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Abstract

In [2] we gave necessary conditions for a symmetric d-picture (i.e., a sym-
metric realization of an incidence structure in Rd) to be minimally flat,
that is, to be non-liftable to a polyhedral scene without having redundant
constraints. These conditions imply very simply stated restrictions on the
number of those structural components of the picture that are fixed by the
elements of its symmetry group. In this paper we show that these condi-
tions on the fixed structural components, together with the standard non-
symmetric counts, are also sufficient for a plane picture which is generic with
three-fold rotational symmetry C3 to be minimally flat. This combinatorial
characterization of minimally flat C3-generic pictures is obtained via a new
inductive construction scheme for symmetric sparse hypergraphs. We also
give a sufficient condition for sharpness of pictures with C3 symmetry.

Keywords: incidence structure, picture, polyhedral scene, lifting,
symmetry, sparse hypergraph

1. Introduction

1.1. Background and motivation

The vertical projection of a spatial polyhedral scene with flat faces yields
a straight line drawing of the corresponding incidence structure in the pro-
jection plane. Conversely, given an incidence structure S and a straight line
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drawing of S in the plane, one may ask whether this drawing can be ‘lifted’
to a polyhedral scene, i.e., whether it is the vertical projection of a spatial
polyhedral scene. This is a well studied question in Discrete Geometry which
has some beautiful connections to areas such as Geometric Rigidity Theory
and Polytope Theory [6, 7, 8, 9, 10]. Moreover, this problem has important
applications in Artificial Intelligence, Computer Vision and Robotics [4, 5].

A fundamental result in Scene Analysis is Whiteley’s combinatorial char-
acterization of all incidence structures which are ‘minimally flat’ if realized
generically in the plane, where a realization of an incidence structure is called
minimally flat if it is non-liftable to a spatial polyhedral scene, but the re-
moval of any incidence yields a liftable structure. This characterization was
conjectured by Sugihara in 1984 [3] and proved by Whiteley in 1989 [7], and
it is given in terms of sparsity counts on the number of vertices, faces and
incidences of the given incidence structure.

Since symmetry is ubiquitous in both man-made structures and struc-
tures found in nature, it is natural to consider the impact of symmetry on
the liftability properties of straight line drawings of incidence structures.
Recently, we used methods from group representation theory to derive addi-
tional necessary conditions for a symmetric realization of an incidence struc-
ture to be minimally flat [2]. These conditions can be formulated in a very
simple way in terms of the numbers of vertices, faces and incidences that are
fixed under the various symmetries of the structure. We conjectured in [2]
that these added conditions, together with the standard Sugihara-Whiteley
counts are also sufficient for a symmetric incidence structure to be minimally
flat, provided that it is realized generically with the given symmetry group.

In this paper we verify this conjecture for the symmetry group C3 which
is generated by a three-fold rotation (i.e., a rotation by 120 degrees) in the
plane. This result is obtained via a new symmetry-adapted recursive con-
struction for symmetric sparse hypergraphs. Moreover, we give a sufficient
condition for C3-symmetric generic incidence structures to lift to a sharp
polyhedral scene (i.e., a scene where each pair of faces sharing a vertex lie in
separate planes). Finally, we provide some observations regarding extensions
of these results to other symmetry groups in the plane.

1.2. Basic definitions

A (polyhedral) incidence structure S is an abstract set of vertices V , an
abstract set of faces F , and a set of incidences I ⊆ V × F .

A (d−1)-picture is an incidence structure S together with a correspond-
ing location map r : V → Rd−1, ri = (xi, yi, . . . , wi)

T , and is denoted by
S(r).
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A d-scene S(p, P ) is an incidence structure S = (V, F ; I) together with
a pair of location maps, p : V → Rd, pi = (xi, . . . , wi, zi)

T , and P : F → Rd,
P j = (Aj . . . , Cj , Dj)T , such that for each (i, j) ∈ I we have Ajxi + . . . +
Cjwi + zi + Dj = 0. (We assume that no hyperplane is vertical, i.e., is
parallel to the vector (0, . . . , 0, 1)T .)

A lifting of a (d − 1)-picture S(r) is a d-scene S(p, P ), with the ver-
tical projection Π(p) = r. That is, if pi = (xi, . . . , wi, zi)

T , then ri =
(xi, . . . , wi)

T = Π(pi).
A lifting S(p, P ) is trivial if all the faces lie in the same plane. Further,

S(p, P ) is folded (or non-trivial) if some pair of faces have different planes,
and is sharp if each pair of faces sharing a vertex have distinct planes. A
picture is called sharp if it has a sharp lifting. Moreover, a picture which has
no non-trivial lifting is called flat (or trivial). A picture with a non-trivial
lifting is called foldable.

The lifting matrix for a picture S(r) is the |I| × (|V |+ d|F |) coefficient
matrix M(S, r) of the system of equations for liftings of a picture S(r): For
each (i, j) ∈ I, we have the equation Ajxi+Bjyi+ . . .+Cjwi+ zi+Dj = 0,
where the variables are ordered as [. . . , zi, . . . ; . . . , A

j , Bj , . . . , Dj , . . .]. That
is the row corresponding to (i, j) ∈ I is:

i
j︷ ︸︸ ︷

(i, j) 0 . . . 0 1 0 . . . 0 0 . . . 0 ri 1 0 . . . 0︸ ︷︷ ︸
|V |

︸ ︷︷ ︸
d|F |

A (d − 1)-picture S(r) is called generic if for every r′ : V → Rd−1, the
rank of every square submatrix of the lifting matrix M(S, r) is greater than
or equal to the rank of the corresponding submatrix of M(S, r′). So in
particular, M(S, r) has maximum rank among all lifting matrices M(S, r′).

Theorem 1.1 (Picture Theorem). [7, 9] A generic (d−1)-picture of an
incidence structure S = (V, F ; I) with at least two faces has a sharp lifting,
unique up to lifting equivalence, if and only if |I| = |V |+ d|F | − (d+ 1) and
|I ′| ≤ |V ′|+d|F ′|−(d+1) for all subsets I ′ of incidences inducing the vertex
set V ′ ⊆ V and face set F ′ ⊆ F with |F ′| ≥ 2.

A generic picture of S has independent rows in the lifting matrix if and
only if for all non-empty subsets I ′ of incidences, we have |I ′| ≤ |V ′| +
d|F ′| − d.

It follows from the Picture Theorem that a generic (d− 1)-picture of an
incidence structure S = (V, F ; I) is flat with independent rows in the lifting
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matrix if and only if |I| = |V | + d|F | − d and |I ′| ≤ |V ′| + d|F ′| − d for
all non-empty subsets I ′ of incidences. The removal of any incidence from
such a picture results in a foldable picture, and hence we call such a picture
minimally flat. We may think of the minimally flat generic pictures S(r) as
the bases of the row matroid of the lifting matrix M(S̃, r) of a flat picture
(S̃, r) on an incidence structure S̃ = (V, F ; Ĩ) with I ⊆ Ĩ. Therefore, the
Picture Theorem may be considered as an analog of the celebrated Laman’s
Theorem in Geometric Rigidity Theory, which gives a description of the
bases of the generic rigidity matroid of a rigid graph in dimension 2 [9, 10].

1.3. Symmetric incidence structures and pictures

An automorphism of an incidence structure S = (V, F ; I) is a pair α =
(π, σ), where π is a permutation of V and σ is a permutation of F such
that (v, f) ∈ I if and only if (π(v), σ(f)) ∈ I for all v ∈ V and f ∈ F . For
simplicity, we will write α(v) for π(v) and α(f) for σ(f).

The automorphisms of S form a group under composition, denoted
Aut(S). An action of a group Γ on S is a group homomorphism θ : Γ →
Aut(S). The incidence structure S is called Γ-symmetric (with respect to
θ) if there is such an action. For simplicity, if θ is clear from the context,
we will sometimes denote the automorphism θ(γ) simply by γ.

Let Γ be an abstract group, and let S be a Γ-symmetric incidence struc-
ture (with respect to θ). Further, suppose there exists a group representation
τ : Γ → O(Rd−1). Then we say that a picture S(r) is Γ-symmetric (with
respect to θ and τ) if

τ(γ)(ri) = rθ(γ)(i) for all i ∈ V and all γ ∈ Γ. (1)

In this case we also say that τ(Γ) = {τ(γ)| γ ∈ Γ} is a symmetry group of
S(r), and each element of τ(Γ) is called a symmetry operation of S(r).

Let Γ be a group, and let S(r) be a Γ-symmetric (d − 1)-picture (with
respect to θ and τ). Then S(r) is said to be Γ-generic if for every Γ-
symmetric (d− 1)-picture S(r′) (with respect to θ and τ), the rank of every
square submatrix of the lifting matrix M(S, r) is greater than or equal to
the rank of the corresponding submatrix of M(S, r′). Clearly, the set of all
Γ-generic realizations of S is a dense and open subset of all Γ-symmetric
realizations of S. Moreover, all Γ-generic realizations of S share the same
lifting properties. We say that S is Γ-generically (minimally) flat in Rd−1
if all Γ-generic realizations of S in Rd−1 are (minimally) flat.
|Vn(S)|, |Fn(S)|, and |In(S)| denote the numbers of vertices, faces, and

incidences of S that are fixed by an n-fold rotation Cn, n ≥ 2, respectively.
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Similarly, |Vs(S)|, |Fs(S)|, and |Is(S)| denote the numbers of vertices, faces,
and incidences that are fixed by a reflection s. The incidence structure S
may be dropped from this notation if it is clear from the context.

In the following, Cn (Cs) denotes the group generated by an n-fold ro-
tation (reflection, respectively). We also use the notation C3 = {id, γ, γ2},
that is, γ denotes a three-fold rotation.

2. Symmetry extended counting rule for 2-pictures

The following theorem gives necessary conditions for a (d−1)-picture to
be minimally flat.

Theorem 2.1. [2] Let S(r) be a (d− 1)-picture which is Γ-symmetric with
respect to θ and τ . If S(r) is minimally flat, then we have

χ(PI) = χ(PV ⊕ (τ̂ ⊗ PF ))− χ((PV ⊕ (τ̂ ⊗ PF ))(T )). (2)

We refer the reader to [2] for further details.
From Theorem 2.1 we obtain the following necessary conditions for a

Γ-symmetric 2-picture (with respect to θ and τ) to be minimally flat:

identity: |I| = |V |+ 3|F | − 3 (3)

half-turn: |I2| = |V2| − |F2|+ 1 (4)

reflection: |Is| = |Vs|+ |Fs| − 1 (5)

n-fold rotation, n > 2: |In| = |Vn|+ (|Fn| − 1)
(

1 + 2 cos
2π

n

)
(6)

where a given equation applies when the corresponding symmetry operation
is present in τ(Γ). We will call (3), (4), (5) and (6) the symmetry extended
counting rule. In [2] we conjectured that the symmetry extended count-
ing rule together with the standard (non-symmetric) sparsity condition is
sufficient for a symmetric picture to be minimally flat.

Conjecture 2.2. [2] A Γ-generic (d − 1)-picture S(r) is minimally flat if
and only if

(i) |I| = |V |+d|F |−d and |I ′| ≤ |V ′|+d|F ′|−d for all nonempty subsets
I ′ of incidences with |F ′| ≥ 2;

(ii) S satisfies the conditions for Γ in the symmetry extended counting rule;
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(iii) For every subset I ′ of I which induces a Γ′-symmetric incidence struc-
ture S′ with |I ′| = |V ′| + d|F ′| − d (where Γ′ ⊆ Γ), S′ satisfies the
conditions for Γ′ in the symmetry extended counting rule.

In the present paper we prove Conjecture 2.2 for d = 3 and Γ = C3. For
the group C3 the symmetry extended counting rule simplifies to (3) and to

|I3| = |V3| (7)

which is the special case of (6) for n = 3. Note that for Γ = C3 condition
(ii) implies (iii). There are two cases. First, if |V3(S)| = 0 then |I3(S)| =
0 must hold, and this implies that |V3(S′)| = |I3(S′)| = 0 for every C3-
symmetric substructure. If |V3(S′)| = 1, then |I3(S′)| = 1, because if for a
C3-symmetric substructure S′ which contains the fixed vertex, |I ′| = |V ′|+
3|F ′| − 3 holds, then S′ must contain the fixed incidence, too. Thus S′

satisfies the symmetry-extended counting rule in both cases.
The following example shows that there exist incidence structures that

are minimally flat in the generic setting but become foldable if realized as C3-
symmetric pictures. Let V = {v∗, v0, . . . , v11} and let F have two different
types of faces. The fixed faces are fi = {v∗, vi, vi+4, vi+8} for 0 ≤ i ≤ 3
and the rest of the faces have the form gj = {v2j−2, v2j−1, v2j , v2j+1} for
1 ≤ j ≤ 6, where we compute modulo 12. This example is minimally flat
when realized as a generic picture by Theorem 1.1 but does not satisfy (7),
and hence is C3-symmetrically foldable.

3. Constructive characterization of C3-tight hypergraphs

In order to characterize minimally flat C3-symmetric incidence structures
in the plane we will first reduce the problem to the special case where every
face of the incidence structure S is incident with exactly four vertices.

3.1. Notation

We first introduce some basic notation. Let H = (V, F ) be a hypergraph.
For a set X ⊆ V let H[X] denote the subhypergraph induced by the set X.
The number of hyperedges in H[X] is denoted by eH(X). The degree of
a vertex v in V (i.e., the number of hyperedges in F incident with v) is
denoted by dH(v). More generally, for a subset W ⊆ V , we define dH(W )
to be the number of hyperedges in F that are incident with at least one
vertex in W . The set of neighbours of v in a hypergraph H is denoted by
NH(v). d(z, v) denotes the number of hyperedges containing both z and v.
The deficiency of X ⊆ V in a hypergraph H is the value |X| − 3− eH(X),
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and is denoted by defH(X). If |X| ≤ 3, then the deficiency of X is simply
|X| − 3. The subscripts may be omitted if the hypergraph is clear from the
context.

For a Γ-symmetric picture (H, r) and v ∈ V , γ ∈ Γ, γv denotes the
vertex u ∈ V for which τ(γ)(r(v)) = r(u). Similarly, for X ⊆ V γX = {γv :
v ∈ X}, while for X ⊆ V and Γ′ ⊆ Γ, Γ′X = {γv : v ∈ X, γ ∈ Γ′}.

Throughout this section v0 denotes the fixed vertex and f0 denotes the
fixed hyperedge. (Note that v0 and f0 may not exist).

3.2. Symmetric derived 4-hypergraphs

Let S = (V, F ; I) be a C3-symmetric incidence structure. We may assume
that each face has at least 4 vertices, because any face with fewer vertices
does not give rise to any constraints on the possible liftings of a 2-dimensional
picture S(r), and hence may be discarded. We will define the C3-symmetric
4-hypergraph H3(S) = (V,

⋃
C3Ej) of S as follows. Fix an ordering of the

vertex orbits of S under the C3 action. Choose a representative element
from every face orbit. For a representative element fj ∈ F on the vertices
v1, v2, v3, . . . , v3+m which is not a fixed face, the set Ej consists of the edges
v1, v2, v3, v3+k for 1 ≤ k ≤ m. If fj is a fixed face then we can assume that
it contains C3v1 where v1 is not a fixed vertex. In this case Ej consists of
|fj | − 3 4-tuples of the form {C3v1, vi} for every vi ∈ fj − C3v1.

Lemma 3.1. Let S be a C3-symmetric incidence structure. The following
are equivalent:

(i) S satisfies |I| = |V |+ 3|F | − 3, |I ′| ≤ |V ′|+ 3|F ′| − 3 for every subset
of incidences |I ′| with at least one face and |I3(S)| = |V3(S)|.

(ii) H3(S) is (1, 3)-tight1 and |I3(H3(S))| = |V3(H3(S))|.

Proof: The number of fixed vertices and fixed incidences does not change
during the modification, and hence |I3(S)| = |V3(S)| holds if and only if
|I3(H3(S))| = |V3(H3(S))| holds. It follows from a simple calculation that
the conditions |I| = |V | + 3|F | − 3, |I ′| ≤ |V ′| + 3|F ′| − 3 for every sub-
set of incidences |I ′| with at least one face are equivalent to |I(H3(S))| =
|V (H3(S))| + 3|F (H3(S))| − 3, |I(H ′)| ≤ |V (H ′)| + 3|F (H ′)| − 3 for ev-
ery subhypergraph H ′ of H3(S) with at least one hyperedge. Then using

1A hypergraph H = (V, F ) is called (1, 3)-sparse or sparse for short if |F ′| ≤ |V (F ′)|−3
for every ∅ 6= F ′ ⊆ F . H is called (1, 3)-tight or simply tight if it is (1,3)-sparse and satisfies
|F | = |V | − 3.

7



the fact that H3(S) is 4-uniform we get that the latter is equivalent to the
(1, 3)-tightness of H3(S). �

We will say that a 4-uniform hypergraph H is C3-tight if it is (1,3)-tight
and satisfies |I3(H)| = |V3(H)|.

3.3. A constructive characterization for 4-uniform (1, 3)-tight hypergraphs

In this section we define the operations used for constructing (non-
symmetric) 4-uniform (1, 3)-tight hypergraphs and summarize the results
in [1].

Let H = (V,E) be a 4-uniform hypergraph and let v ∈ V be a vertex
with d(v) ≥ j. The j-extension operation at vertex v picks j hyperedges
e1, e2, ..., ej incident with v, adds a new vertex z to H as well as a new
hyperedge e of size 4 incident with both v and z, and replaces ei by ei−v+z
for all 1 ≤ i ≤ j. Thus the new vertex z has degree j + 1 in the extended
hypergraph. Note that a 0-extension operation simply adds a new vertex z
and a new hyperedge of size 4 incident with z.

The inverse of the j-extension operation can be described as follows. Let
z be a vertex with d(z) = j+1 and let v be a neighbour of z with d(z, v) = 1.
Let e, e1, ..., ej be the edges incident with z, where e is the edge which is
incident with v, too. The j-reduction operation at vertex z with neighbour
v deletes e and replaces ei by ei − z + v for all 1 ≤ i ≤ j. A j-reduction is
called admissible if the hypergraph obtained as the result of the j-reduction
is (1,3)-sparse. See Figure 1 for examples.

Theorem 3.2. [1] Let H = (V,E) be a 4-uniform hypergraph. H is (1,3)-
tight if and only if it can be obtained from a single hyperedge of size four by
a sequence of j-extensions, where 0 ≤ j ≤ 2.

We shall also use the next lemma which is the key in the proof of Theorem
3.2.

Lemma 3.3. [1] Let H = (V,E) be a (1, 3)-tight 4-uniform hypergraph and
let z ∈ V be a vertex with d(z) = j for some 1 ≤ j ≤ 3. Then there is an
admissible j-reduction at z.

3.4. Preliminary lemmas

Lemma 3.4. If H is a (1, 3)-tight 4-uniform hypergraph then H has at least
four vertices with degree at most three. Furthermore if there are exactly four
vertices with degree at most three, then they must have degree one.
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(a)

v

e

z

(b)

v
e1

(c)

v
e′1

e
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(d)
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e1

e2

(e)

v

e′1
e′2

e

z
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Figure 1: Extensions performed at a degree three vertex v of a 4-uniform hypergraph
H. When there are no hyperedges chosen (a) the 0-extension adds a new vertex z and
a new hyperedge incident with both v and z (b). Let the unique chosen hyperedge be
e1, denoted with a dashed line (c). The 1-extension adds a new vertex z, replaces v with
z in e1 and leaves the rest of the hyperedges incident with v unchanged. It also adds a
hyperedge e incident with both v and z (d). When there are two chosen hyperedges e1
and e2, denoted by dashed and dotted lines, respectively (e), the 2-extension adds a new
vertex z, replaces v with z in e1 and e2, leaves the rest of the hyperedges unchanged and
adds a new hyperedge e incident with both v and z (f). Note that the two vertices of e
different from v and z can be arbitrary; they may or may not be adjacent with v in H.

Proof: Since H is 4-uniform with |V | − 3 edges, the sum of degrees in H is
4|V | − 12. Every vertex is incident with at least one hyperedge, by (1,3)-
tightness. If there are at most three vertices with degree at most three, then
the total degree in H is at least 4(|V |−3)+3, which is a contradiction. From
a similar simple calculation the second part of the statement also follows.
�
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Lemma 3.5. The def function is submodular, that is, def(X) + def(Y ) ≥
def(X ∪ Y ) + def(X ∩ Y ) for every X,Y ⊆ V .

From now on we will assume that H is C3-tight. The next lemma follows
immediately from Lemma 3.5.

Lemma 3.6. For X ⊆ V , we have

def(C3X) ≤ 3def(X)− def(X ∩ γX)− def(γ2X ∩ (X ∪ γX)).

Proof: By Lemma 3.5 we have

def(X ∪ γX) ≤ def(X) + def(γX)− def(X ∩ γX).

Applying Lemma 3.5 again (to γ2X and X ∪ γX), it follows from the sym-
metry of H that

def(C3X) ≤ def(γ2X) + def(X ∪ γX)− def(γ2X ∩ (X ∪ γX))

≤ 3def(X)− def(X ∩ γX)− def(γ2X ∩ (X ∪ γX))

as claimed. �

Lemma 3.7. Suppose that X ⊆ V is such that def(X ∩ γX) ≥ def(X) and
def(Z) ≥ def(X) for any Z ⊇ X. Then def(X) = def(C3X).

Proof: By the symmetry of H, Lemma 3.5, and the conditions of the lemma
we obtain:

2def(X) = def(X) + def(γX) ≥ def(X ∪ γX) + def(X ∩ γX) ≥ 2def(X).

This implies that def(X ∪ γX) = def(X). Furthermore,

2def(X) = 2def(X ∪ γX) = def(X ∪ γX) + def(γX ∪ γ2X) ≥

≥ def(C3X) + def((X ∪ γX) ∩ (γX ∪ γ2X)) ≥ 2def(X)

from which def(X) = def(C3X) follows. �

Lemma 3.8. def(C3X) ≡ 0, 1 (mod 3) for every X ⊆ V .

Proof: By definition, |C3X| − 3 − e(C3X) = def(C3X). The C3 symmetry
implies |C3X| ≡ 0, 1 (mod 3) and e(C3X) ≡ 0, 1 (mod 3). But e(C3X) ≡ 1
(mod 3) implies |C3X| ≡ 1 (mod 3), and hence def(C3X) ≡ 2 (mod 3) is not
possible. �
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3.5. Reducing low degree vertices

In this section we will define symmetric reductions for C3-tight hyper-
graphs. We will also prove that a C3-symmetric reduction that preserves
sparsity always exists.

From now on we will suppose that |V | ≥ 7. (There are three non-
isomorphic C3-tight hypergraphs with |V | ≤ 6. We will discuss these ‘base
graphs’ later in Section 3.5.4.) Let u ∈ V be a vertex not incident with
f0. Suppose that d(u, v) = 1 for some v ∈ V − C3u. Reduce u on v then
reduce γu on γv and then γ2u on γ2v. This operation (that consists of three
successive reductions) will be called a symmetric reduction. We will say
that we reduce C3u on C3v. If the resulting hypergraph H ′ is (1,3)-sparse
then the symmetric reduction is called admissible. The inverse operations
of symmetric reductions will be called symmetric extensions.

Lemma 3.9. Let H be a C3-symmetric 4-uniform hypergraph and let u ∈ V
be a vertex not incident with f0. The hypergraph H ′ obtained from a C3-
symmetric reduction is C3-symmetric.

Proof: It suffices to show that for every hyperedge f ∈ E(H ′) we have
γf, γ2f ∈ E(H ′). This is clearly true for every hyperedge in E(H)∩E(H ′).

If an edge f1 ∈ E(H) is incident with both u and v then f1, γf1, γ
2f1 are

deleted during the reductions. If an edge f2 ∈ E(H) is incident with u but
is not incident with v, then in f2 the vertex u (γu and γ2u) is replaced with
v (γv and γ2v, respectively), and it is not difficult to see that γf ′2, γ

2f ′2 ∈
E(H ′) holds. �

The main result of this section is that we can always find a symmetric set
of three vertices for which an admissible symmetric reduction exists. Our
first task is to find a vertex u with d(u) ≤ 3 that is not incident with f0.
By Lemma 3.4 the vertices of f0 are the only vertices with degree at most
three if and only if they all have degree one. But then H has four vertices
only. Hence we can always find an appropriate u if |V | > 6.

Lemma 3.10. If d(C3u) = 3 then there is an admissible symmetric reduc-
tion at C3u.

Proof: The result of an arbitrary symmetric reduction is the deletion of C3u
together with the incident hyperedges. This reduction is clearly admissible.

�
Note that if d(C3u) = 3 then either d(u) = 1 or d(u) = 2 and there is a

hyperedge incident with both u and γu. Lemma 3.10 covers both of these
cases.
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u

a2a1

γuγ2u

(a)

γa1

γuγ2u

(b)

γ2a1
γ2u

(c)

H − C3u

(d)

Figure 2: Example for a symmetric admissible reduction for the case d(u) = 2 and
d(C3u) = 3. The hypergraph H is shown in (a). There are two possible ways to reduce
u. We can either reduce it on a1 or on a2; the figure shows the former. We first reduce
u on a1 (b), then γu on γa1 (c) and finally γ2u on γ2a1 (d) which gives the hypergraph
H − C3u. The first two reductions are 1-reductions and the third one is a 0-reduction.

3.5.1. Blockers for symmetric reductions

By Lemma 3.10, there is an admissible symmetric reduction if d(C3u) =
3. From now on we will focus on the cases d(C3u) = 6 or 9. These imply
2 ≤ d(u) ≤ 3. We will denote the hyperedges incident with u by e1, e2 (and
e3 if d(u) = 3) and we will also use the notation êj = ej − u.

Let a1, . . . , al denote the neighbours of u in V −C3u for which d(u, ai) = 1,
1 ≤ i ≤ l. First, we show that d(u) ≤ 3 implies l ≥ 1.

This statement is trivial for d(u) = 1. To see that it holds for d(u) = 2,
we consider three distinct cases. First, if {u, γu, γ2u,w} ∈ F with w ∈
V − C3u, then we obtain a contradiction to d(u) = 2. (Recall that u is not
incident with f0.) Second, if {u,w1, w2, w3} ∈ F with wi ∈ V − C3u for
i = 1, 2, 3, then the statement is clearly true. Third, if {u, γu,w1, w2} ∈ F
with wi ∈ V −C3u for i = 1, 2 then, by symmetry, {γ2u, u, γ2w1, γ

2w2} ∈ F .
However, {w1, w2} 6= {γ2w1, γ

2w2} and hence the statement again holds.
Similarly, we may show that the statement also holds for d(u) = 3. Again
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we consider three cases. First, if {u, γu, γ2u,w} ∈ F with w ∈ V − C3u,
then the statement clearly holds. Second, if {u,w1, w2, w3} ∈ F with
wi ∈ V − C3u for i = 1, 2, 3, then the statement also holds, for other-
wise the (1, 3)-sparsity is violated by the three hyperedges incident with
u. Third, if the first two cases don’t occur, then {u, γu,w1, w2} ∈ F and,
by symmetry, {γ2u, u, γ2w1, γ

2w2} ∈ F with wi ∈ V − C3u for i = 1, 2.
If w1, w2, γ

2w1 and γ2w2 are all distinct, then the statement clearly holds.
Otherwise, two of these vertices are the same, say w1 = γ2w2, in which
case the three distinct vertices are C3w1. Suppose without loss of generality
that the third hyperedge containing u is of the form {u, γu, x, y}. Then we
are done unless {x, y} = {γw1, γ

2w1}. However, in this case we also have
{γ2u, u, γ2x, γ2y} ∈ F , contradicting d(u) = 3.

In the following, we will use the notation N1(u) = {a1, . . . , al}. We will
prove that for every u with d(u) ≤ 3, there exists an index i for which the
reduction of C3u on C3ai yields a (1,3)-tight hypergraph.

The reduced hypergraph H ′ is not (1,3)-sparse if and only if there is a
set of hyperedges F ⊆ E(H ′) − E(H) for which V (F ) ⊆ X ⊆ V (H) − C3u
with some def(X) ≤ |F | − 1. We will call such a set X a blocker for the
symmetric reduction or a blocker for short. Now we describe the blockers
for symmetric reductions. The blocker of ai will be denoted by Xi.

We will divide blockers into three groups to simplify the discussion. Let
Xi be a blocker of ai, i.e., a blocker for the symmetric reduction of C3u on
C3ai. We may assume that ai ∈ Xi, because C3ai ∩Xi 6= ∅ must hold, and if
ai 6∈ Xi, then we can replace Xi with γXi or γ2Xi to obtain a blocker that
contains ai.

Vertices u and γu may or may not share a hyperedge. First suppose that
there is no hyperedge incident to both u and γu. In this case we cannot
reduce C3u on C3ai if and only if one of the three following cases occurs.

(i) After reducing u on ai the resulting hypergraph H1 has a vertex set
that violates sparsity and does not contain γu and γ2u. Such a vertex
set is a blocker and will be called a type 1 blocker.

(ii) There is no type 1 blocker and after the reduction of γu on γai in H1

the resulting hypergraph H2 has a vertex set that violates sparsity and
does not contain γ2u. Such a vertex set is also a blocker which will be
called a type 2 blocker.

(iii) There is no type 1 or type 2 blocker but after the reduction of γ2u
on γ2ai in H2 the resulting hypergraph has a vertex set that violates
sparsity. Such a set is also a blocker and will be called a type 3 blocker.
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It follows from the definitions of type 1, 2 and 3 blockers that if X is a
type 2 (or type 3) blocker, then X must contain the vertex set of at least
one (at least two) previously reduced hyperedge(s).

Consider first the case d(u) = 2. In this case there are three different
types of blockers. Let et for 1 ≤ t ≤ 2 be the edge not incident with ai.
If Xi is type 1 then def(Xi) = 0 and êt + ai ⊆ Xi. If Xi is type 2 then
def(Xi) = 1 and (êt + ai) ∪ γ(êt + ai) ⊆ Xi. Finally, if Xi is type 3 then
def(Xi) = 2 and C3(êt + ai) ⊆ Xi.

Now suppose that d(u) = 3. This implies that d(C3u) = 9. To simplify
notation we will assume that ai ∈ e1.

If Xi is type 1, then def(Xi) = 0 or 1. In the former case, êt + ai ⊆ Xi

for some 2 ≤ t ≤ 3, and in the latter case, ê1 ∪ ê2 + ai ⊆ Xi.
If Xi is type 2, then 1 ≤ def(Xi) ≤ 3. We have that ai, γai ∈ Xi, and Xi

contains at least one of the sets ê2 and ê3, at least one of γê2 and γê3, and
at least def(Xi) + 1 of these four vertex sets. There are two kinds of type
2 blockers that will play an important role in the proofs. The first one has
def(Xi) = 1 and êt ∪ γêt ⊆ Xi for some 2 ≤ t ≤ 3. We will call such an Xi

a type 2a blocker. If def(Xi) = 1 and êt ∪ γês ⊆ Xi for {s, t} = {2, 3} then
Xi is called a type 2b blocker.

Finally, if Xi is type 3, then 2 ≤ def(Xi) ≤ 5. We have that C3ai ⊆ Xi,
and Xi contains at least one of the sets ê2 and ê3, at least one of γê2 and
γê3, and at least one of γ2ê2 and γ2ê3. Xi contains at least def(Xi) + 1 of
these six vertex sets.

In the final case, we have d(u) = 3, and u and γu share an edge. d(u) ≤ 3
implies that u and γu cannot share more than one edge. In this case, instead
of e1, e2, e3 we will use a different notation for the edges incident with u. Let
f be the unique edge incident with both u and γu, and so the edges incident
with u are f, γ2f, g for some g ∈ F . We will use the notation f̂ = f −u−γu
and ĝ = g − u. If f̂ ∩ γf̂ = ∅ then (f̂ ∪ γf̂) ∩ N1(u) 6= ∅ and in this case
we will reduce C3u on C3ai for some ai ∈ f̂ ∪ γf̂ . If f̂ ∩ γf̂ 6= ∅ then either
f = {u, γu,w, γw} or f = {u, γu,w, v0} for some w ∈ V − v0. In this case
the (1,3)-sparsity implies that g∩N1(u) 6= ∅ and we will reduce C3u on C3ai
for some ai ∈ ĝ.

We will apply the same method as in the case before, that is, we will
reduce u on some of its neighbours ai ∈ N1(u), then reduce γu on γai, and
finally reduce γ2u on γ2ai. Note that the first reduction is a 2-reduction
but the other ones may be 1-reductions. In either case this sequence of
three operations results in adding exactly three hyperedges to H − C3u in
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a symmetric way. If ai ∈ f̂ then let hi = ĝ + ai, and if ai ∈ ĝ then let
hi = f̂ + ai + γai. The three new hyperedges are C3hi.

If the reduction is not admissible then again we have three types of
blockers. Xi ⊆ V − C3u is a blocker of ai if one of the following holds:

(i) hi ⊆ Xi and def(Xi) = 0;

(ii) hi ∪ γhi ⊆ Xi and def(Xi) = 1;

(iii) C3hi ⊆ Xi and def(Xi) = 2.

If u, γu share an edge then we will call these blockers type 1, 2 and 3,
respectively.

We shall also use the following property of (1,3)-sparse symmetric hyper-
graphs throughout this section. Let U ⊆ V − C3u be a vertex set. If U + u
spans k edges incident with u then def(U) ≥ k − 1 and if dU+C3u(C3u) = l
then def(U) ≥ l − 3. We will call this the (∗) property.

To see that the (∗) property holds, note that def(U + u) ≥ 0, and hence

def(U + u) = |U + u| − 3− eH(U + u)

= |U |+ 1− 3− (eH(U) + k)

= def(U)− k + 1 ≥ 0.

Similarly, def(U + C3u) ≥ 0, and hence

def(U + C3u) = |U + C3u| − 3− eH(U + C3u)

= |U |+ 3− 3− (eH(U) + l)

= def(U) + 3− l ≥ 0.

From now on we will suppose that ai has a blocker Xi for every 1 ≤ i ≤ l
and Xi will be a blocker with the smallest possible deficiency among blockers
of ai. Note that it follows from the definition of type 1, 2 and 3 blockers
that if Xi is type h then there is no type k blocker of ai with k < h.

3.5.2. Case d(u) = 2 and d(C3u) = 6

Lemma 3.11. If d(C3u) = 6 and d(u) = 2 then there is an admissible
symmetric reduction at C3u.

Proof: Suppose for a contradiction that there is no symmetric reduction
at C3u. Then there is a blocker Xi for every ai.

First we will show that every Xi is type 1 or type 2. Suppose for a
contradiction that Xi is type 3. By our assumption def(Y ) ≥ 2 for every
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Y ⊇ Xi and def(Xi ∩ γXi) ≥ 2 and hence we can use Lemma 3.7. We get
that def(C3Xi) = 2, which contradicts Lemma 3.8. Thus, Xi is type 1 or
type 2, as we claimed.

Now suppose that Xi is type 2 for some 1 ≤ i ≤ l. If Xi ∩ γXi is tight
then it is a type 1 blocker of ai which is not possible. Thus, we must have
def(Xi ∩ γXi) ≥ 1. We can again use Lemma 3.7 to obtain def(C3Xi) = 1.

By the assumption on d(u) and d(C3u), u and γu do not share a hy-
peredge and hence Lemma 3.3 can be used to see that it is not possible
that every blocker is type 1. Therefore, we can assume that X1 is type
2. Assume further that a1 ∈ e1. Suppose first that Xj is type 1 for every
aj ∈ e2. Then, by Lemma 3.5,

⋃
aj∈e2 Xj is a tight set and contains every

neighbour of u, which contradicts the (∗) property. It follows that there
must be an a2 ∈ e2 for which X2 is type 2. Consider the sets C3X1 and
C3X2. We have def(C3X1) = def(C3X2) = 1 and |C3X1 ∩ C3X2| ≥ 4. This
implies def(C3X1 ∪ C3X2) ≤ 2 by Lemma 3.5. Thus, C3X1 ∪ C3X2 violates
the (∗) property. This completes the proof. �

3.5.3. Case d(u) = 3 and d(C3(u)) = 9

Claim 3.12. Suppose Xi is type 3. Then def(Xi) ≤ 4, and if C3êt ⊆ Xi for
some 1 ≤ t ≤ 3, then def(Xi) ≥ 3.

Proof: Suppose that there is a type 3 blocker Xi with def(Xi) = 5 or with
C3êt ⊆ Xi for some 1 ≤ t ≤ 3 and def(Xi) = 2. In both of these cases we
can use Lemma 3.7 to deduce that def(C3Xi) = def(Xi), which contradicts
Lemma 3.8. �

The next claim follows easily from Lemma 3.7.

Claim 3.13. If Xi is a type 2a blocker then def(C3Xi) = 1.

Lemma 3.14. Suppose that Y ⊆ V is such that def(C3Y ) ≤ 4 and C3(êt ∪
ês) ⊆ Y for some pair 1 ≤ t, s ≤ 3. If ai 6∈ êt∪ ês then def(C3Y ∪C3Xi) ≤ 4.

Proof: It suffices to show that def(C3Y ∪ C3Xi) ≤ 5 because the statement
then follows from Lemma 3.8. First we need the following calculation in
which Lemma 3.5 is used multiple times along with def(Xi) = def(γXi) =
def(γ2Xi):

def(C3Y ∪C3Xi) ≤ def(C3Y ∪Xi∪γXi)+def(Xi)−def((C3Y ∪Xi∪γXi)∩γ2Xi)

≤ def(C3Y ∪Xi)+2def(Xi)−def((C3Y ∪Xi)∩γXi)−def((C3Y ∪Xi∪γXi)∩γ2Xi)

≤ def(C3Y )+3def(Xi)−def(C3Y ∩Xi)−def((C3Y ∪Xi)∩γXi)−def((C3Y ∪Xi∪γXi)∩γ2Xi).
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By the (∗) property, def(C3Y ∩Xi) + def((C3Y ∪Xi)∩γXi) + def((C3Y ∪
Xi ∪ γXi) ∩ γ2Xi) ≥ 3 must hold, and hence the statement follows if
def(Xi) ≤ 1.

Claim 3.15. If def(Xi) ≥ 2 then def(C3Xi) ≤ 4 holds.

Proof: Again, it suffices to show that def(C3Xi) ≤ 5. We split the proof
into several cases. In each case we will use Lemma 3.6 and the fact that Xi

is a blocker with the smallest deficiency.
If Xi is type 2 and def(Xi) = 2 (def(Xi) = 3), then def(Xi∩γXi) ≥ 1 and

def(γ2Xi∩(Xi∪γXi)) ≥ 1 (def(Xi∩γXi) ≥ 2 and def(γ2Xi∩(Xi∪γXi)) ≥ 2)
otherwise they are type 1 blockers. Then def(C3Xi) ≤ 6−1−1 (def(C3Xi) ≤
9− 2− 2) follows.

Now suppose that Xi is type 3. If def(Xi) = 2, then similarly to the
previous case we have def(C3Xi) ≤ 6− 1− 1. If def(Xi) = 3, then there are
two cases. We can assume in the first case that Xi contains C3êt, ês and then
def(Xi ∩ γXi) ≥ 3 and def(γ2Xi ∩ (Xi ∪ γXi)) ≥ 3 because there is no type
3 blocker with deficiency 2 by our assumption. Thus def(C3Xi) ≤ 9− 3− 3
holds. In the second case we can assume that Xi contains êt, ês, γês, γ

2êt
and def(Xi ∩ γXi) ≥ 2 and def(γ2Xi ∩ (Xi ∪ γXi)) ≥ 2 because there is no
type 2 blocker. Hence def(C3Xi) ≤ 9− 2− 2.

Finally, if def(Xi) = 4, then def(C3Xi) ≤ 12−4−4 because blockers with
smaller deficiency cannot exist. By Claim 3.12, def(Xi) = 5 is not possible.
This completes the proof. �

If def(Xi) ≥ 2, then def(C3Xi) ≤ 4, by Claim 3.15. In this case def(C3Y ∩
C3Xj) ≥ 3 follows from the (∗) property. Then, by Lemma 3.5, def(C3Y ∪
C3Xj) ≤ 4 + 4− 3, and the proof is complete. �

Lemma 3.16. Suppose there is a set Y ⊆ V with def(C3Y ) ≤ 4 and C3(êt∪
ês) ⊆ Y for some pair 1 ≤ t, s ≤ 3. Then H is not (1,3)-sparse.

Proof: By the (∗) property, for a vertex set Z with N(u) ⊆ Z, def(Z) ≥ 6
holds. Hence there must be a vertex v ∈ N(u) \ C3Y and then v = aj for
some 1 ≤ j ≤ l. Using Lemma 3.14 multiple times if necessary we get that
def(C3Y

⋃
j:aj∈N1(u)\C3Y C3Xj) ≤ 4, and hence the set C3Y

⋃
j:aj∈N1(u)\C3Y C3Xj

violates sparsity by the (∗) property. �

Lemma 3.17. For every blocker Xi, we have def(Xi) ≤ 1. Further, if
def(Xi) = 1, then Xi is type 2.
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Proof: Suppose for a contradiction that def(Xi) ≥ 2 for some 1 ≤ i ≤ l with
ai ∈ ê1. Then def(C3Xi) ≤ 4, by Claim 3.15. If Xi is type 2, then it must
contain at least three of the vertex sets ê2, ê3, γê2, γê3. Thus, C3(ê2 ∪ ê3) ⊆
C3Xi. We can use a similar argument to deduce that C3(ê2 ∪ ê3) ⊆ C3Xi if
Xi is type 3 with def(Xi) ≥ 3, as at least one of êt, γêt, γ

2êt is contained in
Xi for t = 2, 3. If Xi is type 3 with def(Xi) = 2, then by Claim 3.12 we get
that Xi does not contain C3êt for any t ∈ {2, 3}. Thus C3Xi contains both
C3ê2 and C3ê3. Then, using Lemma 3.16, we get a contradiction.

To prove the second part of the statement, suppose that Xi is type 1
with def(Xi) = 1. Suppose ai ∈ ê1. The (∗) property implies that every
vertex set Z with ê2 ∪ ê3 ⊆ Z has def(Z) ≥ 1. Thus if Xj is type 1 for
every aj ∈ ê1, i 6= j, then, using Lemma 3.5, it can easily be seen that
def(

⋃
j:aj∈ê1 Xj) ≤ 1, which is a contradiction, as N(u) ⊆

⋃
j:aj∈ê1 Xj and

then by the (∗) property def(
⋃
j:aj∈ê1 Xj) ≥ 2 holds. Hence there is some

ak ∈ ê1 with a type 2 blocker Xk. If Xk is type 2a, then def(C3Xk) = 1,
by Claim 3.13. Using Lemma 3.5 we get def(C3(Xi ∪ Xk)) ≤ 4, which
contradicts Lemma 3.16. Thus Xk is type 2b and we can assume that
ê2 ∪ γê3 ⊆ Xk. Consider the set Xi ∪Xk. By Lemma 3.5, def(Xi ∪Xk) ≤ 2.
As γ2ê3 ∪ ê3 ∪ {Xk, γ

2Xk} ⊆ ((Xi ∪Xk) ∪ γ(Xi ∪Xk)) ∩ γ2(Xi ∪Xk) and
Xk has no type 1 blocker, def(((Xi ∪Xk)∪ γ(Xi ∪Xk))∩ γ2(Xi ∪Xk)) ≥ 1.
Hence, using Lemmas 3.6 and 3.8, def(C3(Xi ∪Xk)) ≤ 4, and again we get
a contradiction using Lemma 3.16. This completes the proof. �

We have shown so far that every blocker has to be a tight type 1 blocker,
a type 2a blocker or a type 2b blocker. We shall also use the following lemma.

Lemma 3.18. Suppose that ai is such that ai ∈ êj, êk ⊆ Xi and |êj ∩ êk| ≥
1. Then Xi is not type 2a.

Proof: Suppose for a contradiction that Xi is type 2a. Then def(C3Xi) = 1
by Claim 3.13. Thus def(C3(Xi ∪ êj)) ≤ 4, which is a contradiction by
Lemma 3.16. �

Now we will show that if there is a blocker Xi of ai for every 1 ≤ i ≤ l
then H cannot be (1, 3)-sparse.

Lemma 3.19. If d(u) = 3, and u and γu do not share a hyperedge, then
there is an admissible symmetric reduction at C3u.

Proof: Suppose for a contradiction that there is no admissible symmetric
reduction at C3u. Then ai has a blocker for every 1 ≤ i ≤ l. By Lemma
3.17, Xi is a tight type 1 or type 2a or type 2b blocker for every 1 ≤ i ≤ l.
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By Lemma 3.3, there is a (non-symmetric) admissible reduction at u, and
hence we may assume that a1 has no type 1 blocker. Thus, X1 is a type 2
blocker.
Case 1: Suppose first that every blocker is either type 1 or type 2a.

Claim 3.20. Suppose that Xj is type 1 or type 2a for every aj ∈ ês and
ês ∪ êt ⊆

⋃
aj∈ês Xj. Then êt 6⊆

⋂
aj∈ês Xj for any t 6= s.

Proof: Suppose the contrary for a contradiction. If Xi is type 2a for some
ai ∈ ês, then def(C3Xi) ≤ 1 by Claim 3.13. We can easily deduce that
def(

⋃
aj∈ês C3Xj) ≤ 3 using Lemma 3.5 (as adding type 2a blockers increases

the deficiency by at most 1, and adding the three symmetric copies of tight
type 1 blockers does not increase the deficiency), and then we get a contra-
diction using Lemma 3.16. If Xj is type 1 for every j, then by Lemma 3.5
we have def(

⋃
aj∈ês Xj) = 0, which contradicts sparsity by the (∗) property.

�
We first claim that |êt ∩N1(u)| ≤ 2 for every 1 ≤ t ≤ 3. Suppose for a

contradiction that ê1 ∩ (ê2 ∪ ê3) = ∅. Then ê1 = {ai, aj , ak} for some triple
1 ≤ i, j, k ≤ l. It follows from Claim 3.20 that Xi ∩ Xj ∩ Xk ⊇ êt is not
possible if t ∈ {2, 3}. Hence we can assume that Xi + ê2 and Xj + ê3.
Assume Xk ⊇ ê2. ê1 ∩ (ê2 ∪ ê3) = ∅ implies |ê2 ∩ N1(u)| ≥ 1, and hence
am ∈ ê2 for some 1 ≤ m ≤ l. If Xm ⊇ ê1, then we claim that Xj ∪Xk ∪Xm

violates sparsity. If Xj , Xk, Xm are type 1 blockers, then Xj ∪Xk ∪Xm is
tight by Lemma 3.5 and hence violates sparsity. If at least one of Xj , Xk, Xm

is type 2a, then def(C3(Xj ∪Xk ∪Xm)) ≤ 3 by Lemma 3.5 and Claim 3.21
and the (∗) property, which violates sparsity by Lemma 3.14.

Hence Xm ⊇ ê3 for every am ∈ ê2. But this contradicts Claim 3.20. We
deduce that |êj ∩N1(u)| ≤ 2 for every 1 ≤ j ≤ 3, which implies |N(u)| ≤ 7.
There is a type 2a blocker, and hence êj ∩ êk = ∅ for some pair 1 ≤ j, k ≤ 3
by Lemma 3.18. This implies |N(u)| ≥ 6.

If |N(u)| = 6 then l ≥ 3. Consider the sets X1, X2. X1 is type 2a by our
assumption, and hence def(C3X1) = 1 by Claim 3.13. If N(u) ⊆ X1 ∪X2,
then |X1 ∩X2| ≥ 2. Hence, if X2 is type 1, then def(C3(X1 ∪X2)) ≤ 4, and
if X2 is type 2a, then def(C3(X1 ∪X2)) ≤ 2 by Lemma 3.5. In both of these
cases we get a contradiction using the (∗) property. If |N(u)∩(X1∪X2)| = 5,
then |X1 ∩X2| ≥ 3. If X2 is type 1, then def(C3(X1 ∪X2)) = 1, and hence
def(C3(N(u)∪X1∪X2)) ≤ 4, while if X2 is type 2a, then def(C3(X1∪X2)) ≤
2, and hence def(C3(N(u)∪X1 ∪X2)) ≤ 5 by Lemma 3.5. These contradict
sparsity by the (∗) property.

The remaining case is |N(u)| = 7 and |êj∩N1(u)| ≤ 2 for every 1 ≤ j ≤ 3.
The only possible configuration is ê1∩ ê2∩ ê3 = ∅ and |ê1∩ ê2| = |ê2∩ ê3| = 1
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as êj ∩ êk = ∅ for some pair 1 ≤ j, k ≤ 3. Thus, |ê2 ∩ N1(u)| = 1 and
|ê1 ∩ N1(u)| = |ê3 ∩ N1(u)| = 2. If a1 ∈ ê2 then we get a contradiction
by Lemma 3.18. Using the same lemma, we can assume without loss of
generality that a1 ∈ ê1 and ê3 ⊆ X1. By Claim 3.20, there is an aj ∈ ê3
with ê1 ⊆ Xj . If Xj is type 1, then def(C3(X1∪Xj)) ≤ 4 by Lemma 3.5, and
if Xj is type 2a, then def(C3(X1 ∪ Xj)) ≤ 2. Both lead to a contradiction
by Lemma 3.16.
Case 2: It remains to consider the case where X1 is a type 2b blocker. We
may assume that ê3 ∪ γê2 ⊆ X1 and a1 ∈ ê1.

Claim 3.21. If Xi is type 2b, then Xi ∩ γXi = γai.

Proof: Clearly γai ∈ Xi ∩ γXi. Suppose that |Xi ∩ γXi| ≥ 2 for a type 2b
blocker Xi. This implies def(Xi∩γXi) ≤ −1 and also |γ2Xi∩(Xi∩γXi)| ≥ 2
from which def(γ2Xi ∩ (Xi ∩ γXi)| ≥ 2) ≤ −1 follows. Then, by Lemma
3.6, def(C3Xi) ≤ 3 + 1 + 1, and hence def(C3Xi) ≤ 4 by Lemma 3.8. Then
we get a contradiction using Lemma 3.14. �

We have ê2 ∩ ê3 = ∅ by Claim 3.21. We first claim that there is a vertex
a2 ∈ ê2 for which X2 is type 2b. Suppose that Xj is type 1 or type 2a for
every vertex aj ∈ ê2 ∩N1(u). If ê1 ⊆ Xj for every Xj ∈ N1(u)∩ ê2 then, by
ê2 ∩ ê3 = ∅ and Claim 3.20, there must be an ak ∈ ê2 for which ê3 ⊆ Xk.
But if Xk is type 1, then by Lemma 3.5 X1 ∪Xk is a type 2b blocker of a1,
which contradicts Claim 3.21. Otherwise Xk is type 2a, and then by Claim
3.13 def(C3Xk) = 1, and hence def(C3(X1 ∪Xk)) ≤ 4 by Lemma 3.5, which
contradicts Lemma 3.16. Hence there is a vertex, say a2 ∈ ê2, for which X2

is type 2b.
Then, using Claim 3.21 for X2, we can conclude that the sets ê1, ê3 are

also disjoint. Repeating the above argument it follows that ê3 also contains
a vertex with a type 2b blocker, ê1, ê2, ê3 are pairwise disjoint and hence
|N1(u)| = 9. It also follows from the argument above that every blocker
must be type 2b.

Now suppose that ê2 ∪ γê3 ⊆ X4 for some type 2b blocker X4 with
a4 ∈ ê1. Then def(X1 ∪ γX4) ≤ 2 by Lemma 3.5. By the (∗) property
def((X1 ∪ γX4)∩ γ(X1 ∪ γX4)) ≥ 1, and def(γ2(X1 ∪ γX4)∩ ((X1 ∪ γX4)∪
γ(X1 ∪ γX4))) ≥ 2 follows. This implies def(C3(X1 ∪ X4)) ≤ 3 by Lemma
3.6, which contradicts Lemma 3.16. Hence ê3 ∪ γê2 ⊆ X1 ∩X4 ∩X7, with
the notation ê1 = {a1, a4, a7}.

Next we will show that ê3 ∪ γê1 ⊆ X2 holds for a2 ∈ ê2. Suppose that
ê1∪γê3 ⊆ X2. We will show that def(C3(X1∪γ2X2)) = def(C3(X1∪X2)) ≤ 4
to get a contradiction by Lemma 3.6. def((X1 ∪ γ2X2)∩ γ(X1 ∪ γ2X2)) ≥ 0

20



and def(γ2(X1 ∪ γ2X2) ∩ ((X1 ∪ γ2X2) ∪ γ(X1 ∪ γ2X2))) ≥ 2 must hold
otherwise γ2(X1 ∪ γ2X2) ∩ (X1 ∪ (γ2X2) ∪ γ(X1 ∪ γ2X2)) would be a type
2b blocker which contradicts Claim 3.21. Then we can use Lemma 3.6 for
C3(X1 ∪ γ2X2) to get def(C3(X1 ∪X2)) ≤ 4.

Hence ê1∪γê3 ⊆ X2 is the only possible case. Consider C3X2∪X1∪γX4∪
γ2X7 which contains C3N(u). We will prove that this set violates sparsity.
We have def(X2∪γX4) ≤ 2, and by adding the sets γX2, γ

2X7, γ
2X2 (in this

order), we can easily conclude that def(X2 ∪ γX4 ∪ γX2 ∪ γ2X7 ∪ γ2X2) ≤ 5
from Lemma 3.5, because each set intersects the union of the previous ones in
at least three vertices. We have ê3+a1 ⊆ (X2∪γX4∪γX2∪γ2X7∪γ2X2)∩X1,
and hence def(C3X2 ∪ X1 ∪ γX4 ∪ γ2X7) ≤ 5 which contradicts the (∗)
property.

In each case we got a contradiction, and hence we can always perform a
symmetric reduction, as we claimed. �

3.5.4. Case d(u) = 3 and d(C3(u)) = 6

Lemma 3.22. Suppose that d(u) = 3 and that the hyperedges incident with
u are f, γ2f, g. Then there is a vertex ai ∈ N1(u) such the reduction of C3u
on C3ai is admissible. Moreover, ai can be chosen such that if f̂ ∩ γ2f̂ = ∅
then ai ∈ f̂ ∪ γ2f̂ , and if f̂ ∩ γ2f̂ 6= ∅ then ai ∈ ĝ.

Proof: Suppose for a contradiction that there is a blocker Xi for every
1 ≤ i ≤ l. First we claim that there are no type 3 blockers. Suppose for a
contradiction that there is a type 3 blocker Xi. Assume that Xi is maximal
among the type 3 blockers of ai. We can then use Lemma 3.7 to prove that
def(C3Xi) = 2. But this is a contradiction by Lemma 3.8 and thus Xi cannot
be type 3.

Suppose first that f̂ ∩γ2f̂ = ∅. Recall that in this case the reduced edges
have the form ĝ + ai. If there is some ai ∈ f̂ ∪ γ2f̂ for which Xi is type 2,
then let Xi be maximal again. Then by Lemma 3.7 def(C3Xi) = 1. If there
is a vertex aj 6∈ C3Xi then consider a maximal Xj . If Xj is type 2 then
we get def(C3(Xi ∪Xj)) ≤ 1 by Lemmas 3.5 and 3.8. If Xj is type 1 then
adding Xj , γXj , γ

2Xj one by one to C3Xi using Lemma 3.5 we get again
def(C3(Xi∪Xj)) ≤ 1. In both cases we get a contradiction as then it follows
that Xi is not maximal. Consider the case where every possible reduction
has a type 1 blocker. Then there is a type 1 blocker Xi for every ai ∈ f̂∪γ2f̂
with ĝ ⊆ Xi. Let Y be the union of these blockers. By Lemma 3.5 Y is tight
and by Lemma 3.7 def(C3Y ) ≤ 1. On the other hand N(u)−{γu, γ2u} ⊆ Y ,
and hence def(C3Y ) ≥ 3 must hold by the (∗) property. These together give
a contradiction which completes the proof of this case.
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Now suppose that f̂ ∩ γ2f̂ 6= ∅. The reduced edges have the form
f̂ + ai + γai in this case. Consider the blockers Xi for every ai ∈ ĝ.
If Xi is type 2 then we can use the same argument as in the previous
case to deduce def(C3Xi) = 1. If Xi is type 1 then from Lemma 3.7
def(C3Xi) ≤ 1 follows. Thus, using Lemmas 3.5 and 3.8 multiple times
we have def(C3(

⋃
i:ai∈ĝXi)) ≤ 1, which contradicts the (∗) property. This

completes the proof. �
If we combine the results of Lemmas 3.10, 3.11, 3.19 and 3.22 we get the

following:

Theorem 3.23. Let H = (V, F ) be a C3-tight hypergraph with |V | > 6.
Let u ∈ V be a vertex with d(u) ≤ 3 not incident to f0. Then there is a
C3-symmetric admissible reduction at C3u.

There are three non-isomorphic C3-tight hypergraphs with |V | ≤ 6. H4

is the smallest possible hypergraph with these properties; it has four vertices
and one hyperedge and satisfies |I3(H4)| = |V3(H4)| = 1. The hypergraph
can also have six vertices and three hyperedges. Hence we have two vertex
orbits, C3v1 and C3v2. There are two possible hypergraphs with these prop-
erties. For the first one, which we will denote by H6, F = C3{C3v1+v2}, and
for the second one, which we will denote by H ′6, F = C3{v1, v2, γv1, γv2}.
They satisfy |I3(H6)| = |V3(H6)| = 0 and |I3(H ′6)| = |V3(H ′6)| = 0.

We will call H4, H6 and H ′6 the base graphs. As a corollary of the above
observations and Theorem 3.24 we get the main result of this section:

Theorem 3.24. H = (V, F ) is a C3-tight hypergraph if and only if it can
be obtained from one of the base graphs with a sequence of symmetric j-
extensions for 0 ≤ j ≤ 2.

4. Characterization of C3-generic minimally flat 4-uniform hyper-
graphs

4.1. j-extensions preserve independence in the lifting matrix

Recall that the j-extension operation at vertex v picks j hyperedges
e1, e2, ..., ej incident with v, adds a new vertex z to H as well as a new hy-
peredge e of size 4 incident with both v and z, and replaces ei by ei − v+ z
for all 1 ≤ i ≤ j. The lifting matrix for a picture S(r) is the |I|×(|V |+d|F |)
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coefficient matrix M(S, r) in which the row correspoding to (i, j) ∈ I is:

i
j︷ ︸︸ ︷

(i, j) 0 . . . 0 1 0 . . . 0 0 . . . 0 ri 1 0 . . . 0︸ ︷︷ ︸
|V |

︸ ︷︷ ︸
d|F |

In this section we show that if H is a 4-uniform hypergraph with an
independent 2-picture and H ′ is obtained from H by a j-extension for some
j ≥ 0, then H ′ also has an independent 2-picture.

Theorem 4.1. Let (H, r) be an independent 2-picture, where H = (V, F ) is
a 4-uniform hypergraph, and r : V → R2 is a location map. Let H ′ = (V ′, F ′)
be the hypergraph obtained from H by performing a j-extension at v ∈ V such
that V ′ = V + z and {a, b, v, z} ∈ F ′. Put r(z) = r(v). If r(a), r(b), r(v) do
not lie on a line, then (H ′, r) is an independent 2-picture.

Proof: (H, r) is an independent 2-picture if and only if the rows of M(H, r)
are independent. We have to show that the rows of M(H ′, r) are also inde-
pendent. M(H ′, r) is given by

z v a b
e′i︷ ︸︸ ︷ e︷ ︸︸ ︷

? ?
(z, e′i) 1 0 0 0 0. . . 0 0. . . 0 r(z) 1 0. . . 0 0 0

? ?
(z, e) 1 0 0 0

0 0

r(z) 1
(v, e) 0 1 0 0 r(v) 1
(a, e) 0 0 1 0 r(a) 1
(b, e) 0 0 0 1 r(b) 1

M(H ′, r) can be constructed from M(H, r) as follows. First, add 4 zero
columns, one of which corresponds to z and the rest of them correspond to
e. Clearly, this operation results in a row-independent matrix. Then add
the rows of incidences (v, e), (a, e), (b, e). The rows of the matrix obtained
are independent since r(a), r(b), r(v) do not lie on a line. Then adding the
row of (z, e) preserves the independence because no other row has a non-zero
element in the first column.

Now, observe that what is left is to modify the rows corresponding to the
incidences (v, ei) for 0 ≤ i ≤ j. We can obtain the desired row of (z, e′i) by
subtracting the row of (v, e) and adding the row of (z, e). These operations
also preserve independence. This completes the proof. �
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4.2. Minimally flat C3-symmetric 4-uniform hypergraphs

First we shall see that the lifting matrices corresponding to the base
graphs have full rank. Observe that for H4 the first four columns of M(H, r)
form an identity matrix and hence its rows are independent.

If H is isomorphic to H6 or H ′6, then we will construct a row-independent
C3-symmetric realization using Theorem 4.1. Let r(v1) 6= (0, 0) be arbitrary,
and place C3v1 symmetrically.

For H6, start with the hyperedge {C3vi, v2} and put r(v1) = r(v2). Then
add {C3vi, γv2} with r(γv1) = r(γv2), and finally add {C3vi, γ2v2} with
r(γ2v1) = r(γ2v2). This realization is row-independent by Theorem 4.1.

For H ′6, we put r(v2) = r(γv1) (and then r(γv2) = r(γ2v1), r(γ
2v2) =

r(v1)). We start again with the hyperedge {C3vi, γv2}. Then apply a
1-extension at γ2v1. This results in deleting the only edge and adding
{v1, v2, γv1, γv2} and {C3vi, γv2}. After one more 1-extension at v1 we obtain
hypergraph H ′6. Both of these extensions satisfy the conditions of Theorem
4.1, and hence we can conclude that this realization is row-independent.

We shall prove that the symmetric extensions defined in Section 3.5
preserve the row-independence of the lifting matrix.

Lemma 4.2. Every C3-symmetric extension preserves the (C3-generic) in-
dependence of the rows of the lifting matrix.

Proof: Let H be C3-generically independent, and let H(r) be C3-generic.
Then without loss of generality we may assume that no three vertices of
H(r) are collinear (by slightly perturbing the vertices if necessary). Recall
that symmetric extensions consist of three consecutive extensions performed
such that the resulting graph is symmetric. It suffices to show that in all
three extensions, r(a), r(b), r(v) do not lie on a line. The statement then
follows from Theorem 4.1 since the existence of a C3-symmetric independent
picture H ′(r) implies that H ′ is C3-generically independent.

If we apply three j-extensions on H such that no pair of the three new
vertices C3u share an edge, then, for the first of the three j-extensions, we
have {a, b, v} ∈ V (H), and hence r(a), r(b) and r(v) cannot be collinear.
Similarly, for the second and third j-extension, the vertices {a, b, v} are
again in H (as images of the original set under γ and γ2, respectively) and
hence r(a), r(b) and r(v) can again not be collinear.

If u and γu share an edge, then, for the first of the three j-extensions, we
again have {a, b, v} ∈ V (H), and hence a, b and v cannot be collinear. More-
over, for the second and third j-extension, the vertices {a, b, v} can again
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be chosen to be the images of the original set under γ and γ2, respectively.
This completes the proof. �

As a corollary we obtain the following.

Theorem 4.3. A C3-symmetric 4-uniform hypergraph H is C3-generically
minimally flat if and only if it is C3-tight.

4.3. Minimally flat C3-symmetric incidence structures

Theorem 4.4. A C3-symmetric incidence structure S = (V, F ; I) is C3-
generically minimally flat if and only if |I| = |V | + 3|F | − 3, |I ′| ≤ |V ′| +
3|F ′|−3 for every subset of incidences |I ′| with at least one face and |I3(S)| =
|V3(S)|.

Proof: By Lemma 3.1, S satisfies the conditions of the theorem if and only
if H3(S) is C3-tight.

Consider the edge set Ej that corresponds to the face fj = {v1, v2, v3, . . . ,
vm+3}. (See Section 3.2 for definitions.) Put {v1, v2, v3, vi} = ei for every
4 ≤ i ≤ m + 3. We will delete vertex vi from the hyperedge ei and add vi
to e4 for every 5 ≤ i ≤ m+ 3 successively. Thus, at the end of the process,
we obtain the face fj and m − 1 copies of the face {v1, v2, v3} from the set
Ej . We will observe that moving every vertex results in an independent
structure. The faces of size three can then be deleted.

Let Mi,l denote the row of M(S, r) corresponding to the incidence be-
tween vi and el. By our assumption, r is symmetry-generic, and hence ri is
in the affine span of r1, r2, r3 for every 4 ≤ i ≤ m + 3. Equivalently, there
are coefficients α1i, α2i, α3i with α1i(r1, 1) + α2i(r2, 1) + α3i(r3, 1) = (ri, 1).

The next matrix shows the rows of M(S, r) corresponding to the edges
e4 and ei.

v1 v2 v3 v4 vi
e4︷ ︸︸ ︷ ei︷ ︸︸ ︷

(v1, e4) 1 0 0 0 0

0

r1 1

0

= M1,4

(v2, e4) 0 1 0 0 0 r2 1 = M2,4

(v3, e4) 0 0 1 0 0 r3 1 = M3,4

(v4, e4) 0 0 0 1 0 r4 1 = M4,4

(v1, ei) 1 0 0 0 0

0 0

r1 1 = M1,i

(v2, ei) 0 1 0 0 0 r2 1 = M2,i

(v3, ei) 0 0 1 0 0 r3 1 = M3,i

(vi, ei) 0 0 0 0 1 ri 1 = Mi,i
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If we replace the row Mi,i with Mi,i +
∑3

k=1 αki(Mk,4 −Mk,i), then we
get the following:

v1 v2 v3 v4 vi
e4︷ ︸︸ ︷ ei︷ ︸︸ ︷

(vi, e4) 0 0 0 0 1 0. . . 0 ri 1 0. . . 0 0 0

The rows of the resulting matrix are linearly independent and it corre-
sponds to the incidence structure in which vi is deleted from ei and is added
to e4. Observe that we only used the fact that v1, v2, v3 are in general po-
sition and are contained in both e4 and ei. Hence the above argument also
works for fixed edges and edges with larger cardinality. Now we delete the
rows M1,iM2,iM3,i, and then the columns corresponding to ei only contain
zeros, so that the deletion of these columns also preserves independence.

We can apply the same method for every 1 ≤ j ≤ |V | − 3 to construct S
and see that it is independent. This completes the proof. �

5. Sharp C3-symmetric pictures

In this section we give a sufficient condition for sharpness of C3-generic
pictures. We will first need the definition of deficiency for incidence struc-
tures. For S = (V, F ; I) the deficiency of a vertex set X ⊆ V is defined by
def(X) = |X|+ 3f(X)− i(X) where f(X) and i(X) denote the number of
faces and the number of incidences in S[X]. We may apply the same proof
method as for Lemmas 3.7 and 3.8 to obtain the following two results:

Lemma 5.1. Suppose that X ⊆ V is such that def(X ∩ γX) ≥ def(X) and
def(Z) ≥ def(X) for any Z ⊇ X. Then def(X) = def(C3X).

Lemma 5.2. def(C3X) ≡ 0, 1 (mod 3) for every X ⊆ V .

As a corollary of Theorem 4.4 we get a sufficient condition for indepen-
dence of C3-generic incidence structures.

Corollary 5.3. Suppose that for the C3-symmetric incidence structure S =
(V, F ; I) we have |I ′| ≤ |V ′| + 3|F ′| − 3 for every subset of incidences |I ′|
with at least one face and |I3(S)| = |V3(S)|. Then S is C3-generically inde-
pendent.

Proof: We may assume that |I| ≤ |V | + 3|F | − 4, for otherwise S is C3-
generically minimally flat and hence independent by Theorem 4.4. We will
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prove that S is a substructure of a C3-generically minimally flat incidence
structure. Observe that by the symmetry of S and |I3(S)| = |V3(S)|, |I| ≤
|V |+ 3|F | − 6 must hold. Hence there is an incidence (v, f) 6∈ I with v 6= v0
for which the (non-symmetric) 2-picture S1(r), where S1 = (V, F, I+(f, v)),
does not violate the sparsity condition.

Consider the symmetric C3-generic structure S2(r), where S2 = (V, F, I2)
and I2 = I + C3(f, v). Note that |I3(S2)| = |V3(S2)|. Suppose that S2(r)
is not independent, that is, there is a substructure S′ = (V ′, F ′, I ′) of S2
with |I ′| > |V ′| + 3|F ′| − 3. Let S′ be minimal. By the sparsity of S1 this
can happen in two ways. The first case is f, γf ∈ F ′, defS(V ′) = 1, and
the second case is C3f ∈ F ′, defS(V ′) = 2. In the second case we get a
contradiction using Lemmas 5.1 and 5.2.

The first case can only occur if v0 ∈ V ′ and f0 6∈ F ′. If for every vertex
v 6∈ f , v 6= v0, we can find such a substructure, then it is not difficult
to see that the union of these substructures violate sparsity. Thus S2 is
independent for some v 6∈ f , v 6= v0, and so is its substructure S. �

Theorem 5.4. Let S = (V, F, I) be a C3-symmetric incidence structure with
|I ′| ≤ |V ′|+ 3|F ′| − 4 for every substructure of S with at least two faces.

(i) If |V3(S)| = 0 then S is C3-generically sharp.

(ii) If |V3(S)| = |I3(S)| = 1 and |I ′| ≤ |V ′| + 3|F ′| − 6 holds for every
C3-symmetric substructure of S with at least two faces, then S is C3-
generically sharp.

Proof: Without loss of generality we may assume that every face contains
at least four vertices. Let S(r) be a C3-generic 2-picture. First we would
like to show that for every pair (f1, f2) of its faces, there is a lifting S(p, P )
in which f1 and f2 lie in a different plane.

Note that two faces f1, f2 cannot have the same plane in a lifting if
there is a vertex u ∈ f2 − f1 which is not in the plane of f1. It follows
from the sparsity condition of the theorem and from the assumption that
every face contains at least four vertices that f2 − f1 6= ∅. Hence for every
pair f1, f2 ∈ F , there is a vertex u for which S1 = (V, F, I + (f1, u)) satisfies
|I ′| ≤ |V ′|+3|F ′|−3. We shall see that the structure S2 = (V, F, I+C3(f1, u))
satisfies the same count. Note that in case (i) it follows easily that S satisfies
|I ′| ≤ |V ′|+ 3|F ′| − 6 for every C3-symmetric substructure with at least two
faces.

Suppose for a contradiction that there is a substructure S′ = (V ′, F ′, I ′)
of S2 with |I ′| > |V ′|+3|F ′|−3 and let S′ be minimal. Then we may assume
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that f1, γf1 ∈ F ′ and defS(V ′) = 1 or C3f1 ∈ F ′ and defS(V ′) = 2. Both
of these lead to a contradiction using Lemma 5.1. Then, by Corollary 5.3,
S2(r) is independent, and so is S1(r).

Hence the dimension of the solution space of the matrix M(S, r) is larger
than that of M(S1, r). Thus, it must contain a solution which places u out
of the plane of f1, that is, f1, f2 are not in the same plane. Such a solution
exists for every pair f1, f2 ∈ F . An appropriate linear combination of these
solutions gives a sharp lifting. This completes the proof. �

6. Concluding remarks

In this paper we characterized C3-generically minimally flat incidence
structures. However, we note that there are flat C3-symmetric incidence
structures without a spanning minimally flat C3-symmetric substructure.
Hence our result does not give a complete characterization for C3-generically
flat (but not necessarily minimally flat) incidence structures. (Consider the
following example: V = {v0, v1, . . . , v6} and F = {{v0, vi, vj , vk} : 1 ≤
i, j, k ≤ 6}. This structure is clearly C3-generically flat, but it does not have
a minimally flat spanning incidence structure with C3 symmetry, because
none of its spanning substructures satisfy (7).) Finding a characterization
for the class of C3-generically flat incidence structures is a direction for future
research.

We also gave a sufficient condition for sharpness of C3-symmetric 2-
pictures. However, the problem of giving a full characterization remains
open.

It is of course also natural to try to prove a constructive characterization
for Γ-generically minimally flat structures with respect to other symmetry
groups τ(Γ). However, our proof for C3 cannot directly be transferred to
these other groups. In particular, considering symmetric derived 4-uniform
hypergraphs is in general not useful for symmetry groups different from C3.
In other words, a statement equivalent to Lemma 3.1 does in general not
exist.

For example, consider the half-turn symmetry group C2 and the C2-
symmetric incidence structure S = (V, F ; I), where V = {v0, C2v1, C2v2}
and F = {{v0, C2v1, C2v2}}. Clearly, S is C2-generically minimally flat and
satisfies all the necessary conditions for minimal flatness. There are two
possibilities to construct a C2-symmetric derived 4-uniform hypergraph of
S. Both hypergraphs have two hyperedges which share three collinear ver-
tices, and hence are foldable. Also, neither of them satisfies (4).
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