To appear in:
International Mathematics Research Notices

QUANTUM STOCHASTIC
LIE-TROTTER PRODUCT FORMULA II

J. MARTIN LINDSAY

ABSTRACT. A natural counterpart to the Lie-Trotter product formula for norm-contin-
uous one-parameter semigroups is proved, for the class of quasicontractive quantum
stochastic operator cocycles whose expectation semigroup is norm continuous. Com-
pared to previous such results, the assumption of a strong form of independence of
the constituent cocycles is overcome. The analysis is facilitated by the development of
some quantum It6 algebra. It is also shown how the maximal Gaussian component of
a quantum stochastic generator may be extracted — leading to a canonical decomposi-
tion of such generators, and the connection to perturbation theory is described. Finally,
the quantum It6 algebra is extended to quadratic form generators, and a conjecture is
formulated for the extension of the product formula to holomorphic quantum stochastic

cocycles.
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INTRODUCTION

The Lie product formula in a unital Banach algebra states that
(e¥/meb ™M 5 @ s — oo,

Trotter extended this to Cpy-semigroups on a Banach space where it holds under com-
patibility assumptions on the generators, convergence being in the strong operator sense
([Tro], see e.g. [Dav]). It has been further refined, notably by Chernoff ([Che]) and Kato
([Kat]). These product formulae are widely used in mathematical physics and probability
theory — for example in establishing positivity preservation of semigroups, and they have
an intimate connection to Feynman—Kac formulae (see e.g. [ReS]). Given that quantum
stochastic cocycles may be analysed from their associated semigroups ([LW3]), it is nat-
ural to seek product formulae in this context. Further motivation comes from the fact that
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such cocycles are quantum counterparts to stochastic semigroups in the sense of Skoro-
hod ([Skol). Product formulae have been obtained in a variety of quantum stochastic
settings ([PaS], [LS; 3], [DLT], [DGS]). The earliest of these dates from before the advent
of quantum stochastic calculus ([HuP]). In all of these works the constituent cocycles
enjoy a strong independence property, namely their respective noise dimension spaces are
mutually orthogonal.

In this paper a Lie-Trotter product formula is established for quasicontractive element-
ary (i.e. Markov-regular) quantum stochastic operator cocycles, with no independence
assumption on the driving quantum noise. It is a direct generalisation of the product for-
mula proved in [LS;], and is proved by quite different means. Properties of the composition
law on the set of quantum stochastic generators that is realised by the stochastic product
formula established here are also elucidated. Known in the setting of quantum control
theory as the series product ([God]), it is more commonly associated with the perturbation
of quantum stochastic cocycles ([EvH]|). The composition of stochastic generators also
corresponds to the operator product (i.e. standard composition) of the generators of the
quantum random walks whose scaled embeddings approximate the constituent cocycles
(IBGL]). Analysis of this composition leads to left and right series decompositions of a
quantum stochastic generator. A decomposition for such generators in terms of the so-
called concatenation product is also given; this yields the generator’s maximal Gaussian
part.

It is conjectured here that, as in the case of orthogonal noises (|LS3]), the more gen-
eral Lie—Trotter product formula given in this paper has an extension to the class of
holomorphic quantum stochastic cocycles (|[LS2]). By contrast, without orthogonality of
noise dimension spaces there seems to be no sensible formulation of a Lie—Trotter product
formula for quantum stochastic mapping cocycles.

The plan of the paper is as follows. In Section [I]some quantum It6 algebra is developed,
for studying the series product on the class of stochastic generators considered here. In
Section [2] the relevant quantum stochastic analysis is recalled. The quantum stochastic
Lie-Trotter product formula is proved in Section 3| In Section [4] the maximal Gaussian
component of a quantum stochastic generator is extracted by means of the concatenation
product. In the short Section [5] the connection to perturbation theory is described, and
in Section [] the quantum It6 algebra is extended to quadratic form generators and a
conjecture for quasicontractive holomorphic quantum stochastic cocycles is formulated.

Notation. For a vector-valued function f : Ry — V and subinterval J of Ry, f;
denotes the function Ry — V which agrees with f on J and vanishes elsewhere. For
Hilbert spaces h and h’; B(h;h’") denotes the space of bounded operators from h to h’” and
B(h;h"); denotes its closed unit ball, abbreviated to B(h) and B(h); respectively when
h’ = h. For an operator T' € B(h), its real and imaginary parts are denoted ReT and
Im T respectively, thus T is dissipative if and only if ReT" < 0. The selfadjoint part of
a subset A of an involutive space is denoted Ag,. The predual of B(h), that is the space
of ultraweakly continuous linear functionals on B(h), is denoted B(h),.. Algebraic and
ultraweak tensor products are denoted by ® and ® respectively and, for vectors (,n € h,
wey € B(h), denotes the functional given by T +— ((,T7). The symbol CC is used to
denote finite subset.

1. QUANTUM ITO ALGEBRA

For this section take Hilbert spaces h and H. The block matrix decomposition enjoyed
by operators in B(h@H) is frequently appealed to below. With respect to the distinguished
orthogonal projection

Oh  On:h
A = P{Oh}EBH = [Oh-H IH :| S B(h D H),
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the composition law on B(h & H) given by
Fi < Fy:=F + FIAF + Fy,
with useful alternative asymmetric expressions
Fl(I + AFQ) + Fy and Fj + (I + FlA)FQ,

has both

Fi + 4+ F3+ (FlAFQ + NAF3 + F2AF3) + F1AF,AF;3, (lla)
and

F1<1F3+(I+F1A)F2 (AFg—i—I), (1.1b)

as common expression for Fy < (Fy < F3) and (F; < F») < F3. Moreover the composition
<1 has Opgn as identity element, and the operator adjoint as involution since

(F1 < Fy)* = Fy < FY.

The notation < is taken from the quantum control theory literature, where the composi-
tion is called the series product.

Let b(h@H) := (B(h®H), <) denote the resulting *-monoid (i.e. involutive semigroup-
with-identity), let 5 € R, and consider the following subsets of b(h & H):

3h@H)={Kaoy:KecBh)}=AbhdH) A,
ctheH)={FebhaoH): F*<aF <0},
qeg(h @ H) == c(h @ H) + BAL,
qq @H):c(h@H)+R,+AL
®H):={FebhaH): F*<F =0},
h@H )* = {F*: Fei(haH)},
uth@H):=itheH)ni(heH)",

and for F' € qc(h @ H) set
Bo(F) :=inf{BeR: F— At cc(h@H)}

These classes are relevant to the characterisation of the stochastic generators of quantum
stochastic cocycles which are respectively contractive, quasicontractive (with exponential
growth bound Sy (F')), isometric, coisometric and unitary (see Theorem [2.1] below). Note
that, for F' € qc(h @ H),

F € qeg(h © H) if and only if 8 > Bo(F).

Remarks. Further classes are relevant to the characterisation of quantum stochastic cocy-
cles which are nonnegative, selfadjoint, partially isometric or projection-valued ([Wil]).
The characterisation of the generators of ‘pure-noise’ (or ‘local’) nonnegative contraction
cocycles (for which h = C) plays an important role in the identification of the minimal
dilation of a quantum dynamical semigroup ([Bha]).

Let Fy, F» and F in b(h@® H) have respective block matrix forms [[L(ll Qj‘l{ll}, [[L(QQ QJ‘Q/[EI}
and [L O— I] Then
Ky + Ko+ MLy M1Qo + M>
Ly + Q1L Q1Q2 — 1
K'+K+L*L L*Q+M
M*+Q*L Q*Q — I]

F1<]F2:|: :|,a11d

F*<1F:{
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moreover, for Z € 3(h@ H), S € Rand X € b(h& H),
(F+Z2)y'<(F+2)=2"+ F*<F +Z
(F — BALY* < (F — BA*) = F* 9 F — 28A*, and
FraXaQF=F"'aQF+(I+AF)"X(I +AF).
These identities imply the following relations:

=< F+G"+G ifGejhaH),
(GAF)*<a(GaQF){ <F*aQF+28A+  if G €qeg(h@H),
=F*<F if G €i(ha H).

The basic algebraic properties of these subsets of b(h @ H) are collected in the following
proposition; using the above observations, their proof is straightforward. Recall that an
operator T' € B(h) is dissipative if it satisfies ReT < 0, that is

Re(u, Tu) <0 (u € h).
Proposition 1.1. In the *-monoid b(h @ H) the following hold.

(a) Its group of invertible elements is given by

bhoH)*={[i5] —AcbhadH):QeBH)"*

Y

the identity element being 0 = [8 (}] — A, and the inverse of [IL{ %I] — A being
MQ'L-K —-MQ! | =M 0
“o-L o1 - A= I Q [—L I] — IiE

(b) Its centre is 3(h & H).
(c) Denoting the class of dissipative operators on h by D(h),

qge(h@ H) =c(h@H) +3(he H), and
ccheH)N3haeH)={T"®04: T e D(h)}.
(d) qe(h@H), ¢(hadH), i(h@H) and u(h@H) are submonoids; their groups of invertible

elements are given by
ithaH)* =chaH)* =uth®H), and
geth® H)* =u(h@ H) +3(h @ H).

Sk

Moreover,
ithoH) NztheH)=uhaoH)Nzth®H) =i3(h®H)sa.

Remark. Clearly u(h @ H) is also closed under taking adjoints, and so is a sub*-monoid
of b(h & H).

In fact qe(h @ H) and c¢(h @ H) are sub-*-monoids too; this is not immediately obvious.
It follows from Part (e) of Theorem below, but there are now also direct proofs. The
one given below is based on an elegant argument of Wills, arising as a biproduct of his
analysis of partially isometric quantum stochastic cocycles (JWil]).

Proposition 1.2. Let F € b(h@® H) and T € 3(h @ H)sa. Then
(AF+ )" (F<F ) AF+1)=F"aF+ (FFaF)A(F*<QF), (1.3)

and
F*aQF <Tifand only if F < F* < T.
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Proof. By the associativity of <, setting F} = F*, Fp» = F < F* and F3 = F in the
expression ((1.1b)) for F} <1 F» <1 F3 we see that

F*<9F+LHS(13) =F*<a(FQF*)QF
=(F"<F)<(F*<F)=RHS(L.3) + F* < F,

so identity ((1.3) holds. Suppose now that F' <t F* < T. Then, since AT = 0 = TA,
LHS(1.3) < T and so, since A > 0 and F* < F is selfadjoint,

FraF=(13)— (Fr<F)A(F*<F) < (L.3) <T.
The converse implication follows by exchanging F' and F™*. O

Consider the following possible block matrix forms for F' € b(h & H):

I i Llr* 2 _TxCY _ _ (x(\1/2

BI +iH i(L L+ A?%) Lc ACJ?EII C*C) ] . and (1.40)
[ BI+iH — 3(MM* + B?) M (1.4D)
—CM* — (I -CCH'?2E*B  C—1I|’ '

in which 8 € R, H € B(h)sa, A,B € B(h);, C € B(H); and D,E € B(H;h);, so that
H=ImK.

Theorem 1.3 (Cf. [LW,], [GLt]). Let 5 € R and F € b(h® H).

(a) The following are equivalent:
(i) F € qcg(h @ H).
ii) F has block matriz form (1.4al).
(iii) F has block matriz form ﬁ%
(iv) F* € qcg(h @ H).
(b) F € ith @ H) if and only if F has block matriz form (1.4a), with 8 =0, A =0
and C isometric.
(c) F €i(h @ H)* if and only if F has block matriz form (L.4Db]), with 8 =0, B =0
and C' coisometric.

(d) Let Hy @ Hy be an orthogonal decomposition of H. Then, with respect to the
inclusion J; :h@®H; > hdH,

(e) SetH':=H®(H®h). Then, in terms of the inclusion J : h&H — (hdH)®(Hodh) =
haoH,
cchaoH) = JuhoH)J

Remark. In block matrix form

lelh@[ Iy ] € BlhaHi;h@H), and J:Ih@[ I ] e BlhaH;haH).
OHy;Hy OH;Heh

Proof. The proof exploits the fact that, for an operator T' € B(h @ H), T > 0 if and only
if T has block matrix form |:Z1/2‘§‘X1/2 X1/2gzl/2} where (X,Z,V) € B(h)y x B(H)4+ x
B(H; h)1.

(a) Set G = F — BA*. Suppose first that (ii) holds. Then G is given by (1.4a) with
B =0 and, setting S := (I — C*C)/2,

A2 ADS
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so G € c¢(h@H). Thus (ii) implies (i). Conversely, suppose that (i) holds and let [ 5 M ]
be the block matrix decomposition of G. Then G € ¢(h @ H) so
K'+K+L'L M+ L*C
M*+ C*L c*C -1
Thus (K*+ K + L*L) <0, ||C|| <1 and, for some contraction operator D,
M = —L*C — [—(K* + K + L*L)]'/?>D(I — C*C)'/?

so G is given by with 3 =0 and H = Im K. Thus (i) implies (ii).

Therefore (i) and (ii) are equivalent; taking adjoints we see that (iv) and (iii) are
equivalent too. The equivalence of (i) and (iv) follows from Proposition

(b) This is an immediate consequence of (L.2).

(c) This follows from Part (b), by taking adjoints.

(d) For Iy € qeg(h @ Hy),

=G"<1G<0.

Fy =J{FJ;, where F = [Fol 8] € qeg(h @ H),

so RHS € LHS in . For the reverse inclusion, setting Aj := 0,® Iy, and A := 0P In,
A— AT =0, I, & In, —O0n & Iy, B O0p, = 0h & O0n, & Iy, = 0.
Thus, for F' € ¢(h @ H), the operator F; := J{FJ; is in ¢(h & H;) since
Fr QB = JF*Jy + JEF I+ JF LAV R < JEH(F* < F)Jp < 0.
Therefore Jic(h@H).J; C c(h@H;) and so, since J;BALJ; = BA; (B € R), LHS c RHS.
(e) In view of (d), it suffices to show that J*u(h @& H')J D c¢(h @ H). Accordingly, let

F € ¢(h® H). Then, by what we have proved already, F' has block matrix form (|1.4al)
with g = 0. Setting

iH — 3(L*L+ A?) —(L*C + ADS) L*T — ADC* —AR

o L C—1 ~T 0
= D*A S cr—1 0o |
RA 0 0 0

where R = (I — DD*)'/2, § = (I — C*C)'/?, and T = (I — CC*)Y/2, it is now easily
verified that F’ € u(h @ H’). Since J*F'J = F, (e) follows and the proof is complete. [J

Remarks. The dilation property (e) is effectively proved in [GL+], under the assumption
that h and H are separable. If H = h ® k for a Hilbert space k (as it is in the application
to QS analysis, where k is the noise dimension space) then, in (e¢), H = h ® k' where
K=kaokaoC.

In terms of its block matrix form [[L{ M I], and bound fy := Bo(F), the equivalent
conditions for F' € b(h @ H) to be in qc(h & H) read respectively as follows:

2Re K — Boly) + L*L M + L*C
M*+C*L C*C — Iy

2(Re K — Boly) + MM* L*+ MC* <0

L+ CM* CC* — Iy '
Proposition 1.4 (Left and right series decomposition). Let F = [ M ] € qe(h @ H)

and set By = Bo(F'). Then, setting
_ [Bolny +ilm K 0 ¢ [-iL*L -L* y [—sMM* M
F1—|: 0 O)FQ_ L 0 7F3_ —M* 0
¢ [ReK +3L*L — oIy M + L*C . [ReK +iMM* -5l 0

FS'_[ 0 c—r1 | o b= Ly CM” C—1|

} < 0, and

)
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the following hold:
and
FI<QF{aQFy=F=F <F; <F},

Proof. 1t follows from Theorem [1.3] and the above block matrix inequalities characterising
membership of qc(h & H), that

F{ FY cu(h@H) and Fi, Fy € c(h@H).
The two series decompositions follow from the identities
0 L*—L*C
0 0

The rest is clear. O

}, FIAF, =0 and FJAF] — [ 0 0]

FIAFf =0, FSAFS = [ M — CM* 0

Remarks. (i) The left and right series decompositions are related via the adjoint operation
as follows:
(F)1 = (F)*, (F*); = (F§)" and (F")5 = (F})".
(i) Let F = [ M,] € ge(h @ H) and set H := Im K. Then F € i(h @ H) if and only

L C—1I
if F' has left series decomposition
; (H 0] 4 _—%L*L —L* 4 0 0
10 0 L 0 0 C—-1IJ’

with C' isometric, whereas F' € i(h @ H)* if and only if F' has right series decomposition
[H 0] [0 0 ] [—;MM* M]
<

“lo o] o -1 —M* 0]

with C coisometric.

Now suppose that H has an orthogonal decomposition H; @ Hs. Define injections

M K M 0
t:b(h@Hy) —bthaH), F:[ ]»—)F@OH =|L N 0}, and
L N 2
0 0 0
B K 0 M
/:b6(h@Hsy) = bh@H), F= = S(F®0n,)=[0 0 0], (1.7)
LN 1 L 0 N

Y. being the sum-flip map B(h ® Hy @& Hy) — B(h @ H), and define the composition
b(h D Hl) X b(h D H2) — b(h D H), (Fl,Fz) — B = L(Fl) + L/(FQ),
known as the concatenation product in quantum control theory ([GoJ]). Thus

Ki+Ky My M,

s el e[ 5" N
1 1 2 2 L2 0 ]V2

Note that
((Fy) = Fy B0n, and /(Fy) = Oy, B Fy.

In view of the identity
L(Fl) A L,(FQ) = OhEBH = L/(FQ) A L(Fl),

for F1 € b(h @ H;) and F» € b(h & Ha), the concatenation product is effectively a special

case of the series product:
FFHEF = L(Fl) < L,(FQ). (18)
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We end this section with a significant representation of the quantum It6 algebra. It is
relevant to the realisation of QS cocycles as time-ordered exponentials ([Hol|), and also
to the convergence of a class of scaled quantum random walks to QS cocycles ([BGLI).
Set S := IhgHah + A, where A is the following subalgebra of B(h @ H @ h):

{TeBh@H®): PonayT =T = TPoyoHaen )

Iy *
thus S consists of the elements of B(h@® H & h) having block matrix form [ 8h .

S o

J. win

respect to (operator composition and) the involution given by

0 0 Iy
Tw— T :=ZTZ, where Z2:= [0 Iy 0],
I, 0 O

S is a sub-*-monoid of B(h@® H @ h), and the following is readily verified.
Proposition 1.5 ([Hol|, [Bel]). The prescription

K M I, M K 0 M K
[L Q—I}H 0 @ L|=IgHen+ |0 Q-1 L
0 0 I 0 0 0

defines an isomorphism of *-monoids ¢ : b(h@® H) — (S, -, ).
2. QUANTUM STOCHASTICS

For the rest of the paper fix Hilbert spaces § and k, and set k:=Caok and K :=
L?(R; k). The quantum Ité algebra developed in the previous section is applied below
with h=0h and H=k® b, so that h® H = k ® . In this context, the operator

0 0 -
A= A= Plocyer = [0 Ik] €5l
is ubiquitous; below it is freely ampliated.
In this section we collect the quantum stochastic (QS) facts needed below. For more
detail, see [L]; for further background, see [Par] and [Mey]. Let F denote the symmetric
Fock space over K. We use normalised exponential vectors

w(g) = e 19" (g) where e(g) == ((n)™29""),, (g € K),
in terms of which the Fock—Weyl operators are the unitary operators on F determined by
the identity

W(Hwlg) =e " wm(f +g)  (f.9€K),
and the second quantisation operators are the contractions from F to F’' determined by
the identity
['(C)e(g) :==¢e(Cyg) (C € B(K;K)1, g € K), (2.1)
where F” is the symmetric Fock space over a Hilbert space K'. Note that I'(C) is isometric
if C is, and I'(C*) = I'(C)*. There is a useful family of slice maps:
Q(glug) = idB(h;h’) gww(g’),w(g) : B(ha h/)®B(]:) - B(ha hl) (glag € K)a

amongst which E := Q(0,0) is referred to as the vacuum expectation. (The Hilbert spaces
h and h’ are determined by context.) Moreover, the slice maps extend to unbounded
operators from h®F to h'®F whose domains include h® £, where € := Lin{w(g) : g € K}.
The following obvious identity is exploited below:
(' 9)(T) = E[(ly © W(g)* T (I © W(g))]. (22)
We also need two families of endomorphisms of (the von Neumann algebra) B(F):
pr:T— RTRy and oy : T — I]:[O’t[ ® S TSy (t € Ry),
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where Ry :=T'(r¢) and S; := I'(s;) for the unitary operators r; and s; defined as follows

e, - {Ji e

st K— K[t,oo[a (Stf)(s) = f(S - t)?

where Ky oo := L?([t,00[;k). The time-reversal maps (p; are obviously involutive:
[t,00]

=0
p? = idp(r), and the time-shift maps (o¢)icr, form a semigroup, known as the CCR flow
of index k. Both are freely ampliated to act on B(h;h")® B(F), for Hilbert spaces h and

h’. For use below, note the identity
Q(gfr’oo[ag[r,oo[) C0r = Q(S:(glhr,oo[)) S:(g“r,oo[)) (gnq, eK,re RJr) (23)

Let X' = (X§+ Ad(HY))
erator Xé € B(hi;h;_1)® I, where i = 1,2. Suppose that all of the processes H', H?, X!
and X? are bounded, that is they consist of bounded operators, and H' and H? are
strongly continuous. Then the quantum Ité product formula ([HuP]) reads

XIXP = XEX3 + Au(H) where H = (H2(Fy © X2) + (5 @ X1 H? + HIAH?)

for a QS integrand (h;, h;_1)-process H' and bounded op-

(2.4)

s=>07
with A abbreviating A ® I, g 7.

Let X = (A¢(H)),., for a bounded QS integrand (hy, hg)-process H with block matrix
form [X *] then

* ok

t=0

E[X,]v = /Ot dsE[KJv  (vehy,teRy), (2.5)

and, if the process X is bounded then, for bounded operators R € B(hg;h3) ® [+ and
S e B(ho; hl) ® Ir,

RA(H)S = A ((, @ R)H.(I; ® S)) (¢ € Ry). (2.6)

A bounded QS (left) cocycle on b, with noise dimension space k, is a bounded process
V on h which satisfies

‘/0 = I{,@}‘ and Vs+t = ‘/:90'3(‘/}/) (S,t S ]R+)

It is a QS right cocycle if instead it satisfies Vi = o5(V3)V; for s,t € Ry. If V is a QS
left cocycle then, V* := (V;*);=0 and V™ := (p¢(V4)),-, define QS right cocycles, and

t>0
VE= (pe(Vi") = p(Vi)") 120 (2.7)

defines a QS left cocycle, called the dual cocycle of V' ([Joul). This said, we work exclusively
with QS left cocycles in this paper. Following standard terminology of semigroup theory
(HiP]),

Bo(V) :=inf{B € R : sup,~q |le P V4| < 00}

is referred to as the exponential growth bound of V. If V is strongly continuous then
Bo(V) < oo; V is called quasicontractive if, for some § € R, the QS cocycle (e P'V;)i=0
is contractive. When V is locally uniformly bounded, it is called elementary (or Markov
regular) if its expectation semigroup (E[V}]) 4>0 18 norm continuous.

Note that, given a QS cocycle V, the two-parameter family V,; := o,(V;_,) satisfies
Vo = Vi (t € Ry), the evolution equation

‘/r,r = Ih@]—' and ‘/7“715 = ‘/r,s‘/:s,t (t =8z T),
and the biadaptedness property
Ve € (B(h) @ Iio,)® (B(Fipa) @ foe)) (=7 20).
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For use below, note that in the notation (2.2]), these QS evolutions satisfy the time-
covariance identity

Q(c’[m[, ) (Vi) = Q(Cl[o,t—r[v cfo,t—r)(Vi—r) (2.8a)
by , and further evolution identity
Qgpy 1> 9ira) (Vi) = UGy s Girs) (Vo) U G[s 4 i) (Vo) (2.8b)

for ,c€k, g, g€ L2 (Ri;k)andt>s>7r>0.

loc

Remark. Note that the relations (2.8a}) and (2.8b]) also hold when V is a product of such
QS evolutions.

Theorem 2.1 ([Fag|, [LW) 2]). For F € qc5(§®b) where € R, the (left) QS differential
equation dX; = X¢-F dA;, Xo = I has a unique weakly reqular weak solution, denoted X ¥,
moreover XT' is a quasicontractive, elementary QS cocycle, with exponential growth bound
at most B, strongly satisfying its QS differential equation. The resulting map F +— X is
bijective from qc(i@h) to the class of quasicontractive elementary QS cocycles; it restricts
to bijections from c(K@f)), i(ﬁ@ h) and i(/k\®f))* to the respective subclasses of contractive,
isometric and coisometric, elementary QS cocycles, moreover it satisfies X' = (X T,

The unique operator F associated with a quasicontractive elementary QS cocycle V' in
this way is referred to as the stochastic generator of V.
There is a basic class of QS cocycles which plays an important role.

Example 2.2. For each ¢ € k, the (Fock) Weyl cocycle W€ is given by
W= (Iy® W(c[07t[))t>0 (c €k).
These are QS unitary cocycles (both left and right), and X = W€ satisfies
X'=X and Xf=wW—°=X",

moreover X is elementary with stochastic generator

F.:= [%!;”2 écq ®I, € Bk@h).

Proposition 2.3. Let F € qe(k ® b) and G € qe(k) ® Iy C qe(k @ b). Then
XFXG — XF<]G and XGXF :XGQF.

Proof. First note that, since X is of the form (Ih ® Vt)
cocycle V on C,

FRIF)LeXS)=FaV,=LoX)(Felr) (seRy).
Therefore, by the quantum It6 product formula ,
AXTX) = (o XI)(F @ Ir)(5© X) + (I XX (G Ir)
+ (Lo XY F e Ir) (I ® X7)(AG ® Ir)) dA
= XFXE . (F<@G)dA;.

o for a quasicontractive QS

Since Xg Xg =1land F<G € qc(E ® Bh), uniqueness for strongly continuous bounded
solutions of the QS differential equation

dX; = X; - (F < G) dA;, Xo= Ih®-7:

(see Theorem implies that X X% = X¥<C_ Since F* € qe(k®h) and G* € qc(ﬂ)@[h,
it follows that X" <9¢" = X" XC" too. The second identity now follows by duality:

Y GF _ x(F*aG*)* _ (XF*qG*)ti _ (XF*XG*)ﬁ _ (XG*)ti (XF*)ﬁ — xG xF
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O

Remarks. (1) More generally, if two quasicontractive QS cocycles commute on their initial
space then their (pointwise) product is also a cocycle.
(ii) In the light of the identities

F.<9Fj=F.4—ilmlc,d)At and F_.=F*  (¢,d € k),
Proposition [2.3| contains Weyl commutation relations (see [BrR], or [L]) as a special case.

The connection to quantum random walks mentioned in the introduction is as follows
(for details, in particular the precise meaning of the terminology used, see [BGL]).

Theorem 2.4 ([BGL]). Fori=1,2, let F; € qe(k @ B) and let (Gi(h))nso be a family in
B(k®b) satisfying

sup {[|Gi(h)||" :n € N,h > 0,nh < T} < o0 (T €eRy), and

(W Y2AL + A)(Gi(h) — ALY (WY2AL + A) = F+ A ash — 0.
Then, for all ¢ € B(F)« and T € Ry,

sup || (idp) @) (X" — X)) =50 as h—0,
o<t<T

where, for h > 0, (Xt<h>)t>0 denotes the h-scale embedded left quantum random walk
generated by G1(h)Ga(h).

3. PropucT FORMULA

For proving the quantum stochastic Lie-Trotter product formula it is convenient to
define a constant associated with a pair of quantum stochastic generators. Thus, for

P Fy e b(E@ h) with respective block matrix forms [IL? %11] and [IL(; %22 }, set

C(Fy, Fo) i = |A*FAY + |ALBAL| + [ALF AL - [ARAY
= [[ K| + [ K2l + [|Ma[[| L2
Note that this depends only on the first row of F} and first column of Fj:
C(F\, F) = C(ALF, AL,

Proposition 3.1. Let F; € qcg, (/k\®f)) with block matriz form [IL(Z M?}, fori=1,2. Then

[E[X X7 — xR < 2RO )P (teRy).
Proof. Set V) = X1 v(2) = xF2 and V = X192 Since
eft(ﬁ1+ﬁ2)(vt(1)vt(2) _ Vt) — XtGlXth - XtG1<16’2 (t e R+),

where G; = F; — BiA+ € C(I(\(X) h) (i = 1,2), it suffices to assume that f; = B2 = 0, so
that Fy, Fo, F} < Fy € c(@@ h), and the QS cocycles V), V) and V are all contractive.

Fix t € R,. By the quantum It6 product formula , VY@ VvV = A(H) where
H=H®Y 4+ H® 4+ H® for the processes given by

HY = (I o VI (FL & Ir)(I; ® V?) — (I @ Vo) (F1 @ Ir)

s

H® = (Lo (VIOVE - V) (R @ IF)

S S

HY = (L, e VIV)(FIA @ Ir) (L, @ V) AR ® Ir) — (I; @ Vi) (FIAF, © IF).

s
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Therefore, by @), E[V,"V,”) — Vi] = [ dsE[Y;] where Y = Y + Y@ 4 Y6 for the
processes given by

Y = V(K @ Ir)VP) — V(K1 ® IF)
Y = (VIVVE —V)(K2 @ IF)
Y = VIO(M; @ Ir) (I © V) (Le @ I7) — Vs(Mi Ly @ 7).
Note that, since VY, V2 and V are contractive,
[EY < 2(1 K || + ([ Kol + Ml L2])) = 2C(F1, Fo) - (reRy).  (3.1)
In turn, the quantum It6 formula, together with the identities and , imply that,
for i =1,2,3 and s € R4, E[)Q(i)] = fos dr E[Z,Si)] for processes given by
Z" = VI(K1)? @ Ir)V® = Vo((K1)? @ Ir)+
V(K1 @ Ir) VP (Ky © Ir) — Vi (K1 Ko @ I5)+
V(M @ Ir) (I ® K1 @ Ir) (I @ V) (Lo @ I5) — Vi (M1 Lo Ky @ I),
Z? .= Y, (K, ® Ir), and
Z® = V(KM @ Ir) (e ® VD) (Le @ Ir)V,) — Vi (KoM Ly @ Ir)+
V(M @ Ir) (I ® VP) (I ® Ko @ I7)(La @ IF) — V(Ko M1 Ly © Ir)+
V(M @ Ir) (I ® My @ Ir) (Ikak @ V,P) (I ® Lo @ Ir) (Ikak @ VD) (Lo @ Ir)
—Vi((MLo)?* ® Ix).

Now, by further use of the contractivity of the processes Vv, V@ and vV, together with

the estimate (3.1),

IE[ZzM])| L2([| K1 |1” + K[| Kol + | M| Kq [l L2) = 2] Kq||C(FY, Fy),

IE[Z2)]|| <2C(Fy, Fy)||K2||, and

IE[ZEN| <2(||[ K [[|Ma ||| Lol + | M|l Ko ||| Lol + [|M1 ]| L2]?) = 2{| Mil||L2||C(Fy, Fa),

and so

r

t s
EVOV vl = | [ as [arBiz® + 24 20 |
0 0

t s
</ dS/ dT20(F1,F2)2:tZC(Fl,FQ)Z,
0 0
as required. O

Lemma 3.2. Let Fy € qcg, (K@ h), Fy € chQ(E(X) h), d,c €k and rit € Ry with t > r.
Then

190 ) (XFEXEE — XEF) | < (1= r? 008 O (B <y, By < )

[

Proof. By definition of the evolutions (Xft)o et
identity (12.8a)) along with the remark following it,

LHS = HQ(CI[O,tfr[’ C[O,t—r[) (XtF—ertF—zr - XtF—‘17’<F2) H

for G = Fy,F5 and 7 < Fy, and

and so we may suppose without loss of generality that » = 0. In this case, by the
identity (2.2]), Example and the associativity of <, the estimate follows immediately
from Propositions and O
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Now let S denote the subspace of L?(R,;k) consisting of step functions, whose right-
continuous versions we use when evaluating. For Fy, F € b(k® h) and ¢',g € S, set

Clg,F1,Fa,g) = max{C’(F*/ AQF, F,9F,):d €Rang',ce Rang}.

C
Lemma 3.3. Let F1 € qcg, (@@ h), Fsr € qcﬁQ(E® ), g9 €S and r,t € Ry witht > r.
Then
192G a0 9 a0) (Kt X3 = X792 [ < (¢ = )2 7O Clgp 1 By, By gpp)®.

Proof. Set 3 := 81 + B2 and let {r=ty<ti <-- <ty <tps1 =t} be such that g and
¢’ are constant, say ¢ and d’ respectively, on the interval [t;,¢;1+1], and, for i =0,--- | n,

set Q; 1= Q(gft“t g[ti,t¢+1[)

it1[’

xt=x1 X=X

1T gt titit1

and X; == X/,

isli+17

noting that ; := Q(Cfti7ti+1[’d”[;ti,tiﬁ»l[).

sequent remark, we see that

Then, again using identity (2.8b)) and the sub-

— —
Qgh o0 (X X7 = X[377) = ] uxixd) = T (i),
0<i<n 0<i<n
Therefore, using Lemma 3.2
n — —
Las =|| 37 (T @(x,) @ueix? - x) [T 200xD)|
i=0  0<p<i i<p<n

< PEI| 0 (X X2 - X)||eP )
=0

§€’B(tir) Z(ti_H — tZ)QC(FC*Z < Fl, Fy <« Fdi)2 < RHS.
=1

O

By a partition P of Ry we mean a sequence (s,) in Ry which is strictly increasing
and tends to infinity. Where convenient we identify a partition with its set of terms. For
S CC Ry, let |S| denote the mesh of {0} U S, that is, max{|t; —t;—1| : 1 <7 < k}, where
S:{tl <~"<tn} and tg := 0.

Lemma 3.4. Let F} € qcﬂl(E@) h), s € chQ(E@) h), d,9 €S and r,;t € Ry witht > r.
Let P be a partition of Ry, let {t1 < --- <ty_1} =PnN]rt[ and set to:=r and tn :=t.
Then

—_—
F F F1<aF.
HQ(gfr’tPg[r’t[)( H thl—hthtjihtj o Xm%q 2) H

1N

<[P d|(t—r) o(t=1)(B1+52) C(gfr,tp Fi, Py, gja)”-
Proof. Set B := 1+ B2 and, for j =1,--- | N, set Q; := Q(gft]__l,t]_[,g[tjihtj[),

1. yvF 2._ vh . vh<rs
X=XP L X2=XP and X = XD
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Then, using Lemma (and arguing as in its proof), we see that

LHS—HZ( H (X)) Q(XIX2 - H (X X3)|
j=1 1<n<j j<n<N

N
<30I (X - et
j=1

N
Z g[tj 1, [ F17F27g[tj,1,tj[)2
7=1

Seﬂ(tir) ‘P N [T7 t” (t - T) C(er,t[? Fy, Fy, g[r,t[)za
as required. O
We may now prove the main result.

Theorem 3.5. Let V! and V? be quasicontractive elementary QS cocycles on b with noise
dimension space k and respective stochastic generators Fy and Fa, and let T € Ry and
@ € B(F)«. Then
: = P,1<2
sup H(ldB(h) ) (Vrt < XftNFZ)H —0 as |77 N [O,T]! — 0.
0<r<t<T

The notation here is as follows. For a partition P of Ry and 0 < r < {,
—)

P12 1 2
Vi " H thflﬂfj th,l,tj
1<G<N

in which {t; <--- <ty_1} =PnN]rt[, to:=r and ty :=t.

Proof. Set 3 := Bo(V?') + Bo(V?) and V := X192 We may suppose without loss of
generality that ¢ is of the form wg () () for some B, h € S, since such functionals are
total in the Banach space B(F). and (V;Z’MQ —V,+) is uniformly bounded by 2e” max{0.5}
for [r,t] C [0,T.

For any partition P of R, Lemma implies that there is a constant C' = C(p, F1, F3)
such that, for all subintervals [r,t] of [0, T,

sy 36) (V2 — Vi) | < [PTI| Te8 C2.
The result follows. (]

Proposition and Lemmas [3.2] B.3] and [3.4] extend to the case of QS generators
F, = [IL(Z J‘A{Z} (i=1,---,n), the constant C(Fy, F») being replaced by

ATf < (fad D fa1) D fn A

where
1 0

= [”Ki” ”M"”] e B(C) and At =AfL = [0 X

1Ll V] ] € B).

In this case the quantum It6 product formula allows XtF Lo XtF " — I to be expressed as

a sum of 2" — 1 QS integrals, each of which may be paired with one of the 2" — 1 terms
arising from the expansion of F} < --- < F}, in the identity

t
xpaest g [(xBean (5 9 a ) a,
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As a consequence, Theorem [3.5] extends to quasicontractive elementary QS cocycles

V1 ... V" with respective stochastic generators Fy,--- , F},, as follows:
. — Pl <Fy,
sup H(ldB(h) ®<p)(V;7t Son Xf;q < )H — 0 as }Pﬁ [0,T]| — 0,
0<r<t<T

in the notation
—
P,l-<n 1 n
Vi = H Vit Vi

J—15t;
1<G<N

Remarks. (i) Note that the QS cocycle V = X1 <Fn ig contractive (respectively, iso-

metric, or coisometric) provided that all of V!, --. V™ are.
(ii) Whilst the convergence of Trotter products holds in the above hybrid norm-ultraweak
topology, if V is isometric and V!, --- V"™ are contractive (in particular, if V1, ... V"

are isometric) then convergence also holds in the strong operator topology:

sup WW?@Km—Xﬂ¢<&KHﬁOzﬁ‘Pﬂmﬂﬂ—éO(TER%§Eb®f)

0<r<t<T

This follows from the uniform continuity of the function
0.T2 5@ F, (rt)—V (E€haF,TERy).

We now revisit the case of QS cocycles with independent driving noise and show how to
view it as a special case of the above theorem. Suppose therefore that the noise dimension
space has orthogonal decomposition k = k; & --- ® k,. Denoting the symmetric Fock
space over L2(R;k;) by F, second quantisation of the natural isometry from L?(R;k;)
to L2(R4; k) (see ), followed by ampliation, gives an isometry h @ F* — h ® F which
in turn induces a normal *-algebra monomorphism

T:BheF)—=BHheF) (i=1,-,n).

Corollary 3.6 ([LSy]). Fori = 1,---.,n, let V' be a quasicontractive elementary QS
cocycle on B with noise dimension space k; and stochastic generator F;. Then, for all
T e Ry and ¢ € B(F)x,

: = P18 B - BF,
sup H(ldB(h) ® ) (V}t " Xftlaa B, )H —0 as ‘Pﬂ [O,TH — 0.
0<r<t<T
The notation here is as follows. For a partition P of Ry and 0 < r < t, setting {t; <
o<ty =PN ]t to =1 and ty = t,

H
PR Bn
Vi = I Y)YV ),
1<G<N
Proof. Suppose first that n = 2. Note that, in the notation (L.7), T'(V!,) = X;(gl) and
T2(V2,)) = X;IS?Q) (s, € Ry, s < &'). Therefore, in view of identity (1.8, for this case
the corollary follows immediately from Theorem The general case follows similarly
via obvious extension of the notation ([1.7]) and corresponding identity (|L.8]). O

4. MAXIMAL GAUSSIAN COMPONENT OF A QS GENERATOR

In this section it is shown that every QS generator F' € qc(@ ® b) enjoys a unique
decomposition F7 H F5 in which F5 is ‘pure Gaussian’ and F} is ‘wholly non-Gaussian’, in
senses to be defined below. This amounts to extracting a maximal Gaussian component
of the generator and demonstrating its uniqueness. It chimes well with the way that
Hunt’s formula decomposes the generator of a Lévy process on a compact Lie group into
a maximal Gaussian component and a jump part (albeit not exactly uniquely).
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To each contraction C' € B(k ® h) we associate the following closed subspaces of k:
kg ={cek:(C—1)E.=0}, where E. := |c) ® I,
and
kS := Lin { (I ® (u|)¢ : € € Ran(C — I)*,u € h}.
The former captures the subspace of all ‘directions’ in which C acts as the identity op-
erator; the latter is complementary (see below). The subscripts denote ‘Gaussian’ and

‘preservation’ parts.
Letting Jpc denote the inclusion kg — k, set

Cp = (J§ @ I)*C(J§ ® Iy),
the compression of C to kg ®b.

Lemma 4.1. Let C € B(k® b) be a contraction. Then the following hold:
(a) k=k§ @ k¢
(b) C has block matriz form [COP IZC}’ where IgC = Ikg®h'
(c) (KO)p” =KS.

Proof. Set Ig = Ik§®h'
(a) Let ¢ € k. Then, for all u € b,

(e, k@ @))(C=D*¢)=0forall{ ek®h < (C—-1I)(c®u)=0.

It follows that ¢ € (kg )L if and only if ¢ € kg, so (a) follows.

(b) Contraction operators 7" on a Hilbert space H enjoy the following elementary prop-
erty. In terms of the orthogonal decomposition H = K+ @K where K := Ker(T —I), T has
diagonal block matrix form [ I?< |. Since kg ®bh C Ker(C — 1) it follows that, in terms

of the orthogonal decomposition k ® h = (kg ®b)d (kg ® B), C has the claimed block
matrix form.

(c) By (a) it suffices to show that (kg)g" = {0}. Accordingly let e € (kg)gp. Then
(Cp — IF)Ee = 0 and so, by (b), (C — I)E ¢, = 0, in other words Ji'e € kg'. Thus
Jge € kg N kgC = {0}, by (a). Since Jpc is an inclusion this implies that e = 0, as
required. O

Definition 4.2. Let F € qe(k ® b) with block matrix form [% ¢ ;]. We say that
(a) F is Gaussian if kg = k, equivalently C' = I so that F' has block matrix form
[16];
(b) F is wholly non-Gaussian if kg =k, equivalently C, = C;

1 * *
(c) Fis pure Gaussian if it has block matrix form {_ﬁf L _é: } , for some L € B(h; k®
1 *
h), equivalently [_51]\\44?(4 ]‘(ﬂ, for some M € B(k® b;b);
(d) F is pure preservation if it has block matrix form [{ -2 ;]; R
(e) F is pure drift if it has block matrix form [# 0], in other words F € 3(k ® ).
Write
g(k®b), on-g(k@b), pg(k®b) and pp(k @ b),
for the respective classes of Gaussian, wholly non-Gaussian, pure Gaussian and pure
preservation generator.

Remarks. (i) The terminology has its origins in the work of Schiirmann on Lévy—Khintchin-
type decompositions for Lévy processes on bialgebras such as algebraic quantum groups
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(ISch]). In the presence of a minimality condition, the Gaussian property for the gener-
ator of an elementary unitary QS cocycle U may alternatively be expressed in terms of
the cocycle itself as follows:

tIR[(U — D (U = D2 (U —1)%] -0 as t—0
for all uy,---,v3 € b and all choices of U', U? and U? from {U,U*} where, for X €
B(h® F) and u,v € b, Xj 1= (wy,o® idp(7))(X) = ((u| ® Ir)X([v) ® 1) (see [SSS]
and [Schl).
(ii) By Theorem (a), F € g(k®b) if and only if it has block matrix form [£ ~I7],

L 0
for some K € B(h) and L € B(h; k® bh).

(ii) Given a Gaussian QS generator [IL( *g* ], any orthogonal decomposition k = ki @ ko

determines a decomposition F = F; B F| in which, corresponding to the block matrix
decomposition L = [f; }, F1 is pure Gaussian with
17x * 17x *
—sLiLy —L K+s5LiL; —L
— 211 1 I 21+1 2

Since L*L = LiL1 + L3Lo, FY| is pure Gaussian too if and only F is.
(111) In the case of no noise (k = {0}), pp(k®@h) = 0 and g(k®@h), on-g(k@h), pg(k@b)
and 3(k ®b) all equal b(k ® ) b). Otherwise, when k # {0}, all of a(k® ), on-g(k @ b),

pg(k ® b), pp(k ® b) and 3(k ® b) are selfadjoint and the following relations are easily
verified:

gk @ b) Nron-g(k® h) = 0;
pok@b) N3(k@b) = {0} = g(k @ b) Npp(k @ b);
pak®h) Cu(k®h) and pp(k®b) C c(k @ b);
sk@b)<agkob) =gkebh) and ppkebh) <pp(k@b) = pp(k ® h);
skob) <apgkeb) =gkeb) =pgk@b) <3k h).
Also, in view of the series decompositions (Proposition ,
s(k@b) <apgk@b) app(k@b) Di(k@bh), and
pp(k @) <pgk @) <3k b) Dik@b)".

The next result implies that

qgek@b) = |J wnglki®h) Bpglke @ b).
k=k1Pko

Theorem 4.3. Let F € qc(E@ h). Then F enjoys a unique decomposition
Fyn-g B Fing
where, for some orthogonal decomposition ki @ ko of k,
Fyn-g € n-g(k; © ) and Fng € pg(ke @ b).
Proof Let [L e I] be the block matrix decomposition of F', and set
= (J @ Iy)*L, LS = (JS @ Iy)*L, M{ := M(JE @ Iy) and ME = M(JS @ Iy).
Then F' = Fyy,.g B Fi,e where

K+ 3(L9)*LY Mg]

_ (L LS M
Fung = ch C,—1 '

1
and Fmg:[ 2 e 0
g
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By Remark (ii) above, Mgc = —(Lg)* 50 Fing is pure Gaussian. It follows from Lemma
that Fiyy-g is wholly non-Gaussian. This proves existence.

For uniqueness, suppose that F = F| B F, where F; € mn—g(kA1 ®b) and Fy € pg(kAg ®
bh) for an orthogonal decomposition k = k; @ ka. Then F} and Fy have block matrix
decompositions

Ky My _[-imsn, -L
Fl_ |:L1 Cl—I:| and FQ— |: LQ 0 )

k' = ki and k§ O ke.
Suppose that e; € ki and () € kgc. Then (C — I)E(el) =0,s0 (Cy —I)E,, = 0. Since
0

Fy is wholly non-Gaussian this implies that e; = 0. Thus kg = kg and kg = ky. It follows
that C1 = C}, and Ly = Lg. This implies that 1 = Fyng and Fy = Fyg, as required. [J

moreover

Remarks. (i) Clearly Fy,g is the mazimal pure Gaussian component of F.
(ii) Let F' € i(k® h). Then the above decomposition of F' takes the form

p_ [K1 —LiW] g [-3L3L2 —Lj
Ly wW-1I Ly 0
with Re K1 = —%L’{Ll, W isometric and kgV = ky; W being unitary if and only if
Feuk®h).

]ei(ki@h)aﬂu(@@h)

5. PERTURBATION OF QS COCYCLES

In case the second of two elementary QS cocycles V!, V2 is isometric, there is another,
more standard, way of realising the QS cocycle X192 where Fy and Fj are the stochastic
generators of V! and V2.

Theorem 5.1 (Cf. [EvH], [BLS]). Let Fy € qe(k® b) and Fy € i(k® h) Then
xR _ Xj27F1XF2
where j? is the normal *-monomorphic QS mapping cocycle on (the von Neumann algebra)
B(b) given by
Ji (@) = X (@@ IF)(X;?)"  (z € B(h),t€Ry),
and X711 is the unique strong solution of the QS differential equation dX; = Xy -Gy dAy,
Xo =1, for the integrand process G := ((idB(E)®jt2)(Fl))

t>0"

Proof. Given the existence of X7 and its quasicontractivity ([BLS]), the result follows
easily from the quantum It6 product formula and uniqueness for weak solutions, which
are bounded with locally uniform bounds, of the QS differential equation dX; = X, -
(F1 9 Fy) dAy, Xo = Iygr (see Theorem [2.1)). O

Remark. In [BLS] we worked in the equivalent category of QS right cocycles.

Applying this result to the Gaussian/non-Gaussian decomposition of QS generators
(Theorem [4.3)) yields the following result. Recall the injections ([1.7]) associated with
realising the concatenation product in terms of the series product (|1.8)).

Corollary 5.2. Let F € qc(/k\® h) with block matriz form [ ¢=1]. Then
xF — ijyFlXF2’
where, for the orthogonal decomposition k @ b = (k§ ® h) & (kg ®bh),
Fi = 1((Fyng) and Fy =1 (Fng).
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Proof. The inclusions

! (pa(k§ ®0)) C patk@h) Cu(k®b)
ensure that X2 is unitary and so Theorem applies. O

6. HoLoMORrPHIC QS COCYCLES

In this section the setting is extended to holomorphic QS cocycles ([LS2]). Before
formulating the conjecture, the corresponding It6 algebra is investigated, mirroring Sec-
tion As is customary, we identify each bounded Hilbert space operator T with its
associated quadratic form ¢z, given by qr[¢] := (£,T¢). We also use the notation ¢(-,-)
for the sesquilinear form associated with a quadratic form ¢[-] by polarisation.

Fix Hilbert spaces h and H. Let Q(h @ H) denote the class of quadratic forms I' on
h & H having the following structure:

{ DomI'=D®H

TE) = vlul = [(¢, Lu) + (Lu, ¢) + (¢, (C = 1)Q)],  for & = () € DomT,

where D is a subspace of h, C' € B(H), « is a quadratic form on h, L and L are operators
from h to H, and

Dom~ = Dom L = Dom L = D.
For reasons which will become apparent, D is not assumed to be dense in h.

Write I' ~ (v, L, L, (), and refer to (v, L, L, C) as the components of I'. Also define an
associated operator on h & H by
A |0 0
%'_L C—J'

Dom F& = DomT and Ran Ff € {0} ® H=RanA

where, as usual, A := 0y ® Iy. The inclusion obviously implies that

Ran F2 € D' @ H for any subspace D’ of h. (6.1)

Thus

Note that if I' € Q(h@® H) with components (v, L, E, (), then the adjoint form I'* belongs
to Q(h @ H) too, with

~ 0 0
rﬂvwﬂLfo)wdﬂé:[i CP_J.

Thus, in terms of the associated sesquilinear form,
(€ FF€) = ~T(AE,€) and (FR€,€) = -T(§,A¢)  (€€DomlD).  (6.2)

Definition 6.1. For I'; € Q(h & H), with components (%-,Li,ii,ci) (i = 1,2), define
I'y <y, TMAT, € Q(h D H) by

I'h<Te~(y,L, E, (), where
[u] = y[u] + ~2u] — (Lyu, Lou),
L=L+CLy, L=CiLi+ Ly and C = C1Cy;

['1AD, ~ (v, L, L, C), where
~Y[u] = —<Zlu, Lou),
L=(C,—1)Ly, L=(C; 1)Ly and C = (Cy —I)(Co—1I)+1.
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Thus
Iy <Dy =T + Ty + AT, (6.3a)
Dom(I'y <iTy) = Dom(I'1AT'g) = Dom I’y N Dom 'y,
(T1AT,)[¢] = —(Ff€, Fry€) (€ € DomT'y NDomTy), and (6.3b)
Ffiar, = ({0} @ (C1 — D) FFs, (6.3c)

Lemma 6.2. The prescription (I'1,I'y) — I'1ATly defines an associative product on the
vector space Q(h @ H) which is also bilinear and involutive:

(D1AT,)* = DALY, (6.4)

Proof. Let I'; € Q(h & H) with domain D; & H (i = 1,2, 3). Bilinearity follows from the
evident linearity of the map I' — FFA, and (6.4) holds since, for £ € (D; NDs) & H,

(M1AT) €] = (T1ATY)[] = —(FRE, FR &) = (T3AT)[E].

Clearly Dom ((FlAFQ)AF3) = (Dl NDs N Dg) @ H = Dom (FlA(FgArg)) and, for £ €
(Dl NDy N Dg) e H, " implies that

(FRRE, Fyar,6) = (FRE ({0} @ (Co — D)) Fr6)
= ({0} & (C3 — D) FRE FRE)
= (Fiarié F6) = (b, ar,)& FRyé).
Thus A is associative, by (6.3b)). O

Proposition 6.3. The composition (I'1,I'2) — I'1 <9Iy endows Q(héH) with the structure
of a *-monoid whose identity element is T'yg ~ (0,0,0, 1), in particular,

(I <aTe)* =15 <T7.
Proof. Let T'1,T'9,T'3 € Q(h @ H). In view of Lemma [6.2]
(1 +To+T3) + (I'AT2 + IT'hyAT's + T A'3) + T'1 AT A3

is a common expression for I'y < (I'es < I's) and (I'; < I'y) < I's, which have common
domain (D; N Dy N D3) & H. Tt is easily seen that the element 'y ~ (0,0,0, I) satisfies
Loyl =T =T<Tgfor all T € Q(h @ H). The fact that the adjoint operation defines
an involution on the resulting monoid follows from its additivity on Q(h @ H) and the

identity . O
For the following lemma, recall the range observation .
Lemma 6.4. Let I'; € Q(h @& H) with domain D; ®H (i =1,2,3). Then
(Ty 9Ty < T3)[¢] = (T1 < T3)[¢] + To (1 + FFA;)& (I + Ff)¢) (£ € D1 NDyNDs).
Proof. Let & € D1 N Dy N D3. Then, since
<l <l =Ty <3 =T + A3 + T'1 ATy + T AT AT,
the lemma follows by several applications of the identities and :
Ty ((I+ FR)E, (I + F)E)
= To[¢] + T2 (&, Fr€) + Ta(FRE,€) + Do (FRE, F)
= Da¢] — (FRAE, FRé) — (FRE FRE) — (FRE, ({0} @ (I — Co)) FRE)
= [oé] + (T2AD3)[€] + (T1AT2) [€] 4 (T1AT2AL3) [€].
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Proposition 6.5. Let I'1,T's € Q(h @ H) and $1,02 € R, and set T' = T'y < T’y and
B =p1+ P
(a) Suppose that, fori=1,2,
It <l > 26;AT on DomT);.

Then T* 9T > 2BA+ on DomT.
(b) Suppose that, fori=1,2,

I' <T; =0 on DomT;.
Then I' <T"' =0 on DomT".
Proof. By associativity and Lemma [6.4]
(" < D)[E] = (5 < To)[€] + (U] < T)[(1 + Ff)E]
for all £ € DomI'yNDom I'y. The result therefore follows since AJ-FFA2 =0onDomI'y. O

Remark. Thus
{TeQhaH): T"al =0=T<I"}
forms a subgroup of the group of invertible elements of (Q(h @ H), <).

To complete the discussion of the algebra of the series product on quadratic forms, here
is the form generalisation of Proposition [L.2

Proposition 6.6. LetI' € Q(h@® H). Then
* * 2
T <aD)[g] = T T[T+ FRE] + || P& aré| (€ € DomT). (6.5)
Let V € Q(h @ H) be of the form v @ Oy where v € Q(h)sa. Then
I'*<al' >V ifand only if T > V.

Proof. Let & = (g) € DomTI. Note that I, I'*, I'* <« T, T <T* and I* <« T <« T* < T all

share the same domain. On the one hand, setting I'y = T'y = I <" in and
yields
(M* 9T < aT)[e] - (T <aT)[e] = (T* <aT)[¢] — || FR ré|
On the other hand, setting 'y =T, 'y =T' <" and I's = T" in Lemma [6.4] yields
M*<T < <D)¢] - (M <D)[g] = (D<) [(L + FR)E].

Thus (6.5)) holds.

Now suppose that I' <I'* > V. Then, since
VI + FR)E] = vlu] = VEg],
(6.5)) implies that (I'"* < T')[¢] = V[{]. Thus I'" <T" > V. The converse implication follows
by exchanging I" and IT'*. O

Now we return to the Hilbert spaces h and k. Let Xp01(h) denote the class of quadratic
forms « on h which are closed, densely defined and satisfy the accretive and semisectorial
conditions

Rey+ >0 and ‘Imv[u” < a(Req[u] + Hu||2) (u € Dom~y)

for some f € R and « € Ry, and let Spei(h) denote the class of holomorphic semigroups
they generate (see e.g. [Ouhl).

In [LS2], a quasicontractive QS cocycle V on b is called holomorphic if its expectation
semigroup belongs to Spei(h). Denoting this class of QS cocycle by QSCy (b, k), it is
shown there that the correspondence Xy,01(h) — Snoi(h) extends to a bijection

%ﬁol(hak) HQSChol(hvk% FHXFa
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in which X{_,(h, k) denotes the subclass of Q(E@ h) = Q(h @ (k®h)) consisting of forms

I' ~ (4, L, L,C) such that v € Xpo1(h) and T* <'+2B8A+ > 0, for some 3 € R. We speak of
the stochastic form generator of the holomorphic cocycle. If I' ~ (v, L, L, C) € Xt (5,k)
then it follows from Proposition [6.6| that I'* € X ;(h, k) and in [LS3] it is also shown that
C € B(k®b) is a contraction, and X' = (X1)*, the dual QS cocycle defined in (2.7).

The bijection extends the above form-semigroup correspondence as follows: if I' ~
(7,0,0,1) where v € Xpoi(h) then I' € Xt (b, k) and X' = (P, ® Ir)i>0 where P is the
holomorphic semigroup with form generator ~. It also extends that of Theorem in
the sense that if F' € qc(E@ h) with block matrix form [IL( C]\f[] then X = XT for the
form in X} (b, k) given by

'~ (—qx,—L,—M*,C).

If Ty, To € Xt ;(h,k) then I'y < Ty € Xt (b, k) provided only that DomT'; N Dom I’y is
dense. This neatly extends the fact that if v1,v2 € Xpo1(h) then 1 4+72 € Xho1(h) provided
only that Dom~; N Dom 73 is dense in b.

Conjecture 6.7. Let V! and V? be quasicontractive holomorphic QS cocycles on b with
noise dimension space k and respective stochastic form generators I'y and I's, and suppose
that DomT'; N Dom T’y is dense in k® h. Then (in the notation of Theorem , for all
TeRy, p€ B(F)s and u € b,
sup H(idB(h)®4p) (V;E’MQ — X}:’;QFQ) uH —0 as ‘77 N [O,TH — 0.
0<r<t<T

Moreover, if the QS cocycle X112 4s isometric and V! and V? are contractive then, for
allT e Ry and & € h® F,

sup || (V:;’M2 - X{%qm) ¢| =0 as [PN[0,T]| — 0.
0<r<t<T
Remarks. The conjecture has three special cases where it is proven. Theorem covers
the case where I'y and I's are bounded. In the semigroup case, where I'; ~ (~;,0,0,I) for
vi € Xno1(h) (i = 1,2), it reduces to a version of a celebrated result of Kato — as extended
by Simon ([Kat]). For the case of independent driving noises a version of the holomorphic
counterpart to Corollary which includes the Kato—Simon theorem, is proved in [LS3].
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