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Abstract

We study a variety of questions related to the Scott modules S(G,Q) associated to
a finite group G, where Q denotes a p-subgroup of G for a given prime p. The main
concept we study is that of a p-extendible group, which we define to be a group in
which the dimension of S(G,Q) is minimal for all p-subgroups Q of G. We study those
Frobenius groups which are p-extendible and complete a classification of the local
subgroups of the sporadic groups which are p-extendible. Furthermore, we study Scott
modules associated to finite classical groups which admit (B,N)-pairs that are split
at characteristic p. The thesis concludes with some considerations about the relative
syzygy Ω2

P/Q(k) for a certain class of p-groups P .





Table of contents

1 Preliminaries 7
1.1 Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Relative Projectivity . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Relatively Projective Resolutions . . . . . . . . . . . . . . . . . 16
1.1.4 The Green Correspondence . . . . . . . . . . . . . . . . . . . . 19
1.1.5 Permutation Modules . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Linear and Classical Groups . . . . . . . . . . . . . . . . . . . . 27
1.2.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.2.3 p-Nilpotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Scott Modules 37
2.1 Existence and Basic Properties . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Behaviour Under Induction and Restriction . . . . . . . . . . . . . . . . 44
2.3 Bounding dim S(G,Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 Scott Modules in the Normal Case . . . . . . . . . . . . . . . . . . . . 58

3 Frobenius Groups and p-Extendibility 65
3.1 Frobenius Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Solvable Complements . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.2 Nonsolvable Complements . . . . . . . . . . . . . . . . . . . . . 69

3.2 p-Extendibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 The Focal Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 p-Local Subgroups in the Sporadic Groups . . . . . . . . . . . . . . . . 79



xii Table of contents

3.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.3 Mathieu Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.4 Leech Lattice Groups . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.5 Pariahs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.4.6 Monster Sections . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Classical Groups 125
4.1 (B,N)-Pair Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 The Subgroup B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.1 GLn(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2.2 Other Classical Groups . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 Parabolic Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Relatively Projective Covers 141
5.1 Basic Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2 Bounding dim Ω2

P/Q(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Appendix A Loose Ends 151
A.1 MAGMA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.1.1 The Case (Fi′24, 3D) . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 Subgroups of p1+2

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.3 Subgroups of Sp4(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

References 171



Introduction

This thesis is a contribution to the study of Scott modules, a class of modules which can
be traced back to work conducted by Alperin, Burry and Scott from the early 1980s;
the first explicit mention of these objects in the literature came in 1982, in Burry’s
paper [6]. If G is a finite group and k is an algebraically closed field of characteristic p,
then a Scott kG-module is a certain indecomposable p-permutation kG-module which
contains a submodule isomorphic to the trivial kG-module in its socle. This provides
one natural perspective to adopt on Scott modules, but others exist. For instance, we
may also think of a Scott kG-module as being a certain trivial source kG-module, or
as a relatively projective cover of the trivial kG-module; the clearest unifying feature
behind these ideas is the requirement that the trivial module be contained in the
module as a submodule.

Since their early introduction in the 1980s, Scott modules have featured in the
literature, albeit in no consistent pattern. Often, results concerning Scott modules
seem to draw inspiration from seemingly disconnected areas of mathematics. Recent
examples of this phenomenon include [36], where a method is given to calculate Scott
modules in the case where G has a cyclic Sylow p-subgroup, using the Brauer tree of
the principal block, and [25] and [20], where it is shown that certain Scott modules
remain indecomposable under the Brauer construction. At present, there is no easy
method for constructing a given Scott module for an arbitrary finite group and thus
plenty of work remains to be done in this area.

If M is a Scott kG-module, then M has vertex Q for a p-subgroup Q ≤ G, and an
elementary observation is that the permutation kP -module k[P/Q] is always a direct
summand of M↓P whenever P is a Sylow p-subgroup of G containing Q. The question
therefore naturally arises: when is M↓P ∼= k[P/Q], i.e., when is M an extension of
k[P/Q]? In fact, one can ask for a stronger property: given a finite group G, when is
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it the case that every Scott kG-module M satisfies the above extension property, i.e.,
when is it the case that every Scott kG-module M satisfies M↓P ∼= k[P/Q], where Q
is a vertex of M and P is a Sylow p-subgroup of G containing Q? The contents of
this thesis mainly arise from an attempt to study and analyse both of these questions.
We also concern ourselves with some special cases where Scott modules M can be
described more concretely; specifically, we derive a result which completely describes
Scott modules in the case where P is normal in G.

Any given Scott module M has vertex Q for a p-subgroup Q ≤ G. Moreover, given
any p-subgroup Q contained in a Sylow p-subgroup P of G, there exists a unique
Scott module with this vertex, which is denoted by S(G,Q). Therefore, in order to
understand the full range of possible Scott modules that a given finite group G can
have, it is necessary to understand the full range of conjugacy classes of p-groups we
can have within G. At present, the literature is light on answering this question for
finite groups; instead, much more emphasis has been placed on studying the conjugacy
classes of p-elements in finite groups. In Chapter 4, we consider the Borel subgroups of
some classical groups of small degree and completely describe all of the Scott modules
that they can have; part of our efforts involve classifying the conjugacy classes of
p-subgroups within these Borel subgroups . Our methods, however, fall far short of
providing a general answer to this problem for an arbitrary finite group G.

Main Results

We have mentioned already that there exists no known method which reliably constructs
a given Scott module for an arbitrary finite group. In Section 2.4, we derive some
theory which helps develop a first step towards answering this question. The following
is Theorem 2.4.2 of the thesis.

Theorem. Suppose that G is a finite group and Q ≤ P ∈ Sylp(G) with P ◁ G. Then:

(i) S(PNG(Q), Q)↓P ∼= k[P/Q];

(ii) S(PNG(Q), Q)↑G is indecomposable and hence S(G,Q) ∼= S(PNG(Q), Q)↑G.

In particular,
dim S(G,Q) = |G : P |

|NG(Q)|p′
· |P : Q|.
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In fact, we have S(PNG(Q), Q) ∼= k[PNG(Q)/QR], where R is some subgroup of
PNG(Q) whose order equals |PNG(Q) : P |. Thus, in the case where P is a normal
subgroup of G, S(G,Q) may be calculated by inducing a known k[PNG(Q)]-module
from PNG(Q) to G and it follows that quite a large amount is known about the
representation theory of S(G,Q) in this case. In the more general context, where P is
not normal in G, the above provides full insight into the properties of the k[NG(P )]-
module S(NG(P ), Q), but it is difficult to see how useful it is in understanding the full
structure of the kG-module S(G,Q).

Central to the thesis is the concept of a finite group G being p-extendible for a given
prime p. We say that a finite group G is p-extendible if for all P ∈ Sylp(G) and Q ≤ P ,
we have S(G,Q)↓P ∼= k[P/Q]. This definition is new and the question that motivates
it has not been explored at present in the literature. It is therefore important to know
that the definition is not completely trivial; that is to say, that there exist sufficiently
“interesting” groups G which are p-extendible. As a starting point, we know that the
p-nilpotent groups are themselves p-extendible, a fact which is derived in Proposition
2.3.7. Indeed, in this case, S(G,Q) is simply equal to the inflation of k[P/Q] along
a normal complement for P in G; thus, S(G,Q) is equal to an obvious extension of
k[P/Q], which is not especially interesting. The following result, which is Theorem
3.1.6 of the thesis, gives a richer class of examples to consider.

Theorem. Suppose that G = K ⋊H is a Frobenius group with Frobenius kernel K
and Frobenius complement H and p ∈ π(H). Assume furthermore that H is solvable
and any of the following are true:

(i) p > 3;

(ii) p = 3 and O2(H) ̸∼= Q8;

(iii) p = 2 and P is cyclic.

Then G is p-extendible.

We note that an analogous statement exists for the case where G = K ⋊H is a
Frobenius group with a nonsolvable Frobenius complement H, however, the details are
messier than the case where H is solvable; the reader is directed towards Section 3.1.2
for a full account of the nonsolvable case. We see therefore that the Frobenius groups
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justify the study of our new definition, since their p-extendibility for the primes under
consideration is a rather surprising fact, in comparision to the p-nilpotent groups.

Layout of Thesis

We indicate here how the thesis is laid out, and what the essential contents of each
chapter are.

• Chapter 1 starts by covering all of the necessary preliminaries in order to un-
derstand the bulk of the thesis; we introduce here basic notions tied into the
theories of modular representations and finite groups.

• In Chapter 2, we present a detailed survey into the well-known properties of
Scott modules, and include a proof of their existence, which is accredited to
Alperin and Scott. We define a p-extendible group to be a finite group G in which
S(G,Q)↓P ∼= k[P/Q] for all Sylow p-subgroups P of G and p-subgroups Q of
P . We also present some evidence that this definition is not completely trivial;
in particular, we show that p-nilpotent groups satisfy this property, and if p is
odd, then every abelian p-group is a Sylow p-subgroup of some finite p-extendible
group which is not p-nilpotent. We finish the chapter with a new result, which
describes the dimension of a given Scott module in the case where G has a normal
Sylow p-subgroup P in terms of the order of the local subgroup NG(Q).

• In Chapter 3, we start by supplementing our collection of examples of finite groups
which are p-extendible, by studying the Frobenius complements in Frobenius
groups. We then follow this up by studying the necessary structure that a
p-extendible group must satisfy, and we demonstrate that the notions of being
p-nilpotent and p-extendible are equivalent for p-solvable groups G when p is the
smallest prime divisor of |G|. The second half of this chapter studies the p-local
subgroups of the 26 sporadic groups and answers the following question: if N is
a p-local subgroup of a sporadic group and q is a prime divisor of N , when is N
q-extendible?

• The main subject in Chapter 4 is the topic of classical groups; using the theory
of (B,N)-pairs, we study the Scott modules associated to the subgroup B in a
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(B,N)-pair which defines a classical group and classify the possible dimensions
for Scott modules in some cases of small degree. We also briefly cover Scott
modules associated to the parabolic subgroups.

• In Chapter 5, we break from the main pattern of studying Scott modules, to
look at relatively projective covers in more generality. The main topic of this
chapter is a look into the properties of the second relative syzygy and a result
which gives an upper bound on its dimension.

• Finally, the thesis includes an appendix, which contains MAGMA code that
helps to understand the analysis involving sporadic groups in Chapter 3, and
also contains any computations that we deem to distract from the flow of the
main text.





Chapter 1

Preliminaries

We start with a chapter drawing together the background material we shall need
concerning kG-modules and finite groups. Most of the material covered in this chapter
is standard, though we include references for less well-known results. We shall take [1]
as a standard reference for the topic of representation theory; [17] and [21] will be our
main references for group theory.

1.1 Representation Theory

This thesis is ultimately an account of results relating to the modular representation
theory of finite groups. We shall adopt a module-theoretic perspective on this theory;
thus, the major object of study in this thesis will be the following.

Definition 1.1.1. Let G be a group and k be a field. A (left) kG-module M is a
vector space over k together with an action of the group G on M such that:

(i) g(m+ n) = gm+ gn for all g ∈ G and m,n ∈ M;

(ii) g(λm) = λ(gm) for all g ∈ G, m ∈ M and λ ∈ k;

(iii) g(hm) = (gh)m for all g, h ∈ G and m ∈ M.

Thus, a kG-module M is a vector space equipped with an action of the group G

such that each g ∈ G induces a linear transformation of M and this correspondence is
a homomorphism between the groups G and GL(M); the data of a kG-module can
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therefore be encoded in a homomorphism ρ : G → GL(M), and of course, the reverse
is true as well.

We now put in place some of the standard notation we shall use throughout the
thesis in relation to kG-modules. We fix a finite group G and an algebraically closed
field k and assume that k has positive characteristic p; we assume furthermore that
any groups we work with have order divisible by p, unless we state otherwise. The
dimension of a kG-module M is equal to the dimension of the underlying k-vector
space, and we denote this quantity by dim M. We assume at all times in this thesis
that dim M is finite; the category of finite-dimensional kG-modules is denoted by
mod kG. By a k-basis of M, we mean a basis of the underlying vector space.

If U ,V ≤ M are submodules of M, then we write M = U ⊕ V if U + V = M and
U ∩ V = {0}, and we say that M is a direct sum of its submodules U and V . We say
that a nonzero kG-module M is indecomposable if whenever M = U ⊕ V we have
either U = {0} or V = {0} and we say that M is simple if M has no proper, nontrivial
submodules. Thus simple modules are clearly indecomposable, but indecomposable
modules need not be simple. If M is a kG-module and n ∈ N, then we set

Mn := M ⊕ M ⊕ · · · ⊕ M︸ ︷︷ ︸
n times

.

The symbol M ⊗ N denotes the tensor product of the kG-modules M and N ; thus,
the underlying vector space of M ⊗ N is the tensor product of the vector spaces M
and N , and we define a kG-module structure by setting g(m⊗ n) = gm⊗ gn for all
g ∈ G, m ∈ M and n ∈ N .

If U1, . . . ,Us ≤ M are indecomposable submodules of M, then we write

M =
s⊕
i=1

Ui

if every vector m ∈ M can be written uniquely as m = u1 + · · · + us for some
ui ∈ Ui, 1 ≤ i ≤ s, and we refer to the above expression as an indecomposable
decomposition of the kG-module M. The Krull-Schmidt theorem [1, Theorem 4.3]
states that if

M =
s⊕
i=1

Ui =
t⊕

j=1
Vj
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are two indecomposable decompositions for the kG-module M, then s = t and, upon
rearranging the submodules if necessary, we have Ui ∼= Vi for 1 ≤ i ≤ s. Thus, an
indecomposable decomposition for a kG-module is essentially unique and every finite-
dimensional kG-module has such an indecomposable decomposition, so the classification
of kG-modules can be reduced to the classification of indecomposable kG-modules. If
U ≤ M, we say that U is a direct summand of M if there exists a submodule X ≤ M
such that M = U ⊕ X ; we refer to the module X as a direct sum complement for
U in M.

For a given kG-module M, we denote by soc(M) the submodule of M generated
by the simple submodules of M and refer to this as the socle of M; we denote the
intersection of all the maximal submodules of M by rad(M) and call this the radical
of M. The trivial kG-module is denoted by kG.

If M is a kG-module and H ≤ G, then we denote by M↓H the restriction of
M to H; thus M↓H is a kH-module with the same underlying vector space as M
and with a kH-module structure defined in terms of how H acts on M. If N is a
kH-module, we say that N can be extended to G if there exists a kG-module M
such that M↓H ∼= N , and we refer to the module M as an extension of N .

We denote by HomkG(M,N ) the set of kG-module homomorphisms between M
and N , and Homk(M,N ) the set of linear transformations between M and N . If
φ : M → N is a kG-module homomorphism, then φH : M↓H → N ↓H denotes the
restriction of φ to H and we say that φ is H-split if there exists a kH-homomorphism
γ : N ↓H → M↓H such that φHγ = id. If M is a kG-module, then M∗ denotes the
dual kG-module: thus M∗ = Homk(M, k) and for each g ∈ G and φ ∈ M∗, we
define gφ : M → k by (gφ)(m) = φ(g−1m) for all m ∈ M.

If N ◁ G, then InfGG/N : mod k[G/N ] → mod kG denotes the inflation map; thus,
if M is a k[G/N ]-module, then InfGG/N(M) denotes the kG-module with the same
underlying vector space as M and a G-action given by

g ·m︸ ︷︷ ︸
in InfG

G/N
(M)

= [g] ·m︸ ︷︷ ︸
in M

for all g ∈ G and m ∈ M, where [g] ∈ G/N denotes the coset of N in G containing
g. If φ : M → N is a k[G/N ]-module homomorphism, then InfGG/N(φ) denotes the
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kG-module homomorphism between InfGG/N(M) and InfGG/N(N ) induced by inflation.
We shall abbreviate InfGG/N to just Inf when the context is clear.

If m1, . . . ,mr ∈ M, then ⟨m1, . . . ,mr⟩ denotes the kG-submodule of M generated
by the vectors m1, . . . ,mr.

We now briefly cover some of the main results and concepts from the field of modular
representation theory that we shall find useful in this thesis. The most important
concept we will need to cover first is that of relative projectivity, which serves as a
generalisation of projectivity. Recall that we may regard the group algebra

kG =
∑
g∈G

αgg : αg ∈ k


as a kG-module with a G-action given by

h ·

∑
g∈G

αgg

 =
∑
g∈G

αg(hg)

for all h ∈ G and αg ∈ k; this module is known as the regular kG-module. A free
kG-module is a kG-module isomorphic to (kG)n for some n ∈ N.

Definition 1.1.2. [1, Theorem 5.2] We say that a kG-module P is projective if P
satisfies any of the following equivalent properties:

(i) P is a direct summand of a free kG-module;

(ii) if φ : M → P is a surjective homomorphism of kG-modules, then φ is a G-split
homomorphism;

(iii) if φ : M → N is a surjective kG-homomorphism and ψ : P → N is a kG-
homomorphism, then there exists a kG-homomorphism ρ : P → M such that
φρ = ψ.

It follows from the Krull-Schmidt theorem that if P is an indecomposable projective
module, P is a direct summand of the regular kG-module; such modules are known as
PIMs (short for projective indecomposable modules or principal indecompos-
able modules). It is well-known (see e.g., [1, Theorems 5.3 and 6.6]) that if P is a
PIM, then soc(P) ∼= S for some simple kG-module S and P/ rad(P) ∼= S; furthermore,
for each simple kG-module S there exists precisely one PIM P with soc(P) ∼= S.
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1.1.1 Induction

The notion of relative projectivity generalises projectivity, but in order to understand
it, we need to cover the process of induction. We repeat here for the convenience of
the reader the description provided in [1, Section 8]. Suppose that H ≤ G and M
is a kH-module. From M we may construct a kG-module, denoted by M↑GH and
constructed as follows: First we take the vector space kG⊗ M and quotient this vector
space by the subspace spanned by all vectors of the form ah ⊗ m − a ⊗ hm, where
a ∈ kG, h ∈ H and m ∈ M. We denote the resultant quotient space by kG⊗kH M
and take it to be the underlying vector space of M↑GH ; it is common to abuse notation
slightly and reappropriate the symbol a ⊗ m to represent the coset of this quotient
containing the elementary tensor a⊗m ∈ kG⊗ M, and we shall adopt this convention.
We now define g(a⊗m) = (ga) ⊗m for all g ∈ G, a ∈ kG and m ∈ M. The resulting
G-action turns M↑GH into a well-defined kG-module.

Definition 1.1.3. We refer to the module M↑GH as a module induced from H to G.

Thus M↑GH is a kG-module constructed from a kH-module. Other notation used
in the literature includes IndGH(M) and MG. We shall abbreviate the symbol M↑GH to
just M↑G if the context is clear.

The following omnibus lemma accounts for many of the basic properties that the
above induction process satisfies.

Lemma 1.1.4. Suppose that H ≤ L ≤ G and let M and N be kH-modules. Then:

(i) dim M↑G = |G : H| dim M;

(ii) if M is a projective kH-module, then M↑G is a projective kG-module;

(iii) (M ⊕ N )↑G ∼= M↑G ⊕ N ↑G and (M ⊗ N )↑G ∼= M↑G ⊗ N ↑G;

(iv) (M∗)↑G ∼= (M↑G)∗;

(v) (M↑L)↑G ∼= M↑G.

Proof. Part (i) is Lemma 8.4 in [1]; the remaining parts all appear in Lemma 8.5 of
[1].
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If M is an indecomposable kH-module, then M↑GH might not necessarily be
indecomposable; understanding the indecomposable decomposition of M↑GH for a
general kH-module M is a hard open question. The following theorem, known
as Green’s Indecomposability Criterion, gives one special case where the answer is
straightforward (see [1, Theorem 8.8]).

Theorem 1.1.5 (Green’s Indecomposability Criterion). Suppose that N ◁ G,
|G : N | = pr for some r ∈ N and M is an indecomposable kN -module. Then
M↑G is indecomposable.

The other result we have available to us that helps us handle the structure of M↑G

is known as Mackey’s Theorem. If H ≤ G, g ∈ G and M is a kH-module, then we can
define a new k[gHg−1]-module Mg by “transport of structure”. That is to say, Mg

has the same underlying vector space as M, and we define an action of gHg−1 on Mg

by setting
(ghg−1) ·m︸ ︷︷ ︸

in Mg

= h ·m︸ ︷︷ ︸
in M

for all m ∈ M and h ∈ H. The following is Lemma 8.7 in [1].

Theorem 1.1.6 (Mackey’s Theorem). Suppose that H,L ≤ G and M is a kH-module.
Then

(M↑GH)↓L =
⊕

s∈[L\G/H]
((Ms)↓L∩sHs−1)↑L,

where [L\G/H] represents a set of double (L,H)-coset representatives in G.

If N ◁ G, we have gNg−1 = N for all g ∈ G, so Mg is another kN -module, which
we refer to as a conjugate kN -module of M. We shall denote Mg by g ⊗ M when
N ◁G. Note that g ⊗ M need not be isomorphic to M; we say that M is G-stable if
g ⊗ M and M are isomorphic kN -modules for all g ∈ G.

The final important result relating to the process of induction is known as Frobenius
Reciprocity, which is given in [1, Theorem 8.6].
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Theorem 1.1.7 (Frobenius Reciprocity). Suppose that H ≤ G, M is a kG-module
and N is a kH-module. Assume furthermore that G is a finite group and M and N
are finite-dimensional modules. Then we have the following isomorphisms of vector
spaces:

(i) HomkG(M,N ↑G) ∼= HomkH(M↓H ,N );

(ii) HomkG(N ↑G,M) ∼= HomkH(N ,M↓H).

1.1.2 Relative Projectivity

We are now in a position to generalise the notion of a projective module to a relatively
projective module. We provide a number of equivalent formulations in the following
definition; note the similarity to Definition 1.1.2.

Definition 1.1.8. [1, Proposition 9.1] Let M be a kG-module and H ≤ G be a
subgroup of G. Then we say that M is relatively H-projective if M satisfies any
of the following equivalent properties:

(i) M is a direct summand of (M↓H)↑G;

(ii) if φ : N → M is a surjective kG-homomorphism and φ is an H-split homomor-
phism, then φ is a G-split homomorphism;

(iii) if φ : N → K is a surjective kG-homomorphism and ψ : M → K is a kG-
homomorphism, then there is a kG-homomorphism ρ : M → N such that
φρ = ψ provided there is a kH-homomorphism σ : M↓H → N ↓H such that
φHσ = ψH ;

(iv) M is a direct summand of N ↑G for some kH-module N .

Thus, a projective module is a relatively {1}-projective module in terms of this
new definition. In general, an indecomposable kG-module M can be relatively H-
projective for many subgroups H ≤ G; the possible subgroups for which M is relatively
H-projective are tightly controlled by a subgroup known as a vertex.

Theorem 1.1.9. [1, Theorem 9.4] Let M be an indecomposable kG-module.
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(i) There exists a p-subgroup Q of G which satisfies the following property: if H ≤ G,
then M is relatively H-projective if and only if H contains a conjugate of Q.
Furthermore, the subgroup Q is unique up to conjugacy in G.

(ii) Given Q as in (i), there exists an indecomposable kQ-module S such that M is
a direct summand of S↑G.

We refer to the subgroup Q in the above as a vertex of M and the module S as a
source module of M. We shall write vx(M) to refer to a particular vertex of M; if
a module M has a trivial module as its source module, we say that M is a trivial
source module.

Remarks 1.1.10. (i) The projective modules are precisely those which have vertex
{1}; thus, relative projectivity can be thought of as a measure of how far an
indecomposable module is from being projective.

(ii) If P is a p-group and Q ≤ P , then the induced module (kQ)↑P is indecomposable
and has vertex Q.

(iii) Since vertices are determined up to conjugacy in G, it follows that any indecom-
posable kG-module is relatively H-projective if H is a subgroup which contains
a Sylow p-subgroup of G.

(iv) If a kG-module M has vertex equal to a Sylow p-subgroup of G, then we say
that M has maximal vertex.

The calculation of vertices for a given indecomposable kG-module M is in general
a difficult problem; [42] provides an algorithm for computing the vertex of a given
module in MAGMA, and these ideas have been developed further in [12] and applied to
find the vertices of simple modules defined over the symmetric group in small degree.

1.1.3 Relatively Projective Resolutions

In this section, we introduce the definition of a relatively projective resolution and put
in place the main properties of these objects; we take the details of this section from
[38]. If X is a family of subgroups of G, then a kG-homomorphism δ : M → N is said
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to be X-split if it is H-split for every H ∈ X. Moreover, if M is a kG-module which
has an indecomposable decomposition

M =
s⊕
i=1

Ui,

then we say that M is relatively X-projective if each Ui is relatively H-projective
for some H ∈ X.

Definition 1.1.11. Suppose that M is a kG-module and X is a family of subgroups
of G. A relatively X-projective cover of M is a pair (P , δ) such that:

(i) P is a relatively X-projective module;

(ii) δ : P → M is an X-split kG-homomorphism;

(iii) whenever f ∈ EndkG(P) satisfies δf = δ, we have that f is an isomorphism.

Recall that an X-split homomorphism is automatically surjective, which explains
the choice of “cover” in the terminology; (iii) in the above means that we cannot
replace P by a proper direct summand and obtain a “smaller” cover, so serves as a
minimality condition. When discussing relatively X-projective covers, it is common to
refer to the module P alone and leave δ implicit, although it is an important part of the
definition. In the case where X just consists of the trivial subgroup of G, a relatively
X-projective cover of M is a projective cover of M; we denote the projective cover of
M by P(M). In the case where X = {H} for a single subgroup H ≤ G, we shall say
that a relatively X-projective cover of M is a relatively H-projective cover of M.

We say that two exact sequences

0 → ker δ → P δ−→ M → 0

and 0 → ker ϵ → P ′ ϵ−→ M′ → 0

are isomorphic if there exist isomorphisms φ : ker δ → ker ϵ, ψ : P → P ′ and
ρ : M → M′ such that the diagram

0 // ker δ
φ
��

// P δ //

ψ
��

M //

ρ
��

0

0 // ker ϵ // P ′ ϵ //M′ // 0



16 Preliminaries

commutes.
It is well-known that mod kG satisfies the following two properties:

(i) every element of mod kG is a finite direct sum of indecomposable modules which
is unique up to order and isomorphism between the indecomposable modules,
i.e., the Krull-Schmidt theorem holds;

(ii) if M ∈ mod kG is indecomposable, then EndkG(M) is a local algebra, i.e., every
element of EndkG(M) is either invertible or nilpotent (see [1, Theorem 4.2]).

Thus mod kG is a so-called Krull-Schmidt category. On the basis of this, we may
deduce the following result.

Proposition 1.1.12. Suppose that M ∈ mod kG and X is a family of subgroups of
G. Then:

(i) the module M has a relatively X-projective cover (P , δ);

(ii) if (P , δ) and (P ′, δ′) are both relatively X-projective covers of M, then

0 → ker δ → P δ−→ M → 0

and
0 → ker δ′ → P ′ δ′

−→ M → 0

are isomorphic sequences; in particular, P ∼= P ′;

(iii) if U is a relativelyX-projective module, ϵ : U → M is anX-split kG-homomorphism
and (P , δ) is a relatively X-projective cover of M, then there exists a relatively
X-projective module Q such that

0 → ker δ → P ⊕ Q δ−→ M → 0

and
0 → ker ϵ → U ϵ−→ M → 0

are isomorphic sequences; in particular, P is a direct summand of U .
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Proof. Since mod kG is a Krull-Schmidt category, (i) follows from [38, Proposition 1.6].
Parts (ii) and (iii) are proved in [38, Proposition 1.3].

Thus relatively X-projective covers of arbitrary kG-modules in mod kG exist and
are essentially unique. Since any finite-dimensional kG-module has a relatively X-
projective cover, we may make the following definition.

Definition 1.1.13. A relatively X-projective resolution of a module M ∈ mod kG
is a positive complex P∗ of relatively X-projective modules and a kG-homomorphism
δ1 : P1 → M such that the sequence:

· · · δ4−→ P3
δ3−→ P2

δ2−→ P1
δ1−→ M → 0

is exact, each (Pi, δi) is a relatively X-projective cover of ker δi−1 for all i ≥ 2 and
(P1, δ1) is a relatively X-projective cover of M.

We set Ωi
X(M) = ker δi in the above definition, for i ∈ N, and refer to this kernel

as an X-relative syzygy of M. We set Ωi
G/H(k) = Ωi

{H}(kG) for a subgroup H ≤ G.

1.1.4 The Green Correspondence

If L ≤ G, then induction and restriction give a means of relating kL-modules to kG-
modules and vice versa, and in certain special cases, this relation satisfies some more
precise properties. The Green correspondence is one such instance of this phenomenon.
Let Q be a p-subgroup of G and L ≤ G with NG(Q) ≤ L. If P,R ≤ G, then P ≤G R

means that P x ≤ R for some x ∈ G.
We define the following three collections of subgroups in G:

X = {Qs ∩Q : s ∈ G, s /∈ L},

N = {Qs ∩ L : s ∈ G, s /∈ L},

and Z = {R : R ≤ Q,R ̸≤G X for all X ∈ X }.

We denote by Z(G) the set of isomorphism classes of indecomposable kG-modules with
vertex in Z and by Z(L) the set of isomorphism classes of indecomposable kL-modules
with vertex in Z. The following is Theorem 11.1 in [1].
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Theorem 1.1.14 (The Green Correspondence). If M ∈ Z(G), then any direct de-
composition of M↓L has a unique direct summand S such that vx(S) = vx(M).
Furthermore, if we set S = f(M), then f : Z(G) → Z(L) is a one-to-one correspon-
dence and:

(i) M↓L = f(M) ⊕ U for some relatively N -projective kL-module U ;

(ii) f(M)↑G = M ⊕ V for some relatively X -projective kG-module V .

We shall denote the map f : Z(G) → Z(L) in the above result by f(G,L) and
refer to it as the Green correspondence between G and L, or simply the Green
correspondence when G and L are clear from the context. The module f(M) is
known as a Green correspondent of M. Since restriction and induction commute
with dualising, the following property of the Green correspondence is immediate from
this theorem.

Proposition 1.1.15. Let f = f(G,L) denote the Green correspondence between G

and L. Then f(M∗) ∼= f(M)∗ for all M ∈ Z(G).

Proof. See Corollary 7.2.2 of [24].

1.1.5 Permutation Modules

Most of the material concerning permutation modules in this section is taken from [24,
Chapter 11]. We start with the definition of a permutation module.

Definition 1.1.16. Suppose that M is a nonzero kG-module. We say that a k-basis
X of M is a permutation basis if gx ∈ X for all g ∈ G and x ∈ X. Furthermore,
we say that M is a permutation kG-module if M contains a permutation basis X.

Given a G-set X, there is an obvious kG-module, denoted kX, which consists of
the set

kX =
{∑
x∈X

αxx : αx ∈ k

}

together with a kG-module structure induced by the action of G on X. Then kX is
clearly a permutation kG-module with permutation basis X; furthermore, if M is a
permutation kG-module with permutation basis X, then M ∼= kX.
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Remarks 1.1.17. (i) The regular kG-module kG is an example of a permutation
kG-module with permutation basis X = G.

(ii) If [G/H] denotes a set of left coset representatives of H in G, then [G/H] is a
G-set and the kG-module k[G/H] is a permutation kG-module with permutation
basis X = [G/H]. We have already seen this module in this chapter; indeed, it is
well-known that k[G/H] ∼= (kH)↑G. If g ∈ G, then we denote by [g] the coset of
H in G containing g; thus elements of k[G/H] are of the form

∑
x∈X

αx[x],

where αx ∈ k for all x ∈ X.

(iii) If M is a permutation kG-module and O1, . . . , Os are the G-orbits of a permuta-
tion basis X of M, then

M ∼= kX ∼=
s⊕
i=1

kOi.

In light of (iii) in the above, the following more refined definition makes sense.

Definition 1.1.18. Suppose that M is a nonzero kG-module. We say that M is a
transitive permutation kG-module if it contains a permutation basis X such that
G acts transitively on X, i.e., the action of G on X has one orbit.

The following omnibus result contains all the basic facts we shall require concerning
permutation kG-modules.

Lemma 1.1.19. Suppose that G is a finite group. Then the following are true.

(i) Every permutation kG-module is a direct sum of transitive permutation kG-
modules.

(ii) A kG-module M is a transitive permutation kG-module if and only if M ∼=
(kH)↑G for some subgroup H ≤ G; in particular, if X is a permutation basis for
M and x ∈ X, then we have M ∼= (kS)↑G, where

S = StabG(x) := {g ∈ G : gx = x}.
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(iii) If P is a p-group and Q ≤ P , then k[P/Q] ∼= (kQ)↑P is indecomposable and has
vertex Q.

(iv) Let H ≤ G. If M is a permutation kG-module, then M↓H is a permutation
kH-module and if N is a permutation kH-module, then N ↑G is a permutation
kG-module. Furthermore, if L ≤ H, then k[H/L]↑G ∼= k[G/L].

(v) If G is a group and H,L ≤ G, then k[G/H] ∼= k[G/L] if and only if H and L are
conjugate in G.

(vi) If M and N are permutation kG-modules, then M ⊕ N , M ⊗ N and M∗ are
all permutation kG-modules.

Proof. Most of these properties are proved in [24]: parts (i) and (ii) appear in Lemma
11.1.1; part (iii) is Lemma 11.1.5; part (iv) is Lemma 11.1.7 (although the proof is
clear from the definitions); and part (vi) is Lemma 11.1.6. Part (v) is well-known and
a reference can be found in [4, Lemma 2.3.1].

1.2 Group Theory

We shift focus now to background material related to finite groups. We start by
consolidating some standard notation and terminology in one place. We shall assume
throughout that all groups considered are finite; typically, if G denotes such a finite
group, then we will assume that p divides |G|. The set of Sylow p-subgroups of G
will be denoted by Sylp(G), and we shall frequently use the symbols P to refer to
an arbitrary element of Sylp(G) and Q to refer to an arbitrary p-subgroup of G; the
symbol Pq will be used to denote a Sylow q-subgroup of G for some prime q. We set
|G|p = |P | where P ∈ Sylp(G), and we set |G|p′ = |G|/|G|p. A group G is a p′-group
if |G|p = 1. The symbol π(G) denotes the set of prime divisors of |G| and the order
of an element x ∈ G is denoted by o(x); the exponent of G is the lowest common
multiple of the orders of elements in G. We set [x, y] = x−1y−1xy for all x, y ∈ G and
refer to this element as a commutator.

The centre of G is denoted by Z(G), the commutator subgroup by G′ and
the Frattini subgroup by Φ(G); recall that if N ◁ G, then G/N is abelian if and
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only if G′ ≤ N . The symbol Op(G) denotes the largest normal p-subgroup of G,
and Op′(G) denotes the largest normal p′-subgroup of G. A group G is nilpotent if
Op(G) ∈ Sylp(G) for all p ∈ π(G).

Given x, y ∈ G and H ≤ G, we write x ∼H y if x is conjugate to y in H, i.e., if
there exists h ∈ H such that xh = y. Similarly, if S, T ⊆ G and H ≤ G, then S ∼H T

means that S is conjugate to T in H. Given elements x1, . . . , xs ∈ G and subsets
X1, . . . , Xt ⊆ G, we write

⟨x1, . . . , xs, X1, . . . , Xt⟩

to denote the subgroup ofG generated by the elements x1, . . . , xs and subsetsX1, . . . , Xt.
If X, Y ⊆ G, then XY denotes the set product, i.e., XY = {xy : x ∈ X, y ∈ Y }; we
recall that if H,K ≤ G, then

|HK| = |H||K|
|H ∩K|

.

Given a subgroup H ≤ G, a set of left coset representatives of H in G will be
known as a left transversal of H in G; similarly, a set of right coset representatives
of H in G will be known as a right transversal of H in G. We denote a fixed left
transversal by [G/H] and a fixed right transversal by [H\G]; we shall always assume
that 1 ∈ [G/H] and 1 ∈ [H\G]. If g ∈ G, then [g] denotes the coset of H in G which
contains g.

We denote by Aut(G) the automorphism group of a finite group G. A subgroup
H ≤ G is characteristic in G if φ(H) = H for all φ ∈ Aut(G), and we write H charG
in this situation. We shall frequently make use of the following two facts for a chain of
groups H1 ≤ H2 ≤ · · · ≤ Hr (see [17, Theorem 2.1.2]):

(i) if H1 charH2 charH3 char · · · charHr−1 charHr, then H1 charHr;

(ii) if H1 charH2 charH3 char · · · charHr−1 ◁ Hr, then H1 ◁ Hr.

Note that if P ◁ G is a Sylow p-subgroup of G, then P charG.
We write G = N ×K if G is a direct product of two normal subgroups N,K ◁ G

and we write G = N ⋊K if G is a semidirect product of a normal subgroup N and
another, not necessarily normal, subgroup K; in both situations, we have G = NK and
N ∩K = {1}, so every g ∈ G may be written uniquely as g = nk for some n ∈ N and
k ∈ K. If H is a finite group and G is a subgroup of Σn, the symmetric group of degree
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n, we denote by H ≀G the wreath product of H by G; thus H ≀G is isomorphic to
the semidirect product K ⋊G, where

K = H(1) × · · · ×H(n),

H(i) ∼= H for 1 ≤ i ≤ n and elements of G act on the set {H(i) : 1 ≤ i ≤ n} by
permuting the superscripts {1, . . . , n}. If H and K are groups which each contain a
common central subgroup Z, then H ∗Z K denotes the central product of H and K
with respect to Z; thus H ∗Z K ∼= (H ×K)/Z.

We shall say that H is subnormal in G if there exists a chain of subgroups

H = H0 ◁ H1 ◁ · · · ◁ Hr−1 ◁ Hr = G.

Furthermore, we shall say that G is solvable if there exists a subnormal series

{1} = N0 ◁ N1 ◁ · · · ◁ Nr−1 ◁ Nr = G

such that for all i, |Ni/Ni−1| = q for some q ∈ π(G); we shall say that G is p-solvable
if there exists a subnormal series of G such that for all i, Ni/Ni−1 is either a p-group
or a p′-group. The Feit-Thompson theorem asserts that any group of odd order is
solvable and hence p-solvable for all primes p.

We shall say that G is metacyclic if G contains a normal cyclic subgroup A such
that G/A ∼= B is cyclic, and we say that G is split metacyclic if G = A ⋊ B for
cyclic subgroups A,B ≤ G.

If H ≤ G, then a subgroup X of G is said to be a complement of H in G if
G = HX and H ∩X = {1}. If π ⊆ π(G), then a Hall π-subgroup of G is a subgroup
H such that

|H| =
∏
q∈π

|G|q.

We shall find the following well-known facts useful when working with complements.
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Proposition 1.2.1. Suppose that G is a finite group and H is a Hall π-subgroup of
G for some π ⊆ π(G).

(i) If G is solvable, then H has a complement in G.

(ii) (Schur-Zassenhaus Theorem). If H ◁ G, then H has a complement in G.

Proof. Part (i) is [17, Lemma 6.4.1] and part (ii) is [17, Theorem 6.2.1].

We recall that if N ◁ G, then there is a one-to-one correspondence between the
subgroups of G which contain N and subgroups of G/N , induced by the quotient
map G → G/N . We shall express this relation using the bar notation: thus, we set
G = G/N and denote subgroups of G by S, where S is the corresponding subgroup of
G containing N . Recall that S ◁ G if and only if S ◁ G.

We denote the symmetric group on n letters by Σn and the alternating group on n
letters by An. The cyclic group of order n is denoted Cn.

Definition 1.2.2. We shall frequently make use of the following well-known groups.

(i) If P is abelian and the exponent of P is p, then we say that P is elementary
abelian and write P = Epn , where |P | = pn. Note that

Epn ∼= Cp × Cp × · · · × Cp︸ ︷︷ ︸
n times

.

(ii) We denote by D2n the dihedral group of order 2n, i.e., the rotations of a regular
n-gon. Thus

D2n = ⟨a, b : an = b2 = 1, ab = ba−1⟩ ∼= Cn ⋊ C2.

(iii) We denote by SD2n the semidihedral group of order 2n for n ≥ 4, which has
the following presentation:

SD2n = ⟨a, b : a2n−1 = b2 = 1, ab = ba2n−2−1⟩.
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(iii) We use Q2n to denote the generalised quaternion group of order 2n for n ≥ 3;
this group has the presentation:

Q2n = ⟨a, b : a2n−1 = b4 = 1, a2n−2 = b2, ab = ba−1⟩.

(iv) The extraspecial groups of order p3 are given by:

p1+2
+ = ⟨a, b, c : ap = bp = cp = 1, [a, c] = [b, c] = 1, [a, b] = c⟩

and
p1+2

− = ⟨a, b : ap2 = bp = 1, ab = bap+1⟩.

These are the two non-abelian groups of order p3 up to isomorphism; note that
21+2

+
∼= D8 and 21+2

−
∼= Q8.

1.2.1 Linear and Classical Groups

We will require an understanding of linear and classical groups in Section 3.4 and
Chapter 4. In this section, we remind the reader of how these groups are defined and
put in place the notation that will be in force for the rest of the thesis; the reader is
referred to [41, Chapter 3] for the proofs of any standard facts.

Suppose that V is an n-dimensional vector space over a finite field F = Fq of order
q for some prime power q = pr with r ∈ N. The general linear group, denoted by
GLn(q), consists of all the invertible linear transformations φ : V → V . We denote by
SLn(q) the special linear group, which consists of those elements in GLn(q) with
determinant 1, and by Ln(q) the projective linear group, which is defined to be the
quotient Ln(q) := SLn(q)/Z(SLn(q)). The general linear groups, special linear groups
and projective linear groups are sometimes referred to loosely as linear groups.

The other classical groups arise as subgroups of general linear groups which fix
certain extra structures on the relevant vector space. Recall that a bilinear form is a
map f : V × V → F such that f(λu+ v, w) = λf(u,w) + f(v, w) and f(u, λv + w) =
λf(u, v) + f(u,w) for all λ ∈ F and u, v, w ∈ V . We say that f is symmetric if
f(u, v) = f(v, u) for all u, v ∈ V ; skew-symmetric if f(u, v) = −f(v, u) for all
u, v ∈ V ; and alternating if f(v, v) = 0 for all v ∈ V . If F = Fq2 , then we set x = xq
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for all x ∈ F and we shall say that a map f : V × V → F satisfying

f(λu+ v, w) = λf(u,w) + f(v, w)

and f(u, v) = f(v, u)

for all u, v, w ∈ V and λ ∈ F is a conjugate-symmetric sesquilinear form.

Given a bilinear form or a sesquilinear form f defined on V , we set Isom(V, f)
to denote the set of φ ∈ GLn(q) such that f(φ(u), φ(v)) = f(u, v) for all u, v ∈ V

and call this the isometry group of V with respect to f . Furthermore, we set
Sim(V, f) to be equal to the set of φ ∈ GLn(q) for which there exists λ ∈ F such that
f(φ(u), φ(v)) = λf(u, v) for all u, v ∈ V ; this is the similarity group of V with
respect to f .

We are now ready to define the three main types of classical groups; in the following,
we denote the (n× n)-identity matrix by In. If dim V = 2m, then Sp2m(q) denotes the
symplectic group of degree 2m over F , which is the isometry group of a nonzero
alternating bilinear form f on V . It is well-known that, up to isomorphism, there is
one such group in any even dimension and for any finite field F . We define PSp2m(q)
to be the quotient Sp2m(q)/{±I2m} and call this the projective symplectic group;
we also set GSp2m(q) to equal the similarity group of V with respect to f .

If dim V = n and F = Fq2 , then GUn(q) denotes the general unitary group of
degree n over F , which is the isometry group of a conjugate-symmetric sesquilinear
form f on V ; note that GUn(q) ≤ GLn(q2). We denote by SUn(q) the special unitary
group, i.e., SUn(q) = GUn(q)∩SLn(q2); and by Un(q) the projective unitary group,
that is to say, the quotient SUn(q)/Z(SUn(q)).

If dim V = n is odd and F = Fq with charF > 2, then On(q) denotes the
orthogonal group of degree n over F , which is the isometry group of a nonzero
symmetric bilinear form f on V . In this case, there is up to isomorphism just one
orthogonal group. On the other hand, if dim V = 2m is even, then we get two different
orthogonal groups, depending on certain special properties of the bilinear form f . We
say that f is of plus type if there exists a subspace U in V of dimension m such that
f is identically zero on U × U , and it is of minus type otherwise. The orthogonal
groups O+

2m(q) and O−
2m(q) are then the isometry groups corresponding to nonzero
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symmetric bilinear forms of the obvious type. When we wish to discuss all three of the
above cases generically, we shall revert to the symbol On(q), with the understanding
that for even n, this notation is potentially ambiguous.

For ϵ ∈ {+,−, ∅}, we denote by SOϵ
n(q) the special orthogonal group correspond-

ing to Oϵ
n(q), i.e., SOϵ

n(q) = Oϵ
n(q)∩SLn(q); by Ωϵ

n(q), we denote the kernel of the spinor
norm map, which is an index 2-subgroup of SOϵ

n(q); and we set PΩϵ
n(q) := Ωϵ

n(q)/{±In}
when n is even, and PΩϵ(q) := Ωϵ

n(q) if n is odd. For details concerning the spinor
norm map, the reader should refer to [41, 3.7].

Finally, we need to define the orthogonal groups over fields of characteristic 2. If
dim V = n is even and greater than or equal to 6, and F = Fq with charF = 2, then
for each vector v ∈ V of norm 1, the map defined by

tv : w 7→ w + f(w, v)v

in terms of a nonzero symmetric bilinear form f on V is known as an orthogonal
transvection. The orthogonal group O+

n (q) is defined to be the subgroup of
GLn(q) generated by these transvections. Moreover, the quasideterminant of a given
x ∈ O+

n (q) is defined to be 1 or −1 according to whether x can be written as a product
of either an even number or an odd number of these transvections. The set of elements
which are of quasideterminant 1 then form a subgroup of O+

n (q) which we denote
either Ω+

n (q) or, for the purposes of being consistent with our terminology for the
simple classical groups, PΩ+

n (q). A similar construction provides another corresponding
orthogonal group of “minus” type, which we denote by O−

2m(q), and this too contains
a subgroup generated by certain transvections, which we denote by either Ω−

n (q) or
PΩ−

n (q). We refer the reader to the discussion contained in [41, 3.8] for further details
on the constructions for both O+

n (q) and O−
n (q) in the case where F has characteristic

2.

We refer to any of the above symplectic, unitary or orthogonal groups as a classical
group. Of course, the classical groups play an important role in the classification of
the finite simple groups; the following result clarifies which of the above groups are
simple.
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Theorem 1.2.3. The following classical groups are all simple:

(i) Ln(q) if n > 2 or q > 3;

(ii) PSp2m(q) if m = 1 and q > 3, or m = 2 and q > 2, or m > 2;

(iii) Un(q) if n = 2 and q > 3, or n = 3 and q > 2, or n > 3;

(iv) for ϵ ∈ {+,−, ∅}, PΩϵ
n(q) if n = 5 and q is odd, or n ≥ 6.

In addition to the above theorem, we have the following well-known isomorphisms
between classical groups of low degree:

L2(2) ∼= Σ3 L2(3) ∼= A4

L2(4) ∼= L2(5) ∼= A5 L2(7) ∼= L3(2)

L2(9) ∼= A6 L4(2) ∼= A8.

At times, we shall provide examples which involve the classical groups described
above, and when we do so, we shall find it helpful to think of them as being groups of
matrices. Thus, we may think ofGLn(q) as consisting of the (n×n)-matrices with entries
in a finite field of order q, and we denote this field by Fq and its multiplicative subgroup
by F×

q . By a diagonal matrix, we mean a matrix with diagonal (α1, α2, . . . , αn) for
some αi ∈ F×

q , and zeroes everywhere else; and by a scalar matrix, we mean a matrix
with diagonal (α, α, . . . , α) for some fixed α ∈ F×

q , and zeroes everywhere else. We
denote by eij the matrix with a 1 in its (i, j)-th entry, and zeroes everywhere else. A
permutation matrix is a matrix which has precisely one entry equal to 1 in every
row and column, and zeroes everywhere else; a monomial matrix is a matrix which
is a product of a diagonal matrix and a permutation matrix.

1.2.2 Fusion

Suppose that G is a finite group and P ∈ Sylp(G). Much of the background material
covered in this section is taken from [17, Chapter 7] and [21, Chapter 5]. If x, y ∈ P ,
then we say that x and y are fused in G if x ∼G y, but x ̸∼P y; more generally, we say
that two subsets X, Y ⊆ P are fused in G if X ∼G Y , but X ̸∼P Y . The question of
fusion in a finite group G dates back some time now; the early forming of these ideas
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started roughly around the mid twentieth century (a good summary of the early state
of the theory can be found in [16]). Central to the theory is the notion that conjugation
is “locally controlled”; that is to say, conjugation in G can be understood best in terms
of the subgroups of G of the form NG(Q), where Q is a p-subgroup of G and Q ̸= {1}.
In particular, Alperin’s fusion theorem ([17, Section 7.2]) makes this evident.

We now set up some of the standard terminology we require related to these ideas.
A subgroup H ≤ G is said to be p-local or local if H = NG(Q) for some nontrivial
p-subgroup Q. If P ≤ H ≤ G, then we say that H controls G-fusion of P in G if,
whenever x ∼G y for x, y ∈ P , we have x ∼H y. Burnside’s theorem [17, Theorem
7.1.1] shows that if P is abelian, then NG(P ) controls G-fusion of P in G; however, in
general, NG(P ) need not control G-fusion of P in G.

Given a subgroup K ≤ G and a right transversal T = [G/K], we define a right
action of G on T induced by right multiplication; that is to say, if t ∈ T and g ∈ G,
then we define t · g to be the element in T such that [t · g] = [tg]. A direct calculation
shows that ∏

t∈T
tg(t · g)−1 ∈ K

for all g ∈ G and hence the map vG,K : G → K/K ′ defined by

vG,K(g) =
[∏
t∈T

tg(t · g)−1
]
.

is well-defined. We refer to this map as the transfer homomorphism of K in G;
note that it is indeed a homomorphism and is independent of the choice of transversal
T (see [21, Theorem 5.1]). We set Ap(G) = ker vG,P . Given subgroups P ≤ H ≤ G,
we say that H controls p-transfer of P in G if Ap(H) = H ∩ Ap(G).

We define the focal subgroup of H in G to be

FocH(G) = ⟨x−1y : x, y ∈ H, x ∼G y⟩.

Relating to the focal subgroup and control of p-transfer, we have the following results.
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Proposition 1.2.4. Suppose that P ≤ H ≤ G and P ∈ Sylp(G).

(i) We have FocP (G) = P ∩ G′ = P ∩ Ap(G). Moreover, there exists a normal
subgroup K ◁ G such that FocP (G) ≤ K and G/K ∼= P/FocP (G).

(ii) (Grün’s Theorem) We have

FocP (G) = ⟨P ∩NG(P )′, P ∩Q′ : Q ∈ Sylp(G)⟩.

(iii) If H controls G-fusion of P in G, then H controls p-transfer of P in G.

Proof. Part (i) is a combination of Theorem 7.3.1 in [17] and Theorem 5.21 in [21],
and part (ii) is Theorem 7.4.2 in [17]. Part (iii) is Corollary 5.22 in [21].

We shall say that Q ≤ P is weakly closed in P with respect to G if, whenever
Qx ≤ P for some x ∈ G, we have Qx = Q; we shall sometimes simply say that Q is
weakly closed in G if the context is clear. If Z(P ) is weakly closed in P with respect
to G, then we say that G is p-normal.

Proposition 1.2.5. Suppose that G is a finite group, P ∈ Sylp(G) and Q ≤ P .

(i) If Q ◁ P , then Q is normal in G if and only if Q is subnormal and weakly closed
in G.

(ii) If N ◁ G and G = G/N , then Q is weakly closed in G if Q is weakly closed in G;
furthermore, if N and Q have coprime orders, then Q is weakly closed in G if
and only if Q is weakly closed in G.

Proof. Both these properties are well-known; for a proof of (i), we refer the reader to
[14, Lemma 2.3]. Part (ii) is immediate from the definitions.

1.2.3 p-Nilpotence

Let P ∈ Sylp(G). If G = Op′(G) ⋊ P , then we say that G is p-nilpotent, and we
say that Op′(G) is a normal p-complement of P in G. The following theorem of
Frobenius provides an equivalent characterisation for G to be p-nilpotent in terms of
control of G-fusion; in order to get the statement, we combine Theorems 5.25 and 5.26
in [21].
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Theorem 1.2.6 (Frobenius’ Theorem). Suppose that G is a finite group and P ∈
Sylp(G). Then the following are equivalent:

(i) G is p-nilpotent;

(ii) P controls G-fusion of P in G;

(iii) NG(Q) is p-nilpotent for every Q ≤ P , Q ̸= {1};

(iv) NG(Q)/CG(Q) is a p-group for every Q ≤ P .

In addition to Frobenius’s Theorem, the following is worth mentioning.

Theorem 1.2.7 (Burnside’s Theorem). Suppose that G is a finite group, P ∈ Sylp(G)
and P ≤ Z(NG(P )). Then G is p-nilpotent.



Chapter 2

Scott Modules

In this chapter, we put in place the definition and main properties of a class of
kG-modules, known as Scott modules, which arise as certain direct summands of
permutation kG-modules. This thesis is primarily concerned with questions related to
these objects, so we take some time to establish their existence and cover some of the
well-known properties they satisfy.

To this end, we start the chapter with a detailed explanation of what a Scott
module is, including a proof of the existence of such modules, and establish some of
the basic properties they satisfy. In Section 2.3, we prove some lemmas that we will
find helpful in the sequel; we follow this up in the final section, where we provide a
new result which helps describe the structure of Scott modules in the case where G
has a normal Sylow p-subgroup.

2.1 Existence and Basic Properties

We have covered what it means for a kG-module to be considered a permutation
kG-module. A related concept goes as follows.

Definition 2.1.1. [5, Definition 0.1] A kG-module M is said to be a p-permutation
kG-module if whenever Q is a p-subgroup of G, there exists a k-basis X of M such
that ux ∈ X for all u ∈ Q and x ∈ X.

Note that this definition is equivalent to requiring that M↓P is a permutation
kP -module for all P ∈ Sylp(G), and this is sometimes how the definition is presented.
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It is not necessary for a p-permutation kG-module to be a permutation kG-module,
but any permutation kG-module is obviously a p-permutation kG-module. Thus the
class of permutation kG-modules is a subset of the class of p-permutation kG-modules.
Parts (i) and (ii) of the following result are familiar properties that p-permutation
modules share with permutation modules; on the other hand, (iii) describes a key
difference.

Proposition 2.1.2. [5, Proposition 0.2] The following are true.

(i) If M and M′ are p-permutation kG-modules, then so are the kG-modules
M ⊕ M′ and M ⊗ M′.

(ii) If H ≤ G and M is a p-permutation kG-module, then M↓H is a p-permutation
kH-module; moreover, if N is a p-permutation kH-module, then N ↑G is a
p-permutation kG-module.

(iii) Any direct summand of a p-permutation kG-module is a p-permutation kG-
module.

In fact, the relationship between permutation and p-permutation modules is stronger
than a first look might suggest. The following well-known characterisation makes this
clear: indeed, the class of p-permutation kG-modules coincides with the class of direct
summands of permutation kG-modules.

Theorem 2.1.3. [5, 0.4] Let M be an indecomposable kG-module. The following are
equivalent:

(i) M is a p-permutation kG-module;

(ii) there exists a subgroup H ≤ G such that M is isomorphic to a direct summand
of k[G/H];

(iii) M is a trivial source kG-module.

Suppose now that H ≤ G. A key observation concerning the permutation kG-
module k[G/H] is that it contains a unique submodule isomorphic to kG, namely:

V =
〈 ∑
x∈[G/H]

[x]
〉
.
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It should be clear that V is a submodule isomorphic to kG, since [G/H] is a transitive
G-set. The fact that V is the unique submodule isomorphic to kG can be deduced from
Frobenius reciprocity, since we have

kH ∼= HomkH(kH , kH) ∼= HomkH((kG)↓H , kH)
∼= HomkG(kG, (kH)↑G) ∼= HomkG(kG, k[G/H]),

so that dim(HomkG(kG, k[G/H])) = 1. A consequence of this observation is that
k[G/H] must contain a unique direct summand in any indecomposable decomposition,
say S, such that kG is a submodule of soc(S). We refer to this module as a Scott
module; the following result, due to Scott and Alperin, describes some key properties it
must satisfy.

Theorem 2.1.4 (Scott-Alperin Theorem). [31, Theorem 4.8.4] Let G be a group and
H ≤ G. Suppose that Q ∈ Sylp(H). Then there exists an indecomposable direct
summand S of k[G/H], which is uniquely determined (up to isomorphism) by any of
the following three properties:

(i) kG is a submodule of soc(S);

(ii) kG is a submodule of top(S) = S/ rad(S);

(iii) S has vertex Q, and if f = f(G,NG(Q)) denotes the Green correspondence
between G and NG(Q), then f(S) is the projective cover of kNG(Q)/Q when viewed
as a k[NG(Q)/Q]-module.

Furthermore, in any indecomposable decomposition of k[G/H], there exists a unique
indecomposable direct summand isomorphic to S.

Proof. We have already observed that k[G/H] contains a unique (up to isomorphism)
indecomposable direct summand S satisfying (i), so all we need do is show that the
three properties listed above are satisfied by S and S alone. Let V denote the unique
submodule of k[G/H] which is isomorphic to kG; we first show that (i) implies (iii),
so assume that V is a submodule of soc(S). Since S is a direct summand of k[G/H],
it follows that S is relatively H-projective and hence vx(S) ≤ H, so without loss of
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generality, we have vx(S) ≤ Q. On the other hand, if we write [G/H] = {1} ∪ X,
where X = [G/H] − {1}, then

(k[G/H])↓Q ∼= V↓Q ⊕ X ,

where X denotes the kQ-module generated by X. Since V↓Q ≤ S↓Q and V↓Q is a
direct summand of (k[G/H])↓Q, it follows that V↓Q is a direct summand of S↓Q. Thus,
if vx(S) = R < Q, then S is a direct summand of (S↓R)↑G and we see that kQ is a
direct summand of ⊕

t∈[Q\G/R]
((S↓R)t)↓Q∩tRt−1)↑Q,

by Mackey’s Theorem. But this then implies that kQ is relatively projective for some
proper subgroup of Q, which is impossible, since vx(kQ) = Q. Thus vx(S) = Q.

By Frobenius reciprocity, we have

HomkG(kG, f(S)↑G) ∼= HomNG(Q)(kNG(Q), f(S))

and the left hand side is clearly nonzero, since S is a direct summand of f(S)↑G. Thus
kNG(Q) is a submodule of f(S). By the Green correspondence, we know that f(S) has
vertex Q; moreover, Mackey’s Theorem gives

(k[G/H])↓NG(Q) ∼=
⊕

t∈[NG(Q)\G/H]
k[NG(Q)/NG(Q) ∩ tHt−1].

Thus f(S) is a direct summand of k[NG(Q)/L] for some L ≤ NG(Q) with Q ≤ L.
Since Q ◁ NG(Q), it follows that Q acts trivially on k[NG(Q)/L] and hence we may
regard f(S) as a k[NG(Q)/Q]-module, which we denote by f(S). If φ : M → f(S)
is a surjective k[NG(Q)/Q]-homomorphism, then the corresponding homomorphism
InfNG(Q)

NG(Q)/Q(φ) : InfNG(Q)
NG(Q)/Q(M) → InfNG(Q)

NG(Q)/Q(f(S)) induced by inflation is Q-split;
since InfNG(Q)

NG(Q)/Q(f(S)) = f(S) and vx(f(S)) = Q, it follows that InfNG(Q)
NG(Q)/Q(φ) splits

as a k[NG(Q)]-homomorphism. Thus φ is a split k[NG(Q)/Q]-homomorphism and
we see that f(S) is a projective k[NG(Q)/Q]-module which contains kNG(Q)/Q as a
submodule; it is therefore the projective cover of kNG(Q)/Q, as required.
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To show that (iii) implies (i), note that f is a bijection, so if f(S) satisfies (iii) for
another direct summand S, we have f(S) ∼= f(S) and hence S ∼= S.

Finally, we show that (i) and (ii) are equivalent. In order to do so, note that f(S)
is self-dual as a k[NG(Q)/Q]-module, since it is a projective k[NG(Q)/Q]-module, so
by Proposition 1.1.15 we have

f(S∗) ∼= f(S)∗ ∼= f(S)

and hence S∗ ∼= S. Since kG ≤ soc(S) if and only if kG ≤ soc(S)∗ and top(S∗) ∼=
soc(S)∗, it follows that kG ≤ soc(S) if and only if kG ≤ top(S), and we conclude that
(i) is equivalent to (ii).

The module S defined in the above result is a direct summand of k[G/H] and hence
is a p-permutation kG-module. As alluded to previously, we refer to it as the Scott
module of H in G, and we denote it by S(G,H); note that S(G,H) is uniquely
determined by the subgroup H and not by the particular choice of Sylow p-subgroup
Q of H we make. As a first step towards narrowing down which Scott modules are
worth studying, we have the following, which allows us to restrict attention to when H
itself is a p-group.

Proposition 2.1.5. [31, Corollary 8.5] Let G be a finite group and H,L ≤ G. Fur-
thermore, let Q ∈ Sylp(H) and P ∈ Sylp(L). Then:

(i) S(G,H) ∼= S(G,Q);

(ii) S(G,H) ∼= S(G,L) if and only if Q ∼G P .

Proof. By (iii) of the Scott-Alperin Theorem, it follows that S(G,H) and S(G,Q) are
the Green correspondents of the same k[NG(Q)]-module and are hence isomorphic, so
(i) follows. Thus, all we need do for (ii) is show that S(G,Q) ∼= S(G,P ) if and only if
Q ∼G P . If S(G,Q) ∼= S(G,P ), then Q and P are both vertices of S(G,Q) and hence
Q ∼G P , by Theorem 1.1.9. On the other hand, if Q ∼G P , then k[G/Q] ∼= k[G/P ] by
Proposition 1.1.19 (v) and hence S(G,Q) and S(G,P ) are both direct summands of
k[G/Q] containing kG as a submodule, so they must be isomorphic kG-modules.

If Q is a p-subgroup of G, then S(G,Q) is referred to as the Scott module of G
with vertex Q and is sometimes denoted in the literature by S(Q). In general, it is
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not obvious what S(G,Q) will look like for an arbitrary p-subgroup Q of a finite group
G; the following covers a couple of special cases.

Proposition 2.1.6. Suppose that G is a finite group and P ∈ Sylp(G). Then:

(i) S(G,P ) ∼= kG;

(ii) S(G, {1}) ∼= P(kG).

Proof. For (i), note that S(G,P ) ∼= S(G,G) ∼= kG, whence the result follows. The
second part is immediate from (iii) of the Scott-Alperin Theorem, since f(G,NG(Q))
is trivial when Q = {1} and hence f(S(G, {1})) = S(G, {1}) is the projective cover of
kG.

From now on, we shall assume that G is a finite group, and let P ∈ Sylp(G) denote
a fixed Sylow p-subgroup of G. If we wish to refer to a general p-subgroup of G, we
do so via the symbol Q; as we have shown above, we may assume without loss of
generality that Q ≤ P when studying S(G,Q), and we shall adopt this convention.

Remarks 2.1.7. (i) Since k[P/Q] is indecomposable, it follows that S(P,Q) ∼=
k[P/Q]. In general, it is unpredictable when S(G,Q) ∼= k[G/Q] for more arbitrary
finite groups G; we shall provide some examples of this phenomenon in the last
section of this chapter (see Corollary 2.4.3).

(ii) It follows from the Scott-Alperin Theorem that S(G,Q) is a relativelyQ-projective
cover of kG, which gives another equivalent way of viewing Scott modules.

We finish the section with a result that gives a well-known alternative formulation
of a Scott module.

Theorem 2.1.8. Suppose that G is a finite group and Q is a p-subgroup of G. Then
there exists a unique indecomposable p-permutation kG-module S such that vx(S) = Q

and kG is a submodule of S; in particular, S ∼= S(G,Q).

Proof. If S is a p-permutation kG-module such that vx(S) = Q, then by Theorem
2.1.3, it follows that S is a direct summand of (kQ)↑G ∼= k[G/Q]. Thus, if S contains a
submodule isomorphic to kG, by the Scott-Alperin Theorem, we have S ∼= S(G,Q).
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2.2 Behaviour Under Induction and Restriction

Given a finite group G and a p-subgroup Q ≤ G, the most direct path to calculating
S(G,Q) would be as follows:

(i) find an indecomposable decomposition of k[G/Q];

(ii) determine which direct summand in this indecomposable decomposition contains
a submodule isomorphic to kG.

Modern day algebraic programming languages are well-equipped to handle both of these
steps, but the first involves increasingly lengthy computation times as |G : Q| grows
larger. Our first result in this section provides a means of avoiding this inefficiency
when calculating S(G,Q).

Proposition 2.2.1. Suppose that G is a finite group and Q ≤ H ≤ G. Then S(G,Q) is
a direct summand of S(H,Q)↑G, and there is precisely one direct summand isomorphic
to S(G,Q) in any indecomposable decomposition of S(H,Q)↑G.

Proof. Since S(H,Q) is a direct summand of k[H/Q], it follows from Lemmas 1.1.4
and 1.1.19 that S(H,Q)↑G is a direct summand of k[G/Q]. Furthermore, S(H,Q)↑G

contains a submodule isomorphic to kG, since S(H,Q) contains a submodule isomorphic
to kH . Thus, by the Krull-Schmidt Theorem and the Scott-Alperin Theorem, we know
that in any indecomposable decomposition of S(H,Q)↑G there is precisely one direct
summand which is isomorphic to S(G,Q), as required.

Remark 2.2.2. This provides a more efficient means of calculating S(G,Q), through
repeated induction. To be more precise, suppose that we have a chain of subgroups:

P = H0 < H1 < H2 < · · · < Hr−1 < Hr = G.

Then the above shows that S(Hi+1, Q) is a direct summand of S(Hi, Q)↑Hi+1
Hi

for
0 ≤ i ≤ r − 1. Using this approach to calculating S(Hi, Q), we keep the dimension of
the modules we are decomposing much smaller than a more direct approach.

A partial converse to the above statement is given by the following, which was
proved in [6].
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Proposition 2.2.3. Suppose that G is a finite group and Q ≤ H ≤ G. Assume that V
is an indecomposable direct summand of k[H/L] for some subgroup L ≤ H. If S(G,Q)
is a direct summand of V↑G, then Q ∈ Sylp(L) and V ∼= S(H,Q).

Proof. By Lemma 1.1.4, we know that S(G,Q) is a direct summand of k[G/L]. Thus,
S(G,Q) is a direct summand of k[G/L] containing kG as a submodule; by (iii) of the
Scott-Alperin theorem, we therefore know that Q ∈ Sylp(L). Thus S(H,L) ∼= S(H,Q),
by Proposition 2.1.5. Furthermore, by the hypothesis and Proposition 2.2.1, we know
that S(G,Q) is a direct summand of both S(H,Q)↑G and V↑G. If V ̸∼= S(H,Q), then
we have

k[H/L] ∼= V ⊕ S(H,Q) ⊕ X

for some direct summand X and hence

k[G/L] ∼= V↑G ⊕ S(H,Q)↑G ⊕ X ↑G.

Thus k[G/L] contains two distinct direct summands in an indecomposable decomposi-
tion which are isomorphic to kG, a contradiction. So V ∼= S(H,Q), as required.

We can rephrase the previous two results slightly differently in terms of the concept
of multiplicities of Scott modules. Given a kG-module M, we say that the multi-
plicity of S(G,Q) in M is the number of distinct direct summands appearing in an
indecomposable decomposition of M which are isomorphic to S(G,Q). Proposition
2.2.1 therefore states that the multiplicity of S(G,Q) in S(H,Q)↑G is one; on the
other hand, Proposition 2.2.3 tells us that if the multiplicity of S(G,Q) in V↑G is
nonzero and V is an indecomposable p-permutation kH-module, then V ∼= S(H,Q).
The multiplicity of S(G,Q) in a general kG-module M is given by the following result,
due to Green (see [15, 4.10]). Before stating the result, we set up some notation: given
a kG-module M, we set IH(M) to be the H-fixed points of M, i.e.,

IH(M) = {m ∈ M : hm = m for all h ∈ H};



2.2 Behaviour Under Induction and Restriction 39

moreover, we let IH,G(M) = trGH(IH(M)), where trGH denotes the relative trace map,
i.e., the map trGH : IH(M) → M given by

trGH(m) =
∑

t∈[G/H]
tm

for all m ∈ IH(M).

Theorem 2.2.4. Suppose that M is a kG-module. The multiplicity of S(G,Q) in M
is equal to dim(IQ,G(M)/J), where

J = {x ∈ IQ,G(M) : α(x) = 0 for all α ∈ IQ(M∗)}.

We now turn our attention towards what happens when we restrict S(G,Q) to a
subgroup H. The following serves as a complement to Proposition 2.2.1.

Proposition 2.2.5. Suppose that G is a finite group and Q ≤ H ≤ G. Then S(H,Q)
is a direct summand of S(G,Q)↓H .

Proof. Since S(G,Q) is a relatively Q-projective cover of kG, it follows that there exists
a surjective kG-homomorphism δ : S(G,Q) → kG which is Q-split. In particular, δH :
S(G,Q)↓H → kH is a surjective kH-homomorphism which is Q-split and S(G,Q)↓H is
relatively Q-projective, since S(G,Q) has vertex Q. It follows from Proposition 1.1.12
that S(H,Q) is a direct summand of S(G,Q)↓H , as required.

We note one key difference between Propositions 2.2.1 and 2.2.5; S(H,Q)↑G has a
single direct summand in any given indecomposable decomposition which is isomor-
phic to S(G,Q), whereas S(G,Q)↓H may contain multiple distinct direct summands
isomorphic to S(H,Q) in an indecomposable decomposition, by Mackey’s Theorem.

The following more general result covers the case where Q is not necessarily a
subgroup of H.

Proposition 2.2.6. [22, Theorem 1.7] Let G be a finite group, H ≤ G and Q be
a p-subgroup of G. Suppose that R is an element which is maximal in the poset
{Qg ∩H : g ∈ G}. Then S(H,R) is a direct summand of S(G,Q)↓H .

Proof. By assumption, R = Qx ∩ H for some x ∈ G. We shall prove the result by
induction on |Q|/|R|. If |Q|/|R| = 1, then we have |Q| = |R|, and it follows that
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R ≤ H, so the result follows from Proposition 2.2.5. We may therefore assume that
|Q| > |R|. Set N = NG(R) and let S be a maximal element in the poset

Ω = {Qg ∩N : R < Qg ∩N, g ∈ G}.

We note that Ω is nonempty, since R < Qx and hence NQx(R) > R, so Qx ∩ N =
NQx(R) > R. Thus S exists and S = Qy ∩N for some y ∈ G. Note that R < S and
hence |Q|/|S| < |Q|/|R|, so by the inductive hypothesis, it follows that S(G,Q)↓N has
a direct summand U ∼= S(N,S). In particular, U↓NH(R) has a direct summand U which
contains a submodule isomorphic to kNH(R); moreover, by Mackey’s Theorem, we have

(k[N/S])↓NH(R) ∼=
⊕

n∈[NH(R)\N/S]
k[NH(R)/NH(R) ∩ nSn−1].

Note that for all n ∈ N we have

R ≤ NH(R) ∩ nSn−1 ≤ H ∩ (Qyn−1 ∩N) ≤ H ∩Qyn−1
,

so R = NH(R) ∩ nSn−1. Thus

(k[N/S])↓NH(R) ∼=
⊕

n∈[NH(R)\N/S]
k[NH(R)/R]

and it follows that U ∼= S(NH(R), R). In particular, there exists a direct summand
V of S(G,Q)↓H such that V↓NH(R) contains U as a direct summand. By the Green
correspondence and [1, Lemma 11.3], it follows that vx(V) = vx(U) = R and hence
V ∼= S(H,R), since V is the unique direct summand of U↑H with vertex R. Thus,
V ∼= S(H,R) and we are done.

2.3 Bounding dim S(G,Q)

In this section, we consider group-theoretic properties that allow us to place bounds on
the size of dim S(G,Q), along with related questions and proofs. We shall start with
the following simple observation, which motivates one of the central definitions of the
thesis.
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Proposition 2.3.1. Suppose that G is a finite group, P ∈ Sylp(G) and Q ≤ P . Then
k[P/Q] is an indecomposable direct summand of S(G,Q)↓P . In particular:

(i) dim S(G,Q) ≥ |P : Q|;

(ii) if dim S(G,Q) = |P : Q|, then S(G,Q)↓P ∼= k[P/Q];

(iii) |P : Q| divides dim S(G,Q).

Proof. The first statement follows from Proposition 2.2.5. Parts (i) and (ii) are then
immediate corollaries. For part (iii), by Mackey’s Theorem we have

k[G/Q]↓P ∼= ((kQ)↑G)↓P ∼=
⊕

s∈[P\G/Q]
(kP∩sQs−1)↑P ∼=

⊕
s∈[P\G/Q]

k[P/P ∩ sQs−1].

Now we note that dim k[P/P ∩ sQs−1] is clearly a multiple of |P : Q| for all s ∈ G and
hence any direct summand of k[G/Q] has as its dimension a multiple of |P : Q|. Thus
part (iii) holds.

We see therefore that if dim S(G,Q) is minimal, then S(G,Q) is just an extension of
k[P/Q]; describing the structure of S(G,Q) then amounts to describing this extension.
The above imposes a lower bound on dim S(G,Q); the following can be used to
determine an upper bound, and also gives a sufficient condition for when S(G,Q)↓P ∼=
k[P/Q].

Proposition 2.3.2. Suppose that G is a finite group, P ∈ Sylp(G) and Q ≤ P .

(i) If H ≤ G and Q ∈ Sylp(H), then dim S(G,Q) ≤ |G : H|.

(ii) If |G : H| = |P : Q| for a subgroup H ≤ G and Q ≤ H, then S(G,Q)↓P ∼= k[P/Q]
and S(G,Q) is a permutation kG-module.

Proof. Since Q ∈ Sylp(H), it follows that S(G,Q) ∼= S(G,H); but S(G,H) is a direct
summand of k[G/H] and dim k[G/H] = |G : H|, whence the first part follows. For
the second part, note that if |G : H| = |P : Q| and Q ≤ H, then |H| = |Q||G : P |, so
Q ∈ Sylp(H). Hence dim S(G,Q) ≤ |P : Q| by (i) and it follows that dim S(G,Q) =
|P : Q|, so S(G,Q)↓P ∼= k[P/Q]; moreover, S(G,Q) is a direct summand of k[G/H]
and we have shown that dim S(G,Q) = dim k[G/H], so in fact S(G,Q) ∼= k[G/H] and
hence S(G,Q) is a permutation kG-module.
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Example 2.3.3. Let G = Σp2 and P be a Sylow p-subgroup of G for an odd prime p.
Then it is well-known that P ∼= Cp ≀Cp; explicitly, we have P = E⋊Q, where E ∼= Epp

is an elementary abelian group of order pp generated by the p-cycles

σi = (1 + (i− 1)p, 2 + (i− 1)p, . . . , p+ (i− 1)p)

for 1 ≤ i ≤ p and Q ∼= Cp is generated by the element

w =
p∏
i=1

(i, i+ p, . . . , i+ (p− 1)p).

In particular, note that wσi = σi+1 for 1 ≤ i ≤ p− 1 and wσp = σ1.

For 1 ≤ j ≤ p− 1, define

nj =
p∏
i=1

(i, i+ p, . . . , i+ jp);

Note that np−1 = w. We may consider Σp as a subgroup of Σp2 , consisting of those
permutations acting trivially on {p+1, . . . , p2}; note that P ′ = ⟨(1, 2, . . . , p)⟩ ∈ Sylp(Σp).
Since NΣp(P ′) = P ′ ⋊ Cp−1, there exists an element τ ∈ NΣp(P ′) of order p− 1.

We set T = ⟨τ, wτ, . . . , wp−1
τ⟩ and N = ⟨nj : 1 ≤ j ≤ p − 1⟩. Then each nj acts

on T via conjugation by permuting the p distinct conjugates of τ that generate T , so
H = TN is a subgroup of G. Moreover, assume that n ∈ N and n = t for some t ∈ T ;
thus

n =
p−1∏
k=0

(wkτ)αk

with 0 ≤ αk < p − 1. If 1 ≤ i ≤ p and 0 ≤ k ≤ p − 1, we have n(i + kp) ∈
{i, i+p, . . . , i+(p−1)p} and t(i+kp) ∈ {1+kp, 2+kp, . . . , p+kp}, so n(i+kp) = i+kp
for all i and hence αk = 0 for all k, so n = 1. Thus N ∩ T = {1} and it follows that
H = T ⋊N . If

nj =
p∏
i=1

(i+ (j − 1)p, i+ jp)

for 1 ≤ j ≤ p− 1, then a direct calculation shows that nj = (nj−1 · · ·n1)nj and since
n1 = n1, it follows that each nj ∈ N . We may now check the relations in the Coxeter
presentation given in [11, 6.2] to verify that N ∼= Σp. Thus |H| = (p − 1)pp! and
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Q ≤ H, so H contains Q as a Sylow p-subgroup. It follows from Proposition 2.3.2 (i)
that

dim S(G,Q) ≤ |G : H| = p2!
(p− 1)pp! .

Remark 2.3.4. The converse to (ii) of Proposition 2.3.2 is not necessarily true. That
is, if Q ≤ P ≤ G and S(G,Q)↓P ∼= k[P/Q], then G does not necessarily contain a
subgroup H such that Q ∈ Sylp(H) and |G : H| is a prime power.

An example can be found using MAGMA: let S = Σ8, p = 7 and Q = {1}. Then S
contains a subgroup G of order 336 = 24 · 3 · 7, namely:

G = ⟨(1, 7)(2, 3)(4, 5)(6, 8), (1, 6, 2, 4, 7, 8)⟩.

Moreover, if P ∈ Syl7(G), then S(G,Q)↓P ∼= kP ∼= k[P/Q]; however, G contains no
subgroup of order 336/7 = 48.

It is possible for S(G,Q)↓P ∼= k[P/Q] whilst S(G,Q) is not a permutation kG-
module. Indeed, in the previous example, we know that S(G,Q)↓P ∼= kP , but S(G,Q)
cannot be a permutation kG-module, since by Proposition 1.1.19 (ii) we would then
have S(G,Q) ∼= k[G/H] for a subgroup H ≤ G of order |G : P | and no subgroup of this
order exists in G. On the other hand, it might be the case that for every p-subgroup
Q ≤ P , S(G,Q) is a permutation kG-module such that S(G,Q)↓P ∼= k[P/Q]. The
following accounts for one such class of groups.

Proposition 2.3.5. Suppose that G is a finite group, P ∈ Sylp(G) and N ◁ G is a
p′-group. Let G = G/N . If Q ≤ P , then InfGG(S(G,Q)) ∼= S(G,Q). Furthermore:

(i) if G = N⋊H for some subgroup H ≤ G with P ≤ H, then S(G,Q)↓H ∼= S(H,Q);

(ii) if G is p-nilpotent, then S(G,Q) is a permutation kG-module and S(G,Q)↓P ∼=
k[P/Q].

Proof. Let M = InfGG(S(G,Q)). Note first that M is clearly a p-permutation module
which contains a submodule isomorphic to kG, so by Theorem 2.1.8 we are done with
the first part if we can show that vx(M) = Q. Since S(G,Q) is relatively Q-projective,
it follows that S(G,Q) is a direct summand of N ↑G

Q
for some kQ-module N ; moreover,

by [4, 1.1.3], we have
InfGG(N ↑G

Q
) ∼= (InfQN

Q
(N ))↑GQN .



44 Scott Modules

Thus, M is a direct summand of a relatively QN -projective kG-module and hence
vx(M) ≤ Q. On the other hand, suppose that vx(M) = R < Q and φ : U →
S(G,Q) is a surjective kG-homomorphism which is R-split. Then the corresponding
homomorphism InfGG(φ) : InfGG(U) → M induced by inflation is R-split and is hence
G-split; since N acts trivially on InfGG(U) and M, it follows that φ is G-split and hence
S(G,Q) is relatively R-projective, a contradiction, since vx(S(G,Q)) = Q and R < Q.
So vx(M) = Q and it follows that M ∼= S(G,Q), as required.

If G = N ⋊ H, then H ∼= G/N and InfGH(S(H,Q)) ∼= S(G,Q), so S(G,Q)↓H ∼=
S(H,Q) follows. For (ii), note that if G is p-nilpotent, then S(G,Q) ∼= InfGP (k[P/Q])
and since k[P/Q] is a permutation kP -module, InfGP (k[P/Q]) is a permutation kG-
module.

Motivated partly by this result, we make the following definition, which will play
an important role in this thesis.

Definition 2.3.6. Suppose that G is a finite group. We say that G is p-extendible
if for every P ∈ Sylp(G) and Q ≤ P , we have S(G,Q)↓P ∼= k[P/Q].

We record for later reference the observation that p-nilpotent groups are p-extendible.

Corollary 2.3.7. If G is p-nilpotent, then G is p-extendible.

Note that p-nilpotent groups satisfy the stronger condition that S(G,Q) is a
permutation kG-module for all p-subgroups Q ≤ G, which is not present in the above
definition. The following example shows that if p is odd, then any abelian p-group
P can be a Sylow p-subgroup of some nontrivial p-extendible group G which is not
p-nilpotent.

Example 2.3.8. Suppose that P is an abelian p-group for an odd prime p, let
A = Aut(P ) and set q = pt to be the exponent of P , where t ∈ N. We let R = (Z/qZ)×,
that is to say, the multiplicative group of the integers modulo q. For each r ∈ R,
we may define a map φr : P → P by setting φr(x) = xr for all x ∈ P ; since P is
abelian, it follows that φr ∈ A for all r ∈ R, and since q is the exponent of P , any
two such automorphisms φr and φs with 1 ≤ r < s < q are distinct. Furthermore,
|R| = pt − pt−1 = pt−1(p − 1), so R contains a subgroup of order p − 1; we call this
subgroup H. Let

A(H) = {φh : h ∈ H} ≤ A.
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We now define a semidirect product G = P ⋊ A(H); thus elements of G are of
the form (x, φr) for some x ∈ P and r ∈ H, and we have a group product defined by
(x, φr) · (y, φs) = (xyr, φrs). Note first that G is not p-nilpotent, since if it were then
G = P × A(H) would be abelian; on the other hand, if x ∈ P and 1 ≤ r < s < q with
r, s ∈ H, we have

(x, φr) · (x, φs) = (x, φs) · (x, φr)

if and only if
(xr+1, φrs) = (xs+1, φsr)

if and only if xr+1 = xs+1, and this clearly cannot hold for all x ∈ P since r, s < q.
Furthermore, P ∈ Sylp(G). Finally, G is p-extendible, since if Q ≤ P , then

QH = {(u, φh) : u ∈ Q, h ∈ H}

is a subgroup of G such that |QH| = |Q||G : P |; thus QH is a subgroup of index
|P : Q| in G containing Q as a Sylow p-subgroup, so by Proposition 2.3.2 (ii), it follows
that S(G,Q)↓P ∼= k[P/Q]. So G is p-extendible but not p-nilpotent.

Propositions 2.3.2 and 2.3.5 give sufficient conditions for when S(G,Q) is an
extension of S(P,Q). This can be viewed in the more general context of when S(G,Q)
is an extension of S(H,Q) for a subgroup H such that P ≤ H ≤ G; Proposition
2.3.5 accounts for one such case, however, this depends on the existence of a normal
complement of H in G. In Proposition 2.3.2 (ii), we provided a sufficient condition for
when S(G,Q)↓P ∼= k[P/Q] which did not require the existence of a normal complement.
The following is the best generalisation of this statement we can find

Theorem 2.3.9. Suppose that Q ≤ P ≤ H ≤ G, where P ∈ Sylp(G). Suppose that
there exists a subgroup K ≤ G such that:

(i) Q ∈ Sylp(K);

(ii) Q = H ∩K;

(iii) G = HK.

Then there exists a direct summand V of k[G/Q] such that V↓H ∼= k[H/Q].
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Proof. Let T = [H/Q] be a left transversal of Q in H. The assumptions on K imply
that

|G| = |H||K|
|H ∩K|

= |H : Q||K|

so G = TK and a k-basis for kG can be taken to be TK. If we let X = [K/Q], then it
follows that a left transversal of Q in G is given by

TX = {tx : t ∈ T, x ∈ X}

and this set is a k-basis of k[G/Q].

For each t ∈ T , define a vector v(t) ∈ k[G/Q] by

v(t) =
∑
x∈X

[tx]

and let V be the subspace of k[G/Q] spanned by the vectors v(t). For each g ∈ G, we
have g · [tx] = [t′x′] for some t′ ∈ T and x′ ∈ X. Suppose that g · [tx1] = [t′x′] and
g · [tx2] = [t′′x′′], where t′, t′′ ∈ T and x′, x′′ ∈ X. Then gtx1 = t′x′q′ and gtx2 = t′′x′′q′′

for some q′, q′′ ∈ Q and hence we conclude that

gt = t′x′q′x−1
1 = t′′x′′q′′x−1

2 .

Since ⟨Q,X⟩ = K, it follows that t′ = t′′. In particular, g · v(t) = v(t′) for some t′ ∈ T .
Since V is the subspace spanned by the vectors v(t), we see that V is a permutation
kG-submodule of k[G/Q]. Moreover, if h ∈ H and ht = t′q′ for some t′ ∈ T and q′ ∈ Q,
then since Q acts on X by left multiplication, we see that

h · v(t) = h ·
(∑
x∈X

[tx]
)

=
∑
x∈X

[t′q′x] =
∑
x∈X

[t′x] = v(t′),

so V↓H ∼= k[H/Q].

We now show that V is a direct summand of k[G/Q] by constructing a direct
sum complement W. For each t ∈ T and x ∈ X∗ := X − {1}, define a vector
w(t, x) ∈ k[G/Q] by

w(t, x) = [tx] − [t]
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and let W be the subspace generated by the vectors w(t, x). If t ∈ T and g ∈ G,
then g · [t] = [t′x′] for some t′ ∈ T and x′ ∈ X and hence for all x ∈ X∗, we have
g · [tx] = [t′x′′] for some x′′ ∈ X with x′′ ̸= x′. It follows that

g · w(t, x) = [t′x′′] − [t′x′].

If x′ = 1, then g · w(t, x) = w(t′, x′′) ∈ W. On the other hand, if x′′ = 1, then
g · w(t, x) = −w(t′, x′) ∈ W . In all other cases, we get

g · w(t, x) = [t′x′′] − [t′x′] = w(t′, x′′) − w(t′, x′) ∈ W .

It follows that W is a kG-submodule of k[G/Q].

We claim that k[G/Q] = V ⊕ W . Indeed, if

∑
t∈T

αtv(t) +
∑

t∈T,x∈X∗
βt,xw(t, x) = 0

for some αt, βt,x ∈ k, then by comparing coefficients of [t], we obtain

αt −
∑
x∈X∗

βt,x = 0

for all t ∈ T . On the other hand, by comparing coefficients of [tx] it follows that
αt + βt,x = 0 for all t ∈ T and x ∈ X∗. We conclude that αt + |X∗|αt = 0, i.e.,
|X|αt = 0. But |X| and p are coprime, so we must have αt = 0 for all t ∈ T and hence
βt,x = 0 for all t ∈ T and x ∈ X∗. Thus, the vectors in the set

B = {v(t) : t ∈ T} ∪ {w(t, x) : t ∈ T, x ∈ X∗}

are linearly independent and it follows that V + W = V ⊕ W . Moreover, the k-basis B
of V ⊕ W consists of

|T | + (|X| − 1)|T | = |X||T | = dim k[G/Q]

vectors, so V ⊕ W = k[G/Q]. Thus V is a direct summand of k[G/Q] such that
V↓H ∼= k[H/Q], as required.
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Remark 2.3.10. If we assume that P = H in the above result, then k[P/Q] ∼= S(P,Q)
and K contains Q as a Sylow p-subgroup and has prime-power index in G, so (ii) of
Proposition 2.3.2 follows as a special case of this result. Moreover, V is not necessarily
indecomposable and hence it may not be the case that S(G,Q) ∼= V .

We finish the section by proving a simple property that we will find useful when
trying to determine if a group G is p-extendible or not.

Proposition 2.3.11. Let G be a finite group, P ∈ Sylp(G) and N ◁ G be a p′-group.
Then G is p-extendible if and only if G = G/N is p-extendible.

Proof. By Proposition 2.3.5, the inflation map InfGG : mod kG → mod kG induces a
one-to-one correspondence between Scott modules associated to kG and Scott modules
associated to kG. In particular, if Q ≤ P ∈ Sylp(G), then dim S(G,Q) = dim S(G,Q);
thus S(G,Q)↓P ∼= k[P/Q] if and only if dim S(G,Q) = |P : Q| if and only if
dim S(G,Q) = |P : Q| if and only if S(G,Q)↓P ∼= k[P/Q]. So G is p-extendible
if and only if G is p-extendible.

2.4 Scott Modules in the Normal Case

In this section, we shall provide a description of the Scott module S(G,Q) when
Q ≤ P ◁G and P ∈ Sylp(G). This description relies upon the associated local subgroup
NG(Q).

Given that P ◁G, the conjugate modules g⊗M of any kP -module M are themselves
kP -modules for all g ∈ G. We define

I(M) = {g ∈ G : g ⊗ M ∼= M as kP -modules}

and refer to this as the inertial subgroup of M in G. We are interested in the
inertial subgroup that corresponds to the module k[P/Q]; the following describes this
subgroup.

Lemma 2.4.1. Suppose that G is a finite group and Q ≤ P ∈ Sylp(G) with P ◁ G.
Then I(k[P/Q]) = PNG(Q).
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Proof. If g ∈ G and T = [P/Q], then g⊗k[P/Q] is a transitive permutation kP -module
with permutation basis X = {g ⊗ [t] : t ∈ T}. Thus g ⊗ k[P/Q] ∼= k[P/S], where
S = StabP (g ⊗ [1]), by Proposition 1.1.19 (ii). Since S = gQ, we therefore have
g ⊗ k[P/Q] ∼= k[P/gQ].

Thus g ∈ I(k[P/Q]) if and only if gQ ∼P Q if and only if gQ = uQ for some u ∈ P ,
which happens if and only if u−1g ∈ NG(Q) for some u ∈ P . So g ∈ I(k[P/Q]) if and
only if g ∈ PNG(Q) and the result follows.

Theorem 2.4.2. Suppose that G is a finite group and Q ≤ P ∈ Sylp(G) with P ◁ G.
Then:

(i) S(PNG(Q), Q)↓P ∼= k[P/Q];

(ii) S(PNG(Q), Q)↑G is indecomposable and hence S(G,Q) ∼= S(PNG(Q), Q)↑G.

In particular,
dim S(G,Q) = |G : P |

|NG(Q)|p′
· |P : Q|.

Proof. Note that NP (Q) = P ∩ NG(Q) is a normal Sylow p-subgroup of NG(Q) and
hence by the Schur-Zassenhaus theorem, there exists a subgroup R ≤ NG(Q) such that
NG(Q) = NP (Q) ⋊R. Furthermore,

|PNG(Q)| = |P ||NG(Q)|
|P ∩NG(Q)| = |P ||R|

and hence QR is a subgroup of PNG(Q) such that |PNG(Q) : QR| = |P : Q|. By
Proposition 2.3.2 (ii), it follows that S(PNG(Q), Q)↓P ∼= k[P/Q]. The fact that
S(I(k[P/Q]), Q)↑G is indecomposable is well-known (see, e.g., [26, Proposition 4.1]),
and we know that S(G,Q) is a direct summand of S(I(k[P/Q]), Q)↑G from Proposition
2.2.1; by Lemma 2.4.1 we have I(k[P/Q]) = PNG(Q), so (ii) follows. Thus

dim S(G,Q) = |G : PNG(Q)||P : Q| = |G : P |
|NG(Q)|p′

· |P : Q|,

as required.

This result allows us to extend the statement of Proposition 1.1.19 (iii) to the case
where P is normal in G. In particular, we have the following corollary.
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Corollary 2.4.3. Suppose that Q ≤ P ∈ Sylp(G) and P ◁ G. Then (kQ)↑G is
indecomposable if and only if NG(Q) is a p-group.

Theorem 2.4.2 also gives us the converse of Proposition 2.3.2 (ii) in the case where
P is normal in G.

Corollary 2.4.4. Suppose that G is a finite group, P is a normal Sylow p-subgroup
of G and Q ≤ P . Then S(G,Q)↓P ∼= k[P/Q] if and only if Q is contained as a Sylow
p-subgroup of a subgroup H ≤ G such that |G : H| = |P : Q|.

Proof. If Q is contained as a Sylow p-subgroup of a subgroup H ≤ G and |G : H| =
|P : Q|, then it follows that S(G,Q)↓P ∼= k[P/Q] by Proposition 2.3.2. Assume on
the other hand that S(G,Q)↓P ∼= k[P/Q]. By Theorem 2.4.2, G = PNG(Q) and since
NP (Q) is a normal Sylow p-subgroup of NG(Q), by the Schur-Zassenhaus theorem,
there exists a subgroup R ≤ NG(Q) such that |R| = |G : P |. The result now follows
with H = RQ.

Example 2.4.5. Let G = Σp2 for an odd prime p and set P to be equal to the
Sylow p-subgroup given in Example 2.3.3; thus, we recall that P = E ⋊ Q, where
E = ⟨σ1, . . . , σp⟩ with

σi = (1 + (i− 1)p, 2 + (i− 1)p, . . . , p+ (i− 1)p)

for 1 ≤ i ≤ p and Q = ⟨w⟩ with

w =
p∏
i=1

(i, i+ p, . . . , i+ (p− 1)p).

We know from [7, Section 4] that NG(P ) = P ⋊ (Cp−1)2; thus NG(P ) is generated
by P and two elements of order p − 1, which we denote by s1 and s2. We construct
s1 and s2 as follows: First, recall that we may regard Σp as a subgroup of Σp2 by
considering those permutations which act trivially on {p+ 1, . . . , p2}, and there exists
τ ∈ NΣp(σ1) of order p− 1 such that στ1 = σl1 for some 1 ≤ l ≤ p− 1. Moreover, since
CΣp(σ1) = ⟨σ1⟩, it follows that l has order p − 1 in F×

p , as otherwise we would have
lk ≡ 1 mod p for some k < p− 1 and hence

(σ1)τ
k = σl

k

1 = σ1,
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so τ k ∈ CΣp(σ1), a contradiction. We set

s1 =
p−1∏
i=0

wiτ.

Note that by construction, if n = r+ qp for some 1 ≤ r ≤ q and 0 ≤ q ≤ p− 1, we have
s1(n) = s1(r) + qp. A direct calculation now shows that ws1 = w and σs1

i = σli for all i,
so s1 ∈ NG(P ). For 1 ≤ r ≤ p and 0 ≤ q ≤ p− 1, define f(r+ qp) = (q+ 1) + (r− 1)p;
then f is an element of Σp2 of order 2. We let s2 = sf1 and note that (σ1 · · ·σp)f = w,
so it follows that ws2 = wl. If n = r + qp with 1 ≤ r ≤ p and 0 ≤ q ≤ p− 1, then

s2(r + qp) = (fs1f)(r + qp) = (fs1)((q + 1) + (r − 1)p)

= f(s1(q + 1) + (r − 1)p) = r + (s1(q + 1) − 1)p

so

σs2
i = (s2(1 + (i− 1)p), s2(2 + (i− 1)p), . . . , s2(p+ (i− 1)p)

= (1 + (s1(i) − 1)p, 2 + (s1(i) − 1)p, . . . , p+ (s1(i) − 1)p) = σs1(i).

Thus ws2 = wl and σs2
i = σs1(i) for 1 ≤ i ≤ p, so s2 ∈ NG(P ). Finally,

(s−1
2 s1s2)(r + qp) = (s−1

2 s1)(r + (s1(q + 1) − 1)p)

= s−1
2 (s1(r) + (s1(q + 1) − 1)p)

= s1(r) + qp = s1(r + qp),

so s−1
2 s1s2 = s1. Thus NG(P ) = P ⋊ ⟨s1, s2⟩, as required.

Let
R = {σa1

1 · · ·σapp wk : p divides a1 + · · · + ap + k}.

Then a direct calculation shows that R is a maximal, normal and nonabelian subgroup
of P of order pp. Set N = NG(P ); we claim that NN (R) = ⟨P, s1s2⟩. Indeed, if s = sα1 s

β
2

with 0 ≤ α, β < p−1 and σ = σa1
1 · · ·σapp wk ∈ R, then we have (σaii )sα1 = (σs

α
1
i )ai = σl

αai
i ,

so
σs

α
1 = σl

αa1
1 · · · σlαapp wk.
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Since conjugation by s2 permutes the elements σ1, . . . , σp and (wk)sβ2 = wl
βk, it follows

that σs ∈ R if and only if

lα(a1 + · · · + ap) + lβk ≡ 0 mod p.

As σ ∈ R, we know that a1 + · · · + ap ≡ −kmod p, so lβk ≡ lαkmod p; moreover,
0 ≤ α, β < p − 1 and l has order equal to p − 1, so it follows that α = β. Thus
NN(R) = ⟨P, s1s2⟩ and we deduce that |NN(R)|p′ = p − 1. It follows from Theorem
2.4.2 that

dim S(NG(P ), R) = (p− 1)2p

p− 1 = (p− 1)p.

Example 2.4.6. Set G = GL4(11) and take p = 5. Then |G|5 = 54 and if u ∈ GF (11)×

has order 5, we may take

P =





uα 0 0 0
0 uβ 0 0
0 0 uγ 0
0 0 0 uδ

 : 0 ≤ α, β, γ, δ ≤ 4


∼= C4

5

as an element of Syl5(G). Let M denote the group of monomial matrices in G; then P
is a normal subgroup of M and M = DS, where D denotes the diagonal matrices in G
and S denotes the permutation matrices in G. In particular, D ≤ CM (P ), so if Q ≤ P ,
determining NM(Q) amounts to determining NS(Q). So, for example, if we take

Q = ⟨ue11 + e22 + e33 + e44⟩,

then |NS(Q)| is equal to the number of permutation matrices in Σ4 corresponding to a
permutation which fixes 1. Thus |NS(Q)| = |Σ3| = 6 and we get |NM(Q)| = |D| · 6 =
104 · 6. So by Theorem 2.4.2, it follows that

dim S(M,Q) = |M : Q|
|NM(Q)|′5

= 24 · 104

24 · 6 = 4 · |P : Q|.

On the other hand, if
Q = ⟨ue11 + u2e22 + e33 + e44⟩,
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then the only nontrivial permutation matrix which normalises Q is that corresponding
to the permutation (3, 4), so |NS(Q)| = 2. Thus |NM(Q)| = |D| · 2, and again from
Theorem 2.4.2, we deduce that

dim S(M,Q) = |M : Q|
|NM(Q)|5′

= 12 · |P : Q|.





Chapter 3

Frobenius Groups and
p-Extendibility

In this chapter, we carry out an investigation into the properties of p-extendible groups.
We have seen already that p-nilpotent groups are themselves p-extendible and this
serves as a natural class of p-extendible groups; we add to this in our first section,
where we investigate the Scott modules associated to Frobenius groups and show that
for certain primes p, Frobenius groups are p-extendible. In the following two sections,
we prove some necessary conditions that a p-extendible group must satisfy and relate
this to questions concerned with fusion and transfer. Finally, in the last section, we
classify when a p-local subgroup of a sporadic group is q-extendible for a given prime q.

3.1 Frobenius Groups

We start by putting in place the key definitions and structure we shall need in the
results to come. We take [17] and [21] as standard references on the subject of Frobenius
groups.

Theorem 3.1.1. [21, Theorem 6.4] Suppose that G is a finite group. Then G is said
to be a Frobenius group if:

(i) G = K ⋊H for proper, nontrivial subgroups K,H ≤ G;

(ii) H ∩Hx = {1} for all x ∈ G−H.



56 Frobenius Groups and p-Extendibility

We assume for the rest of this section that G denotes an arbitrary Frobenius group.
We refer to the normal subgroup K in the above as the Frobenius kernel of G and
the complement H of K in G as the Frobenius complement of G. Both the kernel
and the complement satisfy certain strong conditions, some of which are dealt with in
the following result.

Theorem 3.1.2. [17, Theorem 10.3.1] If G = K ⋊H is a Frobenius group, then the
following conditions hold:

(i) K and H have coprime orders;

(ii) K is nilpotent;

(iii) the Sylow p-subgroups of H are cyclic if p is odd and are cyclic or generalised
quaternion if p = 2;

(iv) if |H| is odd, then H is a metacyclic group.

A consequence of (i) in the above is that if Q ≤ P ∈ Sylp(G), then we may assume
without loss of generality that either P ≤ K or P ≤ H, and this will not affect our
analysis when studying the module S(G,Q). Our first result relates to the case when
a Sylow p-subgroup P is contained in the Frobenius kernel K.

Theorem 3.1.3. Suppose that G = K⋊H is a Frobenius group, and p ∈ π(K). Then:

(i) G contains a normal Sylow p-subgroup P ;

(ii) G is p-extendible if and only if P ⋊H is p-extendible;

(iii) if P is cyclic, then G is p-extendible.

Proof. Since K is nilpotent by Theorem 3.1.2 (ii) and |K|p = |G|p, it follows that
if P ∈ Sylp(K), then P charK ◁ G and hence P ◁ G is a Sylow p-subgroup of G.
Furthermore, if we let X be equal to the product of the Sylow q-subgroups of K,
q ∈ π(K), q ̸= p, then X charK ◁ G and hence X ◁ G. Thus G = X ⋊ (P ⋊H). Part
(ii) now follows from Proposition 2.3.11. For the last part, suppose that Q ≤ P . Since
P is cyclic, it follows that Q charP and hence Q◁ (P ⋊H). Thus, from Theorem 2.4.2,
we deduce that S(P ⋊H,Q)↓P ∼= k[P/Q] for all p-subgroups Q ≤ P , and hence P ⋊H

is p-extendible, so (iii) follows from (ii).
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The study of Frobenius groups splits into the study of those which have solvable
Frobenius complements and those which have nonsolvable Frobenius complements. In
both cases, the possible structure of the complement is described by theorems which
were originally proved by Zassenhaus. We shall study the two cases separately, starting
with the case where the complement is solvable.

3.1.1 Solvable Complements

Throughout this section, we assume that G = K ⋊ H is a Frobenius group with a
Frobenius complement H which is solvable. The following lemma completely describes
the possible structure we can have in this case.

Lemma 3.1.4. [23, Chapter 37, Theorem 4.9] Suppose that G = K⋊H is a Frobenius
group and H is solvable. Then H contains a normal split metacyclic subgroup N =
A⋊B, where A,B ≤ N are cyclic and have coprime orders. Furthermore, the quotient
H/N satisfies the following:

(i) H/N is isomorphic to a subgroup of Σ4;

(ii) if O2(H) ̸∼= Q8, then H/N has order dividing 4.

In the result that follows, the groups H and N should be thought of as being the
same as the groups H and N described in the above Lemma.

Lemma 3.1.5. Suppose that H is solvable and N ◁ H, with |H : N | = 2s3t for some
s, t ≥ 0. Assume further that N = A⋊ B for cyclic subgroups A and B which have
coprime orders, and let p be an odd prime. If p > 3 or t = 0, then H is p-extendible.

Proof. Let P ∈ Sylp(H). Since p > 3 or t = 0, we may assume without loss of generality
that P ∈ Sylp(N); furthermore, A and B have coprime orders, so we may assume
that P ≤ A or P ≤ B. Assume first that P ≤ A and Q ≤ P . Then P charA ◁ N ,
so P charN ◁ H and it follows that P ◁ H. Since A is cyclic, so too is P and hence
Q charP ◁ H, i.e., Q ◁ H. Thus, by Theorem 2.4.2, we have S(H,Q)↓P ∼= k[P/Q] and
hence H is p-extendible, as required.

Suppose instead that P ≤ B. If Pq denotes a Sylow q-subgroup of A for some
q ∈ π(A), then Pq charA ◁N and it follows that Pq charN ◁H, so Pq ◁H. Since A is a
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product of normal subgroups of H, we see that A ◁ H; furthermore, A is a p′-group,
so we know from Proposition 2.3.11 that H is p-extendible if and only if H = H/A is
p-extendible. Note now that N ◁H and N ∼= B is cyclic. Thus, a Sylow p-subgroup P
of H is cyclic and we have P ◁ H; in particular, if Q ≤ P , then Q charP ◁ H and it
follows that Q ◁ H, so from Theorem 2.4.2 we deduce that S(H,Q)↓P ∼= k[P/Q]. We
conclude that H is p-extendible and hence H is p-extendible, as required.

Theorem 3.1.6. Suppose that G = K ⋊ H is a Frobenius group and p ∈ π(H).
Assume furthermore that H is solvable and any of the following are true:

(i) p > 3;

(ii) p = 3 and O2(H) ̸∼= Q8;

(iii) p = 2 and P is cyclic.

Then G is p-extendible.

Proof. We may assume without loss of generality that P ≤ H and by Proposition
2.3.11, the problem reduces to showing that H is p-extendible. By Lemma 3.1.4, we
know that if either (i) or (ii) holds, then H contains a normal subgroup N such that
|H : N | divides 24 and N is split metacyclic and satisfies the conditions of Lemma 3.1.5.
Thus, H is p-extendible and so too is G. If p = 2 and P is cyclic, then G is 2-nilpotent
(see [17, Theorem 7.6.1]), and hence G is p-extendible by Corollary 2.3.7.

3.1.2 Nonsolvable Complements

We now turn our attention towards the case where our Frobenius complement, H, is
nonsolvable. In this case, we have the following structure theorem.

Lemma 3.1.7. [32, Theorem 18.6] Suppose that G = K ⋊ H is a Frobenius group
and H is nonsolvable. Then H contains a normal subgroup N such that |H : N | ≤ 2
and N = SL2(5) ×M for some metacyclic group M of order coprime to 30.

Thus, if G = K ⋊H is a Frobenius group and H is nonsolvable with p ∈ {2, 3, 5},
then the above together with (i) of Theorem 3.1.2 tells us that a Sylow p-subgroup of G
is isomorphic to a Sylow p-subgroup of SL2(5). We describe these Sylow p-subgroups
in the following, along with some additional properties we will require.
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Lemma 3.1.8. Let G = SL2(5). Then:

(i) if P5 ∈ Syl5(G), P5 has a complement in G;

(ii) SL2(5) = (SL2(5))′, i.e., SL2(5) is a perfect group;

(iii) SL2(5) contains a subgroup of index 6.

Proof. From [8], we know that P2 ∼= Q8 and |NG(P2)| = 3 · |P2|; thus NG(P2) is a
complement for P5 in G. We take (ii) from [29, Theorem 24.17]. As a subgroup of
index 6, we may take

B =

∗ ∗

0 ∗

 ∈ SL2(5) : ∗ ∈ F5

 ≤ G.

We shall also need the following two lemmas, the first of which we take from [23,
Chapter 37, Lemma 4.5].

Lemma 3.1.9. Let P be a Sylow p-subgroup of a finite group G. If P is cyclic and
P ̸≤ G′, then G is p-nilpotent.

Lemma 3.1.10. If G = K ⋊H is a Frobenius group, then G′ = KH ′.

Proof. Note that
G/KH ′ = KH/KH ′ ∼= H/H ′,

so G/KH ′ is abelian and it follows that G′ ≤ KH ′. We claim that KH ′ ≤ G′; to
see this, it is enough to show that K ≤ G′. Let h ∈ H, h ≠ 1 and consider the
commutators k−1h−1kh, l−1h−1lh ∈ K, where k, l ∈ K. Then if k−1h−1kh = l−1h−1lh,
we have

(lk−1)h−1(lk−1)−1 = h−1.

Since G is a Frobenius group, we must have l = k, by (ii) of Definition 3.1.1. Thus,
for any h ∈ H, h ̸= 1, the map αh : K → K given by αh(k) = [k, h] is a bijection, so
K = αh(K) ≤ [K,H] ≤ G′. Thus K ≤ G′ and it follows that KH ′ ≤ G′, so G′ = KH ′,
as required.
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We can now state and prove our main result on Frobenius groups with nonsolvable
Frobenius complements.

Theorem 3.1.11. Suppose that G = K⋊H is a Frobenius group and H is nonsolvable.
Let p ∈ π(H), p > 2 and Q ≤ P ∈ Sylp(G).

(i) If p > 3, then dim S(G,Q) ≤ 2|P : Q|.

(ii) If p = 3, then dim S(G,Q) ≤ 4|P : Q|.

Proof. By Theorem 3.1.2, we assume without loss of generality that P ≤ H. Let
N = SL(2, 5) ×M ≤ H be the subgroup given by Lemma 3.1.7 and note that H ′ ≤ N ,
since H/N is abelian of order less than or equal to 2. Moreover, M is metacyclic, so
there exists a normal cyclic subgroup A of M such that M/A is cyclic. Finally, we
know that P is cyclic for all p ≥ 3, by Theorem 3.1.2.

By Lemma 3.1.10, G′ = KH ′, so if P ̸≤ H ′, then P ̸≤ G′. But then Lemma 3.1.9
implies that G is p-nilpotent, and hence p-extendible, so the bound on the dimension
holds in this case.

We may therefore assume that P ≤ H ′ ≤ N . If P ̸≤ N ′, then N is p-nilpotent by
Lemma 3.1.9 and we hence have N = Op′(N) ⋊ P . Then S = K ⋊ (Op′(N) ⋊Q) is a
subgroup of G which contains Q as a Sylow p-subgroup. By Proposition 2.3.2 (i), it
follows that

dim S(G,Q) ≤ |G : S| = |K||H|
|K||Op′(N)||Q|

≤ 2 |N |
|Q||Op′(N)| = 2|P : Q|

and both (i) and (ii) hold in this case.
We therefore assume that P ≤ N ′. Note that

N ′ = (SL2(5))′ ×M ′ ≤ SL2(5) × A,

by (ii) of Lemma 3.1.8 and the fact that M/A is abelian. If p > 5, then we may
assume that P ≤ A. Since P charA, it follows that P ◁ A ◁ M ◁ N ◁ H and hence
P charH. Thus Q charP charH and we deduce that Q ◁ H. By the Schur-Zassenhaus
theorem, P has a complement R ≤ H of order |H : P |. Then S = K ⋊ (Q⋊ R) is a
subgroup of G such that |G : S| = |P : Q|, so it follows from Proposition 2.3.2 (ii) that
S(G,Q)↓P ∼= k[P/Q] and the bound on the dimension holds in this case.
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If p = 5, then P ≤ SL2(5) has order 5 and we may assume that Q = {1}, since if
Q = P , then S(G,P ) ∼= kG by Proposition 2.1.6. By Lemma 3.1.8, P has a complement
in SL2(5) and hence has one in N . Let the complement of P in N be denoted R; then
S = K ⋊R has index

|G : S| = |H : R| = 10 = 2|P : Q|.

Thus dim S(G, {1}) ≤ 2|P : Q|, by Proposition 2.3.2 (i), and all cases in (i) have been
accounted for.

Finally, if p = 3, then P ≤ SL2(5) has order 3 and we may again assume that
Q = {1}. Then Lemma 3.1.8 implies that SL2(5) contains a subgroup of index 6 and
hence so does N . Calling this subgroup R, it follows that S = K ⋊R has index

|G : S| = |H : R| ≤ 2|N : R| = 12 = 4|P : Q|.

Thus dim S(G, {1}) ≤ 4|P : Q|, which gives the bound in (ii).

Remark 3.1.12. Note that the case where H is a nonsolvable Frobenius complement
still provides another class of p-extendible groups; in contrast to Theorem 3.1.6, the
p-extendible groups in question are of the form K ⋊N , where N ∼= SL2(5) ×M and
M is metacyclic of order coprime to 30, and we assume that p > 3.

3.2 p-Extendibility

In the next two sections, we shall investigate necessary conditions that are required for
a finite group G to be p-extendible. We have seen already that p-nilpotent groups are
the most basic example of p-extendible groups; furthermore, a group G is p-nilpotent if
and only if a Sylow p-subgroup P of G controls G-fusion of P in G. A similar necessary
condition exists for p-extendible groups.

Proposition 3.2.1. Suppose that G is a finite p-extendible group and P ∈ Sylp(G).
If Q,Q′ ≤ P and Q ∼G Q

′, then Q ∼P Q
′.
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Proof. By assumption, we have S(G,Q)↓P ∼= k[P/Q] and S(G,Q′)↓P ∼= k[P/Q′].
Furthermore, the fact that Q ∼G Q

′ implies that S(G,Q) ∼= S(G,Q′), by Proposition
2.1.5. Thus k[P/Q] ∼= k[P/Q′] and by Proposition 2.1.5 again, we have Q ∼P Q

′.

Motivated by this observation, we make the following definition.

Definition 3.2.2. Suppose that G is a finite group, H ≤ G and P ∈ Sylp(G) with
P ≤ H ≤ G. Suppose that G,H and P satisfy the following property:

for all Q,Q′ ≤ P , if Q ∼G Q
′, then Q ∼H Q′.

Then we say that H controls the subgroup fusion of P in G.

Remarks 3.2.3. (i) We have shown that in any p-extendible group G, a Sylow
p-subgroup necessarily controls its own subgroup fusion in G, but the reverse
implication does not necessarily hold. For a counterexample, we may take any
finite group G such that |P | = p but P(kG) is not an extension of kP ; then P

clearly controls the subgroup fusion of P in G, but it is not p-extendible (for an
example of such a group, we refer to [29]).

(ii) We observe that the above definition bears a resemblance to control of G-fusion
in fusion systems, but the two are different; in particular, P controls the G-fusion
of P in G if and only if G is p-nilpotent, which underlines one key difference (see
[28] for an explanation on the terminology). To understand where this difference
comes from, note that in the fusion system FP (G), if P controls G-fusion and
Qg = Q′ ≤ P , then there exists a homomorphism cu : Q → Q′ induced by
conjugation for some u ∈ P such that cg = cu; on the other hand, what we call
control of subgroup fusion does not require that Q be conjugate to Q′ via the
same homomorphism.

Recall that a group G is p-normal if Z(P ) is weakly closed in P with respect to
G for a given P ∈ Sylp(G). The following imposes a similar condition on the normal
subgroups of P in a p-extendible group.

Proposition 3.2.4. Suppose that G is a finite p-extendible group and let P ∈ Sylp(G).
Then every normal subgroup of P is weakly closed in P with respect to G. In particular,
G is p-normal.
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Proof. Let Q ◁ P and suppose that Q ∼G Q
′ with Q′ ≤ P . Since G is p-extendible, P

controls the subgroup fusion of P in G, so it follows that Q ∼P Q
′, i.e., Qu = Q′ for

some u ∈ P . But Q ◁ P , so Q = Q′. Thus Q is weakly closed in P with respect to
G.

We have mentioned that p-nilpotent groups are p-extendible, but the reverse
implication does not hold in general, as we saw in Example 2.3.8. On the other hand,
under certain circumstances, it might be the case that a group G is p-extendible if and
only if it is p-nilpotent. Our next main result accounts for one such situation, and will
require the following lemmas.

Lemma 3.2.5. Suppose that W ≤ Z(P ) and W is weakly closed in P with respect to
G. Then NG(W ) controls G-fusion of P in G.

Proof. Suppose that x, xg ∈ P for some g ∈ G. Then W,W g ≤ CG(xg) and it follows
that W ≤ P ′ and W g ≤ (P ′)c for some P ′ ∈ Sylp(CG(xg)) and c ∈ CG(xg). Thus,
we deduce that W gc−1 ≤ P ′ and hence W gc−1 and W belong to a common Sylow
p-subgroup of G; since W is weakly closed in P with respect to G, it follows that
W = W gc−1 . In particular, we have xgc−1 = (xg)c−1 = xg and gc−1 ∈ NG(W ), so the
statement follows.

Lemma 3.2.6. Suppose that G is a finite group and P ∈ Sylp(G).

(i) If G is p-nilpotent and Q◁P is normal in G, then |CG(Q)| is divisible by |G : P |.

(ii) If p = min π(G) and every maximal subgroup of P is normal in G, then G is
p-nilpotent.

Proof. Part (ii) is given in [10, Lemma 2.6]. For (i), note that if G is p-nilpotent, then
|Op′(G)| = |G : P |. If u ∈ Q and x ∈ Op′(G), then uxu−1x−1 ∈ Q ∩ Op′(G) = {1}, so
ux = xu and it follows that Op′(G) ≤ CG(Q), whence the result follows.

We have seen that in a p-extendible group G, every normal subgroup of a Sylow p-
subgroup is weakly closed in G and this allows us to establish that in some cases, being
p-extendible is equivalent to being p-nilpotent. Our method of proof in the following is
based heavily on that in [10, Theorem 3.1], which was the original inspiration for this
result.
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Theorem 3.2.7. Suppose thatG is a finite group which is p-solvable with p = min π(G).
Assume further that P ∈ Sylp(G) and every normal subgroup of P is weakly closed in
P with respect to G. Then G is p-nilpotent.

Proof. We assume for a contradiction that G is a counterexample of minimal order.
Throughout the proof, we shall make use of the fact that if P ≤ H < G, then H

is p-nilpotent; indeed, it is clear H satisfies the hypothesis of the theorem and since
|H| < |G|, the minimal assumption on G forces H to be p-nilpotent.

Note that Op′(G) = {1}: indeed, by Proposition 1.2.5 (ii), if Op′(G) > {1}, then
G/Op′(G) is a group of order smaller than |G| satisfying the hypothesis of the theorem
and hence G/Op′(G) is p-nilpotent, so G is p-nilpotent as well, contrary to assumption.
Since Op′(G) = {1} and G is p-solvable, we have CG(Op(G)) ≤ Op(G) by [34, Theorem
9.31].

We next show that P is nonabelian. Assume that P is abelian and let R ∈
Sylr(NG(P )) with r ≠ p. If M is a maximal subgroup of P , it is subnormal and weakly
closed in P with respect to PR and is hence normal in PR, by Proposition 1.2.5 (i);
thus PR is p-nilpotent, by Proposition 3.2.6 (ii). In particular, R ≤ CG(P ), so it
follows that NG(P ) = CG(P ); by Burnside’s theorem, we see that G is a p-nilpotent
group, contrary to assumption. So P must be nonabelian.

Since G is p-solvable and P < G, there exists a prime r ∈ π(G) with r ̸= p and a
Sylow r-subgroup R of G such that PR ≤ G, by [17, Theorem 6.3.5]. If PR < G, then
PR is p-nilpotent and hence |R| divides |CG(Op(G))| by Proposition 3.2.6 (i), which
contradicts the fact that CG(Op(G)) ≤ Op(G). So G = PR.

Next we show that NG(P ) = P and P is a maximal subgroup of G. Note that
NG(P ) < G, as otherwise every maximal subgroup of P would be weakly closed and
subnormal in G and hence G would be p-nilpotent. On the other hand, if P < M < G,
then M is p-nilpotent and hence |M : P | divides |CM (Op(G))| by Proposition 3.2.6 (i),
which is a contradiction since CM (Op(G)) ≤ Op(G). So P = NG(P ) and P is maximal
in G.

Since P is maximal in G, we either have NG(Z(P )) = P or NG(Z(P )) = G. If
NG(Z(P )) = P , then it follows from Lemma 3.2.5 that P controls the G-fusion of P in
G and G is hence p-nilpotent. So we must have NG(Z(P )) = G and hence Z(P ) ◁ G.
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We now claim that Op(G) = Z(P ). Since P is maximal in G, we know that
Φ(G) ≤ Op(G); if Φ(G) ̸= {1}, then G/Φ(G) satisfies the hypothesis of the theorem
and hence is p-nilpotent, which implies that G is p-nilpotent (see [34, 9.3.4]), a
contradiction. So Φ(G) = {1}. By [27, Lemma 2.8], it follows that

Op(G) = R1 ×R2 × · · · ×Rt

for some minimal normal subgroups Ri of G. In particular, G/Ri satisfies the hypothesis
of the result, so we have

K = G/R1 × · · · ×G/Rt

is a p-nilpotent group. If t > 1, then G is isomorphic to a subgroup of K, and hence G
is p-nilpotent; we must therefore have t = 1 and Op(G) is a minimal normal subgroup
of G. Since Z(P )◁G, it follows that Z(P ) = Op(G) and hence CG(Z(P )) = Z(P ). But
CG(Z(P )) ≤ P and hence Z(P ) = P , which is a contradiction, since P is nonabelian.
Thus no minimal counterexample exists, and we are done.

Corollary 3.2.8. Suppose that G is a finite group and G is p-solvable with p =
min π(G). Then G is p-extendible if and only if G is p-nilpotent.

Proof. If G is p-extendible, then every normal subgroup of P is weakly closed in P

with respect to G by Proposition 3.2.4 and hence by Theorem 3.2.7, we have that G is
p-nilpotent. On the other hand, if G is p-nilpotent, then G is p-extendible by Corollary
2.3.7.

3.3 The Focal Subgroup

We prove a few results related to the focal subgroup in this section and finish with
a conjecture relating to the control of G-fusion in p-extendible groups. We start
with a result which serves as a useful tool for finding p-groups Q ≤ P such that
S(G,Q)↓P ∼= k[P/Q].

Proposition 3.3.1. Suppose that G is a finite group and P ∈ Sylp(G). If FocP (G) ≤
Q ≤ P , then S(G,Q)↓P ∼= k[P/Q].
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Proof. By Proposition 1.2.4 (i), there exists a normal subgroup N of G such that
G/N ∼= P/FocP (G) and FocP (G) ≤ N . Thus

|N | = |G : P ||FocP (G)|

and FocP (G) ∈ Sylp(N). Since FocP (G) ≤ P , we have Q ∩N = FocP (G) and hence

|QN | = |Q||N |
|Q ∩N |

= |Q|
|FocP (G)| |G : P ||FocP (G)| = |Q||G : P |.

By Proposition 2.3.2 (ii), the result follows.

We recall that the focal subgroup relates to the control of p-transfer in a group. In
particular, for a p-extendible group, the following statement concerning focal subgroups
exists.

Theorem 3.3.2. Suppose that P ∈ Sylp(G) and G is p-extendible. Then FocP (G) =
FocP (NG(P )).

Proof. Let N = NG(P ). Recall that

FocP (G) = ⟨P ∩N ′, P ∩Q′ : Q ∈ Sylp(G)⟩

and FocP (NG(P )) = P ∩N ′,

by Grün’s theorem. Thus, in order to prove the result, it is sufficient to show that
P ∩ Q′ ≤ P ∩ N ′ for all Q ∈ Sylp(G). Suppose that x ∈ G, and set L = P ∩ (P x)′.
Then

L = P ∩ (P x)′ = P ∩ (P ′)x,

so Lx−1 = P x−1 ∩ P ′ ≤ P . Since G is p-extendible, it follows from Proposition 3.2.1
that Lu = Lx

−1 for some u ∈ P . In particular, we have

L = Lx
−1u−1 = (P x−1 ∩ P ′)u−1 = P x−1u−1 ∩ P ′u−1 ≤ P ′,

since P ′ ◁ P and u ∈ P and it follows that L ≤ P ′ ≤ N ′. Since L ≤ P , we get that
L ≤ P ∩N ′, and the result follows.
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3.4 p-Local Subgroups in the Sporadic Groups

In this section, we shall investigate the following question:

“Suppose that G is a sporadic group, x is an element of order p for some
prime p ∈ π(G) and N = NG(⟨x⟩). For what primes q ∈ π(N) is N
q-extendible?”

Recall that such a subgroup N is an example of a p-local subgroup of G; the structure
of these normalisers was developed through much of the first half of the 1900s as part of
the classification of the finite simple groups and is included in [18] and [19], the latter
of which also includes the structure of the local subgroups NG(P ), where P ∈ Sylp(G)
and p ∈ π(G). In the sections that follow, we shall provide a complete answer to the
above question using the tables in [18], barring a few small exceptions. At times, we
will need additional structure concerning N to support our arguments, and for this we
will rely on the database of sporadic groups found at [3]; code to support our findings
in MAGMA is provided in the appendix if the reader wishes to check our assertions.

Before proceeding to outline our methodology, we note that the question of p-
extendibility for the sporadic groups is already settled, by the following result of Malle
and Weigel, proved in [30].

Theorem 3.4.1. Let G be a finite nonabelian simple group with P(kG)↓P ∼= kP ,
where P ∈ Sylq(G) for a prime q ∈ π(G). Then one of the following holds:

(i) G = Aq and q ≥ 5;

(ii) G = L2(q) and q ≥ 5;

(iii) G = Ln(r) and (rn − 1)/(r − 1) = qf for f ∈ N;

(iv) G = M11 and q = 11; or

(v) G = M23 and q = 23.

In particular, since M11 has a Sylow 11-subgroup of order 11 and M23 has a Sylow
23-subgroup of order 23, it follows that M11 is 11-extendible and M23 is 23-extendible
and this completely classifies the sporadic groups which are q-extendible for a given
prime q. We shall find this result of use in the arguments to come, since many of
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the above groups appear as subgroups or subquotients of the p-local subgroups of the
sporadic groups.

3.4.1 Methodology

We start by outlining some techniques which allow us to check a p-local subgroup N for
q-extendibility. Throughout, N will denote a fixed finite group, but should be thought
of as representing a particular p-local subgroup of a sporadic group, and P will denote
a Sylow q-subgroup of N for some q ∈ π(N). The following omnibus lemma accounts
for a number of the standard cases that appear in the tables in [18].

Lemma 3.4.2. Suppose that N is a finite group and q ∈ π(N).

(i) If N is q-nilpotent, then N is q-extendible.

(ii) If H ◁N and q /∈ π(H), then N is q-extendible if and only if N/H is q-extendible.

(iii) If N is a metacyclic group and there exists H ◁ N such that H is cyclic, N/H
is cyclic and H is a Hall subgroup of N , then N is q-extendible for all primes
q ∈ π(N).

(iv) If P ∈ Sylq(N), |P | = q and N contains a subgroup of index q, then N is
q-extendible.

Proof. Parts (i) and (ii) are just restatements of Propositions 2.3.7 and 2.3.11 re-
spectively. For (iii), assume that q ∈ π(H) and P ∈ Sylq(N). Then we must have
P ≤ H and P charH ◁N , so P ◁ N . Thus, if Q ≤ P , we have Q charP ◁ N and hence
Q◁N . From Theorem 2.4.2, it follows that S(N,Q)↓P ∼= k[P/Q]. So N is q-extendible
if q ∈ π(H); otherwise, q ∈ π(N/H) and we know that N/H is q-extendible, since
N/H is abelian and hence q-nilpotent. By (ii), it follows that N is q-extendible, so
(iii) follows. For the last part, the assumptions imply that S(N, {1})↓P ∼= kP by
Proposition 2.3.2 (ii), and S(N,P )↓P ∼= kP ∼= k[P/P ] by Proposition 2.1.6, so it follows
that N is q-extendible.

The remaining cases where we have q-extendibility use an approach based on the
following lemma.
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Lemma 3.4.3. Suppose that N is a finite group and P ∈ Sylq(N) for some q ∈ π(N).
Suppose that for every Q ≤ P , Q ̸= P , there exists a subgroup H ≤ N such that
Q ≤ H and |H| = |Q||N : P |. Then N is q-extendible.

Proof. By Proposition 2.3.2 (ii), the assumptions imply that S(N,Q)↓P ∼= k[P/Q]
for all Q ≤ P , Q ̸= P , and S(N,P )↓P ∼= kP ∼= k[P/P ] by Proposition 2.1.6, so N is
q-extendible.

Thus, the following algorithm may be used to check a sufficient condition for a
group N to be q-extendible.

Algorithm 1. Suppose that N is a finite group and q ∈ π(N). The following algorithm
returns true if N is q-extendible.

Step 1 : Fix a Sylow q-subgroup P of N and let X denote the set of proper subgroups
of P . Set r = logq(|P |).
Step 2 : Let Y denote the set of representatives of N -conjugacy classes of subgroups in
N ; for 0 ≤ i ≤ r − 1, let Y (i) denote the set of representatives in Y of order qi|N : P |.
If Y (i) = ∅ for any i, then terminate the algorithm and return false.
Step 3 : Pick Q ∈ X at random and for each u ∈ P , check that Qu is a subgroup of
some element in Y (i), where |Q| = qi. If there exists u ∈ P such that this holds, then
set X to equal X −QP , where

QP = {Qu : u ∈ P}

and then repeat Step 3. Otherwise, return false.
Step 4 : Continue repeating Step 3 until X = ∅, at which point return true.

Note that if Algorithm 1 returns false for a given finite group N and prime
q ∈ π(N), it does not necessarily mean that N is not q-extendible. We include a
MAGMA implementation of the above algorithm in the appendix of this thesis, and we
shall clearly indicate in the text where we have utilised it to verify the q-extendibility
of a given p-local subgroup.

This covers the techniques we can employ to show that N is q-extendible, so we now
turn our attention to how we might show that N is not q-extendible. The bulk of our
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arguments in this direction work by showing that S(N, {1})↓P ̸∼= kP , i.e., the projective
cover of kN is not an extension of kP . Following the notation in [30], for a finite group
N and q ∈ π(N), we shall set cq(N) = dim(S(N, {1}))/|N |q. By Proposition 2.3.1
(iii) we know that cq(N) ∈ N, and if cq(N) > 1, then N is clearly not q-extendible.
Moreover, we have the following.

Lemma 3.4.4. [30, Proposition 2.2] Let N be a finite group, H ◁ N and q ∈ π(N).
Then cq(N) ≥ cq(H)cq(N/H). Furthermore, if H is q-solvable, then cq(N) = cq(N/H),
and if N/H is solvable, then cq(N) = cq(H).

Sometimes, studying the projective module S(N, {1}) is not sufficient, and in this
situation we need to show that dim S(N,Q) > |P : Q| for some nontrivial subgroup
Q < P to determine that N is not q-extendible. To assist us with this, we make the
following observation.

Lemma 3.4.5. Let N = H×K be a finite group and q ∈ π(N). Suppose that q divides
both |H| and |K|, PH ∈ Sylq(H) and PK ∈ Sylq(K), so that P = PH × PK ∈ Sylq(N).
Assume that there exists x ∈ Z(PH) such that:

(i) o(x) = q;

(ii) xh ∈ PH − {x} for some h ∈ H.

Then N is not q-extendible.

Proof. We know that Z(PK) > 1, so let u ∈ Z(PK) be an element of order q. Now set
Z = ⟨xu⟩; then Z ◁ P , but Zh = ⟨xhu⟩ ≤ P and Zh ̸= Z. Thus Z is not weakly closed
in P with respect to N and N is hence not q-extendible, by Proposition 3.2.4.

Examples 3.4.6. (i) If N = H × Σ3 and 3 ∈ π(H), then (1, 2, 3) ∈ Z(P ), where
P = ⟨(1, 2, 3)⟩ ∈ Syl3(Σ3). Furthermore, (1, 2, 3)(1,2) = (1, 3, 2) ∈ P , so by
Lemma 3.4.5, it follows that N is not 3-extendible.

(ii) If N = H × A4 and 2 ∈ π(H), then P = ⟨(1, 2)(3, 4), (1, 3)(2, 4)⟩ ∈ Syl2(A4).
Furthermore, (1, 2)(3, 4)(1,3,2) = (1, 3)(2, 4) ∈ P , so it follows from Lemma 3.4.5
that N is not 2-extendible.
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(iii) If N = H ×D2q and q ∈ π(H) with q odd, then N is not q-extendible. Indeed, if
we let

D2q = ⟨a, b : aq = b2 = 1, ab = ba−1⟩,

then ab = a−1 and so it follows from Lemma 3.4.5 that N is not q-extendible.

We shall also find the following of use.

Lemma 3.4.7. Let N be a finite group and H ◁ N be a q-group for some q ∈ π(N).
Set N = N/H and suppose that P ∈ Sylq(N). If there exists Q ◁ P such that Q is not
weakly closed in P with respect to N , then N is not q-extendible.

Proof. We have P = P/H for some P ∈ Sylq(N) with H ≤ P and Q = Q/H for some
Q ◁ P with H ≤ Q. Furthermore, there exists [x] ∈ N with x ∈ N such that Q[x] ≠ Q

and Q
[x] ≤ P . Since Q[x] = Qx, it follows that Qx ≠ Q, and hence Q is not weakly

closed in P with respect to N . So N is not q-extendible by Proposition 3.2.4.

The final tool we have to test for non q-extendibility relates to the following two
statements concerned with subgroups of N .

Lemma 3.4.8. Suppose that N is a finite group and N is a q-extendible group for
some q ∈ π(N). Let P ∈ Sylq(N).

(i) If P ≤ H ≤ N , then H is q-extendible.

(ii) If H ◁ N and |N : H| = qa for some a ∈ N0, then H is q-extendible.

Proof. The first statement follows easily from Proposition 2.2.5. For the second, suppose
that PH ∈ Sylq(H) and Q ≤ PH with S(H,Q)↓PH ̸∼= k[PH/Q]. Then dim S(H,Q) >
|PH : Q|, and by Green’s indecomposability criterion, S(H,Q)↑N is indecomposable.
Thus S(N,Q) ∼= S(H,Q)↑N and has dimension

|N : H| · (dim S(H,Q)) > |N : H||PH : Q| = |P : Q|,

which contradicts the q-extendibility of N . So H is q-extendible.

This covers the theoretical means we have to show that a given p-local subgroup N
is not q-extendible. At times however, the structure provided in the tables in [18] is



72 Frobenius Groups and p-Extendibility

too vague for us to argue theoretically, and in these cases we may show that N is not
q-extendible using the following algorithm.

Algorithm 2. Suppose that N is a finite group and q ∈ π(N). The following algorithm
returns true if N is not q-extendible.

Step 1: Fix a Sylow q-subgroup P of N and let X denote the set of normal subgroups
in P .
Step 2: For each Q ∈ X, let C(Q) = {Qn : n ∈ N,Qn ≤ P}. If |C(Q)| > 1, then
return true.
Step 3: If |C(Q)| = 1 for all Q ∈ X, return false.

Note that if this algorithm returns false for a given finite group N and prime
q ∈ π(N), it does not necessarily mean that N is q-extendible. As with Algorithm 1,
we include a MAGMA implementation of this algorithm in the appendix.

3.4.2 Notation

We now explain the notation used in the tables; most of this is taken from [18, Section
5.3], but we repeat it here for the convenience of the reader. Within each table, we list
the possible classes of conjugacy classes of elements of order p that lie in the particular
sporadic group G; these are labelled following the notation in [18] as pA, pB, pC, . . .
where multiple such classes arise for a specific prime p. Corresponding to the class pX,
we describe the structure of the normaliser NG(⟨x⟩), where x is an element of type pX.

We represent the cyclic group of order n by simply writing n; this should not be
confused with pa+b, which represents a certain group with centre of order pa and of
exponent p if p > 2 (e.g., an extraspecial group). Additionally, the symbol n represents
a group of order n, with no additional structure implied about n.

The elementary abelian group of order 2n is represented by E2n , while (D∗
8)n

and (Q∗
8)n represent a 2-group which is a central product of n copies of D8 and Q8

respectively. If A and B are groups of any type, then AB represents a group X which
contains a normal subgroup H such that H ∼= A and X/H ∼= B. Furthermore, A ·B
and A#B represent a group X of type AB with the following additional constraints:

(i) A ·B implies that CX(H) ≤ H and X splits over H;
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(ii) A#B implies that H ̸≤ Z(X) and X does not split over H.

We write N to denote a fixed p-local subgroup of G, and when we are studying a
particular p-local subgroup N , we write Pq to represent a Sylow q-subgroup of N .

To avoid unnecessary repetition, we identify a class of possible structures for N
where the q-extendibility can be determined by general arguments. Thus, given a
p-local subgroup N , we say that it is of type (X) with X ∈ {A,B,C,D,E, F,G} if it
satisfies the corresponding structure outlined in the following list.

(A) N = n ·m for coprime integers n and m.
If this occurs, then N is q-extendible for all primes q ∈ π(N) by Lemma 3.4.2 (iii).

(B) N = HK, where K = Aq or K = Σq , π(N) = π(K), q ≥ 5 is prime and q /∈ π(H).
By Theorem 3.4.1 and Lemma 3.4.4, we know that if K = Aq, then N is q-extendible
and not s-extendible for all s ∈ π(N) − {q}. On the other hand, if K = Σq, then since
Σq contains Σq−1 as a subgroup of index q, it follows that K is q-extendible by Lemma
3.4.2 (iv) and hence so is N , by Lemma 3.4.2 (ii); moreover, Σq contains Aq as a normal
subgroup and hence cs(K) > 1 for all s ∈ π(N) − {q}, since cs(Aq) > 1 for all such s,
so cs(N) > 1. We conclude that N is not s-extendible for all s ∈ π(N) − {q}.

(C) N = HLn(r), where π(N) = π(Ln(r)), (rn− 1)/(r− 1) = q for a prime q, q /∈ π(H)
and |Ln(r)|q = q.
By Theorem 3.4.1, we know that cs(Ln(r)) > 1 for all s ∈ π(N) − {q} and hence
cs(N) > 1 by Lemma 3.4.4, so N is not s-extendible if s ∈ π(N) − {q}. On the other
hand, Ln(r) is q-extendible by Theorem 3.4.1 and since q /∈ π(H) it follows that N is
q-extendible as well, by Lemma 3.4.2 (ii).

(D) N = H ×K, where K = Aq or K = Σq, π(N) = π(K), q ≥ 5 is a prime number
and q ∈ π(H).
By Theorem 3.4.1, we know that if K = Aq, then cs(K) > 1 for all s ∈ π(N) − {q},
and hence cs(N) > 1 for all such s by Lemma 3.4.4, so N is not s-extendible for all
s ∈ π(N) − {q}. Note that P = ⟨(1, 2, . . . , q)⟩ ∈ Sylq(K) and the conjugacy class of
(1, 2, . . . , q) in Aq is half the size of the conjugacy class of (1, 2, . . . , q) in Σq. Thus,
(1, 2, . . . , q) ∼Aq (1, 2, . . . , q)α for some α ∈ {2, . . . , q − 1}, so there exist two distinct
nontrivial powers of (1, 2, . . . , q) which are conjugate in K and by Lemma 3.4.5 it
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follows that N is not q-extendible. We conclude that N is not s-extendible for all
primes s ∈ π(N).

(E) N = H Aut(S) for a simple group S such that cq(S) > 1 for all q ∈ π(S) and
π(N) = π(S).
Since S ◁Aut(S), it follows that cq(Aut(S)) > 1 and hence cq(N) > 1 for all q ∈ π(N),
by Lemma 3.4.4. Thus N is not q-extendible for all primes q ∈ π(N).

(F ) N = HS for a simple group S such that cq(S) > 1 for all q ∈ π(S) and
π(N) = π(S).
By Lemma 3.4.4, we know that cq(N) > 1 for all q ∈ π(N), so N is not q-extendible
for all primes q ∈ π(N).

(G) There exists H ◁ N such that π(N) = π(H) and cq(H) > 1 for all q ∈ π(N).
Since cq(H) > 1 for all q ∈ π(N) and H◁N , it follows from Lemma 3.4.4 that cq(N) > 1
for all q ∈ π(N), so N is not q-extendible for all q ∈ π(N). Note that we have this
type if the normal subgroup H is of type (D), (E) or (F ).

Our analysis is carried out on a case-by-case basis and for each case we set N to
equal NG(⟨x⟩), where x is an element of the type being studied in that case. If we
wish to refer back to a prior case, we do so using the terminology (X, Y ), where X
denotes the specific sporadic group and Y refers to the particular conjugacy class
of p-element: so, e.g., (M11, 2A) refers to the analysis which was carried out when
studying G = M11 and N = NG(⟨x⟩) for an element x ∈ M11 of type 2A. We shall
omit from our discussion those cases which fall under any of the types (A) − (G), but
we clearly indicate when a given p-local subgroup is of such a type in the tables.

3.4.3 Mathieu Groups

There are five sporadic Mathieu groups, which were originally discovered by Émile
Mathieu between 1860 and 1873. As the oldest class of sporadic groups, it is unsurprising
that they have the simplest structure amongst the four classes. Our results involving
the five Mathieu groups are summarised in Tables 3.1 - 3.5.
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G = M11, |G| = 24 · 32 · 5 · 11

2A: If q = 2, then from [8, Lemma 1], we know that a Sylow 2-subgroup of N is given by:

P2 =
〈
A :=

0 1
1 −1

 , B :=
 0 1
−1 0

〉 ∼= SD16.

If we let Q = ⟨A2⟩, then Q ◁ P2, but

QM = ⟨A6B⟩ ≠ Q, where M =
1 1
0 1

 .
Thus N is not a 2-extendible group by Proposition 3.2.4. On the other hand, P2 is a
subgroup of index 3 in GL2(3) and |P3| = 3, so it follows that N is 3-extendible, by
Lemma 3.4.2 (iv).

3A: If q = 2, then Σ3 is 2-nilpotent and hence N is 2-nilpotent, so N is 2-extendible. On
the other hand, N is not 3-extendible, by Example 3.4.6 (i).

G = M12, |G| = 26 · 33 · 5 · 11

2B: If q = 2, then N is not 2-extendible, by Algorithm 2. On the other hand, Σ3 is
3-extendible, and hence so is N , by Lemma 3.4.2 (ii).

3A: Since N is 2-nilpotent, it is 2-extendible. On the other hand, N is not 3-extendible, by
Algorithm 2.

3B: If q = 2 or 3, then we know that N is not q-extendible, by Examples 3.4.6 (i) and (ii).

5A: We know that P5 ◁ N , so N ∼= 5 · 8 and hence it follows that N is q-extendible for all
q ∈ π(N), by Lemma 3.4.2 (iv).

G = M22, |G| = 27 · 32 · 5 · 7 · 11

2A: Let P = ⟨(1, 2, 3, 4), (1, 2)(3, 4)⟩ ∈ Syl2(Σ4). Then Q = ⟨(1, 3)(2, 4)⟩ ◁ P and Q is not
weakly closed in P with respect to Σ4, since Q(2,3) = ⟨(1, 2)(3, 4)⟩ ̸= Q. By Lemma
3.4.7, it follows that N is not 2-extendible. On the other hand, Σ4 is 3-extendible by
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Class Normaliser in G Order q-extendible Type?
2A GL2(3) 24 · 3 3 -
3A Σ3 × Σ3 22 · 32 2 -
5A 5 · 4 22 · 5 2, 5 A
11A 11 · 5 5 · 11 5, 11 A

Table 3.1 p-local subgroups: G = M11

Class Normaliser in G Order q-extendible Type?
2A 2 × Σ5 24 · 3 · 5 5 B
2B (Q∗

8)2 · Σ3 26 · 3 3 -
3A 31+2 · E22 33 · 22 2 -
3B Σ3 × A4 23 · 32 - -
5A 10 · 4 23 · 5 2, 5 -
11A 11 · 5 5 · 11 5, 11 A

Table 3.2 p-local subgroups: G = M12

Class Normaliser in G Order q-extendible Type?
2A E24 · Σ4 27 · 3 3 -
3A (3 × A4) · 2 23 · 32 3 -
5A 5 · 4 22 · 5 2, 5 A
7A 7 · 3 3 · 7 3, 7 A
11A 11 · 5 5 · 11 5, 11 A

Table 3.3 p-local subgroups: G = M22

Class Normaliser in G Order q-extendible Type?
2A E24 · L3(2) 27 · 3 · 7 7 C
3A (3 × A5) · 2 23 · 32 · 5 5 -
5A 15 · 4 22 · 3 · 5 2, 3, 5 A
7A 14 · 3 2 · 3 · 7 2, 3, 7 A
11A 11 · 5 5 · 11 5, 11 A
23A 23 · 11 11 · 23 11, 23 A

Table 3.4 p-local subgroups: G = M23
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Lemma 3.4.2 (iv), since the order of a Sylow 3-subgroup of Σ4 is 3 and P is a subgroup
of Σ4 of index 3. By Lemma 3.4.2 (ii), it follows that N is 3-extendible.

3A: Note that P = ⟨(1, 2)(3, 4), (1, 3)(2, 4)⟩ ∈ Syl2(A4) and Q = ⟨(1, 2)(3, 4)⟩ is a normal
subgroup of P which is not weakly closed in P with respect to A4, since Q(1,3,2) =
⟨(1, 3)(2, 4)⟩ ≠ Q. Thus A4 is not 2-extendible, by Proposition 3.2.4. By a combination
of Lemmas 3.4.8 (i) and (ii), it follows that N is not 2-extendible. Furthermore, N is
3-extendible, by Algorithm 1.

G = M23, |G| = 27 · 32 · 5 · 7 · 11 · 23

3A: If q = 2 or 3, then cq(A5) > 1 by Theorem 3.4.1 and hence cq(3 × A5) > 1 by Lemma
3.4.4, so cq(N) > 1 and hence N is not q-extendible. On the other hand, c5(A5) = 1
by Theorem 3.4.1, so c5(3 × A5) = 1 and hence c5(N) = 1, by Lemma 3.4.4. Since
|P5| = 5, it follows that N is 5-extendible.

G = M24, |G| = 210 · 33 · 5 · 7 · 11 · 23

5A: We saw in the case (M22, 3A) that A4 is not 2-extendible and hence neither is N , by
a combination of Lemma 3.4.8 (i) and (ii). On the other hand, c3(A4) = 1, since A4

contains a subgroup of index 3, so c3(5 × A4) = 1 and hence c3(N) = 1, by Lemma
3.4.4. Since |P3| = 3, it follows that N is 3-extendible. Finally, note that P5 ◁ N and
|P5| = 5, so N is 5-extendible by Lemma 3.4.2 (iv).

7A: Note that P7 ◁ N and N/P7 ∼= 3 × Σ3. Since Σ3 is 2-extendible, so too is 3 × Σ3 and
hence N is 2-extendible, by Lemma 3.4.2 (ii). On the other hand, by Example 3.4.6
(i), we know that 3 × Σ3 is not 3-extendible and hence neither is N , by Lemma 3.4.2
(ii). Finally, P7 ◁ N and |P7| = 7, so N is 7-extendible by Lemma 3.4.2 (iv).

3.4.4 Leech Lattice Groups

The Leech lattice groups are a class of seven sporadic groups which are involved in the
group Co0, the full automorphism group of the Leech lattice. The notation Co0 is in
honour of John Conway, who studied this automorphism group in the 1980s, and the
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Class Normaliser in G Order q-extendible Type?
2A (D∗

8)3 · L3(2) 210 · 3 · 7 7 C
2B E26 · Σ5 29 · 3 · 5 5 B
3A 3A6 · 2 24 · 33 · 5 - G
3B Σ3 × L3(2) 24 · 32 · 7 7 C
5A (5 × A4) · 4 24 · 3 · 5 3, 5 -
7A (7 · 3) × Σ3 2 · 32 · 7 2, 7 -
11A 11 · 10 2 · 5 · 11 2, 5, 11 A
23A 23 · 11 11 · 23 11, 23 A

Table 3.5 p-local subgroups: G = M24

three largest Leech lattice groups are all named after him; the others include HS, the
Higman-Sims group, the Janko group J2, the McLaughlin group McL and the Suzuki
group Suz. Our findings for the seven Leech lattice groups are summarised in Tables
3.6 - 3.12.

G = HS, |G| = 29 · 32 · 53 · 7 · 11

5A: Note that N is 2-nilpotent, so it is 2-extendible. On the other hand, P5 is a Sylow
5-subgroup of G, so P5 contains an element of type (5C), say x. It follows from Table
3.6 that |NN(⟨x⟩)|5′ ≤ 22, so by Theorem 2.4.2, we see that

dim S(N, ⟨x⟩) = |N : P5|
|NN(⟨x⟩)|5′

· |P5 : ⟨x⟩| ≥ 24

22 · |P5 : ⟨x⟩| > |P5 : ⟨x⟩|.

Thus N is not 5-extendible.

5C: Since N is 2-nilpotent, it is 2-extendible. On the other hand, N is not 5-extendible, by
Algorithm 2.

G = J2, |G| = 27 · 33 · 52 · 7

3B: This case is identical to the case (M12, 3B); we conclude that N is not q-extendible for
all q ∈ π(N).
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Class Normaliser in G Order q-extendible Type?
2A (D8 ∗D8 ∗ 4)Σ5 29 · 3 · 5 5 B
2B 2 × Aut(A6) 26 · 32 · 5 - E
3A Σ3 × Σ5 24 · 32 · 5 5 B
5A 51+2 · (8 · 2) 24 · 53 2 -
5B (5 · 4) × A5 24 · 3 · 52 - D
5C E52 · 4 22 · 52 2 -
7A 7 · 6 2 · 3 · 7 2, 3, 7 A
11A 11 · 5 5 · 11 5, 11 A

Table 3.6 p-local subgroups: HS

Class Normaliser in G Order q-extendible Type?
2A (Q8 ∗D8) · A5 27 · 3 · 5 5 B
2B E22 × A5 24 · 3 · 5 5 B
3A 3A6 · 2 24 · 33 · 5 - G
3B Σ3 × A4 23 · 32 - -
5A D10 × A5 23 · 3 · 52 - D
5C D10 ×D10 22 · 52 2 -
7A 7 · 6 2 · 3 · 7 2, 3, 7 A

Table 3.7 p-local subgroups: G = J2

Class Normaliser in G Order q-extendible Type?
2A 2A8 27 · 32 · 5 · 7 - F
3A 31+4 · (SL2(5)#2) 24 · 36 · 5 5 -
3B E34 · Σ4 23 · 35 - -
5A (51+2 · 3) · 8 23 · 3 · 53 2, 3 -
5B E52 · 4 22 · 52 2 -
7A 14 · 3 2 · 3 · 7 2, 3, 7 A
11A 11 · 5 5 · 11 5, 11 A

Table 3.8 p-local subgroups: G = McL



80 Frobenius Groups and p-Extendibility

5C: Note that D10 is 2-nilpotent, so N is 2-nilpotent and hence 2-extendible. On the other
hand, N is not 5-extendible by Example 3.4.6 (iii).

G = McL, |G| = 27 · 36 · 53 · 7 · 11

3A: If q = 2 or 3, then cq(L2(5)) > 1, by Theorem 3.4.1. Since L2(5) is isomorphic
to a quotient group of SL2(5), it follows from Lemma 3.4.4 that cq(SL2(5)) > 1
and hence cq(SL2(5)#2) > 1. Thus cq(N) > 1 and we determine that N is nei-
ther 2-extendible nor 3-extendible. On the other hand, c5(L2(5)) = 1 by Theorem
3.4.1 and hence c5(SL2(5)) = 1 by Lemma 3.4.4, since Z(SL2(5)) is solvable. Since
(SL2(5)#2)/SL2(5) ∼= C2 is solvable, it follows that c5(SL2(5)#2) = 1. Moreover,
|P5| = 5, so we see that SL2(5)#2 is 5-extendible, and hence so is N , by Lemma 3.4.2
(ii).

3B: As was seen in the case (M22, 2A), Σ4 is not 2-extendible, and hence neither is N by
Lemma 3.4.2 (ii). On the other hand, N is not 3-extendible, by Algorithm 2.

5A: Note that N is 2-nilpotent, so N is 2-extendible. Furthermore, P5 ◁ N , so P2P5 is a
subgroup of index 3 in N ; since |P3| = 3, it follows from Lemma 3.4.2 (iv) that N is
3-extendible. Finally, note that P5 ∈ Syl5(G), so there exists an element of type (5B)
in P5, say x. In particular, |NN(⟨x⟩)|5′ ≤ 22, so by Theorem 2.4.2, it follows that

dim S(N, ⟨x⟩) = |N : P5|
|NN(⟨x⟩)|5′

· |P5 : ⟨x⟩| ≥ 23 · 3
22 · |P5 : ⟨x⟩| > |P5 : ⟨x⟩|

and hence N is not 5-extendible.

5B: Note that N is 2-nilpotent, so it is 2-extendible. On the other hand, N is not 5-
extendible, by Algorithm 2.

G = Suz, |G| = 213 · 37 · 52 · 7 · 11 · 13

3B: From [8, Lemma 1], we know that a Sylow 2-subgroup of SL2(3) is given by:

P =
〈
A :=

 1 −1
−1 −1

 , B :=
 0 1
−1 0

〉 ∼= Q8.
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Class Normaliser in G Order q-extendible Type?
2A (Q∗

8)2#Ω−
6 (2) 213 · 34 · 5 - F

2B (E22 × L3(4)) · 2 29 · 32 · 5 · 7 - G
3A 3U4(3) · 2 28 · 37 · 5 · 7 - G
3B 32+4 · (SL2(3) ∗D8) 25 · 37 - -
3C (E32 · 2) × A6 24 · 34 · 5 - F
5A (D10 × A6)#2 25 · 32 · 52 - G
5B (D10 × A5)#2 24 · 3 · 5 - G
7A ((7 · 3) × A4) · 2 23 · 32 · 7 7 -
11A 11 · 10 2 · 5 · 11 2, 5, 11 A
13A 13 · 6 2 · 3 · 13 2, 3, 13 A

Table 3.9 p-local subgroups: G = Suz

Class Normaliser in G Order q-extendible Type?
2A (D∗

8)4Ω+
8 (2) 221 · 35 · 52 · 7 - F

2B (E22 ×G2(4)) · 2 212 · 33 · 52 · 7 · 13 - G
2C E211 Aut(M12) 218 · 33 · 5 · 11 - E
3A 3Suz · 2 214 · 38 · 52 · 7 · 11 · 13 - G
3B (3 × 3)U4(3) · E22 29 · 38 · 5 · 7 - G
3C 31+4 ·GSp4(3) 28 · 39 · 5 - -
3D Σ3 × A9 27 · 35 · 5 · 7 - F
5A (D10 × J2)#2 29 · 33 · 53 · 7 - G
5B (D10 × (A5 ≀ 2))#2 27 · 32 · 53 - -
5C 51+2 ·GL2(5) 25 · 3 · 54 - -
7A ((7 · 3) × A7) · 2 24 · 33 · 5 · 72 - -
7B ((7 · 3) × L2(7)) · 2 24 · 32 · 72 - -
11A (11 · 10) × Σ3 22 · 3 · 5 · 11 2, 3, 5, 11 -
13A ((13 · 6) × A4) · 2 24 · 32 · 13 13 -
23A 23 · 11 11 · 23 11, 23 A

Table 3.10 p-local subgroups: G = Co1
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The subgroup Q = ⟨B⟩ is normal in P and is not weakly closed in P with respect to
SL2(3), since

QM = ⟨A⟩ ≠ Q, where M =
 0 1
−1 −1

 .
There therefore exists a normal subgroup of a Sylow 2-subgroup of SL2(3)∗D8 which is
not weakly closed in SL2(3)∗D8, so SL2(3)∗D8 is not 2-extendible, by Proposition 3.2.4.
Thus N is not 2-extendible by Lemma 3.4.2 (ii). Furthermore, N is not 3-extendible,
by Algorithm 2.

7A: We saw in the case (M22, 3A) that A4 is not 2-extendible, and hence neither is (7·3)×A4

by Lemma 3.4.8 (i). Since (7 ·3)×A4 is a normal subgroup of N with index 2, it follows
that N is not 2-extendible by Lemma 3.4.8 (ii). Furthermore, N is not 3-extendible,
by Algorithm 2. Finally, P7 ◁ N and |P7| = 7, so it follows that N is 7-extendible, by
Lemma 3.4.2 (iv).

G = Co1, |G| = 221 · 39 · 54 · 72 · 11 · 13 · 23

3C: If q ∈ π(N), then cq(PSp4(3)) > 1 by Theorem 3.4.1. Since PSp4(3) is isomorphic to a
quotient group of Sp4(3), it follows from Lemma 3.4.4 that cq(Sp4(3)) > 1. Furthermore,
Sp4(3) is a subgroup of index 2 in GSp4(3), so we deduce that cq(GSp4(3)) > 1 and
hence cq(N) > 1 for all q ∈ π(N). Thus N is not q-extendible for all q ∈ π(N).

5B: If q = 2 or 3, then cq(A5) > 1 by Theorem 3.4.1 and hence cq(A5 ×A5) > 1 by Lemma
3.4.4. Thus cq(A5 ≀2) > 1 and hence cq(D10 × (A5 ≀2)) > 1. We conclude that cq(N) > 1
and hence N is not q-extendible. If q = 5, then A5 ≀ 2 contains an element x of order 5
such that x ∈ P ∈ Syl5(A5 ≀ 2) and there exists h ∈ A5 ≀ 2 with xh ̸= x and xh ∈ P . By
Lemma 3.4.5, it follows that D10 × (A5 ≀ 2) is not 5-extendible and hence neither is N ,
by Lemma 3.4.8 (i).

5C: If q = 2 or 3, then since L2(5) is isomorphic to a quotient group of SL2(5) and
cq(L2(5)) > 1 by Theorem 3.4.1, it follows from Lemma 3.4.4 that cq(SL2(5)) > 1. But
SL2(5) ◁ GL2(5), so cq(GL2(5)) > 1 and hence cq(N) > 1, so N is not q-extendible. It
follows from Algorithm 2 that N is not 5-extendible.
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7A: Note that (7 · 3) × A7 is a group of type (D) and hence cq((7 · 3) × A7) > 1 for all
q ∈ π(N). Thus cq(N) > 1 by Lemma 3.4.4 and hence N is not q-extendible for all
q ∈ π(N).

7B: By [8], a Sylow 2-subgroup of SL2(7) is given by:

P =
〈
A :=

1 1
1 2

 , B :=
 0 1
−1 0

〉 ∼= Q16

Furthermore, Q = ⟨A2⟩ is normal in P and is not weakly closed in P with respect to
SL2(7), since

QM = ⟨A4B⟩ ≠ Q, where M =
0 2
3 1

 .
Thus a Sylow 2-subgroup of L2(7) contains a normal subgroup which is not weakly
closed in L2(7), so it follows that L2(7) is not 2-extendible by Proposition 3.2.4. By
a combination of Lemmas 3.4.8 (i) and (ii), we conclude that N is not 2-extendible.
Furthermore, by Theorem 3.4.1, we know that c3(L2(7)) > 1 and hence by Lemma
3.4.4, we see that c3(N) > 1, so N is not 3-extendible. Finally, note that a Sylow
7-subgroup of SL2(7) is given by:

P =
〈
X :=

1 1
0 1

〉

and we have

XM = X2, where M =
2 0
0 4

 .
Thus (7 ·3)×L2(7) is not 7-extendible by Lemma 3.4.5 and hence N is not 7-extendible,
by Lemma 3.4.8 (i).

11A: Since P11 ◁ N and N/P11 ∼= 10 × Σ3 is 2-nilpotent, it follows that N is 2-extendible, by
Lemma 3.4.2 (ii). Furthermore, Σ3 is 3-extendible, so N is 3-extendible. If q = 5 or 11,
then 11 · 10 is q-extendible by Lemma 3.4.2 (iii) and hence N is q-extendible. So N is
q-extendible for all q ∈ π(N).
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13A: As we saw in the case (M22, 3A), A4 contains a normal subgroup of a Sylow 2-subgroup
of A4 which is not weakly closed in A4, so it follows from Lemma 3.4.7 that (13 ·6)×A4

is not 2-extendible. We therefore see that N is not 2-extendible, by Lemma 3.4.8 (ii).
Checking with Algorithm 2, we determine that N is not 3-extendible. Finally, note
that P13 ◁ N and |P13| = 13, so N is 13-extendible, by Lemma 3.4.2 (iv).

G = Co2, |G| = 218 · 36 · 53 · 7 · 11 · 23

3A: Note that (D8∗Q8)#Σ5 is a group of type (B), so if q = 2 or 3, then cq((D8∗Q8)#Σ5) > 1
and hence cq(N) > 1, by Lemma 3.4.4, so N is not q-extendible. On the other hand,
Σ5 is 5-extendible and hence N is 5-extendible by Lemma 3.4.2 (ii).

5A: The same argument as seen in (Suz, 3B) shows that 4 ∗ SL2(3) is not 2-extendible
and hence (4 ∗ SL2(3))#2 is not 2-extendible by Lemma 3.4.8 (ii). By Lemma 3.4.2
(ii), it follows that N is not 2-extendible. On the other hand, SL2(3) ∼= Q8 ⋊ C3

is 3-nilpotent, so 4 ∗ SL2(3) is as well and hence c3(4 ∗ SL2(3)) = 1. It follows
that c3((4 ∗ SL2(3))#2) = 1 by Lemma 3.4.4 and since |P3| = 3, we deduce that
(4 ∗ SL2(3))#2 is 3-extendible. Thus N is 3-extendible, by Lemma 3.4.2 (ii). Finally,
we show using Algorithm 2 that N is not 5-extendible.

7A: Note that N is 2-nilpotent, so it is 2-extendible. Furthermore, since P7 ◁ N , P2P7 is a
subgroup of N of index 3, so N is 3-extendible by Lemma 3.4.2 (iv). Finally, note that
P7 ◁ N and |P7| = 7, so N is 7-extendible, by Lemma 3.4.2 (iv) again.

G = Co3, |G| = 210 · 37 · 53 · 7 · 11 · 23

3A: If q ∈ π(N), then we know that cq(L2(9)) > 1 by Theorem 3.4.1. Since L2(9) is a
quotient group of SL2(9), it follows from Lemma 3.4.4 that cq(SL2(9)) > 1 and hence
cq(4 × SL2(9)) > 1. Thus cq((4 ∗ SL2(9)) · 2) > 1 and hence cq(N) > 1. So N is not
q-extendible for all primes q ∈ π(N).

3B: If q = 2 or 3, then cq(Σ5) > 1 by Theorem 3.4.1 and hence cq(N) > 1 by Lemma 3.4.4,
so N is not q-extendible. Note that a Sylow 5-subgroup of Σ5 has a complement in Σ5,
so it follows that P5 has a complement in N ; thus N is 5-extendible, by Lemma 3.4.2
(iv).
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Class Normaliser in G Order q-extendible Type?
2A (D∗

8)4Sp6(2) 218 · 34 · 5 · 7 - F
2B (E24 × (D∗

8)3)A8 217 · 32 · 5 · 7 - F
2C E210 Aut(A6) 215 · 32 · 5 - E
3A 31+4 · ((D8 ∗Q8)#Σ5) 28 · 36 · 5 5 -
3B Σ3 × Aut(PSp4(3)) 28 · 35 · 5 - E
5A 51+2 · ((4 ∗ SL2(3))#2) 25 · 3 · 53 3 -
5B (5 · 4) × Σ5 25 · 3 · 52 - D
7A ((7 · 3) ×D8)2 24 · 3 · 7 2, 3, 7 -
11A 11 · 10 2 · 5 · 11 2, 5, 11 A
23A 23 · 11 11 · 23 11, 23 A

Table 3.11 p-local subgroups: G = Co2

Class Normaliser in G Order q-extendible Type?
2A 2Sp(6, 2) 210 · 34 · 5 · 7 - F
2B 2 ×M12 27 · 33 · 5 · 11 - F
3A 31+4 · ((4 ∗ SL2(9)) · 2) 26 · 37 · 5 - -
3B E35 · (2 × Σ5) 24 · 36 · 5 5 -
3C Σ3 × (L2(8) · 3) 24 · 34 · 7 - -
5A 51+2 · (24 · 2) 24 · 3 · 53 2, 3 -
5B (5 · 4) × A5 24 · 3 · 52 - D
7A (7 · 6) × Σ3 22 · 32 · 7 2, 7 -
11A (11 · 5) × 2 2 · 5 · 11 2, 5, 11 A
23A 23 · 11 11 · 23 11, 23 A

Table 3.12 p-local subgroups: G = Co3
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3C: If q = 2 or 7, then cq(L2(8)) > 1 by Theorem 3.4.1, so cq(L2(8) · 3) > 1 by Lemma
3.4.4. Thus cq(N) > 1 and it follows that N is not q-extendible. On the other hand, if
q = 3, then it follows that N is not 3-extendible, by Example 3.4.6 (i).

5A: Note that N is 2-nilpotent and is hence 2-extendible. Furthermore, 24 ·2 is 3-extendible
and hence N is 3-extendible, by Lemma 3.4.2 (ii). We use Algorithm 2 to show that
N is not 5-extendible.

7A: Note that P7 ◁N and N/P7 ∼= 6 × Σ3. Since 6 × Σ3 is 2-nilpotent, it follows that N/P7

is 2-extendible and hence N is 2-extendible, by Lemma 3.4.2 (ii). Furthermore, by
Example 3.4.6 (i), 6 × Σ3 is not 3-extendible, so neither is N . Finally, P7 ◁ N , so N is
7-extendible, by Lemma 3.4.2 (iv).

3.4.5 Pariahs

The six sporadic groups which are not involved in the monster in some way are known
as the pariahs. This class of groups includes the three remaining Janko groups, the
O’Nan group O′N , the Rudvalis group Ru and the Lyons group Ly. The local structure
of these six groups is simpler than that of the monster sections, so we study them first.
Our results are summarised in Tables 3.13 - 3.18.

G = J1, |G| = 23 · 3 · 5 · 7 · 11 · 19

3A, 5A: Since Σ3 and D10 are 2-nilpotent, it follows that N is 2-nilpotent and hence 2-extendible.
Furthermore, N is 3-extendible by Lemma 3.4.2 (ii), since Σ3 is 3-extendible; by the
same reasoning, N is 5-extendible, since D10 is 5-extendible.

G = J3, |G| = 27 · 35 · 5 · 17 · 19

3B: Note that N is 2-nilpotent and hence is 2-extendible. Checking with Algorithm 1, we
verify that N is 3-extendible.

5A: This case is the same as the case (J1, 3A); thus, we see that N is q-extendible for all
q ∈ π(N).
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G = J4, |G| = 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43

2A: Note that π(N) = π(M22) and 3M22 · 2 is a group of type (G) by Theorem 3.4.1. Thus
cq(3M22 · 2) > 1 and hence cq(N) > 1 for all q ∈ π(N), by Lemma 3.4.4. Thus N is
not q-extendible for all q ∈ π(N).

2B: By Theorem 3.4.1, we have cq(M22) > 1 for all q ∈ π(N). Thus, by Lemma 3.4.4, it
follows that cq(M22 · 2) > 1 and hence cq(N) > 1 . So N is not q-extendible for all
q ∈ π(N).

5A: If q = 2 or 3, then cq(L3(2)) > 1 by Theorem 3.4.1, so cq(5 × (E23#L3(2)) > 1 by
Lemma 3.4.4 and hence cq(N) > 1, so N is not q-extendible. On the other hand, P5 ◁N

and |P5| = 5, so N is 5-extendible by Lemma 3.4.2 (iv). Finally, c7(L3(2)) = 1 by
Theorem 3.4.1, so c7(5 × (E23#L3(2)) = 1 by Lemma 3.4.4. Thus c7(N) = 1 and since
|P7| = 7, it follows that N is 7-extendible.

7A: If q = 2 or 3, then by Theorem 3.4.1, we know that cq(Σ5) > 1 and hence cq(N) > 1
by Lemma 3.4.4. Thus N is not q-extendible. On the other hand, Σ5 is 5-extendible,
so N is 5-extendible by Lemma 3.4.2 (ii). Finally, note that P7 ◁ N and |P7| = 7, so by
Lemma 3.4.2 (iv), we see that N is 7-extendible.

11A: We saw in the case (Suz, 3B) that SL2(3) is not 2-extendible and hence 111+2 · SL2(3)
is not 2-extendible by Lemma 3.4.2 (ii). Furthermore, 111+2 · SL2(3) is contained as
an index 2-subgroup of a subgroup H of N which has index 5 in N . By Lemma 3.4.8
(i) and (ii), it follows that N is not 2-extendible. By Theorem 3.4.1, we know that
c3(L2(3)) = 1, and since L2(3) is a quotient group of SL2(3), by Lemma 3.4.4, we
see that c3(SL2(3)) = 1. Thus c3(N) = 1, by Lemma 3.4.4 again; since |P3| = 3, we
deduce that N is 3-extendible. By Lemma 3.4.2 (ii), we see that N is 5-extendible,
since 111+2 · SL2(3) is a 5′-group. Finally, note that P11 ◁N and P11 ∈ Syl11(G). Thus,
P11 contains an element of type (11B), say x. Since |NN(⟨x⟩)|11′ ≤ 22 · 5, it follows
from Theorem 2.4.2 that

dim S(N, ⟨x⟩) = |N : P11|
|NN(⟨x⟩)|11′

· |P11 : ⟨x⟩| ≥ 24 · 3 · 5
22 · 5 · |P11 : ⟨x⟩| > |P11 : ⟨x⟩|,

so N is not 11-extendible.
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11B: Note that P11 ◁ N and N/P11 is a group of order 20 = 22 · 5. By Sylow’s theorems, we
know that if n5 denotes the number of Sylow 5-subgroups of N/P11, then n5 ≡ 1 mod 5
and n5 divides 4; thus n5 = 1 and it follows that N/P11 is 2-nilpotent and hence
2-extendible. So N is 2-extendible, by Lemma 3.4.2 (ii). Furthermore, N is 5-nilpotent
and hence 5-extendible. Finally, D22 ×D22 is not 11-extendible, by Example 3.4.6 (iii)
and thus by Lemma 3.4.8 (i), we deduce that N is not 11-extendible.

G = O′N, |G| = 29 · 34 · 5 · 73 · 11 · 19 · 31

5A: Note that P3, P5 ◁ N , so N is 2-nilpotent and hence 2-extendible. On the other hand,
N is not 3-extendible, which we verify using Algorithm 2. Finally, since P5 ◁ N and
|P5| = 5, it follows that N is 5-extendible, by Lemma 3.4.2 (iv).

7A: If q = 2 or 3, then 3 × D8 is clearly q-extendible and hence N is q-extendible, by
Lemma 3.4.2 (ii). On the other hand, P7 ∈ Syl7(G) and hence contains an element of
type (7B), say x. Since P7 ◁ N and |NN(⟨x⟩)|7′ ≤ 2 · 3, it follows from Theorem 2.4.2
that

dim S(N, ⟨x⟩) = |N : P7|
|NN(⟨x⟩)|7′

· |P7 : ⟨x⟩| ≥ 23 · 3
2 · 3 · |P7 : ⟨x⟩| > |P7 : ⟨x⟩|.

Thus N is not 7-extendible.

7B: Since P7 ◁ N , it follows that P3P7 is a subgroup of index 2 in N , so N is 2-extendible,
by Lemma 3.4.2 (iv). Furthermore, N is 3-extendible, since it is 3-nilpotent. Finally,
by Example 3.4.6 (iii), we know that D14 × 7 is not 7-extendible and hence neither is
N , by Lemma 3.4.8 (i).

G = Ru, |G| = 214 · 33 · 53 · 7 · 13 · 29

5A: Since P5 ◁ N , it follows that N is 2-nilpotent and hence 2-extendible. On the other
hand, note that P5 ∈ Syl5(G) and hence P5 contains an element of type (5B), say x.
Since P5 ◁ N and |NN(⟨x⟩)|5′ ≤ 24, it follows from Theorem 2.4.2 that

dim S(N, ⟨x⟩) = |N : P5|
|NN(⟨x⟩)|5′

· |P : ⟨x⟩| ≥ 25

24 · |P : ⟨x⟩| > |P, ⟨x⟩|.
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Class Normaliser in G Order q-extendible Type?
2A 2 × A5 23 · 3 · 5 5 B
3A Σ3 ×D10 22 · 3 · 5 2, 3, 5 -
5A Σ3 ×D10 22 · 3 · 5 2, 3, 5 -
7A 7 · 6 2 · 3 · 7 2, 3, 7 A
11A 11 · 10 2 · 5 · 11 2, 5, 11 A
19A 19 · 6 2 · 3 · 19 2, 3, 19 A

Table 3.13 p-local subgroups: J1

Class Normaliser in G Order q-extendible Type?
2A (Q8 ∗D8) · A5 27 · 3 · 5 5 B
3A (3 × A6) · 2 24 · 33 · 5 - G
3B (E3231+2) · 2 2 · 35 2, 3 -
5A D10 × Σ3 22 · 3 · 5 2, 3, 5 -
17A 17 · 8 23 · 17 2, 17 A
19A 19 · 9 32 · 19 3, 19 A

Table 3.14 p-local subgroups: J3

Class Normaliser in G Order q-extendible Type?
2A (Q∗

8)6#(3M22 · 2) 221 · 33 · 5 · 7 · 11 - -
2B E211(M22 · 2) 219 · 32 · 5 · 7 - -
3A (6M22) · 2 29 · 33 · 5 · 7 · 11 - G
5A (5 × (E23#L3(2))) · 4 28 · 3 · 5 · 7 5, 7 -
7A (7 · 3) × Σ5 23 · 32 · 5 · 7 5, 7 -
11A (111+2 · SL2(3))10 24 · 3 · 5 · 113 3, 5 -
11B (D22 ×D22) · 5 22 · 5 · 112 2, 5 -
23A 23 · 22 2 · 11 · 23 2, 11, 23 A
29A 29 · 14 2 · 7 · 29 2, 7, 29 A
31A 31 · 10 2 · 5 · 31 2, 5, 31 A
37A 37 · 12 22 · 3 · 37 2, 3, 37 A
43A 43 · 14 2 · 7 · 43 2, 7, 43 A

Table 3.15 p-local subgroups: J4
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Class Normaliser in G Order q-extendible Type?
2A (4L3(4)) · 2 29 · 32 · 5 · 7 - G
3A (E32 · 2) × A6 24 · 34 · 5 - F
5A (D10 × (E32 · 4))#2 24 · 32 · 5 2, 5 -
7A 71+2 · (3 ×D8) 23 · 3 · 73 2, 3 -
7B (D14 × 7) · 3 2 · 3 · 72 2, 3 -
11A 11 · 10 2 · 5 · 11 2, 5, 11 A
19A 19 · 6 2 · 3 · 19 2, 3, 19 A
31A 31 · 15 3 · 5 · 31 3, 5, 31 A

Table 3.16 p-local subgroups: O′N

Class Normaliser in G Order q-extendible Type?
2A 211Σ5 214 · 3 · 5 5 B
2B E22 × 2B2(23/2) 28 · 5 · 7 · 13 - F
3A 3# Aut(A6) 25 · 33 · 5 - E
5A (51+2 ·Q8) · 4 25 · 53 2 -
5B (5 · 4) × A5 24 · 3 · 52 - D
7A (D14 × E22) · 3 23 · 3 · 7 3, 7 -
13A (13 · 4 × E22) · 3 24 · 3 · 13 3, 13 -
29A 29 · 14 2 · 7 · 29 2, 7, 29 A

Table 3.17 p-local subgroups: Ru

Class Normaliser in G Order q-extendible Type?
2A 2A11 27 · 34 · 52 · 7 · 11 11 D
3A (3McL) · 2 28 · 37 · 53 · 7 · 11 - G
3B 32+4 · ((4 ∗ SL2(5)) · 2) 25 · 37 · 5 5 -
5A 51+4 · ((4 ∗ SL2(9))#2) 26 · 32 · 56 - -
5B1 (5 × (51+2 · Σ3)) · 4 23 · 3 · 54 2, 3 -
7A2 ((7 · 3) × SL2(3)) · 2 24 · 32 · 7 7 -
11A (11 · 5) × Σ3 2 · 3 · 5 · 11 2, 3, 5, 11 A
31A 31 · 6 2 · 3 · 31 2, 3, 31 A
37A 37 · 18 2 · 32 · 37 2, 3, 37 A
67A 67 · 22 2 · 11 · 67 2, 11, 67 A

Table 3.18 p-local subgroups: Ly
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Thus N is not 5-extendible.

7A: Note first that N is not 2-extendible, which we verify using Algorithm 2. On the other
hand, N is 3-nilpotent and hence 3-extendible. Furthermore, P7 ◁ N and |P7| = 7, so
N is 7-extendible by Lemma 3.4.2 (iv).

13A: We start by showing that N is not 2-extendible, using Algorithm 2. Furthermore,
N is 3-nilpotent and hence 3-extendible. Finally, P13 ◁ N and |P13| = 13, so N is
13-extendible by Lemma 3.4.2 (iv).

G = Ly, |G| = 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67

3B: If q = 2 or 3, then cq(L2(5)) > 1 by Theorem 3.4.1 and hence cq(SL2(5)) > 1 by
Lemma 3.4.4. It hence follows that cq(4 ∗ SL2(5)) > 1 and hence cq(N) > 1, so N is
not q-extendible. On the other hand, note that c5(L2(5)) = 1 by Theorem 3.4.1, so by
Lemma 3.4.4, we see that c5(4 ∗ SL2(5)) = 1 and c5(N) = 1. Since |P5| = 5, it follows
from Lemma 3.4.2 (iv) that N is 5-extendible.

5A: Repeating the steps carried out in the case (Ly, 3B), we see that if q ∈ π(N), then
cq(L2(9)) > 1 and hence cq(N) > 1, so N is not q-extendible.

5B: Note that P5 ◁ N and N/P5 ∼= Σ3 · 4. Since Σ3 is 2-nilpotent, it follows that Σ3 · 4 is
2-extendible and hence so is N by Lemma 3.4.2 (ii). Furthermore, a Sylow 3-subgroup
of Σ3 · 4 is normal in Σ3 · 4 and has order 3, so by Lemma 3.4.2 (iv), it follows that
Σ3 · 4 is 3-extendible and hence N is 3-extendible by Lemma 3.4.2 (ii). We are unable
to determine whether or not N is 5-extendible using Algorithms 1 and 2; this is mainly
due to the fact that there is no permutation representation of Ly which is defined on a
small enough number of points (Lyons original construction was on 8, 835, 156 points
and a review of the literature reveals no known permutation representations of smaller
degree).

7A: From [8], we know that a Sylow 2-subgroup of SL2(3) is given by:

P =
〈
A :=

1 2
2 2

 , B =
 0 1
−1 0

〉 ∼= Q8.
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Then Q = ⟨A2, B⟩ is normal in P but is not weakly closed in P with respect to SL2(3),
since

QM = ⟨A2, A⟩ ≠ Q, where M =
1 1
0 1

 .
Thus SL2(3) is not 2-extendible by Proposition 3.2.4, and by Lemma 3.4.8 (i) and
(ii), it follows that N is not 2-extendible. Note that P7 ◁ N and |P7| = 7, so N is
7-extendible by Lemma 3.4.2 (iv). When it comes to determining if N is 3-extendible
or not, we encounter a similar problem to that discussed in the case (Ly, 5B); since
there is no reasonably sized permutation representation of Ly, we are unable to use
Algorithms 1 and 2 to conclude that N is or is not 3-extendible.

3.4.6 Monster Sections

The last remaining class of sporadic groups we shall consider is the class of monster
sections. The largest one of these is the Monster itself (or the Fischer-Griess Monster).
The remaining groups all appear as subgroups or subquotients of the Monster, and
include the Held group He, the Harada-Norton group HN , the Thompson group Th,
three groups due to Fischer and the Baby Monster (a name suggested by Conway).
Our findings involving this class of eight groups are summarised in Tables 3.19 - 3.26.

G = He, |G| = 210 · 33 · 52 · 73 · 17

7A: If q = 2 or 3, then cq(L3(2)) > 1 by Theorem 3.4.1 and hence cq(N) > 1 by Lemma
3.4.4, so N is not q-extendible. On the other hand, a Sylow 7-subgroup P of SL3(2) is
given by:

P =
〈
X :=


1 1 1
1 1 0
1 0 0


〉

and we have

XM = X2, where M =


0 0 1
1 0 0
0 1 0

 .
1It is unknown if (5 × (51+2 · Σ3)) · 4 is 5-extendible or not.
2It is unknown if ((7 · 3) × SL2(3)) · 2 is 3-extendible or not.
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It hence follows from Lemma 3.4.5 that N is not 7-extendible.

7C: Note that P7 ◁ N and hence by Lemma 3.4.2 (ii), N is 2-extendible if and only if
3 × Σ3 is 2-extendible if and only if Σ3 is 2-extendible, and we have seen that Σ3 is
2-extendible, so it follows that N is 2-extendible. On the other hand, by Example 3.4.6
(i), we know that 3 × Σ3 is not 3-extendible, so N is not 3-extendible either. Finally,
note that P7 ∈ Syl7(He) and therefore P7 contains an element of type (7D), say x.
Then |NN(⟨x⟩)|7′ ≤ 2 · 3, so

dim S(N, ⟨x⟩) = |N : P7|
|NN(⟨x⟩)|7′

· |P7 : ⟨x⟩| ≥ 2 · 32

2 · 3 · |P7 : ⟨x⟩| > |P7 : ⟨x⟩|.

Thus N is not 7-extendible by Theorem 2.4.2.

7D: Since P7 ◁ N , it follows that P3P7 is a subgroup of index 2 in N and hence N is 2-
extendible, by Lemma 3.4.2 (iv). Furthermore, N is 3-nilpotent and hence 3-extendible.
Finally, note that 7 ×D14 is not 7-extendible, by Example 3.4.6 (iii) and hence N is
not 7-extendible by Lemma 3.4.8 (i).

G = HN, |G| = 214 · 36 · 56 · 7 · 11 · 19

2B: If q = 2 or 3, then cq(A5) > 1 by Theorem 3.4.1, so cq(A5 ≀ 2) > 1 by Lemma 3.4.4 and
hence cq(N) > 1, so N is not q-extendible. On the other hand, as we saw in the case
(Co1, 5B), A5 ≀ 2 is not 5-extendible, so N is not 5-extendible by Lemma 3.4.2 (ii).

3B: If q = 2 or 3, then cq(L2(5)) > 1 by Theorem 3.4.1, so cq(4 ∗ SL2(5)) > 1 by Lemma
3.4.4 and hence cq(N) > 1, so N is not q-extendible. On the other hand, note that
c5(L2(5)) = 1 by Theorem 3.4.1 and hence c5(SL2(5)∗4) = 1 by Lemma 3.4.4. Since the
order of a Sylow 5-subgroup of SL2(5) ∗ 4 is 5, it follows that SL2(5) ∗ 4 is 5-extendible.
Thus N is 5-extendible by Lemma 3.4.2 (ii).

5B: At [3], generators for N are provided in the table listing the maximal subgroups of G;
specifically, the generators found under “51+4.21+4.5.4” generate a group isomorphic
to N . Since |N | = 27 · 56, we know that N is solvable, so it follows from Theorem
3.2.7 that N is 2-extendible if and only if it is 2-nilpotent; we verify using MAGMA
that P5 is not normal in N , so it follows that N is not 2-extendible. Furthermore,
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Class Normaliser in G Order q-extendible Type?
2A (E22L3(4)) · 2 29 · 32 · 5 · 7 - G
2B (D∗

8)3 · L3(2) 210 · 3 · 7 7 C
3A 3#Σ7 24 · 33 · 5 · 7 7 B
3B Σ3 × L3(2) 24 · 32 · 7 7 C
5A (D10 × A5)#2 25 · 3 · 52 - G
7A (7 · 3) × L3(2) 23 · 32 · 72 - -
7C 71+2 · (3 × Σ3) 2 · 32 · 73 2 -
7D (7 ×D14) · 3 2 · 3 · 72 2, 3 -
17A 17 · 8 23 · 17 2, 17 A

Table 3.19 p-local subgroups: He

Class Normaliser in G Order q-extendible Type?
2A (2HS) · 2 211 · 32 · 53 · 7 · 11 - G
2B (D∗

8)4(A5 ≀ 2) 214 · 32 · 52 - -
3A (3 × A9) · 2 27 · 35 · 5 · 7 - G
3B 31+4 · (4 ∗ SL2(5)) 24 · 36 · 5 5 -
5A (D10 × U3(5))#2 24 · 32 · 53 · 7 - G
5B (51+4 · (21+4 · (5 · 4))) 27 · 56 - -
5C E53 · (4 ∗ SL2(5)) 24 · 3 · 54 - -
5E ((5 × 51+2) · E22)4 24 · 54 2 -
7A ((7 · 3) × A5) · 2 23 · 32 · 5 · 7 5, 7 -
11A (11 · 10) × 2 22 · 5 · 11 2, 5, 11 -
19A 19 · 9 32 · 19 3, 19 A

Table 3.20 p-local subgroups: HN
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checking with MAGMA, we verify that P5 contains a unique maximal subgroup Q

such that Q ◁ N and Q contains an element of type (5E). Let H = Q · (21+4); then
|NH(⟨x⟩)|5′ ≤ 24, so

dim S(H, ⟨x⟩) = |H : P5|
|NH(⟨x⟩)|5′

· |P5 : ⟨x⟩| ≥ 25

24 · |P5 : ⟨x⟩| > |P5 : ⟨x⟩|

and it follows that H is not 5-extendible by Theorem 2.4.2. Furthermore, H is a normal
subgroup of index 5 in K = Q · (21+4 · 5), so N is not 5-extendible by a combination of
Lemma 3.4.8 (i) and (ii).

5C: We saw in the case (HN, 3B) that 4 ∗ SL2(5) is not 2-extendible, so neither is N , by
Lemma 3.4.2 (ii); furthermore, we saw that c3(4∗SL2(5)) > 1, so c3(N) > 1 by Lemma
3.4.4 and hence N is not 3-extendible. Note that N ∼= (5 × (E52 · SL2(5))2 (see [18,
Table 5.3w]) and a Sylow 5-subgroup P of SL2(5) contains an element X such that
there exists M ∈ SL2(5) with XM ∈ P and XM ̸= X; indeed, let

X =
1 1
0 1

 and M =
2 0
0 3

 .
Regard elements of 5 × (E52 · SL2(5)) as pairs and set 5 ∼= C5 = ⟨w⟩. Then

Q = {(wi, eX i) : 0 ≤ i ≤ 4, e ∈ E52}

is a normal subgroup of P5. Furthermore, it is not weakly closed closed in P5 with
respect to 5 × (E52 · SL2(5)), since (w,X)M = (w,X2) /∈ Q. So (5 × (E52 · SL2(5)) is
not 5-extendible by Proposition 3.2.4 and hence N is not 5-extendible by Lemma 3.4.8
(i).

5E: We know that N is 2-nilpotent and hence it is 2-extendible. Moreover, following the
steps covered in the case (HN, 5B), we obtain a MAGMA implementation of N , and
we verify that N is not 5-extendible using this.

7A: If q = 2 or 3, then cq(A5) > 1 by Theorem 3.4.1 and hence cq(N) > 1 by Lemma 3.4.4,
so it follows that N is not q-extendible. On the other hand, c5(A5) = 1, so c5(N) = 1
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Class Normaliser in G Order q-extendible Type?
2A (D∗

8)4A9 215 · 34 · 5 · 7 - F
3A (3 ×G2(3)) · 2 27 · 37 · 7 · 13 - G
3B 39 ·GL2(3) 24 · 310 - -
3C E35 · (2Σ6) 24 · 36 · 5 - -
5A 51+2 · ((4 ∗ SL2(3))#2) 25 · 3 · 53 3 -
7A ((7 · 3) × L2(7)) · 2 24 · 32 · 72 - -
13A3 ((13 · 6) × 3)2 22 · 32 · 13 2, 13 -
19A 19 · 18 2 · 32 · 19 2, 3, 19 A
31A 31 · 15 3 · 5 · 31 3, 5, 31 A

Table 3.21 p-local subgroups: Th

Class Normaliser in G Order q-extendible Type?
2A 2U6(2) 216 · 36 · 5 · 7 · 11 - F
2B (2 × (D∗

8)4)O−
6 (2) 217 · 34 · 5 - -

2C 213 · (33 · 8) 216 · 33 - -
3A Σ3 × (U4(3) · 2) 29 · 37 · 5 · 7 - -
3B 31+6 · (27 · E32 · 2) 28 · 39 - -
3C E35 · ((Q8 ∗Q8) · (Σ3 × Σ3)) 27 · 37 - -
3D 36 ·GL2(3) 24 · 37 - -
5A (5 · 4) × Σ5 26 · 3 · 52 - D
7A (7 · 6) × Σ3 22 · 3 · 7 2, 3, 7 -
11A (11 · 5) × 2 2 · 5 · 11 2, 5, 11 A
13A 13 · 6 2 · 3 · 13 2, 3, 13 A

Table 3.22 p-local subgroups: Fi22

by Lemma 3.4.4 and it follows that N is 5-extendible, since |P5| = 5. Finally, P7 ◁ N

and |P7| = 7, so N is a 7-extendible group, by Lemma 3.4.2 (iv).

11A: Note that P11 ◁ N and N/P11 ∼= 10 × 2. Moreover, 10 × 2 is 2-extendible, since it
is 2-nilpotent, and it is clearly 5-extendible. By Lemma 3.4.2 (ii), it follows that
N is 2-extendible and 5-extendible. Furthermore, P11 ◁ N and |P11| = 11, so N is
11-extendible, by Lemma 3.4.2 (iv).
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G = Th, |G| = 215 · 310 · 53 · 72 · 13 · 19 · 31

3B: As we saw in the case (M11, 2A), GL2(3) is not 2-extendible and hence neither is N , by
Lemma 3.4.2 (ii). Furthermore, [3] provides generators for a certain maximal subgroup
of G labelled by “3.32.3.(3 × 32).32 : 2S4” which is isomorphic to N , and using this,
we show N is not 3-extendible, by Algorithm 2.

3C: For all q ∈ π(N), we have cq(A6) > 1 by Theorem 3.4.1 and hence cq(2Σ6) > 1 by
Lemma 3.4.4, so cq(N) > 1 and hence N is not q-extendible.

5A: The argument used in the case (Suz, 3B) shows that 4 ∗ SL2(3) is not 2-extendible
and hence (4 ∗ SL2(3))#2 is not 2-extendible by Lemma 3.4.8 (ii), so N is not 2-
extendible by Lemma 3.4.2 (ii). On the other hand, c3(L2(3)) = 1 by Theorem 3.4.1,
so c3(SL2(3) ∗ 4) = 1 by Lemma 3.4.4 and it follows that c3(N) = 1; since |P3| = 3, we
deduce that N is 3-extendible. Finally, [3] provides generators for a certain maximal
subgroup of G labelled by “51+2 : 4S4” which is isomorphic to N ; using Algorithm 2
on this group, we show that N is not 5-extendible.

7A: This case is identical to the case (Co1, 7B); we conclude immediately that N is not
q-extendible for all q ∈ π(N).

13A: Note that (13 ·6)×3 contains a normal Hall subgroup of order 32 ·13, so N is 2-nilpotent
and hence 2-extendible. On the other hand, P13 ◁ N and |P13| = 13, so it follows that
N is 13-extendible by Lemma 3.4.2 (iv). There is no reasonably sized permutation
representation of Th (the smallest is on 141, 127, 000 points) and at present, no way of
determining if N is 3-extendible or not using Algorithms 1 or 2.

G = Fi22, |G| = 217 · 39 · 52 · 7 · 11 · 13

2B: If q ∈ π(N), then Ω−
6 (2) ◁ O−

6 (2) and cq(Ω−
6 (2)) > 1 by Theorem 3.4.1 since Ω−

6 (2) is
simple, so it follows that cq(O−

6 (2)) > 1 and hence cq(N) > 1 by Lemma 3.4.4. Thus
N is not q-extendible for all q ∈ π(N).

2C: If q ∈ π(N), then we show that N is not q-extendible using Algorithm 2.
3It is unknown if ((13 · 6) × 3) · 2 is 3-extendible or not.



98 Frobenius Groups and p-Extendibility

3A: If q ∈ π(N), then since U4(3) is simple, it follows from Theorem 3.4.1 that cq(U4(3)) > 1,
so by Lemma 3.4.4, we deduce that cq(U4(3) · 2) > 1 and cq(N) > 1. So N is not
q-extendible for all q ∈ π(N).

3B: If q ∈ π(N), then we show that N is not q-extendible using Algorithm 2.

3C: If q = 2, then we show that N is not 2-extendible using Algorithm 2. On the other
hand, if q = 3, then by Example 3.4.6 (i), there exists Q ◁ P ∈ Syl3(Σ3 × Σ3) which is
not weakly closed in Σ3 × Σ3 and hence there exists Q◁P ∈ Syl3((Q8 ∗Q8) · (Σ3 × Σ3))
which is not weakly closed in (Q8 ∗Q8) · (Σ3 × Σ3). It follows from Lemma 3.4.7 that
N is not 3-extendible.

3D: As we saw in the case (M11, 2A), GL2(3) is not 2-extendible and hence neither is N ,
by Lemma 3.4.2 (ii). Furthermore, N is not 3-extendible, by Algorithm 2.

7A: This case has already been analysed in the case (Co3, 7A) and we may therefore
conclude that N is not q-extendible for all q ∈ π(N).

G = Fi23, |G| = 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23

2C: If q ∈ π(N), then since Ω−
6 (2) is simple, it follows that (3 × Ω−

6 (2)) · 2 is a group of
type (G), so cq((3 × Ω−

6 (2)) · 2) > 1 and hence cq(N) > 1 by Lemma 3.4.4. So N is not
q-extendible for all q ∈ π(N).

3B: Since |N | = 211 · 313, we know that N is solvable and hence 2-solvable, so N is 2-
extendible if and only if it is 2-nilpotent by Corollary 3.2.8. Checking with MAGMA,
we verify that N is not 2-nilpotent, so it is not 2-extendible. On the other hand, we
may use Algorithm 2 to verify that the quotient K ∼= (Q∗

8)331+2GL2(3) contains a
subgroup Q ◁ P ∈ Syl3((Q∗

8)331+2GL2(3)) which is not weakly closed in P with respect
to K, so it follows from Lemma 3.4.7 that N is not 3-extendible.

3C: If q ∈ π(N), then since Ω5(3) is simple, it follows from Theorem 3.4.1 that cq(Ω5(3)) > 1
and we deduce that cq(2 × (Ω5(3) · 2)) > 1 and hence cq(N) > 1, by Lemma 3.4.4. Thus
N is not q-extendible for all q ∈ π(N).

3D: Since |N | = 25 · 310, we know that N is solvable and hence 2-solvable, so N is 2-
extendible if and only if it is 2-nilpotent by Corollary 3.2.8. Checking with MAGMA,
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we verify that N is not 2-nilpotent, so it is not 2-extendible. On the other hand, we
may show that N is not 3-extendible using Algorithm 2.

7A: If q = 2 or 3, then it follows from Theorem 3.4.1 that cq(Σ5) > 1, so cq(N) > 1 by
Lemma 3.4.4 and hence N is not q-extendible. On the other hand, we know that Σ5 is
5-extendible, so N is 5-extendible by Lemma 3.4.2 (ii). Finally, note that P7 ◁ N and
|P7| = 7, so N is 7-extendible, by Lemma 3.4.2 (iv).

11A: Since N is 2-nilpotent it is 2-extendible. Furthermore, P11 ◁ N , so we know that P2P11

is a subgroup of index 5 in N , so it follows that N is 5-extendible by Lemma 3.4.2 (iv).
Finally, P11 ◁ N and |P11| = 11, so N is 11-extendible, by Lemma 3.4.2 (iv).

13A: Note that P13 ◁ N and N/P13 ∼= 6 × Σ3. Since 6 × Σ3 is 2-nilpotent, it is 2-extendible,
and hence N is 2-extendible by Lemma 3.4.2 (ii). On the other hand, 6 × Σ3 is not
3-extendible by Example 3.4.6 (i), so N is not 3-extendible by Lemma 3.4.7 (ii). Finally,
note that P13 ◁ N and |P13| = 13, so N is 13-extendible, by Lemma 3.4.2 (iv).

G = Fi′24, |G| = 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29

2B: Since U4(3) is a simple group, by Theorem 3.4.1 it follows that 3U4(3) · 2 is a group
of type (G) and hence cq(3U4(3) · 2) > 1 for all q ∈ π(N). Thus cq(N) > 1 for all
q ∈ π(N) by Lemma 3.4.4, and we deduce that N is not q-extendible for all q ∈ π(N).

3A: Since PΩ+
8 (3) is a simple group, by Theorem 3.4.1 we know that cq(PΩ+

8 (3)) > 1 for
all q ∈ π(N) and hence cq(PΩ+

8 (3) · 3) > 1 by Lemma 3.4.4. Thus N is a group of type
(G) and it follows that N is not q-extendible for all q ∈ π(N).

3B: Since U5(2) is a simple group, Theorem 3.4.1 shows that cq(U5(2)) > 1 for all q ∈ π(N),
so cq(U5(2) · 2) > 1 and hence cq(N) > 1 for all q ∈ π(N), by Lemma 3.4.4. So N is
not q-extendible for all q ∈ π(N).

3C: We know that PΩ−
6 (3) is a quotient group of Ω−

6 (3) and cq(PΩ−
6 (3)) > 1 for all q ∈ π(N)

by Theorem 3.4.1, so cq(Ω−
6 (3)) > 1 for all q ∈ π(N) by Lemma 3.4.4. Thus cq(N) > 1

for all q ∈ π(N) and we see that N is not q-extendible for all q ∈ π(N).
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Class Normaliser in G Order q-extendible Type?
2A 2Fi22 218 · 39 · 52 · 7 · 11 · 13 - F
2B ((2 × 2)U6(2)) · 2 218 · 36 · 5 · 7 · 11 - G
2C (E22 × (D∗

8)4)((3 × Ω−
6 (2)) · 2) 218 · 35 · 5 - -

3A Σ3 × Ω7(3) 210 · 310 · 5 · 7 · 13 - F
3B 31+8(Q∗

8)331+2GL2(3) 211 · 313 - -
3C E36 · (2 × (Ω5(3) · 2)) 28 · 310 · 5 - -
3D 25310 25 · 310 - -
5A (5 · 4) × Σ7 26 · 32 · 52 · 7 7 B
7A (7 · 6) × Σ5 24 · 32 · 5 · 7 5, 7 -
11A ((11 · 5) × E22) · 2 23 · 5 · 11 2, 5, 11 -
13A (13 · 6) × Σ3 22 · 32 · 13 2, 13 -
17A 17 · 16 24 · 17 2, 17 A
23A 23 · 11 11 · 23 11, 23 A

Table 3.23 p-local subgroups: Fi23

Class Normaliser in G Order q-extendible Type?
2A 2Fi222 218 · 39 · 52 · 7 · 11 · 13 - G
2B (D∗

8)6(3U4(3) · 2) 221 · 37 · 5 · 7 - -
3A (3 × (PΩ+

8 (3) · 3)) · 2 213 · 314 · 5 · 7 · 13 - -
3B 31+10(U5(2) · 2) 211 · 316 · 5 · 11 - -
3C E37Ω−

6 (3)2 28 · 313 · 5 · 7 - -
3D 26314 26 · 314 - -
3E ((3 × 3) · 2) ×G2(3) 27 · 38 · 7 · 13 - F
5A (D10 × A9)#2 28 · 34 · 52 · 7 - G
7A (7 · 6) × A7 24 · 33 · 5 · 72 - D
7B 71+2 · (6 × Σ3) 22 · 32 · 73 2 -
11A ((11 · 5) × A4) · 2 23 · 3 · 5 · 11 3, 5, 11 -
13A ((13 · 6) × (E32 · 2))2 23 · 33 · 13 2, 13 -
17A 17 · 16 24 · 17 2, 17 A
23A 23 · 11 11 · 23 11, 23 A
29A 29 · 14 14 · 29 14, 29 A

Table 3.24 p-local subgroups: Fi′24
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3D: We may obtain a permutation representation of N in MAGMA using some ad hoc
methods, which are described in Appendix A.1.1. Since |N | = 26 · 314, we know
that N is 2-solvable, and hence N is 2-extendible if and only if N is 2-nilpotent by
Corollary 3.2.8; we verify using MAGMA that N is not 2-nilpotent, and hence it is not
2-extendible. Moreover, N contains a normal subgroup H of order 36 and Algorithm 2
shows that N/H contains a 3-group which is normal in a Sylow 3-subgroup of N/H
and is not weakly closed in N/H. By Lemma 3.4.7 and Proposition 3.2.4, it follows
that N is not 3-extendible, as required.

7B: Since 6 and Σ3 are both 2-nilpotent, it follows that 6 × Σ3 is 2-nilpotent and hence
2-extendible, so N is 2-extendible by Lemma 3.4.2 (ii); on the other, 6 × Σ3 is not
3-extendible by Example 4.2.5 (i), and hence N is not 3-extendible either. Note that
P7 ∈ Syl7(G); then Z(P7) is cyclic of order 7 and Z(P7) ◁ P7, so comparing the orders
of (7A) and (7B) in Table 3.24, we know that N ∼= NG(Z(P )). This provides a
computationally feasible way of constructing N in MAGMA, and using Algorithm 2,
we confirm that N is not 7-extendible.

11A: We saw in the case (M22, 3A) that A4 is not 2-extendible and hence it follows that N
is not 2-extendible by a combination of Lemma 3.4.8 (i) and (ii). On the other hand,
c3(A4) = 1 and hence c3(N) = 1 by Lemma 3.4.4; since |P3| = 3, it follows that N
is 3-extendible; similar reasoning shows that c5(N) = 1 and hence N is 5-extendible.
Finally, note that P11 ◁ N and |P11| = 11, so N is 11-extendible.

13A: Note that N contains a normal Hall subgroup of order 33 · 13, so N is 2-nilpotent
and hence 2-extendible. Furthermore, we verify using Algorithm 2 that N is not
3-extendible. Finally, P13 ◁ N and |P13| = 13, so N is 13-extendible.

G = B, |G| = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 32 · 47

2A: We note that 2E6(2) is a finite simple group of Lie type, and hence by Theorem 3.4.1,
we have cq(2E6(2)) > 1 for all q ∈ π(N). Thus N is a group of type (G), so cq(N) > 1
for all q ∈ π(N) and hence N is not q-extendible for all q ∈ π(N).

2D: Note that Ω+
8 (2) is simple and hence cq(Ω+

8 (2)) > 1 for all q ∈ π(N) by Theorem
3.4.1. Furthermore, Ω+

8 (2) is isomorphic to a normal subgroup of SO+
8 (2), which is
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a normal subgroup of O+
8 (2), so by Lemma 3.4.4, it follows that cq(O+

8 (2)) > 1 and
hence cq(N) > 1 for all q ∈ π(N). Thus N is not q-extendible for all q ∈ π(N).

3A: Since Fi22 is simple, it follows from Theorem 3.4.1 that cq(Fi22) > 1 for all q ∈ π(N),
so cq(Fi22 · 2) > 1 and hence cq(N) > 1 by Lemma 3.4.4. Thus N is not q-extendible
for all q ∈ π(N).

3B: Note that Ω−
6 (2) is simple and hence cq(Ω−

6 (2)) > 1 for all q ∈ π(N) by Theorem
3.4.1. Furthermore, Ω−

6 (2) is isomorphic to a normal subgroup of SO−
6 (2), which is

a normal subgroup of O−
6 (2), so by Lemma 3.4.4, it follows that cq(Ω−

6 (2)) > 1 and
hence cq(N) > 1 for all q ∈ π(N). Thus N is not q-extendible for all q ∈ π(N).

5A: Since HS is simple, we know from Theorem 3.4.1 that cq(HS) > 1 for all q ∈ π(N), so
cq(HS · 2) > 1 and hence cq(N) > 1 for all q ∈ π(N). Thus N is not q-extendible for
all q ∈ π(N).

5B: If q = 2 or 3, then cq(A5) > 1 by Theorem 3.4.1 and hence by Lemma 3.4.4, it follows
that cq((Q8 ∗D8)A5) > 1. Hence cq(51+4 · ((Q8 ∗D8)A5)) > 1 and cq(N) > 1. Thus N
is not 2-extendible or 3-extendible. We are unable to determine if N is 5-extendible or
not using Algorithms 1 or 2, due to the fact that no known permutation representation
for B exists on a reasonable number of points (indeed, the original construction for B,
due to Leon and Sims, was on 13, 571, 955, 000 points).

7A: Since (43 − 1)/(4 − 1) = 21 is not a prime power, it follows from Theorem 3.4.1 that
cq(L3(4)) > 1 for all q ∈ π(N). Thus, (2L3(4)) · 2 is a group of type (G) and hence so
is N ; thus, cq(N) > 1 for all q ∈ π(N) and it follows that N is not q-extendible for all
q ∈ π(N).

11A: Note that P11 ◁ N and N/P11 ∼= 10 × Σ5, which is a group of type (D). Thus, we know
that if q = 2, 3 or 5, then 10 × Σ5 is not q-extendible and hence neither is N by Lemma
3.4.2 (ii). On the other hand, P11 ◁N and |P11| = 11, so N is 11-extendible, by Lemma
3.4.2 (iv).

13A: Note that P13 ◁N and N/P13 ∼= 12×Σ4. We saw in the case (M22, 2A) that Σ4 contains
a 2-group which is normal in a Sylow 2-subgroup of Σ4 but is not weakly closed in
Σ4. Thus, by Lemma 3.4.7, it follows that N is not 2-extendible. On the other hand,
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12 × Σ4 contains a subgroup isomorphic to 12 × Σ3, and by Example 3.4.6 (i), we see
that 12 × Σ4 is not 3-extendible, so neither is N , by Lemma 3.4.2 (ii). Finally, P13 ◁ N

and |P13| = 13, so N is 13-extendible.

17A: Since P17 ◁ N , it follows that N is 2-nilpotent and hence 2-extendible. Furthermore,
|P17| = 17, so we can deduce that N is 17-extendible, by Lemma 3.4.2 (iv).

19A: Note that P19 ◁N and N/P19 ∼= 18×2 is an abelian group, so N/P19 is 2-extendible and
3-extendible; by Lemma 3.4.2 (ii), it follows that N is 2-extendible and 3-extendible.
Furthermore, P19 ◁ N and |P19| = 19, so we see that N is 19-extendible, by Lemma
3.4.2 (iv).

G = M, |G| = 246 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71

3B: If q ∈ π(N), then cq(Suz) > 1 by Theorem 3.4.1 and thus cq(2Suz) > 1 by Lemma
3.4.4; it hence follows that cq(31+12(2Suz)) > 1 and hence cq(N) > 1. Thus N is not
q-extendible for all q ∈ π(N).

5B: If q ∈ π(N), then cq(J2) > 1 by Theorem 3.4.1 and thus cq(2J2) > 1 by Lemma 3.4.4.
It therefore follows that cq((4 ∗ 2J2) · 2) > 1 and thus cq(N) > 1; hence N is not
q-extendible for all q ∈ π(N).

7B: If q = 2, 3 or 5, then cq(A7) > 1 by Theorem 3.4.1 and hence cq((2A7 × 3) · 2) > 1 by
Lemma 3.4.4. Thus cq(N) > 1 and it follows that N is not q-extendible. Furthermore,
[3] has a permutation representation of N on 16, 807 points, which is the maximal
subgroup labelled “71+4 : (3 × 2S7)”. Using this permutation representation, we verify
that N is not 7-extendible, using Algorithm 2.

13A: If q = 2 or 3, then cq(L3(2)) > 1 and hence by Lemma 3.4.4, we deduce that cq(N) > 1,
so N is not q-extendible. On the other hand, c7(L3(2)) = 1, so by Lemma 3.4.4, we
see that c7(N) = 1; since |P7| = 7, it follows that N is 7-extendible. Finally, P13 ◁ N

and |P13| = 13, so N is 13-extendible.

4It is unknown if (51+4 · ((Q8 ∗ D8)A5)) · 4 is 5-extendible or not.
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Class Normaliser in G Order q-extendible Type?
2A (2 2E6(2)) · 2 238 · 39 · 52 · 72 · 11 · 13 · 17 · 19 - -
2B (D∗

8)11(Co2) 241 · 36 · 53 · 7 · 11 · 23 - F
2C (E22 × F4(2))2 227 · 36 · 52 · 72 · 13 · 17 - G
2D 29216O+

8 (2) 238 · 35 · 5 · 7 - -
3A Σ3 × (Fi22 · 2) 217 · 39 · 52 · 7 · 11 · 13 - -
3B 31+8(Q∗

8)3O−
6 (2) 214 · 313 · 5 - -

5A (5 · 4) × (HS · 2) 212 · 32 · 54 · 7 · 11 - -
5B4 (51+4 · ((Q8 ∗D8)A5)) · 4 29 · 3 · 56 - -
7A ((7 · 3) × (2L3(4) · 2))2 29 · 33 · 5 · 72 - -
11A (11 · 10) × Σ5 24 · 3 · 52 · 11 11 -
13A (13 · 12) × Σ4 25 · 32 · 13 13 -
17A ((17 · 8) × E22)2 26 · 17 2, 17 -
19A (19 · 18) × 2 22 · 32 · 19 2, 3, 19 -
23A (23 · 11) × 2 2, 11, 23 2, 11, 23 A
31A 31 · 15 3 · 5 · 31 3, 5, 31 A
47A 47 · 23 23 · 47 23, 47 A

Table 3.25 p-local subgroups: B

Class Normaliser in G Order q-extendible Type?
2A 2B 242 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 32 · 47 - F
2B (D∗

8)12(Co1) 243 · 39 · 54 · 72 · 11 · 13 · 23 - F
3A (3Fi′24) · 2 222 · 317 · 52 · 73 · 11 · 13 · 17 · 23 · 29 - G
3B 31+12(2Suz) · 2 215 · 320 · 52 · 7 · 11 · 13 - -
3C Σ3 × Th 216 · 311 · 53 · 72 · 13 · 19 · 31 - F
5A (D10 ×HN)2 216 · 36 · 57 · 7 · 11 · 19 - G
5B 51+6 · ((4 ∗ 2J2) · 2) 210 · 33 · 59 · 7 - -
7A ((7 · 3) ×He) · 2 211 · 34 · 52 · 74 · 17 - G
7B 71+4 · (2A7 × 3) · 2 25 · 33 · 5 · 76 - -
11A ((11 · 5) ×M12) · 2 27 · 33 · 52 · 112 - G
13A ((13 · 6) × L3(2)) · 2 25 · 32 · 7 · 13 7, 13 -
13B 131+2 · ((SL2(3) × 3)4) 25 · 32 · 133 - -
17A ((17 · 8) × L2(7))2 27 · 3 · 7 · 17 7, 17 -
19A ((19 · 9) × A5) · 2 23 · 33 · 5 · 19 5, 19 -
23A (23 · 11) × Σ4 23 · 3 · 11 · 23 3, 11, 23 -
29A ((29 · 14) × 3)2 22 · 3 · 7 · 29 2, 3, 7, 29 -
31A (31 × 15) × Σ3 2 · 32 · 5 · 31 2, 5, 31 -
41A 41 · 40 23 · 5 · 41 2, 5, 41 A
47A 93 · 23 23 · 93 23, 93 A
59A 59 · 29 29 · 59 29, 59 A
71A 71 · 35 5 · 7 · 71 5, 7, 71 A

Table 3.26 p-local subgroups: M
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13B: We saw in the case (Ly, 7A) that SL2(3) is not 2-extendible and hence neither is
SL2(3) × 3 by Lemma 3.4.2 (ii); thus (SL2(3) × 3)4 is not 2-extendible by Lemma
3.4.8 (ii) and we conclude that N is not 2-extendible. Moreover, by Theorem 3.4.1,
we have c3(L3(2)) > 1 and hence it follows from Lemma 3.4.4 that c3(N) > 1, so N is
not 3-extendible. Moreover, [3] has a permutation representation of N on 2, 197 points
under the maximal group labelled “131+2 : (3 × S4)” and using Algorithm 2 and this
representation, we verify that N is not 13-extendible.

17A: If q = 2 or 3, then by Theorem 3.4.1, we know that cq(L2(7)) > 1 and hence cq(N) > 1
by Lemma 3.4.4, so N is not q-extendible. On the other hand, c7(L2(7)) = 1, so
c7(N) = 1, and since |P7| = 7, we conclude that N is 7-extendible. Finally, P17 ◁ N

and |P17| = 17, so N is 17-extendible, by Lemma 3.4.2 (iv).

19A: If q = 2 or 3, then cq(A5) > 1 by Theorem 3.4.1 and hence cq(N) > 1 by Lemma 3.4.4,
so N is not q-extendible. On the other hand, c5(A5) = 1, so c5(N) = 1 and since
|P5| = 5, we conclude that N is 5-extendible. Finally, P19 ◁ N and |P19| = 19, so N is
19-extendible, by Lemma 3.4.2 (iv).

23A: Note that P23 ◁ N and N/P23 ∼= 11 × Σ4. We saw in the case (M22, 2A) that Σ4 is
not 2-extendible, so neither is N by Lemma 3.4.2 (iv). On the other hand, 11 × Σ4 is
clearly 11-extendible, so N is 11-extendible. Finally, P23 ◁ N and |P23| = 23, so N is
23-extendible, by Lemma 3.4.2 (iv).

29A: Note that ((29 · 14) × 3) contains a normal Hall subgroup of order 3 · 7 · 29 and hence N
is 2-nilpotent, so N is 2-extendible. Furthermore, since P7P29 is normal in N , it follows
that P2P7P29 is a subgroup of index 3 in N , and since |P3| = 3, we deduce that N is
3-extendible, by Lemma 3.4.2 (iv). Moreover, c7(29 · 14) = 1, so c7((29 · 14) × 3) = 1
by Lemma 3.4.4 and hence c7(N) = 1; since |P7| = 7, it follows that N is 7-extendible.
Finally, P29 ◁ N and |P29| = 29, so N is 29-extendible, by Lemma 3.4.2 (iv).

31A: Note that P31 ◁ N and N/P31 ∼= 15 × Σ3. Since Σ3 is 2-extendible, it follows that N
is 2-extendible, by Lemma 3.4.2 (iv); on the other hand, Σ3 is not 3-extendible by
Example 3.4.6 (i), so N is not 3-extendible. Furthermore, 15×Σ3 is clearly 5-extendible,
so N is 5-extendible. Finally, since P31 ◁ N and |P31| = 31, we conclude that N is
31-extendible, by Lemma 3.4.2 (iv).





Chapter 4

Classical Groups

In this chapter, we apply the results developed in Sections 2.3 and 2.4 to some of
the classical groups described in Section 1.2.1. We start by recalling the details of
(B,N)-pairs, which serve as a useful tool for unifying the structure of the finite classical
groups; in particular, we study the Scott modules associated to the subgroup B in
such (B,N)-pairs. We finish the chapter by looking at the Levi decomposition and
how certain p-subgroups of a classical group define Scott modules which extend to a
corresponding parabolic subgroup.

4.1 (B,N)-Pair Preliminaries

Much of the material in this section is standard, and is taken from [13, Sections 1.6, 1.7].
Throughout this section, we let G be an abstract finite group, but we will mainly think
of G as being a particular classical group in examples. We start with the definition of
a (B,N)-pair.

Definition 4.1.1. We say that G admits a (B,N)-pair if there exist subgroups
B,N ≤ G such that the following conditions hold:

(i) G = ⟨B,N⟩;

(ii) H = B ∩N ◁ N and the quotient W := N/H is generated by a set of elements
S = {si : i ∈ I} such that s2

i = 1;

(iii) if si = niH and n ∈ N , then:
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(a) niBni ̸= B and;

(b) niBn ⊆ B(nin)B ∪BnB.

If G admits a (B,N)-pair, we refer to the quotient W as the Weyl group of the
(B,N)-pair. The order |I| is referred to as the rank of the (B,N)-pair; note that it
may be infinite, but we shall always assume that |I| is finite. We shall refer to the
elements of S as the simple reflections of W ; note that the simple reflections are
involutions, i.e., elements of order 2. If w ∈ W and w = nH, then without loss of
generality we set BwB := BnB.

Remarks 4.1.2. Suppose that G is a linear algebraic group defined over an alge-
braically closed field of characteristic p. A maximal, closed, connected, solvable
subgroup of G is known as a Borel subgroup of G. It is well-known (see [13, Section
3.4]) that any linear algebraic group has a Borel subgroup, and any two Borel subgroups
of G are conjugate in G. Furthermore, in the situation where G is affine and G admits
a reductive (B,N)-pair ([13, Definition 3.4.5]), the subgroup B of the (B,N)-pair is
in fact a Borel subgroup. Classical groups (defined over algebraically closed fields)
and groups of Lie type are both standard examples of groups which admit a reductive
(B,N)-pair: see [13, Theorems 1.7.4, 1.7.8] for the former and [35, p. 58, Theorem 6]
for the latter.

Now let G be a (infinite order) classical group defined over an algebraically closed
field of characteristic p and set Fq : G → G to be a Frobenius map, where q = pe for
some e ≥ 1 and Fq(x) = (xqij) for all x ∈ G. Then the fixed point set GFq is a (finite
order) classical group defined over a finite field, and if (B,N) is a reductive (B,N)-pair
for G with B an Fq-stable subgroup of G, then (BFq , NFq) is a (B,N)-pair for GFq

(see Sections 1.17 and 1.18 of [9]). In Carter’s book [9], a Borel subgroup of GFq is
defined to be any subgroup of the form BFq , where B is an Fq-stable Borel subgroup of
the classical group G. In both cases, a “Borel” subgroup can be viewed as a subgroup
B in a certain (B,N)-pair for the particular classical group; the connection between
classical groups and (B,N)-pairs is therefore quite apparent.
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Theorem 4.1.3 (Bruhat Decomposition). [13, Proposition 1.6.3] If G admits a (B,N)-
pair with Weyl group W , then

G = BWB =
∏
w∈W

BwB

is a disjoint union of double cosets.

Thus the Weyl group W of the (B,N)-pair for G is a set of double (B,B)-coset
representatives in G, and it follows that G = BNB.

If G admits a (B,N)-pair and J ⊆ I, we let NJ denote the inverse image of
⟨sj : j ∈ J⟩ in N and set PJ = BNJB. This set product is a subgroup of G, known
as the parabolic subgroup of G associated to J (the fact that it is a subgroup
follows from the (B,N)-pair axioms - see [13, 1.6.2] for the details). Furthermore, any
subgroup L ≤ G satisfying B ≤ L ≤ G must be of the form L = PJ for some J ⊆ I,
so the parabolic subgroups exhaust the interim subgroups between B and G (see [37,
9.15] for this fact).

For each subset J ⊆ I, we set SJ = {sj : j ∈ J} and we let WJ = ⟨s : s ∈ SJ⟩ ≤ W .
For all w ∈ WJ , we define l(w) to be the smallest k ∈ N such that there exists an
expression of the form

w = s1s2 · · · sk

with sj ∈ S for 1 ≤ j ≤ k and we refer to l(w) as the length of w in W . It is
well-known that within any (finite rank) Weyl group W and for any subset J ⊆ I,
there exists a unique element wJ ∈ WJ such that l(wJ) = maxw∈WJ

l(w), and this
element is an involution. We set w0 = wI , and refer to this as the longest element of
W . Note that although wJ is an involution, it is never an element of S, unless |J | = 1.

We shall mainly be interested in (B,N)-pairs which satisfy some additional structure.
The following more refined definition was originally formulated in [33, Definition 3.1].

Definition 4.1.4. If G admits a (B,N)-pair, we say that the (B,N)-pair is split at
characteristic p if:

(i) B = U ⋊H, where U is a p-group and H is an abelian p′-group;

(ii) H = ∩n∈NnBn
−1.
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Note that the subgroup U is unique in any given subgroup B, but the subgroup H
is only unique up to conjugacy. By the Bruhat decomposition, it follows that U is a
Sylow p-subgroup of G. Given any x ∈ G and w ∈ W , we define p-subgroups of U by
setting Ux = U ∩ Ux and Uw = Un, where w = nH for some n ∈ N . The following is
Theorem 3.4 in [33].

Proposition 4.1.5. Suppose that G admits a (B,N)-pair which is split at character-
istic p. Then for all w ∈ W , we have

U = Uw0wUw and Uw0w ∩ Uw = {1}.

4.2 The Subgroup B

In this section, we consider some finite classical groups which admit a (B,N)-pair that
is split at characteristic p. Our aim is to study S(B,Q), where Q is a p-subgroup of
U . For finite classical groups, it is well-known that a (B,N)-pair is determined up
to conjugacy; moreover, we have seen that Scott modules are also determined up to
conjugacy. Thus, when studying a particular classical group, we may, without loss of
generality, fix a choice of subgroup B. We start with a lemma, which holds for abstract
(B,N)-pairs, accounting for some of the subgroups Q ≤ U .

Lemma 4.2.1. Suppose that G admits a (B,N)-pair which is split at characteristic
p, so that B = U ⋊H with U ∈ Sylp(G). Then S(B,Uw)↓U ∼= k[U/Uw] for all w ∈ W .

Proof. By definition, we have Uw = U ∩ Un, where w = nH = Hn. If h ∈ H, then
nh = h′n for some h′ ∈ H and hence

(Uw)h = Uh ∩ Unh = U ∩ Uh′n = U ∩ Un = Uw.

Thus H ≤ NB(Uw) and it follows that |NB(Uw)|p′ = |H| = |B : U |; we therefore have
S(B,Uw)↓U ∼= k[U/Uw] by Theorem 2.4.2.
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4.2.1 GLn(q)

Suppose that G = GLn(q) for a prime power q = pe. The order of GLn(q) is given by:

|GLn(q)| = q
1
2n(n−1)(q − 1)(q2 − 1) · · · (qn − 1).

Thus, the order of a Sylow p-subgroup of G is p e2n(n−1); such a Sylow p-subgroup of G
is given by the unitriangular matrices:

Un(q) =





1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
...

...
...

. . .
...

...

0 0 0 · · · 0 1

 : ∗ ∈ Fq


.

This subgroup is part of a (B,N)-pair of G which is split at characteristic p; the
corresponding subgroup H is the diagonal matrices, and the subgroup B = U ⋊H is
equal to the set of upper triangular matrices. Moreover, N consists of the monomial
matrices in GLn(q) and the Weyl group W := N/H ∼= Σn; we may identify W with the
group of permutation matrices, since the group of permutation matrices in N forms a
left transversal of H in N . We set Bn(q) to be the set of upper triangular matrices in
GLn(q), Hn(q) to be the set of diagonal matrices and Nn(q) to be the set of monomial
matrices.

This particular Sylow p-subgroup Un(q) and its subgroups have been studied now
for some time; in particular, in [40], Weir analyses a certain class of subgroups in Un(q)
known as partition subgroups. If i < j, then we let Ui,j = {In + αeij : α ∈ Fq}; note
that Ui,j is a subgroup of Un(q) isomorphic to the additive group of Fq and hence
Ui,j ∼= Eq for all i < j. A subgroup Q ≤ Un(q) is said to be a partition subgroup
of Un(q) if it is generated by a selection of the subgroups Ui,j. For example, if n = 4,
then a direct calculation verifies that

Q =





1 ∗ 0 ∗
0 1 0 ∗
0 0 1 0
0 0 0 1

 : ∗ ∈ Fq
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is a subgroup of U4(q) and hence is a partition subgroup of U4(q); in this case,
Q = ⟨U1,2, U1,4, U2,4⟩.

Proposition 4.2.2. Suppose that U = Un(q) and B = Bn(q), and let Q ≤ U be a
partition subgroup of U . Then S(B,Q)↓U ∼= k[U/Q].

Proof. Recall that B = U ⋊H, where H = Hn(q) denotes the set of diagonal matrices.
If h ∈ H and i < j, then it is clear that Uh

i,j = Ui,j, since conjugating a matrix in
GLn(q) by h multiplies every entry of the matrix by an element of Fq. Thus, if Q ≤ U

is a partition subgroup, then h ∈ NB(Q) and it follows that H ≤ NB(Q). The result
now follows from Theorem 2.4.2, since U ◁ B.

In fact, more can be said in the case where Q is a normal subgroup of U ; in
this case, the normal partition subgroups are the only subgroups of U for which
S(B,Q)↓U ∼= k[U/Q].

Proposition 4.2.3. Suppose that U = Un(q) and B = Bn(q). If Q ◁ U , then
S(B,Q)↓U ∼= k[U/Q] if and only if Q is a partition subgroup of U .

Proof. If S(B,Q)↓U ∼= k[U/Q], then by Theorem 2.4.2, it follows that Q ◁ B. By [40,
Theorem 5], we therefore have that Q is partition subgroup of U . On the other hand,
if Q is a partition subgroup of U , then S(B,Q)↓U ∼= k[U/Q] by Proposition 4.2.2.

Example 4.2.4. Suppose that G = GL3(p) for an odd prime p. Then U3(p) ∼= p1+2
+ ;

explicitly, we may verify the generators and relations given in Definition 1.2.2 using
the following matrices:

a =


1 1 0
0 1 0
0 0 1

 , b =


1 0 0
0 1 1
0 0 1

 and c =


1 0 −1
0 1 0
0 0 1

 .

Let U = U3(p), B = B3(p) and H = H3(p). Then:

(i) a complete list of representatives of the conjugacy classes of subgroups of order p
in U is given by: ⟨b⟩, ⟨c⟩ and ⟨abi⟩ with 0 ≤ i ≤ p− 1;

(ii) the subgroups of order p2 in U are ⟨b, c⟩ and ⟨abi, c⟩ with 0 ≤ i ≤ p− 1.
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We include a proof of this fact in the appendix; see Appendix A.2. It is clear that ⟨a⟩,
⟨b⟩, ⟨c⟩, ⟨b, c⟩ and ⟨a, c⟩ are all partition subgroups and hence S(B,Q)↓U ∼= k[U/Q] if
Q is any of these subgroups, by Proposition 4.2.2.

Let 1 ≤ i ≤ p− 1 and set Q = ⟨abi⟩. Let

u =


1 x y

0 1 z

0 0 1

 ∈ U and h =


α 0 0
0 β 0
0 0 γ

 ∈ H

where x, y, z ∈ Fp and α, β, γ ∈ F×
p . Then

u−1 =


1 −x xz − y

0 1 −z
0 0 1

 and abi =


1 1 i

0 1 i

0 0 1

 .

A direct calculation now shows that

(abi)u =


1 1 z + i− xi

0 1 i

0 0 1

 , so (abi)uh =


1 α−1β α−1γ(z + i− xi)
0 1 β−1γi

0 0 1

 .

Assume that 2 ≤ m ≤ p− 1 and

(abi)m−1 =


1 m− 1 f(m− 1)i
0 1 (m− 1)i
0 0 1

 ,

where f(m− 1) = (m−1)m
2 denotes the (m− 1)-th triangular number. Then

(abi)m =


1 m− 1 f(m− 1)i
0 1 (m− 1)i
0 0 1



1 1 i

0 1 i

0 0 1

 =


1 m f(m)i
0 1 mi

0 0 1

 , (∗)



114 Classical Groups

so by induction, (∗) holds for 1 ≤ m ≤ p − 1. Thus, (abi)uh ∈ Q if and only if
α−1β = β−1γ and

α−1γ(z + i− xi) = f(α−1β) = α−1β(α−1β + 1)
2 ,

i.e., if and only if γ = α−1β2 and

z = β(α−1β + 1)
2γ + xi− i.

In particular, we conclude that |NB(Q)| = (p− 1)2p2 and it follows from Theorem 2.4.2
that dim S(B,Q) = (p− 1)|U : Q|.

Now let 1 ≤ i ≤ p− 1 and Q = ⟨abi, c⟩. Note that Q ◁ U but Q is not a partition
subgroup, so we know from Proposition 4.2.3 that dim S(B,Q) > |U : Q|. Furthermore,
since Q ◁ U , |NB(Q)|p′ = |NH(Q)|. By (∗), a general element u ∈ Q looks like

u = (abi)mcn =


1 m f(m)i− n

0 1 mi

0 0 1


with 0 ≤ m,n ≤ p− 1. Moreover,

uh =


1 α−1βm α−1γ(f(m)i− n)
0 1 β−1γmi

0 0 1

 .

Thus, if m ̸= 0, then uh ∈ Q if and only if γ = α−1β2, so |NB(Q)| = (p − 1)2p3. By
Theorem 2.4.2, it follows that dim S(B,Q) = (p− 1)|U : Q|.

We summarise our findings in Table 4.1. Note that there are no examples of a
nonpartition subgroup Q ≤ U for which S(B,Q)↓U ∼= k[U/Q].

4.2.2 Other Classical Groups

The symplectic group Sp2m(q) and the orthogonal groups O2m+1(q) and O+
2m(q) are both

examples of classical groups which admit (B,N)-pairs that are split at characteristic
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Q |NB3(p)(Q)|p′ dim S(B3(p), Q)/|U3(q) : Q|
{1} (p− 1)3 1
⟨a⟩ (p− 1)3 1
⟨b⟩ (p− 1)3 1
⟨c⟩ (p− 1)3 1
⟨abi⟩, 1 ≤ i ≤ p− 1 (p− 1)2 (p− 1)
⟨a, c⟩ (p− 1)3 1
⟨b, c⟩ (p− 1)3 1
⟨abi, c⟩, 1 ≤ i ≤ p− 1 (p− 1)2 (p− 1)

Table 4.1 Scott Modules for B3(p) = U3(p) ⋊H3(p)

p. Moreover, as we shall see, these (B,N)-pairs can be described in terms of Un(q),
Hn(q) and Bn(q), where n denotes the degree of the particular classical group.

In order to make this clear, we cover some generalities, which are taken from [13,
Section 1.7]. Suppose that G is a finite group which admits a (B,N)-pair that is split
at characteristic p, and B = U ⋊ H. Let φ : G → G be a bijective homomorphism
such that:

(i) φ(U) = U , φ(H) = H and φ(N) = N ;

(ii) every coset Hn such that φ(Hn) ⊆ Hn contains an element which is fixed by φ.

The fixed point set Gφ = {g ∈ G : φ(g) = g} then admits a (B,N)-pair which is split
at characteristic p, namely the pair (Bφ, Hφ). Moreover, we have Bφ = Uφ ⋊Hφ and
Uφ is a Sylow p-subgroup of Gφ. The Weyl group of the new (B,N)-pair is Nφ/Hφ.

For each classical group Sp2m(q), O2m+1(q) and O+
2m(q) contained in a general linear

group GLn(q), there exists a corresponding homomorphism φ : GLn(q) → GLn(q)
satisfying (i) and (ii) in the above and such that (GLn(q))φ equals the original classical
group. In this section, we shall carry out some computations involving the classical
group Sp4(p), looking at the Scott modules associated to the subgroup (B4(p))φ. For
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n ∈ N, we define the (n× n)-matrix

Q(n) =



0 0 · · · 1
...

... . .
. ...

0 1 · · · 0
1 0 · · · 0

 .

Example 4.2.5. Let G = Sp4(p) and p be an odd prime. Then Sp4(p) is equal to
the fixed point set of the bijective homomorphism φ : GL4(p) → GL4(p) given by
φ(g) = n−1

0 (gT )−1n0, where

n0 =
 0 Q(2)
−Q(2) 0

 .
Thus, Sp4(p) admits a (B,N)-pair, where

B = B4(p)φ and N = N4(p)φ.

Furthermore, a Sylow p-subgroup of Sp4(p) is given by U := U4(p)φ; a direct calculation
shows that

(U4(p))φ =





1 x y w

0 1 z y − xz

0 0 1 −x
0 0 0 1

 : x, y, w, z ∈ Fp


.

We let

a =



1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , b =



1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , c =



1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , d =



1 1 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

 .

Then U ∼= E ⋊D, where E = ⟨a, b, c⟩ ∼= Ep3 and D = ⟨d⟩ ∼= Cp. Furthermore, we have
ad = ab−2, bd = b and cd = a−1bc. The possible subgroups of U are described by the
following:
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Q |NB(Q)|p′ dim S(B,Q)/|U : Q|
{1} (p− 1)2 1
⟨b⟩ (p− 1)2 1
⟨d⟩ (p− 1)2 1
⟨ab⟩ (p− 1)2 1
⟨c⟩ (p− 1)2 1
⟨bic⟩, 1 ≤ i ≤ p− 1 2(p− 1) (p− 1)/2
⟨cdi⟩, 1 ≤ i ≤ p− 1 (p− 1) (p− 1)
⟨a, b⟩ (p− 1)2 1
⟨b, d⟩ (p− 1)2 1
⟨ab, bic⟩, 4i ≡ −1 mod p (p− 1)2 1
⟨ab, bic⟩, 0 ≤ i ≤ p− 1, 4i ̸≡ −1 mod p 2(p− 1) (p− 1)/2
⟨b, cdi⟩, 0 ≤ i ≤ p− 1 (p− 1) (p− 1)
⟨a, b, d⟩ (p− 1)2 1
⟨a, b, c⟩ (p− 1)2 1
⟨a, b, cdi⟩, 1 ≤ i ≤ p− 1 (p− 1) (p− 1)

Table 4.2 Scott Modules for the subgroup B = B4(p)φ of Sp4(p)

(i) a complete list of representatives of the conjugacy classes of subgroups of order p
in U is given by ⟨b⟩, ⟨d⟩, ⟨ab⟩, ⟨bic⟩ for 0 ≤ i ≤ p− 1 and ⟨cdi⟩ for 1 ≤ i ≤ p− 1;

(ii) a complete list of representatives of the conjugacy classes of subgroups of order
p2 in U is given by ⟨a, b⟩, ⟨b, d⟩, ⟨ab, bic⟩ for 0 ≤ i ≤ p − 1 and ⟨b, cdi⟩ for
0 ≤ i ≤ p− 1; and

(iii) the subgroups of order p3 in P are ⟨a, b, d⟩ and ⟨a, b, cdi⟩ for 0 ≤ i ≤ p− 1.

Again, we shall not prove this here, but we do give a proof in the appendix; see
Appendix A.3. Recall that we are interested in the Scott modules S(B,Q), where
Q is one of the subgroups in (i), (ii) or (iii). The Weyl group of our (B,N)-pair,
W = N/(H4(p))φ ∼= C2 ≀ C2 ∼= D8. More explicitly, we have

W ∼= ⟨(1, 4), (2, 3)⟩ ⋊ ⟨(1, 2)(3, 4)⟩ ≤ Σ4.

We may represent elements of the Weyl group by their corresponding permutation
matrices in N . There are therefore 8 subgroups of U of the form Uw = U ∩ Uw for
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some w ∈ W , and these are:

U1Σ4
= U U(1,4) = ⟨c⟩ U(1,3)(2,4) = ⟨d⟩

U(1,3,4,2) = ⟨b, d⟩ U(1,2,4,3) = ⟨a, c⟩ U2,3 = ⟨a, b, d⟩

U(1,2)(3,4) = E U(1,4)(2,3) = {1}.

Moreover, ⟨a, c⟩ is U -conjugate to ⟨ab, bic⟩, where 4i ≡ −1 mod p. Indeed, let α =
(p− 1)/2 and set

u =



1 α 0 0
0 1 0 0
0 0 1 α + 1
0 0 0 1

 .

A direct calculation verifies that au = ab and cu = aα+1b(α+1)2
c. Thus cu ∈ ⟨ab, bic⟩ if

and only if cu = (ab)α+1(bic), which occurs if and only if

α + 1 + i ≡ (α + 1)2 mod p

if and only if
2p+ 2 + 4i ≡ p2 + 2p+ 1 mod p

if and only if 4i ≡ −1 mod p. If Q is any of the above subgroups, we have S(B,Q)↓U ∼=
k[U/Q], by Lemma 4.2.1. In addition, ⟨b⟩ = Z(U) and hence ⟨b⟩ ◁ B, so S(B, ⟨b⟩)↓U ∼=
k[U/⟨b⟩], by Theorem 2.4.2.

The dimensions of the remaining cases may be determined using analysis similar to
that seen in Example 4.2.4. We have summarised our findings in Table 4.2; details of
the computations we used to find these are included in Appendix A.3.

4.3 Parabolic Subgroups

Suppose that G is a finite group that admits a (B,N)-pair which is split at characteristic
p. Then B = U ⋊H for some p-group U and abelian p′-group H, and U ∈ Sylp(G).
Furthermore, any subgroup Γ ≤ G satisfying B ≤ Γ ≤ G is a parabolic subgroup, and
is hence of the form PJ for some J ⊆ I, where I is the index set for the set of simple
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roots of the Weyl group of G. In this section, we study some of the Scott modules
which are associated to these parabolic subgroups.

These statements can be understood using something called the Levi decomposition.
In order to describe this topic, some notation is necessary. For a given subset J ⊆ I,
we define UJ = U ∩ UwJ , where wJ denotes the longest word in SJ = ⟨sj : j ∈ J⟩. We
define

LJ = ⟨H, (Uw0wi)w : w ∈ WJ , i ∈ J⟩

and refer to this as the Levi subgroup corresponding to J . The following properties of
the subgroups UJ and Lj are reasonably well-known (see [39, Section 3]).

Theorem 4.3.1. (The Levi Decomposition) Let G be a finite group which admits a
(B,N)-pair that is split at characteristic p, with index set I for its Weyl group W .
Then for each J ⊆ I, we have:

(i) NG(UJ) = PJ ;

(ii) PJ = UJ ⋊ LJ , where LJ denotes the Levi subgroup corresponding to J ;

(iii) LJ admits a split (B,N)-pair.

As a consequence of this result, we have the following.

Corollary 4.3.2. Suppose that J ⊆ I. Then:

(i) S(PJ , Uw0wJ )↓U ∼= k[U/Uw0wJ ];

(ii) S(PJ , UJ) ∼= P(kPJ/UJ ).

Proof. It is shown in [39, Lemma 2.A] that LJ admits a split (B,N)-pair with Sylow
p-subgroup Uw0wJ . By the Levi decomposition, |PJ : LJ | = UJ = pa for some a ∈ N, so
by Proposition 2.3.2 (ii), the first part follows. The second part follows from the fact
that UJ ◁ PJ and (iii) of the Scott-Alperin theorem.

Example 4.3.3. Let G = GL(4, q), so that we have a set of simple reflections S =
{(1, 2), (2, 3), (3, 4)}, and take SJ = {(1, 2), (3, 4)}. In this case, the longest word in
the subgroup WJ is (1, 2)(3, 4), and the longest word in the Weyl group W of G is
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w0 = (1, 4)(2, 3), so w0wJ = (1, 3)(2, 4). A direct calculation now shows that

Uw0wJ =





1 ∗ 0 0
0 1 0 0
0 0 1 ∗
0 0 0 1

 : ∗ ∈ Fq


and

LJ =





∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 ∈ GL(4, q) : ∗ ∈ Fq


.

On the other hand

UJ = U ∩ UwJ =





1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1

 : ∗ ∈ Fq


,

whilst

PJ =





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 ∈ GL(4, q) : ∗ ∈ Fq


.

We can then easily see from the above that PJ = UJ ⋊ LJ and Uw0wJ ∈ Sylp(LJ).



Chapter 5

Relatively Projective Covers

So far in this thesis, we have been primarily interested in questions related to the Scott
module S(G,Q), where G is a finite group and Q is a p-subgroup of G. We recall that
S(G,Q) is a relatively Q-projective cover of the trivial module kG, and thus S(G,Q)
may be studied in the wider context of relatively Q-projective resolutions. In this
chapter, we take a first step beyond the Scott module by studying the module Ω2

P/Q(k)
for a p-group P = H ⋊Q which can be written as a semidirect product of a normal
subgroup H and a cyclic subgroup Q of order p; our main aim is to study and bound
the quantity dim(Ω2

P/Q(k)).

5.1 Basic Constructions

We start by recalling some basics. Suppose that G is a finite group and Q ≤ G

is a p-subgroup. By the augmentation map, we mean the kG-homomorphism
σ : k[G/Q] → kG given by

σ

 ∑
x∈[G/Q]

αx[x]
 =

∑
x∈[G/Q]

αx

for all elements of k[G/Q]. Note that σ is clearly surjective and k[G/Q] is relatively Q-
projective; moreover, as we saw in the proof of the Scott-Alperin theorem, kQ is a direct
summand of (k[G/Q])↓Q and hence σ is a Q-split kG-homomorphism. It follows from
Proposition 1.1.12 that there exists an indecomposable direct summand S of k[G/Q]
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which is a relatively Q-projective cover of kG. By (ii) of the Scott-Alperin theorem,
this module must be isomorphic to S(G,Q), since if M is any other indecomposable
direct summand of k[G/Q], we know that kG is not isomorphic to any submodule of
M/ rad(M).

We have provided some results which give necessary conditions for when S(G,Q)↓P ∼=
S(P,Q), where P ∈ Sylp(G). In some senses, this may be viewed as the “simplest”
behaviour that we might expect from Scott modules, and the question can natu-
rally be extended to relative syzygies: if Q is a p-subgroup of G, when do we have
Ωi
G/Q(k)↓P ∼= Ωi

P/Q(k)? The following generalises Corollary 2.3.7.

Proposition 5.1.1. Suppose that G is a p-nilpotent group and Q ≤ P ∈ Sylp(G).
Then Ωi

G/Q(k)↓P ∼= Ωi
P/Q(k) for all i ≥ 1.

Proof. We have G = Op′(G) ⋊ P , so P ∼= G/Op′(G), and if

· · · δ4−→ P3
δ3−→ P2

δ2−→ P1
δ1−→ kP → 0

is a relatively Q-projective resolution of kP , then

· · · δ4−→ InfGP (P3) δ3−→ InfGP (P2) δ2−→ InfGP (P1) δ1−→ kG → 0 (∗)

is an exact sequence, where δi = InfGP (δi). Each Pi is a relatively Q-projective module,
so Pi is a direct summand of ((Pi)↓Q)↑P . By [4, 1.1.3], we have that InfGP (Pi) is a
direct summand of

(InfQOp′ (G)
Q ((Pi)↓Q))↑G

and hence InfGP (Pi) is relatively QOp′(G)-projective, so it is Q-projective. Furthermore,
if f ∈ EndkG(Pi) satisfies δif = δi, then clearly δifP = δi and hence fP is a bijection,
so f is a bijection as well. Thus, (∗) is a relatively Q-projective resolution of kG.
Since (InfGP (Pi))↓P ∼= Pi and (δi)P = δi, it follows that Ωi

G/Q(k)↓P ∼= Ωi
P/Q(k), as

required.

Suppose now that Q ≤ P is cyclic of order p and P = H ⋊ Q for some H ≤ P .
Throughout what follows, we let Q = ⟨w⟩ for some element w of order p. We start with
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a couple of preliminary results, the first of which describes the possible homomorphisms
we may have involving the kP -modules kP and k[P/Q], and the second of which
describes how these homomorphisms split.

Lemma 5.1.2. Suppose that M is a kP -module and Q = ⟨w⟩ for some element w of
order p. Then:

(i) for each m ∈ M, there exists precisely one kP -homomorphism δ : kP → M such
that δ(1P ) = m;

(ii) for each m ∈ M satisfying wm = m, there exists precisely one kP -homomorphism
δ : k[P/Q] → M such that δ([1P ]) = m, and any kP -homomorphism between
k[P/Q] and M is of this form for some m ∈ M.

Proof. Suppose that δ : kP → M is a kP -homomorphism and m ∈ M. Then

δ

(∑
u∈P

αuu

)
=
∑
u∈P

αu(uδ(1P ))

and hence δ is completely determined by the value δ(1P ), so there is at most one
kP -homomorphism such that δ(1P ) = m. If we define δ : kP → M by

δ

(∑
u∈P

αuu

)
=
∑
u∈P

αu(um),

then a routine check confirms that δ is a kP -homomorphism satisfying δ(1P ) = m, so
(i) follows.

Now suppose that δ : k[P/Q] → M is a kP -homomorphism. Then

δ([1P ]) = δ(w[1P ]) = wδ([1P ]).

Thus, if m ∈ M, then there exists a kP -homomorphism δ : k[P/Q] → M such that
δ([1P ]) = m only if wm = m. Moreover, if wm = m, then

δ

 ∑
x∈[P/Q]

αx[x]
 =

∑
x∈X

αx(xδ([1P ]))
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and hence δ is completely determined by the value δ([1P ]), so there is at most one
kP -homomorphism such that δ([1P ]) = m. A routine check verifies that the map
δ : k[P/Q] → M given by

δ

 ∑
x∈[P/Q]

αx[x]
 =

∑
x∈[P/Q]

αx(xm)

is a well-defined kP -homomorphism, so (ii) follows.

Following on from this result, we establish some notation connected to the module
M = k[P/Q]r ⊕ kP s, with r, s ∈ N0. We set 1P/Q to equal the element [1] ∈ k[P/Q]
and let 1P denote the identity of P . We view elements of the direct sum M as being
(r + s)-tuples and for a given m ∈ M, we let m[i] denote the component of m in the
i-th module in the direct sum. For 1 ≤ i ≤ r, we define mi ∈ M to be the element
of M with (mi)[i] = [1P ] and (mi)[j] = 0 for j ̸= i; and for r + 1 ≤ i ≤ s, we define
mi ∈ M by the prescription (mi)[i] = 1P and (mi)[j] = 0 for j ̸= i. By Lemma 5.1.2,
a given kP -homomorphism δ : M → N is determined completely by the values δ(mi)
for 1 ≤ i ≤ r + s, and is well-defined if and only if w · δ(mi) = δ(mi) for 1 ≤ i ≤ r.

Lemma 5.1.3. Suppose that N is a kP -module and N ↓Q is a permutation kQ-module
with permutation basis X. Suppose that δ : M → N is a surjective homomorphism of
kP -modules such that whenever wx = x for some x ∈ X, there exists m ∈ M such
that δ(m) = x and wm = m. Then δ is Q-split.

Proof. The action of Q on X splits up X into orbits of size 1 and orbits of size p. Let
x1, . . . , xs be those elements of X which are fixed by Q and z1, . . . , zt be representatives
of the orbits of size p; then

X = {x1, . . . , xs} ∪ {wlzj : 0 ≤ l ≤ p− 1, 1 ≤ j ≤ t}.

By assumption, for 1 ≤ i ≤ s, there exist elements mi ∈ M such that δ(mi) = xi and
wmi = mi. For 1 ≤ j ≤ t, let m∗

j ∈ M be such that δ(m∗
j) = zj and define a linear

transformation γ : N → M by letting γ(xi) = mi for 1 ≤ i ≤ s and γ(wlzj) = wlm∗
j

for 0 ≤ l ≤ p − 1 and 1 ≤ j ≤ t. Then δγ = id and γ is a kQ-homomorphism by
construction, so it follows that δ is Q-split, as required.
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5.2 Bounding dim Ω2
P/Q(k)

In this section, we shall assume that P = H ⋊ Q is a p-group, with Q = ⟨w⟩ for an
element w of order p.

Lemma 5.2.1. The module ΩP/Q(k)↓Q is a permutation kQ-module with permutation
basis equal to the Q-set

X = {[h] − [1] : h ∈ H, h ̸= 1}.

Proof. Since k[P/Q] is indecomposable, the module k[P/Q] together with the aug-
mentation map σ : k[P/Q] → kP is a relatively Q-projective cover of kP . Thus
ΩP/Q(k) ∼= kerσ. Furthermore, dim(kerσ) = dim k[P/Q] − 1 = |P : Q| − 1 and
|X| = |P : Q| − 1. Finally, it is clear that the elements of X are linearly independent
and X is a Q-set, since H ◁ P . Thus X is a permutation basis for ΩP/Q(k)↓Q, as
required.

Theorem 5.2.2. Let C = CH(Q) and let Z and T be subsets of P such that:

(i) Z ⊆ T ;

(ii) C = ⟨Z⟩;

(iii) H = ⟨wlt : 0 ≤ l ≤ p− 1, t ∈ T ⟩.

Then, if r = |Z| and s = |T | − |Z|, we have

dim Ω2
P/Q(k) ≤ |H|r + |P |s − (|H| − 1).

Proof. Suppose that T = {z1, . . . , zr, t1, . . . , ts}, where z1, . . . , zr ∈ Z and t1, . . . , ts /∈ Z.
Let M = k[P/Q]r ⊕ kP s and define a kP -homomorphism δ : M → ΩP/Q(k) by setting

δ(mi) =


[zi] − 1P/Q if 1 ≤ i ≤ r,

[ti−r] − 1P/Q if r + 1 ≤ i ≤ r + s

and extending kP -linearly; by Lemma 5.1.2 and the fact that each zi ∈ CH(Q), it
follows that δ is a well-defined kP -homomorphism.
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We first show that δ is surjective, so suppose that h ∈ H. Since H = ⟨wlt : 0 ≤ l ≤
p− 1, t ∈ T ⟩, we have h = u1 · · ·uk, where each uj is in the set:

T = {wm(tn) : 0 ≤ m ≤ p− 1, n ∈ N0, t ∈ T}.

Note that [u] − 1P/Q ∈ δ(M) for all u ∈ T : indeed, if u = wm(tn), then we have

[u] − 1P/Q = [wm(tn)] − 1P/Q = ([wm(tn)] − [wm(tn−1)]) + ([wm(tn−1)] − 1P/Q)

= wmtn−1([t] − 1P/Q) + ([wm(tn−1)] − 1P/Q).

Thus, if we assume that for a given m we have [wm(tn−1)] − 1P/Q ∈ δ(M), it follows
that [wm(tn)] − 1P/Q ∈ δ(M), and hence [u] − 1P/Q ∈ δ(M), by induction. Thus,

[h] − 1P/Q = [u1 · · ·uk] − 1P/Q = ([u1 · · ·uk] − [u1 · · ·uk−1]) + ([u1 · · ·uk−1] − 1P/Q)

= u1 · · ·uk−1([uk] − 1P/Q) + ([u1 · · ·uk−1] − 1P/Q)

and it follows by induction on k that [h] − 1P/Q ∈ δ(M). Since

X = {[h] − 1P/Q : h ∈ H, h ̸= 1}

is a permutation kQ-basis for ΩP/Q(k)↓Q, we deduce that δ is surjective.

We now show that δ is Q-split using Lemma 5.1.3. Suppose that [h] − 1 ∈ X

satisfies w · ([h] − 1) = [h] − 1. Then h ∈ CH(Q) and hence h = u1 · · ·uk, where each
uj is in the set:

Z = {zn : n ∈ N0, z ∈ Z}.

If z ∈ Z and z = zi for 1 ≤ i ≤ r, then

δ

(
n−1∑
s=0

zsimi

)
=

n−1∑
s=0

zsi ([zi] − 1P/Q) = [zni ] − 1P/Q.

Thus, for each uj, there exists mj ∈ M such that δ(mj) = [uj] − 1P/Q and wmj = mj.
Assume inductively that there exists m∗

k−1 such that δ(m∗
k−1) = [u1 · · ·uk−1] − 1P/Q
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and wm∗
k−1 = m∗

k−1. Then we have

δ((u1 · · ·uk−1)mk +m∗
k−1) = [u1 · · ·uk−1uk] − [u1 · · ·uk−1] + [u1 · · ·uk−1] − 1P/Q

= [u1 · · ·uk] − 1P/Q.

and w · ((u1 · · ·uk−1)mk +m∗
k−1) = (u1 · · ·uk−1)mk +m∗

k−1, so it follows by induction
on k that there exists m∗

k ∈ M such that δ(m∗
k) = [u1 · · ·uk] − 1P/Q = [h] − 1P/Q and

wm∗
k = m∗

k. By Lemma 5.1.3, we see that δ is Q-split.
Thus, (M, δ) consists of a relatively Q-projective module and a surjective kP -

homomorphism which is Q-split. By Proposition 1.1.12, it follows that a relatively
Q-projective cover of ΩP/Q(k) is isomorphic to a direct summand of M. Thus

dim(Ω2
P/Q(k)) ≤ dim M − dim ΩP/Q(k) = |H|r + |P |s − (|H| − 1).

Example 5.2.3. Let r ≥ 1 and P = C2r ≀ C2. This 2-group may be realised explicitly
as a Sylow 2-subgroup of SL3(q), where q is an odd prime power such that 2r divides
q − 1, but 2r+1 does not (see [8]). In particular, P may be written as a semidirect
product P = H ⋊Q, where H = ⟨x, y : x2r = y2r = 1⟩ is abelian and Q = ⟨w : w2 = 1⟩
with xw = y. Thus, CH(Q) = ⟨xy⟩ and H = ⟨x, xw, xy⟩. If we let Z = {xy} and
T = ⟨xy, x⟩, then it follows from Theorem 5.2.2 that

dim Ω2
P/Q(k) ≤ |H| + |P | − (|H| − 1) = |P | + 1 = 22r+1 + 1.





Appendix A

Loose Ends

A.1 MAGMA Code

In this section of the appendix, we present MAGMA implementations of the two
algorithms discussed in Section 3.4, along with some further additional functions which
are helpful when working with the p-local subgroups of sporadic groups.

At [3], MAGMA implementations can be found for all 26 sporadic groups, along with
their various maximal subgroups. The information available ranges from complete data
for the smaller groups, to incomplete data for the larger monster sections and pariahs.
The most helpful data that suits our purposes are the permutation representations,
since MAGMA performs well when handling such a representation of a group. All but
a few of the sporadic groups have permutation representations on a small (less than
500, 000) number of points; the other means of representating a group, which involves
generating the group via a pair of matrices, is less useful for our purposes.

In Figure A.1, we have provided a function which can be used to calculate the p-
local subgroups of a given sporadic group G. The function FindSporadicNormalisers

accepts a sporadic group G, a prime p ∈ π(G) and an optional parameter limit, which
is set by default to 1; the parameter limit should be set to be equal to the number
of distinct p-local subgroups in G for the given prime p, which can be read off the
corresponding table in Section 3.4. It returns an array of the p-local subgroups it
computes. If the limit parameter is set to a value less than the actual number of
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FindSporadicNormalisers := function(G,p:limit:=1)
P := Sylow(G,p);
Normalisers := [];
Con := ConjugacyClasses(P);
for C in Con do

// We only care for normalisers N_G(x) where x
// is an element of order p, so we skip the rest
if C[1] ne p then

continue;
end if;
include := true;
Nor := Normaliser(G,sub<G|C[3]>);
for M in Normalisers do

// There are no cases where two distinct p-local
// subgroups have the same order, so we only
// add M if its order is distinct from all cases so far
if #M eq #Nor then

include:= false;
break;

end if;
end for;
if include then

Append(~Normalisers,Nor);
// As a measure of progress, we output the
// current number of normalisers computed
#Normalisers;

end if;
if #Normalisers eq limit then

break;
end if;

end for;
return Normalisers;

end function;

Fig. A.1 Function used to calculate p-local subgroups of a sporadic group

p-local subgroups in G, then the function will return a number of p-local subgroups
equal to limit, but there is no determining precisely which ones it returns.

Once these p-local subgroups have been calculated, a user can use the function in
Figure A.2 to test a sufficient condition for a given group G to be p-extendible. The
function DoSubgroupsForpExtendibilityExist accepts a finite group G and a prime
p; if it returns true, then G is p-extendible. However, in many cases, it will return
false, and nothing may be determined in this case; all that this means is that the
group has failed to pass the sufficient condition tested by the function. Note that
this function is a MAGMA implementation of Algorithm 1, an algorithm which was
discussed in Section 3.4.

The other option available to the user is the function given in Figure A.3, which
tests a sufficient condition for a finite group G to not be p-extendible. The function
DoesaNonWeaklyClosedNormalSubgroupExist accepts a finite group G and a prime
p. If it returns true, then the group G is definitely not p-extendible; more precisely,
the function has determined that if P ∈ Sylp(G), then there exists a subgroup Q ≤ P
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DoSubgroupsForpExtendibilityExist := function(G,p)
P := Sylow(G,p);

Index := #G div #P;
r := Floor(Log(p,#P));
for i in [0..r-1] do

YSubs := Subgroups(G:OrderEqual := Index*p^i);
YSubs := [x`subgroup : x in YSubs];
if #YSubs eq 0 then

return false;
end if;
QSubs := Subgroups(P:OrderEqual := p^i);
QSubs := [x`subgroup : x in QSubs];
for Q in QSubs do

Conjs := Conjugates(P,Q);
Qpasses := false;
for C in Conjs do

for Y in YSubs do
if C subset Y then

Qpasses := true;
break;

end if;
end for;
if Qpasses then;

break;
end if;

end for;
if not Qpasses then

return false;
end if;

end for;
end for;
return true;

end function;

Fig. A.2 MAGMA implementation of Algorithm 1

DoesaNonWeaklyClosedNormalSubgroupExist := function(G,p)
P := Sylow(G,p);
QSubs := NormalSubgroups(P);
QSubs := [x`subgroup : x in QSubs];
for Q in QSubs do

Conjs := Conjugates(G,Q);
for C in Conjs do

if C subset P and C ne Q then
return true;

end if;
end for;

end for;
return false;

end function;

Fig. A.3 MAGMA implementation of Algorithm 2
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IspNilpotent := function(G,p)
P := Sylow(G,p);
NOrder := #G div #P;
// Ideally, it would be best to request those normal
// subgroups which have order equal to NOrder, but
// there are contexts in which this will not work, so we
// utilise a slightly less efficient but more general
// approach
Subs := NormalSubgroups(G);
for N in Subs do

if Order(N`subgroup) eq NOrder then
return true;

end if;
end for;
return false;

end function;

Fig. A.4 Function that tests if a group is p-nilpotent

which is normal in P and not weakly closed in P with respect to G. On the other
hand, nothing can be concluded if the function returns false; the group G may or
may not be p-extendible. This function is a MAGMA implementation of Algorithm 2
from Section 3.4.

These three functions serve as the major tools needed to understand and verify
much of the analysis involving MAGMA given in Section 3.4. There is one other
convenience function that we provide here: a simple function which tests if a given
finite group G is p-nilpotent, which is given in Figure A.4.

A.1.1 The Case (Fi′24, 3D)

In this small subsection, we detail how one can approach obtaining a permutation
representation of the 3-local subgroup N , where G = Fi′24 and N = NG(⟨x⟩) for an
element x ∈ G of order 3 and type (3D): see Figure 3.24 and the corresponding
analysis for more details. A naive approach to the problem involves using the func-
tion FindSporadicNormalisers and inputting the permutation representation for G
obtained from [3], the prime 3 and setting limit to equal 4; however, this approach
fails to compute the permutation representation in a reasonable timeframe. In figure
A.5, we provide a method which computes a permutation representation for N from
the permutation representation of G found at [3], and this may be used to verify the
analysis we provided when studying the case (Fi′24, 3D).
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// Input the permutation representation that is provided
// for Fi_{24} at the online ATLAS
Fi24AdHocMethod := function(G)

P := Sylow(G,3);
// We get a set of representatives of the conjugacy
// classes of elements of order p
Con := ConjugacyClasses(P);
Conp := [];
for C in Con do

if C[1] eq 3 then
Append(~Conp,C[3]);

end if;
end for;
// The MAGMA function ConjugacyClasses calculates its
// conjugacy classes in descending order of N_P(x),
// where x is the representative: thus, we know that
// the entries 5-12 of the array Conp contain elements
// x for which the order of N_P(x) is 3^14, and
// we know that one of these elements is of type (3D)
for i in [5..12] do

N := Normaliser(G,sub<G|Conp[i]>);
// We know that x is of type (3D) if and only
// #N equals 2^6 * 3^14, so we test for this
if #N eq 2^6 * 3^14 then

return N;
end if;

end for;
return 0;

end function;

Fig. A.5 Function to calculate a permutation representation for the case (Fi′24, 3D)

A.2 Subgroups of p1+2
+

In this section of the appendix, we provide a description of the conjugacy classes of
subgroups in p1+2

+ , the extraspecial group of order p3 and exponent p. Recall that we
have defined [x, y] = x−1y−1xy for a pair of element x, y in a finite group G.

Proposition A.2.1. Suppose that p is an odd prime and

P = p1+2
+ = ⟨a, b, c : ap = bp = cp = 1, [a, c] = [b, c] = 1, [a, b] = c⟩.

Then:

(i) a complete list of representatives of the conjugacy classes of subgroups of order p
in P is given by: ⟨b⟩, ⟨c⟩ and ⟨abi⟩ with 0 ≤ i ≤ p− 1;

(ii) the subgroups of order p2 in P are ⟨b, c⟩ and ⟨abi, c⟩ with 0 ≤ i ≤ p− 1.

Proof. Since the exponent of P is p and any subgroup of order p contains p − 1
elements which no other subgroup of order p can contain, it follows that there are
(p3 −1)/(p−1) = p2 +p+1 subgroups of P of order p. We have ab = ac, so (ar)b = arcr
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and (ar)bn = arcnr. Similarly, (b−1)a = b−1c, so (bs)a = bsc−s and (bs)am = bsc−ms.
Thus, if arbsct, ambncl ∈ P with 0 ≤ r, s, t,m, n, l ≤ p− 1, then

(arbsct)ambncl = (ar)bn(bs)ambnct = arcnrbsc−msct = arbscnr−ms+t. (∗)

It thus follows that |StabP (⟨b⟩)| = p2 and hence |C(⟨b⟩)| = p. On the other hand, if
1 ≤ k ≤ p, then (abi)k = akbkic−f(k−1)i, where f(k−1) denotes the (k−1)-th triangular
number; moreover, from (∗), it follows that

(abi)ambncl = abicn−im. (∗∗)

Thus, ambncl ∈ StabP (⟨abi⟩) if and only if n ≡ immod p. Thus |StabP (⟨abi⟩)| = p2

and |C(⟨abi⟩)| = p. From (∗) and (∗∗), we see that the conjugacy classes C(⟨b⟩) and
C(⟨abi⟩) for 0 ≤ i ≤ p− 1 are all distinct; furthermore, the total number of subgroups
in these conjugacy classes is given by

1︸︷︷︸
⟨c⟩

+ p︸︷︷︸
⟨b⟩

+ p · p︸︷︷︸
⟨abi⟩

= 1 + p+ p2

so we see that we have accounted for all possible subgroups.

Since Z(P ) = ⟨c⟩, any subgroup of P of order p2 must contain c, as any normal
subgroup of a p-group intersects nontrivially with Z(P ). Thus, the subgroups of order
p2 of P are in one-to-one correspondence with subgroups of order p in P/Z(P ) ∼= C2

p

and there are (p2 − 1)/(p − 1) = p + 1 such subgroups. If ⟨abi, c⟩ = ⟨abj, c⟩ with
0 ≤ i < j ≤ p− 1, then there must exist m and n with 0 ≤ m,n ≤ p− 1 such that

abi = (abj)mcn = ambjmc−f(m−1)jcn.

But then m = 1 and hence i = j, a contradiction; thus ⟨abi, c⟩ ̸= ⟨abj, c⟩ for all
0 ≤ i < j ≤ p− 1. Furthermore, b /∈ ⟨abi, c⟩, so ⟨b, c⟩ ≠ ⟨abi, c⟩ for 0 ≤ i ≤ p− 1, and
we see that the list of subgroups given in (ii) is a complete list, as required.
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A.3 Subgroups of Sp4(p)

In this section of the appendix, we include the computations and analysis which support
our findings in Example 4.2.5. We start with a result which describes the possible
subgroups in a particular group of order p4, where p is an odd prime.

Proposition A.3.1. Let E ∼= Ep3 = ⟨a, b, c : ap = bp = cp = 1⟩ and D = ⟨d⟩ ∼= Cp,
and suppose that P = E ⋊D is the semidirect product given by ad = ab−2, bd = b and
cd = a−1bc. Then:

(i) a complete list of representatives of the conjugacy classes of subgroups of order p
in P is given by: ⟨b⟩, ⟨d⟩, ⟨ab⟩, ⟨bic⟩ for 0 ≤ i ≤ p− 1 and ⟨cdi⟩ for 1 ≤ i ≤ p− 1;

(ii) a complete list of representatives of the conjugacy classes of subgroups of order
p2 in P is given by: ⟨a, b⟩, ⟨b, d⟩, ⟨ab, bic⟩ for 0 ≤ i ≤ p − 1 and ⟨b, cdi⟩ for
0 ≤ i ≤ p− 1;

(iii) the subgroups of order p3 in P are ⟨a, b, d⟩ and ⟨a, b, cdi⟩ for 0 ≤ i ≤ p− 1.

Proof. Arguing inductively, we find that

ad
σ = ab−2σ and cd

σ = a−σbσ
2
c

for 0 ≤ σ ≤ p− 1. Thus, if 0 ≤ α, β, γ, φ, ψ, σ ≤ p− 1, then

(aαcβdγ)dσ(aφcψ) = (aα)dσ(cβ)dσ(dγ)aφcψ

= aαb−2ασa−βσbβσ
2
cβ(a−φc−ψdγ(aφcψ)d−γdγ)

= aα−βσ−φbβσ
2−2ασcβ−ψaφb2γφaγψbγ

2ψcψdγ

= aα−βσ+γψbβσ
2−2ασ+2γφ+γ2ψcβdγ. (∗)

Furthermore,

(aαcβdγ)(aφcψdσ) = aαcβ(dγaφcψd−γ)dγdσ

= aαcβaφb2γφaγψbγ
2ψcψdγ+σ

= aα+φ+γψb2γφ+γ2ψcβ+ψdγ+σ. (∗∗)
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We start by studying the subgroups of P of order p. Note first that ⟨b⟩ = Z(P ) ◁ P
and hence |C(⟨b⟩) = 1|. Furthermore, by (∗), if 0 ≤ m,n, t ≤ p − 1, then dt(amcn) ∈
StabP (⟨d⟩) if and only if n ≡ 0 mod p and 2m + n ≡ 0 mod p, i.e., if and only if
n,m = 0. Thus, |StabP (⟨d⟩)| = p2 and |C(⟨d⟩)| = p2. If 1 ≤ i ≤ p − 1, then
dt(amcn) ∈ StabP (⟨cdi⟩) if and only if −t+ in ≡ 0 mod p and t2 + 2im+ i2n ≡ 0 mod p
if and only if t ≡ inmod p and 2im ≡ (−t2 − i2n) mod p. Thus |StabP (⟨cdi⟩)| = p2 and
|C(⟨cdi⟩)| = p2. Since StabP (⟨ab⟩), StabP (⟨bic⟩) ≤ E and d is not an element of either
of these stabilisers, we know that StabP (⟨ab⟩) = StabP (⟨bic⟩) = E. Thus, we have the
following orders for each conjugacy class:

|C(⟨b⟩)| = 1, |C(⟨d⟩)| = p2, |C(⟨ab⟩)| = p, |C(⟨bic⟩)| = p for 0 ≤ i ≤ p− 1,

|C(⟨cdi⟩)| = p2 for 1 ≤ i ≤ p− 1.

By (∗) and (∗∗), it follows that the conjugacy classes C(⟨cdi⟩) for 1 ≤ i ≤ p− 1 and
C(⟨d⟩) are all distinct, and the conjugacy classes C(⟨ab⟩) and C(⟨bic⟩) with 0 ≤ i ≤ p−1
are all distinct as well. Counting subgroups, we determine that P contains

1︸︷︷︸
⟨b⟩

+ p2︸︷︷︸
⟨d⟩

+ p︸︷︷︸
⟨ab⟩

+ p2︸︷︷︸
⟨bic⟩

+ p2(p− 1)︸ ︷︷ ︸
⟨cdi⟩

= p3 + p2 + p+ 1 = p4 − 1
p− 1

distinct subgroups of order p, and hence we have accounted for all of them. Note that
this also shows that P has exponent p.

There are three possibilities to consider when looking at the subgroups of P of order
p2: subgroups of the form Q ≤ E, subgroups of the form Q = ⟨x, yd⟩ with x, y ∈ E

and subgroups of the form Q = ⟨xd, yd⟩ with x, y ∈ E. If Q = ⟨xd, yd⟩ with x, y ∈ E,
then (yd)(d−1x−1) = yx−1 ∈ E and yx−1 ≠ 1, and hence we only need consider the
first two cases. We have Q = ⟨ambncs, ambncsd⟩ for 0 ≤ m,n, s,m, n, s ≤ p − 1 is a
subgroup of order p2 in P if and only if

(ambncs)(ambncsd) = (ambncsd)(ambncs)

which by (∗∗), holds if and only if

am+mbn+ncs+sd = am+m+sb2m+s+n+ncs+sd.
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This occurs if and only if m = 0 and s = 0. Thus, the subgroups of the form Q = ⟨x, yd⟩
with x, y ∈ E are of the form Q = ⟨b, amcsd⟩ for some m, s such that 0 ≤ m, s ≤ p− 1.
Moreover, by (∗∗), these subgroups are all distinct, so there are p2 such subgroups;
additionally, there are p2 + p+ 1 subgroups of E of order p2. By (∗), we have

dd
t(amcn) = anb2m+nd, (†)

so wt(amcn) ∈ StabP (⟨b, d⟩) if and only if n = 0, so |StabP (⟨b, d⟩)| = p3. If 0 ≤ i ≤ p−1,
then by (∗), we have

(cdi)dt(amcn) = a−t+inbt
2+2im+i2ncdi (††)

so dt(amcn) ∈ StabP (⟨b, cdi⟩) if and only if −t + in ≡ 0 mod p, and it follows that
|StabP (⟨b, cdi⟩)| = p3. Finally, if 0 ≤ i ≤ p − 1, then StabP (⟨ab, bic⟩) ≤ E and
d /∈ StabP (⟨ab, bic⟩), so we see that |StabP (⟨ab, bic⟩)| = p3. Thus, since ⟨a, b⟩ ◁ P , we
have the following orders for each conjugacy class:

|C(⟨a, b⟩)| = 1, |C(⟨b, d⟩)| = p, |C(⟨ab, bic⟩)| = p for 0 ≤ i ≤ p− 1,

|C(⟨b, cdi⟩)| = p for 0 ≤ i ≤ p− 1.

We claim that the 2(p + 1) conjugacy classes in the above are disjoint. Note first
that if 0 ≤ i, j ≤ p − 1, then ⟨ab, bic⟩ /∈ C(⟨b, d⟩) and ⟨ab, bic⟩ /∈ C(⟨b, cdj⟩), since
b /∈ ⟨ab, bic⟩. Furthermore, if C(⟨ab, bic⟩) = C(⟨ab, bjc⟩) with 0 ≤ i < j ≤ p − 1, then
⟨ab, bic⟩dt = ⟨ab, bjc⟩ with 1 ≤ t ≤ p− 1. We therefore have

(ab)dt = ab−2t+1 ∈ ⟨ab, bjc⟩

and hence ab−2t+1 = (ab)α(bic)β, which by (∗∗) implies that β = 0 since i ̸= j and
hence α = 1; thus −2t+ 1 ≡ 1 mod p and t = 0, which is a contradiction. Moreover, if
⟨b, d⟩dt(ambn) = ⟨b, cdi⟩ with 0 ≤ i ≤ p−1, then by (†), anb2m+nd = bα(cdi)β and by (∗∗),
we would have β = 0 and hence a contradiction. Finally, if ⟨b, cdi⟩dt(ambn) = ⟨b, cdj⟩
with 0 ≤ i < j ≤ p− 1, then by (††)

a−t+inbt
2+2im+i2ncdi = bα(cdj)β.
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By (∗∗), we must have β = 1 and hence i = j, a contradiction. Thus, the conjugacy
classes are distinct, and we have accounted for p2 subgroups of the form ⟨x, yd⟩ with
x, y ∈ E, and p2 + p+ 1 subgroups of order p2 in E.

Finally, we study the subgroups of order p3 in P . Since Z(P ) = ⟨b⟩, it follows that
any such subgroup must contain b, as otherwise P splits over its centre, which is not
possible. Thus, the subgroups of order p3 in P are in one-to-one correspondence with
the subgroups of order p2 in P/Z(P ) ∼= p1+2

+ . By Proposition A.2.1, there are p + 1
such subgroups, so all we need do is show that the p+ 1 groups described in (iii) are
distinct. If ⟨a, b, d⟩ = ⟨a, b, cdi⟩ with 1 ≤ i ≤ p− 1, then d = ambn(cdi)s. By (∗∗), we
must have is ≡ 1 mod p and s ≡ 0 mod p, a contradiction. Clearly, ⟨a, b, d⟩ ≠ ⟨a, b, c⟩.
Finally, if ⟨a, b, cdi⟩ = ⟨a, b, cdj⟩ with 1 ≤ i < j ≤ p− 1, then cdi = ambn(cdj)s which
implies that s ≡ 1 mod p and js ≡ imod p. Thus i = j, which is a contradiction. Thus,
the subgroups are distinct.

Recall that Sp4(p) contains a subgroup B equal to the semidirect product U ⋊H,
where

U =





1 x y w

0 1 z y − xz

0 0 1 −x
0 0 0 1

 : x, y, w, z ∈ Fp


and H = H4(p) ∩ Sp4(p), i.e.,

H =





α 0 0 0
0 β 0 0
0 0 β−1 0
0 0 0 α−1

 : α, β ∈ F×
p


.

Moreover, U is isomorphic to the p-group described in Proposition A.3.1, with explicit
generators given by:

a =



1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , b =



1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , c =



1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , d =



1 1 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

 .
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We present here analysis which covers the cases in Table 4.2 which were not accounted
for in Example 4.2.5. Before we do so, we set up some notation. We let

u =



1 x y w

0 1 z y − xz

0 0 1 −x
0 0 0 1

 and h =



α 0 0 0
0 β 0 0
0 0 β−1 0
0 0 0 α−1


denote arbitrary elements of U and H respectively. Note that

u−1 =



1 −x xz − y −w
0 1 −z −y
0 0 1 x

0 0 0 1

 .

If

v =



1 m n r

0 1 s n−ms

0 0 1 −m
0 0 0 1

 ,

then a direct calculation shows that

vuh =



1 α−1βm α−1β−1(mz + n− sx) α−2δ(m,n, r, s)
0 1 β−2s α−1β−1(n+mz − sx−ms)
0 0 1 −α−1βm

0 0 0 1

 , (A.1)

where δ(m,n, r, s) is the following polynomial in the variables x, y, w, z:

δ(m,n, r, s) = m(2y − 2xz + sx) − 2nx+ r + sx2. (A.2)
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Start by letting Q = ⟨ab⟩. Then

ab =



1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 implies (ab)j =



1 0 j j

0 1 0 j

0 0 1 0
0 0 0 1

 (A.3)

for 0 ≤ j ≤ p− 1. Moreover, δ(0, 1, 1, 0) = 1 − 2x, so by (A.1), we have

(ab)uh =



1 0 α−1β−1 α−2(1 − 2x)
0 1 0 α−1β−1

0 0 1 0
0 0 0 1

 .

So uh ∈ NB(Q) if and only if α−2(1 − 2x) = α−1β−1 if and only if x = (1 − αβ−1)/2.
Thus |NB(Q)| = (p− 1)2p3 and hence |NB(Q)|p′ = (p− 1)2.

Next, we let Q = ⟨bic⟩ with 1 ≤ i ≤ p− 1. Then

bic =



1 0 0 i

0 1 1 0
0 0 1 0
0 0 0 1

 implies (bic)j =



1 0 0 ji

0 1 j 0
0 0 1 0
0 0 0 1


and δ(0, 0, i, 1) = i+ x2, so

(bic)uh =



1 0 −α−1β−1x α−2(i+ x2)
0 1 β−2 −α−1β−1x

0 0 1 0
0 0 0 1

 . (A.4)

Thus (bic)uh ∈ Q if and only if x = 0 and α−2 = β−2, i.e., if and only if x = 0 and
β = ±α. It follows that |NB(Q)| = 2p3(p− 1), so |NB(Q)|p′ = 2(p− 1).

The final case of a subgroup of order p to consider is when Q = ⟨cdi⟩ with 1 ≤ i ≤
p− 1. In what follows, f(j) denotes the j-th triangular number and g(j) denotes the
sum of the first j triangular numbers; thus f(j) = j(j+1)/2 and g(j) = j(j+1)(j+2)/6.
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Note that

cdi =



1 i 0 0
0 1 1 −i
0 0 1 −i
0 0 0 1

 and if (cdi)j−1 =



1 (j − 1)i f(j − 2)i −g(j − 2)i2

0 1 j − 1 −f(j − 1)i
0 0 1 −(j − 1)i
0 0 0 1

 ,

then

(cdi)j =



1 i 0 0
0 1 1 −i
0 0 1 −i
0 0 0 1





1 (j − 1)i f(j − 2)i −g(j − 2)i2

0 1 j − 1 −f(j − 1)i
0 0 1 −(j − 1)i
0 0 0 1



=



1 ji f(j − 2)i+ (j − 1)i −g(j − 2)i2 − f(j − 1)i2

0 1 j −f(j − 1)i− (j − 1)i− i

0 0 1 −ji
0 0 0 1



=



1 ji f(j − 1)i −g(j − 1)i2

0 1 j −f(j)i
0 0 0 −ji
0 0 0 1

 . (A.5)

Thus (A.5) holds by induction for 1 ≤ j ≤ p − 1. Furthermore, δ(i, 0, 0, 1) = 2iy −
2ixz + ix+ x2 and hence by (A.1) we have

(cdi)uh =



1 α−1βi α−1β−1(iz − x) α−2(2iy − 2ixz + ix+ x2)
0 1 β−2 α−1β−1(iz − x− i)
0 0 1 −α−1βi

0 0 0 1

 . (A.6)

Thus (cdi)uh ∈ Q if and only if α−1β = β−2,

α−1β−1(iz − x) = f(α−1β − 1)i

α−1β−1(iz − x− i) = −f(α−1β)i,
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and α−2(2iy − 2ixz + ix+ x2) = −g(α−1β − 1)i2.

The first two conditions hold if and only if α = β3 and x = αβf(α−1β − 1)i− iz. We
may then check that

α−1β−1(iz − x− i) = f(α−1β − 1)i− α−1β−1i

= i

(
(α−1β − 1)α−1β

2 − α−1β−1
)

= −iβ
−4 + β−2

2 = −f(α−1β)i.

Thus, we get a solution in terms of β if and only if α and x are of the prescribed form
and

y = −α2g(α−1β − 1)i2 + 2ixz − ix− x2

2i .

Thus |NB(Q)| = (p− 1)p2 and hence |NB(Q)|p′ = (p− 1).

We move on now to subgroups of order p2. Firstly, if Q = ⟨a, b⟩, then Q ◁ U . In
fact, we have

(ab)h =



1 0 α−1β−1 α−2

0 1 0 α−1β−1

0 0 1 0
0 0 0 1

 ∈ ⟨a, b⟩

so ⟨a, b⟩ ◁ B and hence |NB(Q)|p′ = (p− 1)2.

If Q = ⟨ab, bic⟩ with 0 ≤ i ≤ p− 1, then

(ab)j(bic)k =



1 0 j j + ik

0 1 k j

0 0 1 0
0 0 0 1

 .

By (A.3), we know that uh ∈ NB(Q) implies that uh ∈ NB(⟨ab⟩), which holds if and
only if x = (1 − αβ−1)/2. Moreover, if x is of this form, then by (A.4) we know that
(bic)uh ∈ Q if and only if

α−2(x2 + i) = −α−1β−1x+ β−2i
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if and only if

1 − 2αβ−1 + α2β−2

4 + i = −αβ−1 1 − αβ−1

2 + α2β−2i.

Multiplying through both sides by 4 and rearranging, the above holds if and only if

1 − α2β−2 = −4i(1 − α2β−2).

Thus, if 1 + 4i ≡ 0 mod p, then NB(Q) = NB(⟨ab⟩) and we have |NB(Q)|p′ = (p− 1)2.
Otherwise, we must have 1 − α2β−2 = 0 and hence α2 = β2, so |NB(Q)| = 2(p− 1)p3.
Hence |NB(Q)|p′ = 2(p− 1).

The final subgroup of order p2 to consider is the case where Q = ⟨b, cdi⟩ with
0 ≤ i ≤ p − 1. Since ⟨b⟩ ◁ B, we have that NB(⟨cdi⟩) ≤ NB(Q) and hence (p − 1) ≤
|NB(Q)|p′ . On the other hand, by (A.6), we know that (cdi)uh ∈ Q if and only if
α−1β = β−2 and x = αβf(α−1β − 1)i− iz, so in fact |NB(Q)|p′ = (p− 1).

Now let 0 ≤ i ≤ p − 1 and let Q = ⟨a, b, cdi⟩. Since ⟨a, b⟩ ◁ B, we can determine
those h ∈ H which normalise Q by determining those h ∈ H for which (cdi)h ∈ Q; let
X denote this subgroup of B. We have just shown that p− 1 ≤ |X|. Furthermore,

(cdi)h =



1 α−1βi 0 0
0 1 β−2 −α−1β−1i

0 0 1 −α−1βi

0 0 0 1

 .

A typical element of Q looks like

ajbk(cdi)l =



1 0 j k

0 1 0 j

0 0 1 0
0 0 0 1





1 li f(l − 1)i −g(l − 1)i2

0 1 l −f(l)i
0 0 1 −li
0 0 0 1



=



1 li f(l − 1)i+ j ∗
0 1 l −f(l)i+ j

0 0 1 −li
0 0 0 1
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for some ∗ ∈ Fp. Thus, if i ̸= 0, then α−1β = β−2 and it follows that |X| ≤ p− 1, so
|X| = p− 1. Thus |NB(Q)|p′ = p− 1. On the other hand, if i = 0, then ⟨a, b, c⟩ ◁U and
we have that |NB(Q)|p′ = (p− 1)2. This is the last subgroup of order p3 to consider,
and we are finally done.
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