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Abstract 
 

The past decade has seen a new paradigm in solid state physics, where a new class of layered 

crystals can be thinned down to a monolayer and exhibit drastic changes in their electronic and 

optical properties in comparison to their bulk counterpart. Graphene was the first, and certainly 

most outstanding, of this set of so called two-dimensional (2D) materials. Aside from its obvious 

appeal which earnt its discovery the 2010 Nobel Prize, the electronic properties of graphene are 

truly unique. Perhaps the most familiar is its linear electron dispersion which hosts quasi-particles 

that obey the Dirac equation. This has enabled the study of a plethora of transport phenomena, as 

well as the realisation of novel device architectures that will be used in the next generation 

electronics. 

In general, experimental signatures of electron transport are most prominent at liquid helium 

temperatures when lattice vibrations are weak, for example in quantum hall physics. In this Thesis, 

we explore the regime of intermediate temperatures where the physics of interest is strongest 

between 100 and 300 K. Equipped with the state of the art high quality graphene samples, we 

demonstrate novel electron transport unique to graphene.  

The experimental work consists of two themes. In the first work, we study hydrodynamic electron 

flow in graphene encapsulated with hexagonal boron nitride devices. At elevated temperatures, 

electron-electron collisions become significant, and the electron viscosity starts to influence the 

steady state current distribution in a variety of surprising ways. In the first work, we perform 

transport experiments on standard graphene hall bars in a unique measurement geometry which 

allows the detection of negative non-local voltages intrinsic to viscous flow. In another experiment, 

we study viscous electron flow through graphene nano-constrictions/classical point contacts. Here, 

we observed anomalous temperature dependence in the conductance measured across the 

constriction. Specifically, the conductance increases with increasing temperature and even exceeded 

the semi-classical limit which is expected for single-particle ballistic transport. The underlying 

mechanism originates from electron-electron collisions, which, counter-intuitively, act to enhance 

current flow. 

In the second work, we slightly change our experimental system by studying magneto transport in a 

graphene/hexagonal boron nitride superlattice. Owed to the large periodicity of the superlattice unit 

cell, these devices have allowed experimental observation of the long sought Hofstadter butterfly, 

which addresses the electronic dispersion of electrons in a periodic potential and magnetic field. 
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Here, we again go to elevated temperatures, where all the spectral gaps related to Hofstadter 

butterflies are completely smeared, and instead find a new type of quantum oscillation. These new 

oscillations are periodic in 1/B with a frequency corresponding to one flux quantum piercing the 

superlattice unit cell. Whilst these oscillations are related to Hofstadter physics, they are in fact 

more primal in origin. The most fascinating feature is their robustness with respect to increasing 

temperature. The oscillations are easily observable at room temperature in fields as low as 3 T and 

still remained prominent at 373 K, the boiling point of water 
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Chapter 1 - Introduction 
 

The vast and increasingly growing electronics industry is at the forefront of technological 

applications that impact society. The rapid progress in the performance of such devices, for example 

the transistor, has stemmed from the fundamental study of electron transport in solid state crystals. 

Moreover, the operation of nearly all electronic devices can be understood from the band theory of 

electrons in crystals. After fundamental understanding of the individual crystals electronic properties 

is discerned, different crystals can then be assembled to make artificial structures with unique 

electronic properties that are not found intrinsically in any material. For example, a two-dimensional 

electron gas (2DEG) can be formed at the interface of two doped semiconductor crystals1. This 

cleverly designed electronic system can be extremely clean, hosting a rich variety of solid state 

physics such as the quantum hall effect2, coloumb drag3,4 and exciton physics4 to name a few.   

Recently a new branch of materials, termed Van der Waals crystals, have gained increasing interest 

for electronic and opto-electronic applications. Often these crystals can be thinned down to one 

atomic layer, and are therefore referred to as 2D materials because the crystal periodicity exists only 

in two dimensions. Furthermore, the family of 2D materials covers nearly every type of solid-state 

system including metals5, semi-conductors6, insulators7  and even superconductors8. The bench mark 

for VdW crystals and 2D materials is their strict layer dependent electronic and optical properties. 

For example in graphene, atomically thin graphite, the monolayer and bilayer have very different 

electronic properties. Remarkably, the difference in only one atomic layer results in graphene 

electrons having a zero effective mass9. In another example, molybdenum disulphide (MoS2) shows a 

direct – indirect bandgap transition upon decreasing the number of atomic layers6. Following the 

framework of GaAs and silicon based heterostructures; 2D crystals with different electronic 

properties can also be assembled to make novel materials. However, the different crystal layers 

within such devices are bonded only by Van der Waals interaction and therefore are usually referred 

to as Van der Waals heterostructures10. In these structures, we have atomic control of the layer 

thickness for each material, allowing the possibility to create artificial crystals not found in nature, 

that have unique electronic properties which can be exploited for devices. A prime example is the 

vertical tunnelling field effect transistor reported by the University of Manchester in 201011. Again, 

the realisation of such devices stems from fundamental understanding of the electronic behaviour of 

individual layered crystals. 

Since its discovery in 2004, the electronic properties of graphene have been studied extensively. This 

has been owed to its unique crystal symmetry which harbours massless Dirac fermions, an 
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elementary particle which has been long-sought in particle physics. For example, the anomalous 

integer quantum hall effect5, zeroth landau level12,13 and Klein tunnelling14 are a few examples 

unique to graphene. Nearly fifteen years on, and we are still finding new physics in graphene. This is 

owed to the advance in sample preparation and improved fabrication of high quality devices.  In this 

thesis, we study transport phenomena in such high quality devices, focussing on transport behaviour 

at elevated temperatures. As a result, we have found a number of exotic transport phenomena 

unique to graphene.   

In Chapter 2, we provide a brief history on the development of graphene devices over the past 

fifteen years. Here, we introduce the basic electronic properties of graphene and describe different 

transport experiments that have been performed. In particular, we focus on the evolution of high 

quality graphene samples and the physics which can be found there.  

In Chapter 3, we describe the theoretical concepts related to hydrodynamic electron flow. This 

section focuses on electron-electron interactions in graphene, where electron transport is 

dominated by like-particle collisions and current flow is governed by the Navier-Stokes equation. 

This section contains the background for the experimental work presented in Chapters 6 and 7.  

In Chapter 4, we revisit the foundations of solid state physics and the band theory of electrons in 

periodic potentials. First, we cover Bloch’s theorem, a huge milestone which describes the peculiar 

nature of quantum mechanics. Second, we look at Bloch electrons in magnetic fields. Third, we 

combine the two effects and introduce the even more peculiar behaviour of Bloch electrons in 

magnetic fields and periodic potentials. Here, we introduce the concept of zero effective magnetic 

field, where electrons expel the magnetic field when the cyclotron radius becomes commensurable 

with the spacing of the periodic potential. This chapter is essentially theoretical support for the 

experimental work which will be presented in Chapter 8.  

In Chapter 5, we outline experimental techniques and fabrication procedures which have been used 

for all of the experimental work in this Thesis. 

In Chapter 6, we demonstrate one of the first experimental signatures of hydrodynamic electron 

flow in graphene/hexagonal boron nitride (hBN) heterostructures. 

In Chapter 7, we build on Chapter 6 and perform experiments on graphene nano-

constrictions/classical point contacts and perform experiments at the cross-over of the ballistic to 

hydrodynamic regime.  Here, we demonstrate the transport becomes super-ballistic in the 

hydrodynamic regime, and the conductivity exceeds the semi-classical limit allowed for single-

particle ballistic transport. 
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In Chapter 8, we switch our experimental system to a graphene/hBN superlattice, and study 

transport at non-cryogenic temperatures. Here, we find magneto quantum oscillations, which are 

un-related to any previously observed oscillatory phenomena and have rather unique properties.  

Finally, in chapter 9 we provide a brief summary and outlook on future experiments related to 

Chapters 6-8.  
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Chapter 2 - Electron transport in 

graphene/hexagonal-boron nitride 

heterostructures 
 

Here we introduce our experimental system; graphene encapsulated with hexagonal-boron nitride. 

These devices have gained extensive research efforts over the past decade due to the extremely 

high-quality and cleanliness of the graphene channel. This chapter is structured as a time line, where 

we show the evolution of graphene devices and the development of electron transport studies that 

accompanied this. First, we cover the basic electronic properties of graphene and hexagonal boron-

nitride. Second, we introduce two familiar and well-studied transport regimes which are both 

accessible in graphene; the diffusive and ballistic regime. Here we introduce a variety of concepts 

and experiments which are already well known to the 2DEG) community and are often referred to in 

this Thesis.  
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2.1 The Electronic properties of Graphene and hexagonal boron-

nitride 
Graphene 

Graphene is a rather unique electronic system. Intrinsically, it is a zero-gap semiconductor which 

hosts quasi-particles that follow linear energy dispersion as described by the Dirac equation and 

move relativistically with a zero effective mass. Furthermore, the band structure in graphene is 

electron-hole symmetric about the crossing of the conduction and valence band, also known as Dirac 

points. This symmetry allows electron and hole excitations to be described by the same Dirac 

equation, resulting in such exotic phenomena as Klein Tunnelling14.  

The unique electronic properties of graphene are owed to its distinct crystal symmetries. In a 

graphene lattice, the “s” and “p” atomic orbitals for each carbon atom hybridise to form three sp2 

orbitals and one spare pz orbital (Fig. 1a). The sp2 orbitals make in-plane covalent bonds, called  

bonds, with three neighbouring carbon atoms, forming a hexagonal lattice structure (Fig. 1b). The 

remaining Pz electrons form an additional bond (Fig. 1b) with neighbouring atoms. Notably, it is 

these electrons that are responsible for the extraordinary electronic properties in graphene. The 

resulting honeycomb lattice (Fig. 1c) contains two carbon atoms per unit cell with a lattice constant 

a ≈ 2.42 A. The corresponding Bravais lattice is described by two interpenetrating triangular sub-

lattices (A and B in Fig. 1c) that are occupied by two in-equivalent carbon atoms.  

 As for the band structure, quantum mechanical hopping between the crystal sublattices produce 

two overlapping energy bands that intersect forming a zero gapped linear dispersion (Fig. 1d). This 

result was first derived analytically in a tight binding approach by Wallace15 in 1947 by considering 

electrons in the  bonds of the graphene lattice, hopping between neighbouring lattice sites. The 

resulting band structure of the full calculation is shown in Fig. 1d. The conduction and valence bands 

cross at six special points in the corners of the Brillouin zone, forming gapless Dirac cones. However, 

only two Dirac cones are non-equivalent. This means that graphenes' band structure hosts two 

indistinguishable Dirac points, which are referred to as the K and K’  points. This symmetry creates a 

4-fold degeneracy in the density of states (two valley and two spin degeneracies).  
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Figure. 1 crystal structure of graphene. a, An illustration of Sp2 hybridisation in carbon atoms. b, 

demonstration of how Sp2 bonding leads to a hexagonal structure. c, The hexagonal crystal structure 

of graphene is built from two interpenetrating triangular Bravais lattices called the A and B 

sublattice. The sublattice vectors are drawn as black and blue arrows for the A and B sublattice 

respectively. d, This three-dimensional plot shows the full calculation of the band structure of 

graphene within the 1st Broullin zone9. The low energy dispersion is magnified (red circle) and shows 

how Dirac points form from the two overlapping sublattice bands. 
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Intrinsically the Fermi-level sits exactly at the Dirac point where the density of states (DOS) is zero. 

However, by electrostatic gating graphene devices we can dope charge carriers and study electron 

transport of relativistic Dirac quasi-particles. To demonstrate the most basic electronic properties of 

graphene, we will look at experimental data measured with the first graphene devices16. Figure 2a 

shows a schematic of the device architecture; a graphene flake is placed on to a silicon dioxide 

(SiO2)/silicon (Si) substrate and is contacted by gold. The SiO2 and Si act as a dielectric and gate 

electrode respectively, which allows electrostatic doping of the graphene channel by applying a gate 

voltage, VG (Fig. 2b). Figure 2c plots the longitudinal resistivity 𝜌𝑥𝑥  as a function of back gate voltage 

VG. At VG = 0 V, a sharp peak in the resistance is observed, corresponding to the Fermi-level sitting at 

the Dirac point where the DOS is at a minimum. At finite VG, the DOS increases and the resistance 

drops quickly as the Fermi-level is moved away from the Dirac point, irrespective of the polarity of 

VG, reflecting the electron-hole symmetry in graphenes’ Dirac spectrum. These devices showed 

remarkably high quality, with a carrier mobility ≈15,000 cm2/Vs at T = 4.5 K, despite transport 

being dominated by extrinsic effects such as scattering from defects and impurities16. Notably, the 

most detrimental source of extrinsic scattering occurs with charge impurities and surface phonons at 

the SiO2/graphene interface17. As discussed in an experimental work featuring in Nature 

Nanotechnology18, the intrinsic mobility of graphene is nearly two orders of magnitude larger than 

that obtained for graphene on SiO2. In the following chapters, we describe the current methods for 

fabricating high-quality graphene samples with carrier mobility’s approaching this intrinsic limit. 

 

 

 

 

 

 



` 

.  

 

Figure. 2 Basic operation of a graphene on SiO2 FET. a, device schematic of a graphene FET. Current 

is passed through the graphene layer between two gold electrodes by applying some voltage Vsd. A 

gate voltage (VG) is applied between the graphene and silicon substrate to dope the channel. b, 

Schematic of the Fermi-level filling in Dirac cones in the presence of an applied gate.  Negative VG 

(left panel) dopes graphene with holes, and positive (right panel) with electrons. c, resistivity as a 

function of Vg for a graphene FET at T = 4.2 K. d, mobility (left axes) calculated from resistivity data in 

c. The carrier density (ns) as a function of VG is plotted on the right axes. Data in c and d is taken from 

ref (16). 

Hexagonal Boron Nitride 

Since the discovery of graphene, a number of other 2D crystals with different electronic properties 

followed. Amongst all of them, hexagonal boron nitride (hBN) is perhaps the most complimentary to 

graphene and has become a crucial ingredient for building high quality, clean heterostructures based 

on graphene and other 2D materials. Here we briefly discuss the main properties and applications of 

hBN. 

Similar to graphene, hBN is a layered structure built of atomic planes that have a hexagonal crystal 

lattice. However, instead of carbon, hBN hosts two distinguishable atoms per unit cell; boron and 

nitrogen (Fig. 3a). Although boron and nitrogen are adjacent to carbon in the periodic table, hBN has 
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drastically different electronic properties to graphene. In contrast to graphene, the sublattice 

symmetry within the hexagonal lattice is broken, since the atoms occupying the A (boron) and B 

(nitrogen) sub lattice are in-equivalent (see red and blue circles Fig. 3a). Consequently, hBN is a wide 

band gap (5.97 eV) insulator. It does however have a very similar lattice constant (Fig. 3a) to 

graphene, differing only by 1.8 %. Because of the small lattice mismatch between graphene and 

hBN, atomically thin heterolayers can be stacked on top of one another with little influence from 

strain. Furthermore, the interfaces between heterolayers can be smooth, free of defects and are 

atomically flat, creating an ideal interface. Owed to its atomic flatness and electrical inertness, hBN 

is often used as an ideal substrate for making graphene devices, removing the detrimental effects of 

surface roughness. Graphene on hBN field effect transistors were first fabricated by the Columbia 

group in 201019, exhibiting far superior mobility ( ≈ 50,000 cm2/Vs) and homogeneity to graphene 

on SiO2
5. A device schematic is drawn in Fig. 3b demonstrating how a graphene (blue lattice) on hBN 

(green substrate) heterostructure is etched in to a hall bar device.  

To measure the quality of the graphene/hBN interface, the experimentalists measured surface 

roughness by atomic force microscopy (AFM). Figure 3c shows a histogram of surface roughness of 

different substrates19. We can see that the roughness for graphene on hBN (blue squares) is almost 

equivalent to the bare hBN (red circles), suggesting graphene forms an atomically flat interface with 

hBN. In contrast, the graphene on SiO2 devices (black triangles) exhibit nearly three times more 

surface roughness.   A further engineering step was employed by the Manchester group in 201120 to 

improve the quality of graphene devices even further. They placed a second hBN layer on top of the 

graphene to encapsulate it (Fig. 3d), protecting it from both substrate roughness and ambient 

conditions. These devices exhibited even higher carrier mobility than graphene on hBN, approaching 

the intrinsic limit ( ≈ 500,000 cm2/Vs at low temperatures) which corresponds to a mean free path 

of a few microns. Encapsulating graphene with hBN has pushed the operation of graphene based 

devices in to the ballistic transport regime, where the electron mean free path is comparable to the 

dimensions of the channel.  
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Figure 3 Hexagonal boron nitride in graphene heterostructures a, The crystal lattice of hBN. The 

blue circles are nitrogen atoms whilst the red are boron atoms. b, device schematic of graphene 

devices supported by an hBN substrate, the yellow shapes are gold electrical contacts. c a histogram 

of surface roughness for different graphene devices21. The micrograph shows an AFM image of 

graphene on hBN (left panel) and bare hBN (right panel), the two are almost indistinguishable. Scale 

bar: 0.5 m. 

2.2 Quasi-ballistic, Drude-like transport in Graphene 
 

At non-cryogenic temperatures, transport in bulk metals and semi-conductors is diffusive, where 

carriers scatter very frequently with impurities and phonons (lattice vibrations). When a potential 

difference is applied, the electrons gain some “average” velocity in the direction of the resulting E-

field and “diffuse” slowly down the potential. 

The diffusive regime is best described by the Drude model, which applies the simple kinetic theory of 

classical gas particles to electrons in crystals. In brief, when an electric field is applied to a crystal, 

electrons are accelerated following straight trajectories unperturbed by external forces. Their 

momentum increases until they scatter with lattice vibrations or impurities where they suffer 

momentum loss. In other words, electron momentum changes, on average, over the time scale, , 
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defined by the rate of elastic and inelastic collisions. The electrons therefore move with an 

“average” velocity, known as the drift velocity that is determined by solving the equations of motion 

for a charged particle in an electric field. Knowing this, the current density is then determined by the 

following equation known as Ohms law 

                                                     𝐽 =  𝜎𝐸 , 𝜎 =
𝑛𝑒2𝜏

𝑚∗ = 𝑛𝑒𝜇                                                                           (1) 

where the conductivity, , is governed by the time between scattering events, , the electron 

density, n, and the effective mass of an electron in a crystal, m*. For the case of massless Dirac 

fermions in graphene,  𝑚∗ is replaced by the cyclotron mass mc
22.  Equation (S1) is essentially a 

modified version of Ohms first law, which states that the current I flowing through a conductor is 

proportional to the voltage drop V across it. 

                                                               𝑉 = 𝐼𝑅,       𝑅 =
𝐿

𝐴𝑊𝜎
      ,     𝑅 = 𝐺−1                                               (2)                                 

Where the resistance R (reciprocal of conductance G-1) depends both on the geometry (L is the 

length, W is the width and A is the cross-sectional area of a three dimensional sample) and material 

properties (𝜎). The conductivity is often recast in terms of electron mobility, , according to 

equation (1). In our graphene samples, we measure conductivity and carrier density (by Hall Effect 

measurements), which allows us to determine. Figure 4a plots resistivity for one of our graphene 

devices at 100 K. The corresponding mobility is plotted in Fig. 4b for a few different temperatures. 

The mobility is around 300,000 cm2/Vs at 50 K, exhibits little temperature dependence and persists 

to about 100,000 cm2/Vs at room temperature. Knowing the effective mass, 𝑚c =  ℏ√𝑛𝜋/v𝑓, and 

the Fermi-velocity, vF, of graphene, we can also estimate the mean free path between collisions,  

                                                                   𝑙𝑚𝑓𝑝 =  
𝜇ℏ

𝑒
√𝑛𝜋                                                                               (3) 

where ℏ is a reduced plank constant, and √𝑛𝜋 is the Fermi wave vector, kF, in graphene. At low 

temperatures the mobility translates in to a mean free between 1-4 m (Fig. 4c). Notably, this is 

roughly equal to the size of our samples, where our devices typically have a width between 1 and 4 

m.  This means that the dominant scattering process for electrons in our graphene samples is with 

device edges. There are no defects or impurities in the graphene channel and the electrons travel 

ballistically until they scatter at device boundaries. We refer to such behaviour as the ballistic regime 

of electron transport, where the electron mean free path is larger than the conducting channel. 

Although the Drude model is usually only applied for diffusive electron flow, it has much more 

elementary significance. The scattering time, , which is found in equation S1, describes all 
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momentum non-conserving collisions. Even in the ballistic regime, we can define some scattering 

time  and measure a Drude-like conductivity. The only difference compared with the diffusive 

regime is that is much larger and the scattering have a different microscopic mechanism. Of course 

there are also a number of different ballistic phenomena that occur, but these require different 

device geometries and equations for their modelling. 

 

Figure 4|Mobility in typical encapsulated graphene devices. a, longitudinal resistivity as a function 

of carrier density n measured at T = 100 K. The measurement geometry is sketched in the 

micrograph. Inset: corresponding conductivity xx = 1/xx. b, Mobility 𝜇 as a function of carrier 

density n plotted for a few different temperatures T. c, The corresponding mean free path (lmfp). 

 

2.3 Ballistic transport in Graphene 
 

Landauer/Sharvin conductance 

In the previous chapter, we used the Drude model (1) to determine the mobility of our graphene 

samples and we extracted a mean free path corresponding to the width, w, of our sample. According 

to equation (2), if we decrease the length of our sample, L, the resistance tends to zero and the 

measured conductance G would tend to infinity. Experimentally however, when L is decreased 

below the mean free path, G starts to saturate and is limited by the width of the channel. This is 

because in the ballistic regime carriers do not scatter or thermalize in the conductor, and instead G 

depends only on the number of one-dimensional electron modes that can fit in the channel. 

Moreover, quantum mechanics tells us that each mode carries a conductance value of e2/h. This is 

the minimum possible value for conductance in any metal.  These qualitative statements are 

underlined in the derivation of the Landauer formula23,24 where the conductance is calculated by 

considering the transmission of one-dimensional (1D) electron modes between electrical contacts 

through an ideal conductor (Fig. 5a). From this, we arrive at the following solution. 
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                                                                            𝐺𝑏 = 𝑁 
𝑒2

ℎ
 𝑀                                                                           (4) 

Where 𝐺𝑏 is the ballistic conductance, N is the degeneracy for each mode and M is the number of 1D 

conducting modes. In very narrow channels, where the width w is comparable to the Fermi 

wavelength (F) the conductance becomes quantized and increases in steps of integer values of e2/h 

as the Fermi-level increases and more modes are populated. Consequently, a set of plateaus are 

observed at intervals Ne2/h in 𝐺𝑏 as the Fermi-level or w increases. This size quantization was first 

observed in GaAs-AlGaAs heterostructures (Fig. 5b), where quantum point contacts with narrow 

channels was made by depleting specific regions of the 2DEG using split gates24. In the case of w >> 

𝜆𝐹, we can still use  the formalism of 1D propagating modes, which is determined by calculating the 

number of stationary states in a box of size w. We then find M = kFW/and obtains the ballistic 

conductance for wide channels  

                                                                            𝐺𝑏 =
𝑁𝑒2

ℎ

2𝑊

𝜆𝐹
                                                                              (5) 

where 𝜆𝐹 in graphene is 2√𝑛𝜋and the factor of 4 accounts for spin and valley degeneracy. We 

note that equation (5) is exactly the Sharvin formula, which can also be obtained in a semi-classical 

approximation by considering the angular distribution of electrons in a 2DEG passing through a small 

aperture or constriction25. Equation (5) is essentially the macroscopic version of equation (4), where 

the width of the channel is much larger than the Fermi-wavelength.  

For graphene devices, it is rather difficult to approach the limit of equation (4), because of the 

difficulty in defining narrow channels. The split-gate technique used for 2DEG devices does not work 

because of Klein tunnelling14. Instead, point contacts in graphene can be defined by etching 

constriction geometries in to heterostructures26 (Fig. 5c), or by current annealing suspended 

graphene samples27. Previous works demonstrated quantisation of Dirac electrons (equation 4) in 

such devices at low temperatures27,26 (Fig. 5d). In this work, we study electron transport through 

wide point contacts where w >> F and the conductance is described by equation (5).  In this chapter 

we have not mentioned anything about scattering; the equations derived are based on electrons 

propagating without loss of momentum. In this thesis, we study the effects of electron-electron 

scattering in the ballistic conductor (see Chapter 5). 
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Figure 5| Ballistic conductance in narrow channels. a, a schematic demonstrating the quantisation 

of electron wave functions in a narrow channel. The ideal conductor (blue rectangle) allows only 

electrons which occupy stationary modes (with respect to the y direction). b, resistance through a 

split-gate quantum point contact28 as a function of gate voltage measured at 2.5 K. Clear plateaus 

can be seen corresponding to integer values of 2e2/h. This is due to the narrowing of the channel 

when voltage is applied to the split gates. c, device schematic of a graphene point contact taken 

from the work of Ref. 26. d, measured conductance26 through such a device as a function of carrier 

density n (Fermi energy) at T = 2 K. Kink like features occur in intervals of 4e2/h due to quantisation. 

Bend resistance and Magnetic focussing 

In the ballistic regime, the steady-state current distribution can look very different to that in the case 

of diffusive flow, where electrons follow random paths due to frequent scattering and drift slowly in 

the direction of the applied electric field. This is because electrons injected from the current source 

contact follow their initial trajectory for long distances without scattering. In the case of a small drive 

current, the carriers propagate in all directions out of the source contact unperturbed by the force 

due to the applied electric field, because the kinetic energy of carriers is far larger than the potential 

energy produced by the field. Consequently, carriers fly everywhere and collect in different regions 

of the device, producing a build-up of charge that creates peculiar potential distributions in the 
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sample.  In general, the standard longitudinal geometry employed for measuring conductivity is 

insensitive to the ballistic nature of electrons. However, special geometries are employed to study 

these electron trajectories. Below we summarise a few experiments that confirm the ballistic nature 

of graphene’s charge carriers. 

First, let us take a look at the so-called bend geometry. Figure 6a sketches a device schematic and 

measurement scheme. The hBN/graphene/hBN heterostructure (green region) is patterned in to a 

cross. Current is passed between contacts 1 (high) and 2 (low), and the voltage is measured between 

contacts 3 (high) and 4 (low). In a diffusive flow, charge carriers follow the electric field lines that 

bend around the cross as they diffuse slowly to the drain contact 2. In this regime we measure a 

positive resistance.  In contrast, ballistic electrons injected at contact 1 shoot straight across the 

device area collecting instead at contact 4 (Fig. 6a). Charge carriers build up at contact 4 which, in 

this configuration, creates a negative potential distribution due to the absence of charge carriers at 

contact 3. Typically the measured voltage is normalised by the source current such that the 

phenomena is referred to as “negative bend resistance”. A demonstration of such an experiment 

was made by the Manchester group in 201120 where a strong negative bend resistance (Fig. 6b) was 

found to persist up to room temperature, demonstrating the robust, ballistic nature of electrons in 

graphene.   

In a second experiment, one can study transverse magnetic focussing. Here, a non-local geometry is 

employed (see Fig. 6c.). By applying weak magnetic fields, B, we can bend trajectories of ballistic 

electrons and guide them towards the voltage probes. Similar to the bend resistance experiment, 

carriers collect at the voltage probes, provided the mean free path is larger than the cyclotron 

trajectory required to “focus” those electrons, and we measure a positive potential drop between 

contacts 3 and 4. Again, the potential difference arises due to the absence of carriers at contact 4. 

More importantly, we only detect electrons that have a cyclotron radius commensurable with the 

distance between the current injector and voltage probe. Therefore, as we sweep B, we measure a 

set of peaks which reflect this commensurate condition. Figure 6d shows a map of the measured 

resistance (Vc/Ii) as a function of B and n, for a magnetic focussing experiment made in graphene by 

researchers at MIT29. For a fixed n, we can resolve three peaks which seem to occur periodically with 

the applied B. To explain these features, the micrographs above the panel sketch trajectories for 

which those peaks correspond to. The blue arrow indicates trajectories which are directly focused in 

to the voltage probes. In contrast, the red and yellow arrows point to those which have undergone 

one or two reflections at the boundary respectively. In graphene devices, magnetic focussing has 
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been demonstrated over distances as large as 6 m30.  These ballistic experiments demonstrate the 

high quality of encapsulated graphene samples.  

 

Figure| 6 Ballistic experiments in graphene/hBN heterostrucutres. a, Device schematic of a 

graphene device shaped in to a cross for bend resistance experiments. Current is passed from 1-2 

and voltage is measured from 3-4. b, bend resistance RB as a function of back gate voltage Vg for 

temperatures between 2 K (black curve) and 250 K (purple curve). Black dotted line is the Drude-like 

contribution expected for diffusive flow. Data is taken from (ref. 20) c, Device schematic for 

magnetic focussing measurements in a graphene hall bar. Contacts numbered the same as in a. d, 

maps of the measured resistance, V/I, as a function of magnetic field (x-axis) and carrier density (y-

axis). Data is taken from (ref. 29). 
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2.4 Electron-phonon scattering in graphene 
 

In conventional III-V heterostructures, the carrier mobility of high quality samples is around 

10,000,000 cm2/Vs at liquid helium T31 (an order of magnitude larger than typical graphene/hBN 

heterostructures). However, their mobility degrades quickly upon increasing T due to the activation 

of polar optical phonon modes which scatter in-elastically with charge carriers32. These types of 

phonons are only found in polar crystals, when the two atoms in the unit cell have some differing 

charge, and limit the intrinsic room temperature mobility to around 2000 cm2/Vs. 

In contrast, high-quality graphene devices have room temperature mobility of around 

100,000 cm2/Vs, with the possibility of observing ballistic phenomena even at 250 K (Fig. 6b). This is 

because the unit-cell of graphene contains two equivalent carbon atoms, which have no inherent 

polarization (Fig. 1a) such that polar optical phonons do not exist.  Therefore, only acoustic phonon 

modes limit the intrinsic mobility of graphene33. As we show in the next chapter, the reduced 

electron-phonon interaction of graphene allows us to study a peculiar transport regime which is 

dominated instead by electron-electron interactions. 
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Chapter 3 – Hydrodynamic electron 

transport in graphene 
 

In the previous chapter, we discussed the ballistic and diffusive transport regimes of graphene. In 

conventional GaAs 2DEG systems, electron transport is qualitatively similar. Electrons are ballistic at 

liquid helium temperatures, where one can observe also size quantisation/magnetic focussing etc., 

but transition to a diffusive regime upon increasing T due to increased scattering with phonons. In 

graphene however, electron-phonon scattering is rather weak and we can see ballistic phenomena 

all the way up to room temperature (Fig. 6b), whilst optical phonons in GaAlAs heterostructures kill 

ballistics by about 30 K. Because of this, electron-electron collisions play a dominant role in 

graphene at high temperatures. In this section we introduce the idea of hydrodynamic electron flow, 

where electrons experience frequent e-e collisions and move collectively like a fluid. We show that 

in this regime, electron viscosity strongly influences electron transport in graphene and leads to a 

number of astonishing phenomena.  
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3.1 Hydrodynamics  
 

Hydrodynamics is a macroscopic theory that describes the transport of fluids; a system of particles 

that undergo frequent collisions with each other. The collisions are so frequent that the particles 

making up a fluid element are always in equilibrium, such that they move collectively when 

perturbed by an external force.  This collective behaviour results in a number of peculiar flow 

patterns, where different parts of the fluid propagate at different speeds as momentum loss diffuses 

slowly through it. A classic example of this is presented in Fig. 7a, which shows the two dimensional 

Poiseuille flow of a viscous fluid (blue area) in a pipe. The blues arrows represent the magnitude of 

flow velocity at different points in the fluid along the y-direction. A longer arrow indicates larger 

velocity. We can see that the fluid moves slower at the edges of the pipe and fastest in the middle. 

This is because the outer layers of the fluid suffer momentum loss at the edges, whereas the central 

layers are shielded by the outer layers and can move more easily. In other words, the momentum 

loss diffuses very slowly through the fluid, such that the inner layers essentially do not feel the 

frictional drag of the walls. The parameter which describes momentum transfer is called the 

kinematic viscosity, 𝜈, which essentially describes the internal friction of the fluid. If 𝜈 was infinitely 

large, the momentum loss diffuses through the whole fluid and every point in the fluid would 

propagate at the same speed (Fig. 7b).  

 

Figure 7| Viscous Poiseuille flow of water flowing in a pipe. The diagrams sketches a fluid (blue 

region) flowing in pipe (the walls are sketched by grey patterned rectangles) for one with a finite 

viscosity (a) and infinite viscosity (b). The dark blue lines and long blue arrows represent the flow 

pattern and velocity distribution respectively. 

The theory of hydrodynamics has been around for nearly two centuries, where the equations of 

motion governing fluid flow were first derived by Euler in 1755 to describe ideal classical fluids34. The 

problem involves solving partial differential equations for some thermodynamic parameters of the 

system at any point in space or time. For example, the velocity field v(x,y,z,t) could be determined, 
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which tells us the velocity of a fluid element (an infinitely small region of the fluid) at any spatial co-

ordinate for a given time. The starting point for hydrodynamics originates from two equations, the 

continuity equation (conservation of mass) and Euler r’s equation (conservation of momentum).  

𝛿ρ

𝛿𝑡
+  ∇ ∙ j =  0                                                                                                                 Continuity equation (6) 

𝛿v

𝛿𝑡
+ ( v ∙ ∇)v +  

1

ρ
∇p = 0                                                                                          Euler’s fluid equation  (7) 

Where p, , v, and t are pressure, density, velocity and time respectively, and j = v is the mass flux 

density. These equations describe idealised fluids, sometimes called perfect fluids, which exhibit no 

shear stress, viscosity or heat conduction34. Shortly after this, Navier, Poisson, Saint-Venant and 

Stokes derived an alternative form of Euler’s fluid equation to account for energy dissipation within 

the fluid 

 𝜌 [
𝛿v

𝛿𝑡
+ ( v ∙ ∇)v ] + ∇p −  η∆v + (ξ +

1

3
η) ∇(∇ ∙ v) = 0                         Navier-Stokes equation (8) 

where η = 𝜈ρ is the dynamic/shear viscosity and ξ is the bulk viscosity, which describes the 

resistance of the fluid to compression. By solving this equation we could obtain the flow behaviour 

illustrated in Fig. 7. 

3.2 Hydrodynamics in the electron liquid 
 

Two hundred years on and the hydrodynamic theory is now being used to study viscous flows of 

strongly interacting quantum fluids. For example, the shear viscosity of quantum liquids35 like He3 

and He4, cold atom gases36 and quark-gluon plasmas37 have been measured only very recently. 

However, only a few theoretical efforts and experimental techniques have been proposed38 to 

measure viscosity of a two-dimensional electron liquid. This is in part is due to the lack of 

hydrodynamic behaviour in any 2DEG system.  

Hydrodynamic electron flow refers to a transport regime where electron-electron collisions are so 

frequent that macroscopic variables like velocity are governed by equation’s (7) and (8). This idea 

was first put forward by Gurzhi in the 1960’s39,40 where he proposed a transport regime in metals 

dominated by e-e collisions (Poiseuille flow). He suggested that the resistivity of a metallic system 

should change non-monotonically upon increasing temperature due to the interplay of different 

scattering mechanisms, including a dominant presence of e-e collisions.  His result is summarised in 

Fig. 8a, which plots T dependence of longitudinal resistance R (T) for a metallic system. Upon 

increasing temperature, the resistance first drops due to a decrease in the electron viscosity as e-e 
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collisions increase. Then at some characteristic temperature T3, the resistance starts to grow (the 

usual behaviour expected for a metal) as electron-phonon scattering starts to overwhelm the 

system. This effect of course requires the correct system parameters, i.e one where e-e collisions are 

dominant.  

As for experiment, in typical metals and semi-conductors e-e collisions are hidden by the dominance 

of other scattering mechanisms such as impurities or lattice vibrations, preventing the establishment 

of local equilibrium required for hydrodynamic flow. We need a system where electron-electron 

collisions are dominant, and the e-e mean free path 𝑙𝑒𝑒 is the smallest length scale in the problem. 

i.e  

                                                              𝑙𝑒𝑒 ≪ 𝑊 ≪  𝑙𝑚𝑓𝑝                                                                                                                         (9) 

Where 𝑙𝑚𝑓𝑝 is the electron mean free path with respect to momentum non-conserving collisions 

(scattering with impurities, device edges and phonons) as defined in equation (3), and W is the 

characteristic size of the sample. Unfortunately, even in high mobility systems like (Al,Ga)As 2DEG, it 

is not possible to reach the hydrodynamic regime because of competing length scales. At low 

temperature, 𝑙𝑚𝑓𝑝 ≫ W due to the high purity of the 2DEG and frozen phonons. However, 𝑙𝑒𝑒 is 

also much larger than W because of Pauli-blocking41 (see next section). Upon increasing 

temperature, both 𝑙𝑒𝑒 and 𝑙𝑚𝑓𝑝  start to decrease. However, 𝑙𝑚𝑓𝑝  drops at a much faster rate 

because of low-energy optical phonons which are easily activated in polar materials . In other words, 

electrons scatter more frequently with optical phonons rather than each other41. Consequently, the 

system transitions from the ballistic (Chapter 2.2) to the diffusive regime without ever seeing the 

hydrodynamic regime.  

Because of the demanding system requirements, there has been only one experimental 

investigation on hydrodynamic transport in (AlGa)As heterostructures42. In this experiment, the 

authors perform measurements of the longitudinal resistivity and heat the electron gas by applying a 

large DC current (Fig.  8b). This allowed them to raise the electron temperature (shorten 𝑙𝑒𝑒) without 

heating the lattice and thus avoid activation of optical phonons. They measure non-monotonic 

changes in the differential resistance which they attribute to a transition between ballistic (when 𝑙𝑒𝑒 

> W) and viscous (when 𝑙𝑒𝑒 < W) flow regimes upon increasing the electron temperature. Figure 8c 

shows the measured data taken from ref. 30. At T = 2.5 K (bottom curve), dV/dI starts to decrease at 

around 10 A as the system transitions to the Poiseuille flow regime where increasing temperature 

decreases electron viscosity. At larger drive current (around 50 A), dV/dI starts to grow because the 
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lattice becomes hot. Since the observed non-monotonicity was originally described by Gurzhi39 , it 

became known as the Gurzhi effect.  

However, non-linearity is rather difficult to interpret, and Gurzhi himself criticised the experiment a 

few years later claiming the interpretation was wrong43. A simpler, more insightful experiment 

would be to study a viscous electron system in a linear response regime (small drive currents). To do 

this, high mobility clean systems are not enough. We also require non-polar systems where the 

electron-phonon coupling is very weak. Indeed, graphene demonstrates experimentally that it has 

weak electron-phonon coupling as indicated by its intrinsically high room temperature mobility. We 

therefore might expect to find viscous flow in graphene samples, although it is likely to exist at 

elevated temperatures when 𝑙𝑒𝑒 is sufficiently small and equation (9) is satisfied.   

 

Figure 8| Hydrodynamic electron flow in high mobility samples. a, the proposed temperature 

dependence of resistance R(T) in a metallic conductor with dominant e-e collisions (ref. 39). b, 

Device schematic for the experiment of ref. 42. The patterned rectangles indicate top gates which 

define the conducting channel. A large drive current is passed between contacts 1 and 5 and the 

differential resistance dV/dI is measured between contacts 2 and 4. c, experimental data of ref. 42. 

The graph plots dV/dI (I), where I is the large DC heating current. The different traces correspond to 

different T ranging from 2.5 K (bottom) to 24.7 K (top).  
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3.3 Electron-electron scattering in graphene  
 

Here, we address the issue of scattering lengths and show that equation (9) is easily 

satisfied in graphene/hBN heterostructures. As demonstrated in Chapter 2.3, our graphene 

devices are ballistic throughout the channel. There are no impurities and the only scattering 

occurs with device edges. It is clear then that at low temperature’s (T = 5 K) 𝑙𝑚𝑓𝑝 ≫ W.  

Upon increasing temperature, 𝑙𝑚𝑓𝑝  shortens as electrons start scattering with the newly 

activated phonons. In graphene, scattering with phonons is weak due to the non-polar 

nature of the crystal and only acoustic phonons influence transport. For acoustic phonons in 

graphene33, the electron-phonon scattering length 𝑙𝑒𝑝  ~ 1/𝑇.  

As for the electron-electron scattering length, 𝑙𝑒𝑒 at low temperature it is also large. This is 

because the Pauli Exclusion Principle imposes there must be available states for electrons to 

scatter within, and the numbers of available states are small due to the restricted phase 

space. This is illustrated in Fig. 9a, which sketches a 2D Fermi-surface in momentum space at 

0 K, where the blue line represents the Fermi level, EF. Because all states below EF are 

occupied, and momentum conservation restricts electrons from scattering in to states 

above EF, there are no available states for electrons to scatter in to.  

Upon increasing T, the Fermi-surface becomes smeared on the order of KBT (Fig. 9b) and the 

number of empty states increases (white circles). As for electron-electron collisions, only 

electrons with energies within KBT of the Fermi-energy EF can scatter. The probability to find 

an electron within this region (shaded red circle in Fig. 9b) is proportional to KbT/EF. Since 

two electrons are involved in one scattering event, the e-e scattering rate is proportional to 

(KbT/EF)
2

. From this simple argument, we infer that 𝑙𝑒𝑒 ~ 1/𝑇2. We note however, that the 

1/𝑇2 behaviour is only valid in the Fermi-liquid regime, when KbT << EF.  
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Figure 9| available states for e-e collisions. a, An illustration of electron occupation in the 

2D k-space at T = 0 K. The occupied electron states are represented by the blue shaded 

circle, with the Fermi-level indicated by the dark blue circumference. The black circles 

illustrate filled states (electrons). b, The same picture at T > 0 K. Now the Fermi-surface 

becomes smeared and there become available states (white circles indicating holes) within a 

small region (shaded red area) of the Fermi-surface.   

Since 𝑙𝑒𝑒 decays quicker than 𝑙𝑒𝑝  there should be a temperature range where equation (9) is 

satisfied. As for experiment, we know that 𝑙𝑚𝑓𝑝 > 𝑊 (at least 1 um in our devices) all the 

way up to room temperature (Fig. 4b). Furthermore, full many-body calculations of the e-e 

scattering length have been performed in a doped graphene sheet44, demonstrating that 𝑙𝑒𝑒  

drops below 0.3 um at 200 K (Fig. 10). Therefore, in a first approximation, we expect 

hydrodynamic flow to on-set around 150-200 K. 
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Figure 10| e-e scattering length in doped graphene. Many-body calculations of 𝑙𝑒𝑒(𝑇) in 

graphene, given for a few different carrier densities (ref. 42).  

3.4 Viscous electron flow in graphene 
 

In Chapters 5 and 6, we study hydrodynamic electron transport in graphene. To start with, we derive 

a set of equations which describe hydrodynamic flow of an incompressible viscous electron fluid, 

under steady-state conditions in the linear response regime.  These assumptions greatly simplify the 

hydrodynamic transport equations in (5) and (6), since all time-derivatives are equal to zero. Instead, 

we find transport of the two-dimensional electron liquid (2DEL) is described by45 

                                                                        ∇ ∙ 𝐽(r) =  0                                                                                  (9) 

                                                            
𝑛𝑒

𝑚𝐶
 ∇ 𝜙 +  𝑣∇2𝐽(r) =

𝐽(𝑟)

𝜏
                                                                    (10) 

where 𝜙 is the applied potential, 𝑛 is electron density, 𝑚𝐶  is the cyclotron mass of Dirac fermions, 

and 𝜏 ≡ 𝑙MFP/v𝐹 is the electron scattering time with momentum non-conserving collisions. Equation 

(9) is merely the continuity equation for steady-state flow of an incompressible fluid, whilst equation 

(10) is the Navier-Stokes equation for the viscous 2DEL. The force terms appearing in (10) are the 

electric field (∇ 𝜙), the force due to shear viscosity (expressed here as kinematic viscosity 𝑣) and a 

friction term that represents all momentum non-conserving collisions. By solving equations (1) and 

(4), we can determine the electrical potential 𝜙 and current density J for any device geometry 

provided the current source and drain are defined by the appropriate boundary conditions. Finally, 

we note that equation (10) describes also the transition between viscous and diffusive flow. In the 

limit of 𝑣 and 𝜏 tends to zero (high temperature regime), the viscous term vanishes and equation 

(10) takes the usual form of Ohms law (equation 1) which was derived in chapter 1.2. 
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Viscous Poiseuille flow of the electron liquid 

In our graphene devices, we can drive current in many different ways. To start with, let us look at the 

simplest longitudinal geometry where current is driven through the length of a hall bar, resembling 

fluid flow in a pipe (Fig. 7). If one solves equations (9) and (10) for a given 𝜈, and small 𝜏 (and assume 

for example non-slip boundary conditions), we find a current distribution identical to Poiseuille flow, 

where the current density is largest in the middle of the channel and zero at the edges. In transport 

experiments, the benchmark for detecting viscous Poiseuille flow is through measuring the 

anomalous temperature dependence in the resistivity predicted by Gurzhi39 . Again, the resistivity of 

a metal in the viscous regime decreases upon increasing temperature due to a decrease in viscosity. 

This experimental signature (originally proposed by Gurzhi in his 1963 paper) has remained elusive. 

Even in high-quality graphene devices, where the viscous regime should be accessible, the resistivity 

increases monotonically and no sign of Poiseuille like flow can be found. A simple explanation is that 

the Drude-like resistivity is still large in a standard longitudinal geometry. To amplify the effects of 

electron viscosity, we can engineer geometries which generate inhomogeneous current 

distributions. In Chapter 7, we study electron transport through graphene constrictions. Here, we 

measure the anomalous temperature dependent resistivity predicted by Gurzhi nearly 50 years ago 

Viscous electron whirlpools 

Instead of longitudinal measurement geometries, non-local geometries can also be used, where 

current is injected across the width of a hall bar and the voltage drop is measured at a distance 

where Ohmic flow is negligible. It has been shown that the steady-state current distribution of 

viscous flow in a non-local geometry hosts vortices/current whirlpools45,46. Moreover, these vortices 

are accompanied by a negative potential region which is found close to the current injector (Fig. 

10b). In Chapter 6 we perform transport measurements in a graphene hall bar and employ a unique 

non-local geometry to search for these negative voltage regions intrinsic to viscous flow. 
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Figure 10| Current vortices in a graphene strip. a, current flow and potential map of a graphene 

strip in a diffusive regime, where electrical current is injected at the top (Source) and drained at the 

bottom (Drain). Current (green arrows) flow down the potential as expected. b, the current and 

potential distribution in the viscous regime, obtained by solving equation (10). In the centre of the 

graphene strip, current flows down the potential. However, adjacent to this, current vortices are 

formed and strong negative potential regions are found close to the source. The two figures are 

taken from ref. (44). 
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Chapter 4- Electron transport in a 

periodic potential and magnetic field 
 

In this chapter, we take a step back and re-visit the fundamentals of solid state physics. We forget 

about many-body interactions and think simply about single-particle transport. With this in mind, we 

consider perhaps the most naïve possible question one can ask; how do electrons propagate over 

such large distances without bumping in to atoms which make up the lattice? To answer this, we 

have to turn to quantum mechanics and appeal to the wave behaviour of electrons. Taking the 

problem further, we might wonder how electrons conduct in the presence of a perpendicular 

magnetic field. Scientists forge whole careers studying electron transport in high-magnetic fields, 

paying close attention to the quantum Hall effect and exotic many-body states which exist in this 

regime. This field started with the discovery of Shubnikov de-Haas oscillations in 193047, where the 

conductivity oscillates upon increasing magnetic field B. Since then, the Shubnikov de-Haas effect 

has proven itself an essential tool in probing the fundamental properties of a solid state crystal. In 

general, there are only a handful of different types of quantum oscillations, and it is not very often 

new fundamental transport phenomena are discovered. In fact, it has been nearly 30 years since 

Aharanov Bohm oscillations were discovered, and no new magneto-oscillatory phenomena have 

been reported since then. In Chapter 7, we report on a completely novel type of quantum oscillation 

that we observed in graphene/hexagonal-boron nitride superlattices48. In the proceeding sub-

sections, we introduce the basic theoretical concepts required to understand the physical origin of 

these novel oscillations.  
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4.1 Nearly free electrons in crystals – Bloch electrons  
 

Shortcomings of the Drude-Sommerfeld model  

In Chapter 1, we explained how the Drude expression for conductivity is useful for estimating  the 

average time electrons can propagate before suffering momentum loss.  We should note however, 

that the Drude model is a classical theory, and therefore is not suitable for describing the quantum 

mechanical nature of electrons. Some further limitations stem from the following assumptions 

which are made; electrons scatter only through collisions with ion cores and in-between collisions do 

not feel the potential of the crystal lattice, that is, they are free electrons which behave like an ideal 

gas. The latter posed a huge discrepancy between experiment and theory, because the electrons 

were assumed to have a thermal velocity v ~  T 1/2 , which implied a mean free path of a few 

Angstroms, the distance between atoms in the lattice49. A number of other experimental signatures 

proved this value to be far too small. For example, the resistivity was found to depend strongly on 

the density of impurities within a sample, even though the spacing between impurities was far larger 

than the distance between atoms. The mean free path inferred from this empirical experiment is 

actually an order of magnitude larger than the spacing between atoms. It was then quite a mystery 

how electrons could avoid atoms for such large distances. 

A vast improvement on the transport theory was made when Sommerfeld used a quantum 

mechanical treatment, combining the classical Drude model with quantum mechanical Fermi-Dirac 

statistics. Similar to Drude, Sommerfeld  considered electrons as free particles. He then proceeded 

by solving the Schrödinger equation for free particles in a box of volume V, which described the free 

electrons in a crystal sample of volume V.  

                                                                                   
−ℎ2∇2

2𝑚𝑒
𝜓(𝑟) = 𝐸𝜓(𝑟)                                                      (12) 

By choosing appropriate boundary conditions (Born-Von Karman), he found the following solution  

                                                                                     𝜓𝑟  (𝑟) =
1

√𝑉
𝑒𝑖𝑘.𝑟                                                          (13) 

This means the electrons behave as plane waves carrying a momentum k, that is quantised and takes 

discrete values which satisfy the Born-Von Karman boundary conditions.  This treatment allows us to 

calculate the density of states (DOS) which in turn can accurately predict many different 

thermodynamic properties49. In addition, the Fermi velocity, vF, was defined (an order of magnitude 

larger than the thermal velocities assumed in the Drude model) and gave much more reasonable 
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values of the mean free path  𝑙. However, the Sommerfeld model still could not explain the 

microscopic origin of insulating and metallic like behaviour in different crystals. Not to mention 

there was still no physical insight in to how electrons propagate over such large distance without 

bumping in to the ion cores (in the Sommerfeld  model, the potential of the ion cores were ignored). 

To understand these things, we have to consider the effects of the periodic potential of the lattice.  

Bloch’s Theoreom 

Now we turn on the effects of the crystal lattice, which is described by a periodic potential  

                                                                                        𝑈(𝑟) = 𝑈(𝑟 + 𝑅)                                                      (14) 

Where 𝑅 corresponds to one crystal lattice vector.  We then proceed by solving the Schrödinger 

equation which now includes the positive periodic potential 

                                                                            
−ℎ2∇2

2𝑚𝑒
𝜓(𝑟) + 𝑈(𝑟)𝜓(𝑟) = 𝐸𝜓(𝑟)                                     (15) 

Remarkably, Bloch found the following solution  

                                                                     𝜓𝑘(𝑟) = 𝑒𝑖𝑘.𝑟𝑢𝑘(𝑟)                                                                     (16) 

Where 𝑢𝑘(𝑟) =  𝑢𝑘(𝑟 + 𝑅) is a function which has the periodicity of the lattice (for a detailed 

derivation see Ref. 34 Chapter 17). The wave function is simply a plane wave modulated by some 

periodic function. In other words, the electrons behave as “nearly free” particles, propagating as 

plane waves without scattering. The term “nearly free” refers to the fact that electrons travelling in 

the crystal move slower than in free space because they now feel the lattice potential. This is 

quantified by ascribing an “effective” mass (m*) to the electrons. Regardless of their speed, Bloch’s 

proof shows that electrons can move without scattering (at T = 0 K and in ideal, defect free crystals) 

even in the presence of the positively charged atomic centres. The physical reason stems from the 

fact that the electron wave functions exhibit translational symmetry around the crystal lattice. This 

means that the wave function of an electron in some state k is the same when you move one lattice 

vector in real space, differing only by a phase factor i.e 

                                                                𝜓𝑘  (𝑟 + 𝑅) = 𝑒𝑖𝑘∙𝑅𝜓𝑘(𝑟)                                                                (17) 

Where r is the position and R is the distance corresponding to one lattice vector. Figure 11 illustrates 

the electron wavefunction in a periodic potential.  This means the electron wavefunction is 

essentially delocalised around the whole crystal lattice, which is why it can move such large distance 

and explains the relatively large conductivity of metals. 
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Figure 11| Bloch electrons in crystals. a, The electron wavefunction 𝜓𝑘(𝑥) (top panel) in a one-

dimensional periodic potential V(x) (bottom panel) is plotted. Note the wavefunction shares the 

same periodicity as the periodic potential. b, The energy dispersion 𝜀𝑘(𝑘) for Bloch states49. Here, 

four energy bands are present which are periodic over the reciprocal lattice vector G = 2/a. 

Illustration is taken from ref. 49.   

Finally, we note one more essential property of Bloch electrons, that is, Bloch states differing by one 

reciprocal lattice vector are identical. 

                                                                              𝜓𝑘+𝐺  (𝑟) = 𝜓𝑘(𝑟)                                                              (18) 

Where G is one reciprocal lattice vector. Accordingly, the energies of both Bloch states in equation 

(18) are identical. This means that the electronic dispersion is periodic with the reciprocal lattice (Fig. 

11 b) and therefore the full energy spectrum is described by electron states within the first Brillouin 

zone only. 

To calculate those energies, we then proceed by solving the Schrödinger equation, which however is 

recast in the form of a Fourier expansion of the periodic structure, and is known instead as the 

central equation. The resulting solution gives a set of bands separated by gaps which describes all 

the possible allowed electronic states of the Bloch wave functions (Fig. 11b). The solution found in 

(17) finally answers our question raised at the beginning of Chapter 3. Because of the wave nature of 

electrons, they can travel for large distances in a periodic potential without scattering, so long as 

there are no impurities or thermal vibrations in the lattice. Electrons behave like this provided their 

wave function retains its translational symmetry with respect to the crystal lattice. 
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4.2 Electrons in magnetic fields – Landau quantization 
 

If we apply a perpendicular magnetic field to a 2DEG, the charge carriers experience some Lorentz 

Force and follow curved trajectories. If the B field is strong enough, such that electrons can complete 

closed orbits without scattering, they become localised on their orbital centres. This cyclotron 

motion breaks translational symmetry of the electron wave function with respect to the crystal 

lattice, and it is much harder now for electrons to move within the crystal. Indeed, the classical 

equations of motion which describe electrons in magnetic fields are governed by the cyclotron 

radius  𝑟𝑐 and cyclotron frequency 𝜔𝑐.  

                                         𝑟𝑐 =
𝑚𝑣

𝑒𝐵
                                       𝜔𝑐 =

𝑒𝐵

𝑚
                                                                  (19) 

Where v is velocity, 𝐵 is the applied magnetic field, and m is the electron mass. Now, as B increases 

and 𝑟𝑐 becomes increasingly small, quantum mechanics tells us of there are only discrete values of 

energy (ℏ𝜔𝑐) and radi 𝑟𝑐 which the electron can have. To determine these values, a full quantum 

mechanical treatment is required which involves solving the Schrödinger equation for a free electron 

in magnetic field.  

                                                  
−1

2𝑚𝑒
(

ℏ

𝑖
∇ + 𝑒𝐴) 𝜓(𝑟) = 𝜀𝜓(𝑟)                                                                      (20) 

Here, we have chosen the magnetic field, B, along the z direction, such that the magnetic potential A 

= (0, 0, Bz). After some maths49, we find that equation (12) simplifies to the problem of a linear 

harmonic oscillator that is localised about some centre co-ordinate x0.  

             −
ℎ

2𝑚𝑒

2 𝑑2𝜓(𝑥)

𝑑𝑥2 +  
1

2
𝑚𝑒𝜔𝑐

2(𝑥 − 𝑥0)2 𝜓(𝑥) = (𝜀 −
ℏ3𝑘𝑧

2

2𝑚𝑒
)𝜓(𝑥)                                                   (21) 

Where the wavefunction and energy 𝜀𝑛 for the nth level is given by 

                                   𝜓𝑛(𝑥) ~ 
1

√𝑙02𝑛𝑛!
 𝐻𝑛 (

𝑥−𝑥0

𝑙0
)𝑒−(𝑥−𝑥0)2/2𝑙0

2
                                                                 (22) 

and  

                                                                          𝜀𝑛 = (𝑛 + 
1

2
) ℏ𝜔𝑐                                                                  (23) 

respectively, where 𝑙0 =  √
ℏ

𝑒𝐵
  is the quantum magnetic length, and 𝐻𝑛 is the nth Hermite 

polynomial. The quantised energy levels in (23) are referred to as Landau Levels. Although equation 

(22) is rather complicated, we notice two important properties of the electron wave function 
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(equation 22). First, it is localised about a centre co-ordinate, x0, in contrast to the zero magnetic 

field case (17). Second, the energy (n)is independent of that centre co-ordinate.  

Now consider the electrons are placed inside a box with dimensions (Lx, Ly,) which represents the size 

of the unit cell. This will allow us to calculate the density of states and dispersion of Landau levels. 

Because the energy is independent on the centre or orbit, the Landau Levels become highly 

degenerate. It turns out, the degeneracy N for each Landau Level of energy n is simply equal to the 

number of flux quanta which can fit inside the unit cell (Lx, Ly). 

                                                                                         𝑁 =
ϕ

ϕ0
                                                                        (24) 

Where BLxLy the total flux piercing the unit-cell in a crystal, and e/h is the flux quantum.  

This means that each state contributes one flux quantum. Furthermore, as B increases the energy 

levels become more degenerate and condense on to fewer and fewer Landau Levels. This is 

illustrated in Fig. 12 which plots the evolution of Energy-levels in a 2DEG with increasing B.   

Now we turn to the case of Bloch electrons. If the cyclotron radius is much larger than the size of the 

unit cell, we can simply replace m with the effective mass, m* (or cyclotron mass 𝑚𝑐   for graphene) 

and apply the same equations which we just derived. This is known as the effective mass 

approximation. 

 

 

Figure 12| Energy dispersion of a 2DEG in magnetic field. The energy dispersion E is plotted for zero 

magnetic field and three finite values. As B is increased, the spacing between Landau levels increases 

(equation (23)), and the degeneracy also increases (equation (24). Illustration is taken from ref. 47   
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4.3 Shubnikov de-Haas oscillations 
 

Landau quantisation happens in all metals under sufficiently high magnetic fields. It requires the 

coherence of electron trajectories around closed orbits, that is, the electron mean free path is larger 

than the circumference of the orbit. If this holds, the continuous Bloch bands, found in zero 

magnetic fields, turn in to a series of highly degenerate Landau Levels (Fig. 12). If we pay attention to 

the Fermi-level, we find that upon increasing magnetic field, it continuously changes between sitting 

at a Landau Level and sitting in a gap. Naturally, this causes oscillations in the conductivity/resistivity 

of the material upon increasing B. Specifically, the conductivity oscillates periodically with 1/B. The 

phenomena, known as Shubnikov de-Haas oscillations47, are extremely sensitive to the characteristic 

properties of the charge carriers. For example, the oscillation frequency depends only on the carrier 

density. Figure 13a shows Shubnikov de-Haas oscillations measured in a WSe2 field-effect transistor50 

for different gate voltages, VG. We can see that the frequency chances upon increasing VG (carrier 

density). We note however, that usually liquid helium temperatures are required to observe 

Shubnikov de-Haas oscillations, since the amplitude decays quickly with temperature due to the de-

coherence of cyclotron orbits (Fig. 13b).  

 

Figure 13| Shubnikov de-Haas oscillations in a WSe2 field-effect transistor. a, the resistance as 

function of magnetic field at T = 2 K measured in WSe2 for a few different carrier densities (gate 

voltage, Vg). b, Temperature dependence of the magnetoresistance after subtraction of a smooth 

background (R). We can see that Shubnikov de-Haas oscillations are already supressed around T = 8 

K. Experimental data of a and b is taken from ref. 50. 
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4.4 Magnetic translation group 
 

To describe the following concepts, Figure 14 illustrates the evolution of electron motion and energy 

dispersion upon increasing magnetic field, B. In zero magnetic fields, the electron wavefunction in a 

periodic lattice is delocalised around the whole crystal; it is in a Bloch state and propagates freely 

around the lattice following straight trajectories (Fig. 14a). In finite B, electrons develop cyclotron 

motion and become localised on their centre of orbits (Fig. 14b). In graphene, the cyclotron radius 

corresponding to this motion, 𝑟𝑐  , is described by 

                                                                                       𝑟𝑐 =  
ℏ√𝑛𝜋

𝑒𝐵
                                                                     (25) 

Where n is the electron/hole carrier density, and B is magnetic field. As B increases and 𝑟𝑐 becomes 

small, the energy dispersion is modified and becomes quantised according to the Landau Level 

description derived in Chapter 3.2. This formalism however is only valid in the limit when 𝑟𝑐 is much 

larger than the lattice spacing a. In this case, the energy levels are highly degenerate with respect to 

the centre of orbit x0. However, if 𝑟𝑐 is made significantly small such that it becomes comparable to 

the distance between atoms in the lattice (period of the potential), the physics is quite different. 

Now, the cyclotron motion has different energies depending on its position in the unit cell, and 

consequently the orbital degeneracy becomes lifted. As for the dispersion relation, the discrete 

Landau Levels become broadened and resemble something that looks more like continuous bands 

(Fig. 14c). This effect is known as Harper broadening51. Furthermore, for particular values of 

magnetic field, the cyclotron radius becomes commensurable with the lattice spacing (Fig. 14c) and 

translational symmetry is restored in the Hamiltonian. Because of this, the electron wave functions 

in a magnetic field take the form of de-localised Bloch states (Fig. 14d). In other words, the electrons 

start moving straight again as if they experience effectively zero magnetic field (Fig. 14 a).  This result 

was first derived by Zak52 in 1963 in his theoretical paper entitled “Magnetic translation group”.  

Here, he found that translational symmetry of the electron wavefunction occurs for many different 

special values of magnetic field where 

                                                                                   
ϕ

ϕ0
=  

𝑝

𝑞
                                                               (26) 

Where p and q are integers and are interpreted as the number of flux quantum 𝑝 piercing a newly 

defined super unit cell which is q times larger than the lattice. That is to say, a super cell can be 

defined which is q times larger than the unit cell of the crystal lattice.  
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For example 0 = 1/3 corresponds to the condition that 1 flux quantum pierces a supercell which is 

three times that of the crystal unit cell (Fig. 15a). Notably, at these special values, the electrons feel 

effectively zero magnetic field and follow straight trajectories again. We also note that despite0 

appearing both in equation (5) and equation (6), the magnetic translation group has nothing to do 

with Landau quantization. It describes only the translational symmetry of electron wave functions in 

magnetic fields.  

Hofstadter’s Butterfly 

Following the work by Zak, Douglass Hofstadter in 1973 again addressed the problem of electrons in 

crystals when rc is comparable to a. In this work53, he extended the ideas of Harper broadening and 

performed numerical calculations of the full magneto-energy dispersion, for electrons in a square 

lattice. With the result, he plotted the available states as a function of energy and magnetic field, 

which produced an intriguing picture known as the “Hofstadter butterfly” (Fig. 15b). It showed a self-

similar, fractal structure where the dispersion was identical at B = 0 T as B when 0 = 1. The 

recursive nature originates actually from the magnetic translation group which was first derived by 

Zak. The difference being that Hofstadter’s complicated energy spectrum includes the effects of 

Landau quantisation, that is, the regime where electron orbits are quantised. Hofstadter’s work was 

easy to understand via the figures he made, such that physicists sought to find first the Hofstadter 

butterfly in solid-state crystals, whilst forgetting the earlier work of Zak. In fact, the magnetic 

translation group has more fundamental significance than Hofstadter’s butterfly. It is the pre-cursor 

to understanding Hofstadter’s work and, as we show in Chapter 7, significantly affects electron 

transport over a much wider parameter space. 

To end this section, let us note that the physics described here is not attainable in any normal solid-

state crystal. In typical crystals, the lattice spacing is only a few Angstroms, and extraordinarily high 

magnetic fields are required to shrink the cyclotron radius by this much. In graphene for example, 

where a = 2.42 A, magnetic fields of 10,000 T are required to reach the condition0 = 1.  However, 

thanks to the advancement in fabrication of graphene/hBN heterostructures, we can make aritifical 

lattices with a far larger unit cell, pushing electron transport in magnetic fields in to the regime 

described here.  
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Figure 14| Magnetic translation group. a, The energy dispersion (top panel) and electron 

trajectories (bottom panel) in zero magnetic field. The blue circle and black line shows the 

electron and its trajectory respectively. b, The same as in a in the presence of a quantising 

magnetic field B. c, same as a,b when rc becomes comparable to the lattice spacing, a. d, the 

magnetic translation group is shown, i.e when one flux quantum pierces the unit cell. 
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Figure 15| Magnetic supercells and Hofstadter’s butterfly. a, The condition 0 = 1/3 corresponds 

to one flux quantum piercing (blue arrow) a new unit cell which is three times larger than the base 

unit cell. The three hexagons sketch the size of the “supercell”. b, The allowed energy levels (black 

regions) as a function of energy 𝜀 and magnetic field in units 0 which were calculated by 

Hofstadter53. . 

4.5 Graphene/hBN superlattice 
 

In chapters 1 and 2, we described one of our experimental systems, an ultra-clean graphene channel 

formed by encapsulation between two hBN layers. In these samples, the effects of the underlying 

potential due to Van der Waals interaction between graphene and hBN are negligible. This is 

because the individual layers are usually stacked in a random manor without paying attention to the 

relative crystallographic directions of each material. If however, graphene is positioned on top of 

hBN in such a way that there is only a small misalignment angle between their crystallographic 

axes, the situation is quite different. In this case, beating of the two crystal periodicities produces a 

Moiré pattern (Fig. 16 a), which creates an additional periodic potential on the nm scale. This Moiré 

potential strongly modifies the electronic spectrum in graphene and is therefore referred to as a 

superlattice. Specifically, the additional periodic potential imposes zone folding of graphene’s energy 

dispersion in to a smaller superlattice Brillouin zone, which creates a number of interesting features 

such as Van Hove singularities and secondary Dirac points (inset in the top panel of Fig. 16c). The 

secondary Dirac points were first observed in scanning tunnelling microscopy experiments at 

energies around 0.3 eV away from the main Dirac point54. If the crystal layers are close to perfect 

alignment, the superlattice period is about 14 nm (Fig. 16b) and the secondary Dirac points occur at 



` 

energies around 0.2 eV from the main Dirac point in graphene. Such energies are easily accessible by 

electrostatic gating, and, shortly after STM experiments, signatures of the graphene/hBN 

superlattice were measured in transport55,48.  

Figure 16c shows typical gate dependences of the resistivity xx and hall resistance Rxy in a 

graphene/hBN superlattice measured by the Manchester group in 201348. At zero doping, a sharp 

peak in resistivity is observed corresponding to the main Dirac point. At large n, neighbouring 

satellite peaks in resistivity are observed for holes and electrons, at equal distances from charge 

neutrality point. These sharp peaks in resistivity occur when the Fermi energy moves through the 

secondary Dirac points. Notably, the secondary Dirac point is much more pronounced for holes than 

electrons. Further evidence for the presence of secondary Dirac points is found also when measuring 

the hall resistance Rxy, because the sign of Rxy reflects the type of majority charge carrier in the 

conducting channel. In graphene, Rxy diverges as the Fermi-level moves closer to the Dirac point and 

exhibits a sign reversal when moving through it, corresponding to a change in carrier type (electrons 

or holes). In the graphene/hBN superlattice, this feature is mimicked around the secondary Dirac 

points (bottom panel of Fig. 16c). We note however that Rxy changes in a non-trivial manor when 

tuning the Fermi-energy, changing three times in total as we move away from the main Dirac point 

(for both holes and electrons). This is due to the presence of Van Hove singularities in the density of 

states56.    

The underlying Moiré potential can also strongly influence the zero energy dispersion (charge 

neutrality point). This is because the superlattice potential breaks inversion symmetry within 

graphene’s A-B sub-lattice, creating a global band gap at the Dirac point56 . Aside from technological 

interest (for year’s research efforts have focussed on trying to induce a band gap in graphene to 

operate as a transistor device), the band gap opening also has fundamental, topological implications. 

For example, this creates Berry curvature hot spots close to the Dirac point, allowing the study of 

topological currents57 in graphene which has in turn sparked a new field in the electronics industry 

coined “valleytronics”.  

In this Thesis, we are concerned with the magneto transport properties of the graphene/hBN 

superlattice. This type of experiment has gained intense interest over the past few years because the 

superlattices’ energy spectrum hosts the long sought Hofstadter butterfly described in Chapter 3.5. 

This physics becomes accessible because of the large lattice spacing in graphene/hBN superlattices; 

For a superlattice with a = 14 nm, we only need B = 26 T to reach the condition 0 = 1. In 2013, 

Hofstadter butterflies were observed in graphene/hBN superlattices48,55. Figure 16d plots 

conductivity as a function of magnetic field and carrier density (energy) at T = 2 K. For comparison, 
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Fig. 16e shows theoretical calculations of the Hofstadter butterfly spectrum in graphene/hBN 

superlattices, where black regions show states and white spaces show gaps. In experiment, we can 

see the conductivity accurately maps out gaps and states where it is minimum (white) and maximum 

(black), respectively. 

 

Figure 16| Graphene/hexagonal boron nitride superlattices. a, Schematic of a graphene on hBN 

heterostructure. The magnified region shows the Moiré pattern produced with a wavelength  when 

the crystal layers are aligned to within a few degrees. b, STM images54 of heterostructures with 

different alignment angle that produce superlattices with  6 and 11 nm respectively (left to 

right). Scale bar: 5nm. c, longitudinal resistivity (xx) and hall resistance (xy) as a function of carrier 

density n. d, longitudinal conductivity xx (B,n) for the same device as in c. Grey scale: white, 0 k; 

black, 8,5 k. e, The energy dispersion calculated for graphene/hBN superlattices as a function of 

energy  and B.  The black regions are available states whilst the white regions show gaps in the 

energy spectrum. Data from c –e is taken from ref. 48. 
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Chapter 5 – Experimental techniques 
 

In this chapter, we will introduce the experimental set-up and measurement techniques which have 

been employed in this Thesis. First we provide a detailed recipe for fabricating graphene/hBN 

heterostructures. Then we describe the measurement techniques and equipment used for 

performing transport experiments.  
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5.1 Device fabrication 
 

Mechanical exfoliation/identifying materials 

To date, the highest quality 2D materials are obtained by mechanical exfoliation, which was first 

established upon its discovery in 200458. This method involves peeling few layers from bulk crystals 

using scotch tape, and therefore become known as the “scotch tape method”. It works rather well 

for Van der Walls crystals because the inter-atomic layers are bonded only by Van der Waals forces, 

such that they cleave preferentially along their in-place crystallographic axes. This allows us to 

isolate crystals down to the monolayer. 

Figure 17 illustrates the method used for isolating few layer crystals like graphene and hexagonal 

boron nitride. First, the bulk crystal is sandwiched within a piece of scotch tape (Fig. 17a). The crystal 

is then cleaved in half by pulling the scotch tape apart, creating two crystals of half the thickness. 

This process is repeated multiple times to continuously thin the crystallites. Assuming a bulk 

graphite crystal contains 10,000 atomic layers, and the crystal indeed cleaves in half after every peel, 

the crystal thins by a factor of 2n where n is the number of peels made. In practice, the crystal 

cleaves a number of different ways and in fact we only have to repeat the process maybe 3 or 4 

times to get down to the monolayer graphene. The exfoliated flakes which are attached to the 

scotch tape are then pressed on to a SiO2 on Si substrate (Fig. 17b). The substrate at this point 

contains a mixture of different flakes of varying thickness and areas, where monolayer flakes 

however are minority. Under an optical microscope, we then have to search for the monolayers. 

Although only one atom thick, graphene still modulates the optical path length of light. Therefore 

when placed on a suitable substrate (300 nm thick SiO2), it can be identified by the colour contrast it 

produces with respect to the empty substrate. Whilst the empty substrate appears blue-violet, thin 

graphitic films appear blue (far right panel in Fig. 17c). However, it takes a trained eye to identify a 

monolayer quickly and correctly.  

For the un-trained eye, atomic force microscopy (AFM) is sometimes employed to measure the 

thickness of individual flakes, although the procedure is exhausting. Instead, Raman spectroscopy 

can be employed to identify the thickness of different crystals59. Figure 17d and e show the Raman 

spectra for thin graphite layers of varying thickness down to the monolayer. There are two main 

Raman active modes in graphene, the G and 2D peak which occur at wavenumbers 1580 cm-1 and 

2700 cm-1 respectively (Fig 17d). One can see that the position and width of the so-called 2D peak 

changes drastically upon increasing the number of layers, becoming wider and shifting to higher 

energies for the case of graphite. Remarkably, the difference is significant even between 1 and 2 
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layers (Fig. 17e) and reflects the subtle changes in the phonon dispersion between monolayer and 

bilayer graphene. By a combination of optical spectroscopy, AFM and Raman spectroscopy, we can 

reliably isolate monolayer graphene.  

 

Figure 17| a, photographs demonstrating the mechanical exfoliation method (right to left panel)60. 

b, Schematic of graphene flakes being pressed on to SiO2. The far right panel is an optical image of 

the resulting flakes whose thickness is labelled in nm58. c, schematic of Raman spectroscopy 

experiment. d Raman spectroscopy data taken from ref. 59 compares spectra of bulk graphite and 

monolayer graphene. e, data of ref. 59 shows the change in Raman spectrum for crystals of different 

thickness. 

Van der Waals heterostructures – Stamp Transfer Method 

After identifying the required flakes, they are assembled on top of one another to make the desired 

heterostructure. Over the past 15 years there have been a few different techniques developed for 

this. In the early days, a number or processing steps were employed to isolate graphene layers and 

transfer them on to suitable substrates. This often involved processing the flakes in solvents and/or 
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manipulating them with a polymer membrane. Inevitably, the graphene flakes become 

contaminated with polymer and degrade the quality of the resulting heterostructure. In this Thesis, 

we employ a technique known as the “stamp transfer” method.  

First, we fabricate the “stamp”, which is essentially a polymer membrane held in a frame which is 

used to pick-up and drop individual crystals to assemble the heterostructure. For this, a multi-layer 

(Fig. 18a) of PMMA (1 m) and PMGI (500 nm) is spin coated on to a SiO2/Si Wafer. Then, a small 

circle is cut through the structure with tweezers, which defines the desired size and area of the 

“stamp” (Fig. 18b). A solvent (MF-319) is then pipetted in to the cut which dissolves the underlying 

PGMI but leaves the PMMA stamp un-touched (Fig. 18b). The processed polymer heterostructure is 

then placed gently in water where the PMMA stamp detaches itself from the excess area and is left 

floating on the water (Fig. 18c). The circular membrane is then fished out with a 2mm washer where 

it remains suspended in the aperture (Fig. 18c). This forms the stamp. 

Then we proceed by assembling the heterostructure. To avoid contamination of the graphene 

channel with PMMA, we first pick up the desired hexagonal boron nitride crystal by gently pressing 

the stamp down onto the flake (Fig. 18d). The crystal then bonds to the membrane by Van der Waals 

interaction and is removed from the SiO2 substrate where it was first exfoliated. This first boron 

nitride flake forms the top of the heterostructure. We then repeat the process and pick up a 

graphene flake with the top boron nitride/polymer membrane stamp (Fig. 18e). Since the graphene 

adheres to the boron-nitride and not the polymer, it is not contaminated. Finally we pick up the 

bottom boron-nitride crystal such that the polymer stamp now holds the hBN/graphene/hBN 

heterostructure (Fig. 18f). The stamp is then pressed on to a fresh Si/SiO2 wafer (either 90 nm or 290 

nm SiO2) (Fig. 18g-h) which transfers the entire heterostructure to the wafer (Fig. 18i) where it is 

ready for further processing. 

 

 

 

 



` 

 

Figure 18| Stamp transfer method. The procedure is illustrated chronologically in the schematics 

above. a-c, The PMMA stamp is first made. Here, the light pink, and dark purple regions represent 

the PGMI and PMMA respectively. The light blue shading and the grey spoon in c represents the 

water solution and washer respectively. d-f, The stamp is then used to assemble the 

heterostructure. Here, the black and violet shades depict the Si and SiO2 substrate respectively, 

whilst the green and blue objects represent graphene and hexagonal boron-nitride crystals 

respectively. g-I, The whole heterostructure is then stamped on to a fresh Si wafer ready for 

lithography. 
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Lithography 

The next step involves etching the heterostructure (Fig. 19a) in to a functioning device, for example 

in to hall bar geometry. However, before etching the hall bar shape, we first etch contact regions 

leading up to the hall bar; the reason will become clear shortly. Before etching we first need to 

define an etch mask. We proceed then by spin coating photo resist over the desired heterostructure 

(Fig. 19b). Electron beam lithography is then used to pattern the etch mask (Fig. 18c), defining 

regions where gold contacts will be deposited. After this, reactive ion etching is employed to create 

trenches in the heterostructure (Fig. 19d). Then, the etch mask is used again to deposit gold in to the 

trenches (Fig. 19e). This method ensures that no polymer touches the graphene channel, preserving 

its cleanliness whilst making a high-quality low resistance contact. Notably, the gold contact 

graphene only at the edges and is usually referred to as a one-dimensional (1D) contact61. Finally, we 

make another etch mask, with a fresh layer of photoresist and another round of electron beam 

lithography, which this time defines the channel/hall bar shape (Fig. 19g). The result is a high-quality 

graphene/hBN heterostructure. The schematics in Fig. 19a-h are simplified for illustrative purposes. 

The heterostrucutre actually has an edge profile which looks like that in Fig. 19i due to etching 

procedure61. 
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Figure 19| Electron beam lithography on graphene/hBN heterostructures. The procedure is 

illustrated chronologically in the schematics above from. a-c, An etch mask is first patterned on to 

the heterostructure by electron beam lithography. Dark grey; silicon. Violet; silicon dioxide. Green; 

hexagonal boron-nitride. Blue; graphene. Dark purple; photoresist. d, the mask is first used to  etch 

away regions of the heterostructure. e, Gold (yellow regions) is then evaporated onto the 

heterostructure. f, Subsequent lift-off unveil electrical leads which contact the graphene only at the 

edges. g-h, the same etching procedure (a-d) is then used to define the mesa, h. I an illustration of 

the one-dimensional contact which forms in graphene heterostructures61.  
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5.2 Transport Measurements 
 

Cryostat 

Most transport experiments have been performed in a He4 flow cryostat. The Cryostat consists of a 

variable temperature insert (VTI) mounted in to a 120 L cryogenic Dewar. The Dewar is filled with 

liquid helium prior to experiments, and can remain cold for up to three weeks if not in use. Fig. 20a-b 

shows a photo of our cryostat with a schematic showing the inside. The VTI and helium bath are 

connected by a small capillary with a valve (usually called needle valve) that controls the flow of 

liquid helium in to the VTI (Fig. 20b). Usually, the temperature in the VTI is above the boiling point of 

liquid helium (1.2 K). Therefore, when liquid helium flows there it evaporates immediately. To 

remove the helium gas, a separate line is pumped to maintain a constant pressure within the VTI. 

The removed gas goes straight to a recovery line for recycling. The VTI also has as a temperature 

sensor and heater, which is used for temperature stabilisation and heating the system up to 400 K if 

required. 

In addition to temperature control, our cryostats have built in superconducting magnets which allow 

us to apply magnetic fields of up to 15 T. For this, a superconducting coil is wrapped around the VTI, 

but sits in the helium bath where it remains cold because it is thermally isolated. So long as there is 

liquid helium in the bath, the magnet stays superconducting even if the VTI is heated to 400 K. The 

superconducting magnetic is powered by an Oxford Instruments IPS – 120.  

Electrical Measurements 

In the entirety of this Thesis, we have been performing transport measurements on graphene 

devices described in Chapter 4.1. The majority of measurements have been performed in AC using 

standard lock-in amplifier techniques. For this, we supply a constant AC current to the device under 

test (DUT), and measure the voltage drop across it. The Lock-in amplifiers’ however only source 

voltage. Therefore, a constant current is sourced from a lock-in amplifier by placing a large resistor 

(usually 10 M) in series with the device under test (DUT). In this configuration, the majority of the 

supplied voltage drops across the fixed resistor, such that any small changes in the DUTs’ resistance 

does not significantly influence the sourced current. Usually we measure with 2 or 3 lock-in 

amplifiers simultaneously. As for the frequency response, we measure below 30 Hz to remove the 

risk of any coupling to parasitic capacitance in the device. This might arise from devices with a high 

contact resistance, which is owed to bad quality contacts made during fabrication.  
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In most experiments we measure in the linear response regime, with a current source of around 0.1 

to 1 A. In some cases, we study non-linear effects (high current regime) by performing differential 

resistance measurements. This technique employs a small AC excitation current (around 0.1 uA) in 

conjunction with a large DC current (up to 1 mA). The measurement scheme is sketched in Fig. 20c. 

The technique allows us to measure the local gradient of an I-V curve (Fig. 20d). For sourcing DC 

current and measuring DC voltage, we use a Keithley 2614 B source meter and a Keithley 2182A 

respectively.   

Figure 20| Electrical measurements. a, A device schematic of our Cryostat. The labels m, n and r 

represent the magnet, needle valve and recovery line respectively. b, a zoomed image of the top of 

our cryostat. c, a circuit diagram demonstrating differential resistance measurements. d, an example 

measurement for c. The voltage drop across a non-linear DUT (measured with a nano-voltmeter) as 

a function of current. Inset: the differential resistance that would be measured with a lock-in 

amplifier for the same DUT. 

 

 



Chapter 6 – Viscous electron whirlpools 
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In this chapter, we present the first experimental work on hydrodynamic electron transport since 

Molenkamp’s’ experiment in (Al,Ga)As heterostructures performed over twenty years ago. Here, we 

study transport in graphene devices of the highest quality (by encapsulation with hexagonal boron-

nitride) in the high temperature regime where electron-electron collisions are rather frequent. Our 

collaborators performed numerical simulations of viscous electron flow in graphene, and 

demonstrated that current vortices/whirlpools can form in regions of the device where there is no 

applied electric field. Accompanying these vortices is a negative potential distribution which is 

strongest close to the current injection point.  

For observing these whirlpools, we study electron transport in a customised geometry which we call 

the “vicinity geometry”. The device is essentially a hall bar with narrow and closely spaced side 

contacts, whilst the measurement geometry is one that maximises the contribution from viscous 

flow. We observe a negative resistance in the “vicinity geometry” which we attribute to the 

presence of viscous whirlpools. From the theory, we used our experimental data to extract electron 

viscosity. Remarkably, the electron viscosity was found to be 50 x more viscous than honey, in 

agreement with independent many-body calculations.  
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Negative local resistance caused
by viscous electron backflow
in graphene
D. A. Bandurin,1 I. Torre,2 R. Krishna Kumar,1,3 M. Ben Shalom,1,4 A. Tomadin,5

A. Principi,6 G. H. Auton,4 E. Khestanova,1,4 K. S. Novoselov,4 I. V. Grigorieva,1

L. A. Ponomarenko,1,3 A. K. Geim,1* M. Polini7*

Graphene hosts a unique electron system in which electron-phonon scattering is extremely
weak but electron-electron collisions are sufficiently frequent to provide local equilibriumabove
the temperature of liquid nitrogen. Under these conditions, electrons can behave as a viscous
liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report
strong evidence for this transport regime.We found that doped graphene exhibits an anomalous
(negative) voltage drop near current-injection contacts, which is attributed to the formation
of submicrometer-sizewhirlpools in the electron flow.The viscosityof graphene’s electron liquid
is found to be ~0.1 square meters per second, an order of magnitude higher than that of honey,
in agreement with many-body theory. Our work demonstrates the possibility of studying
electron hydrodynamics using high-quality graphene.

T
he collective behavior of many-particle sys-
tems that undergo frequent interparticle
collisions has been studied for more than
two centuries and is routinely described
by the theory of hydrodynamics (1, 2). The

theory relies only on the conservation of mass,
momentum, and energy and is highly successful
in explaining the response of classical gases and
liquids to external perturbations that vary slowly
in space and time. More recently, it has been
shown that hydrodynamics can also be applied
to strongly interacting quantum systems, includ-
ing ultrahot nuclear matter and ultracold atomic
Fermi gases in the unitarity limit (3–6). In prin-
ciple, the hydrodynamic approach can also be
used to describe many-electron phenomena in
condensed matter physics (7–13). The theory be-
comes applicable if electron-electron scattering
provides the shortest spatial scale in the prob-
lem, so that ‘ee ≪ W, ‘, where ‘ee is the electron-
electron scattering length,W is the characteristic
sample size, ‘ ≡ nFt is themean free path, nF is the
Fermi velocity, and t is the mean free time with
respect to momentum-nonconserving collisions,

such as those involving impurities and phonons.
The above inequalities are difficult to meet exper-
imentally. At low temperatures (T), ‘ee varies ap-
proximately ºT −2, reaching a micrometer scale
at liquid helium T (14), which necessitates the
use of ultraclean systems to satisfy ‘ee ≪ ‘. At higher
T, electron-phonon scattering rapidly reduces ‘.
However, for two-dimensional (2D) systems in
which acoustic phonon scattering dominates, ‘

decays onlyºT –1, slower than ‘ee, which should
in principle allow the hydrodynamic description
to apply over a certain temperature range, until
other phonon-mediated processes become im-
portant. So far, there has been little evidence for
hydrodynamic electron transport. An exception
is an early work on 2D electron gases in ballistic
devices (‘ ~ W) made from GaAlAs heterostruc-
tures (15). These devices exhibited nonmonotonic
changes in differential resistance as a function of a
large applied current I, whichwas used to increase
the electron temperature (making ‘ee short) while
the lattice temperature remained low (allowing
long ‘). The nonmonotonic behavior was attri-
buted to the Gurzhi effect, a transition between
Knudsen (‘ee ≫ ‘) and viscous electron flows (7, 15).
Another possible hint about electron hydrody-
namics comes from an explanation (16) of the
Coulomb drag measured between two graphene
sheets at the charge neutrality point (CNP) (17).
Here we address electron hydrodynamics by

using a special measurement geometry (Fig. 1)
that amplifies the effects of the shear viscosity n
and, at the same time, minimizes a contribution
from ballistic effects that can occur not only in
the Knudsen regime but also in viscous flows in
graphene. A viscous flow can lead to vortices ap-
pearing in the spatial distribution of the steady-
state current (Fig. 1, A and B). Such “electron
whirlpools” have a spatial scaleDn ¼

ffiffiffiffiffi
nt

p
, which

depends on electron-electron scattering through
n and on the electron system’s quality through t
(18). To detect the whirlpools, electrical probes
should be placed at a distance comparable to Dn.
By using single- and bi-layer graphene (SLG and
BLG, respectively) encapsulated between boron
nitride crystals (19–21), we were able to reach a
Dn of 0.3 to 0.4 mm thanks to the high viscosity of
graphene’s Fermi liquid and its high carrier
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Fig. 1. Viscous backflow in doped graphene. (A and B) The calculated steady-state distribution of a
current injected through a narrow slit for (A) a classical conducting medium with zero n and (B) a viscous
Fermi liquid. (C) Optical micrograph of one of our SLG devices.The schematic explains the measurement
geometry for vicinity resistance.The top gate electrode appears in white and the mesa, which is etched in
encapsulated graphene and not covered with ametal, appears in purple. Mixed colors at the periphery are
areas of metallic contacts on top of the mesa. (D and E) Longitudinal conductivity sxx and Rv as a function
of n, induced by applying gate voltage. The dashed curves in (E) show the contribution expected from
classical stray currents in this geometry (18). I = 0.3 mA; L = 1 mm;W = 2.5 mm.
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mobility m, even at high T. Such a largeDn, which
is unique to graphene, nevertheless necessitates
submicron resolution to probe the electron back-
flow. To this end, we fabricated multiterminal
Hall barswithnarrow (~0.3mm)andclosely spaced
(~1 mm) voltage probes (Fig. 1C and fig. S1). De-
tails of the device fabrication are given in (18).
All our devices were first characterized in the

standard geometry by applying I along the main
channel and using side probes for voltage mea-
surements. The typical behavior of longitudinal
conductivity sxx at a few characteristic values of
T is shown in Fig. 1D. At liquid helium T, the de-
vices exhibited m ~ 10 to 50 m2 V−1 s−1 for carrier
concentrations n over a wide range of the order
of 1012 cm−2, and m remained above 5 m2 V−1 s−1

up to room T (fig. S2). Such values of m allow
ballistic transport with ‘ > 1 mm at T < 300 K. At
T ≥ 150 K, ‘ee decreases to 0.1 to 0.3 mm over the
same range of n (figs. S3 and S4) (22, 23). This
allows the essential condition for electron hydro-
dynamics (‘ee ≪ W, ‘) to be satisfied within this
temperature range. If one uses the conventional
longitudinal geometry of electricalmeasurements,
viscosity has little effect on sxx (figs. S5 to S7),
essentially because the flow in this geometry is
uniform, whereas the total momentum of the
moving Fermi liquid is conserved in electron-
electron collisions (18). The only evidence for
hydrodynamics that we could find in the longi-
tudinal geometry was the Gurzhi effect that ap-
peared as a function of the electron temperature,
which is controlled by applying large I, similar to
the observations in (15) (fig. S8).
To look for hydrodynamic effects, we used the

geometry shown in Fig. 1C. In this setup, I is
injected through a narrow constriction into the
graphene bulk, and the voltage drop Vv is mea-
sured at the nearby side contacts located at the
distance L ~ 1 mm away from the injection point.
These can be considered as nonlocal measure-
ments, although the stray currents are not ex-
ponentially small (dashed curves in Fig. 1E). To
distinguish from the proper nonlocal geometry
(24), we refer to the linear-response signal mea-
sured in our geometry as vicinity resistance, Rv =
Vv/I. The idea is that, in the case of a viscous
flow, whirlpools emerge as shown in Fig. 1B, and
their appearance can then be detected as sign
reversals of Vv, which is positive for the con-

ventional current flow (Fig. 1A) and negative for
viscous backflow (Fig. 1B). Figure 1E shows ex-
amples of Rv for the same SLG device as in Fig.
1D, and other SLG and BLG devices exhibited
similar behavior (18). Away from the CNP, Rv is
negative over a wide range of intermediate T,
despite an expected substantial offset due to stray
currents. Figure 2 details our observations fur-
ther by showing maps of Rv(n,T) for SLG and
BLG. The two Fermi liquids exhibited somewhat
different behavior, reflecting their different elec-
tronic spectra, but Rv was negative over a large
range of n and T for both. Twomore Rv maps are
provided in fig. S9. In total, seven multiterminal
devices with W ranging from 1.5 to 4 mm were
investigated, showing vicinity behavior that was
highly reproducible both for different contacts
on the same device and for different devices, in-
dependently of theirW, although we note that the
backflow was more pronounced for devices with
the highest m and lowest charge inhomogeneity.
The same anomalous vicinity response was

also evident when we followed the method of

(15) and used the current I to increase the elec-
tron temperature. In this case, Vv changed its
sign as a function of I from positive to negative to
positive again, reproducing the behavior ofRvwith
increasing T of the cryostat (fig. S10). Comparing
figs. S8 and S10, it is clear that the vicinity ge-
ometry strongly favors the observation of hydro-
dynamic effects: The measured vicinity voltage
changed its sign, whereas in the standard geom-
etry, the same viscosity led only to relatively
small changes in dV/dI. We also found that the
magnitude of negative Rv decayed rapidly with L
(fig. S11), in agreement with the finite size of
electron whirlpools.
Negative resistances can in principle arise from

other effects, such as single-electron ballistic trans-
port (‘ee ≫ ‘) or quantum interference (18, 20, 24).
The latter contribution is easily ruled out, because
quantumcorrections rapidlywash out at T > 20 K
and have a random sign that rapidly oscillates
as a function of magnetic field. Also, our numeri-
cal simulations using the Landauer-Büttiker for-
malism and the realistic device geometry showed
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Fig. 2. Vicinity resist-
ance maps. (A and B)
Rv(n,T) for SLG and
BLG, respectively. The
black curves indicate
zero Rv. For each n
away from the CNP,
there is a wide range
of T over which Rv is
negative. For the SLG
device, W = 2.5 mm
and L = 1 mm; for the
BLG device, W =
2.3 mm and L = 1.3 mm.
All measurements for BLG presented in this work were taken with zero displacement between the graphene layers (18).

Fig. 3. Whirlpools in
electron flow. (A to C)
Calculated J(r) and ϕ(r)
for a geometry similar to
that shown in Fig. 1C, with
the green bars indicating
voltage contacts. Dn =
2.3, 0.7, and 0 mm for (A),
(B), and (C), respectively.
Vortices are evident in the
top right corners of
(A) and (B), where the
current flow is in the
direction opposite to that
in (C), which shows the
case of zero viscosity.
In each panel, the current
streamlines also change
from white to black to
indicate that the current
density |J(r)| is lower to
the right of the injecting
contact.
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that no negative resistance could be expected for
the vicinity configuration in zero magnetic field
(19, 21). Nonetheless, we carefully considered the
possibility of any accidental spillover of single-
electron ballistic effects into the vicinity geom-
etry of our experiment. The dependences of the
negative vicinity signal on T, n, I, and the device
geometry allowed us to unambiguously rule out
any such contribution (18). For example, the single-
electron ballistic phenomena should become
more pronounced for longer ‘ (that is, with de-
creasing T or electron temperature and with in-
creasing n), in contrast to the nonmonotonic
behavior of Vv.
Turning to theory, we can show that negative

Rv arises naturally from whirlpools that appear
in a viscous Fermi liquid near current-injecting
contacts. As discussed in (18), electron transport
for sufficiently short ‘ee can be described by the
hydrodynamic equations

∇⋅JðrÞ ¼ 0 ð1Þ
and

s0
e
∇fðrÞ þ D2

n∇
2JðrÞ − JðrÞ ¼ 0 ð2Þ

where J(r) is the (linearized) particle current
density, andϕ(r) is the electric potential in the 2D
plane. If Dn → 0, Eq. 2 yields Ohm’s law –eJ(r) =
s0E(r) with a Drude-like conductivity s0 ≡ ne2t/m,
where –e and m are the electron charge and the
effective mass, respectively (E, electric field). The
three terms in Eq. 2 describe (i) the electric force
generated by the steady-state charge distribu-
tion in response to the applied current I, (ii) the
viscous force (1, 2), and (iii) friction caused by

momentum-nonconserving processes that are
parameterized by the scattering time t(n,T).
Equations 1 and 2 can be solved numerically

(18), and Fig. 3 shows examples of spatial dis-
tributions of ϕ(r) and J(r). For experimentally
relevant values of Dn, a vortex appears in the vi-
cinity of the current-injecting contact. This is
accompanied by the sign reversal of ϕ(r) at the
vicinity contact on the right of the injector, which
is positive in Fig. 3C (no viscosity) but becomes
negative in Fig. 3, A and B. Our calculations
for this geometry show that Rv is negative for
Dn ≳ 0.4 mm (18). Because both t and n decrease
with increasing T, Dn also decreases, and stray
currents start to dominate the vicinity response
at high T. This explains why Rv in Figs. 1 and 2
becomes positive close to room T, even though our
hydrodynamic description has no high-temperature
cutoff (18). Despite positive Rv values, the viscous
contribution remains considerable near room T
(Fig. 1D and fig. S12). At low T, the electron sys-
tem approaches the Knudsen regime, and our
hydrodynamic description becomes inapplicable
because ‘ee ~ ‘ (18). In the latter regime, the whirl-
pools should disappear and Rv should become
positive (fig. S13), in agreement with the experi-
ment and our numerical simulations based on
the Landauer-Büttiker formalism.
The numerical results in Fig. 3 can be under-

stood if we rewrite Eqs. 1 and 2 as

JðrÞ ¼ s0
e
∇fðrÞ − nD2

n∇� wðrÞ ð3Þ

where wðrÞ ≡ n−1∇� JðrÞ ¼ wðrÞẑ is the vor-
ticity (ẑ is the unit vector perpendicular to the
graphene plane) (2). Taking the curl of Eq. 3, the

vorticity satisfies the equation wðrÞ ¼ D2
n∇2wðrÞ,

where Dn plays the role of a diffusion constant.
The current I injects vorticity at the source con-
tact, which then exponentially decays over the
length scale Dn. For n = 0.1 m2 s−1 [as estimated
in (25)] and t = 1.5 ps (fig. S2), we find that Dn ≈
0.4 mm, in qualitative agreement with the mea-
surements in fig. S11.
Lastly, we can combine the measurements of Rv

and resistivity rxxwith the solution of Eqs. 1 and 2
in Fig. 3 to extract the kinematic viscosity for SLG
andBLG. Because the observedGurzhi effect in rxx
is small at low currents (fig. S6), we can use rxx =
1/s0 =m/(ne2t) to determine t(n,T) (18). Further-
more, for the experimentally relevant values of
Dn, we find that Rv is a quadratic function of Dn

RV ¼ ðbþ aD2
nÞs−10 ð4Þ

where a and b are numerical coefficients de-
pendent only on themeasurement geometry and
boundary conditions, and b describes the contri-
bution from stray currents (fig. S14). For the
specific device in Fig. 3, we determined that a =
–0.29 mm−2 and b = 0.056, and this allows us to
estimate Dn(n,T) from measurements of Rv. For
the known t andDn, we find that nðn;T Þ ¼ D2

n=t.
The applicability limits of this analysis are dis-
cussed in (18), and the results are plotted in Fig. 4
for one of our devices. The figure shows that, at
carrier concentrations of ~1012 cm−2, the Fermi
liquids in both SLG and BLG are highly viscous,
with n ≈ 0.1 m2 s−1. In comparison, liquid honey
has typical viscosities of ~0.002 to 0.005 m2 s−1.
Figure 4 also shows the results of fully inde-

pendent microscopic calculations of n(n,T), which
were carried out by extending the many-body
theory of (25) to the case of 2D electron liquids
hosted by encapsulated SLG and BLG. Within
the range of applicability of our analysis in Fig. 4
(n ~ 1012 cm−2), the agreement in absolute values
of the electron viscosity is good, especially taking
into account that no fitting parameters were used
in the calculations. Because the strong inequality
‘ee ≫ ‘ required by the hydrodynamic theory can-
not be reached even for graphene, it would be
unreasonable to expect better agreement (18). In
addition, our analysis does not apply near the
CNP, because the theory neglects contributions
from thermally excited carriers, spatial charge in-
homogeneity, and coupling between charge and
energy flows, which can play a substantial role at
low doping (16, 18). Further work is needed to
understand electron hydrodynamics in the inter-
mediate regime ‘ ≳ ‘ee and, for example, to ex-
plain ballistic transport (‘ > W) in graphene at
highT in terms of suitablymodified hydrodynamic
theory. The naive single-particle description that
is routinely used for graphene’s ballistic phenom-
ena even above 200 K (19, 21) cannot be justified;
amore complete theory is needed to describe the
injection of a collimated electron beam into a
strongly interacting 2D liquid. As for experimen-
tal approaches, the highly viscous Fermi liquids
in graphene and their accessibility offer a promis-
ing opportunity to use various scanning probes
for visualization and further understanding of
electron hydrodynamics.

SCIENCE sciencemag.org 4 MARCH 2016 • VOL 351 ISSUE 6277 1057

Fig. 4. Viscosity of the
Fermi liquids in graphene.
(A and B) Solid curves show
values of n for SLG and BLG,
respectively. Dashed curves
represent calculations based
on many-body diagrammatic
perturbation theory (no
fitting parameters). The gray
shaded areas indicate
regions around the CNP
where our hydrodynamic
model is not applicable (18).
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ELECTRON TRANSPORT

Observation of the Dirac fluid and the
breakdown of the Wiedemann-Franz
law in graphene
Jesse Crossno,1,2 Jing K. Shi,1 Ke Wang,1 Xiaomeng Liu,1 Achim Harzheim,1

Andrew Lucas,1 Subir Sachdev,1,3 Philip Kim,1,2* Takashi Taniguchi,4 Kenji Watanabe,4

Thomas A. Ohki,5 Kin Chung Fong5*

Interactions between particles in quantum many-body systems can lead to collective behavior
described by hydrodynamics. One such system is the electron-hole plasma in graphene near
the charge-neutrality point, which can form a strongly coupled Dirac fluid.This charge-neutral
plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the
thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics.
Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude
increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the
thermally populated charge-neutral plasma in graphene.This result is a signature of the Dirac
fluid and constitutes direct evidence of collective motion in a quantum electronic fluid.

U
nderstanding the dynamics of many inter-
acting particles is a formidable task in phys-
ics. For electronic transport inmatter, strong
interactions can lead to a breakdown of the
Fermi liquid (FL) paradigm of coherent

quasi-particles scattering off of impurities. In
such situations, provided that certain conditions
are met, the complex microscopic dynamics can
be coarse-grained to a hydrodynamic description
of momentum, energy, and charge transport on
long length and time scales (1). Hydrodynamics
has been successfully applied to a diverse array of

interacting quantum systems, fromhigh-mobility
electrons in conductors (2) to cold atoms (3) and
quark-gluon plasmas (4). Hydrodynamic effects
are expected to greatly modify transport coef-
ficients compared with their FL counterparts, as
has been argued for strongly interactingmassless
Dirac fermions in graphene at the charge-neutrality
point (CNP) (5–8).
Many-body physics in graphene is interesting

because of electron-hole symmetry and a linear
dispersion relation at the CNP (9, 10). Together
with the vanishing Fermi surface, the ultra-
relativistic spectrum leads to ineffective screening
(11) and the formation of a strongly interacting
quasi-relativistic electron-hole plasma known as
a Dirac fluid (DF) (12). The DF shares many fea-
tures with quantum critical systems (13): most
importantly, the electron-electron scattering time
is fast (14–17) and well suited to a hydrodynamic
description. Because of the quasi-relativistic na-
ture of the DF, this hydrodynamic limit is de-
scribed by equations (18) quite different from

those applicable to its nonrelativistic counter-
parts. A number of unusual properties have been
predicted, including nearly perfect (inviscid) flow
(19) and a diverging thermal conductivity, which
results in the breakdown of theWiedemann-Franz
(WF) law at finite temperature (5, 6).
Away from theCNP, graphenehas a sharpFermi

surface, and the standardFLphenomenologyholds.
By tuning the chemical potential, we are able to
measure thermal and electrical conductivity in
both the DF and the FL in the same sample. In a
FL, the relaxation of heat and charge currents is
closely related, as they are carried by the same
quasi-particles. The WF law (20) states that the
electronic contribution to a metal’s thermal con-
ductivity ke is proportional to its electrical con-
ductivity s and temperature T, such that the
Lorenz ratio L satisfies

L ≡
ke
sT

¼ p2

3

kB
e

� �2

≡ L0 ð1Þ

where e is the electron charge, kB is the Boltz-
mann constant, and L0 is the Sommerfeld value
derived from FL theory. L0 depends only on
fundamental constants, not specific details of the
system such as carrier density or effective mass.
As a robust prediction of FL theory, the WF law
has been verified in numerous metals (20). At
high temperatures, the WF law can be violated
due to inelastic electron-phonon scattering or
bipolar diffusion in semiconductors, even when
electron-electron interactions are negligible (21).
In recent years, several nontrivial violations of
theWF law—all of which are related to the emer-
gence of non-FL behavior—have been reported
in strongly interacting systems such as Luttinger
liquids (22), metallic ferromagnets (23), heavy fer-
mionmetals (24), and underdoped cuprates (25).
Owing to the strong Coulomb interactions be-

tween thermally excited charge carriers, the WF
law is expected to be violated at the CNP in a DF.
An electric field drives electrons and holes in op-
posite directions; collisions between them intro-
duce a frictional dissipation, resulting in a finite
conductivity even in the absence of disorder (26).
In contrast, a temperature gradient causes elec-
trons and holes to move in the same direction,
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Negative local resistance caused by viscous electron backflow in graphene
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of thermal transport in graphene, a signature of so-called Dirac fluids.

 observed a huge increaseet al.similar to those formed by viscous fluid flowing through a small opening. Finally, Crossno 
 found evidence in graphene of electron whirlpoolset al.on the flow, much like what happens in regular fluids. Bandurin 

 had a major effect2 found that the viscosity of the electron fluid in thin wires of PdCoOet al.Perspective by Zaanen). Moll 
resembles anything like the familiar flow of water through a pipe, but three groups describe counterexamples (see the 

Electrons inside a conductor are often described as flowing in response to an electric field. This flow rarely
Electrons that flow like a fluid
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Supplementary Material 

Negative local resistance due to viscous electron backflow in graphene 

D. A. Bandurin1, I. Torre2,3, R. Krishna Kumar1,4, M. Ben Shalom1,5, A. Tomadin6, A. Principi7, 

G. H. Auton5, E. Khestanova1,5, K. S. NovoseIov5, I. V. Grigorieva1, L. A. Ponomarenko1,4, A. K. 

Geim1, M. Polini3 

 

#1 Device fabrication 

#2 Mobility and scattering times  

#3 Microscopic calculations of the electron-electron mean free path 

#4 On pseudo-relativistic and pressure terms in the Navier-Stokes equation 

#5 Smallness of the Reynolds number  

#6 On the boundary conditions for solid-state hydrodynamic equations 

#7 Applicability limits for hydrodynamic description of electron transport in doped graphene 

#8 Absence of the Gurzhi effect in longitudinal resistivity 

#9 Gurzhi effect with increasing the electron temperature  

#10 Reproducibility of negative vicinity response 

#11 Changes from normal flow to backflow induced by electron heating 

#12 Dependence of electron backflow on distance to the injection contact 

#13 Stray-current contribution to the vicinity resistance 

#14 Ballistic contribution due to reflection from device boundaries 

#15 Numerical simulations of hydrodynamic equations 

  



 

#1 Device fabrication 

Our devices were made from single- and bi-layer graphene encapsulated between relatively thick 

(~50 nm) crystals of hexagonal boron nitride (hBN). The crystals’ transfers were carried out using 

the dry-peel technique described previously (20,26). The heterostructures were assembled on top of 

an oxidized Si wafer (300 nm of SiO2) which served as a back gate, and then annealed at 300C in 

Ar-H2 atmosphere for 3  hours. After this, a PMMA mask was fabricated on top of the 

hBN-graphene-hBN stack by electron-beam lithography. This mask was used to define contact areas 

to graphene, which was done by dry etching with fast selective removal of hBN (27). Metallic 

contacts (usually, 5 nm of Ta followed by 50 nm Nb) were then deposited onto exposed graphene 

edges that were a few nm wide. Such quasi-one-dimensional contacts to graphene (27) had notably 

lower contact resistance than those reported previously without the use of selective hBN etching 

(20). As the next step, another round of electron-beam lithography was used to prepare a thin 

metallic mask (≈ 40 nm Al) which defined a multiterminal Hall bar. Subsequent plasma etching 

translated the shape of the metallic mask into encapsulated graphene (see figs. S1A-B and Fig. 1C of 

the main text). The Al mask could also serve as a top gate, in which case Al was wet-etched near the 

Nb/Ta leads to remove the electrical contact to graphene. All our bilayer graphene (BLG) devices 

were prepared with such a top gate, which allowed us to control not only the carrier concentration 

but also the displacement field between the two layers. Also, for single-layer graphene (SLG) we 

usually (but not always) made both top and bottom gates for the sake of fabrication procedures, 

even though the two gates fulfilled essentially the same function.  

The studied Hall bars were 1.5 to 4 μm in width 𝑊 and up to 20 μm in length (larger 

𝑊 were avoided as we previously found them to suffer from charge inhomogeneity induced by 

contamination bubbles and associated strain; ref. 28). The devices were carefully characterized and, 

in addition to Fig. 1D of the main text, an example of typical behavior of 𝜌𝑥𝑥(𝑛) is shown in fig. S1C. 

All the studied devices, independently of their width or length, were found to exhibit negative 

vicinity resistance over the described range of temperatures below room 𝑇 and over a wide range of 

𝑛 ∼ 1012 cm-2. Fig. S1D shows another example of this behavior, which is rather similar to that in 

Fig. 1E of the main text.  



 

 

Fig. S1. Further examples of the studied graphene devices and their behavior. (A) Optical 

micrograph for an encapsulated SLG device. The bright white area is the top gate and the graphene 

Hall bar repeats its shape. Numerous metallic leads terminated with quasi-one-dimensional contacts 

to graphene are seen in a duller white color. Other colors on the photo appeared due to different 

etching depths of the hBN-graphene-hBN stack. (B) Electron micrograph of yet another SLG device. 

Resistivity (C) and vicinity resistance (D) for the device shown in (A). For resistivity measurements, 

we always used voltage probes separated by a distance larger than the main channel width. In (C), 

voltage probes were 8 m away from each other. The vicinity probe used in (D) was 1 m away 

from the current injecting lead. Positive and negative sign of 𝑛 correspond to gate-induced 

electrons and holes, respectively. The dashed curves in (D) show the expected ‘classical’ contribution 

𝑏𝜌𝑥𝑥 which arises due to stray currents. For this particular device, we find 𝑏 ≈ 0.1 using numerical 

simulations of the device geometry as described in the main text and the supplementary section on 

numerical simulation.  

 

#2 Mobility and scattering times  

Our longitudinal measurements allowed us to determine 𝜇(𝑛, 𝑇) and 𝜏(𝑛, 𝑇) using the standard 

relation, 𝜎𝑥𝑥 =  𝑛𝑒𝜇 = 𝑛𝑒2𝜏/𝑚. Results are shown in fig. S2 for both SLG and BLG. The plotted 

behavior is universal, that is, it changes little between different devices because, for the shown 𝑇 

range of interest, electron transport was limited by electron-phonon scattering. One can see that 

away from the charge neutrality point (CNP), 𝜏 depends weakly on 𝑛 for both SLG and BLG. 

Typical times are of about 1-2 ps. As for 𝜇(𝑛, 𝑇), its behavior as a function of 𝑛 is notably 

different in the two graphene systems because of different energy dependences of their effective 



 

masses. For BLG, which has a nearly parabolic spectrum, we can for simplicity use the constant 

𝑚 = 0.03𝑚0 where 𝑚0 is the free electron mass. This yields that 𝜇 is simply proportional to 𝜏. 

For SLG, the effective (or cyclotron) mass is given by 𝑚 ∝  √𝑛, leading to 𝜇 varying approximately 

as 𝑛−1/2 (fig. S2B).  

 

Fig. S2. Phonon-limited transport in graphene. (A,B) Mean free times and mobilities in encapsulated 

SLG, respectively. (C,D) Same for encapsulated BLG. The plots are for the 𝑇 range in which 

hydrodynamics effects were found strongest. 

#3 Microscopic calculations of the electron-electron mean free path 

In this Section we briefly summarize the results of many-body diagrammatic perturbation theory 

calculations of the electron-electron scattering length ℓee. Results in this Section refer to SLG, in the 

region of parameter space relevant for our experiments.  

 

We calculated ℓee = 𝑣F𝜏ee  from the imaginary part of the retarded quasiparticle self-energy 

𝛴𝜆(𝑘, ω) , evaluated at the Fermi surface. For an electron doped system we find 

ℏ 𝜏ee⁄ = −2 ℑ𝑚[𝛴𝜆=+1(𝑘F, 0)]. Here, 𝑣F is the (bare) Fermi velocity (which is equal to the Dirac 

velocity 𝑣D in SLG and ℏ𝑘F/𝑚 in BLG), 𝜆 = ±1 is a conduction/valence band index, and 𝜏ee is 

the quasiparticle lifetime due to e-e scattering (14). The quantity 𝛴𝜆(𝑘, ω) can be calculated by 

using the 𝐺0𝑊 approximation (23) with a dynamically screened interaction 𝑊𝒌,𝜔 evaluated at the 

level of the random phase approximation (RPA) (14).  

 



 

In the case of SLG, the imaginary part of the quasiparticle self-energy is given by the following 

expression (23) 

ℑ𝑚[𝛴𝜆(𝑘, 𝜔)] = − ∑ ∫
𝑑2𝒒

(2𝜋)2
ℑ𝑚 [𝑊𝒒,𝜔−𝜉

𝜆′,𝒌+𝒒
] 𝐹𝜆𝜆′[𝑛B (ℏ𝜔 − 𝜉𝜆′,𝒌+𝒒) + 𝑛F(−𝜉𝜆′,𝒌+𝒒)]

𝜆′=±1

 

 

where 𝐹𝜆𝜆′ = [1 + 𝜆𝜆′ cos(𝜃𝒌,𝒌+𝒒)]/2 is the chirality factor, 𝜉𝜆,𝒌 = 𝜆ℏ𝑣F𝑘 − 𝜇 is the Dirac band 

energy measured with respect to the chemical potential 𝜇 , 𝑊𝒒,𝜔 = 𝑣𝑞/𝜀(𝑞, 𝜔) ≡ 𝑣𝑞/[1 −

𝑣𝑞𝜒0(𝑞, 𝜔)] the RPA dynamically screened interaction, and 𝑛B/F(𝑥) ≡ 1/[exp (𝛽𝑥) ∓ 1] are the 

Bose/Fermi statistical factors with 𝛽 = 1/(𝑘B𝑇). In the above expressions, 𝑣𝑞 is a suitably-chosen 

effective Coulomb interaction (see below), and 𝜒0(𝑞, 𝜔)  is the polarization function of a 

non-interacting 2D massless Dirac fermion system at a finite temperature and carrier density (29). 

More details can be found, for example, in Refs. (22,23).  

 

In our calculations we have also estimated the impact of the ‘environment’ such as i) nearby metal 

gates (by modeling them as perfect conductors), ii) the uniaxial anisotropy of dielectric hBN, and iii) 

thin-film effects. The bare Coulomb potential 2 𝜋𝑒2/𝑞 is strongly modified by these three factors. 

The effective Coulomb interaction 𝑣𝑞 can be written in the form 2 𝜋𝑒2𝒢(𝑞𝑑, 𝑞𝑑′)/𝑞 where the 

explicit functional dependence of the form factor 𝒢(𝑥, 𝑦) on its variables 𝑥 and 𝑦 is rather 

cumbersome and will be reported elsewhere. The form factor depends on the thickness 𝑑 and 𝑑′ 

of the hBN slab below and above graphene, respectively. It also depends on the static values of the 

in-plane 𝜖𝑥(𝜔) and out-of-plane 𝜖𝑧(𝜔) components of the hBN permittivity tensor: see, for 

example, Ref. (30). Numerical results for ℓee in encapsulated SLG are shown in fig. S3.  

 

 

Fig. S3. Numerical results for the e-e mean free path 𝓵ee in our encapsulated SLG devices. Results 

are shown as a function of carrier density 𝑛 and for three 𝑇. For this particular calculation, we used 

𝑑 = 80 nm and 𝑑′ = 70 nm and took into account the top metal gate simulating the device shown 

in fig. S1A. We have also checked that metal gates at such distances play little role (the presence of 



 

the gate changed ℓee typically by less than 5% with respect to the ungated case), in agreement with 

the fact that the SLG devices with and without top gates exhibited the 𝑅V  behavior 

indistinguishable within variations between different contacts.  

 

Besides determining the region of parameter space where the hydrodynamics theory can be applied, 

the frequency of electron-electron collisions also determines the numerical value of the electron 

liquid viscosity. The usual estimate for the value of the kinematic viscosity of a classical liquid is 

𝜈 ∼ 𝑣ℓcoll (31), where 𝑣 is a characteristic velocity (e.g. the thermal velocity for classical liquids) of 

particles and ℓcoll is the mean free path for inter-particle collisions. 

Microscopic calculations for SLG yield (25): 

𝜈 =
1

4
𝑣Fℓ̃ee                                                           (S1). 

where ℓ̃ee is a characteristic length associated with electron-electron scattering, which is of the 

same order of magnitude as ℓee in the explored range of parameters. Their ratio ℓ̃ee/ℓee is shown 

in fig. S4. Eq. (S1) is consistent with the above estimate for classical fluids. From Eq. (S1) we also find 

that the viscosity diffusion length 𝐷𝜈 = √𝜈𝜏, which determines the size of electron whirlpools, is 

equal to 𝐷𝜈 = √ℓ̃eeℓ/2  and, therefore, depends on both electron-electron collisions and 

momentum-non-conserving collisions.  

 

Fig. S4. Comparison between 𝓵ee and �̃�ee. Numerical results for the ratio ℓ̃ee/ℓee in the same 
range of densities and for the same temperatures as in fig. S3. 

#4 On pseudo-relativistic and pressure terms in the Navier-Stokes equation 

Because of the pseudo-relativistic nature of transport in SLG, the Navier-Stokes equation for the 

two-dimensional electron liquid in SLG contains a number of pseudo-relativistic terms (32). Such 

terms have not been considered in Eq. (2) of the main text. It is possible to demonstrate that, if one 

considers only linear deviations from a situation of uniform and static equilibrium (𝑛(𝒓, 𝑡) = 𝑛 and 

𝒗(𝒓, 𝑡) = 𝟎), the only pseudo-relativistic correction that survives is the appearance of the effective 



 

(cyclotron) mass 𝑚 = ℏ𝑘F 𝑣D⁄  in the definition of the Drude-like conductivity 𝜎0 for the case of 

SLG.  

 

In deriving Eq. (2) of the main text we have also neglected a term arising from the pressure 𝑃 of the 

electron liquid, i.e. −∇𝑃(𝒓, 𝑡). Here we show that, for a gated structure like the one used in our 

experiments, this term is simply proportional to the electric field and its only effect is to give a small 

correction to the capacitance between the graphene sheet and the top and bottom gates. In a gated 

structure, the electric potential and carrier density can be related by the so-called local capacitance 

approximation (LCA) (32), i.e. ϕ(𝒓, 𝑡) = −𝑒𝑛(𝒓, 𝑡)/𝐶 where 𝐶 is the capacitance per unit area. For 

a double gated device, 𝐶 = 𝜖(𝑑 + 𝑑′) (4 𝜋𝑑 𝑑′)⁄  where 𝑑  and 𝑑′ are the distances between 

graphene and the bottom and top gates, respectively, and 𝜖 = √𝜖𝑥(0)𝜖𝑧(0) ≈ 4.4 is the static 

dielectric constant of bulk hBN (we neglect the thin-film effects discussed in the previous Section). 

The quantities 𝜖𝑥(𝜔) and 𝜖𝑧(𝜔) have been introduced in the previous Section. 

 

Using the LCA and the local density approximation ∇𝑃(𝒓, 𝑡) ≈ (𝜕𝑃hom 𝜕𝑛⁄ )∇𝑛(𝒓, 𝑡) , we can 

estimate the sum of the electric force and the force due to pressure as following  

− (
𝑒2𝑛

𝐶
+ 

𝜕𝑃hom

𝜕𝑛
) ∇𝑛(𝒓, 𝑡)                                      (S2) 

where 𝑃hom is the pressure of the homogeneous 2D electron liquid in SLG or BLG. Evaluating the 

two terms inside the round brackets at the equilibrium density 𝑛 and approximating 𝜕𝑃hom 𝜕𝑛⁄  

with its zero-temperature non-interacting value, i.e., 𝜕𝑃hom 𝜕𝑛⁄ ≈ 𝜉𝐸F where 𝜉 = 1 2⁄  (𝜉 = 1) for 

SLG (BLG), we can show that the ratio between the pressure term and the potential term is  

𝜕𝑃hom 𝜕𝑛⁄

𝑒2𝑛 𝐶⁄
≈

𝑑+𝑑′

4𝑑𝑑′  𝜉𝑘TF
     (S3) 

where 𝑘TF is the Thomas-Fermi screening wave number. For encapsulated SLG, 𝑘TF = 4 𝛼ee𝑘F ≈

(2.9 nm)−1, where 𝛼ee = 𝑒2 (ℏ𝑣D𝜖)⁄ ≈ 0.5 is the so-called graphene fine structure constant (29). 

Using a carrier density of 1012 cm−2, 𝑑 = 80 nm and 𝑑′ = 80 nm, we find that the ratio in Eq. 

(S3) is much smaller than unity. The pressure term can be safely neglected. For an encapsulated BLG 

sheet 𝑘TF = 2𝑒2𝑚 (ℏ2𝜖)⁄ ≈ (3.8 nm)−1, irrespective of density (14). Therefore, the ratio (S3) is also 

negligible in this case. 

 

 

 

 

 



 

#5 Smallness of the Reynolds number  

The validity of the linearized Navier-Stokes equation (Eq. (2) of the main text) relies on the smallness 

of the Reynolds number (1), a dimensionless parameter that depends on the sample geometry and 

controls the smallness of the nonlinear term [𝒗(𝒓, 𝑡) ⋅ ∇]𝒗(𝒓, 𝑡) in the convective derivative in the 

full Navier-Stokes equation with respect to the viscous term. In our case  

|
[𝒗(𝒓,𝑡)⋅∇]𝒗(𝒓,𝑡)

𝜈∇2𝒗(𝒓,𝑡)
| ≈

|𝒗|𝑊

𝜈
=

𝐼

𝑒𝑛𝜈
≡ ℛ    (S4). 

 

For a typical probing current 𝐼 = 10−7  A, 𝑊 = 1  m and 𝑛 = 1012  cm−2 , we estimate 

|𝒗| ∼ 𝐼 (𝑒𝑛𝑊)⁄ ≈  104 cm/s. The corresponding value of the Reynolds number is ℛ ∼ 10−3 ≪ 1 if 

using 𝜈 ∼ 103 cm2/s found theoretically (25) and in the experiment (Fig. 4 of the main text). Our 

linearized approximation is therefore fully justified. 

 

#6 On the boundary conditions for solid-state hydrodynamic equations 

The hydrodynamic equations need to be accompanied by appropriate boundary conditions (BCs). If 

viscosity is negligible, the current is proportional to the gradient of the potential. In this case it is 

sufficient to solve the Laplace equation for the potential to obtain both potential and current spatial 

patterns. The BCs that the potential must obey at the boundaries of the sample are of two types. In 

regions of the boundary where no electrical contacts are present, the normal component of the 

current (that is the normal derivative of the potential in the non-viscous regime) must be zero. In the 

regions of the boundaries where an electrical contact is present, the potential immediately inside 

the sample must be equal to the electric potential of the contact. Since the sample is current biased, 

we fix the total current flowing from each contact instead of fixing the value of the potential at each 

contact. It can be shown using standard theorems on the Laplace equation that these BCs (Neumann 

outside the contacts and Dirichlet at the contacts) uniquely determine the solution of the problem.   

 

In the general case of a viscous flow, Eq. (2) of the main text requires additional BCs on the 

tangential component of the current. Generally, edges exert friction on the 2D electron liquid. The 

corresponding force (per unit length) is given by (1) 

𝐹𝑡 = 𝜖𝑖𝑗�̂�𝑖𝜎𝑗𝑘
′ �̂�𝑘      (S5). 

In Eq. (S5), 𝜎𝑗𝑘
′  is the 2D viscous stress tensor, i.e. 𝜎𝑗𝑘

′ = 𝜂(𝜕𝑗𝑣𝑘 + 𝜕𝑘𝑣𝑗 − 𝛿𝑖𝑗𝜕𝑙𝑣𝑙). In writing the 

previous expression for 𝜎𝑗𝑘
′  we have set to zero the diagonal contribution that is proportional to the 

so-called bulk viscosity and negligible (25). 

 



 

The frictional force is in general a function of the tangential velocity 𝑣𝑡 = 𝜖𝑖𝑗�̂�𝑖𝑣𝑗. For small 

velocities the force is simply proportional to the velocity leading to the BC 

𝜖𝑖𝑗�̂�𝑖�̂�𝑘(𝜕𝑗𝑣𝑘 + 𝜕𝑘𝑣𝑗) = 𝜖𝑖𝑗�̂�𝑖𝑣𝑗 𝑙b⁄     (S6) 

where 𝑙b is a characteristic length scale associated with boundary scattering. If this length is very 

small, Eq. (S6) reduces to the standard “no-slip” boundary condition commonly used in the 

description of classical liquids (1). 

 

Fig. S5. Influence of boundary conditions. Calculated current density 𝑱(𝒓) and electric potential 

ϕ(𝒓) for the same geometry and the same 𝐷𝜈 = 0.7  m as in Fig. 3B of the main text. The 

difference is no-slip boundary conditions (𝑙b=0 ) used in this figure whereas 𝑙b= ∞ in the main text. 

 

We do not know precisely the value of 𝑙b but we know that the combined effect of friction and 

viscosity arising at the boundaries can lead to an anomalous temperature dependence of the 

longitudinal resistivity 𝜌𝑥𝑥 which is known as the Gurzhi effect (7). As discussed in one of the 

following Sections, our experimental data for 𝜌𝑥𝑥 exhibit a monotonic behavior as a function of 𝑇, 

up to our highest temperature and for all carrier densities. This behavior suggests that the Gurzhi 

effect is small. For this reason, we can use to a good approximation the following BCs (12)  

𝜖𝑖𝑗�̂�𝑖�̂�𝑘(𝜕𝑗𝑣𝑘 + 𝜕𝑘𝑣𝑗) = 0                                                  (S7) 

which assumes that 𝑙b is larger than the characteristics length scales of the problem, 𝐷𝑣 (vorticity 

diffusion length) and 𝑊 (width of our multiterminal devices). Physically, Eq. (S7) corresponds to a 

vanishing tangential force acting on a moving liquid (1). At high current densities, however, the 

friction from the boundaries can be enhanced with respect to the simple linear model in Eq. (S6). In 

this case the Gurzhi effect can be observed in the differential resistance (see below). 

 

In fig. S5 we show that different values of 𝑙b have little impact on the formation of whirlpools near 

current injecting contacts. The reader is urged to compare fig. S5 (no-slip boundary conditions) with 

Fig. 3B in the main text, which was obtained using the free-surface BCs (Eq. S7) 



 

#7 Applicability limits for hydrodynamic description of electron transport in doped graphene 

The focus of our report is on the doped regime because the situation near the CNP is severely 

complicated by the presence of thermally excited quasiparticles, electron-hole puddles (33) and the 

large electron wavelength. In addition, thermoelectric effects (energy flow) are also expected to play 

a significant role near the CNP, although they appear only in the second order with respect to 

applied current 𝐼 in zero magnetic field (see, for example, ref. 34).  

 

Under realistic experimental conditions, one important limit is set by charge inhomogeneity that 

impacts the viscosity analysis presented in Fig. 4 of the main text. Indeed, Eq. (4) assumes that 

𝜎0 = 1/𝜌𝑥𝑥 is constant whereas the inhomogeneity locally modifies conductivity and stray currents. 

The electron-hole asymmetry seen in the experimental plots for 𝑅V and the associated asymmetry 

in Fig. 4 of the main text are not expected in theory, and this provides a qualitative indication of the 

best accuracy one can expect for the extracted values of 𝜈.  

 

Our hydrodynamic theory suggests no high-𝑇 cutoff, at least up to temperatures at which optical 

phonon scattering starts playing a role. In fact, the theory smoothly converges with the standard 

Drude theory as viscosity tends to zero upon increasing 𝑇. However, there is a clear high-𝑇 cutoff 

on 𝑅V being negative. It is simply dictated by the two competing terms in Eq. (4) of the main text, 

which are due to stray currents and viscous flow. After subtracting the stray-current contribution 

from the measured vicinity resistance (see below), we find that the hydrodynamic term smoothly 

extend to high T over the entire temperature range without any sign of cutoff.  

 

On the other hand, the essential condition of electron hydrodynamics (ℓee ≪ ℓ) certainly fails at 

temperatures below 50 K where the phase breaking length in graphene (which is smaller than ℓee) 

is known to reach a micrometer scale (see, e.g., ref. 35) and electron transport can be described in 

terms of single-particle ballistics (billiard-ball model). Our hydrodynamic theory does not capture the 

crossover (ℓee~ ℓ) into this single-particle regime, and it remains to be investigated how strong the 

above inequality condition should be to allow the hydrodynamic description.  

 

#8 Absence of the Gurzhi effect in longitudinal resistivity 

Resistivity of an electron liquid is determined by interplay between bulk scattering (charged 

impurities, lattice vibrations, crystal defects, etc.), collisions at sample boundaries and e-e scattering 

(7,15). Bulk scattering normally increases with 𝑇. On the other hand, a combined effect of boundary 

and electron-electron scattering results in a contribution to 𝜌𝑥𝑥  which increases with 𝑇  if 



 

ℓee ≫ 𝑊 (Knudsen regime) but decreases if the electron system enters the viscous flow regime, 

ℓee ≪ 𝑊. The transition between the two limits may result in a non-monotonic temperature 

dependence of 𝜌𝑥𝑥. This phenomenon is referred to as the Gurzhi effect (7,15). In reality, this effect 

is severely obscured by various bulk scattering mechanisms and expected to be weak (15).  

 

 

Fig. S6. Temperature dependence of longitudinal resistivity. Left and right panels are for SLG and 

BLG devices, respectively. The T dependences are monotonic, although one can notice that the 

curves slightly bulge around 100 K, which we attribute to a small hydrodynamics contribution 

related to the Gurzhi effect, as discussed in the next section. 

 

In fig. S6, we show typical measurements of 𝜌𝑥𝑥 as a function of 𝑇 for our SLG and BLG devices at 

different carrier concentrations. The behavior of 𝜌𝑥𝑥(𝑇) is monotonic (no Gurzhi effect) even in the 

region of parameter space where electron-electron scattering is strong enough to cause the 

observed sign change in the vicinity geometry. This can be attributed to relative insensitivity of 

electron flow to boundary scattering in this simplest geometry of measurements as discussed in the 

preceding section. Neglecting more subtle effects observed in the differential resistance (see the 

next section), the absence of the Gurzhi effect in 𝜌𝑥𝑥(𝑇) justifies our choice of (free-surface) BCs 

described by Eq. (S7), in which the force exerted by the boundary on the electron fluid flow is 

neglected. 

 

Using the BC of Eq. (S7), we have solved numerically the linearized steady-state hydrodynamic 

equations for the longitudinal geometry and the results are plotted in fig. S7 for SLG and BLG. This 

figure shows that 𝜌𝑥𝑥  depends only on the phenomenological scattering time 𝜏  in the 

Navier-Stokes equation (Eq. (2) in the main text) and exhibits little dependence on 𝐷𝜈 and, hence, 

the electron viscosity 𝜈. This is the reason why we can use 𝜌𝑥𝑥(𝑛, 𝑇) to find 𝜏(𝑛, 𝑇) and, more 

generally, why the previous literature on electron transport in graphene, which completely 



 

neglected high electron viscosity, does not require revision if the measurements were carried out in 

the standard longitudinal geometry.  

 

Fig. S7. Numerical solutions of the linearized hydrodynamic equations in the longitudinal 

geometry. In these plots we show the calculated longitudinal resistivity 𝜌𝑥𝑥 as a function of 𝐷𝜈 (in 

m) for SLG (left) and BLG (right). In solving the hydrodynamic equations we have utilized the 

free-surface BCs of Eq. (S7). From these numerical results, we infer that 𝜌𝑥𝑥 is simply equal to the 

inverse of the Drude-like conductivity 𝜎0 ≡ 𝑛𝑒2𝜏/𝑚. 

 

#9 Gurzhi effect with increasing the electron temperature  

Despite the absence of notable deviations in 𝜌𝑥𝑥(𝑇) from a monotonic behavior, evidence for the 

Gurzhi effect could clearly be observed in the longitudinal differential resistance 𝑑𝑉/𝑑𝐼 measured 

as a function of a large applied current 𝐼. The current increased the temperature of the electron 

system well above the graphene lattice temperature and cryostat’s temperature, 𝑇. Accordingly, 

these measurements enhanced electron-electron scattering whereas electron-phonon scattering 

remained relatively weak. Therefore, the 𝑑𝑉/𝑑𝐼 curves can qualitatively be viewed as changes in 

𝜌𝑥𝑥  induced by increasing the electron temperature. Examples of the observed 𝑑𝑉/𝑑𝐼  as a 

function of 𝐼 are shown in fig. S8. 

 



 

At carrier concentrations |𝑛| >  1 × 1012 cm-2 we observed rather featureless 𝑑𝑉/𝑑𝐼 curves up to 

our highest 𝐼 ≈ 300 μA (fig. S8A). For smaller |𝑛|, the behavior of 𝑑𝑉/𝑑𝐼 became strongly 

nonmonotonic, which can be attributed to the Gurzhi effect (7,15). We interpret the observed 

nonlinearity as follows (15). At low 𝑇 and low 𝐼, electron-electron scattering is weak (ℓee ≳ 𝑊), 

and we are in the Knudsen-like regime where the viscosity is determined by scattering at the channel 

edges. In this regime, resistivity grows with increasing the electron temperature (increasing 𝐼), 

similar to the case of classical dilute gases. At higher 𝐼 (> 50 A), the further increase in the 

electron temperature pushes the system into the Navier-Stokes regime with ℓee becoming shorter 

than 𝑊. In this case, the flow starts being ruled by internal electron viscosity. The transition 

between the two regimes is known to lead to a drop in flow resistivity, as first observed by Knudsen 

for classical gases and, more recently (15), reported as the Gurzhi effect for electrons, also using the 

𝑑𝑉/𝑑𝐼 measurements. The 𝑇 dependence in fig. S8B shows that 𝐼~100 μA heats up the electron 

system to ~200 K, which leads to the transition into the Navier-Stokes regime. This is in good 

agreement with the 𝑇 range where our hydrodynamic effects were found strongest. Also, note that 

the Gurzhi effect appeared within the same range of carrier concentrations in which we observed 

largest negative 𝑅V (compare fig. S8 with Fig. 2A of the main text and fig. S9).  

 

 

Fig. S8.  Longitudinal differential resistance. (A) Examples of 𝑑𝑉/𝑑𝐼 as a function of applied 

current for a SLG device. To measure 𝑑𝑉/𝑑𝐼, we applied an oscillating current 𝐼 + 𝐼accos (𝜔𝑡) 

along the main channel where 𝐼ac is the low-frequency current, much smaller than 𝐼. The ac 

voltage drop that appeared at side contacts yielded 𝑑𝑉/𝑑𝐼. The main channel was 2.5 m wide, 

and voltage probes were separated by 8 m. 𝑇 = 5 K; 𝐼ac = 50 nA. (B) Temperature dependence 



 

of the differential resistance in (A) for hole doping with 𝑛 = −0.4 × 1012 cm-2. The curves in (B) are 

offset for clarity by 300 Ohms each. 

 

#10 Reproducibility of negative vicinity response 

To illustrate that the observed whirlpool effects were reproducible for different devices and using 

different contacts, fig. S9 shows two more examples of 𝑅V maps. They are for SLG devices with 

low-𝑇 𝜇 of ≈ 50 m2 V-1 s-1 and the distance 𝐿 to the nearest vicinity probe of ≈ 1  m. These 

maps are rather similar to those shown in Fig. 2 of the main text. Again, we observed large negative 

vicinity resistance away from the CNP and over a large range of 𝑇 and 𝑛.  

 

Fig. S9.  Further examples of negative vicinity resistance. (A) and (B) are 𝑅V(𝑛, 𝑇) maps for two 

different high-quality SLG devices and the distance between the injection and vicinity contacts of 1 

m.  

 

#11 Changes from normal flow to backflow induced by electron heating 

Negative vicinity voltage 𝑉V  is attributed to electron whirlpools and expected only in the 

viscous-flow regime. This requires ℓee to be smaller than the characteristic scale in the problem, 

that is, the distance 𝐿 between the injector and voltage contacts. In addition, to be detectable in 

transport experiments whirlpools should be sufficiently large in size (large 𝐷𝑣) to reach from the 

injection region to voltage probes. Because ℓee depends on the electron temperature, the nature of 

electron flow can be controlled not only by changing the lattice temperature as in the experiments 

described in the main text but also by heating up the electron system using large dc currents 𝐼 as 

discussed in the above section on the Gurzhi effect. We have carried out such measurements of 𝑉V 

as a function of the electron temperature, and examples of the observed negative vicinity response 

are shown fig. S10A. It plots typical behavior of 𝑉V as a function of 𝐼 for three characteristic 

temperatures of the cryostat, T. For the case of low 𝑇, the 𝐼-𝑉 curve exhibits a positive slope at 



 

small 𝐼 which corresponds to the same linear-response 𝑅V  = 𝑉V/𝐼 as in the maps of Fig. 2 of the 

main text and fig. S9. This is the Knudsen flow regime. At higher currents (𝐼 > 50 μA), the voltage 

response becomes nonlinear reaching first a maximum and then changing the sign to negative. This 

is because the current heats up the electron system and drives it into the Navier-Stokes regime such 

that whirlpools appear near the injection point. At even higher currents, 𝑉V changes its sign again, 

from negative to conventional positive, indicating that the electron temperature becomes high 

enough (> 300 K) and the system approaches the high-𝑇 regime of small 𝐷𝑣. If we increased the 

cryostat temperature to 100 K (fig. S8A), the electron system entered the viscous-flow regime even 

at vanishingly small probing currents, and the 𝐼-𝑉 curves – linear over a large range of 𝐼 – yield 

negative 𝑅V, in agreement with the results presented in the main text. At sufficiently high currents, 

the system again exhibits positive 𝑉V, which corresponds to dominating stray currents. Further 

increase in 𝑇 in fig. S10A, changes the character of 𝐼-𝑉 characteristics once again because the 

system is already close to the transport regime of small 𝐷𝑣, even without being heated by current. 

Note that these changes are closely connected with the Gurzhi effect reported in fig. S8. However, 

because the vicinity geometry is much more sensitive to a viscous flow contribution, voltage rather 

than its derivative changes the sign as a function of 𝐼 in fig. S10.  

 

 

Fig. S10. Vicinity voltage as a function of applied current. (A) 𝐼 -𝑉  characteristics at three 

characteristic 𝑇 for a BLG device at hole doping 𝑛 = −2.5 × 1012 cm-2. (B) Map of the normalized 

nonlinear vicinity resistance 𝑉V/𝐼 measured at 𝑇 = 5 K. It is important to note that large 𝐼 can 

lead to temperature gradients between different contacts and, as a result, spurious thermoelectric 

signals may appear in such measurements. Because the thermopower contribution depends only on 

the absolute value of 𝐼  and not on its sign, the contribution can easily be eliminated by 

symmetrizing 𝑉V with respect to the direction of dc current. This procedure was applied for the 



 

shown plots and, accordingly, they are presented as a function of |𝐼|. The brown rectangle in (B) is 

the region around the CNP with no collected data to avoid overheating and switching between 

different mesoscopic states 

For further comparison between effects of electron heating and cryostat’s 𝑇, fig. S10B shows a map 

of 𝑉V/𝐼, the nonlinear vicinity response normalized by the applied current. This map closely 

resembles the 𝑅V(𝑇, 𝑛) maps in Fig. 2 of the main text and fig. S9 and also shows a clear transition 

from normal electron flow at low T to backflow at intermediate electron temperatures. Note that in 

fig. S10B we had to limit our measurements to relatively small 𝐼 < 200 A so that the transport 

regime dominated by stray currents (approached above 400 A in fig. S10A) could not be reached. 

This is because such high currents occasionally switched our devices between different mesoscopic 

states whereas the 𝑉V maps required a few days of continuous measurements. For the same 

reason, we avoided measurements of 𝑉V(𝐼) around the charge neutrality point in fig. S10B where 

high resistivity of graphene resulted in significant Joule heating even for relatively small currents.  

The observed strong enhancement of the negative vicinity signal with increasing the electron 

temperature is in good agreement with the expected behavior of local whirlpools inside graphene’s 

electron liquid and, also, rules out a contribution from single-particle ballistic effects. Indeed, we 

found experimentally that the latter phenomena such as negative transfer resistance and magnetic 

focusing (19,21) are rapidly and monotonically suppressed with increasing 𝐼. 

 

#12 Dependence of electron backflow on distance to the injection contact 

We have investigated how negative vicinity resistance decays with increasing the distance 𝐿 

between the injection and voltage contacts (see the sketch in fig. S11). This figure shows examples 

of the temperature dependence of 𝑅V in the linear 𝐼-𝑉 regime for different 𝐿 = 1, 1.3 and 

2.3 μm, which were measured for the same BLG device at a fixed carrier concentration of 1.5 ×

 1012 cm-2. All the plotted curves exhibit negative 𝑅V but the temperature range in which the 

backflow occurs rapidly narrows with increasing 𝐿, and we could not detect any backflow for 

𝐿 > 2.5 μm in any of our devices. The magnitude of the negative signal is found to decay rapidly 

(practically exponentially) with 𝐿 (top inset of fig. S11), yielding a characteristic scale of ≈ 0.5 μm. 

This provides a qualitative estimate for the size of electron whirlpools, in agreement with our 

theoretical estimates for 𝐷𝑣. Indeed, for the particular device in fig. S11, we can estimate 𝐷𝑣 ≈ 0.4 

μm using our independent measurements of 𝜈 ≈ 0.1 m2 s-1 and 𝜏 ≈ 1.5 ps (see the main text and 

above). 



 

 

Fig. S11. Vicinity resistance measured at different distances from the injection contact. All the 

contacts were ≈ 0.3 m in width. Top inset: Maximum value of negative 𝑅V as a function of 𝐿. 

The dashed curve is the best fit with 𝐷𝑣 ≈ 0.5 μm. The probing current was 0.3 A. 

 

#13 Stray-current contribution to the vicinity resistance 

In the vicinity geometry, stray currents near the voltage probe are not negligible. Their contribution 

to the measured vicinity resistance is given by the first term 𝑏𝜎0
−1 in Eq. (4) of the main text where 

b is the geometrical factor dependent on L, W and width of the contact regions (36). Fig. 1E of the 

main text and fig. S1D clearly show that the classical contribution was rather significant and 

competed with the viscous term in 𝑅𝑉 over a range of T and 𝑛. In this report, we have deliberately 

focused on the sign change in 𝑅𝑉 because the negative resistance is an exceptional qualitative 

effect, which in our case cannot be explained without taking into account a finite viscosity of the 

electron liquid. However, to elucidate the hydrodynamic behavior in more detail, we can go a step 

further and analyze the anomalous part of 𝑅𝑉, which comes on top of the contribution from stray 

currents. To this end, we write ∆𝑅V ≡  𝑅V − 𝑏/𝜎0 to isolate the second part of Eq. (4) which 

depends on 𝐷𝑣 and arises exclusively due to a finite viscosity. Fig. S12 shows a typical example of 

∆𝑅V observed in our devices. It is clear that at T > 50 K the negative ∆𝑅V extends over the entire 

range of carrier concentrations away from the CNP (fig. S12A). Figure S12B suggests that electron 

whirlpools persist well above room 𝑇.  

 

It is important to note that the above subtraction analysis is based on the assumption of spatially 

uniform 𝜎0 whereas the experimental devices exhibit a certain level of charge inhomogeneity, 

especially close to the CNP. Qualitatively, one can gauge the influence of charge inhomogeneity from 



 

the pronounced electron-hole asymmetry in the 𝑅V maps, which in theory should be symmetric. 

The asymmetry was found to be contact dependent and arises due to non-uniform charge 

distribution near the vicinity contacts. Furthermore, the subtraction analysis is not applicable in the 

low-𝑇 regime because it ignores single-particle ballistic effects that modify stray currents on a 

distance of the order of the mean free path. Notwithstanding these limitations, the subtraction 

procedure in fig. S12 provides a qualitatively accurate picture, especially at high 𝑇  where 

single-particle phenomena can be neglected and for  𝑛 ≳ 1 ×  1012 cm-2 where the electron 

system become more uniform. 

 

Fig. S12. Hydrodynamic part of vicinity resistance after subtracting a calculated contribution from 

stray currents. (A) ∆𝑅𝑉(𝑛) at two characteristic temperatures and (B) ∆𝑅𝑉  (𝑇) for a typical carrier 

density away from the neutrality point. (C) Map ∆𝑅𝑉(𝑛, 𝑇) covering the entire range of measured 

temperatures and concentrations. Data are for the same device as in Fig. 2B of the main text. The 

red traces outline the region of negative 𝑅𝑉 in Fig. 2B. The brown rectangle indicates the region 

with ∆𝑅𝑉 > +10 Ohm around the CNP where our hydrodynamic analysis is not expected to be 

applicable.  

#14 Ballistic contribution due to reflection from device boundaries 

Charge carriers reflected from the boundary opposite to the current-injecting contact can reach the 

vicinity probe if ℓ is comparable with the travel distance of ≈ 2𝑊. In this case, one can speculate 

that reflected electrons can give rise to a contribution similar to the negative bend resistance usually 

observed for ballistic Hall crosses (19). To this end, we have performed numerical simulations using 

the Landauer-Büttiker formalism and diffusive scattering at graphene edges. The analysis is standard 

and, therefore, not reported here for the sake of brevity. The simulations yielded the negative bend 



 

resistance for the Hall bar geometry, as expected, but we could find only positive contributions for 

the vicinity geometry. Therefore, the standard theory of ballistic transport cannot explain negative 

𝑅V . More importantly, our experimental observations also disagree with the above scenario 

involving ballistic reflection from device boundaries. First, negative 𝑅V is observed for 𝑊 up to 4 

m and typical  ℓ < 2 m < 2𝑊 so that the number of electrons coming back to the boundary of 

origin is exponentially small, exp (−2𝑊/ℓ). Second, we have not observed any dependence of the 

amplitude of negative 𝑅V on 𝑊, beyond usual variations for different contacts and devices. All our 

devices showed similar behavior, independent of their size and features such as contacts present at 

the opposite edge. Third, ℓ increases with decreasing 𝑇 and, therefore, any ballistic contribution is 

expected to be most pronounced at low 𝑇. In contrast, 𝑅V is always found positive in the regime of 

longest ℓ (that is, at low 𝑇 and high 𝑛), in agreement with our numerical analysis.  

 

Despite the overwhelming evidence described above, let us present an additional set of experiments 

that further prove little contribution from reflected electrons into 𝑅V and confirm its positive sign. 

We fabricated devices similar to those described above but submicron slits were added between 

injecting and vicinity contacts (see fig. S13). The basic idea is that such obstacles should stop viscous 

backflow from reaching the vicinity probe (effective distance 𝐿 increases significantly). Fig. S13A 

shows that, if no slit is present between the contacts, we observed the standard behavior for 𝑅V. It 

is positive at long ℓ at low 𝑇 but changes sign at higher 𝑇 becoming most negative around 

150 − 200 K, in agreement with measurements for the other devices (cf. Fig. 2 of the main text and 

fig. S9). On the other hand, if a slit is added next to a vicinity probe, 𝑅V does not change its sign 

remaining positive (fig. S13B). At low 𝑇, this positive signal is attributed to reflected ballistic 

electrons reaching the voltage probes for ℓ > 𝑊. Note that 𝑅V in fig. S13B is notably smaller than 

that in fig. S13A, in agreement with our numerical simulations and general expectations due to the 

shadow provided by the slit. As 𝑇  increases, 𝑅V  decreases to zero because for ℓ ≪ 𝑊  the 

geometry gradually becomes nonlocal (24).   



 

 

Fig. S13. Placing an obstacle to shade the vicinity probe. (A) RV(n, T) for the ‘standard’’ vicinity 

geometry as shown schematically in the panel below. The panel utilizes an atomic-force micrograph 

of a device with two narrow notches etched through encapsulated SLG; W = 2 m. (B) Similar 

measurements but in the geometry where the slit separates vicinity and injector contacts. The 

schematic is shown in the panel below.  

#15 Numerical simulations of hydrodynamic equations 

To solve the linearized steady-state Navier-Stokes equation we discretized the differential operators 

on a square mesh and solve the corresponding sparse linear system. To improve the discretization of 

the differential operators, the values of the potential and the two components of the velocity are 

sampled on three different staggered meshes (37). The meshes were chosen in such a way that, at 

the boundary, the velocity component orthogonal to the boundary was sampled. 

 

Different BCs were used to represent the sample edge, an open contact and a current-carrying 

contact: 

(i) the velocity component orthogonal to the edges vanished; 

(ii) the total current flowing through an open contact vanished; 

(iii) the total current flowing through a current contact was fixed by the experimental conditions. 

At the sample boundary (both sample edge and contacts) either no-slip or free-surface boundary 

conditions were implemented to fix the velocity component parallel to the boundary. We reiterate 

that the velocity component parallel to the boundary was sampled at a finite distance from the 

boundary due to the choice of the staggered meshes. An auxiliary set of velocity variables, parallel to 

the boundary, was introduced just outside of the sample area to implement the desired BCs. More 

specifically, no-slip boundary conditions were implemented by requiring that the velocity 



 

components parallel to the boundary, just inside and outside the sample, were opposite. The 

free-surface BCs were implemented by discretizing the differential relation of Eq. (S7) and making 

use of the auxiliary set of velocity variables. We used a few hundred mesh nodes in each direction 

for a typical sample. The solution of the sparse linear system typically takes a few seconds on a 

desktop computer and its output is the full potential and velocity profile with the desired BC.  

 

Finally, we comment on the dependence of Eq. (4) of the main text on the BCs. We remind the 

reader that Eq. (4), coupled with a longitudinal four-probe transport measurement of the 

phenomenological parameter 𝜏, is needed to extract the kinematic viscosity 𝜈 of the electron 

liquid in graphene. Below we will refer to Eq. (4) of the main text as the ‘calibration’ curve because it 

relates the vicinity resistance to the two fundamental parameters of the theory, 𝜈 and 𝜏. Eq. (4) in 

the main text was derived analytically by assuming free-surface BCs and neglecting a) finite-size 

effects in the longitudinal Hall bar direction and b) BCs at metal contacts. Fig. S14 illustrates the 

dependence of the ‘calibration’ curve on different BCs, calculated numerically by relaxing constraints 

a) and b): no-slip (red squares) versus free-surface (filled circles). We also show, for the sake of 

generality, the analytical result for free-surface BCs, i.e. Eq. (4) of the main text. 

 

 

Fig. S14.  ‘Calibration’ curve for our all-electrical viscometer. Calculated vicinity resistance 𝑅V (in 

units of 1 𝜎0⁄ ) as a function of 𝐷𝜈
2 (in m2). For 𝐷𝜈

2 ≈ 0.2 m2 the vicinity resistance becomes 

positive. Filled circles denote fully numerical results for the finite-size BLG device with ten electrodes 

(obtained by utilizing free-surface BCs). The solid line represents the approximate analytical result of 

Eq. (4) of the main text, which was obtained with free-surface BCs whereas red squares are the 

results of numerical calculations obtained by utilizing no-slip BCs (𝑙b = 0). 
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Superballistic flow of viscous electron fluid
through graphene constrictions
R. Krishna Kumar1,2,3, D. A. Bandurin1,2, F. M. D. Pellegrino4, Y. Cao2, A. Principi5, H. Guo6,
G. H. Auton2, M. Ben Shalom1,2, L. A. Ponomarenko3, G. Falkovich7,8, K. Watanabe9, T. Taniguchi9,
I. V. Grigorieva1, L. S. Levitov6, M. Polini1,10 and A. K. Geim1,2*
Electron–electron (e–e) collisions can impact transport in a
variety of surprising and sometimes counterintuitive ways1–6.
Despite strong interest, experiments on the subject proved
challenging because of the simultaneous presence of di�erent
scatteringmechanisms that suppressorobscure consequences
of e–e scattering7–11. Only recently, su�ciently clean electron
systems with transport dominated by e–e collisions have
become available, showing behaviour characteristic of highly
viscous fluids12–14. Here we study electron transport through
graphene constrictions and show that their conductance below
150K increases with increasing temperature, in stark contrast
to the metallic character of doped graphene15. Notably, the
measured conductance exceeds the maximum conductance
possible for free electrons16,17. This anomalous behaviour is at-
tributed to collectivemovement of interacting electrons, which
‘shields’ individual carriers from momentum loss at sample
boundaries18,19. The measurements allow us to identify the
conductance contribution arising due to electron viscosity and
determine its temperature dependence. Besides fundamental
interest, our work shows that viscous e�ects can facilitate
high-mobility transport at elevated temperatures, a potentially
useful behaviour for designing graphene-based devices.

Graphene hosts a high-quality electron systemwithweak phonon
coupling20,21 such that e–e collisions can become the dominant
scattering process at elevated temperatures, T . In addition, the
electronic structure of graphene inhibits Umklapp processes15,
which ensures that e–e scattering is momentum conserving.
These features lead to a fluid-like behaviour of charge carriers,
with the momentum taking on the role of a collective variable
that governs local equilibrium. Previous studies of the electron
hydrodynamics in graphene were carried out using the vicinity
geometry and Hall bar devices of a uniform width. Anomalous
(negative) voltages were observed, indicating a highly viscous flow,
more viscous than that of honey12,22,23. In this report, we employ a
narrow constriction geometry (Fig. 1a) which offers unique insight
into the behaviour of viscous electron fluids. In particular, the
hydrodynamic conductance through such constrictions becomes
‘superballistic’, exceeding the fundamental upper bound allowed in
the ballistic limit, which is given by the Sharvin formula16,17. This is
in agreement with theoretical predictions18,19 and is attributed to a
peculiar behaviour of viscous flows that self-organize into streams

with different velocities, with ‘sheaths’ of a slow-moving fluid near
the constriction edges (Fig. 1b). The cooperative behaviour helps
charge carriers to circumnavigate the edges, the only place where
the electron flow can lose its net momentum. The physics behind
is fairly similar to that involved in the transition from the Knudsen
to Poiseuille regimes, well understood in gas dynamics, where the
hydrodynamic pressure can rapidly drop upon increasing the gas
density and the rate of collisions between molecules24.

Our devices are made of monolayer graphene encapsulated
between hexagonal boron-nitride crystals, as described in
Supplementary Section 1. The device design resembles a multi-
terminal Hall bar, endowed with constrictions positioned between
adjacent voltage probes (Fig. 1c). Below we refer to them
as (classical) point contacts (PCs). Five such Hall bars were
investigated, each having PCs of various widths w and a reference
region without a constriction. The latter allowed standard
characterization of graphene, including measurements of its
longitudinal resistivity ρxx . All our devices exhibited mobilities
exceeding 10m2 V−1 s−1 at liquid-helium T , which translates into a
mean free path exceeding 1 µm with respect to momentum-non-
conserving collisions (Supplementary Section 2).

Examples of the measured PC conductance Gpc at 2 K are given
in Fig. 1d. In the low-T regime, all scattering lengths exceed w
and transport is ballistic, which allows Gpc to be described by the
Sharvin formula16

Gb=
4e2

h
w
√
π|n|
π

(1)

where n is the carrier concentration (positive and negative n denote
electron and hole doping, respectively). The expression is derived
by summing the contributions of individual electron modes that
propagate through the constriction, with each of them contributing
the conductance quantum, e2/h, towards the total conductance. The
dashed curves in Fig. 1d show the PC conductance calculated using
equation (1) and assuming the width values,wAFM, as determined by
atomic force microscopy (AFM). The observed agreement between
the experiment and equation (1) does not rely on any fitting
parameters. Alternatively, we could fit our experimental curves
using equation (1) and extract the effective width w for each PC
(Supplementary Section 3). The results are plotted in the inset of
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Figure 1 | Electron flow through graphene constrictions. a, Schematic of viscous flow in a PC. b, Distribution of the electric current across the PC,
normalized by the total current. In the hydrodynamic regime (e–e scattering length lee�w), there is little flow near the edges (blue curve), which reduces
the loss of net momentum. Black curve: ballistic regime lee�w. c, Optical micrograph of one of our devices and schematic of our four-probe
measurements. Scale bar, 5 µm. The PCs vary in width from 0.1 to 1.2 µm. d, Measurements of the low-T conductance for PCs of di�erent w (solid curves).
Dashed curves: ballistic conductance given by equation (1). Inset: PC width w found as the best fit to experimental Gpc(n) is plotted as a function of wAFM.
Solid line: w≡wAFM. e, PC resistance, 1/Gpc, for a 0.5-µm constriction at representative carrier densities. Dots: experimental data. Horizontal lines: ballistic
resistance given by equation (1). Dashed curves: theoretical predictions for a viscous electron fluid, using simplified expressions for the T dependence of
e–e and electron–phonon scattering (∝T2 and T, respectively). Details are given in Supplementary Section 4.

Fig. 1d as a function ofwAFM. Forw≥0.4µm, the agreement between
w and wAFM is within ∼5%. Deviations become larger for our
smallest constrictions, suggesting that they are effectively narrower,
possibly because of edge defects. Althoughwe focus here on classical
PCs with a large number of transmitting modes, we note that
our devices with w < 0.2 µm exhibit certain signs of conductance
quantization, fairly similar to those reported previously25,26, but they
are rapidly washed out upon raising T above 30K.

The central result of our study is presented in Fig. 1e. It shows
that the resistance of graphene PCs,Rpc≡1/Gpc, is a non-monotonic
function of T , first decreasing as temperature increases. Such T
dependence, typical for insulators, is unexpected for our metallic
system. It is also in contrast to the T dependence of ρxx observed
in our Hall bar devices. They exhibit ρxx monotonically increasing
with T , the standard behaviour in doped graphene (Supplementary
Section 2). All our PCs with w < 1 µm exhibited this anomalous,
insulating-like T dependence up to 100–150K (Fig. 2a). As a
consequence, Rpc in its minimum corresponds to conductance
values that could exceed the ballistic limit by >15% (Fig. 1e). At
higher T , Rpc starts growing monotonically and follows the same
trend as ρxx . The minima in Rpc(T ) were more pronounced for
narrower constrictions (Fig. 2a), corroborating the importance of
the geometry. Figure 2b,c elaborates on the non-metallic behaviour
of graphene PCs by plotting maps of the derivative dRpc/dT as
a function of both n and T . The anomalous insulating-like T
dependence shows up as the blue regions whereas the metallic
behaviour appears in red. For narrow constrictions, the anomalous
behaviour was observed for all accessible n below 100K, becoming
most pronounced at low densities but away from the neutrality point
(Figs 1e and 2b). For wide PCs (Fig. 2c), the non-metallic region
becomes tiny, in agreement with the expected crossover from the
PC to standard Hall bar geometry.

To describe the non-metallic behaviour in our PCs, we first
invoke the recent theory18 that predicts that e–e scattering modifies
equation (1) as

G=Gb+Gν where Gν=

√
π|n|e2w2vF
32}ν

(2)

vF is the Fermi velocity and e–e collisions are parameterized through
the kinematic viscosity ν= vFlee/4. The quantity Gν is calculated

for the Stokes flow through a PC in the extreme hydrodynamic
regime (that is, for the e–e scattering length lee�w). The additive
form of equation (2) is valid18,19 for all values of lee/w, even close
to the ballistic regime lee�w. This implies that G should increase
with T (in the first approximation15,27, as ∝1/lee ∝ T 2), which
leads to the initial drop in resistance (Fig. 1e). Equation (2) also
suggests that the viscous effects should be more pronounced at
low n, where electron viscosity is smaller, in agreement with the
experiment (Figs 1e and 2b). The description by equation (2) is
valid until phonon scattering becomes significant at higher T . To
describe both low-T and high-T regimes on an equal footing, we
extended the transport model of ref. 18 to account for acoustic-
phonon scattering using an additional term ∝T in the kinetic
equation (Supplementary Section 4). The results are plotted in
Fig. 1e, showing good agreement with the experiment.

For further analysis, we used our experimental data to extract
Gν , which in turn enabled us to determine ν and lee. To this end,
we first followed the standard approach in analysis of transport data
for quantum PCs, which takes into account the contact resistance
RC arising from the wide regions leading to constrictions17,28.
Accordingly, the total resistance of PCs can be represented as

Rpc= (Gb+Gν)
−1
+RC (3)

To avoid fitting parameters, we model the contact resistance as
RC= bρxx , where b is a numerical coefficient calculated by solving
the Poisson equation for each specific PC geometry and ρxx is
taken as measured from the reference regions. For our devices, b
ranged between 2 and 5 (Supplementary Section 5). Examples of
the resulting 1R=Rpc−bρxx= (Gb+Gν)

−1 are plotted in Fig. 3a.
The figure shows that, after the phonon contribution is accounted
for through RC, the resistance 1R (attributable to the narrowing
itself) monotonically decreases with increasing T over the entire T
range, in agreement with equation (2). The validity of this analysis
is further confirmed by the fact that the extracted values of 1R
were found to be independent of b (that is, insensitive to voltage
probes positions relative to PCs; see Supplementary Fig. 1). As a
next step, we use the conductance Gb found in the limit of low
T for each PC and subtract this value from 1/1R= Gb+ Gν to
obtain the viscous conductance Gν . The results are shown in Fig. 3b
for several PCs. Remarkably, if Gν is normalized by w2, all the

2
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neutrality point, in which charge disorder becomes important and transport involves thermal broadening and other interaction e�ects12,13 beyond the scope
of this work.
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Figure 3 | Quantifying e–e interactions in graphene. a, T dependence of the PC resistance after subtracting the contribution from contact regions.
b, Viscous conductance Gν at a given n for PCs with w ranging between 0.1 and 0.6 µm. c, Data from b normalized by w2. d, Gν as a function of w for given
T= 100 K and n= 1012 cm−2. Solid curve: best fit to equation (2) yields ν≈0.16 m2 s−1, a value five orders of magnitude larger than the kinematic
viscosity of water. Inset: same data as a function of w2. e, T dependence of the e–e scattering length found as lee=4ν/vF (symbols) for n= 1012 cm−2 and
w≈0.5µm. Red curve: microscopic calculations of lee (Supplementary Section 6). Inset: ν(T) on a log–log scale. The data are from the main panel and
colour-coded accordingly. The dashed line indicates the 1/T2 dependence.

experimental data collapse onto a single curve (Fig. 3c). This scaling
is starkly different from the Sharvin dependenceGb∝w observed in
the ballistic regime (Fig. 1d) and, more generally, from any known
behaviour of electrical conductance that always varies linearly with
the sample width. However, our result is in excellent agreement with
equation (2) that suggests Gν ∝ w2. The w2 scaling behaviour is
further validated in Fig. 3d, lending strong support to our analysis.

The measured dependence Gν(T ) allows us to determine ν(T )
and lee(T ) using equation (2). The results are shown in Fig. 3e
and compared with the calculations29 detailed in Supplementary
Section 6. The agreement is surprisingly good (especially taking
into account that neither experiment nor calculations use any

fitting parameters) and holds for different PC devices and different
carrier densities (Supplementary Section 7). We also note that the
agreement is markedly better than the one achieved previously
using measurements of ν in the vicinity geometry12, and even
accommodates the fact that both experimental and theoretical
curves in Fig. 3e (inset) deviate from the 1/T 2 dependence expected
for the normal Fermi liquid6,30. The deviations arise because
temperatures ∼50–100K are not insignificant with respect to the
Fermi energy. Furthermore, our calculations in Fig. 3e stray slightly
off the experimental curve above 100K. In fact, this is expected
because, in the hydrodynamic regime lee � w, the kinematic
viscosity can no longer be expressed in terms of lee (as above) and
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requires a more accurate theoretical description using the two-body
stress–stress response function29. Although the strong inequality
lee�w is not reached in our experiments, the experimental data in
Fig. 3e do tend in the expected direction (Supplementary Section 8).

To conclude, graphene constrictions provide a unique insight
into the impact of e–e interactions on electron transport. The
observed negative T dependence of the point contact resistance, its
superballistic values and the unusual w2 scaling are clear indicators
of the important role of e–e collisions in clean metals at elevated
temperatures. Our analysis also offers a guide for unravelling
intricate interaction effects contributing at the crossover between
the ballistic and hydrodynamic transport regimes.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 12 March 2017; accepted 14 July 2017;
published online 21 August 2017
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Methods
Our devices were made from encapsulated graphene heterostructures
using electron-beam lithography and standard microfabrication
procedures (Supplementary Section 1). The constriction widths were
determined using Bruker’s FastScan atomic force microscope. The electrical
measurements were carried out in a variable temperature insert employing

lock-in techniques at low frequencies (10–30Hz) and with excitation currents
of 0.1–1 µA.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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S1. Device fabrication 

Our encapsulated-graphene devices were made following a recipe similar to that used in the 

previous reports1,2,3
. First, an hBN-graphene-hBN stack was assembled using the dry peel technique2. 

This involved mechanical cleavage to obtain monolayer graphene and hBN crystals less than 50 nm 

thick. The selected crystallites were stacked on top of each other using a polymer membrane 

attached to a micromanipulator2. The resulting heterostructure was transferred on top of an 

oxidized silicon wafer (290 nm of SiO2) which served in our experiments as a back gate. After this, 

the heterostructure was patterned by electron beam lithography to first define contact regions. 

Reactive ion etching (RIE) was employed to selectively remove the heterostructure areas 

unprotected by the lithographic mask, which resulted in trenches for depositing long electrical leads 

and metal contacts to graphene (Fig. S1a). 3 nm of chromium followed by 80 nm of gold were 

evaporated into the trenches. This fabrication sequence allowed us to prevent contamination of the 

narrow graphene edges that were exposed by RIE, which reduced the contact resistance3.  

 

Next, the same lithography and etching procedures were employed again to define the final device 

geometry. Figure S1a shows another device used in our experiments (in addition to that shown in 

Fig. 1c of the main text). The two Hall bars host four constrictions and accompanying reference 

regions. Note that we could probe point contacts (PCs) using voltage probes placed at different 

distances. To determine PCs’ width, the devices were imaged by atomic force microscopy (AFM). An 

example of the obtained AFM images is provided in Fig. S1b, and a line trace in Fig. S1b shows a 

typical height profile h(x) across the constriction. Because of much quicker etching of hBN in 

comparison with graphene, a step-like feature develops in the etched slope3 as indicated by the 

arrow in Fig. S1b. This feature allows us to accurately determine the vertical position of the 

graphene channel. To calculate its width wAFM, we took into account both graphene’s vertical 

position (Fig. S1c) and a finite opening angle of our AFM tips (20).  
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Figure S1|Graphene point contacts. a, Optical image of a device with PCs varying in width from 0.2 

to 0.6 μm. Scale bar: 10 m. b, Three dimensional AFM image of one of the point contacts. Scale bar: 

0.2 m. c, Height profile along the white dashed line in (b). Red lines indicate the width wAFM for this 

particular constriction; graphene is buried 20 nm under the hBN layer. 

S2. Mobility and mean free path 

 

We characterized quality of our graphene devices using their reference regions. The longitudinal and 

Hall resistivities (xx and xy, respectively) were measured in the standard four-probe geometry as a 

function of back gate voltage. Figure S2a shows xx(n) at different T, where carrier density n was 

determined from xy. One can see a typical behavior for high quality graphene. At low T, xx exhibits 

a peak at the charge neutrality point (NP) with a sharp decrease down to 20-50  for |n| > 0.51012 

cm-2. Away from the NP, xx grows monotonically with T (inset of Fig. S2a) as expected for phonon-

limited transport in doped graphene4.  

 

The mobility was calculated using the Drude formula, = 1/nexx where e is the electron charge. For 

typical n  11012 cm-2,  exceeded 15 m2V-1s-1 at 5 K and was around 5 m2V-1s-1 at room 

temperature. These values translate into the elastic mean free path l = ℏ/e(n0.5 of about 1 to a 

few microns at all T (Fig. S2b) which exceeds the dimensions of our constrictions and implies ballistic 

transport through them with respect to momentum-non-conserving collisions. To illustrate that such 

ballistic transport occurs not only inside reference regions but also for the sections of our devices 

with PCs, we carried out measurements in the bend geometry5,6 (micrograph in Fig. S2c). This figure 

shows an example of the bend resistance RB(n) measured from a region located between two PCs. 
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For n away from the NP and at liquid-helium T, RB becomes negative, which indicates direct, ballistic 

transmission of charge carriers from, for example, current contact (1) into voltage contact (4) (refs. 

5,6). The negative bend resistance was found for all the regions of our devices, proving their high 

homogeneity and, also, implying that l at low T was comparable to the Hall bars’ width, in 

agreement with the above estimates based on the Drude model (inset of Fig. S2b). The ballistic 

transmission was rapidly suppressed with increasing temperature and disappeared at around 100 K 

(inset of Fig. S2c). 

 

Figure S2| Characterization of encapsulated graphene. a, xx as a function of n at different 

temperatures. Inset: xx(T) for a few n.  b, Elastic mean free path as a function of n at high T  100 K. 

Inset: Complete T dependence for various n. d, Bend resistance RB(n) at low T. The micrograph shows 

schematics of the bend geometry used in the experiment where RB = R12,34 (for details see refs. 5,6). 

Inset: Temperature dependence of RB at the density indicated by the black arrow, n =-1.71012 cm-2. 

 

S3. Finding the width of point contacts 

 

In a conventional two-dimensional electron gas (e.g., in GaAlAs heterostructures), local gates are 

used to deplete charge carriers in specific areas, creating insulating regions that inhibit current 

pathways. This allows constrictions with smooth edges. In graphene devices, constrictions are made 

by milling away the material. Accordingly, our PCs are defined by actual graphene edges. Figures 

S3a-b show two more examples of AFM images of our PCs with wAFM ≈ 0.2 and 0.5 m. Due to 

limitations of electron-beam lithography, the edge profiles are unavoidably rough on a sub-100-nm 

scale. The destructive nature of RIE may also introduce microscopic cracks7 that cannot be visualized 

being buried under the top hBN layer. Such edge disorder may be responsible for the lowering of the 
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PC conductance below the Sharvin limit7 and is expected to contribute more in our narrowest 

devices (Fig. 1d of the main text). 

To gain further information about our narrowest PCs, we compared their measured conductance 

with that expected from the Sharvin formula. Figure S3d mirrors the presentation in Fig. 1d of the 

main text, showing the PC conductance as a function of density n, for the constrictions presented in 

Figs. S3a-c. The theory curves are again plotted using the width measured by AFM. In the case of 

wAFM ≈ 0.2 m, Gpc was found to be notably lower than that expected from eq. (1) of the main text. 

As discussed above, this can be attributed to the edge roughness playing a relatively more 

prominent role for narrower constrictions7. However, even for the narrowest PC, its Gpc(n) still scales 

linearly with the Fermi wave vector kF, following the Sharvin formula (inset of Fig. S3d). This allows 

us to find the constriction’s effective width w. We used such linear fits to determine effective widths 

for all our PC devices. Figure S3e shows examples of the fitting procedure for five PCs, plotting Gpc as 

a function of kF.  In all our devices, the dependences Gpc(kF) were clearly linear which shows that the 

effective width w is a good approximation for describing graphene constrictions. Such an approach 

was also used previously for suspended graphene constrictions8. 

 

 

Figure S3| Point contact widths. a-b, AFM images of our constrictions. Grey scale: black - 0 nm; 

white - 95 nm. c, Height profile across the narrowest constriction, similar to the presentation in 

Fig. S1. d, Low-T conductance for the devices in (a) and (b). Solid curves: Experimental data. Dashed: 

Sharvin expression using the width determined by AFM. Inset: Gpc for the 0.2m PC is re-plotted as 

a function of kF. e, Gpc as a function of kF for several PCs measured at 2 K (electron doping). The 

dashed lines are linear fits to our experimental data (solid curves). The effective width w, extracted 

from the best fits to eq. (1) of the main text, is color-coded for each constriction.  
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S4. Modelling the ballistic-to-viscous crossover 

 

Transport measurements reported in the main text were carried out using constrictions with w 

ranging from 0.2 to 1.2 m and carrier densities of the order of 1012 cm-2. The observed ‘super-

ballistic’ behavior (that is, the suppression of the PC resistance below the ballistic Sharvin-Landauer 

value) was found to be most prominent at temperatures below 100 K. Under these conditions the e-

e scattering mean free path lee, which depends on T and n, is comparable to the constriction width 

w. Therefore, modelling electron transport in our experimental system requires a method that can 

operate at the crossover between the ballistic and hydrodynamic regimes. To this end, we have used 

an approach developed in ref. 9, which is based on a kinetic equation with the collision operator 

describing momentum-conserving e-e collisions. In the absence of momentum-relaxing processes, 

such as electron-phonon scattering, this approach predicts the conductance Gpc that attains a 

ballistic value at zero T and increases monotonically with increasing temperature. In the present 

work, to account for the non-monotonic temperature dependence of the measured resistance Rpc, 

first growing and then decreasing, we have extended the model of ref. 9 by adding to the kinetic 

equation a momentum-relaxing term that describes electron-phonon scattering. In notations of ref. 

9 our model reads  

(𝜕𝑡 + 𝑣𝛻𝑥)𝑓(𝜃, 𝑥) = −𝛾𝑒𝑒(1 − 𝑃)𝑓(𝜃, 𝑥) − 𝛾𝑒𝑝(1 − 𝑃0)𝑓(𝜃, 𝑥).                       (S1) 

where f(θ,x) is the non-equilibrium carrier distribution at the 2D Fermi surface parameterized by the 

angle θ. The rates ee and ep describe the e-e scattering and electron-phonon scattering processes, 

the quantities P and P0 are projectors on the angular harmonics with m = 0, 1 and m = 0, 

respectively, and 1 stands for the identity operator. As in ref. 9, this model assumes that all 

harmonics of the distribution function, which are not conserved, should relax at equal rates. The 

relaxation rates are equal to ee + ep for m = +2, +3,… and ee for m = +1. The single-rate assumption 

allows us to reduce the integral-differential kinetic equation to a closed-form self-consistency 

relation for quasi-hydrodynamic variables (i.e., the m = 0,±1 angular harmonics), providing a means 

for solving it in the constriction geometry.  

 

Incorporating the electron-phonon scattering term in the approach of ref. 9 significantly changes the 

algebra but conceptually proves to be uneventful. Given the scattering rate values ee and ep, we 

first find the current profile in the constriction cross-section. This is done considering non-slip 

boundary conditions, which we modelled by adding to the right-hand side of eq. (S1) a delta function 

term of the form -b(y)(w/2 - |x|)P+ f(,x) where the operator P+ projects f(,x) on the m = 0,±1 

angular harmonics. The parameter b is taken to the limit bto model an impenetrable boundary 
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at the half-lines y = 0, |x|>w/2. We then derive a self-consistent relation for current density in the 

constriction, solve it numerically and use the solution to determine the potential distribution in the 

regions adjacent to the constriction. The potential difference, obtained for the unit total current, 

yields the resistance.  

 

As a simple model, we use the temperature dependences for the rates ee and ep in the following 

form 

𝛾𝑒𝑒 =
𝑎𝑇2

𝑛1 2⁄ ×
𝑣F

𝑤
,                  𝛾𝑒𝑝 = 𝑐𝑇 ×

𝑣F

𝑤
                                           (S2) 

where vF = 106 m/s is the graphene Fermi velocity. These dependences correspond to the prediction 

of the Fermi liquid theory at weak coupling and the electron-phonon scattering rate due to acoustic 

phonons. The fits to the experimental dependences Rpc(T) shown in Fig. 1e of the main text were 

obtained with the best-fit values of a = 8.6103 K-2 m-1 and c = 210-3 K-1, which were taken to be 

identical for all densities n. To test the robustness of our model, we also explored other power-law 

and polynomial temperature dependences, and found that modest deviations from the T2 and T 

scaling do not impact quality of the fits and may even lead to slight improvement. The agreement 

between the fits and the experimental data in Fig. 1e, impressive as it is, should therefore not be 

taken as evidence for the T2 and T scaling for the rates ee and ep. Indeed, the analysis presented in 

the final part of the main text effectively uses a faster T dependence for phonon scattering and ee 

somewhat slower than T2, which provides a surprisingly good quantitative agreement with the 

experimental data. Let us also note that, if the different contributions described above were simply 

summed up using eq. (3) of the main text rather than the full model based on eq. (S1), we obtained 

practically the same theoretical dependences (within a few %). This further validates our analysis of 

the experimental data using eq. (3).  

 

S5. Ohmic contribution to point contact resistance 

 

Narrow constrictions that define PCs are connected to broader regions in which current and voltage 

contacts are located (see the above images of our experimental devices). In the presence of elastic 

scattering, these regions are responsible for an additional Ohmic contribution RC that depends on 

details of device’s geometry and the distance to voltage probes. This contribution is significant even 

at low T where transport is ballistic over a few m distances and collisions with device edges become 

a dominant scattering process. The Ohmic contribution grows with increasing temperature (that is, 

with increasing electron-phonon scattering) and can obscure the viscous-flow behavior. Therefore, 
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we subtracted RC from the measured resistance Rpc to extract the conductance that comes 

exclusively from PCs, as described in the main text. Such a procedure is standard in analysis of 

electron transport through quantum PCs10. 

 

To account for different geometries of contact regions, we calculated RC numerically. To this end, we 

computed RC = V12/I56 (see Fig. S4a as an example) by solving the following set of equations 

                                                   ∇ . 𝐽(𝑟) = 0 ,        
σ0

𝑒
 ∇ϕ(𝑟) − 𝐽(𝑟) = 0                                             (S3) 

where J(r) is the current density, (r) is the electric potential in the two-dimensional plane, 

σ0 = ne2
/m the Drude-like conductivity with m and e being the effective mass and the electron 

charge, respectively, and  is the phenomenological scattering time that accounts for all possible 

momentum-non-conserving collisions, including those at graphene edges. To solve the above 

differential equations, we followed the procedure used in ref. 10. In brief, by discretizing the 

differential operators on a square mesh, we obtained a set of sparse linear equations that could 

readily be solved. Our method involved three different staggered meshes that sampled values of the 

potential and, independently, the two components of the current density10. This was required to 

ensure that the velocity component orthogonal to the boundary was sampled, too. Finally, we used 

the following boundary conditions to simulate device’s edges and contacts: (i) the current 

orthogonal to the edges was zero, (ii) the current was also zero through voltage contacts, (iii) the 

total current through source and drain contacts was fixed, as in the experiment.  

Exploiting the linearity of the problem, we can write the Ohmic contribution as RC = bxx, 

where b is a dimensionless function of the ratios w/W and L/W. The calculated coefficient b is 

plotted in Fig. S4b as a function of w/W for the geometry used in our experiments with L/W = 1.  

 

Figure S4| Ohmic contribution. a, Schematic of the device geometry. Electrical current I is passed 

between contacts 5 and 6. Voltage drop is measured between pairs of contacts 1 and 2 or 3 and 4.  

b, Coefficient b as a function of w/W for the given L/W = 1. The solid curve shows our numerical 

results. The open circles correspond to the geometry of PC devices measured in this work 
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S6. Microscopic calculations of electron-electron scattering  

 

In this section, we provide details of microscopic calculations of lee which were presented in Fig. 3e 

of the main text. We have determined lee from the imaginary part of the retarded quasiparticle self-

energy (k, ) averaged over the Fermi surface11. The conduction and valence bands are marked 

with and, respectively. For an electron-doped system, we use 

𝑙ee
−1 ≡

2

𝑣F
∫ 𝑑𝜔 (

𝜕𝑛F(𝜔)

𝜕𝜔
) ℑ𝑚[Σ+(𝑘F, 𝜔)]                                              (S4) 

where kF is the Fermi wave vector and nF(ω) is the Fermi distribution. Below we use ℏ  1 and kB  1 

for the Planck and Boltzmann constants, respectively. In the spirit of the large-N approximation 

(where N = 4 is the number of fermion flavors in graphene), the quasiparticle self-energy (k, ) can 

be calculated within the G0W approximation. For monolayer graphene12,13 

ℑ𝑚[Σ𝜆(𝑘F, 𝜔)] = ∫
𝑑2𝒒

(2π)2
 ∑ ℑ𝑚[𝑊(𝑞, 𝜔 − 𝜉𝒌−𝒒,𝜆′)]ℱ𝜆𝜆′  (θ𝒌,𝒌−𝒒)

𝜆′

[𝑛B(𝜔 − 𝜉𝒌−𝒒,𝜆′)

+ 𝑛F(−𝜉𝒌−𝒒,𝜆′)]                                                                                                     (S5) 

where nF/B() = (e
+ 1)-1 are the usual Fermi and Bose distribution factors, respectively, and W(q,) 

= V(q,)/(q,) is the screened Coulomb interaction. The Fourier transform of the bare Coulomb 

interaction, V(q,) = 2e2𝒢(qd,qd’)/q, contains the form-factor 𝒢(qd,qd’), which encodes all the 

information about the dielectric environment surrounding the graphene. It depends on the thickness 

d and d’ of hBN above and below the graphene plane, as well as on the in-plane ϵx and out-of-plane 

ϵz components of the dielectric tensor of hBN. The full expression for 𝒢 is given, for example, in the 

Supplementary Material of ref. 14. Finally, k,vFk - µ(T)is the band energy measured from the 

chemical potential µ(T) and ε(q,ω) = 1 - V(q,)nn(q,) is the RPA dynamical dielectric function. Here, 

nn(q,) is the density-density response function of graphene, which can be found in refs. 15–19. 

ℱ’ (k,k-q) = [1 + ’cos(k,k-q)]/2 is the square of the matrix element of the density operator, with 

k,k-q = k -k-q being the angle between the vectors k and k – q.  

 

For completeness, we note that in the Fermi liquid regime12 eq. (S4) can be simplified to  

𝑙ee
−1 =  

π 𝑘F

𝑁
(

𝑇

εF
)

2

ln (
2εF

𝑇
)     (S6) 

where εF = vFkF is the Fermi energy. 
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S7. Sample and density dependences of e-e scattering length 

 

In monolayer graphene, where charge carriers are massless Dirac fermions, e-e scattering is 

dominated by processes that transfer a small amount of the momentum13. Such events, usually 

referred to as collinear collisions, are weakly sensitive to the dielectric enviroment17. Therefore, our 

devices with different thicknesses of top and bottom hBN layers are not expected13 to exhibit 

drastically different lee. Indeed, Fig. S5a plots lee(T) for several PCs in two of our devices with 

different d and d’. For these devices, the e-e scattering lengths calculated as described in Section 6 

are indistinguishable on the scale of Fig. S5a, yielding the same curve. As for the experiment, lee 

found for all our PCs closely follow the same functional dependence (see Fig. S5a) and exhibit 

quantitative agreement with the calculations. This substantiates the robustness of the experimental 

and analytical methods used in this report. 

 

Until now, we presented lee(T) only for fixed carrier densities. For completeness, Fig. S5b shows the 

density dependence of lee at fixed T. To find lee(n), we followed the same analytical procedure as 

explained in the main text, which allowed us to extract the viscous conductance G and, 

consequently, obtain lee without using any fitting parameters. Comparison in Fig. S5b between our 

experiment and calculations again shows good agreement. Perhaps unsurprisingly, it holds best for 

intermediate T around 100 K, where our PCs are sufficiently away from the purely ballistic regime 

while the electron-phonon contribution to Rpc remains relatively small. Let us note that, in this 

experiment, lee slowly increases with n, which is in contrast to the trend reported for the vicinity 

geometry (see Ref. 12 of the main text) but in agreement with the theory that expects lee to be 

approximately proportional to n0.5.  
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Figure S5|Electron-electron scattering for different devices and carrier densities. a, lee as a function 

of T measured using devices A and B with several PCs; n = 11012 cm-2. Device A is made of graphene 

encapsulated between hBN crystals off approximately equal thickness (d  d’  40 nm). In device B, 

top hBN is 20 nm whereas the bottom one 30 nm. Orange curve: Microscopic calculations of lee(T) 

for both A and B. b, lee as a function of n at different T in a constriction with w ≈ 0.5 μm (solid 

curves). Dashed curves: Calculations of lee(n). 

S8. Different length scales for electron viscosity  

 

Our experimental data allow us to determine the characteristic length for e-e collisions responsible 

for the super-ballistic flow. As discussed above and in the main text, we find that these lengths agree 

extremely well with the e-e mean free path lee, associated with the quasiparticle lifetime τee = lee/vF. 

However, at high temperatures, deep in the hydrodynamic regime, the quasiparticle lifetime is 

expected to be no longer the relevant length scale governing the viscous electron flow. In this 

regime, the kinematic viscosity ν is better described by the ‘viscous’ mean free path lV, which is of 

the same order but not identical to lee. 

The kinematic viscosity ν is related to lV by the standard expression ν = vFlV/4 and can be 

calculated from the stress-stress linear response function χij,kl(q,) as  

𝜈 =  − lim
𝜔→0

1

4 𝑛 𝑚𝑐𝜔
∑ ℑ𝑚 [𝜒𝑖𝑗,𝑖𝑗(𝟎, 𝜔) −  

1

2
𝜒𝑖𝑖,𝑗𝑗(𝟎, 𝜔)]

𝑖,𝑗=𝑥,𝑦

 ,                           (S7) 

where mc=kF/vF is the effective mass for monolayer graphene. After rather lengthy calculations (see 

ref. 20 for technical details), the viscosity length is found to be given by 

ℓ𝑣
−1 =

2

𝑣F
∫ 𝑑𝜔 (

𝜕𝑛F(𝜔)

𝜕𝜔
) ℑ𝑚 [Σ+

(𝑣)(𝑘F, 𝜔)],                                           (S8) 

where 
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ℑ𝑚 [Σ𝜆
(𝑣)

(𝑘F, 𝜔)]

= ∫
𝑑2𝒒

(2π)2
 ∑ ℑ𝑚[𝑊(𝑞, 𝜔 − 𝜉𝒌−𝒒,𝜆′)]ℱ𝜆𝜆′  (θ𝒌,𝒌−𝒒)

𝜆′

[𝑛B(𝜔 − 𝜉𝒌−𝒒,𝜆′)

+ 𝑛F(−𝜉𝒌−𝒒,𝜆′)] sin2(𝜃𝒌,𝒌−𝒒)                                                                              (S9). 
 

In the Fermi liquid regime12 the viscosity length behaves as  

ℓ𝑣
−1 = 𝒩𝛼𝑒𝑒

2 𝑘F (
𝑇

εF
)

2

 ,                                                           (S10) 

where αee = 2.2 is the e-e coupling constant of graphene, and the coefficient 𝒩~0.1 has a rather 

cumbersome expression, depending on microscopic details (see ref. 20). 

 

Figure S6 compares our experimental data (same as in Fig. 3e in the main text) with microscopic 

calculations for both lengths lee and l As shown in the main text, the experimental data follows lee 

closely until about 100 K. Beyond this T, the extracted length deviates slightly upwards from lee and 

tends towards l as expected in the extreme hydrodynamic regime lee << w. Proper validation of this 

transition from lee to l would require measurements at much higher T, inaccessible for our 

experimental devices. Accordingly, Fig. S6 is used here only to point out similarities and differences 

between our experimental data and e-e scattering length scales, whilst better theoretical 

understanding is required to make any further conclusions.  

 

Figure S6| Different viscous length. Black symbols: Electron-electron scattering length determined 

experimentally for a graphene constriction with w ≈ 0.5 um; n = 1012 cm-2. Red and purple curves: 

Microscopic calculations of lee and lV as a function of T for the given n.  
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Abstract: magneto-oscillatory phenomena take on many different forms in Condensed Matter 

physics. However, the different effects tend to have the same fundamental origin of which there is 

only a handful. Quantum oscillations for one instance, originate due to the coherence of electron 

trajectories and/or preservation in of phase in the electron wave function. This restricts the 

phenomena to liquid helium temperatures. Here, we present a completely novel type of quantum 

oscillation which we called Brown-Zak oscillations. The underlying physics is due to the magnetic 

translation group which was described in chapter 3.5, where electron motion change periodically 

between straight and curved trajectories as the magnetic field is increased. This results in strong 

oscillations in the conductivity upon increasing magnetic field. These oscillations show novel 

behaviour not found in any other type of magneto-oscillation. The most outstanding is the fact that 

they are extremely robust with respect to temperature. For example, we could observe the Brown-

Zak oscillations still at 373 K, the boiling point of water. 
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High-temperature quantum
oscillations caused by recurring
Bloch states in graphene superlattices
R. Krishna Kumar,1,2,3 X. Chen,2 G. H. Auton,2 A. Mishchenko,1 D. A. Bandurin,1

S. V. Morozov,4,5 Y. Cao,2 E. Khestanova,1 M. Ben Shalom,1 A. V. Kretinin,2,6

K. S. Novoselov,2 L. Eaves,2,7 I. V. Grigorieva,1 L. A. Ponomarenko,3

V. I. Fal’ko,1,2* A. K. Geim1,2*

Cyclotron motion of charge carriers in metals and semiconductors leads to Landau
quantization and magneto-oscillatory behavior in their properties. Cryogenic
temperatures are usually required to observe these oscillations. We show that graphene
superlattices support a different type of quantum oscillation that does not rely on Landau
quantization. The oscillations are extremely robust and persist well above room
temperature in magnetic fields of only a few tesla. We attribute this phenomenon to
repetitive changes in the electronic structure of superlattices such that charge carriers
experience effectively no magnetic field at simple fractions of the flux quantum per
superlattice unit cell. Our work hints at unexplored physics in Hofstadter butterfly systems
at high temperatures.

O
scillations of physical properties of mate-
rials with magnetic field are a well known
and important phenomenon in condensed
matter physics. Despite having a variety of
experimentalmanifestations, there are only

a few basic types of oscillations: those of either
quantum or semiclassical origin (1–5). Semiclas-
sical size effects, such as Gantmakher and Weiss
oscillations, appear owing to commensurability
between the cyclotron orbit and a certain length
in anexperimental system (1–4). Quantummagneto-
oscillations are different in that they arise from
periodic changes in the interference along closed
electron trajectories (1–5). Most commonly, quan-
tum oscillations involve cyclotron trajectories. This
leads to Landau quantization and, consequently,
Shubnikov–de Haas (SdH) oscillations in mag-
netoresistance and the associated oscillatory be-
havior inmany other properties (1–3). In addition,
quantum oscillations may arise from interference
on trajectories imposed by sample geometry, lead-
ing to Aharonov-Bohm oscillations in mesoscopic
rings, for instance (3, 5). Whatever their exact
origin, the observation of such oscillatory effects

normally requires low temperatures (T), and this
requirement is particularly severe in the case of
quantum oscillations that rely on the monochro-
maticity of interfering electron waves. Even in
graphene, with its massless Dirac spectrum and
exceptionally large cyclotron gaps, SdH oscilla-
tions rarely survive above 100 K. At room T, high
magnetic fields (B) of ~30 T are needed to observe
the last two SdHoscillations arising from themaxi-
mal gaps between the zeroth and first Landau
levels (LLs) of graphene (6). In all other ma-
terials, quantum oscillations disappear at much
lower T.
Electronic systems with superlattices can also

exhibit magneto-oscillations. In this case, the inter-
ference of electrons diffracting at a superlattice
potential in a magnetic field results in fractal,
self-similar spectra that are often referred to as
Hofstadter butterflies (HBs) (7–12). Their fractal
structure reflects the fact that charge carriers ef-
fectively experience no magnetic field if mag-
netic flux f through the superlattice unit cell is
commensurate with the magnetic flux quantum,
f0 (7–9). This topic has attracted interest for
decades (11–16) but received a particular boost
thanks to the recent observation of clear self-
similar features in transport characteristics and
in the density of states (DOS) of graphene superlat-
tices (17–25). Because theHBdepicts quantumstates
developed from partial admixing of graphene’s
original LLs (12), superlattice-related gaps already
become smeared at relatively low T, well below
those at which signatures of quantization in the
main spectrum disappear. Therefore, it is perhaps
not surprising that investigations of Hofstadter
systemswere confinedmostly to low T. As shown

below, this has resulted in a failure to notice
some unusual physics: Superlattices exhibit robust
high-T oscillations in their transport character-
istics, which are different in origin from the
known oscillatory effects.
We usedmultiterminal Hall bar devices (Fig. 1A,

inset, and fig. S1) made from graphene super-
lattices (26) to carry out our transport measure-
ments. Monolayer graphene was placed on top
of a hexagonal boron nitride (hBN) crystal, and
their crystallographic axes were aligned with an
accuracy of better than 2° (17, 24). The resulting
moiré pattern gives rise to a periodic potential
that is known to affect the electronic spectrum
of graphene (23–25). To ensure that the charge
carriers have high mobility, the graphene was
encapsulated using a second hBN crystal, which
was intentionally misaligned by ~15° with respect
to graphene’s axes. Although the second hBN
layer also leads to a moiré pattern, it has a short
periodicity and, accordingly, any superlattice ef-
fects may appear only at high carrier concentra-
tions n or ultrahigh B, beyond those accessible
in transport experiments (17–25). Therefore,
the second hBN effectively serves as an inert,
atomically-flat cover protecting graphene from
the environment. Six superlattice devices were
investigated and showed consistent behavior,
which is described below. As a reference, we also
studied devices made according to the same pro-
cedures but with the graphene misaligned with
respect to both top and bottom hBN layers.
Figure 1A shows typical behavior of the longi-

tudinal resistivity rxx for graphene superlattices
as a function of B at various T. For comparison,
Fig. 1B plots similar measurements for the ref-
erence device. In the latter case, rxx exhibits pro-
nounced SdHoscillations at liquid-helium T, which
develop into the quantumHall effect above a few
tesla. The SdH oscillations are rapidly suppres-
sedwith increasing T and completely vanish above
liquid-nitrogen T, the standard behavior for
graphene in these relatively weak fields (27, 28).
In stark contrast, graphene superlattices exhibit
prominent oscillations over the entire T range
(Fig. 1A and fig. S2). At both high and low T, the
oscillations are periodic in 1/B (figs. S3 and S4).
The oscillations in Fig. 1A change their frequency
at ~50 K. This is the same T range in which SdH
oscillations disappear in the reference device of
Fig. 1B. For certain ranges of n andB, we observed
that SdH oscillations vanished first, before new
oscillations emerged at higher T. An example of
such nonmonotonic T dependence is shown in
fig. S2. To emphasize the robustness of the high-
T oscillations, we show that they remain well
developed even at boiling-water T in moderate
B (Fig. 1C). The oscillations were observed even
at higher T, but above 400 K our devices (both
superlattice and reference devices) showed rapid
deterioration in quality and strong hysteresis as
a function of gate voltage.
The high-T and SdH oscillations differ not only

in their periodicity and thermal stability but also
because they have distinctly different n depen-
dences. Figure 2, A and B, shows Landau fan dia-
grams for the longitudinal conductivity sxx of
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Fig. 1. High-temperature oscillations in graphene superlattices.
(A) rxx at relatively small B for a superlattice device with a moiré periodicity
of ≈13.6 nm. The electron density is n ≈ 1.7 × 1012 cm−2 and is induced by
a back-gate voltage. (Inset) Optical micrograph of one of our Hall bar
devices. Scale bar, 5 mm. W, ohms. (B) Same as (A) but using the reference
device at the same n. (C) Magnetoresistance curves for the devices in (A)
and (B) at 100°C (solid curves). rxx for the reference device is multiplied

by a factor of 4. Dotted curves: Oscillatory behavior is emphasized by
subtracting a smooth background, using fourth-order polynomials as best
fits to the original rxx curves (26). At 100°C, graphene superlattices
exhibit oscillations starting below 4 T, whereas no sign of oscillatory
behavior could be discerned at this T in our reference devices at any
B. (Inset) Scanning tunneling image illustrates typical moiré patterns found
in our devices [for details, see (30)].
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Fig. 2. Concentration and field dependence of Brown-Zak (BZ) oscil-
lations. (A) Low-T fan diagram sxx(n, B) for a superlattice device with a ≈
13.9 nm. The gray scale is logarithmic: white, 0.015 mS; black, 15 mS.
(B) Same device as (A) but at 150 K. Logarithmic gray scale: white, 0.1 mS;
black, 10 mS. The dotted lines denote B ¼ f0=qS. (C) Same as (B) but for
Dsxx obtained by subtracting a smooth best-fit background (26). Linear gray
scale: ±0.3 mS. (Inset) Fundamental frequency B0 of BZ oscillations found in

our different devices as a function of n0 ¼ 8=
ffiffiffi

3
p

a2. (D) Near B ¼ f0=qS

(dashed lines are for q = 3 to 6), local changes in sxx and sxy resemble
magnetotransport in metals near zero field, as illustrated by the green inset
curves. (E) Part of (C) near the second-generation NP for electron doping
is magnified and plotted as a function of f0=f. The main maxima in Dsxx
occur at f0=f ¼ q. A few extra maxima for p = 2 and 3 are indicated by black
and green arrows, respectively (see fig. S6 for details). (F) Corresponding
behavior of Dsxy (smooth background subtracted). Its zeros align with the

red maxima in Dsxx.
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graphene superlattices as a function of B and
n (we plot sxx rather than rxx to facilitate the
explanation given below for the origin of the
high-T oscillations). At low T (Fig. 2A), we ob-
serve the same behavior as reported previously
(17–22): Numerous LLs fan out from the main
(n = 0) and second-generation neutrality points
(NPs) that are found at n = ±n0, where n0 = 4/S
corresponds to four charge carriers per super-
lattice unit cell with the area S ¼ ffiffiffi

3
p

a2=2and the
superlattice period a (17–22). The LL intersec-
tions result in third-generation NPs at finite B
(19). Minima in sxx evolve linearly in B and orig-
inate from first-, second-, and third-generation
NPs (17–22). This reflects the fact that the DOS
for all LLs (including those caused by fractal gaps)
is the same and proportional toB (11). At T> 100K,
the Landau quantization dominating the low-T
diagrams wanes and, instead, oscillations with
a periodicity independent of n emerge (Fig. 2,
B and C). This independence of n clearly dis-
tinguishes the high-T oscillations from all of the
known magneto-oscillatory effects arising from
either Landau quantization or commensurability
(1–5). For the reasons that become clear below,
we refer to the observed high-T phenomenon as
Brown-Zak (BZ) oscillations (7, 8).
The BZ oscillations become stronger with in-

creased doping (Fig. 2C), in agreement with the
fact that the superlattice spectrum is modified
more strongly at energies away from the main
Dirac point (17–22). Themaxima in sxx are found
at B ¼ f0=qS , which corresponds to unit frac-
tions of f0 piercing a superlattice unit cell (q is
an integer). The relation between the superlattice
period and the periodicity of the high-T oscilla-
tions holds accurately for all of our devices (Fig. 2C,
inset; for details, see fig. S3). This is the same perio-
dicity that underlines the Hofstadter spectrum

and describes the recurrence of third-generation
NPs (17, 18). However, BZ oscillations emerge most
profoundly at high T, in the absence of any re-
maining signs of the Hofstadter spectrum or
Landau quantization (fig. S5). Our capacitance
measurements (fig. S5A) reveal no sign of behavior
similar toBZoscillations in theDOS, even at liquid-
helium T that allow the clearest view of the HB
(20, 25). These observations prove that BZ oscilla-
tions are a transport phenomenon, unrelated to
the spectral gaps that make up the Hofstadter
spectrum. BZ oscillations do not disappear at
low T and, retrospectively, can be recognized as
horizontal streaks connecting third-generationNPs
on the transport Landau fan diagrams (17–19) (Fig.
2A). However, the streaks are heavily crisscrossed
by LLs, which makes them easy to overlook or
wrongly associate with the quantized Hofstadter
spectrum (17).
TheHB spectrum is expected to exhibit a fractal

periodicity associated with not only unit fractions
but all of the simple fractions, p/q, corresponding
to p flux quanta per q cells. No signatures of such
higher-order states were found in the previous
experiments (17–22) nor can they be resolved in
our present fan diagrams at low T. However, the
fractions with p = 2 and 3 become evident in BZ
oscillations (Fig. 2E) and are most prominent at
high n (fig. S6). This again indicates that the BZ
oscillations are governed by the same underlying
periodicity as is the HB spectrum. We also find
that BZ oscillations are stronger for electrons
than for holes (Fig. 2B and fig. S7). This is in
contrast to the relative strengths of all other
features reported previously for graphene-on-
hBN superlattices (17–25). The electron-hole asym-
metry is probably connected to the observed
stronger electron-phonon scattering for hole dop-
ing (fig. S7).

To explain BZ oscillations, we recall that at
B ¼ f0p=Sq, the electronic spectrum of super-
lattices can be reduced to the case of zero mag-
netic field by introducing new Bloch states and
the associated magnetic minibands, different
for each p/q. This concept was put forward by
Brown (7) and Zak (8) and predates the work by
Hofstadter (10). Examples of BZ minibands for
several unit fractions of f0 are shown in Fig. 3
and fig. S8, using a generic graphene-on-hBN
potential (26). Eachminiband can be viewed as a
superlattice-broadened LL, such that its energy
dispersioneðk→Þdisappears in the limit of vanish-
ing superlattice modulation (12). If the Fermi
energy eF lies within these superlattice-broadened
LLs, the system should exhibit ametallic behavior
(25). The Hofstadter spectrum can then be under-
stood as Landau quantization of BZ minibands
in the effective fieldBeff ¼ B� f0p=qS (20, 29).
With this concept in mind, let us take a closer
look at the experimental behavior of sxx and
the Hall conductivity sxy at high T and small
Beff—that is, in the absence of Landau quantiza-
tion in BZ minibands (Fig. 2, D to F, and fig. S6).
One can see that every time BZ minibands are
formed, sxx exhibits a local maximum and sxy
shows a Beff/(1 + Beff

2)–like feature on top of a
smoothly varying background. This local behavior
resembles changes in sxx andsxy expected for any
metallic system near zero B and approximated
by the functional forms 1/(1 + B2) and B/(1 + B2),
respectively (1–3). The latter are sketched in the
insets of Fig. 2D andmatchwell the shape of local
changes in sxx and sxy near fractional fluxes
f ¼ f0p=q, which correspond to Beff = 0 (Figs.
2D and 3 and fig. S6).
The described analogy betweenmagnetotrans-

port in normal metals and in BZ minibands
can be elaborated using the approximation of a
constant scattering time t (1–3). We assume t to
be the same for allminibands andmagnetic fields.
In this approximation,sxxºv2t and is determined
by the group velocity of charge carriers, v (26).
Each BZ miniband effectively represents a dif-
ferent two-dimensional system with a different
k-dependent velocity. If T is larger than the cy-
clotron gaps, as in our case, the Fermi step be-
comes smeared over several minibands, which all
contribute to sxx. In this regime, one can define
hv2i averaged over an interval of ±T around eF.
We calculate hv2i using a representative mini-
band spectrum for a graphene-on-hBN super-
lattice, which was computed with the model
developed in (29). The resulting conductivity is
evaluated as (26)

sxx ¼ 4e2

h

peFt
h

hv2i
v2F

where e is the electron charge, vF is the Fermi-
Dirac velocity, and h is Planck’s constant (26).
The only fitting parameter is t, which we choose
so that sxx fits the experimental values for f ¼
f0=2 (Fig. 3). For other p/q, the calculated sxx
are shown by black dots. Furthermore, accord-
ing to the classical magnetotransport theory
(1–3), sxx near zero Beff should vary as sxx (Beff) =
sxx (0)/(1 +aBeff

2),wherea is ap-and q-dependent
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Fig. 3. BZ oscillations
as recurring Bloch
states in small effective
fields. Solid curves: sxx at
100 K for electron and
hole doping (n/n0 = ±1.6)
(top and bottom panels,
respectively) in a super-
lattice device with a ≈
13.6 nm. Black dots and
curves: sxx calculated in
the constant-t approxi-
mation for different p and
q. Inset image: BZ mini-
bands eðk→ Þ inside the first
Brillouin zones indicated
by the gray hexagons
(their size decreases with
increasing q). The mini-
bands were calculated for
a generic graphene-on-
hBN superlattice (29)
and correspond to
broadened LLs (for
example, LLs are 2 and 3
for q = 2 and range from 3 to 8 for q = 5). Only those minibands at energies relevant to the doping
level on the experimental curves are shown.
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coefficient. It can be evaluated (26) without
extra fitting parameters (narrow black parab-
olas in Fig. 3). One can see that the theory pro-
vides qualitative agreement for the observed
experimental peaks. The derived values of t yield
sxx(B = 0) ≈ 20 mS, again in qualitative agree-
ment with experiment. It would be unreasonable
to expect any better agreement because of the
limited knowledge about the graphene-on-hBN
superlattice potential (20, 29) and the used t
approximation. The observed exponential T de-
pendence of BZ oscillations (detailed in fig. S4)
can also be understood qualitatively as arising
from scattering on acoustic phonons such that the
scattering length ðº1=TÞ becomes shorter than
the characteristic size, aq, of supercells responsi-
ble for the q-peak in conductivity (26).
To conclude, graphene superlattices exhibit a

distinct quantum oscillatory phenomenon that
can be understood as repetitive formation of dif-
ferent metallic systems, the BZ minibands. At
simple fractions of f0, charge carriers effectively
experience zero magnetic field, which results in
straight rather than curved (cyclotron) trajecto-
ries. Straighter trajectories lead to weaker Hall
effect and higher conductivity. The smooth back-
ground (varying over many q) is attributed to
trajectories that involve transitions between dif-
ferent minibands and effectively become curved.
The reported oscillations do not require mono-

chromaticity, which allows them to persist up to
exceptionally high T, beyond the existence of
LLs. The extrapolation of the observed T depen-
dences (fig. S4B) suggests that the quantum oscil-
lationsmay be observable even at 1000 K. Further
theory is required to understand details of tem-
perature, field, and concentration dependences
of BZ oscillations; the origin of the electron-hole
asymmetry of phonon scattering; the behavior
of higher-order fractions; and the effect of inter-
miniband scattering, which is responsible for the
non-oscillating background.

REFERENCES AND NOTES

1. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt,
Rinehart and Winston, 1976).

2. M. Springford, Electrons at the Fermi Surface (Cambridge Univ.
Press, 1980).

3. C. W. J. Beenakker, H. van Houten, Solid State Phys. 44, 1–228
(1991).

4. R. R. Gerhardts, D. Weiss, Kv. Klitzing, Phys. Rev. Lett. 62,
1173–1176 (1989).

5. R. A. Webb, S. Washburn, C. P. Umbach, R. B. Laibowitz, Phys.
Rev. Lett. 54, 2696–2699 (1985).

6. K. S. Novoselov et al., Science 315, 1379 (2007).
7. E. Brown, Phys. Rev. 133, A1038–A1044 (1964).
8. J. Zak, Phys. Rev. 134, A1602–A1606 (1964).
9. P. G. Harper, Proc. Phys. Soc. A 68, 879–892 (1955).
10. D. R. Hofstadter, Phys. Rev. B 14, 2239–2249 (1976).
11. G. H. Wannier, Phys. Stat. Sol. B 88, 757–765 (1978).
12. D. Thouless, M. Kohmoto, M. Nightingale, M. den Nijs, Phys.

Rev. Lett. 49, 405–408 (1982).
13. A. H. MacDonald, Phys. Rev. B 28, 6713–6717 (1983).

14. C. Albrecht et al., Phys. Rev. Lett. 86, 147–150 (2001).
15. M. C. Geisler et al., Physica E 25, 227–232 (2004).
16. S. Melinte et al., Phys. Rev. Lett. 92, 036802 (2004).
17. L. A. Ponomarenko et al., Nature 497, 594–597 (2013).
18. C. R. Dean et al., Nature 497, 598–602 (2013).
19. B. Hunt et al., Science 340, 1427–1430 (2013).
20. G. L. Yu et al., Nat. Phys. 10, 525–529 (2014).
21. L. Wang et al., Science 350, 1231–1234 (2015).
22. W. Yang et al., Nano Lett. 16, 2387–2392 (2016).
23. M. Yankowitz et al., Nat. Phys. 8, 382–386 (2012).
24. C. R. Woods et al., Nat. Phys. 10, 451–456 (2014).
25. Z. G. Chen et al., Nat. Commun. 5, 4461 (2014).
26. See supplementary materials.
27. K. S. Novoselov et al., Nature 438, 197–200 (2005).
28. Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 438,

201–204 (2005).
29. X. Chen et al., Phys. Rev. B 89, 075401 (2014).
30. N. M. Freitag et al., Nano Lett. 16, 5798–5805 (2016).

ACKNOWLEDGMENTS

This work was supported by the European Research Council,
Lloyd’s Register Foundation, the Graphene Flagship, and the
Royal Society. R.K.K. and E.K. acknowledge support from the
Engineering and Physical Sciences Research Council, D.A.B. and
I.V.G. from the Marie Curie program SPINOGRAPH, and S.V.M.
from the Russian Science Foundation and National University of
Science and Technology (MISiS).

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/357/6347/181/suppl/DC1
Supplementary Text
Figs. S1 to S10
References (31–45)

3 November 2016; accepted 9 June 2017
10.1126/science.aal3357

Krishna Kumar et al., Science 357, 181–184 (2017) 14 July 2017 4 of 4

RESEARCH | REPORT
on A

ugust 31, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/content/357/6347/181/suppl/DC1
http://science.sciencemag.org/


superlattices
High-temperature quantum oscillations caused by recurring Bloch states in graphene

Shalom, A. V. Kretinin, K. S. Novoselov, L. Eaves, I. V. Grigorieva, L. A. Ponomarenko, V. I. Fal'ko and A. K. Geim
R. Krishna Kumar, X. Chen, G. H. Auton, A. Mishchenko, D. A. Bandurin, S. V. Morozov, Y. Cao, E. Khestanova, M. Ben

DOI: 10.1126/science.aal3357
 (6347), 181-184.357Science 

, this issue p. 181Science
potential of the moiré superlattice that forms in such circumstances.
in which graphene is nearly aligned with its hexagonal boron nitride substrate, indicating that they are caused by the 
another oscillatory behavior sets in that is extremely robust to heating. These resilient oscillations appear only in samples
away even at the temperature of boiling water. Although ''ordinary,'' low-temperature quantum oscillations die away, 

 report quantum oscillations in graphene that do not goet al.be observed only at very low temperatures. Krishna Kumar 
transport properties as an external magnetic field is varied. Like most quantum properties, the phenomenon can usually 

periodic changes in−−The shape of the Fermi surface in a conductor can be gleaned through quantum oscillations
Heat-loving quantum oscillations

ARTICLE TOOLS http://science.sciencemag.org/content/357/6347/181

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2017/07/12/357.6347.181.DC1

REFERENCES

http://science.sciencemag.org/content/357/6347/181#BIBL
This article cites 42 articles, 5 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on A
ugust 31, 2017

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/content/357/6347/181
http://science.sciencemag.org/content/suppl/2017/07/12/357.6347.181.DC1
http://science.sciencemag.org/content/357/6347/181#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/


 

 

1 

 

 

 

 
Supplementary Materials for 

 

High-temperature quantum oscillations due to recurring Bloch states in 
graphene superlattices   

R. Krishna Kumar, X. Chen, G. H. Auton, A. Mishchenko, S. V. Morozov, Y. Cao, E. 
Khestanova, D. A. Bandurin, M. Ben Shalom, A. V. Kretinin, K. S. Novoselov, L. Eaves, 

I. V. Grigorieva, L. A. Ponomarenko, V. I. Fal'ko, A. K. Geim 
 

correspondence to:  geim@manchester.ac.uk; v.falko@manchester.ac.uk  
 
 
This PDF file includes: 
 

Supplementary Text 
Figs. S1 to S10 
 

 

 

  



 

 

2 

 

Device fabrication 

Our devices were made following procedures similar to those described previously (31). First, an 

hBN/graphene/hBN stack was assembled using the dry-peel technique (32). This involved 

mechanical cleavage of graphite and hBN on top of an oxidized silicon wafer, after which graphene 

monolayers and relatively thick (30-70 nm) hBN crystallites were identified using an optical 

microscope. The crystals were picked up from the substrate using a polymer membrane attached to 

the tip of a micromanipulator to assemble a three-layer stack such that graphene was encapsulated 

between two hBN crystals. Both graphene and hBN cleave preferentially along their main in-plane 

crystallographic axes, which often results in crystallites having relatively long and straight edges. 

Such edges were used to align graphene with respect to the bottom hBN using a rotational stage and 

by controlling the procedure under an optical microscope. The resulting accuracy of alignment was  

1.5 (33). The top hBN crystal was misaligned intentionally to avoid possible contribution from a 

competing moiré potential (18, 20). The resulting heterostructure was placed on top of an oxidized 

silicon wafer (n-doped Si with SiO2 thickness of either 90 or 290 nm) which served as a back gate. 

The next step involved electron beam lithography to make windows in a polymer mask, which 

defined contact regions to graphene. Reactive ion etching was employed to mill trenches in the 

heterostructure using these windows, which exposed the graphene monolayer. Metallic contacts (3 

nm Cr/ 80 nm Au) were evaporated into the trenches, which was followed by lift-off of the polymer 

mask. This procedure prevented contamination of exposed graphene edges with polymer residues, 

resulting in high-quality contacts (31). Finally, another round of lithography and ion etching was used 

to define a device in the multiterminal Hall bar geometry (fig. S1). The Hall bars had typical widths of 

1–4 m and lengths 10–20 m.  
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Fig. S1. Experimental devices. Optical images of two of our devices. Their superlattices had 

periodicities a specified on the photos, as evaluated from the position n0 of the second-generation 

NPs. 

 

Further examples of Brown-Zak oscillations 

BZ oscillations are found to be a universal feature of graphene superlattices. To show this, fig. S2 

mirrors the presentation of Figs. 1A-B but uses a different superlattice device with a shorter a (that 

is, larger n0). Again, one can see that, in the reference device, quantum oscillations become rapidly 

suppressed and practically disappear already at 50 K. In contrast, the graphene superlattice exhibits 

oscillations that remain clearly visible at room T in fields as low as 2.5 T. For this particular carrier 

concentration n  0.6n0, the amplitude of oscillations varies non-monotonically with increasing 

temperature. Below 3 T, the SdH oscillations are completely washed out at 50 K whereas the BZ 

oscillations emerge only at 100 K, seemingly growing with increasing T. We attribute this 

nonmonotonic dependence to beatings between the SdH and BZ oscillations. On the Landau fan 

diagrams this corresponds to fields and concentrations where minima in xx due to Landau 

quantization cross the conductivity maxima due to the formation of BZ minibands (see Fig. 2).  
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Fig. S2  

Emergence of Brown-Zak oscillations with increasing temperature. (A) xx(B) for a graphene 

superlattice with a  11.2 nm (n0  3.51012 cm-2) at various T. (B) Same for the reference graphene 

device. For both plots, n  2.21012 cm-2. 

 

 
Frequency of Brown-Zak oscillations 
 
BZ oscillations are periodic in 1/B (Figs. 2E-F & figs. S3-S4), so that at small amplitudes they can be 

described by cos(2B0/B). Their frequency B0 was found to be independent of n but varied from 

sample to sample (fig. S3B). This is attributed to different periodicities a of the moiré pattern in 

different devices, which is caused by random, slightly different alignment between the 

crystallographic axes of the graphene and bottom hBN lattices (17-25). For our devices, a varied 

between 11.2 and 14.2 nm and could readily be evaluated from the carrier concentration n0 at 

which second-generation NPs occurred. Indeed, the NPs occur if the lowest electron or highest hole 

minibands are fully occupied, which correspond to 4 charge carriers per superlattice unit cell with 

area S (17-25,30,34). This leads to the equation n0 = 4/S = 8/√3a2, which relates n0 and a.  

 

Examples of BZ oscillations with different frequencies are shown in fig. S3. One can see that the 

oscillations are fastest (largest B0) for the device with the shortest period a (largest n0). The inset of 

fig. S3B summarizes the observed behavior B0(n0) using data for all the studied devices. These are 

the same data set as in Fig. 2C of the main text but the specific devices from figs. S3A-B are now 

indicated by arrows. The experimental dependence is accurately described by the equation B0 = 0/S 

or, equivalently, B0 = 0n0/4. This means that maxima of BZ oscillations in xx occur exactly at B = 

0/qS.  
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Fig. S3 

Frequency of Brown-Zak oscillations for different graphene superlattices. (A) Examples of 

characterization of our superlattice devices. The second-generation NPs are found at n0 which can 

be translated into the values of a and S for the superlattices (17-25). Inset: Behavior near the 

electron NPs is magnified. (B) BZ oscillations for the three devices in (A) at approximately the same 

normalized density n/n0  0.75. Inset:  Frequency B0 of the BZ oscillations for all our superlattice 

devices as a function of the position of their NPs (symbols). This includes the devices in (A,B) as 

indicated by the color-coded arrows. Red line: Expected dependence B0 = 0n0/4. B0 corresponds to 

the last maximum in xx that should appear at one 0 per superlattice unit cell.   

 

Amplitude of BZ oscillations 

At low T and high B, BZ and SdH oscillations coexist, which not only makes it difficult to find out a 

functional dependence for BZ oscillations but also leads to such abnormalities as the nonmonotonic 

T dependence of the overall amplitude of quantum oscillations, as discussed for the case of fig. S2. 

Therefore, to examine behavior of BZ oscillations quantitatively, we have focused on high T and 

relatively low B where the contribution of SdH oscillations is small. In addition, SdH oscillations in 

graphene are suppressed with increasing n because cyclotron gaps become smaller with increasing 

F (28,29). Accordingly, we studied functional dependences of BZ oscillations at n above the second-

generation NP. In this regime, BZ oscillations also become stronger (Fig. 2C, fig. S6) so that we could 

accurately measure their amplitude over a wide range of T. Examples of the observed T and B 

dependences are shown in fig. S4. The measured amplitude of the BZ oscillations, xx, is plotted in 

fig. S4B as a function of T for different B up to 5 T. This covers a range of rational fluxes described by 
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q from 5 up to 37. One can see that xx changes exponentially over two orders of magnitude, 

suggesting the functional dependence xx  exp(-T/T*) where T* is a constant.  

 

With regard to the field dependence, fig. S4B shows that the BZ oscillations decay slower with T for 

higher B. For T > 200 K where the effect of cyclotron gaps is negligible, the BZ oscillations became 

small enough and practically sinusoidal. In this regime, we find that their amplitude xx can be 

described accurately as an exponential dependence on 1/B (fig. S4C). Therefore, the experiments 

suggest that the amplitude of BZ oscillations has the functional form ln(xx)  -T/B.  

 

Qualitatively, this dependence can be understood as follows. BZ oscillations arise due to spatial 

quantization at the length scale L  aq  aB0/B, which involves q unit cells in the makeup of the 

magnetic miniband arising for B = 0/qS (7,8,30,34). As long as Bloch wavefunctions of this miniband 

are not completely randomized by scattering, the miniband electronic structure is expected to affect 

transport properties of a graphene superlattice. Over the T range of our experiments, electron 

collisions on acoustic phonons are known to be the dominant scattering mechanism. It is described 

by a mean free path   1/T. For small amplitude of oscillations, it is reasonable to assume that xx 

is an exponential function of the dimensionless parameter, L/, which translates into ln(xx)  -

aTB0/B  -T/B, in agreement with the experiment. Further theoretical analysis and modeling are 

required to explain the observed T and B dependence quantitatively.  

 

As discussed in the main text, we had to limit the T range in our experiments in order to avoid 

irreversible damage of our devices. Nonetheless, let us note that, by extrapolating the dependences 

of fig. S4B to higher T (for example, consider the 5T curve in this figure), one can find that BZ 

oscillations should in principle be observable up to 500 K (xx extrapolates to >0.01 mS). This 

consideration agrees well with Fig. 1C, where the oscillations are clearly seen at 373 K below 4 T. 

Moreover, in the latter case, n < n0 and, therefore, BZ oscillations are weaker than those for n above 

the second-generation NP (Fig. 2C). The observed T/B functional form for the oscillation amplitude 

suggests that increasing B to 10 T (by a factor of 2) should result in the same xx > 0.01 mS at 1,000 

K. However, electron-electron scattering increases with temperature as T2 and, for graphene, the 

corresponding mean free path is expected to reach a 10-nm scale close 1,000 K, too. Therefore, we 

conservatively estimate that the widely available magnets with B = 16 T should allow the observation 

of BZ oscillations at approximately 1,000 K, assuming that no additional scattering mechanism is 

unexpectedly activated above 400 K. 
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Density of states in graphene superlattices 

Graphene devices are known to exhibit strong dependence of their differential capacitance C on gate 

voltage, which is due to both graphene’s low DOS and the use of nanometer thin dielectric layers 

between graphene and the gate (20,35,36). The latter minimizes a contribution from the classical 

(geometric) capacitance making it easier to measure the quantum capacitance due to the varying 

DoS. Capacitance measurements were previously employed to study the DoS in pristine graphene 

(35,36) and, more recently, in graphene superlattices at low T (20). Using the same technique and 

experimental procedures as those described in (20), we studied the DoS for several superlattice 

devices. Examples of the measured Landau fan capacitance diagrams C(B,n) are shown in fig. S5. 

Cyclotron gaps appear in the diagrams as black stripes (minima in C). At low T, LLs are seen fanning 

out from the main and second-generation NPs. The latter cyclotron gaps are more pronounced for 

holes than electrons. Intersections of main and second-generation LLs result in third-generation NPs, 

near which the replica quantum Hall ferromagnetism was reported (20). The low-T behavior of the 

DoS in graphene superlattices (fig. S5A) agrees well with that reported previously (revealing the 

Hofstadter butterfly spectrum) and, therefore, we refer to (20) for further explanations.  

 

Taking into account that, in transport experiments, BZ oscillations become better resolved at 

elevated T, we have extended the capacitance measurements into the high-T regime. As expected, 

cyclotron gaps in the DoS become smeared with increasing T. Only the largest gaps for the main 

spectrum plus the DoS minima originating from the second-generation NP for hole doping could be 

observed at 100 K (fig. S5B). Importantly, no sign of horizontal streaks can be discerned in fig. S5, not 

only at high but also at low T. This is in stark contrast to transport measurements where such streaks 

that correspond to BZ oscillations are always present on Landau fan diagrams (Fig. 2, fig. S7A).  

 

In more detail, fig. S5C shows C(B) curves at several T for fixed n near the second-generation NP for 

electrons, where BZ oscillations are strongest in transport experiments. No oscillatory behavior is 

noticeable in the capacitance measurements above 100 K. At 200 K, there is no sign left of the LL 

minimum even at 15 T. For comparison, fig. S5D plots xx measured at the same T: BZ oscillations 

appear already at B < 3 T. To summarize, no signatures of n-independent oscillations were found in 

the DoS at any T and B, which strongly suggests that the high-T oscillations observed in transport 

characteristics are not due to any extra gaps in the electronic spectra of graphene superlattices. 
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Fig. S4   

Temperature and field dependence of Brown-Zak oscillations. (A) Examples of xx as a function of 

1/B at different T for our superlattice device with a  13.6 nm (n0  2.51012 cm-2). The presented 

curves are for n  2.91012 cm-2. For clarity, the curves are shifted vertically by 0.1 mS. (B) Detailed T 

dependence of the oscillation amplitude. Some of the maxima are marked by their q and color-

coded in (A). (C) At high T, BZ oscillations decay exponentially as a function of 1/B.  
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Fig. S5 

Differential capacitance for graphene superlattices. (A) Low-T Landau fan diagram C(n,B) for a 

capacitor with a 13.5 nm. Grey linear scale: black 0.266 pF; white 0.293 pF. (B) Same as in (A) but at 

100 K. Scale: black 0.328 pF; white 0.357 pF. (C) Examples of C(B) for the fixed n  2.31012 cm-2 (n/n0 

 0.9) which corresponds to the purple dashed line in (B). The curves are shifted vertically for clarity. 

(D) xx(B) for a Hall bar device with a  13.9 nm and measured at the same n and T as the orange 

curve in (C). (E) Schematic and optical image of one of our capacitance devices. For details, see (20).  
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Higher-order BZ oscillations 

At electron concentrations beyond the second-generation NP, additional features were found in the 

transport properties of graphene superlattices at elevated T. Extra maxima could be discerned in Fig. 

2E (arrows) but they are even better resolved in fig. S6A where n was increased to  2n0, close to the 

highest concentration accessible for our devices. In addition, fig. S6B plots both xx and xy in this 

regime at a slightly lower T of 100 K to enhance the extra features. The maxima in xx align with 

smeared step-like features in xy. Their positions correspond to B = p0/qS where p = 2 and 3, as 

indicated by the dotted curves and blue arrows, respectively. We attribute these transport 

anomalies to the formation of Brown-Zak minibands for the case where p flux quanta penetrate 

through q unit cells (7,8,30,34). The features are weaker than those for unit fractions 0/q in the 

same range of B because p times larger areas are involved in their formation (7,8). This is in 

agreement with the above discussion of the amplitude of BZ oscillations, which decays exponentially 

with the involved length scale L apq. 

 

Fig. S6 

Fractal BZ oscillations. (A) High-T conductivity in graphene superlattices with increasing n beyond 

the second-generation NP for electrons. The same device as in Fig. 2 (a 13.9 nm). New features are 

seen to appear on the curve with n = 2n0. The logarithmic scale is used to amplify the additional 

maxima in xx against the background. (B) Comparison of the extra features in xx with those in xy. 

The electron density is 2n0.  
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BZ oscillations for hole doping 

It is well established that the DoS in graphene-on-hBN superlattices is modified stronger for the 

valence than conduction band (17,25,34). The resulting electron-hole asymmetry is also clearly seen 

in our present devices where cyclotron gaps in the DoS (figs. S5A-B), the second-generation NPs (fig. 

S3A) and LLs in xx at low T (Fig. 2A) are most pronounced for hole doping. In contrast, BZ oscillations 

are more visible for electrons rather than holes (Fig. 2B) and, accordingly, the main text focused on 

the results obtained for electron doping (positive n). To emphasize the generality of this ‘reversed’ 

electron-hole asymmetry, figs. S7A-B show data similar to those of Fig. 2 but for another superlattice 

device (a  13.6nm). 

 

From the experimental point of view, the origin of the unexpected asymmetry becomes clear if we 

look closer at the T-dependence of scattering in graphene-on-hBN superlattices. To this end, fig. S7C 

plots xx as a function of electron and hole doping at different T. The resistivity grows faster with 

increasing T for the valence band compared to the conduction band. The behavior is quantified in 

fig. S7D using the fixed concentrations n/n0  0.7 for electrons and holes. One can see that 

electron-phonon scattering evolves linearly with T and is approximately 4 times stronger for holes 

than electrons. It is also clear from fig. S7D, that superlattice effects strongly enhance phonon 

scattering with respect to pristine graphene. Indeed, the reference devices (encapsulated but non-

aligned graphene) exhibit one-to-two orders of magnitude weaker phonon scattering. Because the 

amplitude of BZ oscillations depends exponentially on the mean free path  (fig. S4), it is hardly 

surprising that, at elevated T, the oscillations are more strongly suppressed for hole doping. The 

asymmetry of electron-phonon scattering is apparently caused by the moiré pattern and has not 

been noted previously (17-25). The asymmetry’s origin is likely to be specific to graphene-on-hBN 

superlattices and remains to be understood. 
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Fig. S7 

Electron-hole asymmetry of Brown-Zak oscillations. (A) xx as a function of n and B, similar to Fig. 

2B but for a superlattice device with a 13.6 nm. The grey scale is logarithmic: white 0.09mS; black 

5mS. (B) After subtracting a smooth background, ∆xx(B) is plotted for the fixed n  1.71012 cm-2 

[n/n0  0.7]. These electron and hole concentrations are marked by the black and red arrows in (A), 

respectively. (C) xx for the same device as a function of n at various T in zero B (the curves are color 

coded). The resistivity increases with T faster for holes than electrons and much faster than in 

reference devices. (D) Detailed T-dependence for electrons and holes at the same n as in (B). Dots – 

experiment; lines – best linear fits. Values for the linear slopes are shown next to the curves. For 

comparison, T-dependence found in the reference device is plotted for the same concentration 

(open circles). In non-aligned devices, electrons and holes exhibit similar T-dependences (28,29). 
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Brown-Zak magnetic minibands 

Let us consider graphene’s spectrum modified by the presence of a moiré potential induced by the 

hBN substrate. We use a hexagonal Bravais lattice 𝑛1�⃗�1 + 𝑛2�⃗�2 with the superlattice period 

𝑎 = 𝑎1 = 𝑎2. In magnetic fields, 𝐵 = 𝐵𝑝/𝑞  =  𝑝
0

/𝑞𝑆, magnetic minibands are formed (7,8). To 

describe these minibands, we employ the phenomenological model developed in (30,34) and based 

on the Hamiltonian  

𝐻
^

= 𝑣𝐹𝑝
⇀

· 𝜎
⇀

+ 𝑢0
+𝑓+ + 𝜉𝜎3𝑢3

+𝑓− +
𝜉

𝑏
𝑢1

+𝜎
⇀

· [ℓ
⇀

𝑧 × 𝛻𝑓−], 

                    𝑓± = ∑ (±1)𝑚+
1

2ⅇ𝑖𝑏
⇀

𝑚·𝑟
⇀

𝑚=1…6
   ,                              (S1) 

where 𝜎𝑖 are the Pauli matrices acting on the sublattice Bloch states (𝜙AK, 𝜙BK)𝑇 in the K valley 

(𝜉 = 1) and (𝜙BK′, −𝜙AK′)
𝑇in the K’ valley (𝜉 = −1). 𝑓± are six Bragg vectors 𝑏

⇀

𝑚 (𝑏1,2,3,4,5,6 = 𝑏 =

4𝜋

√3𝑎
) of the superlattice. The effect of magnetic field is incorporated in (S1) as 𝑝

⇀
= −𝑖ℏ𝛻 + ⅇ𝐴

⇀

 where 

the vector potential 𝐴
⇀

=
𝐵𝑥1

𝑎√3
(2�⃗�2 − �⃗�1)  is written in the hexagonal (non-orthogonal) coordinate 

system (𝑥1, 𝑥2) such that 𝑟
⇀

= 𝑥1�⃗�1 + 𝑥2�⃗�2, which was adapted for the case of hexagonal 

superlattices (34). 

     The miniband spectrum plotted in fig. S8 was obtained using the computational procedure 

developed in (34). In our modelling, we chose 𝑢0
+ = 21.7 meV, 𝑢1

+ = −30.6 meV and 𝑢3
+ = −22.2 

meV, which are to be compared with 𝑣𝑔𝑏𝑚 = 357 meV, the case of perfectly matching graphene 

and hBN lattices. The resulting spectrum displays the same features as discussed earlier (34,37-42) 

using various models for graphene-hBN coupling:  

i. At  ≪ 
0

, minibands converge into LLs separated by the cyclotron gaps ~ℏ𝜔𝑐 which are 

large for massless Dirac fermions in graphene. 

ii. Individual minibands are systematically wider at unit fractions  = 
0

/𝑞 compared to nearby 

rational flux values. Minibands are 𝑞-fold degenerate and dispersed over a Brillouin zone 

with the area, 𝑆BmZ =
8𝜋2

3√3
(𝑞𝑎)−2.  

iii. If intervals 1

𝑞+1


0
<  < 1

𝑞


0
 for different q are compared, the sparsity of the spectrum 

increases upon increasing q. Minibands for unit fractions 1/q are widest, followed by the 

sequence 2/q that exhibits somewhat narrower bands and, then, by the 3/q sequence. 

iv. Away from the unit fractions, minibands bunch so that they can be described as LLs for third-

generation Dirac fermions (20,34). These LLs are effectively the response of the BZ 

minibands to the effective magnetic field Beff = B − 𝐵1/𝑞, with the gaps set by the 

corresponding effective cyclotron energies ~ℏ𝜔𝑐
𝑒𝑓𝑓

(𝐵𝑒𝑓𝑓). 
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     The spectrum in fig. S8 is generic (30,34), and we use it below to explain only the qualitative 

features expected for electron transport in graphene superlattices. 

 

Magnetotransport in Brown-Zak minibands 

 At low temperatures, 𝑘𝑇 ≪ ℏ𝜔𝑐 , ℏ𝜔𝑐
𝑒𝑓𝑓

, the hierarchy of gaps in the Hofstadter spectrum manifests 

itself in a sequence of incompressible quantum Hall states, which were studied earlier using 

magnetotransport and magnetocapacitance measurements (17-22). High temperatures, 𝑘𝑇 ≫ ℏ𝜔𝑐, 

smear the Fermi step over several minibands, and this makes measurements insensitive to the 

presence of even large spectral gaps, leaving aside extra gaps due to the superlattice potential. In 

the high-T regime, magnetotransport reflects the hierarchy of the width of magnetic minibands. 

Indeed, elastic diffusion of electrons in wider minibands should generate larger σxx than in narrower 

minibands, resulting in magneto-oscillations periodic in 1/B where maxima in σxx occur at 𝐵 = 𝐵1
𝑞
, 

the fields with widest minibands. Additional weaker maxima appear for p > 1, where minibands 

exhibit weaker broadening. The resulting oscillations can sustain higher T, compared to SdH 

oscillations, and be less sensitive to charge carrier inhomogeneity because they rely not on cyclotron 

gaps but, importantly, on the stability of the magnetic miniband structure and Bloch wavefunctions.  

     To describe the high-T oscillations, we use the τ-approximation with a single τ and analyse the 

Boltzmann equation  

𝜕𝑓

𝜕𝑡
+ ⅇ(𝐸

⇀
+ 𝐵 𝑙

⇀

𝑧 × 𝑣
⇀

) · 𝛻𝑝𝑓 + 𝑣
⇀

· 𝛻𝑓 = −
1

𝜏
[𝑓 − 𝑓𝐹]         (S2) 

where the occupancy for the plane-wave states 𝑝 across Brillouin  minizones with each ‘n-th’ BZ 

miniband for a particular fraction p/q is described by the distribution function 𝑓(𝑝, 𝑛). In the linear 

response regime such that 𝑓 − 𝑓𝐹 ∝ 𝐸  (where 𝑓𝐹 is the Fermi function at the base T), analysis can be 

performed using the Taylor expansion in powers of the effective magnetic field 𝐵𝑒𝑓𝑓 = 𝐵 − 𝐵1
𝑞
. 

Therefore, we write 𝑓 − 𝑓𝐹 = 𝑓1
(0)

+ 𝐵𝑒𝑓𝑓𝑓1
(1)

+ 𝐵𝑒𝑓𝑓
2 𝑓1

(2)
. By solving eq. (S2) using iterations in 

powers of 𝐵𝑒𝑓𝑓, we find that  

𝑓 − 𝑓𝐹 = −𝜏ⅇ𝐸
⇀

· 𝑣
⇀

𝜕𝜖𝑓𝐹 + ⅇ2𝐵𝜏 (𝑙
⇀

𝑧 × 𝑣
⇀

) · 𝛻𝑝 (𝜏ⅇ𝐸
⇀

· 𝑣
⇀

𝜕𝜖𝑓𝐹) 

    −ⅇ3𝐵2𝜏(𝑙
^

𝑧 × 𝑣
⇀

) · 𝛻𝑝(𝜏(𝑙
^

𝑧 × 𝑣
⇀

) · 𝛻𝑝(𝜏ⅇ𝐸
⇀

· 𝑣
⇀

𝜕𝜖𝑓𝐹)). 

Using the relation between dissipative conductivity  σ ≡ σxx = σyy (as prescribed by the hexagonal 

symmetry) and the Joule heating, we obtain  

𝐸2𝜎 = 𝐸
⇀

· 𝑗
⇀

= 4ⅇ ∑ ∫ 𝐸
⇀

· 𝑣
⇀

𝑓(𝑝, 𝑛)
𝑑2𝑝

(2πℏ)2
BmZ

𝑛 ,   (S3) 
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and express it in terms of the band structure parameters computed for a group of N minibands in 

Brown-Zak spectrum at each  = 𝑝

𝑞


0
 

〈𝐹〉 =
1

𝑁𝑆BmZ
∑ ∫ 𝐹(𝑝, 𝑛)

𝑑2𝑝

(2πℏ)2
BmZ

𝑛 .                                    (S4) 

We then use average values of the relevant band parameters that emerge from the iterative solution 

of eq. (S2) and are evaluated for the numerically computed miniband spectra for the model in eq. 

(S1). Eq. (S4) can be further simplified using the relation     

∑ ∫ 𝐹(𝑝, 𝑛)
𝑑2𝑝

(2πℏ)2
BmZ

𝑛 → 〈𝐹〉 ∫ 𝛾(𝜀)𝜕𝜀𝑓𝐹𝑑𝜀 = 〈𝐹〉𝛾(𝜀𝐹) , 

which is based on the fact that, at the energy scale extended over several minibands, the DoS for the 

‘smeared’ spectrum can be approximated by the DoS in the unperturbed graphene, 𝛾(εF) =
2εF

πℏ2𝑣F
2 . 

This leads to  

𝜎 =
2𝑒2

ℎ

εF𝜏

ℏ
[

〈𝑣2〉

𝑣F
2 + ⅇ2𝐵2𝜏2 〈∑ ([�⃗⃗�×∇𝑝]𝑧𝑣𝑖)

2
𝑖=𝑥,𝑦 〉

𝑣F
2 ]      (S5) 

which takes into account all valley and spin states. We evaluate mean values, 〈𝑣2〉 and 〈∑ ([�⃗� ×𝑖=𝑥,𝑦

∇𝑝]𝑧𝑣𝑖)
2

〉, by averaging the computed values over several minibands as illustrated in the inset of Fig. 

3 and in fig. S8. 

     It is interesting to note that BZ oscillations can also be expected in diamagnetic response of 

superlattices, not only in their electron transport. Indeed, each BZ miniband effectively represents a 

distinct metallic system and, therefore, should exhibit specific diamagnetism. By changing magnetic 

field, one can sample these different states and is expected to observe a varying diamagnetic 

response with the periodicity B = p0/qS. This would be a de Haas – van Alphen -like effect but 

without Landau quantization. Such an analogue of BZ oscillations in magnetization seems to have 

been observed in recent tight-binding calculations (43), reflecting the recurring formation of 

different Bloch states.  

 

Why have Brown-Zak oscillations remained unnoticed until now?  

There have been a number of experimental reports studying magnetotransport properties in aligned 

graphene-on-hBN devices (17-22,25). These included measurements at elevated T. We believe that 

the reason why these high-T oscillations have not been noticed earlier is partly due to the way in 

which Landau fan diagrams and B dependences are usually measured for graphene devices. This 

involves sweeping gate voltage whereas other variables such as B and T are fixed. From the 

experimental point of view, this approach is most convenient. However, in such measurements, it is 

also easy to miss even very strong BZ oscillations, as illustrated in fig. S9. At low T, xx for both 
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superlattice and reference devices in fig. S9 exhibits multiple minima (SdH oscillations). In contrast, 

only peaks at the NPs survive at high T. Otherwise, xx curves are featureless for both devices, with 

no sign of BZ oscillations even though they are quite pronounced if B, rather than n, is swept at a 

given T (cf. fig. S5D). This is because BZ minibands appear and disappear as a function of flux per 

superlattice unit cell and, unlike SdH oscillations, do not vary with n.  

 

We expect that BZ oscillations are not unique to graphene-on-hBN and can be observed for other 

moiré superlattices. A particularly promising candidate is twisted bilayer graphene that was reported 

to exhibit clear superlattice effects (see, e.g., refs. 44-45).  
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Fig. S8 

Spectra of graphene superlattices in magnetic field. (A) Bands and gaps in the Hofstadter spectrum. 

Black dots: States calculated for numerous simple fractions p/q. The horizontal white stripes 

correspond to missing data because of computational limitations [for details, see (30,34)]. (B) 

Dispersions ε(�⃗⃗�) in magnetic mini-bands that appear exactly at /0 = p/q for some q = 1 to 5 and p 

= 1 to 3. The electronic spectra are aligned vertically against the corresponding values of /0 in (A) 

but show the dispersion against 𝑘𝑥 and 𝑘𝑦 within the first Brillouin minizones (similar to the case of 

the inset in Fig. 3). The lowest inset to the right is the superlattice’s modified Dirac spectrum in zero 

B (30).  
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Fig. S9   

Standard approach to measuring resistivity for graphene devices. (A and B) Superlattice and 

reference devices, respectively. Landau quantization is clearly visible at 10 K but the curves become 

featureless at 200 K, except for the peaks at the NPs. BZ oscillations are quite strong in the 

superlattice device at 200 K for this range of B but do not show up at all in the measurements in (A) 

using charge-density sweeps. 

 
Magnetotransport in low fields 

Fig. 2D shows that xx and xy exhibited rapid changes near zero B. These low-B features are 

irrelevant for the scope of the current report that focuses on BZ oscillations. Nonetheless, for 

completeness we show these features in more detail in fig. S10. It plots the experimentally 

measured xx and xy over the entire range of B in Fig. 2D and magnifies the behavior around zero B. 

The sharp dip in xx and sign-changing xy can be attributed to a complex electronic band structure of 

graphene superlattices at the energies above the second-generation NP (see the lowest panel in fig. 

S8B). The particular behavior (shown for n/n0 1.5) was found to change with changing n only by a 

fraction of n0. At high doping, several Brillouin minizones with opposite charge carriers are likely to 

contribute to the transport characteristics (20,30,34). In addition, minibands can become 

depopulated with increasing B. Although the features in the inset of fig. S10 are relatively small, 

when translated into xy, they lead to the notable nonmonotonic behavior at low B in Fig. 2D. This 

regime lies beyond the experimental range in which BZ oscillations are observable and requires 

separate investigation.   
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Fig. S10 

Low-field transport at high doping. xx and xy for the superlattice device in Fig. 2 of the main text. 

Both characteristics exhibit anomalous behavior in low B such that the Hall effect changes its sign 

twice, and xx shows a sharp dip. This is attributed to a complex miniband structure at energies 

beyond the second-generation NP. Inset: Low-B region is magnified.  
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Chapter 9 – Summary & Outlook 
 
In the preceding chapters, we demonstrated a number of novel transport phenomena unique to 

graphene. The results emphasise the significance of electron transport in graphene from the point of 

view of fundamental physics. Even now, fifteen years on since discovery, we have found new 

physics. This is because of two reasons. The first is the availability of ultra-high quality samples, 

which allow us to truly study the intrinsic properties of graphene. Second, we focused our 

experiments in the regime of moderate-high temperatures, that is, 100 – 300 K. Typically quantum 

transport phenomena are dominant at liquid helium temperatures (< 5 K), where scattering is 

minimal and the fermi-level is well defined. Indeed, in current high-quality graphene 

heterostructures, new exotic electron phases are being studied for the first time in Condensed 

matter physics62,63. At the same time, restricting experiments to these temperatures has resulted in 

missed opportunities. For example, in 2013 graphene/hBN superlattices became a popular system 

for studying transport because of its high-mobility and large super lattice periodicity48,55,64. Since 

then, experiments in Moiré superlattices have revolved around the Hofstader butterfly physics65,66,67. 

Since the Hofstader butterfly originates from Landau quantisation, it is logical to perform 

experiments as low a temperature as possible to resolve the spectral gaps. However, despite 

numerous experimental efforts, the Brown-Zak oscillations went un-noticed until this year, because 

not enough attention was paid to the high temperature regime. This Thesis shows the importance of 

performing non-conventional experiments and poking around in an un-familiar parameter space. 

 

 9.1 Viscous Electron flow in graphene  

 
The work presented in Chapter. 5 and 6 are amongst the first experiments which seek to uncover 

viscous flow of the electron liquid. We note however, that we were not the only group studying 

hydrodynamics. Last year, two further works on electron hydrodynamics (one in graphene)68 

featured in the same issue as the paper presented in Chapter. 6. Although graphene is an ideal 

system for studying viscous flows, the work by Mackenzie69 raises questions as to what other 

materials might host a viscous electron liquid. Since these works, there has been a recent surge in 

electron hydrodynamics, with many more theoretical papers appearing over the past year70,71,72,73. 

As for experiment, viscous electrons have already demonstrated their significance in transport; 

current which flows against the applied electric field74, viscous flows conducting beyond the ballistic 

limit75, and the violation of the Wiedemann-Franz law in graphene68. 



In Chapter 5, we presented the first measurement of electron viscosity in graphene devices by 

studying electron whirlpools. Whilst the theoretical model could accurately describe many aspects of 

the experiment, it was only applicable when transport was deep in the hydrodynamic regime at 

temperatures 150 – 300 K. It failed to explain the behaviour of electrons at low temperature’s where 

electron-electron collisions are infrequent. For example, single particle effects like magnetic 

focussing are not expected in the viscous regime. Instead, we had to employ the Landauer-Buttiker 

formalism and approach the problem in terms of transmission coefficients. We could describe both 

the ballistic and hydrodynamic regime in their extreme limits but could not interpolate smoothly 

between them. A different theoretical approach was required to describe the transition from 

ballistic to viscous flow. 

 

In Chapter 6, we did just this. Equipped with a suitable theory, we studied electron transport 

through graphene point contacts. The theory (Guo PNAS 2017)76 started with the Boltzman transport 

equation, allowing one to continuously tune electron-electron scattering through a collision integral. 

Remarkably, our collaborators found that the transition between ballistic and viscous transport 

regimes is dictated by a simple interpolation formula (see equation (2) in Chapter 7). Our analysis of 

experimental data with this formula validated its significance. First, we could observe the peculiar 

scaling behaviour expected for the viscous conductance (G ~ w2). Second, we were able to measure 

the electron-electron mean free path at all experimentally accessible temperatures, whether in the 

ballistic regime at T = 5 K, or in the hydrodynamic regime at 200 K. The result was quite astonishing 

when it was compared to independent many-body calculations performed by our collaborators. To 

emphasise the significance here, let us note that this result came from two independent theoretical 

groups. The interpolation formula from Professor Leonid Levitov’s group at MIT was used to extract 

the electron-electron mean free path, which showed unprecedented agreement with many-body 

calculations performed by Italian researchers led by Professor Marco Polini and Professor Giovanni 

Vignale. The work presented in Chapter. 7 showed that we have already gained significant 

understanding in to the cross-over regime between ballistic and viscous electron transport. 

 

As for future work, there still exists an open question. In Chapter. 6, we start to see electron 

whirlpools at around 150 – 200 K suggesting the system transitions to a viscous regime. Notably, in 

the same geometry, we can also observe magnetic focussing. In fact, magnetic focussing has been 

shown to persist even up to room temperature29. This suggests that viscous electron whirlpools and 

magnetic focussing somehow co-exist. Currently there is not a clear picture how ballistic phenomena 

persist even in the hydrodynamic regime. Of course, one can speculate, but a proper understanding 



is required and future work in this direction is likely to uncover the properties of these viscous 

electron beams. 

9.2 Electron transport in Brown-Zak mini-bands  

 
The newly discovered Brown-Zak oscillations have proven themselves the most robust type of 

quantum oscillation in condensed matter physics. The fact that we could observe oscillations even at 

373 K, demonstrates the stability of Brown-Zak mini-bands in graphene. More importantly, it has 

shown the significance of the magnetic translation group derived by Zak52 over 50 years ago. 

Furthermore, its persistence to high temperatures show that the concepts like zero magnetic field 

have nothing to do with Landau quantisation; something which was not clear in the early 

experimental works on the Hofstadter Butterfly55.  

Brown-Zak oscillations host rather unique properties. The most intriguing is their strict frequency 

dependence, which depends only on the area of the super lattice unit cell and, in contrast to other 

oscillatory phenomena, is independent on carrier density. Therefore, the oscillations provide a tool 

for directly measuring the structural properties of the crystal. This is especially useful for the case of 

novel superlattice systems in their infancy, where Brown-Zak oscillations could be used as a 

characterisation technique.  

In our experiments performed in Chapter 7, we provide an experimental signature of the Brown-Zak 

mini-band structure. The Brown-Zak mini-bands essentially represent different metallic systems. An 

interesting experiment then would be to study electron transport of these new metallic systems, 

where the current distribution might look rather different than the case of graphene in zero 

magnetic fields. With this in mind, we would go to those special values of magnetic field when 0 =  

1/q, and perform different transport experiments. For example, we could perform non-local 

measurements and use the valley hall effect as a tool to probe berry curvature57  in the Brown-Zak 

mini-bands. 

The zero effective magnetic fields arising from the magnetic translation group is extremely 

persistent with respect to temperature smearing. In Chapter. 7, we probed zero effective magnetic 

field by measuring xx and xy, where we found peaks in xx accompanied by zeros inxy for those 

special values of magnetic field when 0 = 1/q. The question remains to what extent this is truly 

zero effective magnetic field and whether the electrons are really moving straight. To understand 

this, we could study ballistic transport, which is extremely sensitive to weak magnetic fields, in the 

Brown-Zak mini-bands. For example, bend resistance experiments which were summarised in 

Chapter 2.3 could be performed in a superlattice device, where measurement of a negative bend 

resistance would serve as a tool for probing straight trajectories. Although this is the simplest, there 



are a number of other transport experiments which could be used to study the zero effective 

magnetic fields. 

9.3 Closing remarks 

 
The experiments performed in this Thesis demonstrate the importance of graphene research in the 

solid-state physics community. Indeed, it has gained the most attention out of all the two-

dimensional materials. This is not because it was discovered first, but because it is still the highest 

quality two-dimensional monolayer around. In general, new systems of high-quality are likely to host 

new physics. In this sense, graphene has certainly proven itself a unique platform for performing 

transport experiments and we can only hope other two-dimensional materials will deliver a rich 

variety of novel physics. 

 

 



Bibliography 

1. Seeger, K. Semiconductor Physics: An Introduction. (Springer, 2013). 

2. von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986). 

3. Solomon, P. M., Price, P. J., Frank, D. J. & La Tulipe, D. C. New phenomena in coupled 
transport between 2D and 3D electron-gas layers. Phys. Rev. Lett. 63, 2508–2511 
(1989). 

4. Gramila, T. J., Eisenstein, J. P., MacDonald, A. H., Pfeiffer, L. N. & West, K. W. Mutual 
friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 66, 
1216–1219 (1991). 

5. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. 
Nature 438, 197–200 (2005). 

6. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A New 
Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010). 

7. Pakdel, A., Bando, Y. & Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 43, 
934–959 (2014). 

8. Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. 
Nat Phys 12, 92–97 (2016). 

9. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The 
electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). 

10. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 
(2013). 

11. Britnell, L. et al. Field-Effect Tunneling Transistor Based on Vertical Graphene 
Heterostructures. Science. 335, 947 LP-950 (2012). 

12. Abanin, D. A. et al. Dissipative Quantum Hall Effect in Graphene near the Dirac Point. 
Phys. Rev. Lett. 98, 196806 (2007). 



13. Ponomarenko, L. A. et al. Density of States and Zero Landau Level Probed through 
Capacitance of Graphene. Phys. Rev. Lett. 105, 136801 (2010). 

14. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein 
paradox in graphene. Nat Phys 2, 620–625 (2006). 

15. Wallace, P. R. The Band Theory of Graphite. Phys. Rev. 71, 622–634 (1947). 

16. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the 
quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). 

17. Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 
77, 195415 (2008). 

18. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic 
performance limits of graphene devices on SiO2. Nat Nano 3, 206–209 (2008). 

19. C R., D. et al. Boron nitride substrates for high-quality graphene electronics. Nat Nano 
5, 722–726 (2010). 

20. Mayorov, A. S. et al. Micrometer-Scale Ballistic Transport in Encapsulated Graphene 
at Room Temperature. Nano Lett. 11, 2396–2399 (2011). 

21. R., D. et al. Boron nitride substrates for high-quality graphene electronics. Nat Nano 
5, 722–726 (2010). 

22. Viktor Ariel, A. N. Electron effective mass in graphene. arXiv 1206, (2012). 

23. Landauer, R. Spatial variation of currents and fields due to localized scatterers in 
metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957). 

24. Ouisse, T. Electron Transport in Nanostructures and Mesoscopic Devices: An 
Introduction. (John Wiley & Sons, 2013). 

25. Sharvin, Y. V. A possible method for studying Fermi surfaces. J. Exp. Theor. Phys. 21, 
655–656 (1965). 

26. Terrés, B. et al. Size quantization of Dirac fermions in graphene constrictions. Nat. 
Commun. 7, 11528 (2016). 



27. Tombros, N. et al. Quantized conductance of a suspended graphene nanoconstriction. 
Nat Phys 7, 697–700 (2011). 

28. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional 
electron gas. Phys. Rev. Lett. 60, 848–850 (1988). 

29. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable 
transverse magnetic focusing in graphene. Nat Phys 9, 225–229 (2013). 

30. Lee, M. et al. Ballistic miniband conduction in a graphene superlattice. Science. 353, 
1526 LP-1529 (2016). 

31. Pfeiffer, L., West, K. W., Stormer, H. L. & Baldwin, K. W. Electron mobilities exceeding 
10^7 cm^2/V s in modulation‐doped GaAs. Appl. Phys. Lett. 55, 1888–1890 (1989). 

32. Kawamura, T. & Das Sarma, S. Phonon-scattering-limited electron mobilities in  
AlxGa1-xAs/GaAs  heterojunctions. Phys. Rev. B 45, 3612–3627 (1992). 

33. Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in 
two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008). 

34. L. D. Landau, E. M. Lifshitz. Fluid Mechanics (Pergamon Press, 1987). 

35. Teaney, T. S. and D. Nearly perfect fluidity: from cold atomic gases to hot quark gluon 
plasmas. Reports Prog. Phys. 72, 126001 (2009). 

36. Cao, C. et al. Universal Quantum Viscosity in a Unitary Fermi Gas.  
Science. 331, 58 LP-61 (2011). 

37. Jacak, B. V & Müller, B. The Exploration of Hot Nuclear Matter.  
Science. 337, 310 LP-314 (2012). 

38. Tomadin, A., Vignale, G. & Polini, M. Corbino Disk Viscometer for 2D Quantum 
Electron Liquids. Phys. Rev. Lett. 113, 235901 (2014). 

39. Gurzhi, R. N. Minimum of resistance in impurity-free conductors. Sov. Phys. JETP, 44, 
771. (1963). 

 



40. Gurzhi, R. N. HYDRODYNAMIC EFFECTS IN SOLIDS AT LOW TEMPERATURE. Sov. Phys. 
Uspekhi 11, 255 (1968). 

41. Giuliani, G. F. & Quinn, J. J. Lifetime of a quasiparticle in a two-dimensional electron 
gas. Phys. Rev. B 26, 4421–4428 (1982). 

42. de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility 
wires. Phys. Rev. B 51, 13389–13402 (1995). 

43. Gurzhi, R. N., Kalinenko, A. N. & Kopeliovich, A. I. Electron-Electron Collisions and a 
New Hydrodynamic Effect in Two-Dimensional Electron Gas. Phys. Rev. Lett. 74, 
3872–3875 (1995). 

44. Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-
dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 
(2016). 

45. Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the 
hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015). 

46. Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal 
resistance in graphene. Nat Phys 12, 672–676 (2016). 

47. Schubnikow, L. & De Haas, W. J. A New Phenomenon in the Change of Resistance in a 
Magnetic Field of Single Crystals of Bismuth. Nature 126, 500–500 (1930). 

48. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 
497, 594–597 (2013). 

49. Jeno Soloym. Fundamentals of the Physics of Solids: Volume 2 Electronic Properties. 
(2007). 

50. Wang, S. X. and Z. W. and H. L. and Y. H. and G. L. and X. C. and T. H. and W. Y. and Y. 
W. and J. L. and J. S. and Y. C. and Y. H. and F. Z. and R. L. and C. C. and N. Universal 
low-temperature Ohmic contacts for quantum transport in transition metal 
dichalcogenides. 2D Mater. 3, 21007 (2016). 

51. Harper, P. G. Single Band Motion of Conduction Electrons in a Uniform Magnetic 
Field. Proc. Phys. Soc. Sect. A 68, 874 (1955). 



52. Zak, J. Magnetic Translation Group. Phys. Rev. 134, A1602–A1606 (1964). 

53. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and 
irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976). 

54. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal 
boron nitride. Nat Phys 8, 382–386 (2012). 

55. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire 
superlattices. Nature 497, 598–602 (2013). 

56. Wallbank, J. R., Patel, A. A., Mucha-Kruczyński, M., Geim, A. K. & Fal’ko, V. I. Generic 
miniband structure of graphene on a hexagonal substrate. Phys. Rev. B 87, 245408 
(2013). 

57. Gorbachev, R. V et al. Detecting topological currents in graphene superlattices. 
Science. 346, 448 LP-451 (2014). 

58. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films.  
Science. 306, 666 LP-669 (2004). 

59. Ferrari, A. C. et al. Raman Spectrum of Graphene and Graphene Layers.  
Phys. Rev. Lett. 97, 187401 (2006). 

60. Yi, M. & Shen, Z. A review on mechanical exfoliation for the scalable production of 
graphene. J. Mater. Chem. A 3, 11700–11715 (2015). 

61. Wang, L. et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. 
Science. 342, 614 LP-617 (2013). 

62. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid 
phase in double bilayer graphene. Nat Phys 13, 751–755 (2017). 

63. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of 
exciton condensate in graphene. Nat Phys 13, 746–750 (2017). 

64. Hunt, B. et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals 
Heterostructure. Science. 340, 1427 LP-1430 (2013). 



65. Yu, G. L. et al. Hierarchy of Hofstadter states and replica quantum Hall 
ferromagnetism in graphene superlattices. Nat Phys 10, 525–529 (2014). 

66. Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene 
superlattices. Science. 350, 1231 LP-1234 (2015). 

67. Yang, W. et al. Hofstadter Butterfly and Many-Body Effects in Epitaxial Graphene 
Superlattice. Nano Lett. 16, 2387–2392 (2016). 

68. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the 
Wiedemann-Franz law in graphene. Science. 351, 1058 LP-1061 (2016). 

69. Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for 
hydrodynamic electron flow in PdCoO2. Science. 351, 1061–1064 (2016). 

70. Scaffidi, T., Nandi, N., Schmidt, B., Mackenzie, A. P. & Moore, J. E. Hydrodynamic 
Electron Flow and Hall Viscosity. Phys. Rev. Lett. 118, 226601 (2017). 

71. Gregory Falkovich, L. L. Linking spatial distributions of potential and current in viscous 
electronics. arXiv 1607, (2016). 

72. Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. Stokes paradox, back reflections and 
interaction-enhanced conduction. arXiv 1612, (2017). 

73. Pellegrino, F. M. D., Torre, I. & Polini, M. Non-local transport and the Hall viscosity of 
2D hydrodynamic electron liquids. arXiv 1706, (2017). 

74. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in 
graphene. Science 351, 1055-1058. (2016). 

75. Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene 
constrictions. Nat Phys advance on, (2017). 

76. Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Higher-than-ballistic conduction of 
viscous electron flows. Proc. Natl. Acad. Sci.  114, 3068–3073 (2017). 

 
 

 


	Superballistic flow of viscous electron fluid through graphene constrictions
	Methods
	Figure 1 Electron flow through graphene constrictions.
	Figure 2 Transition from metallic to insulating behaviour in constrictions of different widths.
	Figure 3 Quantifying e–e interactions in graphene.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests
	Methods (1)
	Data availability.


