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Abstract: The goal of the Tropospheric Ozone Assessment Report (TOAR) is to provide the research 
community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the 
tropopause. While a suite of observations provides significant information on the spatial and temporal 
distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric 
chemistry models to synthesize our understanding of the processes and variables that control 
tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations 
and allow us to make projections of future tropospheric ozone and trace gas distributions for different 
anthropogenic or natural perturbations. This paper assesses the skill of current-generation global 
atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, 
variability, and trends. Drawing upon the results of recent international multi-model intercomparisons 
and using a range of model evaluation techniques, we demonstrate that global chemistry models are 
broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal 
cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, 
models are consistently biased high in the northern hemisphere and biased low in the southern 
hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that 
define the longer term trends in tropospheric ozone as derived from some background sites. When the 
models compare unfavorably against observations, we discuss the potential causes of model biases and 
propose directions for future developments, including improved evaluations that may be able to better 
diagnose the root cause of the model-observation disparity. Overall, model results should be approached 
critically, including determining whether the model performance is acceptable for the problem being 
addressed, whether biases can be tolerated or corrected, whether the model is appropriately constituted, 
and whether there is a way to satisfactorily quantify the uncertainty. 
 
Keywords: Global models, Tropospheric Ozone, Observations, Trends, Extremes, Variability, 
Pollution, Greenhouse gas, Air quality  
 
1. Introduction 
Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and 
ecosystem productivity (LRTAP Convention, 2011; REVIHAAP, 2013; US EPA, 2013; Monks et al., 
2015). Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce 
ozone have shifted from North America and Europe to Asia (Granier et al., 2011; Cooper et al., 2014; 
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Zhang et al., 2016). This rapid shift, coupled with limited ozone monitoring in developing nations, has 
led scientists to ask some basic questions: Which regions of the world have the greatest human and plant 
exposure to ozone pollution? Is ozone continuing to decline in nations with strong emission controls? To 
what extent is ozone increasing in the developing world? How can the atmospheric sciences community 
facilitate access to ozone metrics necessary for quantifying ozone’s impact on climate, human health and 
crop/ecosystem productivity? 

To answer these questions the International Global Atmospheric Chemistry Project (IGAC) 
developed the Tropospheric Ozone Assessment Report (TOAR): Global metrics for climate change, 
human health and crop/ecosystem research (www.igacproject.org/TOAR). Initiated in 2014, TOAR’s 
mission is to provide the research community with an up-to-date scientific assessment of tropospheric 
ozone’s global distribution and trends from the surface to the tropopause. TOAR’s primary goals are to: 
1) produce the first tropospheric ozone assessment report based on all available surface observations, the 
peer-reviewed literature and new analyses, and 2) generate easily accessible, documented data on ozone 
exposure and dose metrics at thousands of measurement sites around the world (urban and non-urban). 
Through the TOAR Surface Ozone Database (https://join.fz-juelich.de), these ozone metrics are freely 
accessible for research on the global-scale impact of ozone on climate, human health and 
crop/ecosystem productivity (Schultz et al., 2017, hereinafter referred to as TOAR-Surface Ozone 
Database). 

The assessment report is organized as a series of papers in a Special Feature of Elementa: 
Science of the Anthropocene, with this paper (hereinafter referred to as TOAR-Model Performance) 
providing an assessment of the skill of current-generation global chemistry models in simulating the 
observed present-day tropospheric ozone distribution, variability, and trends. To understand the 
implications of any ozone changes on the Earth system one must have accurate knowledge of its global 
distribution, from the Earth’s surface into the stratosphere and above. For example, ozone impacts on 
human health, agriculture, and natural ecosystems are primarily driven by near-surface concentrations, 
whereas radiative forcing, and thus climate change, is most sensitive to ozone in the (tropical) upper 
troposphere and lower stratosphere (Lacis et al., 1990; Stevenson et al., 2013; Monks et al., 2015). In 
situ and satellite observations provide a substantial amount of information on the present day 
tropospheric ozone distribution and its variability and trends over the recent past (Tarasick et al., 2017, 
hereinafter referred to as TOAR-Observations; Gaudel et al., 2017, hereinafter referred to as TOAR-
Climate), but there are important gaps in our knowledge (Cooper et al., 2014). Many regions of the 
world, including remote oceans and continental areas like Africa, South America, the Middle East, and 
India, remain under-sampled leading to incomplete knowledge of the horizontal, vertical and temporal 
distribution of ozone (Oltmans et al., 2013; Cooper et al., 2014; Lin et al., 2015a; Sofen et al., 2016a). 
Furthermore, observational estimates of the preindustrial ozone burden are highly uncertain (TOAR-
Observations) making it difficult to accurately quantify the preindustrial to present day ozone changes 
and the resulting radiative forcing on climate and air quality impacts. Global atmospheric chemistry 
models not only fill in these observational knowledge gaps, but are also tools to interpret the 
observations, to identify the key processes and variables that determine ozone distributions, variability 
and trends, and to project future tropospheric ozone and trace gas distributions for different 
anthropogenic or natural perturbations.  

A global atmospheric chemistry model is a numerical synthesis of the complex physical and 
chemical processes that describe the state of the atmosphere and is designed to simulate the distribution 
and evolution of chemical species on regional to global scales (different types are discussed in Section 
2). Figure 1 summarizes the modeled processes necessary for simulating tropospheric ozone at these 
scales. These include representation of natural and anthropogenic ozone precursor emissions, such as 
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nitrogen oxides (NO + NO2 = NOx), carbon monoxide (CO), methane (CH4), and non-methane volatile 
organic compounds (NMVOCs); the photochemical reactions that lead to ozone formation and 
destruction, and the actinic flux that drives this chemistry; the transport of ozone and its precursors away 
from the source by advection, convection and mixing; and loss of chemical species via wet and dry 
deposition. The detail to which these processes are represented depends on the intended application of 
the model, on the availability of observations or results from laboratory experiments to constrain the 
processes, the knowledge of processes that influence ozone, and the available computing power.  

 
 
Figure 1: Schematic of chemical and physical processes included in a typical global chemistry model to 
simulate tropospheric ozone. The Earth is divided into a 3-dimensional grid, with latitude and longitude 
as the horizontal coordinates, and altitude or pressure as the vertical coordinates. Physical processes 
include transport by advection, convection, turbulence, and boundary layer mixing, as well as 
temperature, humidity, cloud cover, sun angle/latitude and time of year. Chemical processes include 
photochemical ozone production and destruction, aerosol-cloud interactions, wet and dry deposition and 
precursor emissions from anthropogenic and natural sources. Ozone precursors undergo similar physical 
processes as ozone itself.  

Models are numerical approximations of the real atmosphere, but since they are based on 
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incomplete parameterizations of real-world processes, they will never be perfect representations of the 
real world (Box, 1976; Hargreaves and Annan, 2014). However, as we will show, they can provide 
useful information for understanding the distribution and evolution of tropospheric ozone at a range of 
spatial and temporal scales. Confidence in model projections of ozone would be demonstrated by the 
ability of models to reproduce the past and present observations of ozone on a range of different spatial 
and temporal scales, along with their ability to simulate the relationship of ozone to its precursors and to 
atmospheric physical and dynamical processes. Identification, investigation and quantification of model 
discrepancies with observations help inform model development and support improvement in process 
understanding. 

TOAR-Model Performance assesses the performance of current-generation global chemistry 
models in simulating the observed present-day tropospheric ozone distribution, its variability and trends, 
drawing mainly on the results from major international multi-model intercomparison projects for both 
surface and free tropospheric ozone in the last decade (see Table 1). We acknowledge the exclusion of 
regional models from the discussion, but point the interested reader to large regional model 
intercomparison projects such as the Air Quality Model Evaluation International Initiative (AQMEII) 
(Im et al., 2015).  

We begin with an overview of the types of global models and their nomenclature, and a summary 
of the international assessments that have evaluated their performance (Section 2). We then describe the 
evaluation methods commonly applied to models (Section 3), and assess model performance for present 
day ozone levels (Section 4), including extreme episodes (Section 5), before focusing on interannual 
variability (Section 6) and multi-decadal trends (Section 7). For quick reference, Sections 4-7 each have 
a short summary section that summarizes model performance for these different temporal scales. We 
then discuss the potential causes of biases in models (Section 8). We conclude by summarizing the 
current state of model performance, and propose directions for future developments (Section 9). 
 
2. Nomenclature of global chemistry models and international assessments 
Air pollution events were linked to sunlight, NOx and VOC dependent chemistry resulting in the 
generation of ozone as early as the 1950s, motivated by the observation of severe smog situations in Los 
Angeles (Haagen-Smit, 1950). Further details of the global importance of this photochemistry were 
beginning to be understood by the 1970s (e.g., Levy II, 1971; Chameides and Walker, 1973; Crutzen, 
1973), and throughout the 1970s and early 1980s there were several efforts to synthesize this 
information into simple tropospheric chemistry model studies. These focused on atmospheric profiles 
(Levy II, 1973), or on the hemispheric and global scales (Fishman and Crutzen, 1978; Fishman et al., 
1979; Peters and Jouvanis, 1979; Logan et al., 1981). In the 1980s and early 1990s, tropospheric 
chemistry models became increasingly more sophisticated in their design, with greater chemical detail, 
improved parameterizations for atmospheric transport and removal processes, and better estimates for 
trace gas emissions (see Peters et al. (1995) for a review of developments in tropospheric modeling up 
until this time). One key model result from these earlier studies was confirmation that in situ 
photochemical tropospheric ozone production was important at a global scale as well as in polluted 
urban centers, and that, globally, the net influx of ozone from the stratosphere was of secondary 
importance. This resolved debates on the origin of tropospheric ozone that began in the 1970s (see 
Monks et al., 2015; Archibald et al., 2017, hereinafter referred to as TOAR-Ozone Budget). 

Beginning around the late 1990s, models of global tropospheric chemistry developed along two 
parallel tracks. Broadly these involve: (1) incorporation of tropospheric chemistry into models designed 
to simulate the physical climate, so that chemistry-climate interactions can be explored, and (2) 
inclusion of chemistry in models driven by pre-calculated meteorology fields, optionally constrained to 
observed meteorology, allowing more detailed investigation of chemistry processes and comparison to 
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specific measurements. Figure 2 shows schematics of the different model configurations, which are 
described below. 

 
2.1 Atmospheric chemistry in global climate models  
This first type represents the most complex models (Figures 2a and 2b), where atmospheric chemistry 
processes are embedded within a general circulation model (GCM): i.e., climate models, where physical 
atmospheric processes are calculated online by solving equations that describe fluid flow and radiative 
transfer, which can not only respond to changes in greenhouse gas concentrations, solar output or other 
forcings, but also generate their own internal meteorological variability (e.g., Flato et al., 2013).  

Chemistry-climate models, or composition-climate models (CCMs), represent the most complex 
models in this family (Figure 2a), where the chemically-driven changes in radiatively active gases and 
aerosols (e.g., ozone, methane, sulfates) influence the model’s radiation scheme, thus coupling 
composition directly to climate (e.g., Sudo et al., 2002; Watanabe et al., 2011; Lamarque et al., 2012; 
Naik et al., 2013; Shindell et al., 2013; O’Connor et al., 2014). More routine use of CCMs with 
tropospheric chemistry and aerosols is a relatively recent phenomenon (see Morgenstern et al., 2017 and 
references therein for a recent review), whereas coupling of upper atmosphere chemistry to climate has a 
much longer history due to the increased importance of chemically active compounds for heating rates 
in the stratosphere and above (e.g., Pyle, 1980; Garcia and Solomon, 1994; de Grandpre et al. 1997; see 
Morgenstern et al., 2010 for a review). 

A less complex model than the CCM is the chemistry GCM (Figure 2b), where the chemistry is 
affected by the climate changes from the radiative and dynamical parts of the model but the chemically-
driven changes in radiatively active gases and aerosols do not subsequently affect climate. This type of 
model was the first step in coupling tropospheric chemistry to physical climate models (e.g., Roelofs and 
Lelieveld, 1997; Johnson et al., 1999; Doherty et al., 2006; Zeng et al., 2008), and it is still occasionally 
used (e.g., Lamarque et al., 2013).  

Although fully interactive ocean-atmosphere-chemistry simulations have been performed (e.g., 
Collins et al., 2011; John et al., 2012; Shindell et al., 2013; Nowack et al., 2015), the computational 
expense of simulating atmospheric chemistry means that both CCMs and chemistry GCMs are typically 
run without interactive ocean and sea ice components. Instead simulations are often run with a boundary 
condition of prescribed sea surface temperatures (SSTs) and sea ice concentrations (SICs) (usually time 
varying) in lieu of an ocean model. If the SSTs and SICs follow observations, rather than being taken 
from another model simulation, these are referred to as AMIP (atmospheric model intercomparison 
project) simulations (Gates, 1992). If time-varying observed sea-surface temperatures are used as the 
boundary condition, then the model will “see” observed large scale climate variability, such as the phase 
of the El Niño-Southern Oscillation (ENSO) (e.g., Zeng and Pyle, 2005; Lin et al., 2014), but precise 
meteorological conditions (e.g., temperature and winds) driven by internal atmospheric variability will 
not be reproduced (e.g., Barnes et al., 2016). Finally, the representation of the stratosphere, in terms of 
resolution (e.g., vertical extent completely or partially covering the stratosphere) and chemistry (e.g., 
lumped halogen chemistry, individual halogen gases or prescribed stratospheric ozone concentrations), 
varies substantially between different CCMs or chemistry GCMs (e.g., Iglesias-Suarez et al., 2016; 
Morgenstern et al., 2017).  

Embedding tropospheric chemistry within a GCM (CCMs and chemistry GCMs) opens up the 
possibility of studying a large range of Earth system feedbacks, such as climate-dependent biogenic 
emissions (Sanderson et al., 2003; Hauglustaine et al., 2005; Hedegaard et al., 2008; 2013; Heald et al., 
2009; Young et al., 2009; Ganzeveld et al., 2010), vegetation-ozone interactions (Sitch et al., 2007), as 
well as the impacts of climate change on tropospheric chemistry (e.g., Johnson et al., 1999; Zeng and 
Pyle, 2003, 2005; John et al., 2012; Doherty et al., 2013; Val Martin et al., 2015) and air quality (see 
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Table S3 of Fiore et al. (2015) for examples).  
 

 
 
Figure 2: Models differentiated by how chemistry is coupled (or not) to the model dynamics and 
radiative transfer. Nudged models sit somewhere between (a) and (c). See main text for details. 
 
2.2 Atmospheric chemistry in offline global models 
The second type represents those models where the physical atmospheric processes are taken from pre-
calculated three-dimensional, time-dependent meteorological data (such as temperature and winds), 
from either meteorological reanalyses (e.g., Kanamitsu et al., 2002; Dee et al., 2011) or from prior 
simulations of a global climate model (Figure 2c). These are “offline” models, in that the transport is 
pre-calculated and the chemistry cannot affect the radiation or dynamics. Models differ greatly in which 
physical variables are read directly from the offline data, and which are directly calculated (e.g., 
convective fluxes and cloudiness). 

The most computationally efficient of these models are chemistry transport models (CTMs), 
which are developed solely for coupling offline meteorological fields with a chemical mechanism (e.g., 
Law et al., 1998; Bey et al., 2001; Horowitz et al., 2003; Emmons et al., 2010). A more recent 
innovation in this area has produced specified dynamics CCMs (SD-CCMs) (e.g., Lamarque et al., 
2012). These models are based on a full CCM framework, but overwrite the GCM-calculated 
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meteorology with reanalysis data to constrain the dynamics (normally just the temperature and 
horizontal winds). These models have an advantage over CTMs since they allow the coupling of the 
offline meteorology with other model components, such as biogeochemistry modules or components 
that simulate natural emissions. 

Nudged CCMs represent a hybrid of the CCM and SD-CCM, and sit somewhere between Figure 
2a and 2c. In these models the meteorology calculated by the GCM is nudged towards reanalysis fields 
(e.g., temperature and horizontal winds, although this varies by model), rather than overwriting them, 
using techniques such as Newtonian relaxation (e.g. Jeuken et al., 1996; Telford et al., 2008; Uhe and 
Thatcher, 2015). These models are widely used for tropospheric chemistry studies, including model 
evaluation and validation (Pozzoli et al., 2011; Lin et al., 2012a; Fiore et al., 2014a; Brown-Steiner et 
al., 2015; Jöckel et al., 2015). While there is a difference in the model formulation, the term “SD-CCM” 
is often used to describe both nudged CCMs and the SD-CCMs as described above. In practice, nudging 
greatly reduces the role of model-generated internal climate variability, yielding a close resemblance 
between the model and reanalysis meteorology (Jeuken et al., 1996; Telford et al., 2008). Nudging may 
also be applied only to parts of the atmosphere. For example, nudging of tropical stratospheric winds in 
stratosphere-resolving CCMs ensures a realistic periodicity of the quasi-biennial oscillation (QBO) 
(Morgenstern et al., 2010). Although if the nudging is limited to the QBO then these models are still 
referred to as CCMs.  

CTMs and SD-CCMs (and nudged CCMs) are often used for performing process-oriented 
analysis, including interpretation of short-term field measurements (e.g., Law et al., 1998; Liang et al., 
2007; Zhang et al., 2008; Telford et al., 2010; Lin et al., 2012a; Wespes et al., 2012) and understanding 
the causes of ozone variability and long-term trends in observational records, by isolating the roles of 
emissions and meteorology (Koumoutsaris and Bey, 2012; Lin et al., 2014, 2015, 2017; Strode et al., 
2015). These models are also used to make chemical forecasts as part of flight planning for field 
missions (e.g., Fast et al., 2007). In addition, global CTMs often provide boundary conditions for 
regional CTMs that are used for air quality planning purposes. 
 
2.3 Model intercomparison projects (MIPs) with tropospheric chemistry 
There is a long history of international model intercomparison projects (MIPs) involving global 
tropospheric chemistry models, largely motivated by the need to inform major international assessment 
activities. Table 1 summarizes some notable examples of these projects since ~2000, and those most 
recently completed (ACCENT, ACCMIP, CMIP5, TF-HTAP, and POLMIP) are used to inform the 
assessment in this paper. Several individual models have taken part in many or all of these projects, so 
they are not independent samples of model performance.  

As with their physical climate modeling counterparts (e.g., Hawkins and Sutton 2009, 2012), 
these projects have been used to explore uncertainty, particularly the structural uncertainty associated 
with the different representations of the physical system in the different models, such as the chemical, 
photolysis and deposition schemes. However, because these projects represent “ensembles of 
opportunity”, i.e. a collection of simulations from modeling centers or groups that were able to complete 
the simulations, they are unlikely to capture the full structural uncertainty and this remains a research 
area deserving of more investigation. 

The experimental design of MIPs is typically based around the use of many different models to 
conduct simulations for the same conditions, such as the same ozone precursor emissions, and the same 
meteorology (for CTMs and SD-CCMs) or greenhouse gas concentrations, aerosol and solar forcings 
(for CCMs and chemistry GCMs). This is to ensure that simulations are directly comparable, and to 
allow assessment of the ozone (etc.) levels that result from given scenarios or conditions. In practice the 
different formulation and chemical complexity in different models means that some processes remain 
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poorly constrained (e.g., natural emissions are often left unspecified) and others may be omitted entirely 
(e.g., higher VOC chemistry). An important consequence is that there are first order differences in 
model implementation which need to be considered when comparing and evaluating model simulations 
(Shindell et al., 2008; Fiore et al., 2009; Young et al., 2013). 
 

Table 1: Notable assessments and model intercomparison projects that have included global models 
simulating tropospheric chemistry, since 2000. 

Assessment and 
year 

Number of 
models  

Brief description Selected References 

OxCOMP, 1999 
(Tropospheric 
oxidative state 
intercomparison 
project) 

14 
 

Impacts of emissions changes on 
atmospheric chemistry and 
greenhouse gases. Conducted in 
support of the IPCC Third 
Assessment Report (IPCC, 2001).  
Mostly CTMs; some chemistry 
GCMs.  

Prather et al. (2001) 

ACCENT, 2005 
(Atmospheric 
Composition 
Change: The 
European 
Network) 

26 
 

Impacts of emissions and climate 
change. Drawn on for the IPCC 
Fourth Assessment Report (IPCC, 
2007) and coordinated as part of a 
European Union research network. 
Mostly CTMs, with a few chemistry 
GCMs and CCMs. 

Stevenson et al., 
(2006); 
http://www.accent-
network.org 

HTAP, 2007, 
2010, Phase 2 
ongoing 
(Hemispheric 
Transport of Air 
Pollution) 

21 
 

Determine contribution of 
transboundary pollution from a 
source region to different receptor 
regions under present day and future 
scenarios, using (mostly) CTMs. 
Simulations informed the Convention 
on Long-range Transboundary Air 
Pollution (LRTAP). 

TF-HTAP (2007, 
2010); Fiore et al. 
(2009); Wild et al. 
(2012); Doherty et al. 
(2013) 

CMIP5, 2012 
(Coupled Model 
Intercomparison 
Project, phase 5) 

46 (8 
simulated 
chemistry 
online) 

Climate model experiments in 
support of the IPCC Fifth Assessment 
Report (2013). Limited number of 
CCMs, and very limited chemical 
output. 

Taylor et al. (2012); 
Eyring et al. (2013a) 

ACCMIP, 2012 
(Atmospheric 
Chemistry and 
Climate Model 
Intercomparison 

15 Simulations with CCMs, chemistry 
GCMs and CTMs to supplement 
CMIP5. Simulations informed the 
IPCC Fifth Assessment Report 
(IPCC, 2013). 

Lamarque et al. 
(2013); Young et al. 
(2013) 
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Project)  

POLMIP, 2014 
(POLARCAT 
Model 
Intercomparison 
Project) 

11 (9 global 
models) 

Evaluate global chemistry models 
against a large suite of atmospheric 
chemistry observations made during 
the International Polar Year (2008) in 
the Arctic as part of the Polar Study 
using Aircraft, Remote 
Sensing, Surface Measurements and 
Models, of Climate, 
Chemistry, Aerosols and Transport 
(POLARCAT) activity. Nudged 
CCMs and CTMs 

Emmons et al. (2015)  

CCMI, ongoing 
(Chemistry 
Climate Model 
Initiative) 

23 Aimed at studying composition and 
chemistry in the combined 
stratosphere-troposphere system. 
Mostly CCMs (both nudged 
meteorology and free running with 
SST/sea-ice boundary conditions). 

Eyring et al. (2013b) 

AerChemMIP, 
2017-2020  
(The Aerosol 
Chemistry Model 
Intercomparison 
Project) 

TBC Contribution to CMIP6, the successor 
to CMIP5. Aimed at investigating 
historical and future change in the 
chemical composition of the 
stratosphere-troposphere system, as 
well as diagnosing chemistry-climate 
forcings and feedbacks, and 
global/regional climate responses. 
Model types as CCMI. 

Eyring et al. (2016), 
Collins et al. (2017) 

 
 
3. Model evaluation methods 
This section summarizes the range of different techniques currently used for evaluating modeled ozone, 
with additional discussion of issues that should be considered for model-observation comparisons. The 
purpose of evaluating model performance is to quantify our confidence in their output, given the 
particular application or experiment. There is no single metric that captures model skill, and the choice 
of evaluation method needs to be targeted for the application, while also considering the available 
observational constraints.  

Although the focus here is on evaluation of tropospheric ozone, confidence in a model also 
depends on its performance for other parameters and processes. For GCMs and CCMs, the performance 
of the chemistry component is only part of the evaluation of the model, which will include a suite of 
atmospheric, oceanic, cryospheric and biogeochemical parameters (Flato et al., 2013). To a lesser 
degree, this is also the case for CTMs, where some of the physical climate variables may not be 
provided directly from the driving meteorological fields (e.g., convective transport). We direct the 
reader elsewhere for discussions on other aspects of model evaluation (e.g., Flato et al., 2013 and refs. 



DRAFT: DO NOT CITE OR QUOTE  TOAR-Model Performance 

10	  

therein).  
 In addition to whole model evaluation, sub-components of models may be evaluated (or 
benchmarked) against more detailed models. One example is comparing production and temporal 
evolution of ozone from (necessarily) simplified global model chemistry mechanisms against that from a 
more detailed, near-explicit chemical mechanism using box models (e.g., Emmerson and Evans, 2009; 
Archibald et al., 2010a; Squire et al., 2015). These techniques are not discussed here, and we instead 
focus on the use of observational constraints on model performance. 
 
3.1 Summary of evaluation techniques 
Table 2 provides a summary of different evaluation techniques, type of observations and metrics used, 
and the model skill or process evaluated. Direct comparisons of simulated ozone with measurements 
provide a measure of model skill in capturing the spatial and temporal distribution of ozone (techniques 
1-3 in Table 2). Comparisons at time scales other than monthly mean and seasonal cycle are now 
becoming more routine, with the use of both high frequency or long term ozone measurements. Such 
comparisons can provide additional information on model performance and potentially additional clues 
into the process drivers of model biases (e.g., the diurnal cycle might point to issues with the evolution 
of the boundary layer over the day).  
 Other evaluation approaches target the processes controlling ozone rather than ozone itself 
(techniques 4-5 in Table 2). These techniques can provide greater process-oriented understanding of a 
model’s simulation of ozone (e.g., evaluation of CO and ozone correlations can point to issues in 
simulated emissions, chemistry and mixing timescales). By extension, such methods can also provide 
insight into a model’s usefulness for a range of possible (future) environmental conditions. However, 
care needs to be exercised when employing process-oriented model evaluation approaches because the 
observed relationships between ozone and the co-measured meteorological field or tracer may be 
complicated by other competing influences (e.g., Steiner et al., 2010; Brown-Steiner et al. 2015; Shen et 
al., 2016)., or may change over time (e.g., Hassler et al., 2016).  

 
 

Table 2: Summary of global model evaluation approaches for tropospheric ozone. 
 Evaluation 

Technique 
Measurements Metrics Model skill or 

process 
Example 
References 

1. Basic model 
evaluation 

Monthly mean 
climatology 
compiled from 
ground-based, 
aircraft or satellite 
measurements. 
Field campaign 
data sometimes 
used, if suitably 
averaged or 
model 
constrained to the 
appropriate 
meteorology. 

Standard statistical 
metrics: mean bias 
(MB), mean 
normalized gross 
error (MNGE), 
mean normalized 
bias error 
(MNBE), root 
mean square error 
(RMSE), 
temporal/spatial 
correlation 
coefficient (r), 
Fourier-like (sine 
and cosine) fits 

Seasonal cycle, 
spatial distribution  

Stevenson et al. 
(2006); Fiore et al. 
(2009);  Bowman 
et al. (2013); 
Young et al. 
(2013);  Tilmes et 
al. (2015); Hu et al. 
(2017) 
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2.  Evaluation of 
high 
frequency 
model output 

Hourly surface 
ozone 
measurements 

Standard statistical 
metrics, spectral 
(frequency 
domain) analysis, 
empirical 
orthogonal 
functions (EOFs) 

Extreme ozone 
episodes; timing 
and amplitude of 
daily, sub-
seasonal, seasonal 
and annual cycles;  
spatio-temporal 
patterns of ozone 
variability 

Eder et al. (1993); 
Fiore et al. (2003); 
Hess and 
Mahowald (2009); 
Zhang et al. 
(2011); Lin et al. 
(2012a); Schnell et 
al. (2014; 2015); 
Brown-Steiner et 
al. (2015);  
Bowdalo et al. 
(2016); Solazzo 
and Galmarini 
(2016)   

3. Evaluation of 
long-term 
changes and 
variability 

Long records 
from satellites, 
aircraft and 
remote surface 
sites; indices of 
climate variability 
(e.g., ENSO) 

Standard statistical 
metrics	  

Long term changes 
and trends in 
ozone; sub-decadal 
to seasonal 
variability (e.g., 
ENSO, Madden-
Julien Oscillation, 
etc.) 

Lamarque and 
Hess (2004); Oman 
et al. (2011); Lin et 
al. (2014);  Sekiya 
and Sudo (2012);   
Hess and Zbinden 
(2013); Neu et al. 
(2014); Parrish et 
al. (2014);  Strode 
et al. (2015); 
Ziemke et al. 
(2015)  

4. Relationship 
between 
ozone and 
meteorologic
al parameters 

High frequency 
surface ozone and 
meteorological 
parameter 
measurements 

Correlation and 
regression 
techniques (e.g., 
ozone-temperature 
relationships)  

Processes driving 
surface ozone 
levels, extremes  

Lin et al. (2001); 
Bloomer et al. 
(2009); Steiner et 
al. (2010); 
Rasmussen et al. 
(2012); Tawfik and 
Steiner (2013); 
Brown-Steiner et 
al. (2015); Pusede 
et al. (2015) 

5. Relationship 
between 
ozone and 
other 
chemical 
species 

Co-measurements 
of ozone and 
other tracers (e.g., 
CO, NOx, water 
vapor) 

Correlation 
techniques 

Emissions, origin 
of air parcels, 
chemical 
processing, and 
atmospheric 
transport and 
mixing processes 

Mauzerall et al. 
(1998); Auvray et 
al. (2007); Pan et 
al. (2007); Hegglin 
et al. (2009);  
Voulgarakis et al. 
(2011); Borbon et 
al. (2013); Arnold 
et al. (2015); 
Hassler et al. 
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(2016) 
 
3.2 Considerations for model-observation comparisons 
Aside from any errors and uncertainties in observational data, a major issue for direct model-observation 
comparisons is the representativeness of the available measurements. One issue of representativeness 
relates to the fact that the atmosphere is not completely sampled (Sofen et al., 2016a; 2016b; TOAR-
Observations), meaning that there are important locations and times where there are no constraints for 
the model (e.g., a globally sparse distribution of monitoring stations, coarse vertical data from satellites, 
poor constraints on pre-industrial ozone). Given the incomplete sampling, the primary issue for 
representativeness where we have observations relates to the fact that the spatial and temporal 
resolutions of global models are necessarily coarse. This means that modeled mixing ratios reflect 
regional averages over grid scales of 100 x 100 km or more. However, in polluted regions the chemical 
lifetime of ozone is sufficiently short for ozone to vary over much shorter spatial and temporal scales, 
and thus much finer grid scales would be required to resolve its variations.  

The wide range in spatial and temporal scales is a particular problem for model comparisons 
against site-based measurements from a single geographical location. In the absence of precursor 
emission sources driving rapid chemical formation or sub-grid dynamical processes such as convection 
introducing fine structure, ozone may be sufficiently well mixed for a given measurement site to be 
representative at model grid scales, and for comparison of observations and models to be meaningful. 
But if an observation site has local emission sources or meteorological features associated with 
mountain or coastal locations, direct comparison with models may be less meaningful, and model 
“biases” may actually reflect differences in assumptions of site representativeness rather than incorrect 
process treatment. Similarly, a given grid cell may mix pollution sources (e.g., urban areas) over the 
whole grid, meaning that what is a remote, unpolluted site in the real world may have higher pollution 
levels in the model.  

The most basic way to avoid representativeness issues is to evaluate global chemistry models 
against baseline sites: i.e., those not heavily influenced by urban-scale fast chemical processes and 
certain dynamical regimes (such as convection). In addition, site representativeness can sometimes be 
partly addressed through conditional analysis approaches. This includes comparing observed and 
modeled ozone under particular wind directions, such as marine flow at Mace Head on the west coast of 
Ireland (Simmonds et al., 1997); by selecting free tropospheric air masses, such as at the mountaintop 
site of Jungfraujoch in Switzerland (Cui et al., 2011); or filtering observed and modeled ozone based on 
the concomitant measurements of other trace gases, such as CO, to separate ozone into polluted and 
unpolluted categories (e.g., Auvray et al., 2007; Arnold et al., 2015; Lin et al., 2017). Spatially-averaged 
measurements can provide a more appropriate comparison for coarse resolution models, and allow 
assessment of bulk behavior at the expense of some loss of spatial detail. Measurements may also be 
classified and aggregated through data-driven techniques such as cluster analysis or objective evaluation 
of site characteristics, allowing an assessment of model skill against particular ozone regimes (rural, 
urban etc.) when the model output is analyzed in the same way (Lyapina et al., 2016; TOAR-Surface 
Ozone Database).   

Representativeness considerations are also important for satellite data. While these data generally 
provide a greater spatial coverage than in situ observations, they may be representative of a particular 
satellite overpass time, their spatial and temporal sampling may be biased, and their measurements are 
generally representative of a broad vertical region of the atmosphere (TOAR-Climate). These 
comparability issues can be mitigated by applying the instrument averaging kernel to the model output, 
and by saving the model output at the overpass time (Zhang et al., 2010; Aghedo et al., 2011). 
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Comparison of modeled and retrieved tropospheric ozone columns requires consideration of how to 
define the troposphere and stratosphere in the model. Using a reanalysis climatology of tropopause 
heights might give consistency with the satellite product, but can bias a model’s true tropospheric 
column if its own tropopause position is biased (Young et al., 2013).   

A more general issue with satellite measurements is that the instruments measure irradiances, 
which are then transformed into ozone abundances by a complex retrieval process that relies on various 
assumptions and models (Liu et al., 2005; Bowman et al., 2006). Although not applied to atmospheric 
chemistry observations, a recent innovation to deal with this issue is the development of instrument 
simulators for models. Here the model state is translated into the irradiances measured by a particular 
satellite instrument, allowing direct comparability with the satellite measurements (Bodas-Salcedo et al., 
2011), but will additional uncertainties from translating the model state.  

Independent of issues of representativeness, the assumption that individual model grid boxes are 
well-mixed shortens the chemical and transport time scales. This typically biases modeled ozone high in 
source regions, since dynamical limits on chemical production are absent and the artificially well-mixed 
conditions favors more efficient ozone production, missing localized ozone titration due to intense NO 
emissions for instance (Grewe et al., 2001; Wild and Prather, 2006; Hodnebrog et al. 2011). For 
convective mixing in the presence of strong concentration gradients, vertical transport may be biased 
low at coarse resolutions (Kiley et al., 2003; Wang et al., 2004; Wild et al., 2004). These scale-related 
biases are important under many conditions and need to be considered if model-observation 
comparisons are used to assess model performance or to identify weaknesses in specific model 
processes. 

Finally, caution needs to be applied when comparing modeled and observed metrics at long time 
scales, particularly for free-running chemistry GCMs and CCMs. These models generate their own 
climate and weather variability, meaning that they will be unlikely to capture the decadal-scale (and 
shorter-term) variations and the timing of anomalous years seen in observations (e.g., the 1997/1998 El 
Niño). The lack of synchronized natural variability between the models and observations can then likely 
lead to a bias in their trends, even if sampled over the same time periods (e.g., Lamarque et al., 2010; 
Parrish et al., 2014), as discussed by recent studies (Lin et al. 2014; 2015a; 2015b; Barnes et al., 2016).    

 
4. Evaluation of present day ozone climatology: Whole troposphere, free troposphere and surface  
4.1. State of knowledge 

Evaluation of simulated ozone climatology against observations provides a measure of the skill 
of models to accurately represent the physical and chemical processes shaping the observed ozone 
distribution, building confidence that the model will be able to capture processes that lead to changes in 
ozone levels. Comparison with climatology also has the advantage of reducing uncertainties in 
observations. Below we assess the ability of global models to represent the mean present-day 
tropospheric ozone burden and budget, and the distribution of free troposphere and surface ozone, 
drawing upon results from past and recent multi-model intercomparisons (Table 1) augmented by results 
from a few single-model studies. The focus is on results from multi-model assessments as these broadly 
reflect accepted understanding within the research community, although we acknowledge that individual 
model studies may better reflect the state of current knowledge in treatment of particular processes and 
in their approach to evaluation. 
 
Our primary focus in this section is the evaluation of the mean climatology, while the capability of 
models to capture ozone episodes and variability is addressed in Sections 5 and 6. We note that it is 
difficult to track the improvements in the simulation of ozone across different model intercomparison 
projects because of inconsistencies in experimental setup, stages of model development, evaluation 
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approach and metrics applied, and inconsistencies in observational datasets used for model evaluation.  
 
4.1.1 Global tropospheric ozone burden and budget 
The global tropospheric ozone burden and budget hide the complexity of all the different processes 
important for ozone abundance, but provide a useful first order metric for some limited observational 
comparisons, as well as model benchmarking (e.g., Wild, 2007; Wu et al., 2007) and intercomparisons 
(Stevenson et al., 2006; Young et al., 2013).  

The tropospheric ozone burden is simply the mass of ozone in the troposphere, and the budget is 
defined from four main terms: chemical production (P), chemical loss (L), loss to the surface through 
deposition (D), and a net influx resulting from stratosphere-troposphere exchange (S). There is 
considerable variation in how modeling groups define these budget terms, which can lead to ambiguity 
when comparing different models (Young et al., 2013). This is particularly the case for the P, L and D 
terms, which may consider a complete range of chemical and depositional fluxes involving NOy species 
(e.g., Horowitz et al., 2003), or be more limited to production from peroxy radical plus NO reactions and 
direct loss of ozone (via HO2, OH, alkenes, and OH production from O(1D) and water vapor). The 
stratospheric influx can be diagnosed in some models, but is often determined indirectly by assuming 
budget closure over a year (i.e., P + S = L + D) (Stevenson et al., 2006; Young et al., 2013), and thus 
depends on how the other terms are defined. Variations in tropopause definitions are another source of 
model variability for all the budget terms (Prather et al., 2011). Finally, a mean tropospheric ozone 
lifetime can also be defined, by dividing the burden by the total production (P + S) or loss (L + D) 
fluxes.  

Figure 3 summarizes the modeled values for these terms using results from the models that took 
part in ACCENT (Stevenson et al., 2006) and ACCMIP (Young et al., 2013), as well as recent single 
model studies (after Myhre et al., 2013; their Table 8.1). The figure highlights the considerable range of 
budget terms calculated by different models, with the burden ranging by a factor of ~1.5, the chemical 
terms by a factor of ~2, and D and S by a factor of ~3. However, aside from deposition, the range of 
values from the central 50% of models (boxes) are comparatively small compared to the full range 
(whiskers), although the models are not fully independent from one another. 
 

 
 
Figure 3: Present day (nominal year 2000) tropospheric ozone budget terms for models, and 
observation-based estimates (where available). Figure shows (a) the annual average ozone burden, and 
annual total fluxes for (b) chemical production and loss, (c) dry deposition, and (d) net stratospheric 
influx. Model results are shown as box (interquartile range)-whisker (full range) plots, also indicating 
the median (horizontal line) and mean (filled circle) values of ~50 models for the burden and ~30 
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models for the fluxes (numbers of models indicated next to the boxes). Observation-based estimates for 
the burden are from Li1995 (Li et al., 1995; after Wild, 2007), FK1998 (Fortuin and Kelder, 1998), 
Logan1999 (Logan, 1999), Ziemke2011 (after Ziemke et al., 2011) and Osterman2008 (Osterman et al., 
2008; range). Observation-based estimates for the net stratospheric influx are from MF1994 (Murphy 
and Fahey, 1994), Gettelman1997 (Gettelman et al., 1997), and Olsen2001 (Olsen et al., 2001), with 
their full uncertainty ranges indicated by the error bars.  

Observationally derived estimates are only available for the burden, based on in situ 
measurement climatologies (see Wild, 2007) or satellites (Osterman et al., 2008; Ziemke et al., 2011), 
and net stratospheric influx, based on relationships between chemical species (Murphy and Fahey, 1994; 
Gettelman et al., 1997; Olsen et al., 2001). The interquartile range of model results for both terms lies 
within the central observation estimates, providing some confidence that models generally simulate their 
correct magnitude. However, we note the uncertainty in the net stratospheric influx term from 
observations, as well as the fact that the magnitude of this term is strongly influenced by interannual and 
longer-term variability (e.g., Neu et al., 2014). 

The lack of observational constraint for the P and L terms (at least for their global value) means 
that there has been little progress in defining their “true” magnitude, although the consensus is towards P 
minus L being positive (i.e., net chemical production), at least for model studies post 2000 (Stevenson et 
al., 2006; Wild, 2007; Myhre et al., 2013; Young et al., 2013; Hu et al., 2017; TOAR-Ozone Budget). 
The magnitudes of these terms are strongly dependent on ozone precursor emissions in the model (Wild, 
2007; Wu et al., 2007). Some of the inter-model difference may be explained by the capacity of different 
chemical schemes to simulate more complex NMVOCs, which would tend to increase the ozone 
production efficiency (e.g., Jenkin et al., 2008; Porter et al., 2017). This would also account for some 
inter-model differences in the burden. Global models geared for long simulations might adopt a simpler 
chemistry scheme to reduce the computational cost, and this needs to be considered when evaluating this 
metric. 

The spread of model estimates for deposition is comparatively large, and reflects considerable 
uncertainty in this process due to the lack of observational constraints beyond a few land cover types for 
very few sites, as well as inter-model spread in lower tropospheric ozone levels (Hardacre et al., 2015). 
Furthermore, while the oceans have a comparatively low deposition velocity, they account for about two 
thirds of the Earth’s surface which means that they are an important sink. Some model estimates have 
the oceans accounting for about one third of total ozone deposition (Ganzeveld et al., 2009; Hardacre et 
al., 2015), although there is some debate as to whether its importance is overestimated (Luhar et al., 
2017) or underestimated (Sarwar et al., 2016). Nevertheless, the magnitude of the oceanic deposition 
flux is the dominant driver of inter-model differences (Hardacre et al., 2015). Modeling of deposition 
fluxes to grassland and tropical forest surface types has also been identified as an important uncertainty 
in this budget term (Hardacre et al., 2015). 

  
4.1.2 Free troposphere  
The ability of models to accurately simulate the free tropospheric ozone distribution is key to studies of 
long-range transport and changes in ozone radiative forcing. We present an extension of the comparison 
of ACCMIP model present-day (year 2000) simulation to ozonesonde data (Young et al., 2013) in 
Figure 4 showing model bias and correlation coefficients against an ozonesonde climatology covering 
1995-2009 (Tilmes et al., 2012) grouped into 12 different regions with similar ozone distributions and 
sampled at three vertical levels. Model biases range from positive to negative for each region and 
altitude (Figure 4b), although greatest positive and negative biases are found for Northern Hemisphere 
(NH) extratropics and the Southern Hemisphere (SH) tropics, respectively. A closer look at comparisons 
in the NH extratropics previously indicated that global models overestimate wintertime ozone in the low 



DRAFT: DO NOT CITE OR QUOTE  TOAR-Model Performance 

16	  

and mid-troposphere (Stevenson et al., 2013; Eyring et al., 2013a; Young et al., 2013), although the 
models are within one standard deviation as estimated from the observed variability. These findings are 
supported by comparisons of satellite-derived tropospheric emission spectrometer (TES) (Bowman et 
al., 2013) ozone profiles and tropospheric column observations (Ziemke et al., 2011) against the 
ACCMIP models (Young et al., 2013). Most models capture the ozone seasonal cycle in the free 
troposphere for most regions (median r ≥ 0.6; Figure 4c), although there are exceptions, notably 
including the Equatorial Americas, located in the path of the Intercontinental Tropical Convergence 
Zone (ITCZ).  

If the majority of models are biased in the same direction, it could be indicative of a common 
issue with the simulations, with a likely candidate being precursor emissions; at least in the case of NOx 
and CO emissions, these are reasonably similar across the models (Young et al., 2013). However, shared 
shortcomings in vertical mixing, deep convection, representation of stratospheric ozone and a host of 
other drivers cannot be excluded as possible explanations of model-observation discrepancies from this 
simple analysis (see Section 8 for more discussion). 

Based on comparisons against ozonesonde observations and other in situ measurements, 
particular regional features of free tropospheric ozone can be generally captured by current global 
chemistry models (Zhang et al., 2010; Young et al., 2013; Tilmes et al., 2016; Hu et al., 2017), although 
these have not been systematically investigated in all models. Such features include the ozone maximum 
west of southern Africa over the South Atlantic Ocean (e.g., Jonquières et al., 1998; Sauvage et al., 
2006), the mid-Pacific minimum, which describes the well-characterized “wave-1” pattern in the tropics 
(Thompson et al., 2003b; Ziemke et al., 2010), and the summertime free tropospheric ozone maximum 
over the Eastern Mediterranean (e.g., Kalabokas et al., 2013; Zanis et al., 2014).  
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Figure 4: Comparison of present day (nominal year 2000) ozone from 15 ACCMIP models against an 
ozonesonde climatology (Tilmes et al., 2012) at three different pressure altitudes. Figure shows (a) the 
location of the ozonesonde sites (grouped by color), and box plots of the model (b) mean normalized 
bias error (MNBE, %) and (c) correlation coefficient (r) for the seasonal cycle. Box plots indicate the 
interquartile range (box), median (line) and full range (whiskers) of the MNBE and r for the models. The 
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dot indicates the corresponding value for the ACCMIP ensemble mean. Figure is an extension of Young 
et al. (2013; their Figure 5).  
 

A new compilation of long-term measurements conducted aboard commercial aircraft of 
internationally operating airlines (MOZAIC-IAGOS: see Petetin et al., 2016 and TOAR-Climate) 
provides another means to evaluate the free tropospheric ozone in models. Figure 5 compares the ozone 
annual cycle over Frankfurt, Germany from this dataset against the ACCMIP models, at pressure levels 
from 950 to 300 hPa. Data above 800 hPa at Frankfurt is considered to be representative of the European 
background free troposphere (Logan et al., 2012; Parrish et al., 2012; Petetin et al., 2016). The 
seasonality and vertical gradient of the observations is in general agreement with the multi-model mean 
of ACCMIP models. However, the ensemble mean is biased high throughout the troposphere (by 5-
20%) with biases strongest in fall and winter, consistent with evaluations against ozonesondes over NH 
extratropics described above and previous evaluations (Young et al., 2013). Recent individual model 
evaluations against observations have also found similar biases in the free troposphere (e.g., Zhang et 
al., 2010; Kim et al., 2013; Tilmes et al., 2016).  

While models are largely able to capture the ozone climatology in the free troposphere, they have 
difficulty in simulating ozone episodes related to long-range transport of ozone plumes. For example, in 
the Arctic region, during a season characterized by high fire emissions in spring and summer, POLMIP 
CTMs generally underestimated observed ozone vertical profiles by around 10-20 nmol mol-1 (S.I. 
equivalent to ppbv) (Emmons et al., 2015). Many of these models were biased low by about 10-30% in 
comparison to aircraft observations in the region (Monks et al., 2014) with biases in ozone precursors 
aligning with ozone biases (Emmons et al., 2015). Similarly, evaluation of HTAP CTMs against high 
temporal frequency ozone vertical profiles at sites influenced by intercontinental transport of ozone and 
its precursors revealed model deficiencies (Jonson et al., 2010). 
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Figure 5: Vertical distribution of ozone annual cycle at Frankfurt from (a) IAGOS (1996-2005) and (b) 
the mean of 15 ACCMIP models for year 2000 time slice. Vertical lines in the legend of (a) indicate 
changes in the regular progression in altitude. Also shown are (c) the relative bias (ACCMIP – IAGOS / 
IAGOS) by season, and (d) the correlation of the annual cycles, both by level. Neither the IAGOS nor 
ACCMIP data are filtered to remove stratospheric intrusions. 
 
4.1.3 Surface ozone  
Credible simulation of surface ozone is necessary to produce scientific information for assessing 
potential human health and ecosystem impacts of ground-level ozone. The TOAR-Surface Ozone 
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Database, described below, provides observed ozone metrics for evaluating the models applied for 
impact studies (Fleming et al., 2017, hereinafter referred to as TOAR-Health; Mills et al., 2017, 
hereinafter referred to as TOAR-Vegetation). Accurate abundances are especially important when using 
threshold metrics, such as AOT40 (sum of hourly ozone concentrations over a threshold of 40 nmol mol-

1 during daylight hours), to analyze simulations and assess possible impacts (e.g., Anenberg et al., 2009; 
Tong et al., 2009; Avnery et al., 2011; TOAR-Vegetation). Here we discuss model evaluation of the 
mean spatial and temporal distribution of surface ozone while model skill in simulating extreme events 
is discussed in Section 5. 

Model evaluation relies on the availability of high quality observations with high spatial and 
temporal coverage. Reasonably comprehensive “baseline” (TOAR-Observations) surface ozone 
observations over the U.S., Canada, Europe, and Japan augmented with data over numerous polluted 
sites in these regions have facilitated a thorough evaluation of global chemistry models over those 
regions (e.g., Fiore et al., 2009; Reidmiller et al., 2009; Schnell et al., 2015; Sofen et al., 2016b). 
Evaluation elsewhere is limited by poor data availability. To alleviate data limitation, a comprehensive 
database of global surface ozone measurements was compiled within the TOAR framework (TOAR-
Surface Ozone Database). This was achieved by collating in situ hourly ozone data over the time period 
1970-2015 from regional or national air quality monitoring networks, multi-national programs and data 
from individual researchers. A gridded product was generated from this dataset for comparison with 
models. Data from stations with elevations greater than 2 km were not included in this gridded dataset. 
Mean climatological present-day observations were constructed by averaging data over 1996-2005 
(Figure 6b), and gridded to 5 degree latitude x 5 degree longitude to facilitate comparison with coarse 
resolution model data. 

We evaluate 15 ACCMIP model simulations of present-day annual mean surface ozone mixing 
ratios and their seasonal cycle (Figure 6a) against the TOAR-Surface Ozone Database using only data 
from stations that are classified as “rural” (locations as shown by Figure 6b). The ACCMIP multi-model 
mean generally captures the observed large-scale spatial pattern of annual mean surface ozone: higher in 
the NH and lower in the SH. The multi-model mean generally overestimates ozone (biases range from –
5 to +24 nmol mol-1; Figure 6c) with a mean bias of +7.1 nmol mol-1 globally, and 7.7 nmol mol-1 in NH 
and +3.5 nmol mol-1 in the SH. Over the U.S. and Europe, the mean biases of +7 nmol mol-1 and +5.6 
nmol mol-1, respectively, are similar to the 5 nmol mol-1 bias in HTAP CTMs over these regions 
(Dentener et al., 2006).  

For the U.S, the positive bias ranges from 5-15 nmol mol-1 over the eastern U.S. but exceeds 15 
nmol mol-1 over North American coastal regions compared with observations. The mean seasonal cycle 
is generally reproduced with correlation coefficients for monthly mean values greater than 0.6 (Figure 
6d), although the multi-model mean tends to peak later in the year over the eastern U.S., consistent with 
previous model evaluations (Murazaki and Hess 2006; Fiore et al., 2009; Reidmiller et al., 2009; 
Lamarque et al., 2012; Naik et al., 2013; Brown-Steiner et al., 2015; Strode et al., 2015; Travis et al., 
2016).  

In Europe, the annual multi-model mean performs better over northern Europe (biases range 
from –2 to +10 nmol mol-1) as compared to southern Europe, particularly, over the Mediterranean region 
where biases exceed 20 nmol mol-1. A previous study found the multi-model mean of a subset of 
ACCMIP models, combined with regional and global CTMs, to generally have greater biases in 
summertime ozone over northern versus southern Europe in comparison to site-level observations 
(Colette et al., 2015). This conflicts with the analysis presented here possibly due to a combination of 
different model ensemble size and observational dataset. The multi-model mean generally captures the 
seasonal cycle over Europe with correlations greater than 0.6 (Figure 6d) consistent with the comparison 
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over North America. 
For grid-cells with measurements in Asia (chiefly Japan), the multi-model mean performs better 

(biases in the range of 5-10 nmol mol-1) and simulates the seasonal cycle accurately (r > 0.8), although a 
recent in-depth evaluation of the seasonal cycle simulated by global CCMs over marine boundary layer 
sites on the west coast of Japan indicated that models have difficulty in simulating the seasonal cycle 
over this region (Parrish et al., 2016). For the handful of grid-cells in the SH with observations, the mean 
model bias ranges from –5 to +5 nmol mol-1 with a good simulation of the seasonal cycle (r > 0.8).  

Model skill in simulating mean surface ozone distribution varies by the type of model and 
simulations, evaluation approach (e.g., individual sites versus regional averages), and the availability 
and quality of observations (Fiore et al., 2009; Reidmiller et al., 2009; Lamarque et al., 2012; Doherty et 
al., 2013; Naik et al., 2013; Strode et al., 2015; Brown-Steiner et al., 2015; Monks et al. 2015; Schnell et 
al., 2015; Colette et al., 2015; Tilmes et al., 2015). Overall, current generation global CCMs reproduce 
the spatial patterns in annual mean surface ozone based on available observations but are generally 
biased high in the NH and, except for eastern Australia and New Zealand, biased low in the SH. The 
observed seasonal cycle is generally captured at mid-latitude land areas but there are biases, the cause of 
which can be inferred with in-depth analyses like those conducted in recent studies (e.g., Derwent et al., 
2016; Parrish et al., 2016).  

 

 
 
Figure 6: Annual mean surface ozone concentration for (a) the ACCMIP multi-model ensemble mean 
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for present day (year 2000), and (b) the climatological, rural mean (1996-2005) derived from the TOAR-
Surface Ozone Database. Ozone mixing ratios from the lowest vertical level of each model were 
interpolated to a common horizontal resolution of 5x5 degree to calculate the multi-model ensemble 
mean. (c) ACCMIP multi-model ensemble bias compared to the TOAR-Surface Ozone Database and (d) 
correlation coefficient (r) for ozone seasonal cycle in ACCMIP ensemble mean versus observations. 
 
4.2 Summary and assessment of model skill 
Comparison of simulated and observed annual and monthly mean ozone climatologies provides a first 
order evaluation of model skill for this species. The current generation of global models simulates a 
tropospheric ozone burden and net stratospheric influx that compares well against the available 
observational estimates, whereas simulated total chemical production and loss fluxes, and deposition 
(which lack observational constraints) show a broad range between the different models. For the 
chemical fluxes, the spread is likely related to the complexity of the different chemical reaction 
schemes, particularly the ability to accommodate a range of VOCs. For deposition, the spread is related 
to uncertainty and model spread in boundary layer dynamics and surface uptake coefficients (after 
controlling for different near surface ozone levels). Additional measurements may help to narrow the 
spread, but would be required for several land surface types.   
 Breaking down the evaluation to a regional level reveals the models are biased high in the 
northern hemisphere and low in the southern hemisphere. Ozonesonde, satellite, aircraft and surface 
monitoring data show that these biases generally persist throughout the depth of the troposphere. Models 
also have difficulty in reproducing observations at sites influenced by long-range transport of ozone and 
its precursors. As these biases are typical amongst models it suggests a common cause, making 
emissions a likely candidate, as well as potentially deposition or any other processes where models share 
similar representations of a process. An evaluation of emissions data as well as targeted model 
sensitivity simulations could make progress on this issue. 

The simulated seasonal cycle of surface and free troposphere ozone compares favorably against 
observations for most locations, giving confidence that the seasonal variation in meteorology and 
emissions (chiefly from biomass burning and natural sources) and their impact on ozone is well 
simulated. There are some exceptions in the free troposphere, including for sonde sites over the 
Equatorial Americas and, to a lesser extent, over Japan and high latitude northern hemisphere. The 
reasons for these biases could reflect poorer simulation of local dynamics or missing chemical 
processes, and requires additional study.  
 
5. Evaluation of extreme ozone pollution in models  
5.1 State of knowledge 
Extreme pollution typically arises during specific meteorological events, such as heat waves and 
stagnation episodes, favorable to production from local and regional emissions of ozone precursors 
(Kirtman et al., 2013). These events may occur on local and regional scales, and can persist over 
multiple days. Modeling future changes in extreme pollution events requires accurate representation of 
the underlying synoptic-scale meteorology, but confidence in projecting changes in blocking events, 
often associated with the most persistent observed regional-scale events (e.g., 2003 European heat 
wave), is currently poor (Kirtman et al., 2013 and references therein). Feedbacks from local 
anthropogenic and biogenic emissions and atmospheric chemistry during these meteorologically driven 
events will influence the severity of the event, and add another layer of uncertainty to projecting future 
changes. Whether or not our projections are hindered, several studies argue that global chemistry models 
are able to capture the impact of such large-scale synoptic processes on ozone levels (Fiore et al., 2003; 
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2012; 2015; Jacob and Winner, 2009). Figure 7 presents a further example, showing a favorable 
comparison of extreme ozone levels from a global CTM simulation (Murray, 2016) against the same 
ozone metric from the TOAR-Surface Ozone Database during a heatwave over the U.S. 

The evaluation of model skill in representing the frequency, intensity and duration of extreme 
ozone episodes relies on metrics derived from dense, high frequency, long-term, and reliable 
measurements of surface ozone (TOAR-Observations). Availability of such datasets over Asia and 
particularly the U.S. and Europe has facilitated modeling studies of extreme ozone pollution over these 
regions, while sparse observational records limit extreme episode analysis in other regions of the world. 
The focus here is on the U.S. and Europe as these are the regions with high-quality, long-term 
observations used in most evaluations of model skill, although there are growing examples of studies 
from Asia (e.g., Liu et al., 2010; Zhang et al., 2012; Huang et al., 2015).  

Evaluating extreme ozone episodes requires a definition of “extreme”. There are four approaches 
to define ozone extremes which have been described in the literature. These metrics have proven useful 
to evaluate process representation and representativeness of global model simulations. Given that 
models are biased, evaluations that avoid absolute definitions of an extreme event (e.g., a particular 
mixing ratio) are preferable; three of the four approaches meet this criterion. These approaches are: 

 
1)   Specific (high) percentiles (e.g., Lei et al., 2012; Pfister et al., 2014); 
2)   The number and/or frequency of events above a fixed value that is considered extreme at present, 

including values that are relevant to attaining ambient air quality standards (AAQS) (e.g., 
Murazaki and Hess, 2006; Wu et al., 2008; Gao et al., 2013; Pfister et al., 2014; Rieder et al., 
2015);  

3)   Statistical methods from extreme value theory (EVT) to analyze ozone extremes in observations 
and CCM simulations (Rieder et al., 2013; 2015). The EVT approach is useful as it combines the 
frequency and intensity aspect of ozone extremes by focusing on so-called ‘T-year ozone return 
values’, which describe the probability of exceeding a value of intensity x within a time window 
T. 

4)   The spatial distribution and connectedness of a fixed number of climatologically extreme events 
at each grid cell (e.g., 100 days in a decade, ~97.3 percentile) (Schnell et al., 2014; 2015). This 
approach avoids complications through systematic biases present in many CTMs and CCMs 
(Dawson et al., 2008) by highlighting the times at each location when ozone pollution is at its 
worst, regardless of the absolute ozone abundance. 
 
Metrics described in (1) and (2) are available from the TOAR-Surface Ozone Database. The 

fourth approach has been applied to develop metrics characterizing the climatology of extreme ozone 
episodes (e.g., annual and interannual variability, areal extent, duration), and has enabled the evaluation 
of both hindcast and free-running global chemistry model simulations (Schnell et al., 2014). An 
evaluation of extreme episodes over the U.S. and Europe for a selection of the ACCMIP models showed 
that, although generally biased high, most models were able to reproduce the observed climatological 
mean annual ozone cycle, the frequency of extremes, as well as the persistence, spatial extent and 
observed distribution of pollution episode sizes (Schnell et al., 2015). Thus, despite biases relative to 
observed ozone levels, global chemistry models do capture day-to-day variability and thus contain 
information regarding the frequency of extreme events and their spatial extent. However, some models 
were not able to reproduce the largest episodes, likely a result of too coarse resolution of the synoptic 
meteorology fields in these models. Additionally, trends in the observations can complicate this analysis 
(Schnell et al., 2015).  

While evaluations applying a range of the approaches above show that global models are 
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generally able to represent the salient features of extreme ozone episodes including extent, duration, 
frequency and year-to-year variability (e.g., Fiore et al., 2003; Schnell et al., 2015), there are systematic 
regional biases in the intensity of ozone extremes, especially for the summertime eastern U.S. (e.g., 
Rasmussen et al., 2012; Pfister et al., 2014; Rieder et al., 2015). As stated above, these biases are most 
problematic when focusing on ozone extremes defined as number or frequency above a fixed threshold 
or AAQS metric. Despite these biases, global chemistry models simulate larger decreases in the upper 
tail (relative to other parts of the overall surface ozone distribution) following regional nitrogen oxide 
emission reductions, consistent with observations (Rieder et al., 2015). This suggests that these models 
can represent the response of extreme ozone levels to changing emissions but suffer from a mean state 
bias. In an effort to address this systematic mean bias, recent studies have applied statistical bias-
correction techniques to derive threshold-based metrics (e.g., Rieder et al., 2015). However, bias-
correction techniques are model dependent and can only reduce systematic biases intrinsic to the model 
(e.g. Kang et al., 2008). Improvements in model physics and chemistry, and the implemented emissions 
inventories can reduce both systematic and unsystematic errors thereby improving the global model 
simulation of extreme ozone episodes and their metrics.   

Computational advances allow current-generation CCMs to perform global simulations at around 
1° x 1° to 2° x 2° horizontal resolution (e.g., Lamarque et al., 2013 and references therein), with higher 
resolutions possible for shorter (~1 year) simulations (e.g., Lin et al., 2012a; 2012b; Pfister et al., 2014; 
Stock et al., 2014; Zhang et al., 2014). Where high and low resolution versions of a given global model 
have been compared, the general picture is of reduced biases and better agreement with the probability 
distribution for extreme episodes, both due to changes in the effective timescales of mixing for the 
chemistry (see also Section 3.4), and representation of the meteorology (Wild and Prather 2006; Pfister 
et al., 2014; Stock et al., 2014). 

While most extreme events in polluted regions are fueled by regional anthropogenic emissions, 
extreme ozone events are in some cases produced by wildfire emissions (e.g., Jaffe and Wigder, 2012), 
transport from the lower stratosphere to the lower troposphere (e.g., Langford et al., 2009; Lin et al., 
2012a; Trickl et al., 2014), and intercontinental transport (e.g., Jaffe et al., 1999; Jacob and Winner, 
2009). Impacts from these sources vary in space and time and models differ in their level of process 
representation and estimates of the relative importance of these background sources (e.g., Fiore et al., 
2014a; 2014b). Model evaluation is confounded by the lack of source information in direct ozone 
measurements. While co-located measurements of additional species can provide information for source 
attribution, in most national, long-term networks, only surface ozone measurements are available (with 
only a couple studies now documenting long-term precursor measurements in North America; see 
Pollack et al., 2013; Hassler et al., 2016). Progress in model evaluation for such episodes is anticipated 
with availability of multiple chemical measurements, such as occurs during field campaigns and perhaps 
in the future from space-based platforms. 
 
5.2 Summary and assessment of model skill 
Notwithstanding a mean state bias (see also Section 4), the current generation of global models shows a 
degree of skill in simulating the timing and spatial distribution of extreme ozone concentrations, as 
associated with higher pollutant concentrations or particular meteorological conditions. Model-
observational differences are generally reduced in higher resolution models, for both the concentration 
bias and the probability distribution of ozone concentrations. This is due to a more realistic simulation of 
mixing and chemistry timescales, as well as better representation of the meteorology. Nevertheless, there 
are still fundamental biases in climate model simulations of meteorological conditions relevant for air 
quality (e.g., stagnation), which will impact the CCM simulations of ozone extremes. Furthermore, due 
to the limited availability of appropriate data, these evaluations have been limited to North America, 
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Europe and East Asia, leaving a currently unresolvable gap in our understanding of model skill for 
extreme episodes in many key regions known to be experiencing high pollution levels (i.e., Africa, 
Middle East, Asia outside Japan, Central America and South America).  
 

 
 
Figure 7: The relationship of high surface ozone concentrations to meteorological conditions during a 
heat wave in late June 2012 over the United States. (Left) Weather at 1800Z, showing surface 
temperature (color fill) and mean sea level pressure (contours; 4 hPa intervals: dashed below 1008 hPa, 
thick 1008 hPa, and non-dashed above 1008 hPa) (data from ERA-Interim; Dee et al., 2011). Maximum 
daily 8-hour average (MDA8) ozone (Middle) as simulated by the GEOS-Chem v9.02 3D global 
chemistry-transport model using MERRA meteorology at 2˚x2.5˚ resolution described by Murray (2016) 
and (Right) from observations in the TOAR network (TOAR-Database). Note that the color bar for 
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ozone is saturated: maximum and minimum ozone values are shown in the panels.  
 
6. Evaluation of tropospheric ozone variability 
6.1 State of knowledge 
The lifetime of ozone in the free troposphere is on the order of several weeks, sufficiently long for ozone 
to be affected by climate variability and associated changes in large-scale atmospheric circulation 
patterns on interannual to decadal time scales. Quantification of this natural variability in tropospheric 
ozone is critical to not only understand year-to-year changes in ozone, but also to assess the magnitude 
of emissions-driven trends (e.g., Lin et al., 2014; Verstraeten et al., 2015; Wespes et al., 2017). 
Evaluating the fidelity of global model simulations of the relationship between variability in 
tropospheric ozone levels and climate variability provides an assessment of these models’ ability to 
capture large-scale circulation changes that impact hemispheric transport of ozone pollution in the 
troposphere, stratosphere-troposphere exchange, and regional meteorological conditions conducive to 
pollution accumulation.  

ENSO is the dominant mode of interannual variability in tropical climate. As shown in many 
observational and modeling studies, tropospheric column ozone decreases in the eastern tropical Pacific 
and increases in the western tropical Pacific in response to circulation and convective changes during El 
Niño conditions (Doherty et al., 2006 and refs. therein). A few studies show that CCMs driven by 
observed SSTs (AMIP mode; see Section 2.1) are able to capture the overall pattern and magnitude of 
the tropical ozone response to ENSO obtained from satellite measurements (Oman et al., 2013; Sekiya 
and Sudo, 2014), including the observed ozone-ENSO index (Ziemke et al., 2010; Oman et al., 2011). 
This is calculated as the difference between observed monthly mean column ozone over two broad 
regions in the western and eastern Pacific ocean; see Figure 8 for an example. Reproducing the observed 
magnitude of ozone enhancements over the western tropical Pacific/Indonesia during El Niño requires 
simulations with interannually-varying biomass burning emissions (Doherty et al., 2006; Nassar et al., 
2009; Inness et al., 2015; Voulgarakis et al., 2015), but the same is not true for the eastern Pacific where 
ENSO-related ozone variability is largely controlled by changes in dynamics as opposed to emissions 
(Oman et al., 2013; Lin et al., 2014).  
 
 

 
 
Figure 8: Comparison of ozone-ENSO Index (OEI) derived from tropospheric column ozone simulated 
by the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM; red), driven by 
observed SSTs, and that derived from satellite ozone observations (black) (after Ziemke et al., 2010; 
Oman et al., 2011). Also shown is the Niño 3.4 Index multiplied by 3. There is a high correlation 
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between the simulated and observationally-derived OEI giving confidence that this model is able to 
simulate the real world processes that drive the ozone-ENSO relationship. 
 

A second important source of tropical variability is the Madden-Julian Oscillation (MJO). The 
MJO is responsible for variability of ~±5 DU in total column ozone in the subtropics that arises 
primarily through vertical movement of the subtropical tropopause (Li et al., 2011). It also drives 
variability of ~±1-2 DU in tropospheric column ozone in the tropics through a combination of large-
scale advection, convective uplift, and lightning NOx production, and can account for up to 47% of the 
total variability in the tropical tropospheric column on daily to interannual timescales (Sun et al., 2014). 
Two different CTMs driven by analyzed meteorological fields have successfully reproduced satellite-
observed MJO variability (Sun et al. 2014; Ziemke et al., 2015), but this has not been demonstrated for 
CCMs. A single CCM study, using observed SSTs, reproduced the tropical ozone response to ENSO 
variability but not shorter timescales related to the MJO (Ziemke et al., 2015).  

Over northern mid-latitudes, ENSO events can affect the interannual variability of hemispheric 
pollution transport by modulating the strength and position of the subtropical jet stream, particularly in 
the Pacific-North America sector (Trenberth et al., 1998; Koumoutsaris et al., 2008; Li and Lau, 2012; 
Lin et al., 2014). Continuous ozone measurements at Mauna Loa Observatory (located in the subtropical 
North Pacific) since 1974 (Oltmans et al., 1996) can provide a benchmark for evaluating the ability of 
CCMs to represent tropospheric ozone variability in response to mid-latitude ENSO teleconnections. An 
ensemble of simulations from a single CCM with constant emissions, driven by observed SSTs and sea 
ice over 1960-2012, captured the observed springtime ozone variability at Mauna Loa. These 
simulations attribute this variability as a response to shifts in the position of the subtropical jet stream, 
coherent with ENSO on interannual time scales and the Pacific Decadal Oscillation on decadal time 
scales (Lin et al., 2014). These same simulations also demonstrated model skill in capturing the 
observed autumnal ozone increase at Mauna Loa from the mid-1990s onwards, attributing the increase 
to a shift to the positive phase of the Pacific North American (PNA) pattern. Simulations constrained by 
meteorology (nudged) showed more skill in simulating the autumnal ozone interannual variability than 
simulations only constrained by SSTs. Note that these results are from a single CCM and a wider 
evaluation of global models is required. 

Interannual variability of stratosphere-to-troposphere transport (STT) is an important driver of 
extratropical tropospheric ozone variability in hemispheric winter and spring. It is thought to have strong 
connections with several modes of climate variability, including ENSO (Langford, 1999; Zeng and Pyle, 
2005; Neu et al., 2014; Lin et al., 2015b), the Arctic Oscillation (Hess and Lamarque, 2007), the North 
Atlantic Oscillation (Sprenger and Wernli, 2003; Pausata et al., 2012), and the stratospheric quasi-
biennial oscillation (QBO) (Hsu and Prather, 2009; Neu et al., 2014), as well as (episodic) volcanic 
eruptions (Oltmans et al., 1998; Fusco and Logan, 2003; Tang et al., 2013; Lin et al., 2015b). The ability 
of global models to represent tropospheric ozone variability associated with the STT ozone flux varies 
depending on model representation of stratospheric chemistry and its dynamical coupling with the 
troposphere (see Table S1 of Lin et al., 2015b).  

Overall, available studies suggest that global chemistry models with a parameterized 
stratospheric ozone source for the troposphere tend to underestimate extratropical ozone variability. For 
instance, a simulation over 1987-2005 with assimilated meteorology but a parameterized stratospheric 
ozone source was unable to match the observed interannual variability of extratropical ozone 
(Koumoutsaris et al., 2008). Furthermore, the interannual variability (standard deviation) of mid-
tropospheric ozone derived from ozonesonde and aircraft measurements is three times larger than that 
simulated in a CTM with a parameterized stratospheric ozone source (Hess and Zbinden, 2013). Both 
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models in these studies were unable to reproduce the observed low-ozone anomaly following the 1991 
Pinatubo volcanic eruption, although they do capture some aspects of the observed 1998-1999 high-
ozone anomaly at northern mid-latitudes, which was associated at least in part with an increase in the 
STT ozone flux following the 1997-8 El Niño (Koumoutsaris et al., 2008; Hess and Zbinden, 2013). A 
few studies show that CTMs with a climatological stratosphere underestimate observed ozone 
abundances at high northern latitudes in winter-spring (Hu et al., 2017) and in stratospheric intrusions 
that penetrate into the lower troposphere (Hudman et al., 2004; Zhang et al., 2011). These modeling 
analyses suggest the need for more sophisticated simulations that include detailed representations of 
stratospheric chemistry and circulation, as well as its dynamical coupling with the troposphere. Indeed, a 
study using a CCM relaxed to observed SSTs and QBO, and with a detailed representation of 
stratospheric chemistry (but simplified tropospheric chemistry), was able to capture up to 36% of the 
observed NH mid-tropospheric ozone interannual variability, depending on location (Hess et al., 2015).  

A small number of CCM studies have evaluated tropospheric ozone and STT using simulations 
that include interactive stratospheric and tropospheric chemistry and aerosols (e.g., Neu et al., 2014; Lin 
et al., 2015a,b; Strode et al., 2015). A recent study applied observational constraints from the 
Tropospheric Emission Spectrometer (TES) and Microwave Limb Sounder (MLS) on-board NASA’s 
Aura satellite over the 2005-2010 period to assess the ability of one CCM to reproduce the tropospheric 
ozone response to stratospheric circulation changes (Neu et al., 2014). The model was able to reproduce 
the observed relationship between stratospheric circulation changes and tropospheric ozone, and showed 
that the strength of lower stratospheric circulation varies by 40% from year-to-year which leads to 
changes in northern mid-latitude tropospheric ozone of about 2%: a modest but important contributor to 
tropospheric ozone changes from climate change (Neu et al., 2014). Over western North America, where 
the world’s deepest stratospheric intrusions are found (Langford et al., 2009; Lin et al., 2012a; Škerlak et 
al., 2014), a nudged CCM simulation for 1980-2012 reproduced enhancements of upper tropospheric 
ozone during El Niño as measured at the Trinidad Head ozonesonde station, and simulated greater mid-
tropospheric and surface ozone enhancements during La Niña consistent with a suite of observations 
(Lin et al., 2015b). Since STT occurs as discrete multi-day events, appropriate evaluation of this process 
requires daily observations. Figure 9 shows that a model simulation with constant emissions captures 
much of the observed April-May interannual variability in ozone at western U.S. high-elevation sites (r 
= 0.75), including more frequent high-ozone events in surface air following La Niña and fewer events in 
the two springs after the 1991 volcanic eruption of Mt. Pinatubo (after Lin et al., 2015b). Similar 
hindcast simulations with a different model (but with similar chemistry scheme) captured some of the 
observed springtime western U.S. ozone interannual variability, but with a correlation coefficient of 0.4 
(Strode et al., 2015). 
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Figure 9: (a) The observed April-May average of the median of maximum daily 8-hour average 
(MDA8) ozone at 22 high-elevation sites is shown by the black line, with the grey shading representing 
the 25th-75th percentiles. The equivalent time series and spread simulated by the GFDL-AM3 model, 
with fixed anthropogenic emissions, is shown by the red line and red bars respectively. The median 
stratospheric influence for each year (O3Strat, blue, right axis) and the 26-year climatology (inset map) 
are shown. (b) Observed (grey) versus model (red) percentage of site-days with MDA8 ozone ≥65  nmol 
mol-1. The blue box-and-whisker plots give the minimum, 25th–75th percentiles and maximum of 
stratospheric contribution (right axis) on days when total simulated ozone is below 60  nmol mol-1 
(dashed) versus above 70  nmol mol-1 (filled) for the high-ozone springs. Arrows at the top of the graph 
indicate the springs following the Mt Pinatubo volcanic eruption (orange), strong El Niño (pink) and La 
Niña (blue) winters. Figure is taken from Lin et al. (2015b). 
 
6.2 Summary and assessment of model skill 
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Detailed comparisons of modeled and measured sub-decadal variability of ozone is a relatively recent 
evaluation method, facilitated by the availability of longer observation records. Patterns of variability, 
such as the ozone-ENSO relationship, emerge from the combination of several underlying processes 
(e.g., STT, biomass burning emissions, convection etc.) and thus provide a reasonably thorough test of 
model skill. While these evaluations have only been applied to a small selection of CTMs and CCMs, 
studies indicate broadly successful model-observation comparisons for the ozone-ENSO relationship, 
decadal ozone variability driven by the PDO and PNA, and – if the model has the ability to simulate 
stratospheric chemistry and dynamics – the role of interannual variability of STT on tropospheric ozone. 
Extending these evaluations to a wider range of global models is now possible with the availability of 
long, transient CCM simulations of the last ~five decades as part of CCMI (Table 1). When completed, 
this evaluation will allow a better assessment of the ability of individual models to simulate chemistry-
climate interactions.        
 
7. Evaluation of long-term changes in tropospheric ozone 
7.1. State of knowledge 
Global model simulations of long-term (> decade) changes of tropospheric ozone are required to assess 
the radiative forcing and air quality impacts resulting from those changes and to project them in the 
future in response to anthropogenic and natural perturbations. Such simulations are challenging because 
ozone changes result from complex and mutually dependent interactions between precursor emissions, 
meteorological variability, ozone photochemical production and in situ loss, surface deposition, 
atmospheric circulation, and long-range transport including stratosphere-troposphere exchange 
(Lelieveld and Dentener, 2000). Given this complexity, it is perhaps not surprising that simulated ozone 
changes over a range of time scales disagree significantly with observations and diverge widely between 
different global models (Lamarque et al., 2010; Young et al., 2013; Parrish et al., 2014).  

Many global models have been applied to simulate the increase of the tropospheric ozone 
distribution from preindustrial times to the present. Evaluation of the simulated preindustrial 
tropospheric ozone levels has been problematic because of extremely limited and highly uncertain 
measurements of preindustrial tropospheric ozone abundance (TOAR-Observations). Surface ozone 
measurements made from the Municipal Observatory at the Parc de Montsouris located on the southern 
edge of Paris during 1876-1910, the oldest quantitative record of ozone, suggest that past ozone values 
were about 1/5th of present day values (Volz and Kley, 1988; TOAR-Observations). Global models 
typically have had difficulty in reproducing such low preindustrial ozone levels when compared to the 
quantitative measurements at Montsouris or to the semi-quantitative, but highly uncertain, Schönbein 
method observations from a handful of other sites in the late nineteenth and early twentieth century (e.g., 
Wang and Jacob, 1998; Mickley et al., 2001; Horowitz, 2006; Stevenson et al., 2013). However, a 
reevaluation of the Montsouris record as part of TOAR (TOAR-Observations) has called into question its 
reliability, finding that while the observations were made with a valid technique, they were likely 
impacted by significant sulfur dioxide and ammonia emissions from nearby coal burning and livestock 
facilities, making the data unsuitable for comparison with global model output. Lack of reliable ozone 
measurements has made it difficult to provide a robust assessment of the increases in tropospheric ozone 
levels from preindustrial to present-day (e.g., Staehelin et al., 1994; Cooper et al., 2014; TOAR-
Observations). 

Nevertheless, appropriate observation-derived metrics with well-defined confidence limits, well-
designed model simulations, and novel analysis methods are needed to help identify model deficiencies 
and resolve model-measurement disagreements, thus enhancing confidence in our knowledge of 
historical changes in tropospheric ozone. One effort to identify model-measurement disagreement in the 
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global CCM simulations of long-term changes in tropospheric ozone has focused on the application of 
quantitative measurement-derived metrics that describe long-term changes in lower tropospheric 
baseline ozone from the mid-twentieth century to the present to evaluate models (Parrish et al., 2014). 
These metrics span the period during which, presumably, most of the increase of ozone since 
preindustrial times occurred, but are not derived from the limited and uncertain 19th century 
measurements. The derived metrics are the coefficients of polynomial fits to seasonally averaged 
baseline lower tropospheric ozone mixing ratios at northern mid-latitudes normalized to year 2000 that 
allow comparisons of long-term ozone changes (see TOAR-Metrics, their Section 2.4.3 for more details). 
Figure 10 compares these observationally derived metrics with model-derived values, to assess model 
skill in representing the measured long-term ozone changes at northern mid-latitudes.   

The individual seasonal averages exhibit significant variability about the polynomial fits (see 
Fig. 4c of Parrish et al., 2014). Since the polynomial fits largely remove this interannual variability, the 
derived values can be interpreted as the seasonally averaged, near surface, baseline ozone levels 
compared to the year 2000 in the absence of interannual variability. However, the polynomial fits do not 
remove potential variability on decadal time scales induced by shifts in atmospheric circulation patterns 
which can confound efforts to obtain estimates of emission-driven ozone trends, as discussed in detail 
below (see also Lin et al., 2015b). Notwithstanding, a comparison of these measurement-derived 
polynomial metrics with those derived from three free-running CCMs (which produce their own 
meteorology and therefore may not reproduce the actual meteorological variability) suggests that those 
models overestimate absolute ozone abundances for these sites, and capture only about half of the long-
term changes in ozone that occurred at northern mid-latitudes over the past five to six decades (Figure 
10 derived from Figures 4 and 7 of Parrish et al., 2014). 

Unforced, low-frequency climate variability can confound comparisons of long-term trends 
between observations and the CCMs that simulate their own meteorology (such as those analyzed by 
Lamarque et al., 2010 and Parrish et al., 2014). Studies show that 20-year trends driven by internal 
climate variability can be as large as emission-driven trends (Lin et al., 2014; 2015b; Barnes et al., 
2016). An approach to overcome this complication is to compare long-term ozone observations with 
model hindcasts forced (or nudged) with observed meteorology. This better isolates model-observation 
disagreements, and could potentially suggest model improvements (e.g., Pozzoli et al., 2011; 
Koumoutsaris and Bey, 2012; Brown-Steiner et al., 2015; Lin et al., 2015b; Strode et al., 2015; Tilmes et 
al., 2016; Lin et al., 2017). Overall, such hindcast simulations capture observed decreases in 
summertime surface ozone in the populated regions of North America and Europe during 1990-2010, 
but have difficulties simulating the ozone increases measured at remote baseline sites.  

In addition to climate variability, sparse in situ measurements on both spatial and temporal scales 
can complicate the evaluation of ozone trends simulated by global models. One study found that global 
model hindcast simulations were able to reproduce observed ozone increases in the free troposphere 
over the western U.S. when the model was co-sampled in time and space with observations, as opposed 
to continuous temporal and spatial sampling of model results (Lin et al, 2015a). In a follow-up study, 
when hindcast model results were filtered for hemispheric-scale baseline conditions using simulated 
regional CO-like tracers, the model was able to successfully reproduce the observed springtime ozone 
increases at western U.S. sites as well as at a high-elevation site in Japan that is strongly influenced by 
Asian pollution outflow (Lin et al., 2017). These studies highlight the need to consider 
representativeness of measurements and provide examples of analysis/sampling approaches to address 
the model-observation discrepancy in long-term trends in tropospheric ozone.  

Discrepancies between modeled and observed ozone trends reported in the published literature 
thus reflect a combination of factors. Factors related to the measurements or their use include: 



DRAFT: DO NOT CITE OR QUOTE  TOAR-Model Performance 

32	  

uncertainties in early measurements (e.g., Staehelin et al., 1994; Logan et al., 2012; TOAR-
Observations); sampling biases in model-measurement comparisons, such as the representativeness of 
the trends derived from sparse measurements (Cooper et al., 2010; Lin et al., 2015a); and the presence of 
trends driven by low-frequency climate variability that free-running CCMs are not expected to 
reproduce exactly (Lin et al., 2014; 2015b; Barnes et al., 2016; Garcia-Menendez et al., 2017). Factors 
related to the models include: errors in the trends incorporated in the underlying emission inventories 
used in the model (Granier et al., 2011; Hassler et al. 2016); limitations of coarse-resolution models in 
resolving observed baseline conditions (Lin et al., 2017); and weaknesses in the model representation of 
the processes (chemical, physical, and dynamical) that control the observed trend at a given location. It 
is also the case that a model’s ability, or not, to reproduce ozone trends may be different for mean or 
median values, as opposed to other percentiles. This needs further exploration and quantification with 
the current generation of global models.  
 
7.2 Summary and assessment of model skill 
Assessment of model skill in simulating ozone trends over long time periods is hampered by a range of 
factors, related to basic uncertainty in the available measurements, sampling biases, and the impact of 
low frequency variability on ozone concentrations that may influence the observed trend (and would not 
be simulated in a free running CCM). Nevertheless, the poor comparison of a range of models against 
long term ozone measurements is worthy of deeper exploration, to understand the extent to which 
weaknesses in model processes or inputs are responsible, compared to issues related to measurement 
uncertainties and sampling biases. Progress can be achieved by analyzing model simulations constrained 
by the observed meteorology and sampled to the same spatial and temporal pattern as the measurements. 
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Figure 10: Seasonal long-term changes in ozone at approximately baseline surface stations in (Left) 
Europe and (Right) Japan and the western coast of North America, for (a) and (c) summer, and (b) and 
(d) winter. Black lines indicate polynomial fits to measured ozone mixing ratios normalized to year 2000 
for all sites, calculated from the polynomial coefficients given in supplemental table A2 of TOAR-
Metrics, which describes the normalization process in more detail. The colored lines indicate similar 
polynomial fits to ozone mixing ratios calculated for those same baseline sites by three CCMs. Derived 
from Parrish et al., (2014).  
 
8. Explaining and addressing model ozone biases  
In the previous sections, we have discussed model evaluation approaches and model skill in simulating 
tropospheric ozone distributions, variability and trends. Model parameterizations, observation 
limitations (uncertainties, spatial and temporal coverage), and an incomplete understanding of physical 
and chemical processes introduce errors into model simulations as we have described in the above 
sections. Here, we outline specific processes or parameters that lead to uncertainties in the simulation of 
tropospheric ozone at various spatio-temporal scales. Our list largely focuses on processes that are 
centrally important for gas-phase chemistry, omitting a detailed discussion of biases arising from 
treatment of atmospheric physics or the terrestrial biosphere, for instance, which are all important for 
simulation of ozone in chemistry GCMs, CCMs and Earth system models. Issues related to 
representativeness of measurement-model comparisons as discussed in previous sections.  
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8.1 Emissions of ozone precursors  
A substantial proportion of the uncertainty in the spatial and temporal distribution of ozone simulated by 
global models arises from uncertainties in emissions of ozone precursors, which are chiefly NOx, CO, 
methane, and NMVOCs (e.g., Granier et al., 2011). These emissions may be from anthropogenic 
sources, which are typically prescribed in global models as inputs, or from natural sources, which may 
be either prescribed or parameterized based on their dependence on land surface properties and 
meteorological or other model variables.  
 
8.1.1. Anthropogenic emissions 
Anthropogenic emission sources include fuel production, industrial and domestic combustion of fossil 
fuel and biofuel, transportation, waste disposal, industrial processes, solvent production and use, and 
agriculture. Emission inventories used by global models are generally derived from a bottom-up 
statistical approach, which estimates emissions as the product of activity levels (such as fuel 
consumption and number of vehicles) and emission factors (emissions of trace species per unit activity) 
(Granier et al., 2011; Hoesly et al., 2017). Recent inventories provide gridded monthly anthropogenic 
emissions (e.g., Hoesly et al., 2017) although previously they only considered annual values (Lamarque 
et al., 2010). Temporal variability on diurnal, daily, and weekly scales is not typically included in these 
inventories.  

Developing emission inventories at global and regional scales requires detailed activity 
information at national or provincial levels, and their historical and future trends (e.g., Xing et al., 2013). 
The accuracy of emission estimates is thus limited by the completeness of activity data and accuracy of 
emission factors. Significant differences exist in commonly used global and regional anthropogenic 
emission inventories for ozone precursors and aerosols (Granier et al., 2011; Monks et al., 2015). 
Inverse methods, such as Bayesian inversion, Kalman filter, and model adjoints have been used to 
provide top-down constraints to improve the bottom-up emission estimates through combining models 
and observations of atmospheric trace species (e.g., Arellano et al., 2004; Heald et al., 2004; Kopacz et 
al., 2009; Miyazaki et al., 2012).  

Several studies have examined the sensitivity of ozone simulations to emission inventories, often 
focusing on Asia where differences in emission estimates are particularly large (Ma and van Aardenne, 
2004; Streets et al., 2006; Amnuaylojaroen et al., 2014; Jena et al., 2015; Zhong et al., 2016; Saikawa et 
al., 2017). For example, large discrepancies between emission inventories in NOx emissions over urban 
areas in India and China have been shown to produce significant differences in model simulated surface 
ozone mixing ratios (Jena et al., 2015; Zhong et al., 2016). Furthermore, one reason for the apparent 
mismatch in observed and modeled surface ozone trends in the northern mid-latitudes could be due to 
inaccuracies in precursor emission trends (Parrish et al., 2014). Analyses of long-term observations of 
NOx and CO ratios in U.S. and European megacities indicate that current global emission inventories fail 
to capture the observed trends in NOx/CO enhancement ratios due to inadequate regional knowledge of 
emissions source information (Hassler et al., 2016). Most recently, global model overestimation of 
surface ozone in the Southeast U.S. has been partly attributed to overestimated NOx emissions in the 
U.S. EPA emission inventory (Travis et al., 2016). These studies highlight the need for a careful 
evaluation of precursor emissions and innovative ways to constrain them through tracer-tracer 
correlations (see Section 3.3), the use of satellite data sets (e.g., Richter et al., 2005; Martin et al., 2006, 
Lin et al., 2010; Lamsal et al., 2011, Duncan et al., 2016) or data assimilation techniques that employ 
models and satellite observations to provide top-down emission estimates (e.g., Miyazaki et al., 2017). 
 
8.1.2. Biomass burning emissions 
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Biomass burning or fire emissions present a large source of ozone precursors to the atmosphere. 
Estimates of biomass burning emissions are commonly calculated as products of burned area, fuel 
consumption, combustion completeness, and emission factors of various species (van der Werf et al., 
2006; 2010; Wiedinmyer et al., 2011), all subject to large uncertainties. Emissions are typically input as 
seasonally varying monthly means for longer simulations, but inventories with daily variability are also 
used (e.g., Young et al., 2012). 

Satellite observations of fire activity have been applied to estimate burned area at global or 
regional scales, constraining the timing and locations of fires (Sukhinin et al., 2004; Giglio et al., 2006). 
Some recent inventories have started to use satellite retrievals of fire radiative power instead of burnt 
area which appears superior at least in some world regions (Kaiser et al., 2012). However, a comparison 
of five global biomass burning emission inventories based on different satellite fire or burned area 
products showed a large range of 365-1422 Tg CO emissions for the year 2003 (Stroppiana et al., 2010; 
Reddington et al., 2016). Different estimates of biomass burning emissions are also highly variable in 
the spatial patterns, temporal variability, and long-term trends (Schultz et al., 2008). This means that 
construction of an emissions dataset for decadal-to-centennial time scale model simulations is 
challenging, with additional uncertainties likely arising from discontinuities in the observational record 
(van Marle et al., 2017).   

Considerable uncertainty exists in model simulation of ozone production from biomass burning 
emissions. Most observations have shown that ozone is produced from fire emissions, yet some have 
reported no ozone enhancement or even ozone depletion in fire plumes depending on plume age, effects 
of co-emitted aerosols, and mixing with urban pollution (Singh et al., 2010; 2012; Jaffe and Wigder, 
2012; Parrington et al., 2013; Baylon et al., 2015). Observations of ozone enhancements in fire plumes 
indicated by the O3/CO enhancement ratio show a wide range of –0.1 to 0.9 nmol mol-1 / nmol mol-1, 
and tend to increase with plume age (Jaffe and Wigder, 2012; Wigder et al., 2013). Quantifying ozone 
production from fires in models is difficult, and uncertainties arise not only from the magnitude and 
variability of NOx and non-methane volatile organic compounds (NMVOCs) emitted (Andreae and 
Merlet, 2001; Akagi et al., 2011), but also from the sub-grid non-linear photochemistry associated with 
aerosols that affects both chemistry and radiation in fresh fire plumes (Alvarado et al., 2009; Jiang et al., 
2012). Global models may overestimate ozone production in fresh fire plumes and underestimate the 
regional ozone enhancements from transport of peroxyacetyl nitrate (PAN) due to inadequate chemistry 
and coarse grid resolution (Zhang et al., 2014; Lu et al., 2016).  

In addition, observations show that under favorable atmospheric conditions strong fires can 
enhance deep convection, injecting plumes more than 5 km into the free troposphere (Cammas et al., 
2009; Fromm et al., 2010; Val Martin et al., 2010; Sofiev et al., 2013). Model studies have also found 
that limiting fire emissions to the boundary layer underestimates their influence in downwind regions 
(Cook et al., 2007; Freitas et al., 2007; Brioude et al., 2009; Chen et al., 2009; Jian and Fu, 2014). More 
effort is needed to evaluate model simulation of ozone production from biomass burning emissions, in 
particular during the evolution of fire plumes and over regions that are dominated by biomass burning 
emissions (e.g., Mauzerall et al., 1998; Alvardo et al., 2010; Singh et al., 2010; Arnold et al., 2015). 
 
8.1.3. Natural emissions 
Lightning NOx emissions: NOx emissions from lightning have a large influence on tropospheric ozone, 
particularly in the tropics, because they occur much higher in the troposphere where ozone production is 
more efficient (Pickering et al., 1998; Sauvage et al., 2007; Murray et al., 2013; Barth et al., 2015). 
Model representation of lightning NOx emissions relies on parameterizations of lightning flash rate 
based on deep convection properties (Price and Rind, 1992; Price et al., 1997; Allen and Pickering, 
2002). However, these lightning flash parameterizations generally have difficulty in reproducing the 
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satellite lightning flash observations from the Optical Transient Detector (OTD) and the Lightning 
Imaging sensor (LIS) (Christian et al., 2003; Tost et al., 2007; Murray, 2016). Scaling the spatial and 
temporal distribution of lightning flashes in models to match OTD/LIS observations has been shown to 
deliver notable improvements in simulating tropical ozone (Sauvage et al., 2007; Murray et al., 2012). 
The sensitivity of ozone to lightning NOx, poor constraints on the magnitude and vertical distribution of 
NOx emissions, and the potential sensitivity of lightning NOx emission changes to climate change (e.g., 
Banerjee et al., 2014), all point to the need for an improved mechanistic understanding of lightning NOx 
generation. For instance, flash parameterizations based on the upward flux of ice particles in clouds have 
been shown to suggest a reduction in lightning NOx emissions under climate change (Finney et al., 
2016). Ultimately, the magnitude of lightning NOx emissions will remain dependent on the ability of the 
parent meteorological model to reproduce the strength, timing and distribution of major convective 
events. 
 
Biogenic emissions: The biosphere releases a large quantity and variety of NMVOCs to the atmosphere 
that far exceeds anthropogenic sources, with isoprene (C5H8) and monoterpenes (C10H16) being the most 
abundant compounds emitted (Arneth et al., 2008; Guenther et al., 2012). Several studies have 
demonstrated that biogenic NMVOC emissions are important for simulating the tropospheric ozone 
budget and distribution (e.g., Pfister et al., 2008; Williams et al., 2009; 2013). Empirical emission 
algorithms such as the Model of Emissions of Gases and Aerosols from Nature (MEGAN; Guenther et 
al., 2006; 2012) have been applied to calculate biogenic NMVOC emissions as a function of vegetation 
type, surface temperature, solar radiation, leaf age, soil moisture, leaf area index and other activity 
factors. Vegetation type may be from satellite-derived maps of vegetation classes or from vegetation 
classes simulated by the land surface component of the model. For reasons of computational expediency, 
the land surface components of models typically have far fewer different vegetation types represented 
than the satellite products, meaning that their vegetation classes often represent the emitting capacity of 
several different species (although such a setup allows a coherent simulation of climate-vegetation-
atmospheric chemistry interactions). 

While the use of empirical emission algorithms has been argued to be unsatisfactory, as they do 
not capture the fundamental biochemical processes that underlie biogenic emissions (Monson et al., 
2012), these are widely used in current global chemistry models for convenience in estimating global-
scale emissions. Estimates of biogenic NMVOC emissions are highly sensitive to the meteorological, 
soil, and vegetation conditions (Arneth et al., 2011; Guenther et al., 2012; Henrot et al., 2017), with 
annual global isoprene emissions ranging from 350 to 769 Tg (as reported by Guenther et al. (2012), 
based on different inputs). Satellite observations of formaldehyde columns may provide valuable 
information for optimizing global and regional biogenic NMVOC emissions using inverse modeling 
methods (e.g., Palmer et al., 2006; Fu et al., 2007; Millet et al., 2008; Stavrakou et al., 2009; Marias et 
al., 2014; Bauwens et al., 2016). However, satellite-derived formaldehyde columns are themselves 
subject to large uncertainties which combined with uncertainties in the oxidation mechanisms add to the 
uncertainty in inferred biogenic NMVOC emissions estimates (e.g., Millet et al., 2006; Dufour et al., 
2009; Barkley et al., 2013; Zhu et al., 2017). Moreover, the wide variety of higher hydrocarbons and 
oxygenated NMVOC released from biogenic sources remains poorly characterized, and this may 
constitute an additional source of chemically-active species that are typically neglected in current global 
modeling studies. 
 
Soil emissions: NOx emissions from microbial nitrification and denitrification in soils are estimated to 
account for ~15% of the present-day global NOx emissions. These emissions are subject to large 
uncertainties with global above-canopy estimates ranging from 4.7 to 16.8 Tg N year-1 (Hudman et al., 
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2012, Vinken et al., 2014). Implementations of soil NOx emissions in global models are generally based 
on empirical (e.g., Yienger and Levy, 1995; Steinkamp and Lawrence, 2011) and process-based models 
(e.g., Potter et al., 1996; Parton et al., 2001). Soil NOx emissions are highly sensitive to fertilizer 
application methods and timing, climate and soil conditions, such as temperature, soil moisture, and 
nitrogen availability, and show large pulses of emissions following soil wetting by rain (e.g., Jaeglé et 
al., 2004; Stehfest and Bouwman, 2006; Hudman et al., 2010). Better physical parameterizations of 
these processes are needed for models to represent the spatiotemporal variability of soil NOx emissions 
(Hudman et al., 2012). 
 
8.1.4. Methane emissions 
Atmospheric methane concentrations have been increasing steadily since preindustrial times, and after 
remaining flat for about a decade in the mid-1990s to early 2000s, their growth has resumed since 2007 
(Saunois et al., 2016). Increases in methane abundance lead to increases in global background 
tropospheric ozone concentrations (Prather et al., 2001; Young et al., 2013; Lin et al., 2017). In most 
current-generation global CTMs and CCMs, atmospheric methane concentration is prescribed, either 
globally uniform or with latitudinal variation, at the surface but allowed to undergo chemical processing 
above the surface layer (Stevenson et al., 2006; Lamarque et al., 2013) to avoid the computational 
expense of running long simulations to reach steady state. The assumption of uniform methane 
concentrations would have implications for the simulated ozone spatial distribution. As models begin to 
incorporate more realistic representation of atmospheric methane (e.g., Szopa et al., 2013; Dalsøren et 
al., 2016) with emissions prescribed from inventories and/or calculated interactively for natural sources, 
effort is needed to quantify the impact of this update on the spatio-temporal distribution of tropospheric 
ozone.   
 
8.2 Chemistry  
In addition to the uncertainty in reaction rate coefficients and absorption cross sections, and numerical 
uncertainties from the chemical solver code (e.g., Sandu et al., 1997), the main uncertainty in global 
chemical models comes from limitations in the representation of tropospheric chemistry. The 
computational expense of calculating chemical tendencies and tracer transport means that chemical 
mechanisms in global models are necessarily simplified, providing a relatively parsimonious description 
of gas phase tropospheric oxidation with respect to organic molecules and their oxidation pathways in 
particular (~50-250 species, ~500-1000 reactions) (e.g., Lamarque et al., 2013). More complete 
descriptions of tropospheric chemistry are available, for example from the Master Chemical Mechanism 
(MCM; ~6700 species; ~17000 reactions) (Jenkin et al., 1997; Saunders et al., 2003). Standard 
simplifications in global chemistry models involve grouping (“lumping”) chemically similar species 
together, such as using a single species to represent all higher (≥C4) hydrocarbons (Emmons et al., 
2010), or simply omitting certain classes of compounds. Mechanisms are often developed and expanded 
to address particular research questions, and they are typically optimized for ozone production rather 
than for generation of semivolatile species important for secondary aerosol formation for instance. There 
are also isolated examples of mechanisms that are partially (Pöschl et al., 2000) or wholly (Jenkin et al., 
2008) traceable to more complex antecedents. However, few global models resolve the urban scales 
where the fast reactions of higher hydrocarbons are important, and it is therefore unclear if 
implementation of complex chemistry schemes would improve representation of global scale ozone 
distributions and the chemistry important for climate.     
 There have been several efforts to benchmark global model chemical mechanisms against each 
other and the MCM (e.g., Pöschl et al., 2000; Emmerson and Evans, 2009; Archibald et al., 2010a; 
Squire et al., 2015). Using box models to isolate the differences to just the chemistry, these studies 
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reveal substantial differences between the mechanisms and against the MCM, variously attributable to 
peroxy radical (HO2 and RO2) production, chain termination (HNO3 and ROOH production), and the 
treatment of organic nitrogen (NOy) chemistry (e.g., alkyl nitrate production), depending on the 
particular mechanism or prescribed chemical conditions. However, while these differences are 
undoubtedly important in understanding global model limitations and biases, box model studies 
themselves are not sufficient to understand how the chemical mechanism interacts with other global 
model components (deposition, photolysis etc.). A step forward would be to run a range of global 
models, each with a variety of different chemical mechanisms in order to explore these interactions.  

An additional source of bias is the neglect of whole classes of compounds from model chemistry 
schemes. Tropospheric halogen (Cl, Br and I) chemistry is a particular example of this, and is only 
routinely simulated by a few models (none of the ACCMIP models include it). Halogens from inorganic 
(sea-salt) and organic (photodissociation of biogenic compounds) sources, particularly of marine origin, 
are thought to be important for the tropospheric ozone budget, as they take part in efficient ozone loss 
catalytic cycles (Read et al., 2008; Saiz-Lopez and von Glasow, 2012; Wang et al., 2015). Studies with 
single models have shown that this chemistry may have a notable impact on the ozone budget and 
associated radiative forcing in the troposphere (Saiz-Lopez et al., 2012; Sarwar et al., 2015; Schmidt et 
a., 2016; Sherwen et al., 2016a, 2016b), and the inclusion of tropospheric bromine chemistry has been 
suggested as a way of partially accounting for the low pre-industrial ozone levels suggested by the 
measurements (Parella et al., 2012) (although these measurements are uncertain; see TOAR-
Observations).     

Other aspects of chemistry that are often omitted include the full range of peroxy radical cross 
reactions (incomplete in even the MCM; Saunders et al., 2003); peroxy radical recycling from isoprene 
oxidation (e.g., Crounse et al., 2011; Peters et al., 2014), which some studies indicate can affect OH 
levels and VOC lifetimes over low-NOx forested areas (Archibald et al., 2010b, 2011; Taraborrelli et al., 
2012); nitryl chloride (ClNO2), which has been found to be important in oxidative chemistry, 
particularly in coastal regions (e.g., Osthoff et al., 2008); and nitrous acid (HONO) formation other than 
from NO + OH (+M), including from other gas phase sources (Bejan et al., 2008: Li et al., 2008; Li et 
al., 2014), bacteria (Oswald et al., 2013), aerosol reactions (Ammann et al., 1998; Stemmler et al., 2007) 
and heterogeneous processes (Zhou et al., 2001; Stemmler et al., 2006; Su et al., 2011; Mao et al., 
2013a). In general, heterogeneous processes (Ravishankara, 1997; Jacob, 2000) are simulated in most 
models, although typically only for a few species (e.g., heterogeneous formation of N2O5 and loss of 
HO2) and with substantial variation in uptake coefficients, which can have notable effects on modeled 
abundances and chemical budgets (e.g., Evans and Jacob, 2005; Macintyre and Evans, 2010). See 
TOAR-Ozone-Budget for further discussion of these processes.   
 Much of atmospheric photochemistry is initiated by photolysis processes, which are represented 
in models in a number of different ways. Solution of the equations of radiative transfer is 
computationally expensive, and simplifications include restricted geometry (e.g., a two-stream 
approach), optimization over a reduced number of wavelength intervals, infrequent calculation, or pre-
calculation using lookup tables (e.g., Wild et al., 2000; Voulgarakis et al., 2009). Light scattering and 
absorption by cloud droplets and aerosol particles affect photolysis rates greatly, and are sensitive to 
both how these radiative processes are represented and the simulated cloud and aerosol distributions. 
Treatment of surface albedo (Laepple et al., 2005) and cloud overlap (Neu et al., 2007) have also been 
identified as significant sources of bias in simulating tropospheric oxidants. These issues add substantial 
uncertainty to photolysis calculations, and are in addition to the large uncertainties in observationally-
derived absorption cross sections and quantum yields. 

Overall, limitations and uncertainty in the chemistry mechanism and associated processes are 
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well known sources of biases in global models. Yet the importance of their impact depends on the 
question being studied. For example, a simplified mechanism with just methane and isoprene chemistry 
may be sufficient for capturing decadal-centennial scale variability in long climate simulations, but 
would do poorly in simulating the ozone production and extreme pollution episodes in an urban 
environment. Additionally, different models likely differ in sensitivity to additions and improvements to 
their chemical schemes. Without a well-designed study we do not know the relative size of the 
uncertainty from chemical mechanisms compared to other structural uncertainties in these complex 
models.  
 
8.3 Wet and dry deposition 
Removal at the Earth’s surface through wet and dry deposition processes provides the ultimate sink of 
many atmospheric constituents. Ozone is chemically reactive and is therefore readily removed from the 
atmosphere by a wide variety of processes occurring on surfaces. Although its solubility is relatively 
low, and its direct removal by precipitation is small, these processes strongly influence the levels of 
several key precursor species. 

Dry deposition is a major removal pathway for ozone in the boundary layer. Global model 
estimates of annual deposition range from 710 to 1470 Tg yr-1 (Wu et al., 2007; Hu et al., 2017), with 
multi-model studies suggesting 1000±200 Tg yr-1 (Stevenson et al., 2006; see also Section 4.2). Most 
current models use resistance-based deposition schemes (based upon Wesely et al., 1989), which use 
observationally-derived ozone resistances for different surface types. There are large differences in the 
deposition velocity of ozone to different surface types, ranging from orders of 1 cm s-1 over forest to less 
than 1 mm s-1 over snow and ice (Fowler et al., 2009). This partly reflects the range of different 
processes involved, from adsorption and chemical take-up in plant stomata (Fowler et al., 2009) to 
iodine-mediated removal at the ocean surface (Prados-Roman et al., 2015). Analysis of observational 
studies of the processes controlling ozone deposition shows that the importance of different deposition 
pathways differs by location as well as by season and from year to year at each location (Rannik et al., 
2012; Clifton et al., 2017). Comparison of dry deposition fluxes from 15 global models involved in the 
TF HTAP model intercomparison project (Table 1) found that differences in ozone dry deposition are 
strongly influenced by differences in land cover classification used in models (Hardacre et al., 2015). 
Comparison of modeled and observed ozone fluxes showed substantial biases at individual locations, 
particularly where the vegetation at the measurement site was not representative of the wider region, but 
there was no evidence for a systematic bias in deposition velocities across all sites when considered 
together (Hardacre et al., 2015). For the oceanic surface, comparison of deposition velocity simulated by 
a single CCM with observations suggests that the Wesely et al. (1989) scheme overestimates dry 
deposition by approximately a factor of two (Luhar et al., 2017). However, another study with a regional 
model has shown that comparison against observations is improved with higher deposition velocities, 
driven by the addition of chemical interactions at the air-water interface in the model (Sarwar et al., 
2016). Overall, reducing model uncertainties associated with dry deposition requires tighter constraints 
on model deposition velocities through measurements over a wider range of land cover types and 
surfaces. 

Wet scavenging of soluble species in precipitation affects the tropospheric ozone budget through 
removal of species such as nitric acid, which alters the lifetime of ozone precursors and hence 
tropospheric ozone abundances (Neu and Prather, 2012). Substantial differences in the distribution and 
intensity of rainfall between models affect the magnitude and timing of precursor removal, indirectly 
affecting ozone. The influence of wet deposition on modeled ozone distributions has not been explored 
thoroughly, but studies with a single CTM suggest that halving the wet deposition of precursors leads to 
a 10 Tg (~3%) increase in the tropospheric ozone burden and a smaller (~2%) increase in surface ozone 
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(Wild, 2007).  
 
8.4 Representation of the stratosphere  
Input from the stratosphere is an important source of tropospheric ozone, but its contribution to the 
tropospheric ozone distribution and budget is highly uncertain. Stratosphere-troposphere exchange 
follows the Brewer-Dobson circulation: a downward air flow with a net input of ozone from the 
stratosphere to the troposphere in the extratropics, while a slow upward flow from the troposphere to the 
stratosphere occurs above the tropics, all varying in strength by season (Haynes et al., 1991; Holton et 
al., 1995; Stohl et al., 2003 and references therein). As well as this large scale process, transport of 
stratospheric ozone occurs through synoptic scale events at mid- and high latitudes (e.g., Stohl et al., 
2003; Langford et al., 2009).  

Limited direct measurements of the stratospheric ozone source (e.g., Olsen et al., 2013) and 
diversity in the model representation of the dynamical and chemical processes needed to account for this 
source make it difficult to accurately quantify the stratospheric contribution to tropospheric ozone (Lin 
et al., 2012a and references therein). Models differ in the complexity of representation of stratospheric 
chemistry, ranging from a passive ozone-like tracer or linearized ozone chemistry (McLinden et al., 
2000), to detailed stratospheric chemistry coupled with the troposphere (e.g, Lin et al., 2012a; Neu et al., 
2014; Iglesias-Suarez et al., 2016; Tilmes et al. 2016). There are also differences in the location and 
magnitude of stratosphere-to-troposphere transport among models that lead to model ozone 
discrepancies in the upper troposphere as well as for episodic ozone events near the surface (Fiore et al., 
2014a). 

As discussed in section 6, a realistic representation of stratospheric processes (including 
dynamical variability and ozone depletion/recovery) has been realized to be key in capturing the impact 
of interannual variability in stratosphere-troposphere transport on tropospheric ozone, and also to 
simulate realistic long-term trends. Recent developments in global chemistry models towards 
representing tropospheric and stratospheric chemistry as a single entity (Morgenstern et al., 2017 and 
references therein) will allow the uncertainty in the stratospheric impact on the troposphere to be 
evaluated more comprehensively (e.g., CCMI). Extensive evaluation of these models against more 
meaningful diagnostics that provide information on transport between the stratosphere and troposphere 
(e.g., Neu et al., 2014; Orbe et al., 2015; Liu et al., 2016) will help build confidence in the model 
simulated stratospheric contribution to tropospheric ozone.  
 
8.5 Model dynamics and meteorology 
Atmospheric dynamics and meteorology play an important role in controlling the spatial distribution of 
tropospheric ozone and its precursors, and biases in model meteorology can lead to substantial biases in 
simulation of tropospheric ozone. Ozone and its precursors can be lifted and transported over regional 
and intercontinental scales by dynamical features such as the warm conveyor belts within mid-latitude 
cyclones and deep convection (e.g., Liu et al., 2003; Cooper et al., 2004; Liang et al., 2004; Kiley et al., 
2006; Brown-Steiner and Hess, 2011; Knowland et al., 2015). Accurate representation of these features 
in models is thus important to simulate long-range pollution transport. Model simulations of CO, an 
effective tracer of pollution transport, are often used to assess transport biases, and studies have clearly 
demonstrated that differences in the strength and timing of convection and in boundary layer mixing 
lead to large differences in pollutant transport (Kiley et al., 2003; Liu et al., 2010; Hoyle et al., 2011), 
with 10-30% differences in simulated CO levels due to differences in model transport alone (Arellano 
and Hess, 2006). Even models driven by the same meteorological fields can show substantial differences 
in large-scale tropospheric transport due to differences in the parameterization of convection (Orbe et 
al., 2017). 
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Meteorological nudging provides one method to reduce the errors associated with biases in 
model meteorology. Nudging has been shown to permit better representation of large-scale dynamical 
features and their impacts on ozone, in particular the stratospheric Quasi-Biennial Oscillation (Randel et 
al., 2009), North Atlantic Oscillation (Pausata et al., 2012), the Brewer-Dobson circulation (Jöckel et al., 
2006), and meteorological changes driven by the eruption of Mount Pinatubo in 1991 (Telford et al, 
2009; Shepherd et al., 2014). Model biases in predicting ozone levels near the tropopause have been 
shown to be sensitive to the chemistry-climate model used and the source of meteorological reanalysis 
data employed for nudging (e.g. NCEP versus ECMWF), and these biases can be in opposite directions 
(Aghedo et al., 2011). A study using two global models driven by different assimilated meteorological 
data found that the modeled ozone differences in the western U.S. were very sensitive not only to natural 
ozone sources, but also to stratosphere-to-troposphere transport and vertical mixing in the troposphere 
(Fiore et al., 2014). Resolving these dynamical biases remains a challenge for the wider weather and 
climate modeling communities, but advances made through improvements in numerical weather 
prediction can ultimately be expected to benefit model simulations of tropospheric ozone. 
 
8.6 Temporal and spatial resolution 
Model biases against observations may also arise from numerical issues associated with their underlying 
design and formulation. Spatial and temporal discretization of the atmosphere, the ordering of processes 
within a model timestep, and the numerical methods associated with process parameterization may all 
introduce biases. Spatial resolution can be a particular problem for comparison of global models with 
observations in urban regions, where strong precursor sources lead to large variations in ozone on spatial 
scales far smaller than the model grid scale. Models typically overestimate ozone in these locations, 
partly because numerical mixing shortens chemical production timescales and misses localized ozone 
titration from intense NO sources, and partly because observation sites may be representative of regions 
no larger than a few kilometers (Wild and Prather, 2006; Hodnebrog et al., 2011; Stock et al., 2014; see 
also Section 3.4). Numerical separation of chemical environments through the use of plume-in-grid 
treatments has been explored in some studies (Sillman et al., 1990) and have been used to represent the 
chemistry of aircraft and ship plumes (e.g., Cariolle et al., 2009; Charlton-Perez et al., 2009), but these 
approaches are not widely used in global models. 

How can these biases be addressed? Increasing model spatial resolution to match the chemical and 
dynamical timescales of interest has important benefits, bringing model scales closer to the region of 
representativeness for measurement sites and additionally reducing biases caused by numerical mixing. 
Studies with regional models, simulating only a limited area and thus able to achieve much higher 
resolutions than global models, suggest resolutions on the order of 10 km are necessary to capture the 
strong gradients in emissions and photochemical processes over large urban areas (Tie et al., 2010). 
Simulations at these scales have also been shown to have important impacts on the estimation of human 
health benefits arising from emission controls (Thompson et al., 2014).  

Yet increasing model resolution is currently not computationally feasible for models covering a 
global domain and designed for decadal- or centennial-scale runs. Global models are being developed to 
run with “regional refinement” (variable resolution GCMs), where a geographical region of interest has 
enhanced resolution (e.g., Huang et al., 2016), and there are several examples of running a more highly 
resolved model nested within a coarser grid (e.g., Misenis and Zhang, 2010; Yan et al., 2016). But even 
when simulating much smaller domains, the horizontal and vertical resolution may be insufficient to 
capture features of interest, such as intercontinental transport of pollution plumes, mainly due to 
numerical diffusion in Eulerian grid models (Rastigejev et al., 2010; Eastham and Jacob, 2017). Sub-
grid scale treatment of processes occurring at scales much smaller than the model grid-size is needed, 
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but evaluation of variables against observations at a single site when sub-grid scale variability is high 
can be misleading unless the representativeness of the site of the model grid scale has been reliably 
assessed. New methods applying a more probabilistic approach to model evaluation are needed to 
account for sub-grid scale spatial variability and to avoid attributing biases associated with observational 
representativeness to model weaknesses. This may provide a better assessment of overall model 
behavior while avoiding some of the problems associated with the minimum scales resolved in the 
model. 
 
8.7 Missing processes 
Models will always remain incomplete in their inclusion of the physical and chemical processes 
affecting atmospheric composition. This reflects both the boundaries of scientific understanding and the 
computational constraints imposed by ever increasing model complexity. The challenge is to include or 
approximate the effects of all known processes that impact ozone substantially for the purpose at hand, 
contingent on the temporal and spatial scales of interest, and to identify where unknown processes may 
be needed to explain biases against observations. The timescales involved in the process of scientific 
discovery, from conception of an idea and demonstration of its importance through to wider scientific 
acceptance and inclusion in models, is often long, and there is consequently a time lag between process 
identification and implementation in models. Examples of recent advances in understanding that have 
yet to be included in most models include the chemistry of higher VOC and halogens, gas-aerosol 
interactions and heterogeneous chemistry, rapid urban photochemistry and dynamics, and vegetation 
canopy processes occurring close to the Earth’s surface. Many of these advances relating to ozone are 
summarized in a recent review (Monks et al., 2015), and omission or oversimplification of these 
processes in current models lead to biases that have yet to be adequately quantified. In many cases there 
is a reliance on more detailed process models working on much smaller spatial and temporal scales to 
demonstrate the importance of new processes before they are included in large-scale models. 
Computational constraints impose a threshold for inclusion of processes in these models, governed by 
the need to achieve an optimum balance of accuracy and usability, as well as understanding new 
uncertainties the processes may bring. Careful exploration of model biases against observations is vital 
for identification of gaps in current understanding and can lead to scientific advances through 
identification of missing processes, such as OH recycling over tropical forests (Lelieveld et al., 2008), 
and rapid surface ozone loss in the Arctic due to Br chemistry (Yang et al., 2008). Progress in model 
development is contingent on this observational ground-truthing, and it is thus important that model 
biases are seen as an opportunity to improve scientific understanding as well as a reminder of the 
limitations of current modeling tools. 

 
9. Conclusions and future outlook  
TOAR-Model Performance has discussed, summarized and assessed global chemistry models with a 
focus on their simulation of tropospheric ozone. We have discussed their development history and 
nomenclature, and the results from their participation in multi-model assessments; summarized common 
model evaluation strategies; assessed their performance for the global ozone distribution, for extreme 
pollution events, and how they simulate changing abundances at sub-decadal to multi-decadal time 
scales; and presented some reasons why we might expect models to deviate from the real world. 
 A key conclusion in terms of assessing model performance is that great care needs to be taken 
when considering how meaningful a model-measurement comparison is: i.e., how representative are the 
model or measurement are of a given time period and location, in light of the model and measurement 
sampling patterns, measurement error and model resolution? Additionally, is the evaluation aligned with 
the purpose of the study? If the model is being used to quantify potential health impacts, is the model 
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being assessed against extreme values? If we are interested in the role of the stratosphere, does the 
model have a realistic meridional circulation? As the literature stands, it is difficult to unambiguously 
identify the drivers of model-observation disparity, and in particular how these drivers might vary across 
the range of global models. We therefore recommend systematic and thorough evaluation of the current 
generation of global models, to the degree that is currently done for isolated, single model studies. 

New ways forward in model evaluation include analysis in a regime-focused or process-based 
way (e.g., does the model simulate the expected ENSO-ozone response, does it capture the relative time 
scales?), using multiple constraints (e.g., simultaneous measurements of a number of species) and 
relationships (e.g., CO/ozone ratios), and making better use of observational data beyond monthly 
means. With the caveats related to representativeness and observational uncertainty in mind, such 
analyses show the most promise for quantifying, characterizing and understanding global chemistry 
model performance in future assessments. Beyond that, we would urge the community to collaborate 
with observational scientists to better understand the uses and limitations of the data, as well as data 
scientists to take advantage of their specialized knowledge of advanced statistical techniques. 

Assuming that evaluations against measurements are valid, why do global models sometimes not 
perform well? We have reviewed several potential causes of model-measurement discrepancy here, 
including inputs (chiefly emissions), chemical scheme, physical processes (deposition, 
transport/meteorology), temporal and spatial resolution, and (potential) missing processes. Some of the 
effects of these limitations and uncertainties have been explored in model studies, mostly with single 
models, but we currently lack a comprehensive assessment of their relative importance for tropospheric 
ozone and chemistry in general. We recommend designing simulations that target specific uncertainties 
(e.g., long term ozone trends, the NH versus SH model bias pattern), preferably completed by a large 
range of models, in order to improve our understanding.    

Where is the development of global chemistry models headed? In the case of understanding 
chemistry as part of the climate system, the next-generation of CCMs is advancing towards modeling the 
full terrestrial-ocean-atmosphere biogeochemical cycle to represent the whole Earth System; termed as 
Earth System Models (ESMs) (Heavens et al., 2013). The primary feature that distinguishes ESMs from 
CCMs is their ability to simulate the interactions between land, ocean and atmosphere in a fully coupled 
sense. While this might facilitate improvements in the representation of, for example, natural precursor 
emissions (e.g., interactive oceanic halogen emissions or biogenic emissions) and deposition (e.g., 
interactive dry deposition), these advances in modeling will require concurrent advances in our ability to 
observe ozone and ozone precursors for thorough model evaluation. We should also note that advances 
in coupling processes might result in other simplifications: the level of plant differentiation in land 
surface models of ESMs is far less detailed than that used by MEGAN for instance (Henrot et al., 2017). 
Moreover, yet more complexity means more sources of uncertainty, due to more processes having to be 
modeled, each described by equations and parameters that are known to different degrees.  

Dealing with the myriad sources of uncertainty in global models is one of the most challenging 
aspects to their use for science and policy-relevant questions. Currently, uncertainty is mainly assessed 
by considering model-measurement agreement and inter-model spread using “ensembles of opportunity” 
(Table 1). While useful snapshots of the state-of-the-science, such experiments are not designed to 
explore uncertainty systematically, and the inter-model spread likely underestimates the true structural 
uncertainty. Ongoing research is exploiting advanced statistical techniques (after Carslaw et al., 2013; 
Lee et al., 2013) to more fully quantify the drivers of uncertainty in modeled tropospheric chemistry. 
Such work is important to better target our limited scientific resources onto the most important 
uncertainties, to improve the models and increase the reliability of the projections they make.  

How then should modelers, observation scientists, analysts and other users approach model 
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results? The obvious answer is the same as it is across science: critically. One should ask whether the 
model performance is acceptable for the problem being addressed, and whether biases can be tolerated 
or corrected; whether a model is appropriately constituted, including if it has appropriate chemical 
complexity, resolution etc.; and if there is a way to assess the likely uncertainty. 
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