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Abstract
The notion of commitment is widely studied as a
high-level abstraction for modeling multiagent inter-
action. An important challenge is supporting flexible
decentralized enactments of commitment specifica-
tions. In this paper, we combine recent advances on
specifying commitments and information protocols.
Specifically, we contribute Tosca, a technique for
automatically synthesizing information protocols
from commitment specifications. Our main result is
that the synthesized protocols support commitment
alignment, which is the idea that agents must make
compatible inferences about their commitments
despite decentralization.

1 Introduction
Commitments represent a high-level abstraction for mod-
eling multiagent interaction [Singh, 1999]. The main idea
behind commitment protocols is to specify the meanings
of messages in terms of commitments [Pitt et al., 2001;
Yolum and Singh, 2002]. For example, to capture a purchase,
one may specify that a Quote message means creating a
commitment from the seller to the buyer to deliver an item in
exchange for payment. In addition to meanings, a commitment
protocol typically also specifies operational constraints such
as message ordering and occurrence. Thus, for example, one
would specify that the Quote message cannot occur before
the Request For Quote message from the buyer to the seller.
Intuitively, the motivation behind operational constraints is to
rule out causally invalid protocol enactments.

A fundamental challenge in this line of work has been sup-
porting decentralized enactments of commitment protocols,
that is, in shared nothing settings where agents communicate
asynchronously. Specifically, the only way for one agent to con-
vey information to another is to send it a message. Supporting
decentralized enactments in such settings is nontrivial because
agents may observe messages in incompatible orders. Specifi-
cally, decentralization may lead to situations where agents dead-
lock (lack of liveness), observe inconsistent messages (lack
of safety), or come to incompatible conclusions about com-
mitments that hold between them (lack of alignment [Chopra
and Singh, 2008; Chopra and Singh, 2009; Chopra and Singh,
2015b])—all three properties being crucial to interoperability.

Tosca addresses the challenge of decentralized en-
actments. It builds upon the conceptual observation
that commitment specification and operational con-
straints are distinct concerns [Chopra and Singh, 2008;
Baldoni et al., 2013]. For simplicity and clarity, from here on,
we reserve protocol to mean an operational protocol specifying
messages and the operational constraints on their ordering
and occurrence. Specifically, the question Tosca answers is:
how can we operationalize commitment specifications over
protocols such that liveness and safety are preserved, and
alignment is guaranteed? Tosca’s contribution is a method for
automatically synthesizing the appropriate protocol.

Tosca’s conceptual contribution is bringing three technical
strands on interaction in multiagent systems together. One,
BSPL [Singh, 2011], a declarative language for specifying
protocols. BSPL protocols are known as information protocols
because ordering and occurrence constraints fall out from more
fundamental causality and integrity constraints on information
in messages. A BSPL protocol can be checked for liveness
and safety [Singh, 2012]. Two, Cupid [Chopra and Singh,
2015a], a declarative language for specifying commitments.
The semantics of Cupid is in terms of commitment-oriented
queries on a relational database. Thus we may imagine an
agent that runs (for whatever purpose) commitment-oriented
queries on its local database. Three, research on alignment
[Chopra and Singh, 2015b] (C&S, for brevity), which is about
mechanisms for ensuring that the parties to a commitment
(the debtor and creditor) always progress toward states where
they make mutually compatible local inferences about the
commitment. Specifically, whenever the creditor infers a
commitment as active from the messages it has observed, the
debtor must as well infer it as active from its own observations.

Architecturally, Tosca brings the three strands together
in the following manner. Each agent’s local database or
state comprises the messages it would have sent or received
following a BSPL protocol. Cupid enables inferring the states
of the commitments an agent is party to from this database.
However, because each agent carries out this inference on
its own local state, it may turn out that agents are not aligned
with respect to a commitment. Tosca gives a method for
ensuring progress toward alignment. Specifically, given a
BSPL protocol and a set of commitments defined over the
messages in the protocol, it gives a method for synthesizing
a BSPL protocol whose enactment guarantees progress toward



alignment. Furthermore, if the input protocol is live and safe,
the synthesized protocol is live and safe as well.

Tosca goes beyond C&S in two ways. One, it addresses
alignment for a more expressive language that includes
deadlines, nested commitments, and a richer commitment
lifecycle. Two, whereas C&S give algorithms for alignment,
thereby constraining the implementation of agents, Tosca
gives a purely interactive solution in terms of a protocol whose
enactment would guarantee alignment.

2 Background
We now overview BSPL and Cupid, where for clarity we use
message (as in BSPL) and commitment (as in Cupid) to mean in-
stances, and specification to mean the respective specifications.

2.1 BSPL
BSPL is used to declaratively specify protocols without explicit
control flow. By contrast, languages such as AUML [Huget and
Odell, 2004] and RASA [Miller and Mcginnis, 2007] rely on ex-
plicitly specifying message ordering. Instead, BSPL protocols
impose information causality constraints on each message m:
what information m’s emission creates and what information
the sending role must know before sending m. Thus, an implicit
message ordering is imposed based solely on a protocol’s
explicit and declarative information causality specification.

Listing 1 demonstrates BSPL via the Ordering protocol.
From here on, we describe such a protocol as an “input protocol”
for Tosca, because it provides general message schemas for
taking communicative actions (instantiating messages) and
it is distinguished from a synthesized protocol for aligning a
commitment.

The protocol Ordering has the roles M (merchant), C
(customer), and S (shipper); and the parameters oID (order
identifier), item, price, pID (pay identifier), rID (request
identifier), and sID (ship identifier).

A complete enactment of Ordering comprises a tuple of
bindings for all of its parameters. All parameters are adorned
poutq for the protocol as a whole, meaning that their values are
bound by enacting the protocol. Parameter oID is annotated
as a key for the other parameters. This means each oID binding
corresponds to a distinct tuple of bindings for non key param-
eters and thus identifies Ordering’s enactment. For example,
it is not possible for the merchant to send two quotes with key
binding oID = 1 and different non key parameter bindings.

Ordering declares four message schemas (their placement
is irrelevant). By convention, any key parameter of the protocol
is a key parameter for any message in which it appears. The
message schema quote on Line 4 is from the merchant to the
customer. It has three parameters, whose values are bound by
sending a quote due to being adorned poutq, namely oID, item,
and price.

The message schema pay on Line 5 is from the customer
to the merchant. It comprises one parameter adorned pinq,
namely oID, which means that its value binding must be known
via message emission or reception before a pay message is sent
from the customer to the merchant. For example, the customer
cannot send a pay message with pinq parameter binding oID
= 1 before receiving a quote message with the same binding.

Hence, the customer can only send a pay message after
receiving a quote from the merchant with the same key value,
based on the information (parameter) causality constraints.

Likewise, the message schema requestShip on Line 6 is
from the merchant to the shipper and it has the pinq parameter
oID. Finally, ship on Line 7 has the oID parameter adorned
pinq. Since the shipper can only know about oID ’s binding
by receiving a requestShip message from the merchant, ship
can only be sent after being requested.

Listing 1: A BSPL protocol for placing and fulfilling orders.
1 O r d e r i n g {
2 roles M, C , S / / Merchant , Customer , S h i p p e r
3 parameters o u t oID key , o u t i tem , o u t p r i c e ,

o u t pID , o u t rID , o u t sID
4 M 7→ C : q u o t e [ o u t oID , o u t i tem , o u t p r i c e ]
5 C 7→ M: pay [ i n oID , o u t pID ]
6 M 7→ S : r e q u e s t S h i p [ i n oID , o u t rID ]
7 S 7→ C : s h i p [ i n oID , o u t sID ] }

2.2 Cupid
Cupid is a language for specifying commitments over an
event database schema and inferring commitment states based
on an event database state. In this paper, we only consider
defining commitments over protocol message schemas, where
commitments are inferred over messages.

We demonstrate Cupid’s basic ideas with an example
commitment in Listing 2 defined on top of the message
schemas of Listing 1.

Listing 2: A specification in Cupid’s surface syntax.
commitment P u r c h a s e M to C
create q u o t e
detach pay [ , q u o t e + 10]
discharge s h i p [ , pay + 5]

A Purchase commitment from M (merchant) to C (customer)
is created when a quote is made. The created commitment is
uniquely identified by quote’s key (oID ). Purchase is detached
if a payment correlated to a quote occurs within ten time points
of the quote (pay and quote both have the same key, oID ). If the
payment does not occur by the deadline, then the commitment is
expired (failure to meet detach). The commitment is discharged
if the (correlated) shipment occurs within five time points of
the payment; if the shipment does not happen by the deadline,
the commitment is violated (failure to meet discharge). Cupid
treats such lifecycle events as first-class events, meaning that
one commitment’s lifecycle event may depend upon another’s.

2.3 Separation of Concerns
Architecturally, Tosca uses BSPL to specify the operational
layer interaction focusing on informational causality, as a
separate concern from the interaction requirements specified in
Cupid. For example, we could change Listing 1’s requestShip
message schema to be causally dependent on pay’s identifier
(pID ) before emission:
1 M 7→ S : r e q u e s t S h i p [ i n oID , i n pID , o u t

rID ]

The modified information causality does not alter the fact
that the Purchase commitment continues to be discharged by
a ship message within five time points of the pay message.
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Figure 1: Protocol enactment for Merchant, Shipper, Escrow, and
Customer roles.

The modification does alter when these messages can be sent.
Conversely, changing the Purchase commitment in Listing 2’s
discharge from ship to another message would not affect if and
when ship can be sent. Tosca’s separation of concerns supports
modularity: swapping out a protocol or modifying its informa-
tion causality does not affect commitment level requirements,
only when information (descriptively) can be created and thus
when commitments can be met; changing a commitment does
not affect if and when information can be created, only the
(prescriptive) messaging requirements between parties.

3 Technical Motivation
We now demonstrate commitment operationalization protocols,
which support realizing a commitment’s lifecycle and progres-
sion towards alignment via messaging. Specifically, given a
commitment defined over an input protocol that potentially
causes misalignment, we synthesize a commitment alignment
protocol as output. A commitment alignment protocol
includes the necessary message schemas for forwarding
messages to the creditor and debtor in order to guarantee
commitment alignment. Together, an input protocol and
multiple commitment alignment protocols are composed to
form a commitment operationalization protocol.

3.1 Commitments Guaranteed Alignment
The Purchase commitment in Listing 2 is already alignable
for the create, detach, discharge, and expired lifecycle events
by the input protocol, Ordering, in Listing 1. In Figure 1 (A),
at time point 1 after the merchant sends the customer a quote
but before the customer receives it, the debtor (merchant)
infers that the Purchase commitment is created. Hence the
commitment is already aligned (the debtor knows that they are
committed) regardless of what the creditor (customer) knows.

When the customer emits pay before time point 2 they infer
that the Purchase commitment is detached. Hence, Purchase
becomes misaligned, since the creditor (customer) has a
stronger expectation of the debtor (merchant) to discharge
the commitment, which the debtor does not know. The
misalignment is rectified at time point 3, after the merchant
receives the pay message.

Subsequently, after the merchant requests the shipper to
ship, the shipper sends a ship message to the customer. At
time point 4, after receiving the ship message, the creditor
(customer) infers that the commitment is discharged and hence
does not have a stronger expectation of the debtor (merchant)
than what the debtor knows about (alignment).

Alignment for create, detach, discharge, and expired
lifecycle events is guaranteed, either because misalignment
does not occur (the creditor does not infer stronger expectations
of the debtor) or misalignment is rectified via message
reception. However, if ship is received after five time points of
payment, then the creditor (customer) infers violation whereas
the debtor (merchant) cannot (permanent misalignment). Such
misalignment requires message forwarding, (e.g., notifying
the debtor of ship), which we will cover in the next section.

3.2 Commitments Requiring Forwarding
Suppose an escrow service is used instead of direct payment
from the customer to the merchant. The EscrowOrdering input
protocol in Listing 3 and the EscrowPurchase commitment in
Listing 4 capture this situation.
Listing 3: An input protocol providing messaging for placing and
carrying out orders using an escrow service.
1 EscrowOrder ing {
2 roles E , M, C , S / / Escrow , Merchant ,

Customer , S h i p p e r
3 parameters o u t oID key , o u t i tem , o u t p r i c e ,

o u t pID , o u t rID , o u t sID , o u t t ID
4
5 M 7→ C : q u o t e [ o u t oID , o u t i tem , o u t p r i c e ]
6 C 7→ E : payEscrow [ i n oID , o u t pID ]
7 M 7→ S : r e q u e s t S h i p [ i n oID , o u t rID ]
8 S 7→ C : s h i p [ i n oID , o u t sID ]
9 E 7→ M: p a y T r a n s f e r [ i n oID , i n pID , o u t

t ID ] }

Listing 4: A commitment to capture escrow payment.
commitment EscrowPurchase M to C
create q u o t e
detach payEscrow [ , q u o t e + 10]
discharge s h i p [ , payEscrow + 5]

In this scenario, we need to introduce a message that
forwards another message’s occurrence to an otherwise
ignorant party. Listing 5 shows a protocol that introduces
message forwarding in order to align the EscrowPurchase
commitment (Listing 4) for the input protocol, EscrowOrdering
in Listing 3. Specifically, by incorporating the message schema,
fwdCMPayEscrowID, for forwarding payEscrow from the
customer to the merchant. Each forwarding message schema
has a distinct name mapped to the message being forwarded.

To exemplify, in Figure 1 (B) the customer sends payEscrow
to the escrow. At time point 5 we have misalignment, because
the customer (creditor) infers the EscrowPurchase’s detach
and an expectation for the merchant to ship the goods. Yet
the debtor (merchant) cannot know the customer’s expectation
without notification. Misalignment is resolved at time point 6
once the customer forwards payEscrow to the merchant via
fwdCMPayEscrow. Both roles know that the debtor (merchant)
is expected to discharge the commitment (alignment).
Listing 5: A protocol for aligning the EscrowPurchase commitment
in Listing 4.
1 EscrowPurchaseAl {
2 roles C , M
3 parameters i n oID key , i n pID , o u t

fwdCMPayEscrowID
4



5 C 7→ M: fwdCMPayEscrow [ i n oID , i n pID ,
6 o u t fwdCMPayEscrowID ] }

3.3 Nested Commitments
We now consider the case where one commitment’s lifecycle
event depends upon another’s (nesting). The EscrowTransfer
commitment given in Listing 6 is defined over the message
schemas from the input protocol EscrowOrdering in Listing 3.
The escrow service is committed to the merchant to transfer
the customer’s payment, once EscrowPurchase is discharged.

Listing 6: Escrow service’s commitment to the merchant.
commitment E s c r o w T r a n s f e r E to M
create payEscrow
detach d i s c h a r g e d ( Esc rowPurchase )
discharge p a y T r a n s f e r [ ,

d i s c h a r g e d ( Esc rowPurchase ) + 5]

EscrowTransfer is operationalized with the protocol in
Listing 7. Focusing on the nested lifecycle event, the idea is
that if EscrowTransfer’s creditor (merchant) infers its detach,
then so should the debtor (escrow). EscrowTransfer’s detach is
EscrowPurchase’s discharge. Hence we ensure that whenever
a message contributes to EscrowPurchase’s discharge it can
be forwarded to EscrowTransfer’s debtor (escrow).
Listing 7: A protocol for aligning the EscrowTransfer commitment
in Listing 6.
1 E s c r o w T r a n s f e r A l {
2 roles C , E , M / / Customer , Escrow , Merchant
3 parameters i n oID key , i n i tem , i n p r i c e ,

i n pID , i n sID , o u t fwdMEQuoteID , o u t
fwdCMPayEscrowID , o u t fwdSEShipID ,
o u t fwdMEShipID

4
5 M 7→ E : fwdMEQuote [ i n oID , i n i tem , i n

p r i c e , o u t fwdMEQuoteID ]
6 C 7→ M: fwdCMPayEscrow [ i n oID , i n pID , o u t

fwdCMPayEscrowID ]
7 S 7→ E : fwdSEShip [ i n oID , i n sID , o u t

fwdSEShipID ] }
8 M 7→ E : fwdMEShip [ i n oID , i n sID , o u t

fwdMEShipID ] }

In Figure 2 at time point 7, the merchant infers EscrowPur-
chase’s discharge and consequently EscrowTransfer’s detach.
Specifically, due to knowing about the messages contributing to
EscrowPurchase’s discharge: quote (by sending it), payEscrow
(via the forwarding message fwdCMPayEscrow), and ship (via
the forwarding message fwdSMShip). Yet the debtor (escrow)
neither infers EscrowPurchase’s discharge nor consequently
EscrowTransfer’s detach. Hence, the creditor (merchant)
expects the debtor (escrow) to discharge EscrowTransfer,
which the debtor is unaware of (misalignment).

Forwarding message schemas to the escrow support
rectifying the misalignment. EscrowPurchase’s discharge
is due to: quote, which can be forwarded to the escrow;
payEscrow, which the escrow receives (hence no forwarding
is required) and ship, which can be forwarded to the escrow. In
Figure 1 at time point 8, after sending the forwarding messages,
escrow knows about EscrowPurchase’s discharge and thus
EscrowTransfer’s detach (alignment).
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Figure 2: Protocol enactment for Merchant, Shipper, Escrow, and
Customer roles where each message shares key values.

3.4 Compositionality

Commitment alignment protocols can be synthesized inde-
pendently and then composed. In Listing 8, our preceding
commitment alignment protocols are subprotocols of an overall
operationalization protocol. If two commitment alignment
protocols bind the same poutq parameter, it is due to the same
message being sent and hence the binding is the same. For
example fwdCMPayEscrowID is bound by EscrowPurchaseAl
when a forward message fwdCMPayEscrow is sent if and
only if fwdCMPayEscrowID is bound with the same value by
EscrowTransferAl when the same fwdCMPayEscrow message
is sent. Hence, independently constructed alignment protocols
are composed together without contradictory parameter
bindings during enactment.
Listing 8: An operationalization protocol composed from an input
protocol and synthesized alignment protocols.
1 O p e r a t i o n a l i z a t i o n P r o t o c o l {
2 roles M, C , E , S
3 parameters o u t oID key , o u t i tem , o u t p r i c e ,

o u t pID , o u t sID , o u t rID , o u t tID ,
o u t fwdMEQuoteID , o u t fwdCMPayEscrowI ,
o u t fwdSEShipID , o u t fwdMEShipID

4
5 EscrowOrder ing (M,

C , E , S , o u t oID , o u t i tem , o u t p r i c e ,
o u t pID , o u t sID , o u t rID , o u t t ID )

6 EscrowPurchaseAl ( E , M, C , S ,
i n oID , i n pID , o u t fwdCMPayEscrowID )

7 E s c r o w T r a n s f e r A l (C , E , M, S , i n oID ,
i n i tem , i n p r i c e , i n pID , i n sID , o u t
fwdMEQuoteID , o u t fwdCMPayEscrowID ,
o u t fwdSEShipID , o u t fwdMEShipID ) }

3.5 Summary

Tosca synthesizes the alignment protocol for a commitment and
an input protocol. The alignment protocol comprises forward-
ing message schemas, supporting participants in aligning the
commitment via messaging. Multiple commitment alignment
protocols are composed together, without parameter interfer-
ence, into an operationalization protocol for triggering com-
mitment lifecycles and supporting alignment via messaging.



Table 1: Cupid’s grammar. Expr is create, detach, and discharge
conditions.

Event −→ Base | LifeEvent
LifeEvent−→ created(R,R, Expr, Expr, Expr) |

detached(R,R, Expr, Expr, Expr) |
discharged(R,R, Expr, Expr, Expr) |
expired(R,R, Expr, Expr, Expr) |
violated(R,R, Expr, Expr, Expr)

Expr −→ Event[Time, Time] | ExpruExpr|ExprtExpr|
Expr	 Expr

Time −→ Event + T | T
ComSpec −→ c(R,R, Expr, Expr, Expr)

4 Synthesizing Protocols
4.1 Protocols
We adopt BSPL’s formal syntax from [Singh, 2012]. We use
the following lists treated as sets: public roles~x, private roles~y,
public parameters ~p, pkeyq parameters~k⊆~p, pinq parameters
~pI ⊆ ~p, poutq parameters ~pO ⊆ ~p, private parameters ~q, and
parameter bindings ~v and ~w. The set of all parameters is
~p=~pI∪~pO. The pinq and poutq parameters are mutually dis-
joint: ~pI∩~pO = /0. A protocol’s references (i.e., subprotocols,
including message schemas) are denoted by the set F .

Definition 1. A protocol is a tuple P = 〈n,~x,~y, ~p,~k,~q,F〉
where n is a name. ~x,~y,~p,~q are as above, F is a finite set of f
subprotocol references F = {F1,...,Ff }, such that P includes
each referenced sub protocol Fi’s roles, and key and non key
parameters (∀i : 1≤ i≤ f⇒Fi = 〈ni,~xi,~pi,~ki〉) where~xi⊆~x∪~y,
~pi⊆~p∪~q,~ki =~pi∩~k). An atomic protocol with two roles and
no references is a message schema denoted as ds 7→r :m~p(~k)e.

Later, protocol enactment is defined over a Universe of
Discourse (UoD) comprising roles and message schemas (for
convenience we modify the original BSPL definition from a
UoD comprising message references).
Definition 2. [Singh, 2012, Def. 12] The UoD of protocol P,
UoD(P)=〈R,M〉 consists of P’s roles and message schemas
including the message schemas of its referenced protocols
recursively.

4.2 Commitments
A commitment specification is a finite string according to
the corresponding representation in Table 1 over a message
schema name set Base.

A commitment specification, c(x, y,Cre,Det,Dis) from a
debtor x to a creditor y is defined over BSPL protocol message
schema references (Base events) used by an input protocol.
Role names and time instants are setsR and T , respectively.
Operatorsu,t, and	 are respectively conjunction, disjunction,
and exception. In E[l,r], [l,r] is the time interval that E[l,r] oc-
curs within. We omit l and r when they are respectively 0 and ∞.

4.3 Commitment Operationalization
Each commitment we wish to operationalize is rewritten into
a commitment alignment protocol for an input protocol. A
forwarding message schema has a unique name and poutq
parameter, to avoid conflicts with other message schemas.

Let N be the set of unique message forwarding schema
names disjoint from the message schema name set Base.
Unique forwarding message schema names are obtained
taking as input a message schema name from Base and a
role, and then outputting a forwarding message schema name,
using an assumed injective function V : Base × R → N .
For example, fwdSEShip = V (ship,E) is a unique name for
forwarding ship from the shipper (S) to the escrow (E). The
inverse injective function V−1 determines which message
is being forwarded. An assumed injective parameter name
function VID :N → ID from forwarding message names to
identifier parameter names (ID) produces a uniquely named
poutq parameter for each forwarding message schema (e.g.,
fwdSEShipID=VID(fwdSEShip)).

A forwarding message schema is included in a commitment
operationalization protocol when necessary to support
commitment alignment. For example, if E is the commitment’s
create condition, b the debtor and a the creditor. Then, the
event formula E must be aligned between roles a and b such
that if a knows E then b can learn of E via message forwarding.

Each commitment C is decomposed via rewrites into
instructions of the form al(a,E,b) stating a requirement for
E to be aligned from a to b. If the formula E is non atomic,
then it is further decomposed to eventually atomic alignment
instructions, al(a, m, b) on messages m. Atomic message
alignment instructions are rewritten into the necessary message
forwarding schema in the alignment protocol that we are
constructing. We present the base case rewrites for alignment
instructions operating on message schemas, then non atomic
event formulae and finally commitments.

The presented rewrite rules are for an input protocol
P= 〈n,~x,~y,~p,~k,~q,F〉 and its Universe of Discourse 〈R,M〉=
UoD(P), a commitment C and the commitment alignment
protocol PC=〈nC,~xC,~yC,~pC,~kC,~qC,FC〉 being constructed.

Rule R1 handles aligning an atomic message. It is con-
ditional on: (1) An atomic message alignment instruction
al(a,m,b). (2) The commitment alignment protocol PC being
constructed. (3) A message schema in the input protocol P
where a role s that is distinct from b instantiates the message
m via emission to a role r distinct from b.

The rewrite result is: (4) A new message schema labeled
mforw acting to forward message schema m’s instances, from
the role s to the role b. (5) The commitment alignment protocol
referencing mforw. (6) The commitment alignment protocol
including the forwarding message schema’s pkeyq parameters,
(7) pinq and poutq parameters, and roles.

al(a,m,b), (1)
PC=〈nC,~xC,~yC,~pC,~kC,~qC,FC〉, (2)
ds 7→r :m~p(~k)e∈M, s 6=b,r 6=b (3)

ds 7→b :mforw~pforw(~kforw)e (4)
FC =FC∪{mforw}, (5)

~kC =~kC∪~k, (6)
pC

I = pC
I ∪pforw

I , pC
O= pC

O∪pforw
O ,~xC =~x∪~xC (7)

(R1)

Where:

• The uniquely named forwarding message schema



forwards m to b: mforw=V (m,b).

• The forwarding message schema’s parameters comprise:
keys corresponding to m’s (kforw = k); a unique poutq
parameter to ensure that protocol enactment requires
forwarding (pforw

O ={VID(mforw)}); and pinq parameters
matching m’s parameters (pforw

I = p), meaning that m
must be instantiated prior to it being forwarded.

Instructions to align messages from a to b occurring within
a time window are reduced to atomic message alignment
instructions. The message that occurs as well as any start
or deadline messages are necessarily also aligned from a to
b according to the rewrite Rule R4 (omitting cases for time
windows without either a start time, a deadline, or both).

al(a,m[s±J,d±K],b)
al(a,m,b) al(a,s,b) al(a,d,b)

(R4)

To give an example, the EscrowPurchase commitment
from the merchant to the customer in Listing 4 is detached
when the customer pays the escrow within ten time points
of a price quote. Hence we have an alignment instruction
al(C, payEscrow[, quote + 10], M) to ensure that when the
creditor (customer) knows the detachment so does the
debtor (merchant). The alignment instruction is reduced to
al(C,payEscrow,M) and al(C,quote,M).

In the input protocol in Listing 3 quote is from the merchant
to the customer, guaranteeing alignment, and so al(C,quote,M)
is not rewritten. However, payEscrow is not received or sent
by the merchant and hence must be forwarded by the customer.
The instruction al(C,payEscrow,M) is rewritten to a message
schema as in Listing 9.
Listing 9: A partial alignment protocol for the EscrowPurchase
commitment in Listing 4
1 EscrowPurchaseAl {
2 roles C , M
3parameters i n oID key , i n pID , o u t

fwdCMPayEscrowID
4C 7→ M: fwdCMPayEscrow [ i n oID , i n pID , o u t

fwdCMPayEscrowID ] }

Both sides of a conjunct are aligned according to Rule R5.
Likewise both sides of a disjunct are aligned via Rule R6, since
we do not know which runtime messages will occur a priori.

Exceptions are handled by Rule R7. In order to guarantee
that when a role a knows L	R then so does b, we must ensure
that if a knows L then so can b via messaging. Yet, if b knows
R then it will never know L	R to be true, even if a knows L,
believes L	R is true and so forwards L to b. Thus we align
L from a to b and R from b to a.

al(a,LuR,b)
al(a,L,b) al(a,R,b)

(R5)
al(a,LtR,b)

al(a,L,b) al(a,R,b)
(R6)

al(a,L	R,b)
al(a,L,b) al(b,R,a)

(R7)

For example, a shipment commitment from the ship-
per to the merchant is discharged if: the item is shipped
within five time points of the shipment being requested,
except if the shipment is reported as damaged within

five time points of being received. Thus we have an
alignment instruction from the shipper to the merchant:
al(S, ship[, requestShip + 5] 	 reportDamage[, ship + 5],M).
Alignment holds when: if the shipper knows
ship[, requestShip + 5] then so does the merchant and if the
merchant knows the exception reportDamage[,ship+5] then so
does the shipper. Hence the alignment instruction is rewritten
to al(S,ship[requestShip+5],M) and al(M,reportDamage,S).

Nested commitment lifecycle events occur when the
corresponding lifecycle event for the referenced commitment
c(x,y,Cre,Det,Dis) occurs. Hence, we rewrite nested lifecycle
events to the conditions under which they occur according to
Cupid’s semantics with Rules R8 to R12.

al(a,created(x,y,Cre,Det,Dis),b)
al(a,Cre,b)

(R8)

al(a,detached(x,y,Cre,Det,Dis),b)
al(a,CreuDet,b)

(R9)

al(a,discharged(x,y,Cre,Det,Dis),b)
al(a,(CreuDis)t(DetuDis),b)

(R10)

al(a,expired(x,y,Cre,Det,Dis),b)
al(a,Cre	Det,b)

(R11)

al(a,violated(x,y,Cre,Det,Dis),b)
al(a,(CreuDet)	Disch,b)

(R12)

The final rewrite is for commitments. A commitment is
aligned when: if the creditor knows it is created, detached, or
violated, then the debtor respectively knows it is created, de-
tached, or violated; and if the debtor knows it is discharged or
expired, then the creditor knows it is respectively discharged or
expired. Owing to this asymmetry, we rewrite a commitment
with Rule R13 to alignment instructions for each lifecycle event.

c(x,y,Cre,Det,Dis)
al(c,created(x,y,Cre,Det,Dis),d)

al(c,detached(x,y,Cre,Det,Dis),d)
al(c,violated(x,y,Cre,Det,Dis),d)

al(d,discharged(x,y,Cre,Det,Dis),c)
al(d,expired(x,y,Cre,Det,Dis),c)

(R13)

We now define a commitment alignment protocol.
Definition 3. A protocol PC is a commitment alignment
protocol for a commitment C and an input protocol P iff all
possible applications of R1 to R13 are made to C, an empty
version of PC and P’s UoD 〈R,M〉=UoD(P).

Each rule is a monotonic reduction on finite formulae. Hence:
Lemma 1. There exists a commitment operationalization
protocol PC for each commitment C and input protocol P.

An operationalization protocol is composed from the input
protocol and commitment alignment protocols (omitting empty
and redundant subprotocols).

Definition 4. Let P=〈n,~x,~y,~p,~k,~q,F〉 be an input protocol and
C be a set of commitments defined over the message schema
names and roles in P’s Universe of Discourse 〈R,M〉 =



UoD(P). Let each commitment C ∈ C have an alignment
protocol PC = 〈nC,~xC,~yC,~pC,~kC,~qC,FC〉 for P that includes at
least two roles (|~xc|≥2). PC=〈nC,~xC,~yC,~pC,~kC,~qC,FC〉 is an
operationalization protocol for C and P iff:

PC references the input protocol and all commitment
operationalization protocols: FC={n}∪

⋃
C∈C{nC}.

PC’s roles and key parameters match the input protocol’s:
~xC=~x and~kC=~k.

P’s poutq parameters comprise the input protocol’s and
each commitment alignment protocol’s poutq parameters:
~pCO={~pO}∪

⋃
C∈C{~pC

O}.

4.4 Semantics
In BSPL, each message instance m[s,r,~p,~v] denotes a sending
role s, a recipient r, a parameter vector ~p with a corresponding
parameter binding value vector ~v. A role’s history denotes
its sent and received messages in sequence. A history vector
comprises each role’s history where every received message
must have been sent.

Definition 5. [Singh, 2012, Def. 5] A history of a role ρ , Hρ ,
is given by a sequence of zero or more message instances
m1 ◦m2 ◦ .... Each mi is of the form m[s,r,~p,~v] where ρ = s or
ρ =r, and ◦means sequencing.

Definition 6. [Singh, 2012, Def. 7] We define a history vector
for a UoDR,M, as [H1,...,H |R|], such that ∀s,r :1≤s,r≤|R|
: Hs is a history s.t. ∀m[s, r, ~p,~v] ∈ Hr : m ∈ M and
m[s,r,~p,~v]∈Hs.

A history vector is viable if and only if sent and received mes-
sages bind values to parameters specified in each corresponding
message schema, respecting values already determined by
keys via known messages (for brevity, we omit Singh’s [2012,
Def. 8] definition). The set of all viable history vectors for
a UoD (e.g., a protocol’s roles and message schemas) is its
Universe of Enactments.

Definition 7. Given a UoD 〈R,M〉, the Universe of Enact-
ments (UoE) for that UoD,UR,M, is the set of viable history vec-
tors [2012, Definition 8], each of which has exactly |R| dimen-
sions and each of whose messages instantiates a schema inM.

In Cupid [Chopra and Singh, 2015a], an agent’s model
maps from event schemas to event instances, representing the
agent’s local view of event occurrences. Here, we are dealing
with messages and hence a model is simply a role’s history
albeit substituting each forwarding message with the message
it forwards and timestamping each message with the time it
became known (via emission, reception, or notification).

Definition 8. Let P be an input protocol and let Base be the mes-
sage schema names for the message schemas in P’s UoD. Let
PC be an operationalization protocol for P. A model for a role
a’s history H and PC is a history M, where each message is in the
model mM

i [sM
i ,rM

i ,~pM,~vM]∈M iff there is a corresponding origi-
nal message mH

i [s
H
i ,r

H
i ,~p

H ,~vH ]∈H meeting (a) or (b), and (c):

(a) The corresponding original message in H is a non forward-
ing message mH

i ∈Base and the names match: mM
i =mH

i .

(b) The corresponding original message mH
i in H is a

forwarding message and the message mM
i in the model

takes the name of the message being forwarded:
mM

i =V−1(mH
i ,r

H
i ).

(c) The message mM
i contains all of the original message

mH
i in H’s non forwarding ID parameters and parameter

bindings with an additional timestamp parameter and
parameter binding: if ∃~pH

j ∈ ~pH = VID−1(mH
i ) then

~pM
i = (~pH

i \~pH
j ) ∪ {time} and ~vM

i = (~vH
i \~vH

j ) ∪ {t},
otherwise ~pM

i =~pH
j ∪{time} and~vM

i =~vH
j ∪{t}, where t

is a timestamp.

We adopt Cupid’s commitment semantics. For brevity, we
only define the set of instances for event formula E (e.g., a
lifecycle event) entailed by a model M: JEKM . If E is a non
atomic event formula or a lifecycle event, then the result is
a database operation on the messages that cause E to occur.
For example, the set of all ship instances is denoted as JshipK.
Moreover, the set of tuples modeled by the formulae for
shipment occurring within ten time points, ship[0, 10], is
returned by selecting all shipment events that occur between
zero and ten time points (Jship[0,10]K= σ0≤t<10(JshipK)). A
database operation is inductively defined in Cupid for queries
corresponding to each event formula type.

Definition 9. Let M be a model and E an event formula. JEKM
is the set of E’s instances (a set of tuples combining stored
events) returned from the query for E on M according to
[Chopra and Singh, 2015a, D1−D20].

5 Properties
An operationalization protocol retains an input protocol’s
message ordering.

Lemma 2. Let P be an input protocol, and PC be a commit-
ment operationalization protocol. A history vector HC is in
UoD(PC)’s UoE iff H is in UoD(P)’s UoE where for each his-
tory H iC in HC the messages instantiating schemas inM are
included in the same order of the corresponding history H i in H.

Proof sketch. For ⇒ we include messages from the op-
erationalization protocol’s history to the input protocol’s
corresponding history, if they instantiate a schema in the input
protocol. We can always include received messages ([2012,
Def. 6]), emitted messages can be included since they do not
violate bindings and pinq parameters are necessarily known by
binding parameters in the input protocol’s message schemas.
For⇐we construct histories in the operationalization protocol,
following the same pattern.

Singh [2012] formalizes liveness and safety for BSPL, and
gives verification techniques. A protocol is safe iff each history
vector in the UoE preserves uniqueness for each binding. A
protocol is live iff any enactment can progress to completion
such that all parameters are bound.

Theorem 1. Let PC be a commitment operationalization
protocol for an input protocol P. P is safe iff PC is safe. P is
live iff PC is live.



Proof sketch. Safety: Applying Lemma 2 if PC is unsafe and P
is safe then poutq parameters in PC are not in P. By Rule R1 (7)
PC is not an operationalization protocol. If P is unsafe then
PC is unsafe (Lemma 2). Liveness: As for safety, relying on
PC not introducing parameters used by P.

C&S define alignment for active commitments. Definition 10
generalizes it to all states in Cupid’s commitment lifecycle.
Specifically, if a creditor infers created, detached or violated of
a commitment (thereby strengthening the expectation) from its
history, then the debtor must as well (i.e., know what is expected
of them). Conversely, if a debtor infers discharge or expired
(hence weakening the expectation), the creditor must as well.
Definition 10. Let Mx and My be models. The history vector
H is aligned with respect to c(x,y,C,D,U) iff:

i∈Jcreated(x,y,C,D,U)KMy⇒i∈Jcreated(x,y,C,D,U)KMx

i∈Jdetached(x,y,C,D,U)KMy⇒i∈Jdetached(x,y,C,D,U)KMx

i∈Jviolated(x,y,C,D,U)KMy⇒i∈Jviolated(x,y,C,D,U)KMx

i∈Jdischarged(x,y,C,D,U))KMx⇒i∈Jdischarged(x,y,C,D,U)KMy

i∈Jexpired(x,y,C,D,U)KMx⇒i∈Jexpired(x,y,C,D,U)KMy

The idea that messages should happen in some time interval
relies on a global clock. However, there is the potential for
misalignment due to message delays and local clock skews,
rather than which messages are emitted and received. Such
problems are avoided by making the time intervals an order of
magnitude larger than the maximum clock skew and message
delays [Cranefield, 2005].

We assume that for a commitment c(x,y,Cre,Det,Dis) being
operationalized with respect to a history vector H if when x
or y knows a message m and the counter-party receives m they
will do so at a time to make the same inferences over Cre, Det,
and Dis. Under this assumption, an operationalization protocol
is sufficient to support alignment.

Theorem 2 states that a commitment operationalization proto-
col always makes it possible to rectify alignment via messaging.
Theorem 2. Let PC be a protocol that operationalizes a set of
commitments C such that c(x,y,Cre,Det,Dis)∈C. If history
vector H∈UR,M is in PC’s UoE then there exists a longer H ′′

in PC’s UoE that is aligned with respect to c(x,y,Cre,Det,Dis).

Proof sketch. If H is misaligned. Definition 10 and Cupid’s
semantics for lifecycle events [Chopra and Singh, 2015a, D15
to D19] imply role s’s model entails E. Base case: E=m. By R1
extend H to a history vector H ′′ in PC’s UoE (Definition 7) by in-
serting a notification mi from m’s sender to r in their respective
histories. Inductive hypothesis: assume there exists a history
H ′ in PC’s UoE extending H s.t. if E=FuG or E=FtG then
r knows F and G, or for E=F	G r knows F and s knows G. In-
ductive step: Extend H ′ to H ′′with an mi via rules R1 to R12. By
the time assumption and Cupid’s semantic definitions [Chopra
and Singh, 2015a, Def. 16 to Def. 19] s and r are aligned.

6 Conclusions
Tosca addresses challenges of decentralized commitment
enactment. Given a set of commitments defined over a protocol,
it enables automatically synthesizing a new protocol that sup-
ports alignment, a form of commitment-level interoperability.

Furthermore, the synthesized protocol preserves liveness and
safety, both of which are also necessary for interoperation.
The new protocol may be thought of as a fleshing out of the
input protocol. Tosca brings together several advances—in
the specification of protocols, commitments, and ideas about
interoperability—toward supporting decentralization.

Tosca establishes a separation of concerns between commit-
ments and protocols. Protocols are specified in BSPL whereas
commitments are specified in Cupid—languages developed
independently of each other. Notably, in Cupid, commitments
are defined over a database schema, not a protocol. We use the
fact that BSPL specifications are interpreted over databases
in layering Cupid specifications over BSPL specifications.

Decentralization is a theme of growing interest, (e.g., for
norm compliance [Baldoni et al., 2015] and monitoring
[Bulling et al., 2013]). Tosca’s architecture is distinct from
shared memory (environment) approaches (e.g., [Omicini et
al., 2008]). Such approaches would benefit from Tosca in that
they would also need a clear specification of interactions, both
in terms of meanings and protocols, even if alignment itself
would be trivial because of shared memory.

Other works treat commitments [Chesani et al., 2013] and
protocols [Yadav et al., 2015] separately without studying
their relationship. Günay et al. [Günay et al., 2015] generate
commitment specifications from requirements. We understand
commitment specifications as requirements and synthesize
operational protocol specifications.

Analogously Searle [1995, pp. 26–27] demarcates between
constitutive rules, which make social actions possible by as-
cribing institutional (social) facts, and norms, which prescribe
institutional facts. This separation is adopted for commitment
protocols overlaying constitutive rules [Baldoni et al., 2013].
Moreover, norms are both defined over institutional facts and
interpreted at different levels of abstraction using constitutive
rules within agents [Criado et al., 2013] and legal institutions
[King, 2016; King et al., 2017]. We separate richer concerns:
commitments, focusing on relational information, overlaying
operational protocols, focusing on information causality.

Future directions should address limitations and further ap-
plications. Tosca maintains agent autonomy, making alignment
possible but not regimented and hence limited by the extent to
which autonomous agents communicate message notifications.
We demonstrated Tosca on a business domain but it could
just as well be applied to requirements in other domains that
involve interaction. In particular, healthcare and government
(e.g., national) contracts, studied in connection with Cupid are
prime candidates for Tosca. Since Tosca provides support for
messaging requirements via protocols, the extent to which it
can be applied to agent development should be investigated
(e.g., using communication abstractions supported in agent
programming frameworks such as [Boissier et al., 2013]).
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