n). To be proper, n >= m is required. If this is not the case, the 

TF model will not be realisable due to the fact that perfect derivatives do not exist (as 

involving knowledge of the future), and thus will be rejected by DBM methodology. 

An improper TF can be seen to be responding to future events now, which is clearly 

impossible (Dokuchaev, 2016). This problem arises with the inverse TF models – a 

common situation with many systems being ‘strictly proper’ where n > m resulting in 

an inverse where the opposite is true, which therefore is unrealisable.  

 

Two approaches to resolving this issue are taken in this study.  

2.5.1. Regularised derivative estimate approach 

The Regularised Derivative method was developed from an idea first mooted by 

Jakeman and Young (1984) in combination with developments in the identification of 

CT-TF models (for example, Young and Garnier, 2006). The transfer function is 

inverted as in Equation 2-18 but is then split into a ‘proper’ realisable part and the 

unrealisable part which will require the use of derivatives. The realisable part takes Y, 

the original system output, as its input whilst the part requiring derivatives, uses 

regularised estimates of the derivatives as input.  

 

Regularisation is a mathematical technique that introduces extra information allowing 

an ill-posed problem to be solved numerically. The additional information in this case 

takes the form of imposing a loss of temporal resolution (increasing the smoothness of 

the solution), thus effectively limiting the number of estimated values or parameters, 

and so simplifying the model. This process is sometimes interpreted as imposition of 
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Occam’s Razor on the solution (the law of parsimony which states that the simplest 

answer is often correct). Regularisation is necessary here because minimising the 

objective function (residual sum of squares) leads to exaggeration of high frequency 

components of the estimated signal, particularly for catchments with large storage and 

slow and multiple time constants. The tuning parameter introduced is the NVR 

(equation 4-9) which is reciprocally related to the smoothness of the estimate. It is 

applied only to the higher derivative estimates (c.f. equation 4-4) allowing the amount 

of smoothing and therefore loss of resolution to be tuned to give the best fit to the 

observed rainfall. 

 

The derivative estimates are obtained using a regularisation technique using higher 

order Integrated Random Walk models in a stochastic state-space framework, a 

technique available in the Captain Toolbox for Matlab (Taylor et al., 2007). For detailed 

explanation, section 4.3. The following example shows a CT-TF model linking 

linearised rainfall and streamflow: 

( =	 <(%)
6(%)

	!P = 	 $S%U	$:
%]U	V:%UV]

	!P	  (Equation	2-19)	

where the order of the numerator m=1 and the order of denominator n=2.  

This is a proper TF where n>m so when the inverse is written as: 

!P = 	 6(%)
<(%)

( = 	 %
]U	V:%	U	V]
$S%U	$:

Q  (Equation	2-20)	

where the order of the numerator m=2 and the order of denominator n=1. This is an 

improper TF because n<m and it involves a pure derivative of Q. It can be transformed 

to: 

!P∗ = 	 %
]U	V:%	U	V]
$S%U	$:

( = 	 %

$S%U	$:
N( +	V:%	U	V]

$S%U	$:
	Q (Equation	2-21)	

where the TFs are proper but involves the derivative of Q, sQ, which is estimated using 

the regularised estimate of the derivative of Q obtained from an Integrated Random 

Walk model of Q (IRWSM in the Captain toolbox) (Jakeman and Young, 1984; Young 

et al., 1999). The inverse transform can be rewritten using the regularised derivative 

estimate approximation (sQ)*: 
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!P∗ = 	 %

$S%U	$:
N( ∗ +	V:%	U	V]

$S%U	$:
	Q  (Equation	2-22)	

which is realisable and straightforward to implement. 

2.5.2. The alternative fast compensating mode approach 

Equation 2-18 can be rewritten in a realisable (or ‘proper’, that is not involving direct 

derivatives) form (Zadeh and Desoer, 1963) given by: 

[AB = <(%)

6(%)

$(%)

V(%)
  (Equation	2-23)	

 where $(%)
V(%)

	is a compensating transfer function which makes the overall inverse 

realisable with no pure differentiation. The order of the denominator a(s) is chosen to 

be of an order such that the overall denominator is of higher order than the numerator. 

The compensating TF has a SSG of 1 and the roots of the numerator (poles) are chosen 

to be fast, that is, well above the upper range of the original model spectrum so that the 

inverse dynamics are not affected. The Direct Inverse approach taken by Andrews et 

al., (2010) was used as comparison with the novel regularised derivative method in	

chapter	4. 

2.6.      Goodness of fit metrics 

There is a difference between model selection and evaluating model performance 

(Bennett et al., 2013). Selection may include criteria other than how well the model fits 

the data, and may be dependent on the purpose of the model. It may include subjective 

factors such as cost, applicability, simplicity and whether it has a physical explanation. 

Testing of model performance requires that some observational data, which is assumed 

to be error free (Moriasi et al., 2007), is available for comparison. Ideally, this should 

not have been used for model identification or calibration. Metrics commonly result in 

a single value that is assumed representative of the whole series. This may, however, 

hide or misrepresent localised behaviour in both space and time. 

2.6.1. Model selection criteria 

The routines used for model selection in this study, contained in the Captain Toolbox 

for Matlab (Taylor et al., 2007) do so on the basis of Rt
2 – the Nash-Sutcliffe Efficiency 
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(NSE) – and the Young Information Criterion (YIC) proposed by Young (1984). The 

NSE is based on the coefficient of determination Equation 2-24 and is given by: 

gb
F = 1 −	

(hi
j A	hk

j )]l
jm:

(hi
j A	h)]l

jm:
  (Equation	2-24)	

where (L is the modelled value and (# the observed value at i. (# is the mean of the 

observed series. It can range between 1 > Rt
2 > -¥ where 1 indicates a perfect fit. A 

value of 0 indicates that the model performs no better than using the average of the 

observed data. Negative values mean performance is worse than using the average 

(Blöschl et al., 2013). It measures the magnitude of the residual variance (noise) relative 

to the information contained (variance of observed data) and indicates how well the 

observed versus simulated data fit the 1:1 line (Moriasi et al., 2007). The NSE is 

sensitive to differences in means and variances but, due to the residual squaring, it is 

over-sensitive to extreme values. The NSE uses the observed mean as a baseline which 

can result in over-estimation of the model skill especially when highly seasonal 

variables are involved (Gupta et al, 2009).  

 

The Young Information Criterion (YIC) is an objective measure combining model fit 

with a measure of over-parameterisation. It is given by: 

Mn\ = o- pq]

pi
] + o- rstr   (Equation	2-25)	

where uvF and u#F are the variances of the residual series and observed series respectively 

and NEVN (the normalised error variance norm) is given by: 

rstr =	 B
Hw
	 pq]xjj

Vj
]

Hw
yzB   (Equation	2-26)	

where np = the number of parameters, !yy is the ith diagonal element of the parameter 

covariance matrix and EyF is the square of the ith parameter. The first term is a measure 

of how well the model fits the data and the second is a measure of parameterisation. A 

large negative value indicates a good fit with lowest number of parameters necessary 

to capture the system dynamics. In general, a higher order model will show a better fit 

but the parameters will have a greater uncertainty and the model may only fit the 

calibration data. YIC is a compromise between model fit and model complexity (Young 

et al., 1996; Ockenden, 2010). 
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A further consideration in this study is how well a model inverts. In general, a model 

which fits the data and inverts well is likely to be a robust representation of the system. 

Final model choice was based on Rt
2 (as high as possible), YIC (large negative value 

preferred) and the ability of the inverted model to recover the rainfall as measured by 

the NSE and termed IRt
2. IRt

2 should be as high as possible and is the deciding factor 

between similar models. 

2.6.2. Model Evaluation 

To be useful, models need to pass some criteria of acceptability. Deciding what those 

criteria should be often depends on the purpose of the model. Quantitative measures 

allow for objective comparison of models highlighting the similarities and, possibly 

more importantly, the differences between observed and modelled series. A single value 

may not be enough to characterise differences in space and time. Different metrics can 

be used to characterise different states of the system, for example, dry periods, wetting 

up, wet periods or drying (Choi and Beven, 2007). Different metrics highlight different 

behaviours and target different parts of the hydrograph, for example, peak magnitude, 

peak timing, rising limb, recession or low flows, so a range of metrics may be necessary 

to assess performance over the whole range (Krause et al., 2005). Seibert (2001) and 

Schaefli et al., (2007) advocate comparing performance of a model against a benchmark 

model that is easily understood by end-users and stake-holders and suggest a variation 

to the basic Rt
2 formulation (Equation 2-34). Many reviews of performance measures 

have been published discussing the pros and cons (c.f., for example, Legates and 

McCabe, 1999; Krause et al., 2005; Moriasi et al., 2007; Ritter and Muñoz-Carpena, 

2013; Bennett et al., 2013). A brief overview is given here with focus on those used in 

this study. Alternatives to be found in the literature are also mentioned. 

 

Performance measures can be categorised as regression metrics that measure the 

strength of a modelled relationship, dimensionless metrics that give a relative 

assessment, error indices that generate metrics in the same units as the measurements 

and graphical comparisons that provide useful visual assessments. Some metrics fit into 

more than one category.  

 



Chapter 2  Background to methods 

  34 
 

The importance of graphical comparison should not be underestimated despite its 

subjectivity. Comparing hydrographs can show differences in peak magnitudes and 

timing and how well the shape of the recession is defined (Moriasi et al., 2007). Scatter 

plots between observed and simulated series indicate whether model performance is the 

same over the whole range or is dependent on magnitude or whether there are any 

relationships that are not 1:1 (indicating bias in the simulated series). Scatter plots and 

box-plots may also highlight the presence of outliers (Ritter and Muñoz-Carpena, 

2013).  

 

Bias may be quantified using the error index, PBIAS (Moriasi et al., 2007). It is given 

by: 

!In?Z = 	 (hi
dA	hk

d )^
dm:

hi
d^

dm:
	{	100  (Equation	2-27)	

where (# and (L are the observed and modelled values at time, t. The optimal value is 

0 (no bias) with positive values indicating under-estimation and negative over-

estimation. Andréssian et al., (2001) suggest an alternative which they use to quantify 

the over- or under-estimation of a sample of rainfall (for example, rainfall measured at 

a single gauge) compared to the reference or ‘true’ rainfall (for example, catchment 

average rainfall). It is given by: 

I?}?r\s = 	 ~�d
^
dm:

X�d
^
dm:

  (Equation	2-28)	

where ER is the estimated rain at time t and TR is the true or reference rain at the same 

time. A value of 1 indicates no bias. Values greater than 1 indicate that the sample over-

estimates and values less than 1 indicate the sample under-estimates. 

 

There are many other error indices, discussed in the referenced literature, that quantify 

error in the units of the measured values. Root mean square error (RMSE) and Mean 

absolute error (MAE) are two of the most commonly used. They are given by: 

gÄZs = 	 (hi
dA	hk

d )]l
dm:

Å
  (Equation	2-29)	

and 
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Ä?s =	 |hi
dA	hk

d |l
dm:

Å
  (Equation	2-30)	

where N is the number of observations and (# and (L are the corresponding observed 

and modelled values. If RMSE > MAE the presence of outliers is indicated (Legates 

and McCabe, 1999). 

 

Correlation based metrics such as the coefficient of determination (r2 or R2), NSE and 

Index of Agreement (d) (c.f. Krause et al., 2005) are commonly used in hydrology. 

They are over-sensitive to extremes and are insensitive to additive and proportional 

differences so may indicate that a model is a good predictor when it obviously is not 

(Legates and McCabe, 1999). Use of graphical methods and summary statistics should 

be used in addition. 

 

Blöschl et al., (2013, p27) give two different definitions of the coefficient of 

determination – r2 and R2 – where r2 is the square of the correlation coefficient and is 

given by: 

ÉF = 	
	(hk

d 	^
dm: A	hk)(hi

dA	hi)
]

(hk
d A	^

dm: hk)] (hi
dA	^

dm: hi)]
  (Equation	2-31)	

where (# and (L are the observed and modelled values at time t and (L and (# are 

the means of the modelled and observed series. r2 measures the degree of linear 

association and ranges from 0 for no correlation to 1 for a perfect fit. One of the major 

drawbacks to r2 is that it is dependent only on the amount of dispersion that is explained 

by the predictions so a systematically biased model will give an r2 value close to 1 even 

though all the predictions are wrong. Krause et al., (2005) suggest taking the gradient 

(b) and intercept (a) of the regression line into account (for a good fit, a should be close 

to 0 and b close to 1). They suggest a weighted version of r2 that includes the slope, b: 

ÑÉF = 	 J . ÉF			ÜáÉ	J ≤ 1   (Equation	2-32)	

															 J AB. ÉF	ÜáÉ	J > 1   

ÑÉF quantifies over or under-predictions at the same time as the dynamics. 

 

The alternative formulation is: 
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gF = 1 −	 (hk
d A	hi

d)]^
dm:

(hi
dA	hi)]

^
dm:

  (Equation	2-33)	

It is a composite measure of bias and random error where 1 is a perfect fit and 0 

indicates the model is no better than the average of the observations, A negative value 

indicates that the model is worse than the average. The NSE (Equation 2-24) is based 

on this formulation. A further variation on the NSE that allows model performance to 

be compared to a benchmark model was suggested by Seibert (2001) and Schaefli et 

al., (2007). It is given by: 

Is = 1 −	 (hk
d A	hi

d)]^
dm:

(hi
dA	hâ

d)]^
dm:

  (Equation	2-34) 

where Qb is the value at time t generated by the benchmark model. 

 

The reliance on squared errors in these metrics means that they tend to emphasize larger 

errors and do not account for residual correlations. These tend to be associated with 

higher streamflows so they show a better fit to peaks than lower flows. Data 

transformations such as taking logs can increase sensitivity to low flows because the 

peaks are flattened whilst low flows change very little. The sensitivity to over- or under-

prediction is increased (Krause et al., 2005). 

 

A variation of the NSE was suggested by Andréssian et al. (2001) and is used alongside 

BALANCE (Equation 2-28) to estimate how well a rainfall subset matches the 

reference or ‘true’ rainfall. It is termed the Goodness of Rainfall Estimation (GORE) 

index and uses a square root transformation of the variables to reduce the impact of 

extreme events. It is given by: 

[ägs = 1 −	
( ~�jA	 X�j)]

ã
jm:

( X�jA	 X�)]
ã
jm:

  (Equation	2-35)	

where n is the number of observations, ER is the estimated (or sampled subset) rain and 

TR is the ‘true’ or reference rain (often catchment average rainfall). For application see 

section 6.4.  

 

The metrics discussed so far apply to the whole dataset. On an event basis, metrics such 

as Peak Difference (PDIFF) and Percentage Error in Peak (PEP) (Bennett et al., 2013) 
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are useful for quantifying differences in hydrograph peaks which may be evident from 

visual inspection. They are given by: 

!ån++ = ÄE{ (# − 	ÄE{((L)  (Equation	2-36)	

and 

!s! = çVé hi A	çVé hk
çVé hi

	{	100  (Equation	2-37)	

where (# and (L are the observed and modelled datasets for the event. PDIFF is the 

measured difference between the magnitude of the peaks and PEP the percentage 

difference (see Figure 4-6). 

2.6.3.  Summary 

There are a wide range of evaluation metrics available however choosing a suitable one 

depends on the purpose of the model and the data. Many metrics assume a normal 

distribution and independence and are generally not suitable for use with hydrological 

data which usually is not normally distributed, and are therefore not discussed here. The 

independence assumption is often ignored and may result in information remaining in 

the residual series which is not explained by the model leading to biased estimates of 

the statistical properties. The metric most widely employed, NSE, should be used 

alongside additional methods including graphical and error measures such as PBIAS. 

NSE (as an L2 - a quadratic norm based criterion) tends to favour good fit at higher 

flows and will tend to indicate a model is a good fit even if low flows are not well 

reproduced. Combining regular Rt
2 with the log-transformed version, Rt

2L, provides a 

better overall picture of model performance across the whole range (see section 7.8). 

2.7.      Spectral analysis 

Transformation of time-series into the frequency domain enables features that are hard 

to see in the time domain to be detected. Although spectral analysis has been applied 

for several decades in hydrology (c.f. review in Kendall and Hyndman, 2007) it has 

seen little practical use (Fleming et al., 2002), however Kendall and Hyndman (2007) 

used it to extract quantitative information and demonstrate linkages between 

hydrological processes. This is, paradoxically, in spite of the fact that transfer function 

models, intrinsically constructed in the frequency domain, are commonly used in 
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hydrology. Transfer functions are easily interpreted as spectral expressions, as the 

Laplace operator, N = èê, and the backward shift operator @AB = PAyë∆b in this dual 

interpretation (with:	ê = 2îÜ, Ü - the signal frequency, and è - the imaginary unit). 

These identities are used in Chapter 5 – as they provide direct spectral relationships 

between the signals and illustrate the spectral decomposition occurring in the 

regularisation process.  

 

Model evaluation usually entails comparing model output with observed values of the 

same quantity to ensure a good fit (see section 2.7.2). A good fit in the time-domain 

implies a good fit in the frequency domain but this may not be the case. Fleming et al., 

(2002) suggested that comparing periodicities in the frequency domain could be a 

valuable approach for assessing model performance. Montanari and Toth (2007) 

attempted model calibration based on the spectral density function suggesting that the 

technique could be applied to sparse data or ungauged catchments. Cuchi et al., (2014) 

used frequency analysis to investigate the non-linearities in a karst system in Spain. 

Spectral analysis has also been applied to fractal system behavior (c.f. for example 

Kirchner et al., 2000). Wavelet analysis can extract both time and frequency 

information from a signal capturing information at a range of resolutions. It was used 

by Schaefli et al. (2007) to detect potential flood generating meteorological conditions 

due to its ability to explore co-variation of different processes at differing time-scales 

and is becoming a popular tool for analysis (Dadu and Deka, 2016). In Chapter 5, 

spectral analysis is used to confirm that the inferred rainfall time-series retains the 

characteristics of the input rainfall series. 

 

A catchment acts as a low-pass filter. A broad-spectrum rainfall signal input is low-

pass filtered by the catchment’s spatio-temporal integration processes into a lower 

frequency range streamflow signal – as illustrated in Figure 2-5. The loss of time 

resolution (c.f. Chapter 4 and Chapter 5 for detail and discussion) in the inferred rainfall 

signal is to be expected given that the regularisation procedure also acts as a low-pass 

filter. The streamflow spectrum is the result of mapping the rainfall spectrum by the 

catchment dynamics. Regularisation is a necessary step here in order to obtain a well-

defined inverse of the catchment dynamics.  

 



Chapter 2  Background to methods 

  39 
 

 

Figure	2-5	-	The	low-pass	filtering	(damping)	effect	of	the	catchment	(storage)	as	the	high	
frequency	rainfall	signal	is	converted	into	lower	frequency	discharge	(adapted	from	Smith	
et	al.,	2004)	

The Fourier transform (FT) maps the time domain signal into the frequency domain: 

[ Ü = 	 ï(ñ)PAFóyòbôñ
ö
Aö   (Equation	2-38)	

where t is time, f is frequency and the imaginary unit è = 	 −1 . G(f) and g(t) can be 

said to be two different ways of expressing the same signal or operator (kernel function 

such as the unit hydrograph). The frequency signal can be converted back to the time 

domain using the inverse FT: 

ï ñ = 	 [(Ü)PFóyòbôÜ
ö
Aö   (Equation	2-39)	

An alternative formulation using angular units, by substituting ê = 2îÜ, is often found 

in the literature however the formulations given here are easier to implement. (Fleming 

et al., 2002). The FT can be thought of as decomposing the time-series into sine waves 

of different amplitudes, phases and periodicities. 

 

Figure 2-6 illustrates basic waveform definitions 4 ñ = å + ? ∙ sin	(2îÜñ − ü) with 

Ü = B

X
. Period is defined as the distance from one peak to the next and amplitude as the 

half-wave height (the distance from the centre line to a peak or trough).  

 

Frequency is how often something happens in one time unit and is defined as: 

Ü = 1/*  (Equation	2-40)	

where T is the Period and f is given in cycles per time unit. Frequency is often expressed 

in Hertz or cycles per second. Frequency may refer to spatial dimensions (for example, 

cycles per metre) as well as time.  
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Figure	2-6	-	Definition	of	period	and	amplitude	of	a	sinusoidal	waveform	

Phase shift ü is a measure of how far in time (or along the x-axis) a wave function is 

from its base position and vertical shift, D, the constant, or DC component in electronics 

jargon indicates the vertical distance of the centre line from 0 – illustrated in Figure 

2-7. 

 

	Figure	2-7	-	Phase	shift	and	vertical	shift	of	a	sinusoidal	function	

A periodogram is the frequency domain expression of a signal, strictly speaking, its 

amplitude spectrum estimate, showing the amplitudes of all the spectral components – 

at all the frequencies - adding up to produce the observed signal. In this study, 

periodograms are obtained using the Fast Fourier Transform implemented in Matlab 

using the FFT or periodogram functions. Figure 2-8 shows the time-series and 

periodogram plots for the same set of rainfall and flow data.  Peaks in the amplitude 

spectrum indicate frequencies that make a significant contribution to the signal. At low 

frequencies the two signals run close together (the signals in Figure 2-8 have been 
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shifted vertically for clarity. The frequency spectrum is not affected by this shift). At 

the position of the catchment time constant, the flow spectrum drops off sharply. When 

it has dropped 6dB in amplitude, the cut-off point is reached. Below that point the 

frequency spectrum has little power and has very little effect.  

 

Figure	2-8:	a)	Time-series	and	b)	frequency	plots	(periodogram)	for	the	same	set	of	rainfall	
and	flow	data.	The	periodogram	pair	shows	the	low-pass	filtering	effect	of	the	catchment	
on	the	rainfall	signal.	The	high	frequency	attenuation	strength	is	illustrated	in	this	double-
logarithmic	scaled	graph. 

There are many sequences of rainfall that give the same output however the signal 

beyond the band-pass of the catchment is filtered out and therefore cannot be recovered 

hence the loss of resolution in the inferred rainfall. Regularisation gives a unique signal 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 Observed Rain
Observed flow

a)																																																									Time	(hrs)	

De
pt
h	
(m

m
)	

b)																																																	Frequency	

Po
w
er
	(d

B)
	



Chapter 2  Background to methods 

  42 
 

which can be adjusted by choosing an appropriate regularisation parameter, noise 

variance ratio (NVR). 

 

The sampling rate of a system must be high enough to fully define it without over-

sampling. The Nyquist-Shannon frequency gives the upper limit on the size of the 

sampling interval, Δt, that will enable the system dynamics to be represented without 

distortion (aliasing - Bloomfield, 1976, p21). The Nyquist frequency – the limit 

frequency represented in the spectrum - is defined as half the sampling frequency: 

Ü° = 	
B

F∆b
  (Equation	2-41)	

where fc is the Nyquist frequency and Dt is the sampling interval. If the sampling 

interval is small enough to uniquely define the system, that is, less than 1/2fc, a CT 

model should be independent of the rate of sampling. This means that if the maximum 

observed signal frequency is below the Nyquist limit then the model is capturing the 

full system dynamics.  

2.8.      Uncertainty 

Models are simplified approximations of the real world (c.f. section 1.2) so predictions 

made using these models are approximations also. It follows then that there is 

uncertainty in the predictions, which should be quantified and reported, along with the 

assumptions made when building the model. In some cases, the uncertainty may be 

large enough to affect decisions taken based on these predictions, for example, the 

design of flood defences.  

 

Uncertainty comes from a range of sources and may be divided into epistemic and 

aleatory uncertainties. Epistemic uncertainties result from gaps in knowledge and 

understanding. They tend to be non-stationary, arbitrary in occurrence and are difficult 

to deal with by probabilistic methods. It is possible that epistemic errors may be so large 

that the data may not be informative when identifying and calibrating model and 

parameters (Beven and Westerberg, 2011). Aleatory uncertainties are random and can 

be characterised by a formal error model. They are assumed to be stationary and can 

provide probabilistic estimates of uncertainty (Beven and Lamb, 2014).   
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 Epistemic uncertainties include: 

• Measurement or estimation errors in the inputs and boundary conditions, for 

example, rain gauge measurements, radar estimates or inappropriate 

conversions from remote sensing data 

• Lack of knowledge about the extent and effect of spatial rainfall 

• Choice of interpolation method used to estimate catchment rainfall 

• Biases in meteorological variables, for example, rain-gauge under-catch 

• Model structural errors including the assumptions made 

• Parameter estimates 

• Scale of the processes involved (do micro-level physical laws apply at 

catchment scale?),  

• Time interval (does a model that has been calibrated for one time interval apply 

to another?) 

• Unknowns that affect the system and are known about but cannot be represented 

• Unknowns that may affect the system but have not yet been recognised (Beven 

and Young, 2013; Beven and Lamb, 2014). 

 

There are several methods widely used for uncertainty estimation (c.f. Beven, 2004) 

including: 

1. Optimisation based on regression 

2. Bayesian statistical methods 

3. Multi-objective Pareto approach 

4. Generalised Likelihood Uncertainty Estimation (GLUE) 

5. Fuzzy set methods. 

 

Traditionally, model calibration has focussed on minimising some cost function, 

looking for the ‘optimal’ model, the right answer. Uncertainty is only evaluated around 

the optimal model. The optimisation problem in the presence of uncertainty is often ill-

posed and, with limited data, it may be difficult to know if the minimum of the objective 

function has been found or merely a local minimum depending on the shape of the 

response surface so several runs with different starting points maybe required. Changes 

in the calibration data, search algorithm or criteria may result in a different optimum. 

Models are complex and many parameter sets or model structures may give acceptable 
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model outputs. This is the concept of equifinality (Beven, 2006). Equifinality 

recognises that there may be structural or input errors and that the procedural model 

may not be a good representation of the perceptual model or even that the perceptual 

model may not be a true understanding of the system (c.f. Figure 1-1). 

 
DBM modelling recognises the equifinality concept in that many models with a similar 

fit may be identified from the data. The modeller must choose between them based on 

the performance measures such as Rt
2 and YIC. Usually the models with the highest Rt

2 

are chosen then selection between them is made using the lowest (highest negative) 

YIC. In this study, a third criteria was introduced: how well does a model invert? A set 

of the models with the highest Rt
2 was chosen for inversion then the model that inverts 

the best, that is, has the highest inverse Rt
2 (IRt

2) was chosen from these. If IRt
2 for more 

than one model were similar, then Rt
2 and YIC were also taken into account. 

 

Ideally predictions of the future should be 100% certain however this is not likely to 

happen due to the many uncertainties in any real system. Aleatory uncertainty can be 

reduced by using longer records (assuming stationarity of the processes) but 

reductions in epistemic uncertainty require improvements in knowledge, for example, 

better measurement techniques or enhanced understanding of the rainfall distribution.  
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Chapter	3 	Test	catchments	and	data	
The methods presented in papers 1 and 2 were tested on two catchments at opposite 

ends of the rainfall spectrum, the humid temperate Blind Beck catchment in the North-

west UK and the humid tropical Baru catchment in Borneo. The choice of these two 

experimental catchments allowed the initial evaluation of the novel method for 

estimation of catchment rainfall from streamflow to be made using the extremes of a 

basin with tropical convective rainfall and shallow flow pathways to a basin with 

temperate low-intensity frontal rainfall and deep flow pathways leading to greater 

damping or temporal integration. Spatial applications were tested on the heavily 

instrumented Brue catchment in South-west England, an area known for historic and 

recent flooding (c.f. chapter 6 and chapter 7). The density of the gauge network makes 

it ideal for investigating the influence of rainfall spatial distribution on catchment 

outflow. Details of the catchments and the test data are summarised in this chapter. 

3.1.      Blind Beck - temperate catchment  

The Blind Beck catchment has an area of 8.8 km2 and lies in the headwaters of the Eden 

basin in North West England, UK (54.51oN 2.38oW). The location is shown in Figure 

3-1. Superficial cover is glacial till (61%) and riverine and fluvial clays with floodplain 

sands and gravels underlain by Penrith Sandstone, a major aquifer, and 

limestone/mudstone. Land cover is mostly grassland (both improved and rough) with 

some arable land (BGS, 2017). Soils are 53% brown earth, 21% stagnogley, 17% brown 

alluvial and 9% lithomorphic (Ockenden, 2010). Stagnogley soils have slowly 

permeable subsoil which is prone to water-logging (see Figure 3-4). 

 

The basin’s response shows evidence of deep hydrological pathways due to the 

presence of deep limestone and sandstone aquifers, and this has resulted in a damped 

hydrograph response (Mayes et al., 2006; Ockenden and Chappell, 2011; Ockenden et 

al., 2014). Winter rainfall in this basin is derived from frontal systems with typically 

lower intensities than the convective systems in the tropics (Reynard and Stewart, 

1993). Data from a single tipping-bucket rain-gauge (that is, 0.1 gauges per km2) 

located in the middle of the catchment was used in this study. The data used in the 

analysis covers the period from 26th Dec 2007 at 16:45 to 31st December 2007 at 21:45 
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sampled at 15 minute intervals (Figure	 3-2) and was previously modelled by 

(Ockenden and Chappell, 2011). A summary of the statistics of the observed rainfall 

and flow for the event modelled are shown in Table	3-1. 

 

 

Figure	3-1	-	Location	and	topography	of	the	8.8	km2	Blind	Beck	catchment,	NW	England	

 

Figure	3-2	-	Rainfall	and	flow	in	the	Blind	Beck	catchment	on	26-31st	December	2007	
sampled	at	15	minute	intervals	
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Table	3-1	–	15-minute	rainfall	and	flow	statistics	for	26th	-	31st	December	2007	in	the	
Blind	Beck	catchment	

	 Mean	 Median	 Standard	
deviation	 Skewness	 Kurtosis	 Maximum	 Total	

Rainfall	
(mm)	 0.141	 0.025	 0.335	 3.15	 15.93	 2.48	 90.7	

Flow	
(mm)	 0.003	 0.112	 0.010	 0.15	 1.35	 0.33	 70.6	

 

 

a)   b)  

Figure	3-3	-	a)	The	WISER	water	quality	monitoring	system	at	the	main	weir,	Blind	Beck	
Experimental	Catchment,	Cumbria,	UK,	b)	The	water-level	recorder	(left)	and	WISER	water	
quality	monitoring	system	(centre)	at	the	main	weir,	Blind	Beck	Experimental	Catchment,	
Cumbria,	UK	(Photos	courtesy	of:	NA	Chappell)	

Blind Beck is part of the Eden catchment and was monitored as part of the CHASM 

project (Catchment Hydrology and Sustainable Management), a long-term research 

program investigating the issue of scale and how catchments might respond to future 

changes in climate (CHASM, 2016). Mayes et al., (2006) monitored a multi-day flood 

event at a range of scales and noted a large spatial rainfall variation related to elevation. 

Ockenden (2010) investigated hydrological pathways, important for addressing 

problems such as flooding, chemical loads and pollutant pathways, by chemical 

characterisation of stream-water, rainwater and borehole water (Monitoring equipment 

shown in Figure 3-3). Saturated areas were identified (see Figure 3-4) and contributing 

landscape features assessed using paired sites analysed using geospatial techniques. 

Low order transfer function models were used to identify the dominant modes of stream 
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response (Ockenden and Chappell, 2011). Modelling results were confirmed by 

Ockenden et al., (2014) using a hydro-chemical mixing model. 

 

	

Figure	3-4	-	Saturated	area	close	to	the	Low	Hall	stream	gauging	station	within	the	Blind	
Beck	Experimental	Catchment,	Cumbria,	UK	(Photo	courtesy	of	NA	Chappell)	

3.2.      Baru - tropical catchment 

The 0.44 km2 Baru catchment is situated in the headwaters of the Segama river located 

in Sabah on the northern tip of Borneo, East Malaysia (4o 58’ N 117o 49’ E). (Location 

shown in Figure	3-5). The climate is equatorial with a twenty-six year (1985-2010) 

mean rainfall of 2,849 mm (Walsh et al., 2011) showing no marked seasonality but 

tending to fall in short convective events (see Figure	 3-7c) showing high spatial 

variability and intensities much higher than those of temperate UK (Bidin and Chappell, 

2003; 2006). Due to the high spatial variability, a network of 6 automatic rain-gauges 

(13.6 gauges per km2) was used to derive the catchment-average rainfall using the 

Thiessen Polygon method. Haplic alisols, typically 1.5 m in depth and with a high 

infiltration capacity (Chappell et al., 1998) are underlain by relatively impermeable 

mudstone bedrock resulting in the dominance of comparatively shallow sub-surface 

pathways in this basin (Chappell et al., 2006). As a result of the high rainfall intensity 

and shallow water pathways the stream response is very flashy (that is, rapid recession 

in the impulse response function).  
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Figure	3-5	-	Location	of	the	0.44	km2	tropical	Baru	catchment	

	

 

Figure	3-6	–	5	minute	rainfall	and	flow	data	from	the	0.44	km2	Baru	catchment	(February	
1996) 

The data used in the analysis are from February 1996 sampled at 5 minute intervals 

(Figure 3-6) and have been modelled previously by Chappell et al., (1999) and Walsh 

et al., (2011). The rainfall and flow statistics for the period modelled are shown in Table	

3-2	-	Statistics	of	5-minute	rainfall	and	flow	for	February	1996. The character of the 
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Baru catchment is shown in Figure	3-7 and may be compared with Blind Beck (Figure	

3-3 and Figure	3-4). 

		

 

 

a)	Preparing	to	collect	a	water	sample	
(for	suspended	sediment	determination)	
at	the	main	station	of	the	Baru	
Experimental	Catchment,	Sabah,	
Malaysian	Borneo		

 

 

b)	The	main	channel	of	the	Baru	
catchment	100m	upstream	of	the	main	
station	(Sabah,	Malaysian	Borneo)	

c)	The	DVFC	meteorological	station	during	
heavy	rain,	Sabah,	Malaysian	Borneo		

Figure	3-7:	Images	showing	the	character	of	the	Baru	catchment	(Photos	courtesy	of	N.A.	
Chappell	and	W.	Tych)	

Table	3-2	-	Statistics	of	5-minute	rainfall	and	flow	for	February	1996	

	 Mean	 Median	 Standard	
deviation	 Skewness	 Kurtosis	 Maximum	 Total	

Rainfall	
(mm)	 0.050	 0.000	 0.284	 11.24	 180.1	 6.85	 418.6	

Flow	
(mm)	 0.051	 0.021	 0.092	 4.03	 23.1	 1.00	 424.0	
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Previous research includes DBM modelling relating suspended sediment load to rainfall 

in areas affected by selective logging (Chappell et al., 1999). This was followed up 

(Chappell et al., 2004) when a 10-year rainfall event triggered a landslide and culvert 

collapses highlighting that although sources of sediment were recovering from road 

construction and harvesting, localized events must be taken into account when 

considering sustainable forestry. 21 years on, Walsh et al. (2011) showed that although 

storm sediment response had reduced, there was still a need for forestry to stabilise 

steep slopes and reduce landslide risk. DBM modelling has also been used (Chappell et 

al., 2006) to examine rainfall- streamflow data and component pathways such as 

overland flow, subsurface flow and transpiration though these pathways may not 

correspond directly to the fast and slow partitions of the decomposed TF model (c.f. 

section 2.4.1). The catchment streamflow showed at flashy response to rainfall but the 

relationship between infiltration and over-land flow showed a much less flashy 

response. 

3.3.      Brue, Somerset, UK 

This paper utilises the heavily instrumented Brue catchment in South-west England. It 

has 49 rain gauges in an area of 135.2 km2, from which 23 were chosen for analysis, 

enabling spatial variability to be investigated. Because of the rationale behind the 

original experimental network design (Moore et al., 2000), many gauges are in very 

close geographical proximity and very highly correlated so a sub-set of 23 gauges from 

the original 49 was selected for analysis (c.f. section 6.4). The catchment is fed by 

springs in the Mendip Hills and Salisbury Plain (NRFA, 2012). There is an elevation 

change of approximately 300m from south-west to north-east across the catchment. The 

underlying geology is a combination of mudstone and limestone with a limestone ridge 

running in an arc across from north to south across the eastern upland area (see Figure 

3-8). The catchment can largely be split into impermeable lowland to the west, higher 

land to the east where the limestone ridge is permeable, and the far east of the catchment 

which is largely impermeable (only 0.5% is moderate to high permeability, (NRFA, 

2012)). Land use is mostly pasture on clay soils with some woodland on the elevated 

eastern side (Wood et al., 2000) with very little urbanisation (NRFA, 2012). A flood 

storage reservoir was built in 1983 to protect Bruton after widespread flooding. It drains 

21% of the upland, fast responding part of the catchment. 
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Figure	3-8	-	Brue	catchment	geology,	location	and	gauge	network.	(Crown	
Copyright/database	right	2016.	A	British	Geological	Survey/EDINA	supplied	service;	
National	River	Flow	Archive,	2012)	

The Brue research catchment was set up in 1993 as part of a Natural Environment 

Research Council (NERC) special topic research programme – the Hydrological Radar 

Experiment (HYREX) (Wood et al., 2000). It ran for six years and the data has been 

extensively used in many subsequent research projects (for example, Wood et al., 2000; 

Moore et al., 2000; Bell and Moore, 2000; Villarini et al., 2008 a,b, Dai et al., 2015; 

Zhang and Han, 2017). The Brue Valley Living Landscape, managed by the Somerset 

Wildlife Trust, is an ecological conservation project aiming to restore habitats that will 

support wildlife in the face of climate change whilst enabling farmers to continue 

profitable use of their land (Somerset Wildlife Trust, 2017). Figure 3-9 shows some 

typical views of the catchment. 
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Figure	3-9	-	The	Brue	catchment:	The	weir	at	Lovington	(NRFA,	2012)	and	a	typical	river	
channel	near	Glastonbury.	Upstream	rain	causes	levels	to	rise	and	flooding	when	the	
embankments	overtop.	Flooded	fields	near	Glastonbury	(Edwin	Graham,	geograph.org.uk).	

Figure 3-11 shows cumulative rainfall plots for each of the gauges grouped into 

geographical blocks. In block A, FLAG has slightly lower rainfall than the other two 

gauges. ALFO and KILK in block B have lower rainfall than the other 3 gauges. The 

gauges in C are split into two pairs, SPRI and BATC have higher rain than EVER and 

MILT.  GLAD has significantly higher rainfall than GOOD and CRAW in block D.   

The gauges in block E all have very similar rainfall whereas those in block F are paired 

with PITC and CRAB having slightly higher rainfall than WADD and KNAP. Rainfall 

tends to be lowest near the catchment outflow where the ground is the lowest and 

highest in the east where elevations are greater.   
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Table	3-3	-	Statistics	for	the	Brue	catchment	October	1994	-	September	1997.	Rainfall	
statistics	for	each	rain-gauge.	Gauges	are	grouped	geographically	(see	Figure	3-10)		

	 Mean	 Median	 Standard	
deviation	 Skewness	 Kurtosis	 Maximum	 Total	

Flow	
(mm)	 0.011	 0.004	 0.019	 11.24	 40.7	 0.26	 1124	

Rainfall	
(mm)	 	 	 	 	 	 	 	

ALFO	 0.020	 0.000	 0.131	 18.02	 610.8	 8.6	 2054	

KILK	 0.020	 0.000	 0.141	 21.15	 942.9	 11.6	 2130	

DITC	 0.022	 0.000	 0.146	 18.26	 636.2	 9.0	 2341	

JACO	 0.022	 0.000	 0.151	 19.55	 700.3	 10.2	 2288	

CAST	 0.021	 0.000	 0.142	 17.20	 538.8	 9.2	 2228	

	 	 	 	 	 	 	 	

WHAD	 0.024	 0.000	 0.156	 23.37	 1122.5	 11.8	 2268	

FLAG	 0.022	 0.000	 0146	 19.34	 724.5	 9.6	 2320	

COGL	 0.023	 0.000	 0.142	 14.86	 408.3	 8.1	 2434	
	 	 	 	 	 	 	 	

SPRI	 0.024	 0.000	 0.147	 14.78	 379.9	 6.4	 2528	

BATC	 0.024	 0.000	 0.147	 18.73	 727.2	 10.2	 2475	

EVER	 0.022	 0.00	 0.142	 19.29	 744.4	 10.6	 2283	

MILT	 0.022	 0.000	 0.136	 14.11	 336.4	 7.2	 2318	
	 	 	 	 	 	 	 	

GOOD	 0.023	 0.000	 0.140	 14.79	 407.1	 7.8	 2414	

CRAW	 0.022	 0.000	 0.138	 15.59	 452.4	 8.4	 2345	

GLAD	 0.025	 0.000	 0158	 20.49	 878.3	 11.6	 2626	
	 	 	 	 	 	 	 	

PITC	 0.023	 0.000	 0.158	 23.94	 1336.9	 14.4	 2470	

KNAP	 0.022	 0.000	 0.146	 20.93	 966.6	 13.0	 2288	

CRAB	 0.023	 0.000	 0.157	 18.41	 571.8	 8.2	 2442	

WADD	 0.021	 0.000	 0.141	 16.97	 503.8	 7.8	 2268	
	 	 	 	 	 	 	 	

FRAN	 0.023	 0.000	 0151	 17.20	 569.7	 10.2	 2458	

KNOW	 0.023	 0.000	 0.147	 16.94	 564.2	 10.1	 2420	

MOWO	 0.023	 0.000	 0.140	 13.44	 304.7	 6.2	 2418	

GODM	 0.023	 0.000	 0.151	 19.30	 796.3	 11.8	 2450	
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Figure	3-10-	Brue	catchment	showing	how	rain-gauges	are	grouped	geographically	for	
convenience.	Colouring	units	are	the	Thiessen	polygons	

Gauge ALFO has 2054 mm over the 3-year period (685mm per year) compared with 

GLAD which has a total of 2626 mm (875 mm per year). These two gauges are at the 

extreme ends of the catchment. Rainfall distributions vary from year to year, season to 

season and event to event. Figure 3.12 shows the rainfall distribution in space and time 

for each of the 3 water years studied. The statistics for catchment average rainfall (TP 

method) by year and season are shown in Table 3-4. 

 

In WY1 and WY2 the majority of the rain falls in the winter whereas in WY3 it is 

more evenly distributed. Examination of the 3D plots shown in Figure 3-12 highlights 

the rainfall distribution both temporally and spatially. Winter rain tends to be lower 

intensity and distributed across the whole catchment though WY3 shows some 

localised high intensity events even in the winter. Spring tends to be drier and summer 

into autumn dominated by more high intensity localised events. The variation in time 

suggests that one average rainfall-flow response model may not be adequate for 

simulation of all events, and the variation in space that not all rainfall gauges will be 

representative of the whole catchment and the representativeness may vary with time 

and from event to event.
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Figure	3-11	-	Cumulative	rainfall	for	groups	of	rain-gauges	(geographical	grouping	–	see	Figure	3-10)	across	the	Brue	catchment.	Variation	between	
gauges	even	over	a	3	year	period	is	obvious	as	is	the	similarity	between	FRAN,	KNOW,	MOWO	and	GODM,	all	situated	at	the	southern	edge	of	the	
catchment	
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a) WY1- October 1994 – September 1995 b) WY2 - October 1995 – September 1996 c) WY3 - October 1996 – September 1997 

 
Figure	3-12	-	Distribution	of	rainfall	over	the	Brue	catchment	in	each	of	the	three	water	years	studied.	(Gauges	are	shown	alphabetically).	Differences	in	
distribution	over	the	years	and	seasons	can	be	observed.		The	winter	periods	are	characterised	by	frontal	rainfall	affecting	the	whole	catchment		whereas	
summers	tend	to	be	characterised	by	much	more	localised	storm	events.	Winters	are	wetter	than	summers	(statistics	shown	in	Table	3-4)	showing	that	
low	intensity	frontal	rainfall	actually	produces	more	rainfall	than	the	summer	convective	storms.	
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Table	3-4	-	Statistics	of	rainfall	measured	in	mm	at	15	minute	intervals	over	the	Brue	
catchment	showing	the	differences	between	winter	and	summer	for	the	3	years	studied	
(catchment	average	rainfall	estimated	using	Thiessen	polygon	method).		

	
October	1994	–		

September	1995	(WY1)	

October	1995	–		

September	1996	(WY2)	

October	1996	–		

September	1997	(WY3)	

	 Year	 Winter	 Summer	 Year	 Winter	 Summer	 Year	 Winter	 Summer	

Total		

(mm)	
929	 635	 294	 755	 461	 294	 728	 344	 384	

Mean	
(mm)	

0.027	 0.036	 0.017	 0.022	 0.026	 0.017	 0.020	 0.019	 0.022	

Standard	
Deviation	
(mm)	

0.128	 0.138	 0.116	 0.114	 0.113	 0.114	 0.111	 0.103	 0.118	

Maximum	
(mm)	

3.5	 3.1	 3.5	 4.8	 4.3	 4.8	 3.0	 3.0	 3.0	

 

The Brue experimental catchment was set up to gain a better understanding of rainfall 

spatial and temporal resolution by combining information from a dense rain-gauge 

network with weather radar and its impact on flow generation. A network of 49 gauges 

was set up and combined with information from 3 overlapping radar installations – a 

Doppler C-band at Cobbacomb Cross, a C-Band at Wardon Hill and an experimental 

dual polarisation S-Band radar at Chilbolton. Details of the network design are given 

by Moore et al. (2000). The ideal design had to be modified on the ground due to issues 

with siting and permissions from land-owners. Unsurprisingly, given the gauge network 

density, much of the follow-up research using the data from the Brue has been related 

to combining rain-gauge and radar measurements (Wood et al., 2000), sensitivity of 

model outputs to spatial and temporal variability of rainfall (Bell and Moore., 2000) 

and spatial sampling error related to network density (Villarini et al., 2008b) and 

sampling scales in both space and time (Villarini et al., 2008a). More recently, it was 

used as part of a study by Mazzoleni et al., (2017) investigating the use of crowd-

sourcing to improve flood forecasting by data assimilation and by Zhang and Han 

(2017) who investigated spatial variability using very different methods to this study 

concluding that a simple lumped model gave an adequate representation of simple 

events but more complex spatially variable events required models with a higher spatial 

resolution. 

. 
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Chapter	4 Reversing	hydrology:	estimation	of	
sub-hourly	rainfall	time-series	from	streamflow	

Kretzschmar, A., Tych, W and Chappell, N. A.  (2014) Reversing hydrology: 
Estimation of sub-hourly rainfall time-series from streamflow. Environmental 
Modelling & Software 60: 290-301. 

Abstract	
A novel solution to the estimation of catchment rainfall at a sub-hourly resolution from 

measured streamflow is introduced and evaluated for two basins with markedly 

different flow pathways and rainfall regimes. It combines a continuous-time transfer 

function model with regularised derivative estimates obtained using a recursive method 

with capacity for handling missing data. The method has general implications for off-

line estimation of unknown inputs as well as robust estimation of derivatives. It is 

compared with an existing approach using a range of model metrics, including residuals 

analysis and visuals; and is shown to recover the salient features of the observed, sub-

hourly rainfall, sufficient to produce a precise estimate of streamflow, indistinguishable 

from the output of the catchment model in response to the observed rainfall data. 

Results indicate potential for use of this method in environment-related applications for 

periods lacking sub-hourly rainfall observations.  

4.1.      Introduction 

Accurate simulation of stream hydrographs is strongly dependent on the availability of 

rainfall data at a sufficiently high, sub-daily sampling intensity (Hjelmfelt, 1981; 

Littlewood and Croke, 2013). Additionally, hydrograph simulation may be sensitive to 

the spatial intensity of rainfall sampling (Ogden and Julien, 1994; Bardossy and Das, 

2008) or to the uncertainties arising from local calibrations of rainfall radar (Cunha et 

al., 2012) or individual rain-gauges (Yu et al., 1997). Despite this importance, most 

gauged basins lack the necessary long-term, sub-hourly rainfall records (and adequate 

spatial rainfall sampling) to combine with the streamflow records that are, by contrast, 

typically monitored at sub-hourly intervals for several decades. If those short-term 

rainfall characteristics responsible for producing stream hydrographs (see Eagleson, 

1967; Obled et al., 1994) can be estimated from streamflow, the resultant synthetic 

rainfall series may be useful in many applications. For example, synthetic rainfall 
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records could be derived for basins with long-term streamflow, but only short-term 

rainfall, to: (1) evaluate long-term, rainfall estimates from Global Circulation Models 

for specific catchments (see Fujihara et al., 2008), (2) provide long-term rainfall records 

for long-term aquatic ecology studies (for	example, Ormerod and Durance, 2009), and 

(3) identify localised rainfall cells or snowfall events that affect the streamflow but are 

poorly represented in rain-gauge records (Kirchner, 2009). 

 

This study uses a Data-Based Mechanistic (DBM) modelling approach to identify linear 

Continuous-Time Transfer Function (CT-TF) models (Young and Garnier, 2006) 

between sub-hourly rainfall and streamflow. These forward CT-TF models are then 

inverted to derive rainfall time-series using a novel method that utilises regularisation 

techniques. Algorithms within the CAPTAIN Toolbox (Taylor et al., 2007) are used 

for this modelling and the methodology evaluated by application to two micro- or 

headwater-catchments with contrasting rainfall and response characteristics, namely 

the humid tropical Baru catchment and the humid temperate Blind Beck catchment. 

Classical rainfall-runoff non-linearity utilises a power law relationship between 

measured and effective rainfall (Beven, 2012a) implemented as a Hammerstein type 

non-linearity (Wang and Henriksen, 1994) separated from the linear dynamics of the 

transfer function. As the power function is monotonic, it is easily inverted, making it 

trivial to apply in combination with the effective rainfall estimate generated by the 

proposed method as illustrated in Figure	4-1.	

 

 
 

Figure	4-1:	The	use	of	Hammerstein-type	non-linearity	in	the	model	identification	(a)	and	
inversion	(b)	processes	where	P	is	the	observed	rainfall,	Pe	is	the	effective	rainfall,	Q	is	the	
observed	streamflow,	Peh	is	the	inferred	effective	rainfall	and	Ph	is	the	inferred	rainfall	with	
the	non-linearity	reapplied.	



Chapter 4    Estimation of sub-hourly streamflow 

61 
  

The graphical expression of the forward CT-TF model of a rainfall-streamflow response 

in discrete time is the impulse response function and this is directly equivalent to the 

unit hydrograph or UH developed by Sherman (1932). Inversion of the UH or its CT-

TF equivalent to derive rainfall from streamflow has been attempted by Hino (1986), 

Croke (2006), Kirchner (2009), Andrews et al. (2010) and Young and Sumisławska 

(2012). These studies have used a range of different approaches. For example, Hino 

(1986) applied a standard regularised Least Squares (LS) solution to the inversion of a 

catchment model of ARX form (that is, autoregressive with exogenous variables: see 

Box et al., 2008). This approach differs from the CT-TF based approach proposed here, 

in that potentially huge matrix inversions are needed. Kirchner (2009) used a very 

different method that involved the construction of a first-order, non-linear differential 

equation linking rainfall, evaporation and streamflow through the sensitivity function, 

resulting in a compound measure of precipitation and evaporation, which is then 

reduced to rainfall through making assumptions about the relationship between the 

rainfall and residual rainfall (that is, rainfall minus evaporation). Kirchner’s method has 

been applied to the Rietholzbach catchment in Switzerland (Teuling et al., 2010) and 

to 24 diverse catchments in Luxembourg (Krier et al., 2012) where it reproduces the 

streamflow and storage dynamics for catchments characterised by a single storage – 

discharge relationship but cannot explain more complex travel times. Andrews et al. 

(2010) used inverse filtering, applying similar CAPTAIN modelling methods to the 

ones proposed here, but using a direct inverse transfer function in discrete time. As this 

is methodologically the nearest approach to the proposed one and, at the same time, 

highlights the practical problems with direct inversion of transfer function models, it 

was chosen as a comparison in this study. Young and Sumisławska (2012) applied non-

minimal state-space feedback control methods to inversion of discrete time transfer 

function models, based on the work of Antsaklis (1978).  

 

Jakeman and Young (1984) were the first to indicate that recursive regularisation might 

be a useful approach to derive rainfall time-series from the UH, but without offering an 

implementation of the algorithm or examples. The novel method proposed here has 

been developed by combining these ideas with developments in the identification of 

CT-TF models (for	 example,	Young and Garnier (2006)) and improvements in the 

CAPTAIN routines (Taylor et al., 2007). The inverse process is based on differentiation 

(Young, 2006), and so may be expected to be ill-posed and sensitive to noise in the 



Chapter 4    Estimation of sub-hourly streamflow 

62 
  

streamflow data (O'Sullivan, 1986; Neumaier, 1998; Tarantola, 2005). The direct 

inverse of the discrete transfer function method involves differencing, the key issue 

addressed in the proposed method by using regularised derivatives, potentially its major 

advantage. 

 

The generality of our approach indicates that it could be used within any modelling 

framework involving DBM or top-down catchment modelling. Integrating it within 

other frameworks, for instance to assess the information content of hydrological data 

(Beven and Smith, 2015) is already a part of an existing project which partly funded 

this study (NERC CREDIBLE project –see Acknowledgements for details). Another 

good example of the use for this approach would be within the hydromad framework 

(Andrews et al., 2011) where it could be a part of either model or data evaluation 

process. Such application could be based on the reasoning that a model and data combo 

(the principle of DBM approach), which invert well should be more reliable (this 

assertion will be the subject of future work). Within the same hydromad framework a 

similar reasoning could be used to verify the placement of rain gauges within a 

catchment. If the inversion generates poorly fitting inferred rainfall with many negative 

periods it could indicate that the present rain gauges do not provide full information 

about the catchment rainfall due to their placement. Andrews et al. (2011) also indicate 

the use of such inversion routines in calibration of full hydrological models. 

 

Reaching further out, beyond the discipline of hydrology, there are many other 

situations where either input estimation of a dynamic system (for	example,	Maquin et 

al., 1994, Yang and Wilde, 1988 and many others), or more generally, robust derivative 

estimation problems (De Brabanter et al. 2011) could benefit from the solution provided 

here. The off-line character of the method, characteristic for regularisation-based 

methods, excludes on-line applications, such as input observers in control engineering, 

but provides more flexibility, for instance by easy compensation of pure time delays in 

the transfer functions.  

4.2.      Novel parsimonious method for input estimation using 
reduced order output derivatives  

To obtain a well-defined and effective inverse of any transformation (for	example,	UH 

or equivalently a TF), the transformation itself must be well defined. It must capture 
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the character of the system without any unnecessary complexity that would result in the 

transformation itself being ill-defined. This is the essence of the philosophy of the Data-

Based Mechanistic (DBM) approach of Young (1998; 1999) that aims to produce 

models that fit the data well with as few parameters as are necessary to capture the 

dominant dynamic modes of the system. CAPTAIN tools are used to identify models 

using this underlying philosophy. 

 

The relationship between rainfall and streamflow expressed as a purely linear CT-TF 

may be given by: 

! = #$%&'#(%&)('⋯'#&
%+',(%+)('⋯',+

-.%/0    (Equation 4-1) 

where Q and R are Laplace transforms of Q(t) (streamflow) and R(t) (discharge), sr is 

the Laplace operator for rth time derivative, (12 = 34

354
), -.%/ is the Laplace transform 

for pure time delay between rainfall and the initial streamflow response 6, with the 

model parameter vector:  7 = 89	8; 	⋯8<	=>	=9 	⋯=? @ of dimension n+m+1. These 

parameters are estimated from the data along with their covariance matrix, Cθ, using 

the Refined Instrumental Variable (RIV) method (Young and Jakeman, 1980) within 

the CAPTAIN toolbox. With CT-TFs, fast responding modes of catchment response 

can be estimated at the same time as very slow modes; one of their key advantages over 

discrete time approaches. Systems with widely-spaced time constants (‘stiff systems’) 

are known to be difficult to handle numerically including estimation of their parameters. 

 

By its very nature (that is, point measurements of rainfall), a transfer function model 

encapsulates both temporal and spatial modes of integration of the rainfall by the 

catchment.  
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The inverse relationship expressing the streamflow-derived rainfall using the transfer 

function (Equation 4-2) will have the general form of: 

0 	= A$%+'A(%+)('⋯'A+
%&'B(%&)('⋯'B&

-%/!   (Equation 4-2)  

where CDE =D =>, G = 1,⋯ ,I and JDE 8D =>, G = 1,⋯ , K to ensure the denominator 

polynomial is monic, with K ≥ I	as in (Equation 4-2). The negative time delay is 

accounted for by off-line data-offset adjustment. The ill-posed nature of this inverse 

relationship is aggravated by the fact that often n is greater than m by more than one, 

reflecting the strong integrative character of catchment systems. This results in pure 

derivatives of the output that are often of an order higher than one (Equation 4-2). 

Indeed, most software environments such as Matlab do not even allow simulation of 

such systems, labelling them as improper. It should be noted here that the danger of 

obtaining unstable inverse models when the original model is non-minimum-phase (that 

is, has zeroes in the right half-plane) is avoided altogether, as the DBM modelling 

methodology means that such models will be rejected at an early stage as non-physical. 

 

The proposed solution (Equation 4-3) consists of using regularised derivative estimates 

that is consistent with, but extending the approach proposed by Jakeman and Young 

(1984), namely: 

0-.%/ 	=
MN OPQ

∗
'MS OP)SQ

∗
'⋯'MPQ

OT'USOT)S'⋯'UT
   (Equation 4-3) 

where 1<!
∗
= 	ℒ 3+

35+
!  is the Laplace transform of the optimised regularised 

estimate of the nth time derivative of Q:	 W
X

WYX
Q.  

 

Note that for n>m this equation is equivalent to  

 

0-.%/ 	=
A$
[(%)

1<!
∗
+

A(
[(%)

1<.9!
∗
+ ⋯+

A&_(

[ %
1?'9!

∗
+

A&%&'⋯'A+
[(%)

!	 (Equation 
4-4)  

where: 

` 1 = 1? + C91?.9 + ⋯+ C?  (Equation 4-5) 
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In the latter, the final component is a proper transfer function, the preceding 

components are weighted (by J> ⋯J?.< respectively) regularised derivatives of order 

K…I + 1, all of them filtered with A(s).   It is worth noting that because of the filtering, 

the nth regularised derivative estimate is not indeed required, instead the ((n-m)th, …, 

1st) order regularised derivative filtered with proper transfer functions is used, as shown 

below: 

 	 A$
[(%)

1<!
∗
≈ A$%&

[(%)
1<.?!

∗
  (Equation 4-6) 

Equation 4-4 (with substitution based on Equation 4-6) can be interpreted as a bank of 

filtered regularised derivatives added together, weighted by the inverse TF numerator 

coefficients b0, b1, …, bn. In practical implementation therefore, the number of 

regularised derivatives estimated is limited to the difference between the orders of the 

numerator and the denominator of the original transfer function (Equation 4-3), that is, 

(n-m), as the remaining derivatives are used implicitly in their filtered form making the 

algorithm more robust than its alternatives using a discrete transfer function inverse. 

Use of regularisation results in a trade-off between moderating the noise-amplifying ill-

effects of the inversion process, and of the temporal resolution of the resulting rainfall 

time-series estimated. In order to obtain regularised estimates of derivatives of 

streamflow time-series up to order n-m, the output rainfall time-series is modelled as 

an (n-m)th order Integrated Random Walk (IRW) process described in the following 

section.   

4.3.      Estimation and implementation of regularised 
derivatives (RegDer method)  

The use of regularised derivatives in model estimation is not a new development - 

Jakeman and Young (1984) show how recursive Kalman Filter (KF) algorithms 

(Kalman, 1960) and Fixed Interval Smoothing (FIS, for	 example,	 Norton, 2009) 

produce reliable estimates of derivatives of time-series. Finite difference numerical 

schemes normally involve forms of direct differencing of signals, and so, while many 

will be stable, they will amplify the high frequency components of the discharge signal, 

thus producing noise artefacts. When they form filters with a degree of smoothing, they 

introduce filter artefacts, that is, side lobes; (FIR or polynomial filters effectively using 

combined central differences). Representative examples of this approach can be found 
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i.a. in Luo et al. (2005), where the complicated spectra of Savitzky-Golay 

differentiators are shown.  Other approaches to non-parametric derivative estimation 

(parametric estimation is seen as constraining) often involve forms of approximation in 

suitable functional bases including splines and other kernel smoothing forms. 

Derivative estimation or approximation is the subject of many studies, for	example,	De 

Brabanter et al. (2011), who use the kernel approach within a more complicated 

framework.  Regularisation based derivative estimation has been introduced several 

decades ago (Anderssen and Bloomfield, 1974) using a matrix-based method, that 

involves operations on large matrices of the size of the data series, which is not practical 

for the long, frequently-sampled series used in hydrology and other environmental 

applications, unlike the recursive approach implemented here.  Moussaoui et al. (2005) 

evaluated the possibilities of estimating derivatives and inputs of dynamic systems 

using regularisation techniques by applying a Tikhonov regularisation and then using 

Poisson filtering to jointly estimate parameters and signals. Their use of filtering 

techniques resulted in issues arising from phase lags in the estimated signals. They 

referred to Jakeman and Young (1984) with respect to possible solutions involving 

smoothing, but without proposing a method. In any case, smoothing is only applicable 

when rainfall is present at all times, which is not the case that this method is being 

developed to address. 

 

As the rainfall and streamflow data are normally of time series nature with a fixed 

sampling rate, a discrete-time State-Space approach is employed to estimate the 

derivatives. This can be done because values between the sampling time instances are 

not used, and there is a direct equivalence between continuous-time and discrete-time 

models in regularly sampled data.  

 

A basic discrete time Stochastic State-Space formulation is used (see for	 example,	

Young et al., 1999) with the state transition equation as in Jakeman and Young (1984): 

cd'9 =
1 1
0 1

cd +
0
1
fd  (Equation 4-7) 

where the state gd = !d h!d @ is composed of level state Qk and slope state dQk of 

the Integrated Random Walk process which is used to describe Q(t) with i = j∆i 

where ∆i is the sampling interval. It is this second component of the state dQk that 
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provides the estimated time derivative of the observed process (given ∆i). It is 

assumed that the discrete time is sampled uniformly with samples every time unit. 

The assumption is based on the fact that stage (and hence streamflow) is normally 

sampled uniformly by data-loggers. Rainfall is sampled normally using tipping-bucket 

rain-gauges and converted onto the same time basis as the streamflow data.  The 

process is not observed directly, but through the observation equation: 

!d
lA% = 1 0 cd + -d   (Equation 4-8) 

where ek and vk are zero-mean, serially uncorrelated white noise sequences. 

 

Equation 4-7 shows the manner of obtaining the 1st order derivative estimate, but it is 

easy to build up the State-Space to generate estimates of higher order derivatives.  

The ratio of variances of the state- and observation-disturbance is termed the Noise 

Variance Ratio (NVR): 

mn0 = opq

or
q   (Equation 4-9) 

which is related, reciprocally, to the smoothness of the estimate, or the regularisation 

parameter (Jakeman and Young, 1984). This form of Stochastic State-Space 

formulation lends itself to the state estimation procedures of the KF and FIS (Bryson 

and Ho, 1969), noting that the combined KF/FIS algorithms produce not only optimal 

smooth estimates of both states but also estimates of their uncertainty bounds. The 

variance parameters st; and su;, or in this simplified case the NVR parameter of the 

KF/FIS algorithm, are normally estimated using optimisation, usually involving 

Maximum Likelihood (ML) objective functions. Variants of the objective function are 

discussed by Tych et al. (2002) and Taylor et al. (2007). In the proposed approach, the 

objective function is modified from the usual ML approach to a measure of how well 

the estimated rainfall fits the actual rainfall time series. As the method is based 

primarily upon the use of Regularised Derivatives it is further called the RegDer 

method. 
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4.4.      Comparison with the discrete-time inversion procedure 
(InvTF method) 

For comparison with the RegDer method, the method of Andrews et al. (2010) based 

on the use of the direct inverse of a discrete transfer function, was also applied to the 

two catchment datasets. Since a discrete TF is used, the inverse is easy to simulate 

directly by differencing or near-differencing (that is, no explicit differentiation). In 

discrete time form, this gives: 

!d =
#$'#(v)('⋯'#&v)&

9',(v)('⋯',+v)+
0d.w   (Equation 4-10) 

Where the backward shift operator x.9y j = y(j − 1) and i = jΔi is the sample 

time of the kth sample. The operator z is used here instead of q (often used in system 

identification literature) to avoid confusion with standard hydrological practice that 

uses letter q to denote streamflow. The same notation and model orders were used for 

the parameters vector as for the CT-TF model (Equation 1). Estimation of the discrete 

model was undertaken using the discrete version of the RIV method, implemented in 

the CAPTAIN Toolbox. The estimated rainfall time-series was then obtained simply by 

rearranging the above equation, as in Andrews et al. (2010): 

0d.9 =
9

#$
!d + 89!d.9 + 8;!d.; − (=90d.; + =;0d.|)   (Equation 4-11) 

This is shown here for K = I = 2	and ~ = 1 for clarity. As with the continuous-time 

form, the time delay, estimated from the data, can be removed during the off-line 

processing. This approach, based on a direct inverse of a discrete transfer function 

(Andrews et al., 2010), is here called InvTF. 

4.5.      First evaluation of the new RegDer methodology 
(including InvTF comparisons) 

In order to evaluate the RegDer algorithm's performance, data from two headwater 

experimental catchments exhibiting both contrasting rainfall regimes and hydrological 

pathways were compared. Previous studies have identified linear models for both 

catchments (Chappell et al., 2006 - Baru; Ockenden and Chappell, 2011 - Blind Beck). 

Subsequent analysis using the classic bilinear power law (Beven, 2012a) has confirmed 

this assumption. On this basis, linear modelling was applied in both cases. Streamflow 
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was sampled uniformly by data-loggers, while rainfall was sampled using tipping-

bucket rain-gauges then converted onto the same time basis as the streamflow data. 

4.6.      Choice of evaluation metrics 

Alexandrov et al. (2011) suggest a general framework for model assessment and a wide 

variety of possible metrics are available.  Bennett et al. (2013) present a range of 

possible tests including numerical, graphical and qualitative techniques and a selection 

of these was employed in this study. Some were found to be inappropriate as they 

involve a normal distribution of data and/or residuals or other critical assumptions. Q-

Q plots of the residuals (not shown here) clearly indicated that the assumption of 

normality cannot be made. In future work, decision theory may provide a framework 

for choosing between both modelling methods and competing model structures. 

 

Commonly, the simplified Nash-Sutcliffe Efficiency (NSE or Rt
2) is used to compare 

the performance of hydrological models. Several models may be identified which fit 

the data well (that is, equifinality: Beven, 2006) so the Young Information Criterion 

(YIC: Young, 2001) can be used to differentiate between these models. The YIC is an 

objective measure combining the goodness of fit with a measure of over-

parameterisation.  

 

Once acceptable forward models (that is, rainfall-runoff) have been selected (using Rt
2 

and YIC) they are inverted and the performance of the inverse models compared using 

a range of metrics including Rt
2, basic statistics of the residuals and visual ability to 

match peak values. The inferred (or synthetic) rainfall sequences were also compared 

visually with each other and with the observed rainfall. Inferred and observed rainfall 

series were then used as inputs to the original forward models and the generated 

modelled flow sequences compared using the Rt
2 values and visual comparisons. 

Statistical analysis of the residuals of both models gives an additional insight into the 

differences between the catchments and rainfall regimes, as well as the differences 

between the inversion approaches.  

 

Model uncertainty is evaluated using Monte Carlo Simulations (MCS) for both the 

forward and the inverse models utilising the covariance matrix generated as part of the 
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output from the estimation routines contained in the CAPTAIN Toolbox for Matlab 

(Taylor et al., 2007). In this analysis, the guidelines for validation of DBM models 

published by Young (2001) are followed. The models thus generated can be used to 

investigate the sensitivity of the inversion process to the parameterisation of the forward 

model.  

4.7.      Data 

4.7.1. Baru - tropical catchment responses 

The 0.44 km2 Baru catchment is situated in the headwaters of the Segama river located 

in Sabah on the northern tip of Borneo, East Malaysia (4o 58’ N 117o 49’ E). The climate 

is equatorial with a twenty-six year (1985-2010) mean rainfall of 2,849 mm (Walsh et 

al., 2011) showing no marked seasonality but tending to fall in short (< 15 min) 

convective events showing high spatial variability and intensities much higher than 

those of temperate UK (Bidin and Chappell, 2003; 2006). Due to the high spatial 

variability, a network of 6 automatic rain-gauges (13.6 gauges per km2) was used to 

derive the catchment-average rainfall using the Thiessen Polygon method. Haplic 

alisols, typically 1.5 m in depth and with a high infiltration capacity (Chappell et al., 

1998) are underlain by relatively impermeable mudstone bedrock resulting in the 

dominance of comparatively shallow sub-surface pathways in this basin (Chappell et 

al., 2006). As a result of the high rainfall intensity and shallow water pathways the 

stream response is very flashy (that is, rapid recession in the impulse response function). 

The data used in the analysis are from February 1996 sampled at 5 minute intervals 

Figure	4-2a) and have been modelled previously by (Chappell et al., 1999) and (Walsh 

et al., 2011). 

4.7.2. Blind Beck - temperate catchment response 

The Blind Beck catchment has an area of 8.8 km2 and lies in the headwaters of the Eden 

basin in North West England, UK (54.51oN 2.38oW). The basin’s response shows 

evidence of deep hydrological pathways due to the presence of deep limestone and 

sandstone aquifers, and this has resulted in a damped hydrograph response (Mayes et 

al., 2006; Ockenden and Chappell, 2011; Ockenden et al., 2014). Winter rainfall in this 

basin is derived from frontal systems with typically lower intensities than the 

convective systems in the tropics (Reynard and Stewart, 1993). Data from a single 
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tipping-bucket rain-gauge (that is, 0.1 gauges per km2) located in the middle of the 

catchment was used in this study. The data used in the analysis covers the period from 

26th Dec 2007 at 16:45 to 31st December 2007 at 21:45 sampled at 15 minute intervals 

(Figure	4-2b) and was previously modelled by (Ockenden and Chappell, 2011). 

 

The choice of these two experimental catchments, therefore, allowed the initial 

evaluation of the estimation of catchment rainfall from streamflow for the end-member 

extremes of a basin with tropical convective rainfall and shallow flow pathways to a 

basin with temperate frontal rainfall (that is, much lower intensity) and deep flow 

pathways (that is, much greater basin damping or temporal integration). 

4.8.      First results and discussion 

Forward CT-TF models identified for Blind Beck data explained over 98% of the 

variance in the streamflow, whilst those for the Baru fit slightly less well, explaining 

88% - see Table 4-1 for the Rt
2, YIC (Young, 2001), and time-constants of the best 

forward models for each catchment, based on a high Rt
2 with a large negative YIC value 

according to DBM methodology. The simulated streamflows from a 2nd-order model 

for the two basins are shown in Figure 4-2. The impulse response function (that is, unit 

hydrograph) for the Baru catchment (Figure 4-2b) showed a considerably faster 

recession in comparison to that of the Blind Beck catchment (Figure 4-2a) by a factor 

of 6, confirming the flashier nature of the shallow, tropical catchment, as noted by 

previous transfer function studies (Chappell et al., 1999, 2006; Walsh et al., 2011; 

Chappell et al., 2012).  

Table	4-1:	The	best	CT-TF	models	fitted	to	subsets	of	data	for	Blind	Beck	(sampled	at	15	
minute	intervals)	and	Baru	(sampled	at	5	minute	intervals).	There	is	little	difference	in	
efficiency	(Rt2)	between	the	different	models	so	selection	was	based	on	the	lowest	order	
model	with	the	lowest	YIC	(Young,	2001).	The	YIC	is	an	objective	measure	combining	the	
goodness	of	fit	with	a	measure	of	over-parameterisation.	A	model	with	a	large	negative	YIC	
fits	the	data	well	with	a	small	number	of	parameters.	

 
Catchment Model 

Structure 
[n,m,d] 

Rt2 YIC Time Constants (hours) 

1st                  2nd 

Blind Beck [2,2,3] 0.983 -6.711 6.35 22.10 

Baru [2,2,3] 0.878 -8.054 1.14 20.56 
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The identified well-fitting, forward models selected according to the DBM 

methodology were then inverted using the RegDer method and, for comparison, the 

InvTF method to estimate catchment rainfall from streamflow for the two catchments. 

The results of the inversions using the two techniques are shown in Figure	4-3 and the 

reverse models’ fit in Table 4-2.  

Table	4-2:	Efficiency	(Rt2)	values	for	the	rainfall	sequences	estimated	by	inverting	the	
models	selected	for	Blind	Beck	and	Baru	using	the	InvTF	and	RegDer	methods	of	inversion.		

Rt
2 

Blind Beck 

 [2,2,3] 

Baru 

[2,2,3] 

InvTF 0.512 -0.349 

RegDer 0.515  0.433 

 

Both approaches applied to the streamflow data for the Blind Beck catchment produced 

very similar inferred rainfall time-series (Figure 4-3b). Both approaches produce 

slightly smoothed rainfall time-series compared to the observed 15-minute sampled 

rainfall. The smoothing effect is small when compared with the time constant of 6.4 

hours for the main component of the forward CT-TF model for the Blind Beck 

catchment (Table 4-1). Both produce some briefly negative rainfall values during 

periods of hydrograph recession. Estimated periods of negative rainfall are likely to be 

due to the point (that is, highly localised) rainfall measurements not fully characterising 

the entire catchment rainfall, so, at times, there is discharge with no locally measured 

rainfall that could be attributed to it, and vice-versa; an effect also described by Young 

and Sumisławska (2012). 

 

In general, the forward models fit very well so the uncertainty bounds demonstrated by 

Monte Carlo runs are very narrow as illustrated in Figure 4-3. 

 

When applied to the Baru data, the RegDer and InvTF approaches do, however, give 

simulated or synthetic rainfall time-series with some different characteristics (Figure 

4-3a). The InvTF method, while capturing some of the peaks better (illustrated in Figure 

4-4 and Table 4-3) gives a time-series with very high frequency noise component, of 

such a high intensity that it produces momentary negative rainfall values. These very 

high frequency components are the result of direct differencing involved in this method 

of inversion, which severely amplify high frequency noise in the signal. In contrast, the 
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RegDer method again produced smoothed inferred rainfall time-series with dynamics 

faster than the time constant of 1.14 hours for the faster component of the forward CT-

TF model for the Baru catchment (Table 4-1). An interesting insight is gained by 

examining the inset in Figure	4-3b, where the two inferred rainfall series clearly follow 

the same trajectory, but the InvTF results include the high frequency noise, very clearly 

not related to the observed rainfall. The observed rainfall is indeed smoother than its 

InvTF estimate. These artefacts manifest themselves to a much higher degree in the fast 

responding Baru catchment with a different rainfall regime.  

 

This last observation is confirmed by the residuals analysis. Residuals plots are shown 

in Figure	4-4a and Figure	4-4b for Baru and Blind Beck respectively. It is apparent 

from the plots how much more high frequency noise is involved in the InvTF estimates, 

even for the Blind Beck data, where both methods perform in a similar manner (see the 

residuals variance values in the plots).  Figure	4-5 shows comparative plots of the 

residuals autocorrelation function (RACF) for both models and both catchments. As 

expected the RACFs for Blind Beck are similar, quickly disappearing within their 

confidence bounds and it is just the variance level that differentiates the results for both 

methods. For Baru the RACFs are quite different, with RACF for RegDer quickly 

attenuated and not showing the negative ACF values characterising the fast switching, 

noisy InvTF residuals. 

 

Table 4-3 shows that while the residuals statistics for Blind Beck show good similarity 

between the methods, the residuals for Baru show large discrepancies, with InvTF 

showing some extreme values and a completely different distribution shape, as 

characterised by the calculated moments: means are similar, variance doubles for 

InvTF, and higher moments are radically different and not realistic. The Mean Absolute 

Error statistics (MAE) show similar relationships to the variance.  

 

 

 



	

 
  

74 

 C
hapter 4 

 Estim
ation of sub-hourly stream

flow
 

 a) 

 

b) 

 

Figure	4-2:	Measured	and	estimated	streamflow	for:	a)	Baru	(at	5	minute	intervals)	and	b)	Blind	Beck	(at	15	minute	intervals),	together	with	the	
associated	hyetograms	and	impulse	responses 
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b)	

	

Figure	4-3:	Comparison	of	rainfall	simulated	using	the	InvTF	and	RegDer	(NVR	optimised)	methods	for	a)	Baru	and	b)	Blind	Beck.	Examination	of	the	
inset	confirms	that	the	RegDer	method	estimates	the	Baru	catchment	rainfall	better	(see	Table	4-2)	whilst	there	is	little	difference	between	the	
methods	for	Blind	Beck	rainfall.	99%	uncertainty	bands	generated	by	Monte	Carlo	analysis	are	shown	and	can	be	seen	to	be	very	narrow	
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Figure	4-4:	Comparison	of	residuals	for	a)	Baru	and	b)	Blind	Beck	for	the	two	inversion	methods	showing	the	similarities	in	performance	between	the	
methods	when	used	for	Blind	Beck	(with	a	minor	increase	in	noise	for	InvTF)	and	the	differences	when	used	for	Baru	(with	large	artefacts	in	InvTF)	
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Table	4-3:	Residuals	analysis	for	Blind	Beck	and	Baru	for	both	inversion	methods	showing	
the	similarity	between	the	methods	for	Blind	Beck	and	the	differences	for	Baru.	

 Mean Mode Var Skew Kurt Max Min Rng MAE 

Blind Beck          

RegDer -0.0004 -0.0119 0.0549 2.54 20.1 1.71 -1.00 2.71 0.117 

InvTF 0.0001 -1.4012 0.0552 1.77 19.4 1.69 -1.40 3.09 0.118 

Baru          

RegDer -0.004 0.0001 0.0459 3.51 112.3 4.09 -3.25 7.34 0.057 

InvTF -0.0036 0 0.1092 -27.17 1549.2 4.31 -19.56 23.9 0.066 

 

Similar effects are shown by the peaks statistics (Bennett et al., 2013) in Figure 4-6. In 

the figure Pe denotes effective rainfall, while Peh – inferred effective rainfall. The errors 

in peak estimates are of similar magnitude. Inferred in this figure refers to the values of 

peaks of inferred rainfall. Baru results show considerable improvement of these peak 

error statistics achieved using RegDer approach.  

 

Despite the presence of smoothing effects and/or high frequency noise components, 

models simulating observed streamflow from synthetic rainfall using either method 

were able to simulate the observed streamflow equally well, and with a very high 

efficiency (Table 4-4), resulting in virtually indistinguishable model outputs given the 

observed rainfall or RegDer or InvTF rainfall as inputs. This is demonstrated in Figure	
4-7a and b.  
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a) 

 

b) 

 

Figure	4-5:	comparative	plots	of	the	residuals	autocorrelation	function	(RACF)	for	InvTF	(light	grey	bars)	and	RegDer	(dark	grey	bars)	and	both	
catchments	(Baru	in	(a)	and	Blind	Beck	in	(b))	showing	the	differences	between	methods	of	inversion.	In	both	cases,	RegDer	quickly	attenuates	whereas	
InvTF	shows	negative	ACF	values	characterising	the	fast	switching,	noisy	residuals/artefacts. 
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Figure	4-6:	Comparison	of	the	estimation	of	peaks	for	the	two	methods	showing	that	for	
Blind	Beck,	both	methods	estimate	the	observed	peak	quite	well	with	little	difference	
between	them	whilst	for	Baru,	the	InvTF	method	hugely	underestimates	the	peak	whilst	
RegDer	slightly	over-estimates.	The	metrics	PDIFF	and	PEP	were	taken	from	Bennett	et	al	
(2013).	

It should be noted that while RegDer results appear to be ‘too smooth’ and the InvTF 

results – too ‘noisy’, the balance between the two is easily achieved using RegDer by 

balancing the NVR coefficients of the inverse model, and will ultimately be up to the 

researcher and the aims of modelling exercise. RegDer results can be interpreted as sub-

sampling, or sacrificing the unobtainable (due to observation disturbance) temporal 

resolution. Critically, there are no such controls with InvTF. Quantifying this balance 

is a part of on-going research and is to be addressed in a forthcoming publication.   

Applying a smoothing algorithm to InvTF results would produce a different outcome, 

as RegDer only applies regularisation to the minimal number of terms within the bank 

of filters of Equation 4-4 as opposed to a cruder tool of smoothing the entire signal. 
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Table	4-4:	Efficiency	(Rt2)	of	forward	CT-TF	models	of	streamflow	based	on	the	observed	
rainfall	or	RegDer	or	InvTF	rainfall	as	inputs.	

Model input Blind Beck Rt2 Baru Rt2 

Observed rain 0.984 0.878 

Modelled rain (InvTF) 1.000 0.937 

Modelled rain (RegDer) 1.000 0.957 

 

The integrating effect of the Blind Beck catchment seen in the damped hydrograph 

(Figure 4-7b) was expected given the presence of deeper hydrological pathways 

(Ockenden and Chappell, 2011; Ockenden et al., 2014) however, the degree of temporal 

basin integration of the rainfall signal (and hence response damping) by the shallow 

pathways within the tropical catchment (Chappell et al., 2006) was not expected, but 

does indicate the role of even shallow water paths in damping intense rainfall. The 

degree of catchment integration indicates that the slight smoothing of the simulated 

rainfall time-series (by the RegDer method) has no impact on its ability to be used in 

forward CT-TF models to simulate streamflow. On the basis of their utility for creating 

synthetic rainfall time-series for use in periods lacking observed rainfall, the new 

RegDer method and InvTF method of Andrews et al. (2010) seem of equal value. 

Perhaps the new RegDer method is marginally better than the InvTF method because 

of the high frequency behaviour that can be produced by the InvTF method with some 

data sets where high frequency noise is amplified by the derivative action, for example, 

the proposed approach is more robust for stiff systems (those with a wide range of time 

constants). Further, this high frequency behaviour has no physical interpretation so 

might be considered to fail the final evaluation criterion of the DBM modelling 

philosophy (Chappell et al., 2012). These findings from the first evaluation of the new 

RegDer method are very positive and highlight the potential value of this method for 

generating synthetic rainfall time-series for a range of rainfall regimes and catchment 

settings. These preliminary findings have stimulated a much more extensive 

programme of evaluation of the RegDer method against a range of other methods 

(including the InvTF method of Andrews et al., 2010) for a much larger set of 

catchments with differing rainfall and catchment settings. 
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A number of basic statistics of the observed and inferred (RegDer and InvTF) rainfall 

series are shown in Table 4-5. It is clear that for the Blind Beck catchment most 

statistics for both observed and inferred series are similar in magnitude (they were not 

expected to be too close due to the smoothing effect of both methods), which is 

consistent with other results reported above. For Baru however, there are significant 

differences between the methods. There is an indication of mean-smoothing effects of 

both methods showing in variance and range.  InvTF inferred rainfall shows large 

changes and unusual values in range, minima and maxima, as well as higher order 

moments being of different order of magnitude from those of the actual rainfall and 

RegDer results. This is an indication of the artefacts of explicit differencing of the 

streamflow data when using InvTF.  In addition, the high skewness of the observed 

rainfall measurements adds to the argument regarding non-Gaussian distribution, and 

hence many of the standard model metrics not being applicable. 
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b
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Figure	4-7:	Outputs	modelled	from	observed	and	modelled	rainfall	sequences	for	a)	Baru	and	b)	Blind	Beck	showing	that	the	outputs	(discharges)	are	
indistinguishable	over	much	of	the	figure	despite	the	differing	characteristics	of	the	rainfall	inputs	

 

       

150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Time (hours)

D
is

ch
ar

ge
 (Q

)
0
1
2
3
4
5
6
7
8
9

10

 

 

Observed rainfall
Observed flow
Modelled from observed rain Rt

2= 0.878

Modelled from RD rain Rt
2= 0.957

Modelled from InvTF rain Rt
2= 0.937

195 200 205
0

0.2

0.4

0.6

0.8

1

Time (hours)

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ra
in

fa
ll

 

Time (hours)

Di
sc

ha
rg

e 
(Q

)

0

1

2

3

4

 

 

Observed rainfall
Observed flow
Modelled from observed rain Rt

2= 0.983

Modelled from RD rain Rt
2= 1.000

Modelled from InvTF rain Rt
2= 1.000

60 65 70 75 80 85 90
0

0.1

0.2

0.3

Time (hours)



Chapter 4    Estimation of sub-hourly streamflow 
	

83 
 

 
Table	4-5:	Data	and	model	output	statistics	(rainfall	(mm)).	The	following	abbreviations	
were	used:	Var	–	variance,	Kurt	–	kurtosis,	Skew-	skewness,	IQR	–	inter-quartile	range,	prct	
–	percentiles.	Obs	refers	to	observed	rainfall.	The	Wet	prefix	in	the	table	rows	refers	to	
statistics	calculated	only	for	samples	with	non-zero	rainfall	(>0	for	inferred).		

Blind Beck Mean Var Skew Kurt Max Min Range 
25%  
prct 

75%  
prct IQR 

Obs. All 0.181 0.112 3.154 15.934 2.476 0.003 2.474 0.004 0.233 0.230 

Obs. Wet 0.181 0.112 3.152 15.925 2.476 0.000 2.476 0.004 0.233 0.230 

RegDer 0.182 0.061 1.744 7.451 1.576 -0.156 1.733 0.010 0.319 0.309 

InvTF 0.181 0.067 2.120 10.591 1.948 -0.198 2.146 0.008 0.311 0.303 

Wet RegDer 0.202 0.062 1.658 7.289 1.576 -0.129 1.705 0.012 0.342 0.330 

Wet InvTF 0.198 0.069 2.065 10.581 1.948 -0.198 2.146 0.010 0.345 0.335 

Baru 

Obs. All 0.050 0.081 11.230 179.694 6.853 0.000 6.853 0.000 0.000 0.000 

Obs. Wet 0.253 0.403 4.383 27.969 6.056 0.000 6.056 0.000 0.213 0.213 

RegDer 0.054 0.054 7.549 76.584 3.674 -0.392 4.066 0.001 0.018 0.017 

InvTF 0.054 0.169 29.739 1411.93 23.374 -3.630 27.004 0.001 0.018 0.018 

Wet RegDer 0.055 0.042 6.751 60.481 2.763 -0.336 3.099 0.001 0.020 0.019 

Wet InvTF 0.051 0.095 18.517 567.320 12.644 -1.461 27.004 0.001 0.017 0.017 
 

4.9.      Conclusions 

Robust identification techniques were used to identify continuous-time transfer 

function models for two catchments with contrasting rainfall and flow path regimes. 

Following the DBM methodology, the models fitted the data well with a minimal 

number of parameters as indicated by a large negative value of the YIC. The identified 

(DBM) models for both catchments were of 2nd-order. This is a typical model order for 

many catchments. The models were inverted using the new RegDer method and, for 

comparison, the InvTF method used by Andrews et al. (2010). Both methods were able 

to produce synthetic rainfall time-series that were then able to simulate almost all of the 

dynamics in the streamflow time-series for both catchments (Figure 4-4ab). In 

comparison to the InvTF method of Andrews et al. (2010), the RegDer method did, 

however, produce synthetic rainfall containing much less high frequency noise. This 

was particularly visible in the synthetic rainfall of InvTF for the tropical basin with 

convective rainfall (Figure 4-3a). The smoothing introduced by the RegDer method is 
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on a much smaller temporal scale than the dominant dynamics of the catchment 

indicating that the detailed temporal distribution of the rainfall series may not be 

important for the modelling the observed streamflow (depending on the reasons for 

modelling) so long as the series recreates the short-term (that is, sub-hourly) 

characteristics responsible for producing stream hydrographs sufficiently well, which 

is consistent with the findings of Eagleson (1967) and Obled et al. (1994). These 

findings are confirmed by comparative evaluation of several model metrics, including 

peak modelling errors and a detailed residuals analysis. It is worth noting that applying 

a smoothing algorithm to InvTF results would produce a different outcome, as RegDer 

only applies regularisation to the minimal number of terms within the bank of filters of 

Equation 4-4, as opposed to a cruder tool of smoothing the entire signal. 

 

Further evaluations of the new RegDer method against InvTF and other methods need 

to be undertaken using a more diverse range of global rainfall and flow-path regimes. 

This work will include catchments where the derivation of long-term rainfall time-

series by RegDer would support hydrological, climatological or ecological studies 

requiring such long time-series of synthesised rainfall (Ormerod and Durance, 2009). 



Chapter 5    Quantifying temporal aggregation 

85 
 

Chapter	5 Reversing	Hydrology:	quantifying	

the	temporal	aggregation	effect	of	catchment	

rainfall	estimation	using	sub-hourly	data	

Kretzschmar, A., Tych, W., Chappell, N. A., Beven, K. J., (2015) Reversing 
hydrology: quantifying the temporal aggregation effect of catchment rainfall 
estimation using sub-hourly data, Hydrology Research, Jun 2016, 47 (3) 630-
645; DOI: 10.2166/nh.2015.076 

Abstract	
Inferred rainfall sequences generated by a novel method of inverting a continuous time 

transfer function show a smoothed profile when compared to the observed rainfall 

however streamflow generated using the inferred catchment rainfall is almost identical 

to observed streamflow (Rt
2 > 97%). This paper compares the effective rainfall inferred 

by the regularised inversion process (termed inferred effective rainfall) proposed by the 

authors with effective rainfall derived from the observed catchment rainfall (termed 

observed effective rainfall) in both time and frequency domains in order to confirm 

that, by using the dominant catchment dynamics in the inversion process, the main 

characteristics of catchment rainfall are being captured by the inferred effective rainfall 

estimates. Estimates of the resolution of the inferred effective rainfall are found in the 

time domain by comparison with aggregated sequences of observed effective rainfall, 

and in the frequency domain by comparing the amplitude spectra of observed and 

inferred effective rainfall.   The temporal resolution of the rainfall estimates is affected 

by the slow time constant of the catchment, reflecting the presence of slow hydrological 

pathways, for example, aquifers, and by the rainfall regime, for example, dominance of 

convective or frontal rainfall. It is also affected by the goodness-of-fit of the original 

forward rainfall-streamflow model.  

5.1.      Introduction 

Rainfall is the key driver of catchment processes and is usually the main input to 

rainfall-streamflow models. If the rainfall and/or streamflow data used to identify or 

calibrate a model are wrong or disinformative, the model will be wrong and cannot be 
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used to predict the future with any certainty. Blöschl et al. (2013) state that if the 

dominant pathways, storage and time-scales of a catchment are well defined then a 

model should potentially reproduce the catchment dynamics under a range of 

conditions. It is often the case that hydrological variables, such as rainfall and 

streamflow, are measured at hourly or sub-hourly intervals then aggregated up to a 

coarser resolution before being used as input to rainfall-streamflow models resulting in 

the loss of information about the finer detail of the catchment processes (Littlewood 

and Croke, 2008; Littlewood et al., 2010; Littlewood and Croke, 2013). Kretzschmar 

et al. (2014) have proposed a method for inferring catchment rainfall using sub-hourly 

streamflow data. The resulting rainfall record is smoothed to a coarser resolution than 

the original data but should still retain the most pertinent information.  

 

This paper investigates the implications of the reduced resolution and the potential loss 

of information introduced by the regularisation process in both the time and frequency 

domains. Both temporal and spatial aggregation are incorporated in the transfer 

function model however only the temporal aspect is considered here. The effect of 

spatial rainfall distribution using sub-catchments will be the subject of a future 

publication. 

 

The method developed and tested by Kretzschmar et al. (2014) – termed the RegDer 

method - inverts a continuous-time transfer function (CT-TF) model using a regularised 

derivative technique to infer catchment effective rainfall from streamflow with the aim 

of improving estimates of catchment rainfall arguing that a model that is well-fitting 

and invertible is likely to be robust in terms of replicating the catchment system. In the 

context of this study, observed catchment rainfall (may be derived from one or more 

rain-gauges by any suitable method, for	example,	Thiessen polygons) is converted to 

observed effective rainfall (OER) by a non-linear transform designed to render the 

relationship between the rainfall input and streamflow output (via a continuous time 

transfer function) linear. The inversion process takes the catchment streamflow and, 

using a regularisation process, infers effective rainfall (IER), which is then converted 

to inferred catchment rainfall (ICR) by the reverse of the non-linear transform 

(illustrated in Figure	5-3). The effective rainfall (both OER and IER) may be termed 

scaled rainfall (related to Andrews et al, 2010) as it is derived from the overall 

catchment rainfall.  
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The classical approach to inverse (as opposed to reverse) modelling involves the 

estimation of non-linearity (rainfall or baseflow separation) and the unit hydrograph 

(UH), which is an approximation to the impulse response of the catchment. Boorman 

(1989) and Chapman (1996) use sets of event hydrographs to estimate the catchment 

UH. Boorman (1989) superimposed event data before applying a separation technique 

and concluded that the data required may be more coarsely sampled than might be 

expected because one rain-gauge is unlikely to be representative of the whole 

catchment.  Chapman (1996) used an iterative procedure to infer rainfall patterns for 

individual events before applying baseflow separation. The resultant UHs had higher 

peaks and shorter rise times and durations than those obtained by conventional methods. 

He viewed the effective rainfall as the output from a non-linear store. Duband et al. 

(1993) and Olivera and Maidment (1999) used deconvolution to identify mean catchment 

effective rainfall, which was redistributed using relative runoff coefficients whilst Young 

and Beven (1994) based a method for inferring effective rainfall patterns on the 

identification of a linear transfer function. In that study a gain parameter, varying with time 

accounted for the non-linearity in the relationship between rainfall and streamflow.  

 

In recent years, a range of different approaches has been used to explore reverse 

modelling in hydrology, that is, estimating effective rainfall from streamflow. Notable 

publications include Croke (2006), Kirchner (2009), Croke (2010), Andrews et al., 

(2010), Young and Sumislawska (2012), Brocca et al. (2013, 2014) and Kretzschmar 

et al. (2014). Kirchner’s method links rainfall, evapo-transpiration and streamflow 

through a sensitivity function making assumptions which allow rainfall to be inferred 

from the catchment streamflow. The method has been applied by Teuling et al. (2010) 

and Krier et al. (2012) to catchments in Switzerland and Luxembourg and has been 

found to work for catchments with simple storage-streamflow relationships and limited 

hysteresis. Brocca et al. (2013) employed a similar method based on the water balance 

equation but inferred the rainfall series from soil moisture. In a further study, Brocca et 

al. (2014) used satellite derived soil moisture to infer global rainfall estimates. Rusjan 

and Mikos (2015) applied Kirchner’s simple dynamic system concept to a catchment 

in south-west Slovenia characterised most of the time by subsurface storage but 

showing a response that by-passed this storage after intense rainfall. They combined 

two separate sensitivity functions to enable the simulation of a range of contrasting 
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hydrological conditions. Croke (2006) derived an event-based unit hydrograph from 

streamflow alone but his approach was limited to ephemeral quick-flow-dominant 

catchments whilst Andrews et al. (2010) and Young and Sumislawska (2012) use a 

discrete model formulation inverted directly or via a feedback model (which could be 

adapted to CT formulation).  Croke (2010) explores a similar approach to the one 

presented in Andrews et al (2010) for several catchments. This is done in the context 

of slow flow, recharge and quickflow separation, relating the derived general model to 

existing ones (such as IHACRES). He also includes measures to constrain the rainfall 

estimate uncertainty. The flow components are estimated as individual discrete-time 

transfer functions separated using a relaxation procedure. The equivalent effective 

rainfall estimate is then obtained as a form of inverse discrete-time transfer function 

with the separated flow components as inputs. The approach proposed by Kretzschmar 

et al. (2014) combined a continuous time transfer function (CT-TF) model with 

regularised derivative estimates to infer the catchment rainfall from sub-hourly 

streamflow data, including comparisons to the direct inverse of a discrete transfer 

function model, similar to those used by Croke (2010) and Andrews et al. (2010).  

 

Littlewood (2007) applied the IHACRES model (for	example,	Jakeman et al., 1990) to 

the River Wye gauged at Cefn Brwyn showing that the values for the model parameters 

for that catchment changed substantially as the data time step used for model calibration 

decreased. Littlewood and Croke (2008) extended this work to include a second 

catchment and found that as the time-step decreased the parameter values approached 

an asymptotic level (on a semi-log plot) concluding that, at small enough time-steps, 

parameters become independent of the sampling interval. They suggested further 

investigation using data-based mechanistic modelling (DBM) methods as described by 

Young and Romanowicz (2004) and Young and Garnier (2006) for estimating CT 

models from discrete input data. Such models generate parameter values independent 

of the input sampling rate – as long as the sampling rate is sufficiently high in 

comparison to the dominant dynamics of the system. Advantages of using the CT 

formulation include allowing a much larger range of system dynamics to be modelled, 

for	example,	‘stiff’ systems that have a wide range of time-constants (TC), typical of 

many hydrological systems. The outputs from such a model can be sampled at any time-

step, including non-integer, and the parameters have a direct physical interpretation 

(Young, 2010).  
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Krajewski et al. (1991) compared the results from a semi-distributed model and a 

lumped model and concluded that catchment response is more sensitive to rainfall 

resolution in time than space, whilst a study by Holman-Dodds et al. (1999) 

demonstrated that models calibrated using a smoothed rainfall signal (due to coarse 

sampling) may result in under-estimation of streamflow. Further calibration, required 

to compensate, leads to the loss of physical meaning of parameters. They also 

concluded that parameters estimated at one sampling interval were not transferable to 

other intervals; a conclusion echoed by Littlewood (2007) and Littlewood and Croke 

(2008).  

 

Studies by Clark and Kavetski (2010) showed that in some cases, numerical errors due 

to the time-step are larger than model structural errors and can even balance them out 

to produce good results. The follow-up study by Kavetski and Clark (2010) looked at 

its impact on sensitivity analysis, parameter optimisation and Monte Carlo uncertainty 

analysis. They concluded that use of an inappropriate time step can lead to erroneous 

and inconsistent estimates of model parameters and obscure the identification of 

hydrological processes and catchment behaviour. Littlewood and Croke (2013) found 

that a discrete model using daily data over-estimated time-constants for the River Wye 

gauged at Cefn Brwyn when compared to those estimated from hourly data confirming 

that parameter values were dependent on the time-step. They discussed the loss of 

information due to the effect of time-step on time constants and suggested that plots of 

parameter values against time step could be used as a model assessment tool. In a 

previous study, Littlewood and Croke (2008), compared the sensitivity of parameters 

for two catchments with respect of time-step and discussed the role of time-step 

dependency on the reduction of uncertainty. They also suggested continuous time 

transfer function modelling using sub-hourly data to derive sampling rate independent 

parameter values. Littlewood et al. (2010) introduced the concept of the Nyquist-

Shannon (N-S) sampling theorem, which defines the upper bound on the size of 

sampling interval required to identify the CT signal without aliasing, and 

consequentially its effect on the frequency of sampling required to specify a rainfall-

streamflow model. Given a frequent enough sampling rate, the CT model is time 

independent and can be interpreted at any interval.  
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Further understanding may be gained by transforming rainfall and streamflow series 

from the time domain to the frequency domain and using spectral analysis. Several 

potential uses of spectral analysis in hydrology have been explored including modelling 

ungauged catchments, modelling karst systems and seasonal adjustment of hydrological 

data series. A maximum likelihood method for model calibration based on the spectral 

density function (SDF) has been suggested by Montanari and Toth (2007). The SDF 

can be inferred from sparse historic records in the absence of other suitable data making 

it a potentially useful tool for modelling ungauged catchments. They also suggest that 

spectral analysis may provide a means of choosing between different apparently 

behavioural models. Cuchi et al. (2014) used ‘black box’ modelling and frequency 

analysis to study the behaviour of a karst system (located at Fuenmajor, Huesca, Spain). 

They concluded that the method works well for a linear system and that Fuenmajor has 

a linear hydrological response to rainfall at all except high frequencies. They suggest 

that the non-linearity issues might be addressed using appropriate techniques such as 

wavelets or neural networks. Szolgayova et al. (2014) utilised wavelets to deseasonalise 

a hydrological time-series and suggested that the technique had potential for modelling 

series showing long-term dependency (interpreted as containing low frequency 

components).  

 

The method introduced by Kretzschmar et al. (2014) showed that given that the rainfall-

streamflow model captures the dynamics of the catchment system, the high frequency 

detail of the rainfall distribution is not necessary for the prediction of streamflow due 

to the damping (or low-pass filter) effect of the catchment response. The numerical 

properties of the regularisation as applied to the inversion process place a mathematical 

constraint of smoothness balanced against a loss of some temporal resolution in the 

inferred rainfall time series. The regularisation and therefore smoothing level is 

controlled through the Noise Variance Ratio (NVR), optimised as part of the process 

and is only applied when necessary, that is, when the analytically inverted catchment 

transfer function model is improper (has a numerator order higher than the denominator 

order).  
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5.2.      Application catchments 

RegDer has been tested on two headwater catchments with widely differing rainfall 

and response characteristics – Baru in humid tropical Borneo and Blind Beck, in 

humid temperate UK.  

5.2.1. Baru – tropical catchment 

The 0.44 km2 Baru catchment (Figure 5-1a) is situated in the headwaters of the Segama 

river located in Sabah on the northern tip of Borneo, East Malaysia (4° 580 N 117° 490 

E). The climate is equatorial with a twenty-six year (1985-2010) mean rainfall of 2849 

mm (Walsh et al., 2011) showing no marked seasonality but tending to fall in short 

(<15 min) convective events showing high spatial variability and intensities much 

higher than those of temperate UK (Bidin and Chappell, 2003, 2006). Due to the high 

spatial variability, a network of 6 automatic rain-gauges (13.6 gauges per km2) was 

used to derive the catchment-average rainfall using the Thiessen Polygon method. 

Haplic alisols, typically 1.5 m in depth and with a high infiltration capacity (Chappell 

et al., 1998) are underlain by relatively impermeable mudstone bedrock resulting in the 

dominance of comparatively shallow sub-surface pathways in this basin (Chappell et 

al., 2006, 2007). As a result of the high rainfall intensity and shallow water pathways 

the stream response is very flashy (that is, rapid recession in the impulse response 

function). Vegetation cover is lowland, evergreen dipterocarp forest, which was subject 

to selective logging during 1988-89 (Greer et al, 1995). The data used in the analysis 

are from February 1996 sampled at 5 min intervals (Figure 5-1b) and have been 

modelled previously by Chappell et al. (1999) and Walsh et al. (2011). 
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a)	 b)	

	
	

Figure	5-1:	a)	The	location	of	the	0.44km2	tropical	Baru	catchment	in	Sabah	(dark	grey	area	in	bottom	left	map	–	Sabah	Foundation	Forest	management	
concession),	Borneo	and	b)	the	hydro-	and	hyetographs	for	the	February	1996	sampled	at	5	min	intervals	showing	the	flashy	response	of	the	catchment	to	the	
high	intensity,	spatially	variable	rainfall	
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5.2.2. Blind Beck – temperate catchment  

	
The Blind Beck catchment (Figure 5-2a) has an area of 8.8 km2 and lies in the 

headwaters of the Eden basin in North West England, UK (54.51°N 2.38°W). The 

basin's response shows evidence of deep hydrological pathways due to the presence of 

deep limestone (62%) and sandstone (38%) aquifers resulting in a damped hydrograph 

response (Mayes et al., 2006; Ockenden and Chappell, 2011; Ockenden et al., 2014). 

Winter rainfall in this basin is derived from frontal systems with typically lower 

intensities than the convective systems in the tropics (Reynard and Stewart, 1993). Data 

from a single tipping bucket rain-gauge (that is, 0.1 gauges per km2) located in the 

middle of the catchment was used in this study. The data used in the analysis covers the 

period from 26th Dec 2007 at 16:45 to 31st December 2007 at 21:45 sampled at 15 min 

intervals (Figure	5-2b) and was previously modelled by Ockenden and Chappell (2011) 

using an aggregated hourly time-step.  

 

The choice of these two experimental catchments, therefore, allowed the initial 

evaluation of the estimation of catchment rainfall from streamflow for the end-member 

extremes of a basin with tropical convective rainfall and shallow flow pathways to a 

basin with temperate frontal rainfall (that is, much lower intensity) and deep flow 

pathways (that is, much greater basin damping or temporal integration).
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a) b) 

 

 

Figure	5-2:	a)	The	location	of	the	8.8km2	temperate	Blind	Beck	catchment	in	Northwest	England	and	b)	the	hydro-	and	hyetographs	for	Blind	Beck	for	
the	period	from	26th	Dec	2007	at	16:45	to	31st	December	2007	at	21:45	sampled	at	15	min	intervals	showing	its	response	to	less	intense	frontal	
rainfall	and	deeper	hydrological	pathways 
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5.3.      Model formulation and physical interpretation 

This study investigated the limits of inferred catchment effective rainfall estimation 

from streamflow. Continuous time transfer function models identified from the 

observed data using Data Based Mechanistic (DBM) modelling approaches (Young and 

Beven, 1994; Young and Garnier, 2006), are inverted using the RegDer method 

(Kretzschmar et al., 2014) and used to transform catchment streamflow into estimates 

of catchment inferred rainfall. 

 

DBM modelling makes no prior assumptions about the model structure (though it often 

uses structures based on transfer functions), which is suggested by the observed data, 

and must be capable of physical interpretation.  As transfer functions are linear 

operators, a transform structured as a bilinear power-law (Equation 5-1), also identified 

from the observed data, was applied to linearise the data before model fitting (Young 

and Beven, 1994; Beven, 2012a, p91): 

!"	 = !	%∝  (Equation 5-1) 

where P is the observed rainfall, Q the observed streamflow in the previous time period 

and α is a parameter, estimated from the data. Pe is the effective observed rainfall (ER) 

and Q is used as a surrogate for catchment wetness.  Both catchments used in this study 

proved to be predominantly linear in their behaviour so Equation 5-1 was not used. In 

the initial study, a wide range of possible models was identified using algorithms from 

the Captain Toolbox for Matlab (Taylor et al., 2007). The models selected were a good 

fit to the data and were suitable for inversion. The Nash-Sutcliffe Efficiency (NSE or 

Rt
2) is commonly used to compare the performance of hydrological models. Often 

several models can be identified that fit the data well (the equifinality concept of Beven, 

2006). From these, models with few parameters to be estimated that inverted well were 

selected.  In this study, a second order linear model was found to fit both catchments. 

The output from the RegDer process is an inferred effective rainfall series to which the 

inverse of the power law is then applied, if necessary, to construct an inferred catchment 

rainfall sequence. The process is illustrated in Figure	5-3.  
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Figure	5-3:	model	identification	and	inversion	workflow	where	P	is	the	observed	catchment	
rainfall,	Pe	is	the	effective	rainfall,	Q	is	the	observed	streamflow,	Peh	is	the	inferred	effective	
rainfall	and	Ph	the	inferred	catchment	rainfall.	Non-linearity	is	represented	by	the	bilinear	
power	law	(Beven,	2012a,	p91).	The	continuous	time	transfer	function	is	given	by	G(s)	
where	A(s)	and	B(s)	are	the	denominator	and	numerator	polynomials	and	the	inversion	
process	is	represented	by	G-1(s)	where	A*(s)	and	B*(s)	refer	to	the	symbolic	denominator	
and	numerator	polynomials	of	the	regularised	inverse	transfer	function	as	in	(Equation	5-
4).	

The transfer function model inversion process has been described in Kretzschmar et al. 

(2014). It involves transition from the transfer function catchment model: 

% = ' ( ) = *+,-.*/,-0/.⋯.*-
,2.3/,20/.⋯.32

45,6!"   (Equation 5-2) 

to the direct inverse (in general non-realisable): 

) 	= 7+,2.7/,20/.⋯.72
,-.8/,-0/.⋯.8-

4,6%   (Equation 5-3) 

which is then implemented using regularised streamflow derivatives in the form of: 

9:5;< 	=
=> ;?@

∗
.=B ;?0B@

∗
.⋯.=?@

;C.DB;C0B.⋯.DC
   (Equation 5-4) 
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where (E%
∗
= 	ℒ G2

GH2
%  is the Laplace transform of the optimised regularised 

estimate of the nth time derivative of Q:	 G
2

GH2
%. The regularised derivative estimates 

replace the higher order derivatives in Equation 5-3, which otherwise make Equation 

5-3 unrealisable (improper) – this is the core of the method in Kretzschmar et al. (2014). 

In the implementation, nth derivatives (Equation 5-4) are not estimated, but advantage 

is taken of the filtering with the denominator polynomial, whereby only (n-m)th  order 

regularised derivative estimates of Q are required in combination with a proper transfer 

function.  

 

The inferred effective rainfall (IER) sequences generated by RegDer generally have a 

much smoother profile (illustrated in Figure 5-4) than the observed effective rainfall 

inputs, however streamflow sequences generated with the inferred catchment rainfall 

(ICR) used as the model input are almost indistinguishable from the observed 

streamflow (Rt
2 >97%) – illustrated in Figure 5-9. This indicates that the catchment 

dynamics, as captured by the transfer function model, renders the differences between 

observed and inferred rainfall immaterial. The reason for this becomes clear when 

looking at the frequency domain analysis of the inversion process shown in this paper.   

 

In order to investigate this, the IER is compared to aggregated effective observed 

rainfall sequences with increasing levels of aggregation until a good match is found 

(high value of Rt
2 or R). Two methods of aggregation have been used: 1) averaging over 

a range of time-series, 2) moving average over varying time scales.  Two measures are 

used to assess the correspondence between the IR and the aggregated effective rain: 1) 

Rt
2, the coefficient of determination, and 2) R, the instantaneous Pearson correlation 

coefficient. They are given by: 

)HI	 = 1 −	 LM5NLM O

LM5	LM O   (Equation 5-5) 

) = 	 LM5LM NLM5NLM

LM5	LM O	 NLM5	NLM O		  (Equation 5-6) 

 

where ER indicates a value from the aggregated effective rainfall sequence with mean 

P) and IER is the corresponding value from the inferred effective rainfall sequence 
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with mean QP). Both Rt
2 and R values tend towards a maximum value as aggregation 

increases. The aggregation level at which the maximum is reached is identified and 

taken as an estimate of the resolution of the inferred effective series. This value is 

then compared to the system fast time constant (TCq) and the Nyquist-Shannon (N-S) 

sampling limit. 

5.4.      Continuous model formulation  

One of the advantages of using a CT model formulation is that the parameters have a 

direct physical interpretation independent of the model’s sampling rate (Young, 2010). 

The continuous time model formulation for a 2nd-order model is given by: 

R S = 	 *+,.	*/
,O.	3/,.	∝O

	T(S − V)  (Equation 5-7) 

where y is the measured streamflow at time t, V is the transport delay and u is the 

effective rainfall at time t -	V. If the denominator can be factorized and has real roots,  

(Equation 5-7) can be rewritten as: 

R S = 	 *+,.	*/
(,.	 /

XYZ
	)(,.	 /

XY[
	)
	T(S − V)   (Equation 5-8) 

where TCq and TCs are the system time constants and are often significantly different 

– a ‘stiff’ system. Decomposing the model into a parallel form gives: 

R S = (
\Z

].	^_Z,
+	 \[

].	^_[,
)T(S − 	V)    (Equation 5-9) 

where gq and TCq are the steady state gain and time constant of the fast response 

component and gs and TCs are the steady state gain and time constant of the slow 

response component. The steady state gain of the system as a whole is given by: 

a = ab +	a,   (Equation 5-10) 

so the fraction of the total streamflow along each pathway can be calculated from: 

!b = 	
\Z

\Z.	\[
; 	!, = 	

\[
\Z.	\[

		     (Equation 5-11) 

The fraction of streamflow attributed to the slow response component is sometimes 

termed the Slow Flow Index (SFI) (Littlewood et al., 2010). This example shows a 

second order model but the general principle can be extended to higher order models.  
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a

) 

 

b

) 

 

Figure	5-4:	observed	effective	and	inferred	effective	rainfall	profiles	generated	using	the	RegDer	inversion	method	for	a)	Blind	Beck	and	b)	Baru 
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Details of the inversion and regularisation processes can be found in Kretzschmar et al. 

(2014). 

5.5.      Sampling frequency 

When using CT modelling, the Nyquist-Shannon frequency gives the upper limit on the 

size of the sampling interval, Δt, that will enable the system dynamics to be represented 

without distortion (aliasing - Bloomfield, 1976, p21). Aliasing occurs when a system is 

measured at an insufficient sampling rate to adequately define the signal from the data. 

The Nyquist-Shannon theorem states that the longest sampling step for a signal with 

bandwidth Ω (maximum frequency, where Ω = 2πf in cycles per time unit) to be 

represented is:   

&'	 ≤ 	 *+,	  (Equation 5-12) 

in order to completely define the system in absence of observation disturbance 

(Young, 2010). If the sampling interval is small enough to uniquely define the system, 

the estimated CT model should be independent of the rate of sampling. Conversely, if 

the frequency of the inferred output is less than the N-S limit, then the system 

dynamics should be adequately captured. Other estimates of the sufficient sampling 

interval, designed to avoid proximity to the Nyquist limit, have been made by Ljung 

(1999) and Young (2010). In terms of system TCs, these limits are given by: 

-./012' = 	3456	'178	091'2  (Equation 5-13) 

:;09< = =>?@
A 	'178	091'2  (Equation 5-14) 

BC09< = >?@
D 	'178	091'2  (Equation 5-15) 

5.6.      Temporal aggregation of effective rainfall 

Two methods for aggregating ER were used to estimate the time resolution of the IER. 

Rainfall is the total volume accumulated over the sampling interval so the ER was 

aggregated over progressively longer sampling periods of 2 to 24 times the base 

sampling period and averaged to form a new smoothed sequence that could be 

compared with the IER. For comparison, aggregation was also performed via a moving 

average process utilising the convolution method available in Matlab. Both methods 
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may be affected by the aggregation starting point and edge effects. The aggregated ER 

sequences were compared to the IER using the coefficient of determination (Rt
2) and 

the correlation (R). Rt
2 and R tend towards a maximum value as aggregation increases. 

The aggregation time-step at which this value is established is used to estimate the 

resolution of the IER.  

5.7.      Spectral Analysis 

Periodograms of the amplitude spectra of the observed and modelled series were 

plotted to test whether the ER and IER have the same dynamics in the critical 

frequency range, despite the loss of time resolution (related to low pass filtering due 

to regularisation). A periodogram is the frequency domain representation of a signal; 

transforming the signal into the frequency domain may reveal information that is not 

visible in the time domain. A transfer function shown in its equivalent frequency 

domain form describes the mapping between the input and the output signals’ spectra 

for the linear dynamic systems used here.   Signals may be easily transformed 

between the time and frequency domains (Wickert, 2013). 

 

Periodograms are obtained using the Matlab implementation of the Fast Fourier 

Transform and smoothed using the Integrated Random Walk (for	example,	Young et 

al., 1999); the same regularisation approach as used in the calculation of the IER, 

implemented in the Captain Toolbox (Taylor et al., 2007). Periodograms of ER, IER 

and catchment streamflow are compared on a single plot showing how the spectral 

properties of the inversion process are used to obtain the IER estimates (see Figure	
5-6). The streamflow spectrum is the result of mapping the rainfall spectrum by the 

catchment dynamics. To make a full inversion of that mapping would involve very 

strong amplification of high frequencies with all the negative consequences discussed 

by Kretzschmar et al. (2014). The most significant implications of full inversion include 

the introduction of high amplitude, high frequency noise artefacts into the rainfall 

estimates. The regularisation of estimated derivatives introduces the effect of low-pass 

filtering into the inversion process, avoiding the excessive high frequency noise. 

Regularisation does not introduce any lag into the process, unlike traditional low pass 

filtering.  
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5.8.      Results and discussion 

Figure 5-4 illustrates the smoothed rainfall distribution of the IER sequence obtained 

using the RegDer method. Similar streamflow sequences are generated using either the 

observed rainfall or ICR sequences as model input (see Kretzschmar et al., 2014). The 

implication is that the catchment system dynamics are being captured despite the 

apparent difference in the rainfall distribution and that the detail of the rainfall series in 

time may not be important when modelling the dominant mode of streamflow 

dynamics. 

 

In order to assess the degree of resolution lost by estimating rainfall using the RegDer 

method, the ER was aggregated using two methods (that is, simple aggregation by 

resampling and a moving average) and the resulting sequences compared to the IER 

sequence in the time domain. Plots of progressively more aggregated sequences are 

shown in Figure 5-5. It can be seen that as aggregation increases, peaks become lower 

and more spread out and the sequence is effectively smoothed. The coefficient of 

determination (Rt
2) and the correlation (R) between the aggregated sequence and the 

IER tends to a maximum then decreases as aggregation time increases – ultimately the 

variation in the sequence would be completely smoothed out. The point at which the 

maximum value is reached is taken as an estimate of the resolution of the IER. Plots of 

Rt
2 or R values are shown in Figure 5-6 (aggregation by resampling) and Figure 5-7 

(moving average estimate). Time resolution estimates are shown in Table 5-1 and 

compared with the fast time constant (TCq) and the Nyquist-Shannon sampling limit. 

 

Table 5-1 shows that the estimated resolution of the IER sequence for Blind Beck is 

around 9-10 time periods (that is, 2.25-2.5 hours) and for Baru it is 11-12 time periods 

(that is, 55 mins – 1hr). Both estimates are within the Nyquist-Shannon safe sampling 

limit and below the fast time constant for both catchments indicating that even though 

resolution has been lost – the regularisation trade-off for numerical stability – the 

dominant mode of the rainfall-streamflow dynamics has been captured. Table 5-2 

shows that the estimated resolution of the inferred effective rainfall for both catchments 

is well within the Nyquist limit and, whilst the Blind Beck resolution is within the safe 

limits suggested by Ljung (1999) and Young (2010), the estimated resolution for Baru 

is close to the fast TC and outside the suggested limits. The estimates of resolution of 
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the inferred sequence made from the aggregation plots are not always well defined and 

may be dependent on the length of record which will affect the number of aggregation 

periods that may be meaningfully calculated given the finite length of the data series. 

A better means of estimation of resolution may be achieved by examining the frequency 

spectra of the rainfall and streamflow sequences. 

Table	5-1:	The	sampling	frequency	(hrs)	and	time	constants	(TCq	–	fast	and	TCs	-	slow)	are	
listed	for	each	of	the	study	catchments	together	with	the	slow	flow	index	(SFI	–	the	
percentage	of	the	flow	taking	the	slow	pathway),	the	Nyquist-Shannon	safe	sampling	limit	
(hrs)	and	the	time	resolution	of	the	inferred	effective	rainfall	(IER)	estimated	by	both	
resampling	and	moving	average	methods.	Also	shown	is	the	frequency	domain	estimate	of	
the	resolution	–	the	cut-off	point	beyond	which	the	signal	carries	very	little	information	
(illustrated	in	Figure	5-8)	and	can	be	considered	unimportant.	Time	resolution	of	the	
inferred	effective	rainfall	sequences	estimated	by	both	resampling	and	moving	average	
methods	are	less	than	the	dominant	(fast)	mode	of	the	catchments	and	considerably	less	
than	the	‘safe’	Nyquist-Shannon	limit.		

      Time resolution estimates  
Catchment	 Sampling	

frequency	
(hours)	

TCq	
(hrs)	

TCs	
(hrs)	

SFI	 Nyquist-
Shannon	
Limit	
(hours)	

Aggregation	
by	resampling	
	

Aggregation	
by	Moving	
Average	
	

Cut-off	
point	
(hrs)	

Blind	Beck	 .25	 6.3	 22.1	 47%	 19.9	 2.5	hours	
(10	time	
periods)	

2.25	hours		
(9	time	
periods)	

3.8	

Baru	 .083	 1.1	 18.7	 62%	 3.4	 0.9	-	1	hours	
(11-12	time	
periods)	

1	hour	
(12	time	
periods)	

1.7	

 

Table	5-2:	The	estimated	resolution	of	the	inferred	effective	rainfall	for	Blind	Beck	is	well	
within	both	the	Nyquist	limit	and	the	safe	sampling	limits	suggested	by	the	Ljung	(1999)	
and	Young	(2010)	whereas	the	resolution	for	Baru,	whilst	well	within	the	Nyquist	limit,	is	
close	to	the	fast	TCq	and	outside	the	suggested	safe	sampling	limits	of	Ljung	and	Young.	

Catchment TCq (hours) Nyquist limit 
(hours) 

Ljung 
interval 
(hours) 

Young 
interval 
(hours) 

Estimated 
resolution 
(hours) 

Blind Beck 6.3 19.9 3.98 3.32 2.25-2.5 

Baru 1.1 3.4 0.68 0.57 0.91-1.0 
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a) 

 

b) 

 

Figure	5-5:	Comparison	of	aggregated	sequence	to	the	Inferred	effective	rainfall	sequence	for	a)	Blind	Beck	(sampling	interval	15	mins)	b)	Baru	(sampling	
interval	5	mins)	at	aggregations	of	4,	8	12	and	24	time	periods	(samples)	illustrating	how	aggregation	lowers	the	peak	and	spreads	the	volume	of	rainfall	
over	a	longer	time	period.	The	inferred	effective	rainfall	sequence	is	plotted	for	comparison	
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a
)	

	

b
)	

	

Figure	5-6:	The	Rt2	and	R	tend	to	a	maximum	value	as	aggregation	increases	for	a)	Blind	Beck	and	b)	Baru.	The	resolution	of	the	inferred	effective	
rainfall	is	taken	to	be	point	at	which	the	maximum	is	reached	or	very	little	change	is	apparent.	For	Blind	Beck,	this	value	is	reached	at	10	periods	for	
both	Rt2	and	R.	The	result	for	Baru	is	not	quite	as	clear	but	can	be	estimated	to	be	10	periods	from	R	and	11	or	12	from	Rt2	though	Rt2	continues	to	
increase	up	to	24	time	periods	perhaps	due	to	higher	variability	of	the	rainfall	
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a	

	

b	

	

Figure	5-7:	A	similar	plot	to	Figure	5-6	with	aggregation	by	Moving	Average	for	a)	Blind	Beck	and	b)	Baru.	Rather	than	reaching	an	asymptotic	level,	
the	Rt2	and	R	values	maximize	at	9	time	periods	for	Blind	Beck	and	12	time	periods	for	Baru	(determined	graphically	in	Matlab).	These	values	have	
been	used	as	the	estimates	of	the	resolution	of	the	inferred	effective	rainfall	and	agree	well	with	the	estimates	made	by	resampling.	Convolution	term	
in	the	caption	is	with	reference	to	the	method	of	calculating	the	moving	average	
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a) 

 

b) 

 

Figure	5-8:	Periodograms	for	a)	Blind	Beck	and	b)	Baru	showing	the	frequency	structure	of	the	effective	rain,	inferred	effective	rain	and	streamflow	
sequences.	The	grey	area	shows	frequencies	beyond	the	6dB	difference	between	smoothed	ER	and	IER	spectral	point.	Both	catchments	show	a	similarity	
in	the	frequency	spectra	of	effective	and	inferred	effective	rainfall	within	the	catchment	system.	The	inferred	effective	rainfall	spectrum	is	very	close	to	
that	of	the	actual	effective	rainfall	within	a	wide	range	of	frequencies	mostly	covering	those	corresponding	to	the	catchments’	time	constants.	There	is	
also	a	strong	low	pass	filtering	effect	cutting	off	high	frequencies	with	low	amplitudes	instead	of	boosting	this	high	frequency	noise.	
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In Figure 5-8, the amplitude spectra of inferred effective and observed effective rainfall 

are very close (overlapping when smoothed) within a broad range of frequencies. The 

cut-off frequency, where the difference between the smoothed ER and IER spectra is 

approximately -6dB, provides a frequency domain estimate of the resolution. The cut-

off period for Blind Beck is 3.8 hours and for Baru is 1.7 hours. For frequencies above 

this value, a very strong low pass filtering effect shown is by the rapid decrease in the 

IR spectrum. The frequency range beyond the cut-off point, shaded in Figure 5-8, 

carries a very small proportion of the power of the signal and can be considered non-

significant.  

 

Table 5-1 lists the time constants, SFIs and cut-off points for both catchments. The 

cut-off point for Blind Beck (3.8 hrs) is outside the range of the catchment time 

constants (6.3 …22.1 hrs) probably reflecting the frontal rainfall regime, which is 

relatively uniform in time and space. Flow along both pathways is almost evenly split 

indicating that they are both important in terms of flow generation. On the other hand, 

Baru’s TCq (1.1 hrs) is beyond the cut-off point (1.7 hrs) in the area where the spectra 

contain little power or information indicating why the catchment’s variable, high 

intensity, high frequency, highly localised convective rainfall may not be easy to 

estimate. It is worth noting that the forward rainfall-discharge model does not fit the 

Baru catchment (88%) characterised by its highly variable, both spatially and 

temporally rainfall, as well the Blind Beck catchment (98%) with its relatively 

uniform predominantly frontal rainfall (Kretzschmar et al, 2014). 

 

The processes and characteristics limiting the inferred effective rainfall accuracy 

include the slow components of the catchment dynamics and the rainfall regime. These 

can be seen as the ‘usual suspects’ affecting the inversion process. The general 

goodness of fit of the initial catchment model (rainfall-streamflow) appears to be a 

factor as well (see Figure 5-9), indicating that the inferred effective rainfall estimation 

method presented here can be used to assess the quality of available data and the degree 

to which the data characterise the catchment. Further work is required using a range of 

catchment and rainfall regimes to confirm these results and explain them in terms of 

rainfall and catchment characteristics, as well as investigating spatial relationships. The 

latter will be evaluated using catchment data with multiple rain-gauges, and are the 

subject of the forthcoming work. Rainfall is the key driver of streamflow with the 
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pattern varying from event to event however the underlying catchment characteristics, 

for example, soil, geology, topography, may modify this. A combination of inversion 

and spectral analysis may provide a method for untangling the effects of catchment 

characteristics and rainfall regime on streamflow generation and has the potential for 

characterising the effects of future changes in catchment and/or rainfall characteristics 

due to, for example, climate change. 

5.9.      Conclusions 

A combination of time and frequency domain techniques have been used to show that 

the inferred effective rainfall time-series generated by the RegDer inversion method 

does indeed approximate the direct inverse of a transfer function to a high degree of 

accuracy within the frequency range which includes the dominant modes of the rainfall-

streamflow dynamics. The direct inverse exaggerates low-amplitude high frequency 

noise, which is filtered out by the regularisation process involved in the RegDer 

method. The smoothing of the signal resulting from regularisation is quantified in the 

time-domain by comparison with aggregated observed input data using standard model 

fit measures - coefficient of determination, Rt
2, and correlation coefficient, R2- and 

analysed as a low-pass filtering process in the frequency domain. The smoothing effect 

is minimised within the constraints of the available data and catchment dynamics, 

through optimisation of the regularisation constants (NVRs) to obtain the best fit of the 

inversion process where both rainfall and discharge data are available. 
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a) 

 

b) 

 

Figure	5-9:	Comparison	of	observed	discharge	and	discharge	generated	from	the	Inferred	Effective	Rainfall	for	a)	Blind	Beck	and	b)	Baru.	The	flow	
sequences	match	almost	perfectly	in	the	case	of	Blind	Beck	and	very	closely	in	the	case	of	Baru	where	the	peak	flows	are	under-estimated.	Note	that	the	
forward	(rainfall-discharge)	model	fit	for	Blind	Beck	(98%)	is	better	than	for	Baru	(88%)	(Kretzschmar	et	al,	2014).	
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Chapter	6 What	really	happens	at	the	end	of	
the	rainbow?	–	paying	the	price	for	reducing	
uncertainty	(using	reverse	hydrology	models)	

Kretzschmar, A, Tych, W, Chappell, NA & Beven, KJ (2016), What really happens at 
the end of the rainbow?: paying the price for reducing uncertainty (using reverse 
hydrology models) Procedia Engineering, vol 154, pp. 1333-1340. 
DOI: 10.1016/j.proeng.2016.07.485 

Abstract	
Modelling of environmental processes is subject to a high degree of uncertainty due to 

the incorporation of random errors and a lack of knowledge about how processes 

operate at the scale of interest. Use of uncertain data when identifying and calibrating 

a model can lead to disinformative data being included in the procedure, resulting in 

uncertain parameter estimation and ambiguity in the outcomes. Rainfall-runoff 

modelling where a single rain-gauge is often assumed to be representative of the 

potentially highly variable (in both space and time) rainfall field is a good example. The 

noisy pattern of rainfall inputs is transformed by the catchment into streamflow. The 

streamflow pattern is dependent on the spatio-temporal pattern of rainfall and of the 

dominant processes operating within the catchment. Inverse modelling of the catchment 

dynamics, that is, inferring catchment rainfall from streamflow, provides a possible 

means of improving the estimated rainfall input because all rain falling on the 

catchment becomes streamflow, and thus, providing improved forecasts of the 

streamflow output. A combination of inverse modelling, time series analysis, spatial 

analysis and spectral analysis may also help to provide an insight into the complex 

processes operating within the catchment system. This paper applies a novel method 

for inferring true catchment rainfall from streamflow highlighting that the streamflow 

is better estimated using inferred rainfall than observed rainfall (from a single gauge) 

because a single gauge only gives a partial description of the rainfall field. However, 

reducing uncertainty in this way comes at a price, in this case, the reduction in time-

resolution of the inferred rainfall series. 
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6.1.      Introduction 

Rainfall is the most important input to most hydrological models. The rainfall field is 

variable in both time and space and thus has inherent uncertainty. This is amplified by 

the fact that rainfall measured at a point by a single rain gauge is often assumed to be 

representative of a catchment many kilometres squared in area. Figure 6-1 shows the 

variability in the rainfall field across the Brue catchment (in the south-west of the UK) 

measured at 15-minute intervals by a 23-gauge network. The pie charts at the top right 

of each image indicate how many gauges are measuring rainfall at each time interval – 

the more yellow, the more gauges have rainfall. 

 
 
 

 

 
Figure	6-1	–	The	variability	in	the	rainfall	field	in	space	and	time	over	the	Brue	catchment	
–	brighter	colours	mean	more	rain	(mm).	Rainfall	sampled	at	15	minute	intervals.	The	pie	
charts	show	how	many	gauges	measure	rain	-	the	more	yellow,	the	more	gauges	are	
measuring	rainfall.	

Estimates used to design flood defences are based on historic records of rainfall and 

streamflow which are subject to uncertainty from many sources including measurement 

techniques, instrumentation, changes to the system, model structure, lack of 

understanding of the processes at the scale of interest and those all-important unknowns 

some of which are ‘unknown unknowns’. The ideal would be to provide a 100% certain 
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forecast of the future. However, uncertainty dictates that this is unlikely to happen. The 

best that can be done is to strive for improved understanding of the processes and better 

measurement techniques that will help to reduce uncertainty. 

 

So how can rainfall estimates be improved? As can be seen, rainfall is variable in time 

and space (Figure 6-1) and a single gauge may not be representative of the rain that 

falls over the whole catchment, however, all the rain that falls on the catchment is 

integrated, by the active processes, into streamflow that can be measured at the 

catchment outlet. Working backwards from the measured streamflow, it should be 

possible to use the information in the streamflow to estimate the rainfall.  

 

Considerable interest has been shown in ‘reverse hydrology’ in recent years. Although 

streamflow is itself subject to uncertainty, it is assumed that errors in measurement are 

much smaller than the errors in estimates of catchment rainfall (Henn et al., 2015) 

especially in mountainous catchments where altitude also plays a role in rainfall 

distribution. Studies in this area include those by Croke (2006, 2010), Kirchner (2009), 

Andrews et al. (2010), Young and Sumisławska (2012), Brocca et al., (2013, 2014) and 

Kretzschmar et al. (2014, 2015). Reverse hydrology could be an important tool in 

promoting understanding of catchment rainfall distribution and the processes by which 

it is converted to streamflow and the identification of periods of inconsistent input-

output data. 

6.2.      Methodology  

Distributed models that attempt to take account of the variations in rainfall and 

catchment characteristics have a large number of parameters that must be estimated in 

order to fit the model. Many of these parameters have no physical meaning or lose their 

meaning in the calibration process when adjusted to make the model outputs a better fit 

to the observed measurements.  Given the uncertainty involved at all stages of the 

process, it is hard to justify these highly parameterised models though they have a place 

in attempting to explain the processes involved. This study uses the Data Based 

Mechanistic (DBM) modelling approach (Young and Beven, 1994), which allows the 

data to suggest the form of the model. Several models that fit the data well may be 
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identified (the equifinality concept described in Beven (2006)) but only those that have 

few parameters (are parsimonious) and have a physical interpretation are accepted.  

 

The method presented here uses systems analysis techniques, implemented using the 

Captain toolbox in Matlab (Taylor et al., 2007) to identify a continuous time (CT) 

transfer function model utilising the high-resolution data (in this case, rainfall and 

streamflow) needed to capture the dynamics of the catchment. The model (or models) 

thus identified can be inverted using a using a novel regularisation process detailed in 

Kretzschmar et al., (2014). The output from the regularisation process is an inferred 

rainfall series. The transfer function model is a linear relationship so non-linearity is 

modelled as a separate process as shown in Figure 6-2.  

 

Figure	6-2	-	the	model	identification	and	inversion	workflow	showing	the	off-line	non-
linear	transformation	

Advantages of using a CT formulation are that a wide range of catchment dynamics can 

be modelled and the parameters have a direct physical interpretation that is independent 

of the sampling rate (Young, 2010). The inversion itself is necessarily badly posed due 

to the need to invert processes which have been integrated in both time and space. 

However, applying the regularisation technique to CT models makes inversion possible 

without the amplification of the noise present in the data as is the case with direct 

inversion of the transfer function (Andrews et al., 2010; Kretzschmar et al., 2014). 

Kirchner’s method (Kirchner, 2009) links rainfall and streamflow through a storage 

sensitivity function but it is limited to simple catchments that behave as single-reservoir 

(first-order) systems (Henn et al., 2015). Discussion of other approaches is made in the 

Model	Identification 

Model	Inversion 
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referenced literature (for	example,	Croke, 2006, 2010; Kirchner, 2009; Andrews et al., 

2010; Young and Sumislawska, 2012; Brocca et al., 2013, 2014; Kretzschmar et al., 

2014, 2015). Working with sub-hourly data from two contrasting catchments, 

Kretzschmar et al., (2014) showed that while the direct inverse of a transfer function 

produced an inferred effective rainfall series characterised by high frequency noise 

components, the regularisation process produced a much smoother rainfall profile 

sacrificing time resolution in favour of numerical stability. They also showed that both 

rainfall sequences resulted in similar modelled flow sequences, which fitted the 

observed streamflow data more closely than flow modelled using the observed rainfall 

implying that the dynamics of the catchment were being effectively captured in both 

cases. The high frequency behaviour of the direct inverse method has no physical 

interpretation so can be deemed to fail the criteria of the DBM methodology. Further 

investigation (Kretzschmar et al., 2015) made use of sub-sampling and spectral analysis 

to quantify the loss of resolution and showed that the inferred rainfall sequences were 

still able to capture the catchment dynamics. Catchments integrate the rainfall falling 

on them in space as well as time when converting the rainfall into flow. This paper 

presents an initial investigation of spatial uncertainty utilising the inverse regularisation 

method outlined above. 

6.3.      Test catchment 

This paper utilises the heavily instrumented Brue catchment in South-west England. It 

has 49 rain gauges in an area of 135.2 km2 enabling spatial variability to be investigated. 

There is an elevation change of approximately 300m from south-west to north-east 

across the catchment. The underlying geology is a combination of mudstone and 

limestone with a limestone ridge running in an arc across from north to south across the 

eastern upland area (see Figure	 6-3). The catchment can largely be split into 

impermeable low-land to the west, higher land to the east where the limestone ridge is 

permeable, and the far east of the catchment which is largely impermeable. Land use is 

mostly pasture on clay soils with some woodland on the elevated eastern side (Wood 

et al., 2000). The Brue research catchment was set up in 1993 as part of a Natural 

Environment Research Council (NERC) special topic research programme – the 

Hydrological Radar Experiment (HYREX) (Wood et al., 2000). It ran for three years 

but the data has been extensively used in many subsequent research projects [for	
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example,	(Wood et al., 2000; Moore et al., 2000; Bell and Moore, 2000; Villarini et 

al., 2008 a,b).  

 

Figure	6-3	-	Brue	catchment	geology,	location	and	gauge	network.	(Crown	
Copyright/database	right	2016.	A	British	Geological	Survey/EDINA	supplied	service;	
National	River	Flow	Archive,	2012) 

6.4.       Initial spatial analysis 

Due to the geographical proximity of many of the gauges in the Brue catchment, the 

most highly correlated gauges were rejected and a network of 23, retaining the 

geographical spread, was chosen for analysis – the reduced network is shown in Figure	
6-3 against the underlying geology of the catchment. A detailed analysis of the effect 

of the number of gauges and the ability of the inversion process to highlight 

disinformative sections of data is planned. Early results comparing the results from the 

full gauge set (49F) with the reduced gauge set (23R) and individual gauges is presented 

here. Two basic methods of averaging are investigated – simple arithmetic averaging 

(AV) and Thiessen polygons (TP) where the gauges are weighted by their area of 

influence. Both methods are well documented (for	example,	Shaw et al., 2011, p166). 

Given the number of gauges, the effect of elevation is not included per se as it is 

expected to vary from event to event. 



Chapter 6  Paying the price for reducing uncertainty 

117 

 

Firstly, the set 23R was compared to the 49F using the GORE (Goodness of Rainfall 

Estimate - that is, how well the sub-sample represents the true rainfall) and BALANCE 

(a measure of over/under estimation of the sub-sample with respect to the true rainfall) 

metrics presented by Andréassian et al. (2001) and shown Equation	6-1 and Equation	
6-2 

!"#$ = 1 −	
)*	+	 ,*

-

,*+	 ,*
-				 	 	(	Equation	6-1)	

where ER is the sample rainfall in a single time-step and TR is the corresponding 

observation from the true (or reference) rainfall. GORE can vary between -∞ and 1 

where 1 indicates that the sub-sample (ER) perfectly represents the true rainfall (TR). 

./0/12$ = 	 )*

,*
		 	 (Equation	6-2)	

If BALANCE > 1, the sub-set over-estimates, if BALANCE < 1, the sub-set under-

estimates and a value close to 1 indicates a good fit. 
 
Table 6-1 shows the comparison between the TR (49F) and ER (23R) for the two 

averaging methods and indicates that the reduced network (23R) is a good estimator of 

the TR as estimated using the full gauge set (49F). For this catchment and gauge set, 

there is little to choose between the methods. Gauges drawn from set 23R (Thiessen 

polygon method) are thus used  to estimate the average CT transfer function for the 

catchment. 

Table	6-1	-	Validation	of	the	23	gauge	network	with	respect	to	the	full	49	gauges	using	the	
BALANCE	and	GORE	criteria.	

 BALANCE Percentage over/under 
estimation GORE 

Arithmetic average 1.005 +0.5% 0.985 

Thiessen Polygon 1.004 +0.4% 0.987 

6.5.       Initial Results and Discussion 

Models were identified using the observed rainfall series for each individual gauge 

drawn from set 23R and the catchment outflow then inverted using the regularisation 

method. In order to compare the inferred and observed rainfall sequences and determine 
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the time resolution of the inferred sequence, aggregation by sub-sampling at increasing 

sampling intervals was performed. Nash-Sutcliffe Efficiency (Rt
2) was calculated at 

each interval and the time interval with the closest fit to the observed (aggregated) 

rainfall (highest Rt
2) was taken to be the time resolution of the inferred rainfall 

(Kretzschmar et al., 2015).  The Rt
2 of the aggregated sequence was compared with the 

Rt
2 of the fitted model and the results plotted in Figure	6-4 indicating that, despite the 

loss of time-resolution, the results are closely comparable.  

 

Figure	6-4	-	Comparison	of	modelled	Rt2	(green	bars)	with	inferred,	aggregated	Rt2	(red	
bars)	for	each	individual	gauge.	(Crown	Copyright/database	right	2016.	A	British	
Geological	Survey/EDINA	supplied	service;	National	River	Flow	Archive,	2012)	

For all gauges, the aggregation period (estimate of time resolution) of the inferred 

rainfall sequence is less than the fast time constant (TCq) implying that the catchment 

dynamics are being captured. Flow was generated using the inferred rainfall sequence 

from each individual gauge. The resulting flow sequences were found to more closely 

match the observed flow (typically Rt
2 = 0.996) than flows generated from models fitted 

to individual gauges (Rt
2 = 0.804 to 0.831) or flow generated from a model fitted using 

the catchment average rainfall calculated from the 23R (TP average) gauge set (Rt
2 = 

0.852). This is consistent with the results presented in Kretzschmar et al. (2015). 
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Examination of the observed rainfall (top plots in Figure 6-5) shows the variability of 

the rainfall field across the catchment and emphasises that it can be raining hard in one 

place whilst it is dry in another (see also Figure 6-1) resulting in artificial spikes in the 

generated flow - particularly evident in the plot for KILK, one reason why some events 

can be disinformative when used for model calibration (Beven and Smith, 2015). 

Further work is planned to investigate the effects of different densities and numbers of 

rain gauges, identification of disinformative periods of data, and how it might be 

possible to measure how representative individual gauges or gauge sets are of the 

catchment as a whole. 

6.6.       Conclusions 

As has been demonstrated, reverse hydrology utilises the information in the streamflow 

exiting the catchment to infer the rain that has fallen over the whole catchment rather 

than the amount measured at an individual rain gauge where the latter may not be 

representative of the total rainfall field and may even lead to spurious spikes in the 

modelled flow where rain has been measured at the gauge but not elsewhere in the 

catchment. This technique could deliver an improved estimate of the total rainfall. 

However, the reduction in uncertainty in the rainfall estimates comes at a price – a 

reduction in the time resolution of the rainfall series. As has been demonstrated, this is 

not a problem as long as the resolution is still fine enough to capture the dynamics of 

the catchment. 
 
Reverse hydrology could be an important tool in developing understanding of 

catchment rainfall distribution and the processes by which it is converted into 

streamflow leading to a reduction in uncertainty and an improvement of future flow 

predictions that might result in saved lives, reduced damage to property and 

infrastructure and ultimately to decreased costs.  
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Figure	6-5	-	Observed	rainfall	from	example	gauges	comparing	flow	generated	using	the	
observed	and	inferred	rainfall	with	the	observed	flow
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Chapter	7 Implications	of	spatio-temporal	
sampling	of	a	rainfall	field	when	generating	a	
streamflow	hydrograph:	An	investigation	of	
Discharge	Generating	Rainfall	using	Reverse	
Hydrology	

Kretzschmar, A., Tych, W., Beven, K.J. and Chappell N.A. 
Lancaster Environment Centre 

Abstract	
Prediction of floods requires an accurate estimate of rainfall and despite recent 

advances in measurement techniques, reliance is still largely on, often sparse, rain 

gauge networks to supply information on catchment rainfall. The densely instrumented 

Brue catchment provided the opportunity to develop and evaluate a method for 

assessing the ability of rain gauge observations to represent the spatio-temporal 

variability of a rainfall field. A parsimonious model is identified between rainfall 

observations from individual gauges in a 23-gauge network and the degree of model fit 

(Rt
2) used as a measure of the ‘representativeness’ of the rain gauge. It was recognised 

that all rain gauges are required to estimate catchment average rainfall, the performance 

of gauges in terms of discharge generation capability varies with time and space. The 

part of the rainfall spectrum that generates discharge – Discharge Generating Rainfall 

(DGR) – can be extracted using the RegDer inversion technique proposed by 

Kretzschmar et al. (2014). If DGR is used to generate a flow hydrograph, further 

knowledge of the spatio-temporal structure of the rainfall may not be required. DGR is 

the low frequency part of the rainfall spectrum analogous to the low-pass filtering effect 

of the catchment storage. The high frequency part of the rainfall signal, which has been 

filtered out, appears to have little or no impact on flow generation.
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7.1.      Introduction 

Flood prediction is an uncertain science. Flooding is a worldwide problem affecting the 

lives and property of thousands each year. There is evidence to suggest that the 

hydrological cycle is intensifying (Huntington, 2006) however there is ongoing 

discussion about whether the increase in precipitation is reflected in an increase in peak 

flows (Kundzewicz et al., 2014). There is no doubt that the UK is in a flood-rich period 

(Wilby et al., 2008) whether linked to climate change or due to natural variability. 

Notable events in recent years include Boscastle (2004), Carlisle, Cumbria (2005), 

Gloucestershire, Sheffield and Hull (2008), Cockermouth, Cumbria (2009), south and 

south-west England (2013/2014) and most recently Cumbria, Yorkshire and some areas 

of southern Scotland (2015/2016). These events caused widespread damage to property 

and infra-structure. Several recent flood events have been linked to atmospheric rivers, 

elongated belts of high winds and high water vapour, conveying depressions across the 

Atlantic towards the UK (Lavers et al., 2011). Whatever the cause of the current period 

of frequent floods, it is important to increase understanding of the processes by which 

precipitation becomes streamflow in order to aid future planning for prevention and 

mitigation measures against the devastating effects of flooding. Data-based mechanistic 

modelling and reverse hydrology are tools which may be used for this purpose. 

 
Streamflow forecasts are based on models, simplified representations of the processes 

acting within a catchment, whose main input is usually rainfall. The rainfall field, 

variable in both space and time, is integrated (damped) by the catchment storage, which 

also may vary in space and time, as it becomes streamflow. Uncertainty is introduced 

into forecasts from many sources including model selection, model structure, 

measurement errors in both the inputs and outputs, lack of knowledge of the processes 

at work and other sources some of which are known about and some of which are not 

(Beven, 2012b; 2016). Despite improvements in radar coverage, which provides a 

greater appreciation of the temporal and spatial variations in the rainfall field, much 

rainfall data still comes from point gauges often at hourly or even daily intervals. It is 

important to have data at a sufficiently high temporal resolution, too long a time step, 

particularly in small catchments, may mean that storm and response dynamics are 

missed. In large catchments, spatial variation is more important and a coarser temporal 

resolution may be sufficient (Beven, 2012a, p51). Accurate estimates of rainfall input 
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are important, however there is no consensus on how much effect rainfall errors have 

on hydrologic systems (Michaud and Sorooshian, 1994a). Troutman (1982, 1983) 

suggested that large events tend to over-predict whilst small events under-predict. 

Obled et al., (1994) showed that accurate estimates of total rainfall volume may be 

more important than spatial variation as the spatial variation may not be organised 

enough to overcome the damping effect of the catchment. However, knowledge of 

spatial variation is important when trying to accurately estimate the volume of rainfall 

over the catchment area.  

 
Reverse hydrology allows an estimate of the rainfall required to get a good prediction 

of discharge given a forward model derived from one or more rain gauge inputs.  The 

system model is run backwards, that is, instead of using rainfall and the identified model 

to produce an estimate of streamflow, streamflow is used to infer the rainfall that has 

generated it using an inverted model. The integrative dynamics of the process mean 

that it is not feasible to simply fit a model ‘in reverse’ (that is, use streamflow as the 

model input and rainfall as the output) but a forward model, linking the transformation 

of rainfall to streamflow, must first be identified and the parameters inverted to obtain 

a reverse model allowing rainfall to be inferred from streamflow. A poor forward model 

might indicate that a rain gauge (or combination of gauges) is not representative of the 

catchment as a whole while the inverted rainfall will implicitly compensate for rain 

gauge position(s), rainfall variability for specific events and runoff generation in other 

parts of the catchment etc.   

7.2.      Review 

The effects of spatial rainfall patterns on streamflow generation have been extensively 

studied. Seyfried and Wilcox (1995) suggested that the interactions between processes 

change with time and space resulting in a picture of great complexity. Segond et al. 

(2007) and Emmanuel et al., (2015) agreed that knowledge of when spatial variability 

of catchment characteristics and rainfall becomes important is limited by the 

complexity and the diversity of situations making it difficult to see a clear 

interpretation. However, they agree with Obled et al. (1994) in saying that spatial 

variability may not be well enough organised to overcome the damping effect of the 

catchment. If this is the case, then it may not be necessary to include spatial variability 

in a model as the response will not be greatly improved by the knowledge of the pattern 
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if there is sufficient knowledge of the volume of the input. Emmanuel et al., (2015) said 

that measurement errors may have a greater effect than spatial variability while 

Krajewski et al. (1991) suggest that catchment response may be more sensitive to 

temporal than spatial effects. Many studies agree that sensitivity to spatial influence 

may be catchment specific (Obled et al., 1994; Singh, 1997; Arnaud et al., 2002; 

Segond et al., 2007, Wheater et al., 2006) and related to the size and shape of the 

catchment, catchment properties, for example, soils, geology, topography, land-use that 

affect flow processes, rainfall regime, storm dynamics (Surkan, 1974), channel 

morphology and antecedent conditions (Shah et al., 1996). Segond et al., (2007) and 

Obled et al., (1994) agree that sensitivity to spatial effects may be greatest in urban 

catchments whilst Michaud and Sorooshian (1994a) found that spatial resolution is a 

significant factor in semi-arid catchments where any event may cover only part of a 

catchment area. 

 

Spatial rainfall distribution may influence volume, peak flows and timing of peaks 

(Arnaud et al., 2002) and, thus, the shape of the hydrograph (Singh, 1997) with the 

most important effect being on volume (Beven and Hornberger, 1982; Obled et al., 

1994). Widespread stratiform events with lower spatial variability can produce 

significant flow volumes however, particularly in small catchments, the greatest flow 

volumes come from convective events (Bell and Moore, 2000; Arnaud et al., 2002). 

Spatial knowledge is more important for extreme or convective events (Michaud and 

Sorooshian, 1994b, Ajami et al., 2004) or when soils are saturated (Anquetin et al., 

2010) whereas low intensity rainfall is not sensitive to spatial averaging (Pessoa et al., 

1993). Zoccatelli et al. (2010) found that there was a 30% loss of efficiency, when 

looking at flash flooding in Rumania, if spatial effects were ignored. Studies conducted 

in the semi-arid Walnut Gulch Experimental Catchment in Arizona, USA showed that 

even at small scale (4.4 km2) representing the rainfall pattern is crucial (Goodrich et 

al., 1995; Faurés et al., 1995) and demonstrated that assuming uniform rainfall 

measured at a single gauge can lead to large uncertainties in the hydrograph. They 

found that four gauges (1 per hectare) predicted realistic hydrographs. Michaud and 

Sorooshian (1994a, b) used a gauge network with a density of 1 per 20 km2 to study 24 

severe localized thunderstorms concluding that spatial averaging even at small scale 

could lead to a consistent reduction in flood peaks suggesting that 58% of the error was 

due to the sparsity of gauge network and half due to rainfall sampling errors. 
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7.3.      Aims of the paper 

The question this paper will attempt to answer is: What are the implications of sampling 

the spatio-temporal structure of the rainfall field when generating streamflow taking 

into account the uncertainties inherent in modelling?  

 
The aims of the paper are defined below: 
 

A. Evaluate the effect of temporal aggregation on the estimation of the sub-daily 

statistics of the rainfall field by aggregating measured 15 min measurements at 

progressively longer time-scales up to 1 day.  

B. Evaluation of the Reverse Hydrology approach on a well instrumented, spatially 

diverse catchment with a view to reducing the uncertainty in simulated 

hydrographs. This is achieved by the introduction of the concept of Discharge 

Generating Rainfall (c.f. 7.4) inferred by using Reverse Hydrology as described 

in chapter 4. Discharge Generating Rainfall (DGR) – based on the rainfall 

estimated using the Reverse Hydrology, is the part of the broad rainfall 

spectrum responsible for generating the flow hydrograph. 

C. Identification of misinformative rain-gauges based on the forward and reverse 

hydrology models’ performance. This is achieved by:  

a. Identification of the ‘best fit’ model to a series of rainfall and catchment 

outflow derived from one or more rainfall gauges (an estimate of 

catchment average rainfall). The goodness-of-fit of the rainfall-outflow 

model may indicate whether the gauge combination is a good 

representation of the flow generating processes in the catchment.  

b. Identification of the ‘best fit’ model to a series of rainfall and catchment 

outflow derived from each rainfall gauge (models are unique to the 

individual gauge). The magnitude of the goodness-of-fit metric (Rt
2) 

provides a measure of the ability of the gauge to represent the flow 

generating processes of the catchment as a whole. 

 

7.4.      Reverse Hydrology and Discharge Generating Rainfall  

Despite developments in rainfall measuring techniques, reliance is still often on a small 

number of rain gauges in making inferences and predictions about catchment responses.   
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In some cases, it has been shown that this can lead to inconsistent input-output data for 

specific events. Rain gauges measure how much rain has fallen at a point in the 

catchment but what happens between the gauges can only be estimated by some 

methods of interpolation.  However, hydrologists have long used a method of analysis 

that equates a cumulative “effective” rainfall with the discharge measured at a 

catchment outlet, (c.f. for example, Boorman, 1989; Chapman, 1996; Croke, 2006). 

Kretzschmar et al., (2014, 2015) have developed a technique that takes the measured 

outflow from a catchment and infers the amount of rain that has generated it.  

Estimating the characteristics of the Discharge Generating Rainfall (DGR) - the rainfall 

responsible for producing the hydrograph - in this way allows simulation of synthetic 

rainfall series that may be used in many applications including input to flood 

forecasting models, in-filling gaps in rainfall records (see chapter 8) and investigation 

of the importance of the spatial and temporal structure of a rainfall field with respect to 

streamflow generation.  

 
The dynamic part of the discharge generation process is described by linear, time 

invariant dynamics, modelled using a continuous time transfer function model, and the 

rainfall-runoff nonlinearity is modelled using Hammerstein memoryless input non-

linearity (c.f. Young and Beven (1994) and Beven (2012), for the hydrology 

perspective, also Wills et al., (2013) for a general system perspective) as shown in 

Figure 7-1. Systems analysis techniques, implemented using algorithms from the 

Captain Toolbox for Matlab (c.f. Taylor et al., 2007; Kretzschmar et al, 2014), were 

used to identify a continuous time (CT) transfer function model using high-resolution 

rainfall and streamflow data to capture the dynamics of the catchment (specifically: 

functions RIVCBJ and RIVCBJID). The model (or models) thus identified can be 

inverted using a regularisation approach (RegDer) presented in Kretzschmar et al. 

(2014). The output from the RegDer process is an inferred rainfall series that is an 

estimate of the flow generating rainfall, which is termed here: Discharge Generating 

Rainfall (DGR). The inferred rainfall sequence is the part of the broad rainfall spectrum 

required to generate discharge and is not generally the same as catchment average 

rainfall.  
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Figure	7-1	-	Model	identification	and	inversion	workflow	showing	the	off-line	linear	
transformation.	

 
The advantages of using a CT formulation are that a wide range of catchment dynamics 

can be modelled and the parameters have a direct physical interpretation that is 

independent of the sampling rate (Young, 2010). The inversion itself is badly posed 

due to the need to invert processes which have been integrated in both time and space. 

However, applying the regularisation technique to CT models makes inversion possible 

without the amplification of the noise present in the data as is the case with direct 

inversion (Andrews et al., 2010; Kretzschmar et al., 2014). Other approaches are 

discussed in the referenced literature (Croke, 2006, 2010; Kirchner, 2009; Andrews et 

al., 2010; Young and Sumislawska, 2012; Brocca et al., 2013, 2014; Kretzschmar et 

al., 2014, 2015, 2016).  

 
Working with sub-hourly data from two contrasting catchments, Kretzschmar et al. 

(2014) showed that the regularisation process produced a rainfall profile that sacrificed 

time resolution in favour of numerical stability, resulting from the damping effect of 

the catchment in both space and time. They showed that this rainfall sequence resulted 

in modelled flow sequences that fitted the observed streamflow data more closely than 

flow modelled using the observed rainfall, implying that the dynamics of the catchment 

were being effectively captured. Further investigation by Kretzschmar et al. (2015) 

made use of sub-sampling and spectral analysis to quantify the loss of resolution and 

showed that the inferred rainfall sequences were still able to capture the full discharge 

dynamics to the same degree as the best rainfall-discharge model given the measured 

rainfall data. 
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7.4.1. Model selection criteria 

The routines used for model identification and selection in this study, contained in the 

Captain Toolbox for Matlab (Taylor et al., 2007) do so on the basis of Rt
2 – the Nash-

Sutcliffe Efficiency (NSE) – and the Young Information Criterion (YIC) proposed by 

Young (1984). (c.f. section 2.6.2). The NSE is based on the coefficient of determination 

Equation 7-1 and is given by: 

#34 = 1 −	
(67

8 +	69
8 )-;

8<=

(67
8 +	67)-

;
8<=

  (Equation	7-1)	

where >? is the modelled value and >@ the observed value at i. >@ is the mean of the 

observed series. It can range between 1 > Rt
2 > -¥ where 1 indicates a perfect fit. A 

value of 0 indicates that the model performs no better than using the average of the 

observed data. Negative values mean performance is worse than using the average 

(Blöschl et al., 2013).  

 

The Young Information Criterion (YIC) is an objective measure combining model fit 

with a measure of over-parameterisation. It is given by: 

AB2 = CD EF-

E7
- + CD 1$H1   (Equation	7-2)	

where IJ4 and I@4 are the variances of the residual series and observed series respectively 

and NEVN (the normalised error variance norm) is given by: 

1$H1 =	 K
LM
	 EF-N88

O8
-

LM
PQK   (Equation	7-3)	

where np = the number of parameters, RPP is the ith diagonal element of the parameter 

covariance matrix and SP4 is the square of the ith parameter. The first term is a measure 

of how well the model fits the data and the second is a measure of parameterisation. A 

large negative value indicates a good fit with lowest number of parameters necessary 

to capture the system dynamics. YIC is a compromise between model fit and model 

complexity (Young et al., 1996). 

 

A third criteria, introduced because it is important to not just have a good fitting forward 

model but one that inverts well, is Rt
2 measuring the fit of the inferred rainfall series, 

IRt
2. Final model choice was based on Rt

2 (as high possible), YIC (large negative value 
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preferred) and the ability of the inverted model to recover the rainfall (IRt
2 as large as 

possible).  

7.5.      Case study – Brue Experimental Catchment, South-west 
England 

This study utilises the heavily instrumented Brue catchment in South-west England. It 

has 49 rain gauges in an area of 135.2 km2 enabling spatial as well as temporal 

variability in the rainfall field to be investigated. Outflow from the catchment is 

measured at a single flow gauging structure, a crump weir, at Lovington. Weed growth 

down-stream in the summer has an effect on the stage-discharge relationship however 

all except the highest flows are contained within the section (NRFA, 2012). There is an 

elevation change of approximately 300m from south-west to north-east across the 

catchment and the underlying geology is a combination of mudstone and limestone with 

a limestone ridge running in an arc from north to south across the eastern upland area 

(see Figure 7-2). The catchment can largely be split into impermeable low-land to the 

west, higher land to the east where the limestone ridge is permeable, and the far east of 

the catchment which is largely impermeable. Land use is mostly pasture on clay soils 

with some woodland on the elevated eastern side. The Brue research catchment was set 

up in 1993 as part of a Natural Environment Research Council (NERC) special topic 

research programme – the Hydrological Radar Experiment (HYREX) (Wood et al., 

2000). It ran for three years but the data has been extensively used in many subsequent 

research projects (for example, Wood et al., 2000; Moore et al., 2000; Bell and Moore, 

2000; Villarini and Krajewski, 2008; Villarini et al., 2008).  
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Figure	7-2	-	Brue	catchment	showing	location	of	23	gauges	used	in	the	study	and	the	
underlying	geology.	(Note	that	this	map	is	also	used	elsewhere	in	a	different	context,	so	is	
provided	here	for	clarity.)		

Rainfall and flow data sampled at 15 minute intervals for 23 rain gauges selected from 

the 49 available from the Brue catchment and a single flow gauge at the catchment 

outlet (station 52010, NRFA, 2012) for the period October 1994 to September 1997 (3 

years) were used in this analysis. The 23 gauges selected maintain geographical 

coverage whilst reducing the inter-gauge correlation (see Figure 7-3). Kretzschmar et 

al. (2016) justified the reduction of the study gauge network from 49 to 23 gauges and 

showed that an estimate of catchment average rainfall obtained from 23 gauges is 

within 0.4% of that obtained from 49 gauges using the Thiessen polygon method. 

Figure 7-3 shows a plot of correlation against distance between each pair of gauges 

indicating that correlation increases as inter-gauge distance decreases and justifying the 

removal of gauges in close geographical proximity. The rainfall measured at each gauge 

was used to calculate the catchment average rainfall. It is reasonable to assume that the 

density of the gauge network (1 gauge per 5.9 km2) is enough to give good estimate of 

the true catchment rainfall (termed here CAR). 
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Figure	7-3	-	Correlation	against	distance	between	gauge	pairs	for	the	Brue	catchment.	As	
expected,	correlation	decreases	as	distance	between	gauges	increases	providing	
justification	for	removing	highly	correlated	gauges	in	close	geographical	proximity	

7.6.      Annual data 

Figure 7-4 shows plots of the catchment average rainfall and Figure 7-5 catchment 

outflow for the 3 years under consideration (October 1994 to September 1997) and 

illustrates the year on year temporal variability. Both WY1 (October 1994 - 

September 1995) and WY2 (October 1995 – September 1996) have wetter winters 

and drier summers whereas WY3 (October 1996 – September 1997) has a wetter 

summer than winter. Rainfall is more variable in WY1 than WY2 and WY3. 

Discharge patterns show even greater differences. Both WY1 and WY2 have wet 

winters whilst flow in WY3, although greater in the winter, occurs in distinct events 

that can be related to the rainfall patterns though this is less obvious in the summer 

months despite the average rainfall differing little between winter and summer. In 

WY1 and WY2, summer rainfall only has significant effect on the streamflow when 

an event is both large and of some duration, for example, September 1995. Short-

lived convective events, for example, November 1995 and June 1996 generate only 

relatively small increases in flow.
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Figure	7-4	-	3	years	of	catchment	average	rainfall	data	sampled	at	15	minute	intervals	for	the	Brue	catchment	plotted	as	water	years	-	October	1994	to	
September	1997.	Differences	between	years	and	between	seasons	are	evident	from	these	plots	and	from	the	statistics	shown	in	Table	7-1	
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Figure	7-5	-	3	years	of	flow	data	sampled	at	15	minute	intervals	for	the	Brue	catchment	plotted	as	water	years	-	October	1994	to	September	1997.	
Differences	between	years	and	between	seasons	are	evident	from	these	plots	and	from	the	statistics	shown	in	Table	7-1.	

Oct-94 Nov-94 Dec-94 Jan-95 Feb-95 Mar-95 Apr-95 May-95 Jun-95 Jul-95 Aug-95 Sep-95

De
pt

h 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

Oct-95 Nov-95 Dec-95 Jan-96 Feb-96 Mar-96 Apr-96 May-96 Jun-96 Jul-96 Aug-96 Sep-96

De
pt

h 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

Oct-96 Nov-96 Dec-96 Jan-97 Feb-97 Mar-97 Apr-97 May-97 Jun-97 Jul-97 Aug-97 Sep-97

De
pt

h 
(m

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3



Chapter 7  Implications of spatio-temporal sampling  

134 

	

Table 7-1 lists the statistics of the catchment average rainfall for each water year and 
the summer and winter seasons studied. The runoff coefficient (RC) indicates how 
much rainfall is being converted to flow. The RC varies from year to year and season 
to season with greatest contrast between seasons being in WY1 when 75% the rainfall 
is converted to flow in winter but only 18% in summer. The pattern is the same but 
not so extreme for the other years.  
 

Table	7-1	–	Characteristics	of	the	rain	by	water	year	and	summer/	winter	season	for	
October	1994	–	September	1997	

	 WY1	 WY2	 WY3	

Rainfall	
(mm)	

An
nu
al	

W
in
ter
	

Su
m
m
er
	

An
nu
al	

W
in
ter
	

Su
m
m
er
	

An
nu
al	

W
in
ter
	

Su
m
m
er
	

Mean	 0.026	 0.036	 0.017	 0.021	 0.026	 0.017	 0.020	 0.019	 0.022	
Standard	
deviation	

0.128	 0.138	 0.116	 0.114	 0.113	 0.114	 0.111	 0.103	 0.118	

Skewness	 10.3	 7.9	 14.1	 14.6	 10.9	 18.2	 11.2	 11.6	 10.8	
Kurtosis	 160.0	 97.3	 277.4	 387.9	 223.2	 548.8	 181.1	 200.8	 164.5	

	
Flow		
(mm)	

	 	 	 	 	 	 	 	 	

Mean	 0.015	 0.027	 0.003	 0.010	 0.015	 0.004	 0.007	 0.011	 0.004	
Standard	
deviation	

0.025	 0.031	 0.003	 0.015	 0.019	 0.005	 0.013	 0.015	 0.009	

Skewness	 4.3	 3.4	 7.8	 4.9	 3.9	 6.9	 5.5	 4.4	 8.9	
Kurtosis	 18.1	 18.1	 131.7	 37.6	 23.8	 76.7	 42.9	 30.4	 96.6	

	
	

Runoff	
Coefficient	

	
0.57	

	
0.75	

	
0.18	

	
0.46	

	
0.60	

	
0.25	

	
0.37	

	
0.58	

	
0.19	

 

7.7.      The effect of aggregation on rainfall structure 

Rainfall variability decreases as sampling interval increases (Shaghagian and Abedini, 

2013) and the correlation between topography and rainfall increases (Bárdossy and 

Pegram, 2013). Table 7-2 shows the effect of increasing the sampling interval (by 

aggregation) on the characteristics of the rainfall over the 3 years studied for the Brue 

catchment. Aggregation is a basic form of low-pass filtering so links with the loss of 

time resolution due to regularisation and the filtering effect of the catchment. The most 
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striking features are the decrease in variability as illustrated by the change of 

distribution, demonstrated by a decrease in standard deviation with increasing sampling 

period (see Figure 7-6a), the consistency in the lag-1 autocorrelation (see Figure 7-6b), 

the increase in the proportion of wet time periods and the decrease in maximum rainfall 

intensity. Lag-1 autocorrelation is consistent at a sub-daily level but at longer 

aggregation periods the familiar decrease may be observed until it disappears 

completely (Chandler et al, 2006; Wilderer, 2011). 

Table	7-2	-	The	effect	of	increasing		sampling	period	from	15	mins	to	24	hrs	on	the	
statistics	of	rainfall	structure	for	the	3	water	years	studied	(October	1994-	September	
1997).	

 
The change of distribution shape is also characterised by skewness and kurtosis 

reduction with increasing sampling period (see Figure 7-6c and d). The lag-1 

autocorrelation shows a slight increase in variability with increasing sampling interval 

but the pattern is not consistent year-on-year (Figure 7-6b). The proportion of wet time 

periods increases with increased sampling interval because rain in any 15-minute period 

within the sampling interval will cause it to be classified as a wet-period. This would 

imply that if sampling period is 6hrs or more, it appears to be wet all the time. Perhaps 

a change in definition needs to be applied, for example, a threshold value greater than 

0 for a time period to be classified as wet. The maximum rainfall intensity decreases as 

sampling interval increases (see Figure 7-6f) because the same amount of rainfall is 
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WY1 15 min 0.026 0.51 10.3 160.0 0.759 0.000 0.19 14.8 
 1hr 0.104 0.26 5.35 47.4 0.760 0.009 0.58 4.6 
 6hr 0.625 0.10 2.21 11.1 0.724 0.475 0.99 0.9 
 12hr 1.250 0.07 2.03 10.3 0.740 1.057 1.00 0.66 
 24hr 2.501 0.05 1.39 6.19 0.726 2.280 1.00 0.39 
WY2 15 min 0.021 0.46 14.6 387.9 0.760 0.000 0.17 20 
 1hr 0.085 0.24 7.61 108.1 0.774 0.003 0.50 5.5 
 6hr 0.508 0.10 3.26 22.0 0.765 0.347 0.99 1.00 
 12hr 1.016 0.06 2.41 13.1 0.714 0.862 1.00 0.51 
 24hr 2.032 0.04 1.67 7.34 0.705 1.844 1.00 0.29 
WY3 15 min 0.020 0.44 11.2 181.1 0.765 0.000 0.17 11.6 
 1hr 0.081 0.22 5.59 47.1 0.760 0.009 0.52 3.00 
 6hr 0.489 0.09 1.95 7.82 0.777 0.291 0.99 0.67 
 12hr 0.977 0.06 1.25 4.52 0.773 0.810 1.00 0.34 
 24hr 1.954 0.041 0.74 3.36 0.745 1.831 1.00 0.22 
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spread over a longer time-period. This is a characteristic which may be of importance 

when the differences between frontal and convective rainfall events are considered, as 

it likely that more rain will fall in low intensity frontal events lasting for a longer period 

of time, than in the short lived, high intensity convective events with the consequential 

effect on runoff.  

 

a) 

 

b) 

 
c) 

 

d) 

  
e) 

 

f) 

 
 

Figure	7-6	-	Key	characteristics	of	the	rainfall	series	showing	the	effect	of	increasing	
sampling	period	a)	Standard	deviation	(mm),	b)	Lag-1	auto-correlation	coeficient	c)	
Skewness	d)	Kurtosis	e)	Proportion	of	wet	time	periods	f)	Maximum	intensity	(mm/hr)	
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7.8.      Comparison of catchment average rainfall with rainfall 
at individual gauges 

 Catchment average rainfall is estimated by spatial averaging of rainfall measured at 

rain gauges in an, often sparse, network by methods such as simple averaging, Thiessen 

polygons, inverse distance weighting or kriging (Shaw et al, 2011). The density of the 

rain gauge network in the Brue catchment (23 gauges in 135.2 km2) has the potential 

for calculating a good estimate of the catchment average rainfall. Kretzschmar et al. 

(2016) compared estimates for the Brue calculated using the Thiessen polygon (TP) 

and simple averaging (AV) methods. The estimates were within 0.1% but, as the TP 

method weights gauges by their area of influence, it was used to calculate catchment 

average rainfall in this study. The eastern side of the catchment is of a higher elevation 

than the west (see Figure 7-2) and there is evidence of some orographic effect 

(increased rainfall) however the density of the gauge network means it does not need 

to be explicitly considered. 

 

The high density and geographical distribution of rain gauges in the Brue catchment 

enabled the comparison of rainfall measured at individual rain gauges with the averaged 

catchment rainfall. In practice, the catchment average rainfall would not be available 

so rainfall measured at the individual gauges must be used to estimate it. DBM 

modelling provides a method for assessing how much reliability can be placed on a 

gauge or gauge set with respect to estimates of CAR and the rainfall driving the 

catchment discharge.  

 

Uncertainty may be introduced by the spatial and temporal variability of the rainfall 

field. Rain may be recorded at one (or more) gauges that does not affect the outflow or 

there may be observed changes in the flow although no rain is recorded. This may be 

because rain falling between the gauges is not measured but still enters the river system 

and affects the catchment outflow. Simulating a hydrograph from the recorded rain may 

show peaks where none occur in the observed hydrograph or may show evidence of 

missing rainfall. A hydrograph simulated using DGR very closely matches the observed 

hydrograph because DGR is only the part of the rainfall spectrum that drives discharge 

generation. High frequency rainfall that has little effect on the generation of flow has 

been filtered out by the RegDer process in the same way that the catchment acts as a 
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low-pass filter. Uncertainty in the generated hydrograph has been reduced (c.f. section 

7.8). Therefore, in one context, using the model output driven by DGR can be seen as 

circular reasoning, while, in the present context of hydrograph uncertainty reduction, it 

is a ‘cleaned-up’ discharge signal. As stated in section 7.4, CAR and DGR are not 

generally the same. CAR is an estimate of the areal average rainfall over the whole 

catchment whilst DGR is an estimate of the part of the rainfall signal that generates the 

flow. 

 

Rainfall at each individual gauge together with the catchment average rainfall and the 

number of gauges where rain was recorded are shown for an example period in Figure 

7-7. The plot shows the temporal variability in the rainfall at each gauge (SGR) and the 

spatial variability, indicated by the number of gauges where rain is measured, and the 

variation in the magnitude at each time period. Comparing the CAR with the SGR 

shows how averaging the rainfall across the catchment lowers the peaks and increases 

the number of time periods with rain. For example, rain occurs at all gauges around the 

24th October at similar intensities so averaging only reduces the peak by a small amount 

however there are occasions where all gauges experience rain but some only receive 

small amounts while others receive much higher amounts thus the resultant average is 

much lower than the peak intensity when this amount is spread evenly over the 

catchment. This has implications for the representativity of individual gauges at that 

time.  CAR estimates the amount of rainfall over the catchment but does not say 

anything about the spatial distribution or which area of the catchment is driving 

discharge generation.  

 

Gauges represent an area of the catchment which may not have any relationship to the 

Thiessen polygon used in the averaging method. The area of representation will be 

influenced not just by rainfall distribution but by the distribution of catchment 

characteristics, for example, topography, soils, geology and land use, although 

characteristics of rainfall events, for example, size, cell size, intensity and direction of 

movement, will also have an effect. All gauges are generally used to estimate the CAR 

but not all contribute equally to discharge generation at any given time. The implication 

of this is that although the depth of rainfall when spread over the catchment may be 

correct, the catchment average series may not be representative of the catchment flow 

generation processes. The fit of the best model identified from CAR against outflow 
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can only give an indication of how well CAR describes the catchment processes, on 

average, over that time-period.  

 

Study of the box plots in Figure 7-8 shows the mean of the catchment average rainfall 

(black +) is in the middle of the means of the individual gauge sequences however, all 

the remaining quantities show a bias where the value for the catchment rainfall is either 

above or below the individual values. The distributions of the statistics vary from year 

to year however the bias in the characteristics of the CAR with respect to the 

characteristics of the rainfall from the individual gauges remains similar. 

 

In practice, it is likely there would be between one and three rain gauges in a catchment 

the size of the Brue (135.2 km2) – the UK average is 1 gauge per 76 km2 (Met. Office, 

2010). The rainfall sequence from each single gauge or combination of gauges could 

be used as an estimate of the catchment average rainfall, but how representative can it 

be assumed to be? The box plots in Figure 7-8 indicate that the individual sequences 

are biased estimators of the catchment average due to spatial averaging. However, there 

are many sequences of rainfall that can generate almost identical hydrographs. 

Identification of gauges supplying non-representative information is based on the 

performance of the forward and reverse hydrological models measured by comparing 

simulated hydrographs. A poor forward model performance suggests that the gauge or 

gauge combination may not be representative of the catchment processes as a whole 

with respect to flow generation. 
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Figure	7-7		–	Top	plot	–	An	example	of	rain	at	individual	gauges	(grey	bars)	over-plotted	with	catchment	average	rain	(red	bars);	Bottom	plot	–	the	
number	of	gauges	with	rain	measured	at	each	time	period.	The	plots	given	an	idea	of	the	temporal	and	spatial	variation	in	rainfall	and	illustrate	how	
spreading	rainfall	evenly	over	the	catchment	lowers	the	rainfall	peaks.	This	maybe	the	case	even	when	all	gauges	have	rain	if	some	gauges	have	high	
rainfall	and	others	low
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Figure	7-8	–	Box	plots	of	the	4	basic	statistics,	maximum	rainfall	intensity	and	proportion	of	wet	time	periods	for	the	23	gauges	across	the	Brue	
catchment	sampled	at	15	minute	intervals.	The	catchment	average	value	is	shown	as	a	black	+
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All gauges contribute rainfall to the catchment average but not all gauges contribute 

equally to the rainfall that generates the flow, and this can change over time. Using a 

dense network of gauges to estimate the catchment average should give a good estimate 

of the depth of rainfall spread over the whole catchment but that rain may not be 

representative of the rainfall generating the discharge hydrograph. Identification of 

misinformative gauges can be made by modelling the rainfall measured at each one 

with the catchment outflow and comparing its performance with the observed 

hydrograph (which is the same whatever gauge or gauge combination is used). Any 

uncertainty in the discharge, for example, due to weed growth (NRFA, 2012) will apply 

equally to all gauges so comparisons for the same time-period should remain valid. The 

value of the goodness-of-fit metric (Rt
2) gives some measure of the confidence that the 

rainfall measured at a gauge or averaged over a gauge-set is representative of the 

rainfall driving discharge generation over that time period. This method could be 

applied to groups of gauges, for example, pairs of gauges where each gauge 

individually shows a poor fit (is not representative) but the two together are 

representative (show a good fit). 

 

The variance based Rt
2 and Least Squares methods and their derivatives favour model 

performance at peaks, not in recessions and lower system output levels so a log 

transform may be used to gain additional information on the performance of each 

gauge. This may be obtained by calculating Rt
2L, which is defined as Rt

2 calculated 

from a log transform of the data. Rt
2 is calculated using the square of the differences 

between the observed and simulated data (see Equation 7-1) and consequently gives 

extra weight to the peak flows. Taking logs of simulated and measured discharge series 

used to calculate Rt
2 flattens out the higher values whilst having little effect on the lower 

ones (Krause et al., 2005) resulting in lower values having more weight. Thus, a 

combination of Rt
2 and Rt

2L may be used to assess how well a model fits different parts 

of the hydrograph, for example, high Rt
2 with a low Rt

2L suggests that the peaks are 

being matched well but recessions and low flows not so well; low Rt
2 combined with 

high Rt
2L implies a model that fits low flows but may not be so good at fitting the peaks. 

If both Rt
2 and Rt

2L are high, the model fits well over the whole range of the hydrograph. 

Robust measures, based on absolute, not quadratic objectives, exist, but are less 

frequently used. 
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7.9.      Model fitting and hydrograph generation 

Models were fitted, using DBM modelling techniques as outlined in section 7.4, to both 

CAR and SGR and the observed catchment outflow (Qobs). Hydrographs generated 

from these models were compared with the observed hydrograph. The observed 

hydrograph can be used to evaluate differences in the modelled hydrographs because it 

remains constant whichever rain gauge or combination of gauges supplies the rainfall 

input series. Hydrograph shape is dependent on both climatic and physical factors 

(Montesarchio et al., 2015) with the recession limb generally influenced by the 

characteristics of the catchment and features such as time-to-peak, runoff volume and 

peak runoff influenced by climatic factors including the spatio-temporal distribution 

and the state of the catchment, for example, soil moisture. Differences between the 

generated and observed hydrographs may be due to differences in the rainfall structure 

and variations in the processes responsible for transforming rainfall into flow between 

the individual gauges and the catchment average (variability in both space and time) 

given that the catchment rainfall, filtered by the catchment processes drives the 

hydrograph generation process. It is assumed that the essential characteristics of the 

non-linear dynamics of the catchment processes do not vary whilst the rainfall input 

varies with time when calculating the average.  

 
The aim of the modelling exercise is to reproduce the observed hydrograph. It might be 

expected that the best fit might be achieved by using all available rain gauges especially 

for the example catchment where the gauge density is high however as discussed in 

section 7.8, this may not be the case because, although the rainfall contribution is being 

made equally to the catchment average, this may not apply to the flow generation 

processes where one area of the catchment may dominate. Examination of the model 

fit statistics (see Table 7-3) shows that the identified models fit the calibration period 

well at least when the peaks are considered. Rt
2 values range from 0.908 in WY1 to 

0.790 in WY3. Performance of models fitted for one year perform less well when used 

for other years but the performance is still acceptable with Rt
2 ranging from 0.877 when 

the WY3 model is applied to WY1 to 0.703 when the WY2 model is applied to WY3. 

The evidence that a model fitted to data from one year gives acceptable performance in 

other years indicates that the catchment response year-on-year may not be as different 

as it appears from the plots in Figure 7-4.  
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As discussed in section 7.8, the fit of the simulated hydrographs to the observed is 

measured by the Rt
2 and Rt

2L metrics. The Rt
2 values show that in WY1 and WY2 fit to 

the hydrograph peaks is good however WY3 does not fit quite so well. The fit to the 

recessions and low flows is not so good as reflected in the Rt
2L values. Particularly 

WY3 shows a very poor fit to the lower flows and recessions – see Figure 7-9. 

Examination of the hydrographs and hyetographs show that the missed peaks 

correspond to low values in the calculated catchment rainfall probably caused by spatial 

averaging. 

Table	7-3	-	Goodness-of-fit	measures	for	individual	models	for	each	year	between	observed	
hydrograph	and	hydrograph	modelled	from	catchment	average	rainfall	and	cross-
validation	results	for	each	period.	All	models	perform	reasonably	well	in	each	period	when	
reproducing	peaks	(Rt2).	Low	flows	are	reproduced	well	for	WY1	and	WY2	but	not	for	
WY3	(Rt2L)	

 Calibration period 

 WY1 WY2 WY3 

Validation 

period 
Rt2 Rt2L Rt2 Rt2L Rt2 Rt2L 

WY1 0.908 0.893 0.725 0.836 0.877 0.838 

WY2 0.742 0.835 0.837 0.811 0.793 0.806 

WY3 0.744 0.479 0.703 0.438 0.790 0.339 

 

Volume is maintained but rainfall peaks are lowered because the rain is being spread to 

a uniform depth over the whole catchment area supporting the argument that the spatial 

pattern is important when generating streamflow hydrographs in contrast with, for 

example, Obled et al (1994). This conclusion may, however, be catchment dependent. 

In other cases, there are peaks in the generated hydrograph not present in the observed 

hydrograph that match peaks in the calculated rainfall probably caused by rain at one 

part of the catchment but not another that does not directly affect the flow – see Figure 

7-10 for more detail. Cross-validation plots are shown in Appendix B. 
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Figure	7-9a	–	Hyetographs	(catchment	average	rainfall)	and	observed	and	simulated	hydrographs	for	WY1	(using	best	model	identified.	The	modelled	
hydrograph	(red	line)	shows	differences	from	the	observed	hydrograph	(blue	line).	The	modelled	hydrograph	matches	both	peaks	and	recessions	well	
(Rt2=0.908	and	Rt2L	=0.839	although	some	differences	are	apparent	highlighting	the	weaknesses	in	using	Rt2	as	a	performance	measure.		Peaks	are	
visible	in	the	modelled	hydrograph	that	do	not	occur	in	the	observed	hydrograph	corresponding	with	rainfall	peaks	which	do	not	influence	the	
hydrograph.
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Figure	7.9b	–	Hyetographs	(catchment	average	rainfall)	and	observed	and	simulated	hydrographs	for	WY2	(using	best	model	identified.	The	modelled	
hydrograph	(red	line)	shows	differences	from	the	observed	hydrograph	(blue	line).	The	modelled	hydrograph	matches	both	peaks	and	recessions	well	
(Rt2=0.837	and	Rt2L	=0.811	although	some	differences	are	apparent	highlighting	the	weaknesses	in	using	Rt2	as	a	performance	measure.		Peaks	are	
visible	in	the	modelled	hydrograph	that	do	not	occur	in	the	observed	hydrograph	corresponding	with	rainfall	peaks	which	do	not	influence	the	
hydrograph.
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Figure	7.9c	–	Hyetographs	(catchment	average	rainfall)	and	observed	and	simulated	hydrographs	for	WY3	(using	best	model	identified.	The	modelled	
hydrograph	(red	line)	shows	differences	from	the	observed	hydrograph	(blue	line).	The	modelled	hydrograph	matches	peaks	well	(Rt2=0.790	however	the	
recessions	are	very	poorly	matched	as	can	be	seen	by	the	value	of	Rt2L	(0.339).	Some	differences	in	the	peaks	are	apparent	highlighting	the	weaknesses	in	
using	Rt2	as	a	performance	measure.		Peaks	are	visible	in	the	modelled	hydrograph	that	do	not	occur	in	the	observed	hydrograph	corresponding	with	
rainfall	peaks	which	do	not	influence	the	hydrograph.An	enlarged	section	of	the	hydrograph	(late	February)	showing	the	both	missing	and	extra		peaks	is	
shown	in	Figure	7-10	
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Figure	7-10	-	A	short	section	of	hydrograph	from	WY3	showing	missing	peaks,	extra	peaks	
and	badly	reproduced	recessions	in	more	detail	(blue:	observed	flow;	red:	predicted	flow	
using	CAR	input)		

A model that fits the catchment average rainfall - outflow combination well indicates 

that the rainfall sequences from the gauges used to calculate that average, whether that 

be from one gauge, a few gauges or more, are likely to be representative of the 

catchment flow generation processes as a whole. If the fit is poor, then the data used to 

fit the model is poor in the sense that it is not representative of the rainfall-runoff 

transformation. Averaging is a linear process and, although various averaging methods, 

for example, Thiessen polygon, inverse distance weighting or kriging (Shaw et al., 

2011), make some attempt to take non-linearities into account, the weighting of 

different gauges changes with time. Thiessen Polygons attempt to weight the rainfall at 

a gauge by its area of influence (related to the distance between the gauges and thus the 

spatial resolution) however that area bears no relation to the distribution of topography, 

geology or soils within the catchment and is, thus, not directly related to the processes 

operating in the catchment that transform rainfall into streamflow. Different gauges will 

dominate under different conditions. Rainfall data which does not represent the flow 

generation processes is likely to result in a poor model. This may be due to data from 

some of the gauges used to estimate the average being non-representative. The 

modelling process attempts to compensate for errors inherent in the calibration of the 

forward model but if the data is too non-representative, this is unlikely to be enough to 

identify a model that describes the transformation of rainfall-runoff well. Investigation 

of the fit of models to the individual gauge rainfall and catchment outflow (which will 

be the same no matter which rainfall series is combined with it to identify a model) 

combinations may reveal which gauges have non-representative rainfall for that period.   
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7.10.      Rainfall variation at single gauges 

The rainfall distribution over the Brue catchment for each of the 3 water years studied 

is shown in the maps in Figure 7-12. Total rainfall is highest in WY1 and lowest in 

WY3. Some evidence of increased rainfall at higher elevations to the NE of the 

catchment is evident. Lowest rainfall occurs closest to the catchment outlet. The range 

of rainfall at each gauge compared with the catchment average is shown as cumulative 

plots in Figure 7-11. 

 

The best model was identified for each gauge rainfall-flow combination, using the 

method described in section 7.4, and the fit examined to determine how representative 

the model is likely to be. How well the simulated hydrograph compares to the observed 

hydrograph indicates how representative the rainfall measured at that gauge is of the 

overall rainfall-flow transformation for that period. The time element is important as 

the dominant gauge(s) will change with time due to the rainfall regime (convective or 

frontal), the track of storms and the size and position of internal storm cells as well as 

conditions within the catchment, for instance, does the rain follow a dry period?  

Examination of Figure 7-13 shows a range of possible hydrographs could be generated 

dependent on the rainfall-flow combination used. Again, some peaks are overestimated, 

peaks occur where none were observed and recessions are sometimes not well 

represented. Any uncertainty in the flow estimates, for example, due to weed growth 

affecting the stage-discharge relationship (NRFA, 2012), will be present in all models 

as the same discharge is always combined with each of the different rainfall series for 

the time period. Examples of overestimation can be seen in Figure 7-13a around 1st 

January; of over-estimation of the peak and poor fit to the recession in Figure 7-13b 

also around 1st January where a peak not present in the observed flow also occurs. It 

can also be seen that that these features vary with the gauge used to measure the rainfall. 

Around May 1997 (WY3), a flow event shows in the individual hydrograph plots that 

is not present in the catchment outflow.  
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a: WY1 

 
b: WY2 

 
c: WY3 

 

Figure	7-11:	Cumulative	rainfall	for	each	water	year.	Variation	in	temporal	patterns	can	
be	seen	as	changes	in	the	shape	of	the	CAR	plot	(red	line).	The	grey	lines	show	the	
cumulative	rainfall	measured	at	each	gauge.	The	shape	and	range	indicate	how	both	
spatial	and	temporal	patterns	vary	from	gauge	to	gauge	and	from	year	to	year.
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Figure	7-12a:	Total	rainfall	over	the	Brue	catchment	in	WY1	by	gauge.	The	Thiessen	polygons	are	coloured	according	to	the	rainfall	at	the	gauge.	
Highest	rainfall	is	on	the	higher	ground	to	the	north-east	and	lowest	close	to	the	catchment	outlet.	
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Figure	7-12b:	Total	rainfall	over	the	Brue	catchment	in	WY2	by	gauge.	The	Thiessen	polygons	are	coloured	according	to	the	rainfall	at	the	gauge.	
Highest	rainfall	is	on	the	higher	ground	to	the	north-east	and	lowest	close	to	the	catchment	outlet.	
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Figure	7-12c:	Total	rainfall	over	the	Brue	catchment	in	WY3	by	gauge.	The	Thiessen	polygons	are	coloured	according	to	the	rainfall	at	the	gauge.	Highest	
rainfall	is	on	the	higher	ground	to	the	north-east	and	lowest	close	to	the	catchment	outlet
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The Rt
2 values mapped in Figure 7-14 give an indication of which gauges may be 

representative of the catchment processes, on average, during the period in question. 

Not only do the models that fit the data vary but how well they fit also varies. If the 

model fits well, the gauge rainfall series is likely to be representative of the flow 

generating rainfall for that period, given that the model is being fitted to the same 

outflow series each time. The spatial rainfall distribution over the three years is shown 

in Figure 7-12. Values, indicating the fit of the identified models, are shown the maps 

in Figure 7-14, colour coded as Table 7-4, and tabulated in Table A 1 in Appendix A. 

Table	7-4	-	Arbitrary	thresholds	for	goodness-of-fit	levels	and	associated	colour	coding	
used	in	Figure	7-14.	

	 Rt2	value	 Colour	code	
Very	good	fit	 >	0.90	 	
Good	fit	 0.80	-	0.90	 	

Use	with	caution	 0.70	–	0.80	 	
Poor	fit	 0.60	–	0.70	 	

Very	poor	fit	 <	0.60	 	
 

Figure 7-14 shows the how the fit of the models identified for each rainfall-flow 

combination is distributed over the catchment for each of the water years. Arbitrary 

thresholds for goodness-of-fit and colour coding are shown in Table 7-4. In WY1 the 

best fit model using catchment average rainfall has an Rt
2 value of 0.908 suggesting 

that most of the gauges are representative of the catchment during that period. Table 

7-5 shows the minimum value of the Rt
2 value for the individual gauges to be 0.863. 

Any value over 0.80 was classified as a good fit so all the gauges are a good fit in 

WY1. The fit to the catchment average in WY2 is 0.838. This is still a good fit but the 

lower value suggests that some of the gauges may not be representative in that period. 

The range of values for the individual gauges supports this. Most of the gauges have 

Rt
2 values > 0.8 but two gauges (SPRI and EVER) have fits of < 0.8 suggesting that 

they are less representative. CAR for WY3 has an Rt
2 value of 0.793 suggesting that 

more gauges may be unrepresentative, again supported by the range of values for the 

individual gauges from 0.632 to 0.843 when WY3 is considered. Study of the maps in 

Figure 7-14 shows that most gauges have fits between 0.70 and 0.80 with a few over 

0.80 but four gauges show a fit of < 0.7. In this case, any the gauges with fits >0.80 

can be used as surrogates for CAR with some degree of confidence. 
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Figure	7-13a	-	Hydrographs	simulated	from	rainfall	measured	at	individual	gauges	(plotted	in	grey)	over	plotted	by	the	observed	hydrograph	(blue	line)	

for	WY1.	In	many	cases,	the	individual	gauges	over-estimate	both	the	peak	flow	and	the	recessions.	Also	simulated	peaks	may	be	observed	which	do	not	

occur	in	the	observed	hydrograph.	
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Figure	7-13b:	Hydrographs	simulated	from	rainfall	measured	at	individual	gauges	(plotted	in	grey)	over	plotted	by	the	observed	hydrograph	(blue	line)	

for	WY2.	Individual	gauges	often	over-estimate	the	peak	flow	and	also	simulate	peaks	which	do	not	occur	in	the	observed	hydrograph.	Around	1st	January	

1996,	some	gauges	show	markedly	different	recession	profile	to	the	rest.	
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Figure	7-13c:	Hydrographs	simulated	from	rainfall	measured	at	individual	gauges	(plotted	in	grey)	over	plotted	by	the	observed	hydrograph	(blue	line)	

for	WY3.	In	many	cases,	the	individual	gauges	over-estimate	the	peak	flow	but	also	simulate	peaks	which	do	not	occur	in	the	observed	hydrograph.In	

several	places,	recessions	are	consistently	under	or	over	estimated	and	profiles	differ	quite	markedly	from	the	observed.
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Figure	7-14a	Spatio-temporal	importance	of	the	gauges	is	illustrated	by	plotting	the	fit	of	model	unique	to	each	rainfall-runoff	combination	on	a	

catchment	map.	The	theissen	polygons	are	coloured	according	to	the	coding	listed	in	Table	7-4.	All	gauges	in	WY1	are	coded	green	–	good	fit	(Rt2	>	0.80)	

with	six	over	0.9	so	can	be	expected	to	be	representative	of	the	catchment	as	a	whole.	CAR	model	fit	is	0.908.	
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	Figure	7.14b	Spatio-temporal	importance	of	the	gauges	is	illustrated	by	plotting	the	fit	of	model	unique	to	each	rainfall-runoff	combination	on	a	

catchment	map.	The	theissen	polygons	are	coloured	according	to	the	coding	listed	in	Table	7-4.	In	WY2,	most	gauges	fit	well	and	are	likely	to	be	

representative.	The	exceptions	are	the	2	gauges	coloured	orange	at	the	NW	edge	which	may	not	represent	the	catchment	as	well.	CAR	model	fit	is	0.838.	
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Figure	7.14c	Spatio-temporal	importance	of	the	gauges	is	illustrated	by	plotting	the	fit	of	model	unique	to	each	rainfall-runoff	combination	on	a	

catchment	map.	The	theissen	polygons	are	coloured	according	to	the	coding	listed	in	Table	7-4.	In	WY3	the	pattern	is	much	less	organised	and	there	are	

only	a	few	gauges	that	could	be	said	to	be	representative	(coloured	green).	There	are	four	gauges	have	Rt2	values	of	less	than	0.70	(coloured	lilac)	which	

unlikely	to	represent	the	whole	catchment.	CAR	model	fit	is	0.793.
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The Rt
2 of the catchment average model can be used to identify whether misinformation 

is being supplied. Rt
2 values of the models fitted using the rainfall from individual 

gauges may be able to identify which gauges are supplying the poor information. The 

magnitude of the Rt
2 value for each individual gauge (assuming a unique model has 

been fitted to the observations at each gauge) provides a measure of the uncertainty of 

the information it is supplying to the average calculated for that period. Although 

including rainfall measured at a non-representative gauge may give a better estimate of 

the catchment average rainfall, it does not follow that this average is representative of 

the flow generation processes of the catchment as a whole and consideration should be 

given to whether it is more valuable to have a better average that is non-representative 

or a slightly worse average that is representative, the decision may depend on the 

purpose of the modelling exercise. Misinformative measurements do not fit the model 

well but may still provide substantial useful information about the flow generation 

processes operating in the catchment.  

 

Table	7-5	-	Comparison	of	the	performance	of	the	best	fit	catchment	average	model	with	
the	range	of	fit	to	individual	gauges	(full	listing	in	Table	A	1).	

	 Catchment	
average	rainfall	 	 Individual	gauges	–	best	fit	models	

	 Rt2	best	fit	
model	 	 Min	Rt2	 Average	Rt2	 Max	Rt2	

WY1	 0.908	 	 0.863	 0.887	 0.916	
WY2	 0.838	 	 0.722	 0.815	 0.839	
WY3	 0.797	 	 0.632	 0.762	 0.843	

 

In most practical applications, the catchment average would not be available for 

comparison and the catchment average model would not be known. If only one gauge 

is available, it must be assumed that it is representative because there is no other 

information available. Fitting a model and studying the Rt
2 value will give an indication 

of how much reliability can be placed on the estimate of the catchment average as 

estimated by that gauge. 

 
Is it possible to do better? Traditional (forward) modelling only makes use of 

information present in the rainfall however reverse hydrology uses not just information 

in the rainfall but also information in the catchment outflow. This information may be 
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used to infer a rainfall series by inverting the identified model and using the catchment 

outflow as its input (see Kretzschmar et al., (2014) for details). The output is an estimate 

of the rainfall which has generated the outflow. The inferred rainfall can then be used 

to generate a hydrograph that can be compared with the observed hydrograph.  

7.11.      Hydrographs from inferred rainfall 

Figure 7-15 shows the hydrographs generated from the inferred rainfall using the best 

model (including structure and non-linearity – Table A1) identified for the individual 

rainfall-flow combinations at each gauge. All combinations show a [2,2] model 

structure with variations in absolute time delay and non-linearity displayed in Table 

A1. In WY1, the longest time-delays can be seen at gauges on the permeable section of 

the catchment, the exception being one gauge at the furthest point from the outlet 

having the shortest delay whilst the non-linearity decreases towards the outlet. In WY2 

the part of the catchment furthest from the outlet shows the shortest delays with a non-

linearity pattern which is the reverse of WY1. In WY3, time-delay generally increases 

away from the catchment outlet whilst non-linearity is lowest in the central band 

increasing towards the NE and SW. These patterns do not seem to correlate directly 

with rainfall. Models are constructed to represent the whole catchment based on limited 

information within the rainfall and discharge series. The catchment’s dominant modes 

vary with time as a result of changes in rainfall patterns in the area of influence of the 

gauge and due also to specific catchment conditions and their complex interactions.  

 

It can be seen that the fit of the inferred hydrographs is very close to the observed 

hydrograph even when the traditionally simulated (rainfall driven) hydrograph does not 

fit well. The Rt
2 values for both forward and inferred hydrographs are tabulated in Table 

A1 and summarised below (Table 7-6). These examples show that using inferred 

rainfall from a single gauge combination may give a much closer fit to the catchment 

outflow than using observed rainfall from a single gauge. It could be argued that the 

inferred hydrographs should fit perfectly as they are being generated from rainfall 

derived from the flow using the same model however this is not the case because the 

inversion process is not perfect. Reasons for this are discussed below. 
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Figure 7-15a: Hydrographs generated from inferred rainfall measured at individual gauges (grey lines) compared with observed hydrograph (red 
line) for Water year 1 (WY1): October 1994 - September 1995. It can be seen that the simulated hydrographs are almost exact match with the 
observed even where the forward hydrograph does not fit well. The inferred rainfall contains only the information required to generate the 
hydrograph. The part of the rainfall spectrum that has no part in generating discharge is filtered out by the model. 
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Figure 7-15b: Hydrographs generated from inferred rainfall measured at individual gauges (grey lines) compared with observed hydrograph (red line) for 
Water year 2 (WY2): October 1995 – September 1996. It can be seen that the simulated hydrographs are almost exact match with the observed even where the 
forward hydrograph does not fit well. The inferred rainfall contains only the information required to generate the hydrograph. The part of the rainfall spectrum 
that has no part in generating discharge is filtered out by the model. 
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Figure 7-15c: Hydrographs generated from inferred rainfall measured at individual gauges (grey lines) compared with observed hydrograph (red line) for 
Water year 3 (WY3): October 1996 – September 1997. It can be seen that the simulated hydrographs are almost exact match with the observed even where the 
forward hydrograph does not fit well. The inferred rainfall contains only the information required to generate the hydrograph. The part of the rainfall spectrum 
that has no part in generating discharge is filtered out by the model. 
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Table	7-6	-	Range	of	Rt2	values	for	hydrographs	generate	from	observed	gauge	rainfall	
and	inferred	gauge	rainfall	when	compared	to	the	observed	hydrograph.	In	all	cases	use	of	
inferred	rainfall	improves	the	hydrograph	fit,	usually	significantly.	A	value	of	1.000	implies	
perfect	fit.	Examination	of	the	hydrographs	shows	this	is	not	the	case	but	the	variation	is	in	
the	4th	decimal	place.	

	 Rt2	range	–	gauge	rainfall	 Rt2	range	inferred	rainfall	

WY1	 0.863	–	0.916	 1.000	

WY2	 0.722	–	0.839	 0.987	–	0.995	

WY3	 0.632	–	0.843	 0.956	–	1.000	
	

7.12.      Inferred Discharge Generating Rainfall (DGR) 

The inferred rainfall series generate catchment hydrographs that are very close to the 

observed catchment outflow, but this inferred rainfall series is quite different in 

character to the observed rainfall. Figure 7-16 shows the catchment average and 

inferred rainfall during March in each of the three years. The inferred rainfall sequence 

can be seen to be much smoother, usually with lower peaks than the observed sequence. 

It has a lower time resolution, however Kretzschmar et al. (2015; 2016) have shown 

that the inferred rainfall series captures the dynamics of the catchment despite the loss 

of resolution - the price paid for the numerical stability of the inversion process. The 

inversion process extracts the Discharge Generating Rainfall (signal) from the 

measured rainfall with its broad-spectrum. This is termed Discharge Generating 

Rainfall (DGR). 

 

It can also be seen that the inferred rainfall sometimes goes negative. This can be 

explained in terms of catchment behaviour and rainfall spatial distribution by 

comparing the rainfall and flow plots. Negative inferred rainfall may occur during a 

recession because, in a recession, the flow is driven by the catchment not the rainfall 

(Montesarchio et al., 2015). Small negative spikes occur where the inversion process 

is compensating because it has stopped raining at the gauge, but the flow is still 

increasing or rain elsewhere in the catchment is affecting the flow. These negative 

periods of rainfall are an artefact of the inversion and do not hinder its use as a tool for 

generating catchment outflow, in fact they are an important part of the mechanism. 
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a) 
WY1 

 
Figure	7-16a	-	Catchment	average	and	inferred	catchment	average	rainfall	during	the	spring	of	WY1.	
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b) 
WY2 

 
Figure 7-16b - Catchment average and inferred catchment average rainfall during the spring of WY2. 

01/Feb/1996 01/Mar/1996 01/Apr/1996

R
a
in

fa
ll
 (

m
m

)

0

0.5

1

1.5

2

Catchment Average Rainfall
Discharge Generating Rainfall



 

 

  C
hapter 7 

  Im
plications of spatio-tem

poral sam
pling 

169 

c) 
WY3 

 
 

Figure	7-16c	-	Catchment	average	and	inferred	catchment	average	rainfall	during	the	spring	of	WY3.		
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The inversion process extracts the flow generating rainfall signal from the noisy 

observations because it is based on the catchment outflow. The catchment acts 

effectively as a low-pass filter and the regularised inversion process likewise filters out 

the high frequency behaviour of the rainfall process that has either little or no impact 

on the outflow hydrograph (as illustrated in Figure 7-15) (c.f. chapter 2, section 2.7 and 

chapter 5). The spatial distribution of rainfall will also have an effect. Rainfall measured 

at a single gauge is generally only part of the rain falling on the catchment. A model 

fitted to that rainfall will attempt to model the whole catchment based on this highly 

incomplete information (how incomplete depends on the spatial variation of rainfall, 

for example, frontal or convective, and of the catchment, for example, low or high 

elevation, permeable or non-permeable etc.). Inversion is based on the outflow from 

the whole catchment and thus can make use of the information contained in the 

streamflow as well as the input rainfall. The result is a better estimate of the rainfall 

driving the discharge than can be obtained from the rainfall alone however it is still not 

perfect hence the model fit of the hydrograph simulated from DGR often lower than 1. 

 
It can be concluded that DBM modelling and Reverse Hydrology can be used to 

recognise when the model fitted to the rainfall-flow combination at a gauge is non-

representative of the catchment as a whole. This is not to say that the gauge observations 

are not accurate representations of their own local conditions but that these conditions 

are not, at this time, representative of the whole catchment. The model fit (Rt2) provides 

a measure of the confidence that can be placed on the gauge in question. It should also 

be noted that whether a gauge is representative or not varies with time due to the rainfall 

regime (convective or frontal), the track of the storm and the size and position of 

internal storm cells. If gauges are consistently found to be non-representative, there is 

an argument for removing them from the network as they do not adequately represent 

the conditions in the catchment. Using DGR instead of CAR or SGR can significantly 

improve the fit of the hydrograph but if the gauge is severely non-representative, not 

even Reverse Hydrology can extract enough of the DGR from the rainfall signal and 

the gauge should be rejected.  
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7.13.      Summary and Conclusions  

Reliance is often on a small number of rain gauges to make inferences about catchment 

response. The densely instrumented Brue catchment provided a rare opportunity to 

investigate the importance of spatial variability in the rainfall field and catchment 

response as measured by the ability of a CT-TF model to replicate the catchment 

rainfall-runoff transformation measured by model performance (Rt
2). Models, with as 

few parameters as were necessary to capture the system dynamics, were identified 

between catchment average rainfall (CAR) and catchment outflow and rainfall 

measured at individual gauges (SGR) and catchment outflow. Model selection was 

made by maximising Rt
2 and minimising YIC for models that inverted well using the 

regularisation technique introduced by Kretzschmar et al. (2014) (chapter 4). A rainfall 

series was inferred from the catchment outflow, producing an estimate of the part of 

the rainfall spectrum responsible for generating discharge. This has been termed 

Discharge Generating Rainfall (DGR). 

 

The influence of time-scale was investigated by aggregating the measured 15-minute 

rainfall data into periods up to 1 day. It was found to have an effect on estimation of 

various key characteristics of the rainfall field. Aggregation can be thought of as a low-

pass filter in the same way as regularisation and the filtering effect of the catchment 

storage. Spatial and temporal resolution are related, in that they represent the spatio-

temporal integration of catchment rainfall.  

 

This paper aimed to show whether matching the spatio-temporal rainfall field is 

important when generating a streamflow hydrograph given the uncertainty inherent in 

the modelling process. Uncertainty may be introduced by both spatial and temporal 

variability in the rainfall field. Various studies have shown that rainfall variability 

decreases as sampling interval increases (Shaghagian and Abedini, 2013) and this was 

found to be true at sub-daily scale. The shape of the rainfall distribution changes 

significantly as aggregation increases as characterized by the first four statistical 

moments (Figure 7-6). Key characteristics were found to decrease with aggregation 

tending towards an asymptotic value at 24 hrs. Maximum rainfall intensity decreases 

with aggregation because the rainfall is spread over a longer period. 

 



Chapter 7  Implications of spatio-temporal sampling  

172 

The effect of rainfall variability was measured by comparing the performance of models 

of the CAR or SGR combinations with the catchment outflow.  If the model fitted to 

the CAR performs well, then the CAR is representative of the catchment as a whole 

and the gauge network is performing well, for that time period, and all the SGR series 

used to estimate CAR are likely to be representative. If the model fitted to CAR 

performs less well, the network is not performing as well and further investigation is 

required. Performance of different parts of the network can be investigated by 

modelling each SGR series individually. Any gauges showing a poor performance are 

not representative of the catchment as a whole, on average, during the period in 

question. Different parts of the catchment may be driving the outflow at different times 

and SGR may contribute to the CAR without being representative of the whole 

catchment at that time. It is also possible that although single gauges are 

misinformative, pairs or sets of gauges may be able to work together to represent the 

whole catchment better. This is worth future study. The dominant processes operating 

in a catchment change with time and will be dependent on the rainfall regime and storm 

patterns as well as catchment conditions. Any gauges showing a consistently poor 

performance may be inappropriately sited and consideration should be given to 

removing or repositioning (network optimization). 

 

The Reverse Hydrology approach is able to extract the part of the rainfall necessary for 

generating the catchment discharge from the broad rainfall spectrum. The high 

frequency part of the rainfall spectrum can be disregarded when generating a 

streamflow hydrograph. This is a form of spectral decomposition which will be utilised 

in chapter 8 to generate a rainfall series that can be used to extend or fill a gap in a 

rainfall record assuming a streamflow record exists. 

 

Generating a hydrograph from the complete rainfall spectrum using a forward model 

results in a hydrograph with features (mostly peaks) not visible in the observed 

hydrograph. Using DGR to generate a hydrograph results in a ‘cleaned-up’ version that 

matches the observed hydrograph well. The process is not perfect despite the apparent 

circular logic because the inversion method is not perfect. The spatial distribution of 

rainfall also has an effect because the model is fitted based on incomplete information 

due to variations in the rainfall field and the catchment characteristics. The inversion 

process enables the information contained in the catchment outflow, which relates to 
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the whole catchment, to be utilized. In most cases, DGR inferred from the rainfall from 

a single gauge can give a better estimate of the outflow hydrograph than CAR however, 

if the information contained in the rainfall-streamflow combination is extremely 

misinformative, then not even Reverse Hydrology can recover enough information to 

generate a reliable hydrograph. 

 

It can be concluded that the spatio-temporal rainfall field is important when generating 

a streamflow hydrograph. How well the catchment can be modelled is dependent on the 

‘representativeness’ of the rainfall (CAR or SGR) of the catchment as a whole, which 

can change with time due to changes in rainfall characteristics or catchment conditions. 

DBM modelling can provide a means of assessing how representative a particular gauge 

or gauge combination is. If DGR, inferred from the catchment outflow is used, further 

knowledge of the spatio-temporal structure of the rainfall may not be required to get a 

good estimate of the outflow hydrograph. 

 

Each catchment is unique but common principles apply (McMillan et al., 2014).  The 

methodology presented here should be extended to catchments of different sizes and 

rainfall regimes with varying density of rain gauge networks. It might be useful to relate 

patterns of model fit to weather patterns, for example, Lamb weather types (Lamb, 

1972) which may be useful when designing gauge networks. A method for generating 

rainfall using the spectral properties of the rainfall series is being developed and is the 

subject of chapter 8 and could also be used to fill gaps in rainfall records.  
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Appendix	A1	–	Best	fit	models	to	SGR 
Table	A	1	-	structure	of	best	fit	models	identified	for	the	observations	at	each	of	the	23	rain	
gauges	used	in	the	study.	Model	fits	shown	Rt2	between	simulated	and	observed	
hydrographs	and	hydrographs	simulated	from	inferred	rainfall	(DGR).	Model	structure	is	
given	as	a	triad	(defined	in	Equation	2-2).		

	 WY1	 WY2	 WY3	
Gauge	 Model	 Rt2	 IRt2	 Model	 Rt2	 IRt2	 Model	 Rt2	 IRt2	

ALFO [2225]0.55 0.902 1.000 [2234]0.7 0.810 0.990 [2220]0.6 0.754 0.956 

BATC [2226]0.65 0.873 1.000 [2232]0.6 0.809 0.988 [2227]0.65 0.632 0.967 

CAST [2225]0.55 0.873 1.000 [2234]0.7 0.817 0.990 [2220]0.65 0.828 0.999 

COGL [2225]0.6 0.871 1.000 [2233]0.6 0.838 0.990 [2230]0.6 0.701 0.971 

CRAB [2226]0.65 0.916 1.000 [2234]0.65 0.828 0.990 [2226]0.55 0.815 1.000 

CRAW [2225]0.6 0.883 1.000 [2235]0.55 0.823 0.993 [2228]0.55 0.786 1.000 

DITC [2225]0.6 0.909 1.000 [2234]0.65 0.806 0.990 [2227]0.55 0.810 1.000 

EVER [2226]0.65 0.883 1.000 [2240]0.75 0.747 0.995 [2228]0.55 0.680 1.000 

FLAG [2225]0.65 0.874 1.000 [2234]0.65 0.833 0.990 [2227]0.6 0.801 1.000 

FRAN [2226]0.55 0.901 1.000 [2234]0.65 0.835 0.990 [2220]0.55 0.811 1.000 

GLAD [2226]0.65 0.883 1.000 [2233]0.55 0.806 0.990 [2228]0.6 0.702 0.968 

GODM [2226]0.6 0.874 1.000 [2234]0.65 0.832 0.990 [2227]0.5 0.808 0.999 

GOOD [2224]0.65 0.893 1.000 [2233]0.6 0.839 0.990 [2228]0.65 0.786 1.000 

JACO [2225]0.6 0.901 1.000 [2234]0.7 0.816 0.991 [2220]0.6 0.843 1.000 

KILK [2225]0.55 0.884 1.000 [2233]0.65 0.804 0.987 [2220]0.55 0.689 0.967 

KNAP [2225]0.65 0.868 1.000 [2235]0.7 0.814 0.991 [2220]0.6 0.644 0.966 

KNOW [2226]0.6 0.882 1.000 [2234]0.6 0.818 0.992 [2220]0.5 0.741 0.971 

MILT [2226]0.65 0.886 1.000 [2233]0.65 0.839 0.989 [2228]0.55 0.712 0.963 

MOWO [2225]0.6 0.895 1.000 [2234]0.65 0.833 0.991 [2226]0.55 0.825 1.000 

PITC [2226]0.6 0.885 1.000 [2234]0.7 0.835 0.990 [2227]0.5 0.804 1.000 

SPRI [2225]0.6 0.907 1.000 [2240]0.75 0.722 0.995 [2228]0.55 0.794 1.000 

WADD [2225]0.6 0.863 1.000 [2234]0.7 0.819 0.990 [2227]0.5 0.797 0.999 

WHAD [2225]0.65 0.891 1.000 [2233]0.65 0.831 0.989 [2220]0.65 0.764 1.000 
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Appendix	A2	–	Catchment	maps:	distribution	
of	time-delay	and	non-linearity	

Patterns of pure time delay and alpha, the non-linearity parameter over the 3 water 

years. 

 
Figure A2-1a WY1 – The longest time delays on permeable areas of catchment 
however the range is small, 24-26 15-minute time-periods.  

 
Figure A2-1b  WY1 – non-linearity generally decreases towards catchment outlet, 
ranging from 0.55 near the outlet to 0.65 as distance and elevation increase. 
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Figure A2-2a  WY2 – Time –delay is shorter, further from the catchment outlet with 2 
exceptions which lie on the permeable band. There appears to be no significant 
correlation with rainfall amounts (see Figure 7-12b) 
 

  
 
Figure A2-2b  WY2 – The pattern of non-linearity is the reverse of WY1 with lowest 
being furthest from the catchment outlet. 
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Figure A2-3a  WY3 – Time delay generally decreases towards catchment outlet – 
with two exceptions. Rainfall generally follows the same pattern (see Figure 7-12c). 
 

  
Figure A2-3b  WY3 – No distinct pattern is visible in the non-linearity. Rainfall 
generally decreases towards the outlet (see Figure 7-12c) occurring in much more 
defined bursts than in other years (see Figure 7-4) resulting in several distinct flow 
events unrelated to the seasons (see Figure 7-5). 
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Appendix	B	–	Cross-validation	plots	
Cross–validation plots showing hydrographs simulated from observed rainfall using models fitted to each year to simulate the flow in each of the 

other years 
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Figure	B	-	1:	Cross-validation	plots	for	WY2	and	WY3	based	on	the	model	identified	for	WY1.	The	Rt2	fits	are	acceptable	in	both	cases	indicating	the	
model	for	WY1	is	a	reasonable	average	model	for	the	whole	period.	In	WY3	the	recessions	are	better	reproduced	than	by	the	best-fit	model	for	WY3	
(Figure	7-9)	
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Figure	B	-	2:	Cross-validation	plots	for	WY1	and	WY3	based	on	the	model	identified	for	WY2.	The	Rt2	fits	are	acceptable	in	both	cases	indicating	the	model	
for	WY2	is	a	reasonable	average	model	for	the	whole	period.	In	WY3	the	recessions	are	better	reproduced	than	by	the	best-fit	model	for	WY3	(Figure	7-9)	
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Figure	B	-	3:	Cross-validation	plots	for	WY1	and	WY2	based	on	the	model	identified	for	WY3.	The	Rt2	and	Rt2L	fits	are	acceptable	in	both	cases	
indicating	the	model	for	WY3	is	a	reasonable	average	model	for	the	whole	period	over	the	whole	performance	range	even	though	the	recessions	fit	poorly	
in	WY3.	(Figure	7-9)
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Appendix	C	–	Event	based	patterns	

Example rainfall events 

Three short rainfall events were chosen as examples for further investigation of the 

effect of rainfall patterns on the representativeness of rain gauges. The summer event 

is a short-lived convective event that affects the whole catchment as the storm passes 

over (3D plot in Table C-1). Most of the rainfall is concentrated on the east side of the 

catchment (darkest coloured polygons). Both the autumn and winter events are more 

wide-spread (possibly frontal rainfall) that affects the whole catchment but has heavier 

cells within the overall pattern. The autumn rainfall is heaviest at the south-eastern edge 

of the catchment and the winter rainfall on the higher ground to the north-east.  

 

These examples are used to illustrate how DBM modelling and reverse hydrology can 

be used to identify and compensate for non-representative gauges when estimating 

CAR. Spatial variability in the rainfall field due to causes such as storm size, direction 

of movement and topographic effects mean that each ‘event’ is unique and that the 

contribution of the rainfall at each gauge to the catchment average as well as how 

representative it is of the catchment as a whole will vary from storm to storm. This is 

illustrated by looking at the rainfall distribution over three diverse events and the 

reliability of a sample of gauges. The characteristics of the selected storms are shown 

in Table C-1. 

 

The first stage is to identify the model that best fits the event CAR (ECAR) and event 

observed outflow (EQobs). The fit of this model will provide a measure of the reliability 

of the estimate of the ECAR. Model fits and hydrographs for the events described in 

Table C-1 are show in Figure C-1. Both summer and autumn events show simulated 

hydrographs that display a reasonable approximation to the observed hydrograph. They 

show some peaks not present in the observed outflow hydrograph due to rain at some 

gauges which is included in the ECAR but has no effect on the outflow. The Autumn 

event does not fit well and it can be assumed that several gauges are supplying 

misinformation, that is, adding significant amounts of rain to ECAR that is not affecting 

the outflow or some significant rainfall has missed the gauges but affected the outflow. 

Misinformative measurements do not fit the model well but may still provide 
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substantial useful information about which areas of the catchment are actively 

generating flow. Figure C-1 also shows the hydrographs generated from the DGR 

inferred by inverting the ECAR model. In all cases, these hydrographs are a much better 

fit to the observed hydrograph than the hydrograph directly modelled using ECAR but, 

in the case of the Autumn event, the improvement is only slight. It is likely that so much 

disinformation is being supplied that it is not possible to accurately extract the DGR for 

this event.  

 
Table C-1 – descriptions of the three example events used to illustrate the DBM/ Reverse 
Hydrology method of identifying misinformative gauges. The three storms can be seen to have 
very different characteristics a) is a short-lived summer convective cell that passes mostly 
over the eastern side of the catchment. Storm b) is a more widespread over the catchment 
with the heaviest rain to the northeast. Storm c) is a widespread event with a heavier core 
falling mostly on the northern side of the catchment but with a few southern gauges 
measuring more rain. 

 
 
 
 

Description Date Spatial distribution Catchment rainfall and 
Observed flow 

Distribution of event rainfall 
totals (darker colour = more rain) 

a) Summer 
event 
(SED4)  

2/8/1994 
– 
7/8/1994 
 

   
b) Autumn 
event 
(SS5)  

9/9/1995 
– 
13/9/1995 

   
c) Winter 
event 
(JANS) 

26/1/1995 
– 
29/1/1995 

   
 



Chapter 7    Appendix C  

184 

 
 Rt

2 Qsim IR t
2 Qinv 

Summer 
Event 
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Winter 
Event 

  
 

Figure C-1 – Comparison of model fits and hydrographs generated from ECAR (which could 
be an average of several gauges or an estimate from one gauge) and DGR for the same gauge 
or gauge-set . It can be seen that although for both the summer and autumn events the 
catchment average generates a good approximation of the observed hydrograph, it shows 
some peaks not present in the observed outflow hydrograph due to rain at gauges which are 
included in the ECAR but having no effect on the outflow. The Autumn event does not fit at all 
well and it can be assumed that several gauges are supplying misinformation, that is, adding 
significant amounts of rain to ECAR whilst not affecting the outflow. 

The next stage is to examine the fit of models to the rainfall measured at each individual 

gauge throughout the event (ESGR). Four gauges spread round the edge of the 

catchment are shown as examples in Table C-2. Their locations can be seen in Figure 

7-2. Gauge fits are colour coded as shown in Table 7-4. The relationship between the 

fit of the ECAR model and models fitted to SGR can be clearly seen by examining 

Table C-2. The summer event shows a very good fit to ECAR and all the gauges also 

0.962 0.996

0.722
0.752

0.944 0.999
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show good fits which are only slightly improved by using DGR implying that all gauges 

are representative of the catchment as a whole. In the case of the winter event that fits 

slightly less well than the summer event, one of the example gauges fits not as well 

implying that it (and maybe others) are supplying disinformation. Using the DGR to 

generate the hydrograph results in a significant improvement for all gauges. The 

observed hydrograph of the autumn event is not well reproduced by the hydrograph 

simulated from ECAR. The reason for this is clear from the fits of the sample gauges. 

Two (or more) fit poorly and are significantly non-representative whilst even the well-

fitting gauges are on the low side of acceptable. Even using the DGR to simulate the 

hydrographs is not enough to render two of the gauges acceptable and they should not 

be used. 

Table	C-2	–	Model	fits	for	a	selection	of	gauges	for	each	of	the	example	events.	The	
hydrograph	generated	from	ECAR	for	the	summer	event	shows	a	good	fit	to	the	Qobs	as	do	
each	of	the	sample	gauges.	The	Qinv	hydrograph	shows	an	improved	fit.	The	Qsim	
hydrograph	for	the	winter	event	shows	a	slightly	less	good	fit	and	one	of	the	individual	
sample	gauges	shows	less	good	fit.	The	autumn	event	shows	a	poor	fit	to	ECAR.	Two	of	the	
sample	gauges	show	a	poor	fit	that	is	only	partly	resolved	by	using	the	DGR.	

Gauge Summer Event Autumn Event Winter Event 
 Rt

2  

Qsim 

IRt
2 

Qinv 

Rt
2  

Qsim 

IRt
2 

Qinv 

Rt
2  

Qsim 

IRt
2 

Qinv 

Kilk 0.958 0.995 0.647 0.718 0.905 0.998 

Batc 0.957 0.997 0.645 0.704 0.954 0.999 

Craw 0.965 0.996 0.881 0.998 0.934 0.999 

Fran 0.961 0.996 0.863 0.998 0.738 0.913 

 
It can be concluded from this exercise that DBM modelling and Reverse Hydrology 

can be used to recognise when gauges which, whilst providing useful information to 

the CAR, are not significantly involved in flow generation, and identify any that can be 

might be disregarded for flow generation. This is not to say that the gauge observations 

are not accurate representations of their own local conditions but that these conditions 

are not, at this time, representative of the flow generation characteristics of the 

catchment as a whole. The model fit (Rt2) provides a measure of the confidence that 

can be placed on the gauge in question. Using DGR instead of CAR or SGR can 

significantly improve the fit of the hydrograph but if the gauge is severely non-

representative, not even Reverse Hydrology can extract enough of the DGR from the 
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rainfall signal and the gauge should be rejected. It should also be noted that whether a 

gauge is representative or not varies with time due to the rainfall regime (convective or 

frontal) and the track of the storm and the size and position of internal storm cells. 
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Chapter	8 	In-filling	and	extending	a	rainfall	
record	using	Reverse	Hydrology	and	Spectral	
Decomposition	

Kretzschmar, A., Tych, W., Beven, K.J. and Chappell N.A. 
Lancaster Environment Centre 

Abstract	
Long rainfall and flow records are required for design purposes, for example, the design 

of flood protection schemes. The method proposed here utilises Reverse Hydrology and 

Spectral Decomposition to either extend the rainfall record, or fill a gap in that record 

caused, for example, by failure of a rain gauge, with a realistic rainfall series that will 

generate the correct hydrograph. It is assumed that a flow record exists over the gap in 

the rainfall. A model is built using a calibration section of the record by first identifying 

a parsimonious continuous time transfer function model between rainfall and flow then 

inverting it, using the RegDer method of Kretzschmar et al. (2014), to obtain an 

estimate of the Discharge Generating Rainfall (DGR).  The distribution of residuals 

between the DGR and observed rainfall is estimated. A uniformly distributed random 

number generator is used to construct a simulated, uncorrelated residual series with the 

estimated distribution. Correlation structure is introduced using an AR model based on 

the observed residual series. The high frequency simulated residual series and low 

frequency DGR are then combined and a threshold value applied to maintain the 

proportion of non-rain time periods in the record and the amount rescaled to match the 

volume of the observed rainfall. The transfer function RegDer model can then be used 

to estimate DGR from the flow over the missing section and the a possible rainfall 

sequence constructed by combining the high frequency simulated residual series with 

the low frequency DGR. The result is a series that looks realistic, has the correct 

residual structure and is capable of generating the correct hydrograph. The same 

methodology might be used to extend a rainfall record where a flow record exists but a 

rainfall record does not. 
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8.1.      Introduction 

Flooding is one of the most common natural hazards affecting thousands of people 

worldwide each year and there is evidence to suggest it will get worse due to climate 

change (Huntington, 2006). There have been improvements in rainfall measuring 

techniques in recent years with the introduction of telemetry, rainfall radar and remote 

sensing however much rainfall data still comes from point gauges often at hourly or 

even daily intervals (Garcia-Pintado et al, 2009). Flood forecasts are often based on 

models that are simplified representations of the processes acting within a catchment. 

Their main input is usually rainfall which is highly variable in both space and time. The 

rainfall field is damped (smoothed) by the catchment storage and area as it becomes 

streamflow. Uncertainty is introduced from many sources including the model structure 

and parameters, observation errors in both the inputs and outputs, lack of knowledge of 

the processes at work at the scale of interest and other sources some of which are known 

about and some which are not (Beven, 2016).  

 

Long rainfall records are required as input to rainfall-runoff models used for generating 

the long streamflow series needed for planning purposes. Many methods of stochastic 

rainfall generation have been proposed and may be used to extend existing short 

records. A method using Data-Based Mechanistic (DBM) modelling and Reverse 

Hydrology (Kretzschmar et al., 2014, 2015 and chapter 7) that may be used to in-fill 

and extend existing records is proposed in this paper. Reverse hydrology allows an 

estimate of the rainfall required to generate discharge given a forward model derived 

from rain gauge inputs.  A system model is identified linking rainfall and discharge 

then run backwards, that is, streamflow is used to infer the rainfall that has generated it 

using an inverted model (Kretzschmar et al., 2014). The integrative dynamics of the 

process mean that it is not feasible to simply fit a model ‘in reverse’ (that is, use 

streamflow as the model input and rainfall as the output).  

8.2.      Review 

Long series of rainfall data may be required for simulation studies (Marien and 

Vandewiele, 1986) for uses such as design of flood defences, reservoirs and sewerage 

systems, landslide modelling, soil erosion and sediment transport, water quality 

including monitoring disperse pollution, vulnerability to desertification and 
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downscaling of global and regional climate change scenarios (Onof et al., 2000, Burton 

et al., 2008, Baigorria and Jones, 2010, Engida and Esteves, 2011). If rainfall records 

of the required length and/or resolution do not exist then modelling must be applied to 

make good this deficiency. Onof et al. (2000) defined 4 groups of approaches to rainfall 

generation: complex process-based, multi-scale stochastic including multi-fractal 

cascades, statistical models that use the observed rainfall characteristics and point-

process stochastic models, for example, Bartlett-Lewis and Neyman-Scott cluster 

models. Cameron et al. (2000) categorise stochastic rainfall models used for continuous 

simulation as profile based or pulse based. Profile based models use statistical 

distributions to characterise mean intensity and inter-event arrival time. Depths 

generated are split into components of the required resolution via a profile or mass 

curve. Pulse based models use the same process but also use a statistical distribution to 

represent the characteristics of rain-cells found randomly within a rainstorm, for 

example, Neyman-Scott (for details c.f. references in Cameron et al., 2000). They state 

that pulse models are good at representing the inter-event arrival times but are not so 

good as profile based models at recreating extremes.  

 

Many of the same techniques used to generate rainfall may also be used to in-fill gaps 

in rainfall records. Most work on in-filling focuses on spatial interpolation at daily or 

longer timescales, however Dirks et al (1998) compared Thiessen polygon (TP), 

Inverse Distance Weighting (IDW), areal mean and Kriging methods at temporal scales 

from hourly to yearly and found that all methods produced comparable results for 13 

rain-gauges in a 35 km2 catchment on Norfolk Island. Ahrens (2006) reported that using 

a statistical rather than geographical distance between gauges resulted in a more robust 

rainfall estimate especially in mountainous terrain. A method for preserving the 

statistical properties of the time series utilising multiple linear regression, that avoided 

over-estimation of the number of wet days and under-estimation of high-intensity 

events, was proposed by Simolo et al. (2010). They stated that daily methods are 

complicated by the space-time variability. Several studies have compared traditional 

techniques with geospatial methods such as Kriging and Kriging with local means (for 

example, Mair and Fares, 2011) and suggest that geospatial methods can produce better 

estimates as they account for spatial correlation however they require large amounts of 

data and access to suitable software. Other methods used include Artificial Neural 

Networks (Nkuna and Odiyo, 2011), Gaussian copulas (Bardossy and Pegram, 2013), 
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multi-variate linear regression using 10 nearest neighbours (Serrano-Notivoli, 2016) 

and incorporation of radar and remote sensing data (Brocca et al, 2013; 2014). 

Teegavarapu (2014) provided a comparison of many methods with associated 

references. He states that spatial interpolation generally under-estimates high extremes 

and over-estimates low and fails when there is precipitation at neighbouring gauges but 

not at the base gauge or conversely when there is rain at the base gauge but not the 

surrounding ones. This last limitation may be at least partially addressed by the method 

presented here because it utilises information about rainfall over the whole catchment 

extracted from the streamflow not just from rainfall. The suggested method can also in-

fill at a much higher resolution than many of the existing techniques assuming some 

high resolution records exist. 

 

In this paper, a composite point-process stochastic model, utilising sub-daily rainfall 

and flow records, based on combining low frequency Discharge Generating Rainfall, 

representing the catchment dynamics, with high frequency behaviour of the residuals, 

which has no impact on discharge generation. The model may be used to fill gaps in 

rainfall records or extend existing records where flow records exist but rainfall records 

do not. In future, in may be possible to extend this concept to deriving a ‘DGR 

generator’ that could be used to generate longer series and extremes when rainfall 

records are not available. The smooth profile of the DGR, carrying only the information 

required to generate discharge, should make it easier to transfer rainfall estimates from 

one catchment to another, leading to reduction in the uncertainty due to no high 

frequency signal being present, when predicting in ungauged basins (PUB). 

8.3.      Aim of the paper 

The aim of this paper is to introduce a method for constructing a rainfall sequence by 

combining Discharge Generating Rainfall (DGR) (introduced in Chapter 7) and 

simulated residuals – an application of spectral decomposition and reverse hydrology 

that may be used to extend existing sub-daily rainfall records where runoff records exist 

and rainfall records do not. The same process may be used to infill gaps in rainfall 

records. 
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8.4.      Discharge Generating Rainfall  

Estimating the characteristics of the Discharge Generating Rainfall (DGR) - the rainfall 

responsible for producing the hydrograph (introduced in Chapter 7) allows simulation 

of synthetic rainfall series that may be used in many applications including input to 

flood forecasting models or infilling gaps in rainfall records that could be caused by 

equipment failure, for example, due to freezing or blockage of rain-gauges. The 

dynamic part of the discharge generation process is described by linear, time invariant 

dynamics, modelled using a continuous time transfer function model (Kretzschmar et 

al, 2014). The rainfall-runoff non-linearity is modelled using a Hammerstein 

memoryless input non-linearity (c.f. Young and Beven (1994) and Beven (2012), for 

the hydrology perspective, also Wills et al., (2013) for a general system perspective) as 

shown in Figure 8-1. This method uses a hybrid dynamical modelling approach (Young 

et al., 2006; Laurain et al., 2008) combining a continuous time model and a discrete 

time error model to produce a realistic rainfall series. The method is similar to that 

described by Liu and Munson (1982). They proposed a method for generating a random 

sequence with a specified marginal distribution and auto-covariance using white 

Gaussian noise as input to a linear filter followed by a zero-memory non-linearity 

chosen so that the distribution is reproduced and the auto-covariance approximated.  

 

Systems analysis techniques, implemented using the Captain toolbox in Matlab (Taylor 

et al., 2007), were used to identify a continuous time (CT) transfer function model using 

high-resolution rainfall and streamflow data to capture the dynamics of the catchment. 

The model (or models) thus identified can be inverted using the regularisation process 

(RegDer) presented in Kretzschmar et al. (2014). The output from the RegDer process 

is an inferred rainfall series that is an estimate of Discharge Generating Rainfall (DGR). 

DGR is not the same as CAR which includes the broad rainfall spectrum whereas the 

DGR is an estimate of the part of the rainfall spectrum (the lower frequencies) that 

generates flow.  

 

DGR can be negative. Comparison of rainfall and flow plots (c.f. Figure 8-7) shows 

how this can be explained in terms of catchment behaviour and rainfall spatial 

distribution. Negative DGR often occurs during a recession because the flow is driven 

by the catchment (that is, flow comes from catchment storage) not the rainfall 
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(Montesarchio et al., 2015). Small negative spikes may also occur when the inversion 

process compensates because it has stopped raining in one part of the catchment and 

not another, but the flow is still increasing. Negative periods of rainfall are a product 

of the inversion and do not impede its use as a tool for generating catchment outflow, 

in fact they are an important part of the mechanism. The proportion of negative DGR 

will vary over time depending on catchment conditions and the rainfall distribution.  

 

 
 

Figure	8-1	-	Model	identification	and	inversion	workflow	showing	the	off-line	linear	
transformation.	

A CT formulation is used because it enables a wide range of catchment dynamics to be 

modelled, also the parameters have a direct physical interpretation that is independent 

of the sampling rate (Young, 2010). Inverting processes which have been integrated in 

both time and space means that the inversion is badly posed. Applying the 

regularisation technique makes inversion possible without the amplification of the 

noise present in the data (Kretzschmar et al., 2014). Other approaches may be found in 

the referenced literature (Croke, 2006, 2010; Kirchner, 2009; Andrews et al., 2010; 

Young and Sumislawska, 2012; Brocca et al., 2013, 2014; Kretzschmar et al., 2014, 

2015, 2016). Kretzschmar et al. (2014) showed that the regularisation process produced 

a rainfall profile that sacrificed time resolution in favour of numerical stability, the 

result of the damping effect of the catchment in both space and time. They showed that 

this rainfall sequence resulted in modelled flow sequences that fitted the observed 

streamflow data more closely than flow modelled using the observed rainfall, implying 
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that the dynamics of the catchment were being effectively captured. This was 

recognised to be the rainfall responsible for generating the discharge (chapter 7). 

8.5.      Data source – Brue Experimental Catchment, South-west 
England 

This study utilises rainfall and runoff data from the Brue catchment in South-west 

England where 23 of the available 49 rain gauges (see section 7.5) were used to estimate 

catchment average rainfall using the Thiessen Polygon method (Shaw et al., 2011). 

There is an elevation change of approximately 300 m from south-west to north-east 

across the catchment. The catchment can largely be split into impermeable low-land to 

the west (mostly mudstone and siltstone), higher land to the east where the limestone 

ridge is permeable, and the far east of the catchment which is largely impermeable 

(mostly mudstone with siltstone or sandstone) – see Figure 8-2. Land use is mostly 

pasture with some woodland on the elevated eastern side. The Brue research catchment 

was set up in 1993 as part of a Natural Environment Research Council (NERC) special 

topic research programme – the Hydrological Radar Experiment (HYREX) (Wood et 

al., 2000). It ran for three years but the data has been extensively used in many 

subsequent research projects (for example, Wood et al., 2000; Moore et al., 2000; Bell 

and Moore, 2000; Villarini and Krajewski, 2008; Villarini et al., 2008).  

 
Rainfall and flow data sampled at 15 minute intervals at 23 rain gauges and a single 

flow gauge at the catchment outlet for the period October 1994 to September 1997 (3 

years) were used in this analysis. The density of the gauge network (1 gauge per 5.9 

km2) is enough to give good estimate of the true catchment rainfall (CAR).  

8.6.      Model fitting and hydrograph generation 

Models were fitted, using DBM modelling techniques, as described in Kretzschmar et 

al. (2014), to a ‘observed rainfall series’ (ORS) and the observed catchment outflow 

(Qobs). ORS may be an estimate of CAR or rainfall from a single gauge or a set of 

gauges. Model fit was measured using a combination of the Nash-Sutcliffe efficiency 

(NSE or Rt
2) and the Young Information Criterion (YIC; Young, 1984), an objective 

measure combining model fit with a measure of over-parameterisation. The primary 

criterion was the performance of the inversion technique – also measured using Rt
2 
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(Nash –Sutcliffe efficiency) – here defined as IRt
2 to distinguish it from the fit of the 

forward model. 

 

Figure	8-2	-	Brue	catchment	showing	location	of	23	gauges	used	in	the	study	and	the	
underlying	geology.	(used	elsewhere	but	included	here	for	clarity)	
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where np = the number of parameters, IGG is the ith diagonal element of the parameter 

covariance matrix and JG# is the square of the ith parameter. The first term measures how 

well the model fits the data and the second the efficiency of its parameterisation. A 
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large negative value indicates a good fit with lowest number of parameters necessary 

to capture the system dynamics. YIC can be interpreted as a compromise between model 

fit and model complexity (Young et al., 1996). 

 

Additional information on the performance of a model may be obtained by calculating 

Rt
2 calculated from a log transform of the data (Rt

2L). Rt
2 gives extra weight to the peak 

flows because it is calculated using the square of the differences between the observed 

and simulated data (see Equation 8-1). Taking logs flattens out the higher values whilst 

having little effect on the lower ones (Krause et al., 2005) giving more weight to the 

lower values. A combination of Rt
2 and Rt

2L may be used to assess how well a model 

performs across the whole range of the hydrograph. The inferred rainfall sequence is 

much smoother usually with lower peaks than the observed sequence and has a lower 

time resolution. Kretzschmar et al. (2015; 2016) have shown that the inferred rainfall 

series captures the dynamics of the catchment, in both space and time, despite the loss 

of resolution. The inversion process extracts the Discharge Generating Rainfall or DGR 

(signal) from the measured rainfall with its broad-spectrum – c.f. chapter 7. An example 

comparing DGR with the corresponding ORS is shown in Figure 8-4. 

 

The inversion process extracts the flow generating rainfall signal from the broad 

spectrum of observations because it makes use of information contained in the 

catchment outflow. The catchment acts effectively as a low-pass filter and the 

regularised inversion process likewise filters out the high frequency behaviour that has 

little impact on the outflow hydrograph.  

8.7.      Modelling realistic rainfall series by spectral 
decomposition 

Long rainfall sequences are often needed for design purposes. Reverse hydrology can 

be used as a method for generating rainfall sequences that reproduce the low frequency 

characteristics of the catchment and the high frequency characteristics that are a result 

of climatic factors, including the spatio-temporal distribution, that affect hydrograph 

characteristics such as the rising limb, time-to-peak and peak magnitude (Montesarchio 

et al., 2015). The high frequencies can be modelled using statistical methods based on 

the structure of the residuals between the DGR and the ORS. Combining the high and 

low frequencies produces a synthetic rainfall series that generates the right hydrograph 
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and maintains the correlation structure of the residuals (Figure 8.3). Long series of daily 

rainfall are often available but the methodology employed here could generate rainfall 

at a much higher resolution – dependent on a short series of rainfall and flow being 

available at a higher resolution long enough to identify a stable model. The method 

used is similar to that used by Liu and Munson (1982) (c.f. section 8.4).      

 

Figure	8-3	-	Frequency	plots	of	the	DGR	and	the	residual	series	CAR-DGR.	DGR	mirrors	the	
flow	and	drops	sharply	at	the	frequency	of	the	critical	time	constant	of	the	catchment.	All	
frequencies	below	the	cut-off	point	–	where	the	amplitude	of	the	DGR	has	dropped	by	6	dB	
–	are	low	power	and	have	no	significant	effect	on	discharge	generation	(shaded	area)	as	
these	parts	of	the	signal	are	filtered-off	by	the	catchment	dynamics.	
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Figure	8-4	–	Comparison	of	CAR	and	DGR	for	a	short	section	of	record.	DGR	mirrors	the	flow	but	it	is	also	obvious	that	the	same	amount	of	rain	does	not	
always	generate	the	same	amount	of	flow	–	non-linearity	–	due	probably	to	the	state	of	the	catchment.
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Figure 8-5 shows the basic method for constructing a rainfall sequence using reverse 

hydrology to infer the low-frequencies and residual correlation structure to generate the 

high frequencies. The reconstructed rainfall sequence should look like rainfall, is based 

on the correlation structure of the residuals and can generate the correct hydrograph. A 

hybrid dynamic model (Young, 2006) is built by modelling the low frequency DGR 

using an inverted continuous time TF model (Kretzschmar et al., 2014, 2015) and a DT 

error model based on the auto-correlation structure of the residuals between CAR and 

DGR. An example of rainfall reconstruction based on WY1 follows. Once the model 

for reconstruction has been built, it can be used to generate new rainfall series for 

catchments that have long flow records but only short rainfall records or for filling gaps 

in rainfall records.  
 
 

 

Figure	8-5	–	The	basic	method	for	rainfall	generation	by	spectral	decomposition.	Reverse	
hydrology	is	used	to	generate	the	low	frequency	band	part	of	the	rainfall	signal	related	to	
the	catchment	hydrograph	response	(DGR),	and	analysis	of	the	residuals	(CAR-DGR)	is	used	
to	build	a	model	of	the	high	frequency	part	of	the	rainfall	spectrum	with	the	same	
distribution	as	the	modelled	residual	series.	A	digital	filter	is	constructed	based	on	the	AR	
structure	of	the	residual	series.	After	some	manipulation,	the	resulting	rainfall	sequence	
looks	like	rainfall,	has	a	similar	temporal	and	frequency	structure	to	the	observed	rainfall.	

8.8.      Building the hybrid rainfall model 

The following example is based on WY1 (October 1994 – September 1995). The CAR 

in this example is calculated using all available gauges, so is the best estimate 

obtainable; however if only a single gauge is available, this must be assumed to be the 

best estimate of CAR. Residuals between catchment average rainfall (CAR) and 

inferred rainfall (DGR) using the best identified model between CAR (or its estimate) 

and catchment outflow (Qobs) are calculated to give a residual series (IRES) as shown 

in equation 8-4. CAR and flow modelled from CAR are shown in Figure 8-6. 

Performance of the constructed rainfall sequence is assessed by comparison with the 

observed rainfall and the modelled flow using the Rt
2 and Rt

2L as metrics (c.f. section 

8.6). 
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Figure	8-6	–	The	rainfall	construction	model	is	based	on	the	rainfall	and	flow	series	for	
WY1.	Flow	modelled	using	the	best	available	estimate	of	CAR	and	the	best-fit	model	is	
compared	to	the	observed	hydrograph.	Rt2	of	0.904	suggests	that	the	peaks	and	high	flows	
are	well	matched	but	the	Rt2L	is	lower	suggesting	that	recessions	are	slightly	less	well	
captured.	This	is	the	benchmark	with	which	to	compare	the	performance	of	the	
constructed	rainfall	series	for	the	same	period.		

DGR and IRES are shown in Figure 8-7 where IRES is given by: 

!"#$ = &'" − )*"  (Equation 8-4) 

The method is based on combining the high and low frequency parts of the signal into 

a realistic rainfall series. DGR has a lower resolution than the original sampled rainfall 

(Kretzschmar et al., 2015) due to the filtering effect of the catchment processes (the 

low frequency part of the rainfall signal) and is estimated using the regularisation 

process presented by Kretzschmar et al., (2014; 2015). The residuals between the CAR 

and DGR are an estimate of the high frequency part of the signal that is a result of the 

rainfall which does not affect the outflow (c.f. Figure 8-4). Figure 8-3 shows the DGR 

and residuals in the frequency domain and Figure 8-7 shows the same series in the time 

domain. Negative DGR, a result of the non-homogeneity of the rainfall field, is 

discussed in section 8.4. An estimated realisation of the high-frequency part of the 

signal is simulated using the method described here. 
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Figure	8-7	–	Time	domain	plots	of	Discharge	Generating	Rainfall	(DGR	(mm))	(	top	plot),	an	estimate	of	the	low	frequency	part	of	the	signal.	and	the	
residual	difference	CAR-DGR	(lower	plot),	an	estimate	of	the	high	frequency	part	of	the	rainfall	signal,	for	WY1.	
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An Auto-Regressive (AR) model of the auto-correlation structure of the residual series 

(IRES), based on its significant partial auto-correlation, is built and has the form 

(assuming m significant lags): 

!" = 	
%&	 '(

)
(*+

%&	'+,-+.⋯&'),-)
	01  (Equation 8-5)	

where ai are the first m significant auto-correlation coefficients of IRES and e3  is white 

noise. The auto-correlation structure of IRES is shown in Figure 8-8. 

 

Figure	8-8	–	the	auto-correlation	structure	of	the	residual	series,	IRES.	The	95%	confidence	
limits	are	shown	in	red.	In	this	example,	13	correlation	coefficients	should	be	included	to	
reproduce	the	correlation	structure.	

The residual PDF is estimated from IRES then a sequence of uniform random numbers 

generated to represent their probability of occurrence and transformed using the PDF 

of IRES, to obtain an uncorrelated pseudo residual series (XIRES) with the same 

distribution. One possible comparison of the real (IRES) and synthetic (XIRES) series 

is shown in Figure 8-9. It can be seen from the plots that the distribution of synthetic 

residuals has a similar shape to the observed but is spread out more around zero. The 

auto-correlation structure is approximated by filtering using the DT model constructed 

from the auto-correlation to give a series of correlated, simulated residuals (XIACF). 

The generated residual series should now have a similar distribution to IRES. 

Comparison of the distributions of XIACF and IRES are shown in Figure 8-10. 
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Figure	8-9:	Comparison	of	the	distributions	of	calibration	residuals	(IRES)	and	simulated	
residuals	(XIRES).		

 
Figure	8-10	–	comparison	of	the	series	of	simulated	residuals	(XIACF	–	blue	line	and	blue	
bars)	and	base	residuals	(IRES	–	red	line	and	yellow	bars)	shows	them	to	have	similar	
distributions	

The new rainfall series is constructed by combining the low frequency DGR and the 
generated high frequency residuals-like series to give a new rainfall series (NR): 

45 = 675 + 9:;<=  (Equation 8-6) 

when DGR > 0 and 0 at other times. DGR is the discharge generating rainfall series and 

XIACF the simulated pseudo-residuals. In this example, 12.6% of the DGR is negative. 

Although there are some large negative values (for example, in January and February 

1995), these are short periods only. The majority are very small and close to zero. The 
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reason for these negative values is discussed in section 8.4. In order to reduce the 

number of negative ordinates generated by equation 8-6, DGR can be truncated, that is 

negatives removed, and then rescaled to preserve the mass balance. The updated 

equation becomes: 

45 = ( ?@A

BCAD
∗ 	675) + 9:;<=	 	 (Equation	8-6a)	

where	DGRT	is	the	truncated	DGR	series.	XIACF	is	not	added	to	zero	values	of	
rescaled	series.	

 

Figure	8-11	–	the	top	plot	shows	the	series	45 = (
?@A

BCAD
∗ 	675) + 9:;<=	(Equation 

8-6a).	The	bottom	plot	compares	hydrographs	generated	from	this	series	with	the	observed	
hydrograph.		

The resultant series (NR) in Figure 8-11 may still contain some negative ordinates and 

small amounts of rain in many more time periods than in the original series. The 

hydrograph generated from this rainfall series shows a similar fit to that generated 

from observed rainfall (0.904). This is not surprising as the new series is based on the 

DGR with noise added. A frequency domain plot comparing CAR and NR is shown 

in Figure 8-12. Above the cut-off point the traces are very similar, below, where 

rainfall has little influence on flow, the traces start to diverge but here rainfall could 

take almost any value. A threshold value of rainfall (>0) can be used to constrain 

negative and very small values to 0 (NRC). The threshold value can be manually 

adjusted until the proportion of zeros in NRC matches the proportion in CAR. Some 

typical values are shown in Table 8-1. Truncation and rescaling of the series in this 

way may result in a bias being introduced into the generated series. This is discussed 

in section 8.11.  

#104
0 0.5 1 1.5 2 2.5 3 3.5

Ra
in

fa
ll 

(m
m

)

0

0.5

1

1.5

No. samples (15 mins) #104
0 0.5 1 1.5 2 2.5 3 3.5

Fl
ow

 (m
m

)

0.05

0.1

0.15

0.2

0.25 Observed flow
Modelled from constructed rain (NR) Rt2 = 0.910; Rt

2L = 0.839



Chapter 8    Filling the gap		

204 

	

Table	8-1	–	Proportion	of	zero	rainfall	periods	in	CAR	is	0.81.	Adjusting	the	threshold	value	
and	setting	all	values	in	NR	less	than	the	threshold	to	0	allows	the	proportion	of	zero	
rainfall	periods	in	the	constructed	sequence	to	be	matched	with	CAR.	(Due	to	the	stochastic	
nature	of	the	process,	the	exact	figures	will	vary	with	every	realisation)	

Threshold value NRC 

0.0 0.559 

0.01 0.667 

0.032 0.810 

Constraining the rainfall series results in a change in the total rainfall so it must be 

rescaled to match CAR in order to compensate (NRCV). At this point, the runoff 

coefficient (RC) is also calculated because, during periods of missing rainfall, CAR 

will not be available so a consistent ratio between the proportion of rainfall converted 

into discharge is assumed. The RC is given by: 

5< = 	 GHIJ

?@A
	 	 (Equation	8-7)	

Constraining and rescaling the rainfall series should have little effect on its ability to 

generate a realistic hydrograph because the changes will only be reflected in the high 

frequency part of the spectrum that, due to catchment dynamics, has little effect on flow 

generation however some bias may be introduced. The frequency spectra of NRCV and 

CAR are shown in Figure 8-13 and show greater divergence than in Figure 8-12.  

 

Comparing frequency spectra confirms that the auto-correlation structure is being 

preserved (duality of ACF and frequency spectrum). The series must also be compared 

in the time domain as equivalence in the frequency domain is necessary but not 

sufficient to ensure a match. Generated hydrographs are compared in Figure 8-14. 

Comparing the Rt
2 and Rt

2L values with the hydrograph generated from CAR indicates 

that NRCV generates a hydrograph closer to the observed than using CAR alone 

because it is based on the DGR, the part of the rainfall necessary for generating flow. 

The ability of NRCV to generate an acceptable hydrograph is confirmed by Figure 8-15 

where discharge generated from pure DGR is plotted against discharge generated from 

NRCV. Correlation between the flow series is 0.968 showing that the ‘noise’ added to 

the DGR does not affect its efficacy when generating a realistic flow series. 
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Figure	8-12	–	Frequency	spectra	of	NR	(new	rainfall	sequence)	and	CAR	are	very	similar	in	
the	area	of	interest	showing	that	the	auto-correlation	structure	has	been	maintained.	

 

Figure	8-13	-	Frequency	spectra	of	CAR	and	NRCV.	The	spectra	show	a	slight	vertical	shift	
as	a	result	of	the	rescaling	of	the	rainfall	series	but	the	frequency	patterns	remain	
unchanged.	
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Figure	8-14	–	Hydrograph	generated	from	constructed	rainfall	series	NRCV	compared	with	the	observed	hydrograph.	An	Rt2	of	0.930	is	better	than	the	
hydrograph	generated	from	observed	rainfall.	The	Rt2L	value	confirms	that	fit	is	good	over	the	whole	flow	range.	
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Figure	8-15:	Discharge	generated	from	pure	DGR	plotted	against	discharge	generated	
from	a	constructed	rainfall	series	(correlation	coefficient	=	0.968)	showing	that	the	
constructed	series	does	generate	the	correct	hydrograph.	

Examination of the statistics of the constructed rainfall series (NRCV) in Table 8-2 

show that most match CAR reasonably well, it should be noted that this is only one 

possible series of rainfall that could be generated and further investigation is required 

to validate the methodology presented (see discussion in section 8.11). 

 

Table	8-2	-	characteristics	of	the	series	at	the	stages	of	building	the	rainfall	model.	Many	of	
the	statistics	are	well	matched	but	notable	exceptions	are	Standard	deviation	and	
maximum	intensity	indicating	that	for	this	particular	reconstruction	extreme	values	are	
not	well	represented.	

	
Hydrograph	fit	 Mean	 Standard	

deviation	
Proportion	

zero/negative	
Maximum	
Intensity	

Total	
Volume	

Rt2	 Rt2L	 	 	 	 	 	

CAR	 0.904	 0.872	 0.027	 0.129	 0.809	 13.97	 929.2	
DGR	 0.999	 0.991	 0.025	 0.091	 0.269	 9.10	 867.9	
NR	 0.910	 0.839	 0.029	 0.131	 0.559	 9.02	 1024.2	
NRC	 0.899	 0.880	 0.023	 0.077	 0.810	 6.52	 811.4	
NRCV	 0.930	 0.851	 0.027	 0.089	 0.810	 7.46	 929.2	
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The hydrograph fit (Rt
2=0.930) compares favourably with the CAR hydrograph fit 

(Rt
2=0.904) however the forward hydrograph has the same issues as any other – peaks 

where none are observed (due to spatial variability of observed rainfall). The model 

used to fit the hydrograph was the model identified between the observed rainfall 

(CAR) and observed catchment outflow (Qobs). A model fitted uniquely to the new 

rainfall sequence might give a better fit.  Further refinement of the process may be 

required however examination of the hydrographs shown in Figure 8-16 derived from 

the DGR inferred from each rainfall series show the same fit confirming that, although 

the rainfall sequences look very different, the discharge generating characteristics are 

preserved. Once the model has been constructed and verified, it can be used to generate 

further rainfall series as long as flow records exist for the catchment.  

 

DGR extracted from the flow captures the essential flow generating dynamics and, if 

used to generate flow, results in a reduction in uncertainty however it does not ‘look’ 

like rain. Whether this is an issue depends on the purpose of the exercise. If flow is to 

be simulated then only the DGR is required and once the DBM model has been 

established, the rainfall input could be directly filtered to generate DGR. Adding back 

some of the high frequencies present in the broader rainfall spectrum produces a 

synthetic sequence that ‘looks’ more like rainfall, has the essential characteristics of the 

observed rainfall and generates a correct hydrograph. The pseudo-rainfall series at high 

frequencies are generated using random numbers so many sequences fulfilling these 

criteria are possible. Multiple realisations will be examined in the following section. 
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Figure	8-16	–	comparison	of	hydrographs	generated	from	the	DGR	inferred	from	the	CAR	and	DGR	inferred	from	NRCV.	The	fits	are	almost	identical	
confirming	that	although	the	rainfall	pattern	is	different,	the	discharge	generating	characteristics	have	been	preserved.	
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8.9.      Multiple realisations 

The example presented in the previous section is based on one possible realisation of a 

constructed rainfall series. The generation of the high frequency part of the rainfall 

spectrum uses a random number generator so it is very straight forward to generate 

multiple series. An example plot showing 50 possible rainfall realisations is shown in 

Figure 8-17. Enlargements of two sections are shown in Figure 8-18. The top plot in 

Figure 8-18 shows a period where rainfall is actively affecting the flow. Where there is 

significant impact visible, the rainfall traces all tend to follow similar paths (top plot), 

however where there is a long recession and any rainfall is not affecting flow, possibly 

due to wetting-up of the catchment after a dry period, random amounts of rainfall are 

generated. Rainfall can be any amount at this time because it has little impact on the 

flow.  

 

Hydrographs plotted from each of the 50 simulated rainfall series are shown in Figure 

8-19. The hydrographs generally fit well where there is activity in the flow, enabling 

good estimates of the DGR to be made, and less well where there are low flows and 

recessions. The hydrographs fits, ranging from 0.892 to 0.951 are plotted (blue circles) 

in Figure 8-20. Lines indicating the fit of the hydrograph simulated from the observed 

rainfall (red dashes) and the average of the 50 rainfall realisations (solid red line) are 

also shown. Most of the constructed rainfall series generate hydrographs that fit better 

than the hydrograph from observed rainfall indicating that the construction method 

produces a series that could be used to extend or in-fill existing data. However, the 

hydrograph generated from the average of 50 series is a much better fit suggesting that 

using the average of several realisations may generate a more robust series. The 

following section which demonstrates how a gap in a rainfall record might be filled will 

utilise the average constructed rainfall series. 

 

.
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Figure	8-17	-	50	possible	rainfall	realisations	(grey	bars)	compared	with	the	observed	rainfall	series	(red	dotted	bars)	and	the	observed	flow	(blue	line,	
bottom	plot)	and	hydrograph	generated	from	the	mean	of	50	realisations	(light	blue	line	in	bottom	plot).	Rt2	between	observed	flow	and	simulated	
hydrograph	is	0.963.	Enlarged	section	of	the	plot	are	shown	in	Figure	8.18
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Figure	8-18	-	Enlargements	of	two	sections	of	Figure	8-17.	The	top	plot	shows	a	section	where	the	flow	is	active	and	the	bottom	plot	a	long	slow	
recession.	Usually	where	flow	is	active,	all	the	realisations	follow	similar	patterns,	where	there	is	little	activity	and	a	long	recession,	rainfall	is	having	
little	or	no	effect	on	the	flow	so	any	random	amount	of	rainfall	can	be	generated.	The	observed	hydrograph	is	shown	in	blue	and	the		hydrograph	
simulated	from	the	mean	of	the	rainfall	realisations	in	light	blue.	The	Rt2	values	are	0.944	for	the	section	with	active		flow	and	0.810	for	the	recession	plot	
indicating	that	the	process	works	best	where	there	is	active	flow.
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Figure	8-19:	Hydrographs	simulated	from	50	rainfall	realisations	(grey	lines).	The	hydrograph	simulated	from	the	mean	of	the	50	rainfall	realisations	is	
plotted	in	black	and	the	observed	hydrograph	in	blue	
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Figure	8-20:	Rt2	values	for	the	hydrographs	plotted	from	each	rainfall	realisation	(blue	
circles).	Also	shown,	for	comparison,	are	the	Rt2values	for	hydrographs	simulated	from	the	
observed	rainfall	and	the	average	of	the	rainfall	realisations		

8.10.      Gap filling 

One application of this method is in-filling missing data where flow records exist but 

rainfall does not. A model must be fitted to an existing set of rainfall and runoff data - 

preferably from a similar flow regime to the missing section of data though this does 

not guarantee similarity due to potential variation in antecedent conditions. Once a 

model is identified, multiple realisations can be generated and an average series 

calculated. The following procedure outlines the proposed method.  

 

To fill a gap in the rainfall record for which flow data exists (Figure 8-21), fit a model 

to a section of data before (or after) the gap, invert it and generate the DGR. In this 

example, an artificial gap has been created so that the modelled rainfall series can be 

compared directly with the observed rainfall. The calibration period and ‘gap’ are 

labelled on the plot in Figure 8-21. 
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Figure	8-21	–	Observed	rainfall	and	flow	time-series	with	a	gap	in	the	rainfall	(WY1-WY3).	The	observed	rainfall	over	the	gap	is	shown	for	comparison	
with	the	generated	rainfall.
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The process outlined in sections 8.8 and 8.9 is used to build a model that can be used 

to construct rainfall over the gap. A TF model is identified for the calibration rainfall 

series, multiple realisations estimated and an average series derived. Figure 8-22 shows 

hyetograph and hydrograph plots of the observed rainfall and simulated streamflow 

during the calibration period (top plots). The bottom plots show the same plots based 

on modelled rainfall for the same period. This model will be used as the basis for 

constructing a rainfall series to fill the gap. Figure 8-23 is a plot of observed rainfall 

with the gap in-filled by the DGR generated using the flow over the gap and the model 

fitted to the calibration period.  

	

Figure	8-22:	Hydrographs	modelled	from	observed	rainfall	in	the	calibration	period	(top	

plot)	and	from	reconstructed	the	rainfall	model	(bottom	plot)	
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Figure	8-23	–	Gap	in	WY2	(length	10000	time	periods)	in-filled	by	DGR	generated	from	

flow	and	model	fitted	to	calibration	time-series.	The	calibration	series	is	effectively	WY1.	

The rainfall construction model developed from the rainfall and flow in the 

calibration period was used to generate the high frequency part of the rainfall 

spectrum which was combined with the DGR to produce a realistic rainfall sequence 

to fill the gap in the record. Figure 8-24 shows the in-filled rainfall plotted on top of 

the observed rainfall (top plot) for comparison and as it would be if the observed rain 

did not exist (lower plot). The in-fill is less variable than the observed rain in this 

example but is not so different as to be obviously simulated. Hydrographs were 

plotted using the in-fill rainfall and the of the whole record with the gap filled. They 

are shown in Figure 8-25. Note that as the high frequency simulated residuals are 

generated randomly, many sequences, some more acceptable than others, can be 

generated. 
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Figure	8-24	-	Top	plot	shows	the	observed	rainfall	with	the	in-fill	over	plotted.	The	bottom	plot	shows	just	the	in-filled	series.	
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Figure	8-25	-	Hyetograph	of	in-filled	rain	and	the	hydrograph	generated	from	it	over	the	gap	(top	plots)	and	the	hyetograph	and	hydrograph	for	the	full	
record	with	the	gap	filled.
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8.11.      Discussion  

By using a section of record that has observed rainfall and simulating a gap in the record 

it is possible to compare the resulting ‘in-fill’ with the observed sequence directly. 

Figure 8-24 shows ‘before’ and ‘after’ plots of the ‘gap’ in the rainfall.  

Table	8-3	-	Basic	statistics	for	the	whole	record	-	Observed	rainfall,	no	gap	and	observed	
rainfall	with	a	‘gap’	filled.	Also	shown,	for	comparison,	are	the	same	statistics	for	the	
observed	rain	over	the	period	of	the	‘gap’	and	for	the	constructed	rain	used	to	fill	the	gap.	

	 Mean	 Standard	
Deviation	

Lag-1	
ACF	

Proportion	
zeroes	 Maximum	 Total	

Observed	Rain	 0.023	 0.118	 0.768	 0.826	 4.8	 2412	

Observed	rain	with	
filled	gap	 0.024	 0.119	 0.782	 0.826	 4.8	 2541	

Observed	rain	gap	
only	 0.027	 0.112	 0.751	 0.770	 2.2	 272	

Gap	filler	rain	 0.040	 0.122	 0.904	 0.809	 1.5	 401	

 

Table 8-3 shows basic before and after statistics for the whole record and the ‘gap’. 

With respect to the whole record, filling the gap has not significantly changed the 

overall statistics although there has been an increase in the total amount of rainfall 

(approx.. 5%). When looking at the gap only, there are obvious variations in the 

statistics, significantly, the mean has increased significantly from 0.027 to 0.040 (48%), 

the standard deviation has increased and the maximum decreased whilst the lag-1 auto-

correlation coefficient is much greater even though there is a higher proportion of zero 

rain. This suggests that a wet time period is more likely to be followed by a wet time 

period and a dry time period by another dry time period causing rain to ‘clump’ more 

than in the observed record (see Figure 8-26).  

 

The systematic positive bias in the statistics of the gap-filler rain is likely to be due to 

the truncation method used to maintain the proportion of zero rain (c.f. Table 8-3 and 

Figure 8-25). An alternative method of combining the high and low frequency parts of 

the rainfall spectrum using relative rather than absolute magnitudes, has been suggested 

and will be followed up in further work. This adjustment to the method should reduce 

the occurrence of unrealistic negative rainfall and also improve the current under-

estimation of the magnitude of extreme events. The hydrograph over the gap period 
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(top plot in Figure 8-25) shows a reasonable fit to the peaks but over-estimates the 

recessions due to the bias introduced by the truncation process and the ‘less rain more 

often’ rainfall pattern evident over the period. Despite the presence of the bias, the 

overall rainfall statistics are maintained well because the variation is in the high 

frequencies which are filtered out by the catchment dynamics and play little or no part 

in discharge generation. 

Table	8-4	-	Negative	DGR	as	a	percentage	of	total	DGR	at	each	stage	of	the	gap	filling	
routine.	High	values	may	indicate	that	the	calibration	model	is	not	a	good	representation	
of	the	gap	in	the	record.	

	 Negative	DGR		

Observed	record	 20.2%	

Calibration	period	 14.8%	

Gap	in	record	 63.7%	

Gap	filler	 64.6%	

Record	with	gap	filled	 23.3%	

 

Table 8-4 lists the percentage of the DGR that is negative at each stage of the gap filling 

process. A model is fitted to the calibration period then used to fill a gap in the record. 

The high percentage of negative DGR may suggest that the model fitted to the 

calibration period is not a good representation the processes operating in the gap period. 

This may indicate that a more representative calibration period should be chosen.  

 

The method presented here is a first attempt at using a combined spectral decomposition 

approach to construct a rainfall sequence from the low frequency Discharge Generating 

Rainfall (Kretzschmar et al, 2014, 2015, 2016) and the high frequency residual 

structure. In order to build a model that allows a rainfall sequence to be constructed by 

combining low-frequency DGR with high frequency simulated residuals, certain 

assumptions must be made when comparing the calibration period with the simulation 

period (gap in a record or record extension): 

1. The catchment dynamics model used to generate the DGR in the calibration 

period is also representative in the simulation period 

2. The distribution of the residual series must be the same in both periods 

3. The auto-correlation structure does not change 

4. The proportion of no-rainfall time periods is the same in both periods 
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5. The proportion of rainfall converted into flow (Runoff Coefficient) is constant 

between periods 

 

Estimation of DGR is based on the best fit CT transfer function model and is dependent 

on the time-series used for calibration. It is the only model available but may not apply 

to the ‘gap’ or to the rest of the record. The model’s ability to characterise the rainfall-

runoff dynamics will depend on the choice of calibration period (whether it is 

representative of the whole record and of the period of the gap) and the stationarity of 

the time-series. If an in-fill series is not acceptable, a different section of record, more 

representative of the gap period, could be used for calibration. The distribution of 

residuals is also dependent on the DGR and will be affected by the choice of initial 

model.  

 

Sampling from the residual distribution is by random selection from the residual PDF 

and assumes a representative PDF has been estimated. As sampling is carried out 

randomly, multiple residual series resulting in multiple rainfall realisations can be 

generated as demonstrated in section 8.9. If one realisation is not acceptable, then 

another can be tried or an average taken of many realisations. Where flow is active, 

rainfall realisations will all show similar patterns however where there is little flow 

activity, the rainfall could show any pattern as it is not having an effect on the flow and 

patterns will vary from realization to realization. This could account for the patterns of 

hydrograph fit shown in figure 8-20. The exact high frequency patterns that are filtered 

off by the catchment dynamics are not important, as long as they generate the same 

discharge. The auto-correlation structure of the residual series is applied to the 

randomly generated uncorrelated series. The resulting set of correlated residuals 

assumes a stationary correlation structure. 

 

The proportion of no-rain time periods is maintained between the calibration and model 

periods by applying a threshold value below which all rainfall is set to zero. This 

eliminates any negative periods resulting from the combination of DGR and the 

simulated residual series but introduces a bias. This threshold may be adjusted to ensure 

the proportion of no-rain periods remains constant. The application of the threshold has 

implications for the rainfall total which must be rescaled to match the total rain in the 

calibration period. An alternative combination method which may reduce the 
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occurrence of negative values will be explored in future work. When using the model 

to extend a record or fill a gap, the observed rainfall total would not be available so the 

Runoff Coefficient (Equation 8-7) must be used to adjust the rainfall volume. It is 

assumed that the proportion of rain converted to flow remains constant from one period 

to another. 

 

However, taking these assumptions into account, the method has promise. The rainfall 

sequence used to fill the gap in the above example fits into the whole record without 

changing the overall statistics significantly (Table 8-3) and generates a reasonable 

approximation to the observed hydrograph (Figure 8-19) with an acceptable Rt
2 value 

of 0.871. The method could be used not just to fill gaps in a rainfall record but also to 

extend a record where flow records exist and rainfall records do not. 

8.12.      Conclusions  

This paper aimed to show that a realistic rainfall sequence could be constructed by 

using a spectral decomposition approach. To achieve this, Reverse Hydrology was used 

to extract the low frequency Discharge Generating Rainfall (DGR) from the broad 

frequency rainfall spectrum. A continuous time transfer function relating CAR to 

catchment outflow, inverted using the method described by Kretzschmar et al. (2014), 

acts as a low-pass filter in the same way as the catchment thus the resulting DGR 

corresponds to the low frequency part of the rainfall spectrum. The high frequency part, 

driven by climate, is not involved in discharge generation and can be disregarded when 

generating a streamflow hydrograph. However, when attempting to construct a realistic 

rainfall sequence, these frequencies must be included. The method presented here aims 

to construct a realistic rainfall series from a flow time series that should retain the 

correlation structure of the residual series and generates the correct hydrograph. 

 
To use the spectral decomposition approach to generate a long rainfall sequence, a flow 

record of the required length beyond the calibration regime is required. The 

assumptions stated in Section 8.11 mean that the method should be used with care. The 

methodology shown is a first attempt at building a rainfall series by this method. Results 

are promising however the simulated sequence under-estimates the extremes and 

contains a positive bias as a result of the method resulting in over-estimation of low 
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flows (echoing the work of Simolo et al, 2010). Further work is required to refine the 

method and address the issue of negative rainfall. 
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Figure	8-26	-	Hyetograph	of	the	observed	rainfall	over	the	'gap'	and	the	simulated	series	used	to	in-fill.	Similar	patterns	of	rainfall	can	be	observed	
although	the	spread	of	the	simulated	rain	is	not	as	great	as	the	observed
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Chapter	9 Summary	and	conclusions	

9.1 Summary of key findings  

A novel method for inversion of CT transfer function models (objective 1.i) utilising 

regularised derivatives (RegDer) was developed and presented (Kretzschmar et al., 

2014). The method was compared with the direct inverse (InvTF) and tested on two 

catchments with very different rainfall regimes and flow pathways (objective 1.ii). Both 

methods produced synthetic rainfall time-series that were able to simulate almost all of 

the dynamics in the streamflow time-series for both catchments, assessed by comparing 

hydrographs simulated using the inferred rainfall with the observed hydrograph and a 

range of metrics (chapter 4). The filtering effect of the RegDer method, which mirrors 

the low-pass spatio-temporal filtering action of catchment storage, generates a low 

frequency inferred rainfall sequence without the high-frequency noise generated by 

other methods such as the InvTF method (objective 1.iii). This high frequency noise is 

an artefact of some methods, due to direct differencing of the discharge series, and 

would cause it to fail the criteria for DBM modelling. It does not contribute to the 

discharge and, thus, is not identifiable so there exist an infinite number of rainfall 

sequences able to generate the same discharge (objectives 1.iii and 2.ii). The smoothing 

introduced by the new RegDer method, however, does not mask the dominant dynamics 

of the catchment (chapter 5, Kretzschmar et al., 2015).  

 

The alternative method amplifies high frequencies present in the rainfall record that are 

filtered out by the regularisation process in the RegDer method. Critically, the slightly 

smoothed rainfall series produced by RegDer is capable of simulating observed 

streamflow better than the original rainfall data (objective 1.iii). This highlights that 

some high frequency dynamics in rainfall may not be pertinent for streamflow 

generation, even for some flashy tropical catchments. The resolution of the derived 

rainfall was estimated in the time domain by aggregation and in the frequency domain 

by comparing amplitude spectra (objective 1.iii). The degree of smoothing produced by 

the RegDer method is dependent on the dominant dynamic mode and hence the degree 

of storage in the catchment (objective 1.iv). The greater the storage (for example, 

presence of an aquifer) the more the RegDer method smooths the rainfall. Resolution 
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is also affected by the rainfall regime, for example, whether convective or frontal rain 

is dominant (Chappell et al., 2017b), and by how well the original model fits (chapter 

5).   

 

Chapter 6 introduces the effects of spatial variation (objective 1.iv). A rainfall field 

varies in both space and time and a catchment integrates spatially as well as temporally 

as rainfall is converted into flow. A single rain gauge or a sparse network of gauges is 

often used to sample the highly variable rainfall field leading to uncertainties in the 

estimation of the true catchment rainfall (objective 2.i). Use of data from a single rain 

gauge to derive the RegDer rainfall series usually produces a better model of 

streamflow than models based on observations from a dense network of gauges 

integrated with the Thiessen Polygon method. 

 

Models based on observed rainfall from an individual rain gauge typically provided 

good simulations in WY1, but often poor in WY3. It is likely that changes in the 

dominance of the hydrometric regime between years made individual rain gauge 

records sensitive to these changes (objectives 1.iv, 2.i). This sensitivity was reduced by 

using the RegDer rainfall from individual gauges (chapter 7). It is clear from the maps 

in  Figure 7-12 that, although the total rain varies from year to year, the average pattern 

is similar with increased rainfall on the higher ground and lowest near the catchment 

outlet. This average pattern masks the detail displayed in the sample event maps 

presented in Appendix C. Table C-1 shows how the dominance of a gauge varies on an 

event basis. The rainfall total demonstrates the importance of a gauge with respect to 

the estimation of CAR whilst the fit of the model indicates its importance as a driver of 

catchment discharge for that time period (objective 2.i). 

 

In Chapter 8, the RegDer method was utilised to in-fill gaps in the rainfall record 

(objective 2.ii). For periods with observed rainfall and streamflow, the RegDer series 

was derived. The RegDer parameters were then used to derive RegDer rainfall estimates 

for the periods lacking rainfall observations (objective 2.iii). By utilizing the statistical 

properties of the RegDer modelling for periods with rainfall and streamflow 

observations, the hydrologically insignificant, high-frequency component of rainfall 

(normally removed by RegDer) could be estimated and combined with the RegDer 

series for the period with no rainfall observations. This gives records with similar 
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spectral properties to the observed rainfall where records are present (objectives 2.ii; 

2.iii). The synthetic data created for the period with no rainfall observations was then 

merged with those from periods with rainfall observations to give a complete record. 

9.2 Conclusions  

The novel method of inferring rainfall from flow using regularisation, presented here, 

extracts the low frequency Discharge Generating Rainfall from the broad-spectrum 

rainfall that encapsulates the essential dynamics required to generate streamflow. The 

higher frequencies are not required for hydrograph generation and can be ignored. 

Discharge Generating Rainfall (inferred from streamflow using the regularisation 

process) has a lower temporal resolution than the measured rainfall but this is not a 

problem as long as the resolution is fine enough to capture the catchment dynamics. 

The reduction in the resolution of the rainfall is the price paid for the numerical stability 

of the regularisation process and is a function of the catchment dynamics.  

 

A combined form of spectral decomposition with a causal dynamics model was 

proposed as a method for generating a sequence of rainfall from the Discharge 

Generating Rainfall that could be used for extending existing records where streamflow 

exists but rainfall does not (subject to a short section of record being available to allow 

a model to be fitted) or for in-filling gaps in rainfall records. The method presented 

shows promise but is very much a ‘work in progress’. 

 

The conclusions drawn as related to the objectives of the study are: 

1.i Develop a new method for inferring rainfall from sub-hourly streamflow data 

based on a novel regularisation technique 

• A new technique for inferring sub-hourly rainfall from streamflow was 

developed and presented (Kretzschmar et al., 2014; chapter 4) using robust 

identification techniques to fit a parsimonious continuous-time transfer 

function model according to DBM philosophy. Both the new RegDer 

method and the existing InvTF method were able to capture the dynamics 

contained in the streamflow series (chapter 4). 
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1.ii Evaluate the regularisation technique by comparison with existing inversion 

methods utilising data from two catchments with contrasting rainfall 

characteristics and flow-paths using a range of metrics 

• The new RegDer method inferred a series with much less high frequency 

noise than the InvTF method especially considering the tropical basin with 

convective rainfall. The high frequency artefacts present in the InvTF series 

would cause it to fail DBM modelling criteria as it is a product of the method 

and has no physical explanation (chapter 4). 

• A range of evaluation metrics, including residual analysis, was able to 

confirm that both the methods (RegDer and InvTF) produced similar results 

for the temperate catchment dominated by frontal rain (Blind Beck) whilst 

RegDer is better able to reproduce the charcteristics of the convective, 

tropical Baru catchment. (chapter 4). 

1.iii Assess the ability of the regularisation technique to capture the dominant 

modes of the rainfall-runoff behaviour using methods of temporal aggregation 

and spectral analysis 

• The smoothing of the RegDer method can be controlled by adjusting the 

NVR (Noise Variance Ratio) parameters of the inverse model. Applying 

smoothing to the InvTF output would not achieve the same result. (chapter 

4). 

• The integrating effect of the catchment resulting in a damped hydrograph 

can be seen in both catchments. This was expected for Blind Beck given the 

presence of deep pathways (aquifers) but not expected for Baru which has 

shallow pathways. This result highlights the role of even shallow pathways 

in damping intense rainfall (chapter 4). 

1.iv Assess the ability of the regularisation technique to capture the spatio-temporal 

structure of catchment rainfall 

• The smoothing introduced by the RegDer method is on a smaller temporal 

scale than the dominant catchment dynamics suggesting that the detailed 

temporal rainfall distribution may not be important when generating 

streamflow (chapter 4, chapter 5). 
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• The smoothed inferred rainfall sequence is able to generate the streamflow 

output as well as if not better than when the observed rainfall is used as 

model input (chapter 5). 

• Temporal aggregation results in lower peaks as the same rainfall is spread 

over a longer period effectively smoothing the record. The estimated time 

resolution of the inferred series for both catchments assessed by aggregation 

and spectral analysis is within the Nyquist safe sampling limits and below 

the critical catchment time constants indicating that, even though some 

temporal resolution has been lost as a trade-off for numerical stability, the 

dominant rainfall-streamflow dynamics are being captured. (chapter 5). 

• Increase in sampling time scale (by aggregation) up to periods of one day 

has an impact on the distribution of key characteristics of the rainfall field. 

Aggregation in the form of a moving total is a form of low-pass filter in the 

same way as regularisation so the loss of resolution due to the RegDer 

inversion process is also likely to have an effect on the distributions of 

statistics (chapter 7). 

 

2.i Quantify local rainfall records that are misinformative for flood modelling 

• The geographical proximity of rain gauges in the Brue catchment mean they 

are highly correlated so the network was reduced from 49 gauges to 23. The 

reduced network provides estimates of catchment rainfall within 0.4% of the 

full network when the Thiessen Polygon averaging method is used. The 

density of the gauge network means that elevation did not need to be 

explicitly included however its influence is expected to change from event 

to event (chapter 6, chapter 7). 

• Examination of the rainfall field in space and time shows that it may be 

raining hard in one place in the catchment whilst it is dry in another. This 

has implications for the calculation of catchment average rainfall and for 

assessing which areas of the catchment are driving discharge generation at 

a given time. The fit of a model, relating rainfall measured at a gauge to 

catchment outflow, provides a measure of the quality of the information  

being provided by a particular rainfall series with regard to flow generation 

as if only that gauge were available to the modeller (chapter 6, chapter 7). 
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• Rainfall at a single gauge may only represent the processes active in a 

limited area of the catchment. Reverse Hydrology utilises the information 

present in the catchment outflow – integrated over the whole catchment – 

and is therefore likely to be more representative of the whole catchment. 

The inferred rainfall estimated in this way is termed Discharge Generating 

Rainfall because it is the part of the rainfall that drives discharge generation. 

(chapter 7). 

• The fit of a model between rainfall at a single gauge and catchment outflow 

varies across the catchment indicating that the distribution of rainfall (and 

catchment characteristics) is important when generating streamflow 

hydrographs. Rainfall at a single gauge only provides partial information on 

the rainfall pattern however the streamflow is a result of all the rainfall and 

contains information about the whole catchment. Inferring rainfall from 

streamflow (DGR) may mean that further information about the spatio-

temporal distribution of rainfall may not be required and uncertainty in the 

simulated hydrograph may be reduced (chapter 7). 

• Rainfall from all rain gauges in a network should be included when 

calculating an estimate of catchment average rainfall because it is just that 

– an average depth of rainfall over the catchment – however this does not 

mean that rainfall at all gauges is driving the streamflow generation process 

as identified by the fit of the models. Any gauge identified as consistently 

under-performing may be inappropriately sited (chapter 7). 

2.ii Quantify the spectral components of the rainfall signal responsible for flood 

generation 

• The RegDer method of inversion infers a rainfall sequence from the 

streamflow. This sequence was originally thought to be an estimate of 

catchment average rainfall but has since been recognised to be the rainfall 

responsible for generating discharge (DGR), the low-frequency part of the 

rainfall signal. The high frequency part of the signal plays little or no part in 

the hydrograph generation and can be ignored for this purpose (chapter 7). 

• Negative DGR can be explained in terms of catchment behaviour and 

rainfall spatial distribution. It often occurs during a recession when flow is 

driven by the catchment rather than the rainfall. Small negative spikes may 
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also occur when the inversion process compensates because it has stopped 

raining in one part of the catchment, but the flow is still increasing. These 

negative periods of rainfall are a product of the inversion. The proportion of 

negative DGR varies over time depending on catchment conditions and the 

rainfall distribution. 

• Using inferred rainfall alone generates a hydrograph close to the observed 

hydrograph however, despite the apparent circularity, the process is not 

perfect, for example, the regularised derivative method is only an 

approximation, model identification is not perfect and the information 

content of the rainfall and streamflow data may not be complete (chapter 7).  

2.iii Develop a new technique for in-filling and extending rainfall records based on 

a combination of regularisation and spectral decomposition 

DGR generating rainfall has a lower resolution than the observed rainfall. It carries all 

the information required to generate a streamflow hydrogaph very similar to the 

observed hydrograph. It does not look like real rainfall. In order to produce a realistic 

rainfall series which generates the correct hydrograph, the high-frequency part of the 

spectrum, simulated from the observed residuals, must be combined with the low-

frequency DGR. This will not affect the capability of the (synthetic) rainfall series to 

generate a realistic hydrograph because the high frequencies play little or no part in 

flow generation. The resulting series should look realistic, have a similar residual 

structure to the original series and generate the correct hydrograph (chapter 8) The 

resulting series should look realistic, have a similar residual structure to the original 

series and generate the correct hydrograph (Chapter 8) however the current method 

introduces a bias into the simulated rainfall series due to the added high frequency 

component which mimics the correlation structure and distribution of actual residuals 

(where CAR is available). 

9.3 Suggestions for further work 

• The RegDer method has been tested against one other method of inverting a 

(DT) transfer function. Other methods exist (c.f. literature referenced in 

chapter 4). A further systems analysis based method that could be followed up 

is the feedback method suggested by Young and Sumislawska (2012). All 

testing has been carried out on relatively small test catchments so it is 
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suggested that this be expanded to larger catchments with a wide range of 

characteristics and rainfall regimes to see if the same conclusions hold true at 

all scales. Including catchments where snowmelt is a significant factor would 

link with the work of Hernegger et al., (2014) on alpine catchments. 

 

• Refinement of the rainfall generation model to improve its streamflow 

generation capabilities and reduce the tendency to introduce a bias. 

 

• Significant assumptions (listed in section 8.11) are required to use the gap-

filling routine based on spectral decomposition and reverse hydrology. 

Reducing and refining these assumptions may result in a more robust 

generator better able to reproduce the variability in the rainfall, perhaps by 

using a different base distribution to select from the residual distribution (for 

example in order to capture the tails of the distribution better). 

 

• There is scope to follow up on the method for assessing the 

‘representativeness’ of a gauge by extending to assess the performance of 

pairs (or more) sets of gauges. This methodology could also be used to refine 

gauge networks and determine good sites for locating rain gauges dependent 

on the prevailing weather conditions. Should different gauges be used 

dependent on the conditions, perhaps by relating to the Lamb weather types?  

 

• The Thiessen Polygon method used here weights rain gauge contribution to 

the average by the area they are assumed to represent. This area is geometric 

only and has no relationship with the underlying catchment characteristics (or 

weather conditions) that drive discharge generation. There is scope for 

developing a new method of catchment average calculation based on which 

gauges drive the discharge (Sugawara (1992) suggests that gauges should be 

weighted by meteorological conditions) and their underlying characteristics. 

 

• Spectral analysis could be used to develop a measure of information content, 

possibly entropy based, that could be used to aid in model assessment and 

selection. 
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• The reduction in resolution due to the RegDer method could be investigated as 

a down-scaling technique for relating Regional Climate Models to local 

conditions. The reduced resolution sequences, may also be easier to transfer 

from one location to another with implications for prediction in ungauged basins 

(PUB).  
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