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Abstract

We estimate the wage premia associated with educational attainments focusing on the

lifecycle pattern of earnings. We employ a model where educational attainment is dis-

crete and ordered and log wages are determined by a simple function of work experience

for each level of attainment. We distinguish between lifecycle and cohort effects by ex-

ploiting the fact that we have a short panel. We find that age earnings profiles lose the

traditional bell shape and become flat when we allow for cohort differences. Females

still have higher college premia compared to males. However, there are clear earnings

inequalities between cohorts with smaller college premia for younger compared to older

cohorts, for both males and females.
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1 Introduction

Estimating the returns to schooling is a major industry for applied economists. The method-

ological difficulty in estimating the causal effect of education is well known: bias (due to

ability, school quality, non-cognitive skill) arising from the correlation between wages and

the unobservable determinants of schooling contaminates least squares estimates, which can

then only be interpreted as an upper bound. There is a large literature that attempts to

address this problem using instrumental variable methods by exploiting potential exclusion

restrictions. In this context, the simplicity of the workhorse empirical specification of the

human capital earnings function is extremely convenient. This specification has log wages

being determined by an additively separable and linear function of schooling and a quadratic

function of some measure of experience (usually age). Moreover, there is just one variable,

schooling, that is endogenous so the search for exclusion restrictions, that has so taxed the

ingenuity of researchers in this area, need not continue beyond just one.

This paper allows for the relationship between log wages and schooling to be considerably

more complex than the simple human capital earnings function suggests, and yet accommo-

dates endogenous schooling. Our work complements that of Heckman et al. (2008) who

compute the internal rate of return (IRR) to the investment in education for different levels

of schooling. They start from a general non-parametric approach to the estimation of the

determinants of log earnings but do not explicitly allow for endogenous schooling. In con-

trast to that work, we adopt a parametric model but allow for the selection associated with

endogenous schooling. Leaving aside the issue of endogenous schooling, parametric models

do have some advantages over non-parametric: they converge faster, they do not require the

estimation of smoothing parameters, they are easy to interpret, and parametric estimates

can (to the extent that the parameterisation is correct) be used to extrapolate out of sample.

On the other hand, estimates of parametric models are conditional on the maintained func-

tional form assumptions. Here we implement what we think of a useful compromise between

generality and tractability.
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Within the confines of studies that attempt to deal with endogenous schooling, there

have been only a few attempts to depart from a simple linear and separable specification.

For example, Willis and Rosen (1979) in their structural model treat schooling as a simple

endogenous college education dummy variable; while Kenny et al. (1979) exploit the mini-

mum schooling level change and use a Tobit specification for hours; and Harmon and Walker

(1995) use an extension of the Heckman two-step approach where the latent variable for

years of schooling is treated as an ordered Probit. To the best of our knowledge, all such

studies that estimate the effect of endogenous education do so within a model where school-

ing is some univariate function of years of schooling and assumes that the effect of schooling

does not vary across experience - that is, separability between schooling and experience is a

maintained hypothesis. This limitation extends to twin studies (see, for example, Ashenfel-

ter et al., 1998) where identification is invariably facilitated by estimating an assumed linear

relationship between within twin pair earnings differentials and their schooling difference.

Here linearity is crucial because there is typically rather small variance in the within differ-

ence in education levels. Moreover, differencing twin data invariably exacerbates the bias in

the schooling coefficient arising from measurement errors which is usually dealt with using

an instrumental variables approach based on cross-reported schooling.

Adopting the maintained hypothesis of linearity in schooling seems increasingly perverse

since there is considerable evidence (see, Heckman et al., 1996; Jaeger and Page, 1996;

Hungerford and Solon, 1987) against it. In particular, many studies suggest that the effect

of schooling is not linear - that schooling itself is not univariate but rather is, at the very

least, best thought of as a succession of levels of achievement that is not simply college vs no

college or years of homogeneous schooling. Moreover, many studies show that age earnings

profiles are certainly not parallel across education levels (e.g. Neal, 2002; Heckman et al.,

2006).

In our selection model education is captured by achievement measures that are ordered:

from the lower secondary school level of education associated with the minimum school
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leaving age (that the US literature thinks of as High School drop-outs), via High School

graduation (around the age of 18), through an undergraduate college degree (around the

age of 21), and up to postgraduate qualifications (although slightly less commonly so in the

UK than the US, according to Lindley and Machin (2016)). We estimate the probability

that individuals have a particular level of education by exploiting the fact that they are

mutually exclusive and ordered and assume that unobservables are normally distributed.

We then estimate age earnings profiles for each education achievement group separately,

controlling for selection into each level of educational achievement. Therefore, we do not

impose separability, nor do we impose the restriction that the schooling has a linear effect

on log wages.

Even this simple departure from the usual separable linear framework comes, of course, at

some cost. While the assumption that levels of education of achievement are ordered seems

like a natural one, the assumption that the distribution of the residuals in the equation

that determines academic progression through the education system is normally distributed

is essentially arbitrary. It is only as justifiable as any other parametric assumption and is

a long way from the fully non-parametric (or, even, semi-parametric) approach that might

be possible to estimate.1 Of course, adopting normality makes an important contribution

towards identifying the parameters of interest in our selection model and sacrificing such a

contribution would place a correspondingly greater burden on the validity of the exclusion

restrictions. Furthermore, in the case where the treatment is discrete (as in our ordered

probit case) the distributional assumptions allow the researcher, in principle, to identify the

whole distribution of treatment effects. Thus, while the parametric restriction is strong,

it buys the researcher a lot of information. In defence of normality one might argue that

unobserved ability is the primary unobserved contribution to the explanation of progression

through the education system. While such ability may not be the same as IQ it is likely

to be highly correlated with it, and much of the literature suggests that this approximates

1See, for example, Blundell and Powell (2004), for a survey of semi-parametric selection models.

4



a Normal distribution. We view our own approach as a practical compromise that might

become a new workhorse specification which could be implemented with many datasets.

Our main finding is a rejection of the traditional linear workhorse specification used in the

literature to estimate the returns to schooling. We still find higher returns to education for

females over males. Once we control for cohort differences we find that age earnings profiles

that are usually thought to peak in late middle age become flat. In particular, younger

cohorts have smaller college premia, for both males and females.

This paper is structured as follows: Section 2 describes the data, in Section 3 we explain

the estimation method. Section 4 presents the results, and Section 5 concludes.

2 Data

Our aim is to estimate the wage premia associated with educational attainments and we

focus on the lifecycle pattern of earnings at different educational attainment levels. Thus, it

is important that we estimate the true lifecycle effects net of any cohort and/or calendar time

effects. It is, of course, impossible to make such distinctions when using purely cross-section

data without imposing some constraints (for example, using cohort controls that are defined

over groups of birth years rather than continuously). The distinctive features of this work

are: we separately identify lifecycle and cohort effects, by exploiting pooled cross sections

and panel datasets to estimate models of earnings and its growth that do not impose the

restriction that the age profiles (and the effects of other observables) are the same at each

level of education; and we control for selectivity into each education level using a number of

exclusion restrictions.

We use the UK Labour Force Survey (LFS), a very large and flexible dataset that is

the UK equivalent of the US CPS data, and has been used extensively elsewhere to study

the returns to education (see, for example, Walker and Zhu, 2008). The data we use is a

sequence of pooled cross-sections over a period of 17 years which offers better prospects, but

even here we should expect significant collinearity problems. We exploit the fact that each
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cross-section has a short panel element to it: individuals are interviewed over 5 quarters and

earnings data is collected in the first and final waves - an interval of approximately one year.

Estimation exploits the availability of both the cross-section and longitudinal data sets to

the full. In particular, we estimate the lifecycle earnings profiles for each education group

using the 1997-2014 pooled longitudinal data. Then, controlling for the estimated lifecycle

pattern, we estimate the cohort and year effects, together with the impact of education, on

the level of wages using the pooled cross sections that are also available from 1997 to 2014.

We allow for non-random selection into each education level.2

Since we aim to extend the linear workhorse specification that has been used extensively

with the labour Force Survey in the UK, and similar datasets elsewhere, we would like to be

able to demonstrate the contribution of our extension using this familiar dataset. The LFS is

a quarterly sample survey of households living at private addresses. Its purpose is to provide

information on the UK labour market that can then be used to evaluate labour market and

educational policies. The survey seeks information on respondents’ personal circumstances

and their labour market status during a specific reference period, normally a period of one

week or four weeks (depending on the topic) immediately prior to the interview.

The survey has been conducted on a quarterly basis, with each sample household retained

for five consecutive quarters, and a fifth of the sample replaced each quarter. This is known

as Quarterly LFS (QLFS) and it was designed to produce cross-sectional data, such that in

any one quarter, one wave will be receiving their first interview, one wave their second, and

so on, with one wave receiving their fifth and final interview. Thus, there is an 80% overlap

in the samples for each successive quarter. The UK LFS has existed since the mid 1970’s

but it is only since 1993 that data on gross earnings has been collected, and only since 1997

has earnings been recorded in both waves 1 and 5.

In recent years, it has been recognised that linking together data on each individual across

2Like the overwhelming majority of the literature we ignore the potential selection issue associated with
using a sample of individuals with positive wages. Relatively little research has addressed the issue and our
own data does not allow us to pursue this here but we have found little evidence that this is an important
empirical issue in practice.
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quarters would produce a rich source of longitudinal data, therefore five-quarter longitudinal

datasets have also been produced for the same period, for example linking spring 1998

with spring 1999 and containing data from all five waves of the survey. This is known

as Longitudinal LFS (LLFS), and because of the resources involved in production and the

size of the resultant datasets, the longitudinal datasets include only a subset of the full LFS

variable set. In our analysis we exploit both the QLFS and the LLFS. We consider the period

1997-2014 inclusive, and since we focus on the population of working age, the datasets have

been restricted to women and men aged 18 to 65 at the first quarter.

Our procedure is the following. We first append all five-quarter LLFS and we obtain a

total sample of 524,052 observations.3 The proportion of employees is around 61%, the self-

employed are around 9%, there is a small percentage of people (less than 1%) in government

training programs, and the remaining people are inactive in the labour market. We restrict

the sample to be employees only.4 We drop individuals observed only in either the first or

the fifth quarter, and employed individuals for whom the earnings variable is missing. We

only consider people born between 1940 and 1991. The remaining sample size is 370,570

observations.5

We stack all QLFS datasets, from 1997 to 2014, which include around 125,000 individuals

per quarter and in each quarter five waves of, on average, 25,036 individuals. If we restrict

the sample to the same age range used in the LLFS (18-65) we get around 18,000 individuals

per wave in each quarter, and the proportion of employees in each wave is around 61%,

and the self-employed are 7.8%. Earnings are collected only in the first and fifth wave, we

therefore keep only employees reporting a positive wage (around 98%) in the first wave and

3LFS is a panel of addresses not people. Movers are not followed so attrition between waves 1 and 5
accounts for the lower number of cases available for linking and higher attrition, the original five-quarter
datasets always contain fewer observations than the QLFS datasets.

4The proportion of employees reporting positive earnings in both first and fifth wave is around 98%.
5Table A1 in the appendix shows the summary statistics for wage, age and education levels in the

unrestricted QLFS sample. Considering that wage is not adjusted to the inflation and we are not restricting
to employees only, Table A1 demonstrates that our sample selections do not affect the wage differences across
education levels in the data.
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the new sample is 530,028.6

For practical reasons, we append the resulting LLFS and QLFS datasets and apply further

restrictions. The following groups were dropped from the analysis on the grounds that they

may have experienced a different education system that is difficult to compare with England

and Wales: residents of Northern Ireland (3% in QLFS, 2% in LLFS) and Scotland (9%, in

both QLFS and LLFS); people born outside the UK (3% in LLFS, 3% in QLFS); people still

in full-time education or never had education; and people that completed their education

younger than 14 and older than 30 (0.3% in QLFS, there is no equivalent variable in LLFS).

The final sample size is 423,037 in QLFS and 314,055 in LLFS.

The main variables of interest for our analysis are earnings, education and individual

characteristics. We constructed our variables in the following ways. Average gross hourly

pay7 including paid overtime. Usual earnings are obtained using information asked directly of

all employees and those on schemes, e.g. gross pay before deductions (self-assessed), expected

gross earnings (self-assessed). The proportion of non-response to the earnings question is

similar by education level and across each LFS data set. Therefore, there is no concern about

non-random non-response.

We further restrict the total number of hours worked in the reference pay period to lie

in the range 0. . . 94 (losing less than 0.05%). The resulting hourly pay rate is transformed

into a real wage rate by dividing by the Retail Price Index (All items) with September 2014

as the base period. The top and bottom 1% of the wage distribution by category of highest

academic qualifications were trimmed to avoid outliers arising from measurement error in

the wage rate influencing the results unduly. Finally, as usual, we consider the log of the

wage rate rather than the wage rate itself.

Our analysis concentrates on education qualifications, rather than the age at which indi-

6This sample size corresponds to 1 wave per quarter for 70 quarters from 1997 to 2014. Month of birth
is not available for subsequent cross-sections.

7This is a derived variable defined as the ratio of usual earnings to usual hours (in main job). The
proportion of non-response to the earnings questions is very similar across education levels and we are
therefore not concerned about non-random non-response.

8



viduals leave education. In England and Wales, compulsory education is from the age of 5 to

16 with 5 to 10 being spent in primary school, and 11 to 16 spent in lower secondary educa-

tion. Students undertake national examinations, typically in five to ten subjects, known as

the General Certificate of Secondary Education (GCSEs) at age 16.8 After the age of 16 they

can enter the labour market or continue into post compulsory upper secondary education.

Students can choose between academic and vocational qualifications. The academic track

consists of GCSEs at 16, followed by A-levels at 18 and university undergraduate degree

usually from the age of 19 to 22, possibly followed by a postgraduate degree. There is a very

clear ordered progression along this academic education track.

The vocational track is less easy to characterise - typically students would leave formal

education at the age of 16 and engage in some occupational training perhaps on a part-time

basis while at work, or attend some further education college on a full-time basis for approx-

imately two years gaining vocational qualifications before entering work. Many vocational

qualifications are specialised and taken by rather small group of individuals. Fortunately,

there is a well-developed method of grouping equivalent qualifications into levels, known as

National Vocational Qualifications (NVQ) equivalents. These are defined in Table 1 and

divided into five NVQ levels: from NVQ1 (below GCSE qualifications) to NVQ5 (postgrad-

uate level qualifications).9 In general NVQ3 corresponds to high school graduates and below

NVQ3 to high school drop-outs. Table 1 gives examples of the vocational qualifications and

their associated NVQ levels, as well as the most common non-vocational ones. We follow

established practice in how NVQs are defined with the exception that we pool together the

NVQ4 and NVQ5 qualifications due to the small number of observations at NVQ5 level.10

The interpretation of the estimate of NVQ4 together with 5 is that it is the return to an un-

dergraduate degree including the option value of being able to take a postgraduate degree.

8We refer here to the education system after 1973. Prior to 1973 it was common for tracking to start
earlier and there was a distinction between the examinations that vocational track pupils took. We convert
these older qualifications into their modern equivalents using conventional criteria.

9See Makepeace et al. (2003) for the details of how this can be done.
10We group NVQ4 and NVQ5 and we refer to this as NVQ4 hereafter.
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Our omitted category is no qualifications. Apprentices are recorded as trade apprentice-

ship (7% of our final sample) and included in NVQ3, although our results are not sensitive

to this, or whether we drop them. We generated the educational variables separately and

we observed the same proportion in both QLFS and LLFS. Here we report the descriptive

statistics that refer to the QLFS sample which is larger and includes all of the individuals

in the LLFS. The total sample size of 423,037 comprises 204,735 males and 218,302 females.

Women outnumber men in the sample largely because of their higher rate of self-employment.

Summary statistics and the distribution of the earnings, given the NVQ levels, are pro-

vided in Table 2. Only those individuals earning a positive wage are included in the sample.

We observe that the largest group of individuals (34.4% of males and 34.8% of females) have

a NVQ4/5 (NVQ4 around 27% and 28% for males and females respectively, while NVQ5

constitute a further 6.9% and 6.7%). Those with NVQ1 are a very small proportion. The

proportion with higher education has grown considerably in recent years following the huge

expansion in HE during the 1990’s. Note that we also include vocational equivalents in this

category. We also notice that the proportion of males with NVQ3 is much higher than that

for females. This is probably due to the inclusion of both vocational and academic qualifi-

cations, and the percentage of females taking vocational courses is very small compared to

males.11 Comparing wages at NVQ3 and NVQ2, we find that males with the higher qualifi-

cation earn 12% more than those with NVQ2 and this percentage drops to 7% for females.

The wage differential between NVQ4 (pooled with 5) and NVQ3, which broadly corresponds

to the “college premium” in the US literature, is around 38% for males and 42% for females.

11For a more detailed picture of the problem see Walker and Zhu (2007) who show the NVQ distributions
disaggregated by academic and vocational paths.
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3 Estimation and Identification

3.1 Estimation method

We adopt a Heckman selection model, extended to allow for an ordered choice across several

education levels. Of course, a selection model is more restrictive than IV since it assumes

that the distribution of unobservables in both wages and schooling are jointly normally

distributed. Our educational variable is ordered - so that NVQ4 corresponds to the highest

qualification that can only be obtained if one has achieved NVQ3, and so on. Therefore, we

can estimate the probability that individuals have an NVQ at any particular level and exploit

the fact that they are mutually exclusive. The main advantage over an IV approach, is that

by making an assumption about the distribution of the unobservable determinants of earnings

we estimate the effect of qualifications on hourly wages across the whole distribution of the

unobservables and, in particular, at the mean. Thus, the selection model method, unlike IV,

yields estimates that are comparable to the much simpler least squares regression method.

Our modelling proceeds in two stages. In the first stage, we use a first difference model

to estimate the growth in real wages across a year in the panel data. By exploiting the

fact that our data is a short panel we are able to estimate lifecycle effects for each level

of education separately.12 Estimating in first differences, using only the panel element of

the 1997-2014 data, allows us to model the lifecycle pattern of wages independently of any

cohort trends providing those cohort effects are fixed effects in the data - that is, provided

that cohort effects in the cross-section equation are additively separable from lifecycle (age)

effects. We estimate this difference equation separately for each education level to avoid

12The use of a “short” difference in real log wages has obviously more measurement error than a long
difference. However, since this wage growth variable is the dependent variable in the first difference model
the measurement error should not bias the age coefficient. Furthermore, an advantage of using LFS short
difference is that we know that additional work experience is equal to the change in age between waves. Most
datasets do not have work experience in them and it is proxied by age. This induces measurement error in
the experience measure, and since this is used as an explanatory variable then it would induce bias. Thus it
may be better to use a short panel (and risk higher standard errors) to estimate the effect of experience on
wage growth, than use a long panel where the much greater measurement error in experience would induce
bias.
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imposing separability. Implicit in estimating in differences using OLS we presume that

unobserved ability affects wages only through the level and not through an effect on growth.

This is a common implicit assumption in the literature, but not an innocuous one because

ability that is unobserved early in life may become revealed to employers later in life (see,

for example, Altonji et al., 2001). However, our attempts to correct for a selection effect

in the wage growth equation, in the same way as we approach selection in the wage levels

equation, did not suggest that this was a statistically significant issue. Indeed, one might

argue that, across the space of just a year it seems reasonable to impose the assumption

that the selectivity correction variable has not changed and so is a fixed effect that gets

differenced out from the wage growth equation.

Moreover, our model does not impose the restriction that the selectivity works in the

same way at all NVQ levels. We do not impose the restriction that the age profiles (and

the race effects) are the same at each level of NVQ. So, we allow for non-separability in the

earnings function between the schooling effect and the age effect.

In the second stage, we impose the estimated age effect from the first stage on the

estimation of the remaining parameters. We do this, by subtracting the age effect from both

sides of the log wage level equation before estimation. In the levels equation there is no case

for thinking that selection into NVQ level is not an issue, so this stage of modelling is a

Heckman two-step procedure that demands the ordered probit selection equation be used to

generate the selection correction terms.13

Our baseline model is a conventional Mincerian human capital earnings function except

that it is non-separable in education level:

Wisq = αs + cis + δsAgeiq + ρsAge
2
iq + µstq + uisq (1)

where W is the log of the hourly wage rate, i = 1 . . . N indicates individuals, s = 0 . . . 4 are

the NVQ educational levels; q = 1, 5 LFS quarter and t = 1997 . . . 2014 indexes years. We

13We use the oheckman user-written command in STATA15. See Chiburis et al. (2007).
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assume that cohort effects are captured by an additively separable cubic function of year of

birth Y ob, cis = c1sY obi + c2sY ob
2
i + c3sY ob

3
i , and E[uisq] = 0. Thus, equation (1) is written

for each of five levels of education, and each is modelled as the sum of quadratic age effects,

while cubic cohort effects, time effects, and an additive error term.

The estimation of (1) is difficult because individuals’ age added to their birth year is

identical to the survey year, so that there is an exact linear relationship between the age,

cohort, and time effects. However, the interval period between the first and the fifth LFS

wave is around 1-year, so we can take the first difference of (1) and remove any time invari-

ant component of the error term, thus controlling for time-invariant unobserved individual

heterogeneity. This, together with the pooled nature of the cross-section data allows us to

identify age, cohort and calendar time effects. Simply differencing equation (1) we obtain

∆qWis = (δs + µs) + 2ρsAgeiq + νiq (2)

where the wage growth is linear in age, since the wage level is quadratic in age, for each edu-

cation classification. Therefore, we are not imposing separability between age and schooling.

Lifecycle effects on earnings are given by the constant term in (2), which is a cumulative

effect of age and time, and ρs which corresponds to the effect of Age2 in (2).

The identifying assumptions for (2) is that selection bias is driven only by fixed effects

and that cohort effects are additively separable in (1). If these assumptions hold, we can

obtain consistent estimates of the parameters ρs and δs +µs from (2) for all s, but we cannot

separately identify δs from µs unless we are prepared to make some assumption about the

value of one of them. For example, one might be prepared to assume that the rate of

productivity growth was, say, 0.02 per annum. We then impose these consistent estimates

on the cross-sectional log earnings, and estimate a selection model exploiting our pooled

data.

In our selection model we estimate an ordered probit as the first step
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S∗
i = ω + ψZi + vi (3)

Si =



0 if S∗
i ≤ 0

1 if 0 < S∗
i ≤ η1

2 if η1 < S∗
i ≤ η2

3 if η2 < S∗
i ≤ η3

4 if η3 < S∗
i ≤ η4

We use the estimated ordered probit coefficients from equation (3), to generate the rele-

vant Inverse Mills Ratios (IMRs) to capture the likelihood that an individual has a particular

level of education. In the second step, we estimate log earnings for each NVQ level, having

imposed the estimates of the lifecycle parameters from (2). That is, we estimate

Wis − (δ̂s + µs)t− ρ̂sage2i = as + θis + λsÎMRis + βsXi + εis. (4)

where θis = (c1s−δs)Y obi +c2sY ob
2
i +c3sY ob

3
i , ÎMRis is the predicted IMR from the ordered

probit, X is a vector of controls, and vis and εis are bivariate Normal with cov(vis, εis) 6= 0.

We include the IMRs in the wage equations (4) to correct for the fact that individuals

with a particular level of education will have a particular unobserved component to earnings.

We include in X an ethnic variable, which is also comprised in the ordered probit, and we

assume a cohort effect for each education classification. Thus, our final specification allows

the intercept and the coefficients on the controls to vary by schooling qualification. We

compute the standard errors for (4) by bootstrapping with 200 replications. Our method is

effectively a split sample one that adopts the plausible endogeneity methodology in Conley

et al. (2012).

As discussed by Heckman (1990) and Card (2012) identification in selection models (as

for IV) has to be able to justify the inclusion of variables that affect education that do not

also affect earnings directly - the so-called exclusion restrictions. In equation (3) the vector
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Z includes at least some variables that are not contained in X. In the absence of such, the

selection variables will be collinear with the independent X variables, and, while we could

still use the two-step procedure and obtain the estimates of the IMR, their identification

would come only from the distributional assumptions. It is well known that such estimates

would be sensitive and would rely exclusively on the assumption that the IMR is a non-

linear transformation of the same regressors as in the outcome equations (Heckman, 1979).

In particular, the IMR is close to being linear in the absence of a regressor that is a very

strong predictor of the dependent variable in the selection equation.

In a traditional two-step selection model with only two outcomes in the participation

equation, a standard t-test on the estimate of the coefficient, λ, of the IMR is a valid test of

the null hypothesis of no selection bias. In this traditional case we would expect a positive

estimate of λ because we expect that more highly educated individuals might earn more

because they have unobservable attributes, like ability and perseverance, that are positively

rewarded in the labour market and which are positive correlated with education. In our

model, with multiple treatments, the IMR represents the correlation between a particular

level of education compared to all the others, therefore a significant coefficient can be in-

terpreted as evidence of selectivity but the sign of this coefficient does not have as clear an

interpretation as in the binary model.

3.2 Identification approach

Figure 1 shows the evolution of the distribution of highest qualification across cohorts -

in groups of 5 years. Births in the 40’s were characterised by low levels of qualification,

especially for women. Successive cohorts showed higher levels of qualifications with females

catching up with, and eventually overtaking, males.

The trends in Figure 1 are confounded by reforms that define our identification strategy

which is based on the exclusion from the wage equation (4) of three variables that we think

can reasonably be considered to be exogenous and affect wages only through education. The
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first is the raising of the school leaving age reform (RoSLA): those born before August 1958

faced a minimum school leaving age of 15 years, those born after that date were required

to stay in school until at least 16 years of age. RoSLA combines two effects, the first is

a quantitative increase in years of education and the second is the attainment of academic

qualifications. Harmon and Walker (1995) use RoSLA both as an IV in the first stage linear

probability model, and as an exclusion restriction in a nonlinear selection model. Similarly,

Oreopoulos et al. (2006) estimate the LATE for secondary schooling exploiting RoSLA as an

IV. They find large gains from compulsory schooling. These estimates are not very different

from those of US and Canada, although the proportion of people affected by the change in

compulsory schooling in the UK was much higher than that in the literature that uses North

American data.

To account for selection into higher levels of education and distinguish the effect of

qualification we use a second exclusion restriction, the Easter Leaving Rule (ELR), which

is still based on year of birth and sets two possible leaving periods. This institutional

rule was introduced in the school year 1963/64 and remained valid until the school year

1996/97. Students affected are those born between 1947 and 1980. Precisely: if a student

is born between the 1st of September and the 31st of January then she could leave school

at Easter of the year she turned 15 (or 16 after RoSLA). If she is born between the 1st of

February and 31st of August then she is required to stay until the end of the summer term

(last week of May). Since most of the NVQ2 exams take place during the summer term,

students constrained to stay longer have higher likelihood to get some academic qualification,

especially after RoSLA. Dickson and Smith (2011) using the LFS, exploit both RoSLA and

ELR to estimate the effect of education on wage and employment outcomes. They find

that most of the returns to RoSLA are due to higher qualifications, although there is a

small additional return from the longer length of schooling. In addition, Del Bono and

Galindo-Rueda (2006) using LFS data find that individuals leaving after the summer term

also experience better labour market outcomes.
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The third exclusion restriction is month of birth. It is well documented in the literature

that there is an impact of date of birth on cognitive test scores, with the youngest children

in each academic cohort year performing poorer, on average, than the older members of

their cohort. According to recent studies (for example, Hoogerheide et al., 2007; Kleibergen,

2002) month of birth appears to be uncorrelated with other covariates, unconditionally.

Unlike Buckles and Hungerman (2013) we cannot analyze the relationship between month of

birth and family background with our data. However, we feel that the weight of evidence, in

the UK at least, suggests that month of birth only has indirect effects on log wages - through

the level of educational achievement.

Puhani and Weber (2008) use a sample of German children and investigate the impact

of age at school entry on test scores at the end of primary school (age 10). They find

that children who start school aged 7 rather than aged 6 have test scores that are 0.42

standard deviations higher at the end of primary school. Bedard and Dhuey (2006) use

internationally comparable data for OECD countries to estimate the impact of relative age

on test scores at ages 9 and 13. They find that children being one month older get higher

test score at the age of 9 than at age 13. Ashworth and Heyndels (2007) consider the effects

of month of birth in soccer education programs. They find systematic differences in players’

performance depending on the months in which they are born. These differences could

conceivably produce productivity and wage differences in adulthood. Crawford et al. (2007)

is a recent example that notes the relationship between month of birth and educational

attainment in the UK.14 They show that children born later in the school year perform

significantly worse in exams than those born earlier in the school year, even up to GCSE

14The English rule for admission says that children have to start school at the beginning of the term
following their 5th birthday. There are three terms: start September, start January, start April. However,
children start at the beginning of the academic year during which they will turn 5 in all Local Education
Authorities. So almost all children start school in September whilst aged 4, in what is called the Reception
(kindergarten) class. Then they will be aged 5 by the time the school year ends in August 31st and at the
start of Year 1. If exceptionally children do not start until age 5, then they will start in Year 1 rather than
Reception. And if they start Reception in January or April, the only adjustment is in how much time they
spend in Reception. As this class is not so different from nursery school etc, this should not be an issue to
use month of birth as exclusion restriction.
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level (NVQ2 level). A child born in September will, on average, perform better in academic

tests than a child born in the following August, simply because they start school (and sit

the tests) up to a year younger.15 This means that access to further and higher education,

and hence future success in the labour market, is likely to be affected by month of birth.

In subsequent work, Crawford et al. (2014) show that the majority of the effect of birth

timing on outcomes is attributable to the age at which high stakes tests are taken. This

begs the question as to whether parents might manipulate the timing of birth to ensure

better outcomes. It has become commonplace to directly examine the density of the running

variable in RD designs and that has been formalised in the test due to McCrary (2008),

and Tables A1 and A2 in the Appendix provide reassurance of the timing of births. Indeed,

we never find a significant jump in the distribution of month of birth for those born after

September, except for women in the cohort 1951-55. However, there is no concern, since the

direction of the jump is actually the opposite of what we would have expected in the case of

correlation between month of birth and family background.

All three exclusion restrictions are in principle uncorrelated with the unobservable de-

terminants of the earnings, therefore satisfy the condition of the random assignment to

treatment, in terms of the Angrist et al. (1996) causal model. Formal tests of the validity

and strength of our instruments suggest that we do not have a weak instrument problem.

The LR test for the joint significance of the instruments, allowed us to reject the null. We

also performed a two-sample Kolmogorov-Smirnov test for equality of distribution of month

of birth and we did not find significant differences by RoSLA. This further suggests that any

strategic behaviour by parents did not change when the school leaving age was increased.

In Figures 2 and 3 we show, for males and females respectively, the proportion of NVQ

levels by month of birth for four selected 6-year birth cohorts chosen to capture the role of the

policy changes that define our instruments: 1940-45 which was pre-ELR and pre-ROSLA,

1950-55 which was during ELR but pre-ROSLA, 1960-65 which was also during ELR but

15Crawford et al. (2007) show that September born children have on average 0.2 year more completed
education than August born children.
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post-ROSLA, and 1980-85 which was when the ELR was abandoned and was post-ROSLA.

Note that, for diagrammatic purposes, we omit the 1955-59 cohort since the ROSLA reform

occurred for the middle of that cohort, and we omit 1966-1979 births since there were no

changes to affect those cohorts.

Cohort trends are also evident in Figures 2 and 3, although it is less clear cut than in

Figure 1. Successive panels show marked rises in the overall extent to which individuals are

qualified. For example, between the 1940-45 cohort and the 1950-55 cohort, between which

ELR occurred, the proportion with no or basic qualifications fell by around 50%. Between

the 1950-55 and 1960-65 cohort, between which ROSLA was introduced, NVQ2 rose at the

expense of a further fall in those below this level. And between the 1960-65 cohort and the

1980-85 cohort, those with more than NVQ3 rose despite the demise of the ELR.

If we consider just those born five years either side of the ROSLA, to reduce the extent to

which there are cohort trends, we find that the reform immediately reduced the probability

of leaving school at the old minimum, age 15, from approximately 30% to close to zero and

that the probability of leaving school, at the new minimum rose immediately from approxi-

mately 30% to close to 60%. The distribution above leaving at 16 remained approximately

unchanged (see, also, Chevalier, 2004).

The month of birth effect is less distinct. For each cohort group and both genders there

is a slight fall in those lowly qualified across the school year. We expect this effect to be

stronger when there was streaming by ability test (called the 11+ examination) administered

to all children in the final year or primary schooling at age 10/11. The scoring of this test was

not age adjusted and the test occurred on the same day for all children, and approximately

the top 20% were admitted to an academic school. There were strong expectations that such

an academic track would involve remaining in school through to 18 and an expectation that

the best of these students would go to university. This selection test, and the associated

segregated schooling, disappeared gradually in the UK over the 1970’s and so we might

expect month of birth to be less pronounced for the latter two cohorts in Figures 2 and 3 -
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and this seems to be the case.

4 Estimation Results

We restrict ourselves to a parsimonious specification that excludes variables such as children

and whether married that are likely to be endogenous. However, we include in both the wage

and education equations self-reported ethnicity (grouped simply into white and non-white).

In Table 3, we report the results of the first step of the second stage of our estimation

approach, i.e the ordered probit selection equation. We include, in this step, a cohort effect

represented by a cubic function of the year of birth to capture long run social changes, as

distinct from the sharp effect of RoSLA. This social change turns out to be quite significant

for educational attainment. The month of birth effect is captured by including a continuous

month variable, where September is equal to one and corresponds to the oldest children

in each class cohort. We find, as expected, that its sign is negative and highly significant

indicating that the oldest children in each class do better.16 Finally, we also include dummy

variables to capture the effects of ELR - which we find also have significant effects on the

probability of attaining qualifications.

We show, in Table 4, the corresponding marginal effects of RoSLA, ELR, and month of

birth evaluated at each level of education. The effect of RoSLA, measured as the difference

between the coefficients after and before, is positive from NVQ0 to NVQ2, and it has its

highest values at NVQ0 and NVQ2. The intention of the government and the consequent

effect of the policy was to increase the participation at the lower secondary levels of education,

and it is here where we find the strongest effect of the RoSLA. Note that if we had used

RoSLA as an IV then the estimated effect of the NVQ would be weighted towards those at the

16To assess the stability of our exclusion restrictions we estimated the selection model applying one re-
striction at a time, and we found that the results are substantially unchanged when using only RoSLA , ELR
or month of birth. We have also performed pairwise comparison of different education levels by estimating
separate probit models. The results show a stronger effect of RoSLA and month of birth at lower levels of
education, and a stronger effect of ELR at higher NVQ levels.
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bottom of the education distribution - e.g. for those who wanted to leave at 15 and the policy

forces to remain in school until 16. In contrast, in our selection model, we estimate the effect

on the whole population. The effect of the ELR for the those born between February-August

is clearly higher at NVQ4 compared to September-January and to No ELR. Looking at the

month of birth effect, we notice that the coefficient is significantly positive and decreasing

from NVQ0 to NVQ3, as expected, while it is significantly negative at NVQ4: the youngest

children in their school year cohort have a higher probability of achieving only lower levels

of education, while the older children in each class have a higher probability of attaining

higher levels. Similar results are found for females in Table 5.

In Table 6 we report the results of the estimation of equation (1), for each education level

separately and without cohort effects. The age effects are well determined - well enough

determined to allow us to reject the imposition of a common age effect across all education

levels in the last column, where we present estimates of the separable model by including each

of the qualification dummies. This imposes the constraint that the effect of qualifications

is merely to shift the age earnings profile in a parallel fashion. A test that the age effects

are common across qualification levels is rejected, so we are confident that the conventional

separable model can be rejected in favour of our non-separable one.17

In Table 7, we present the estimates of the second step of the selection model where again

the dependent variable is the level of the log wage and we allow for time effects but not for

cohort effects. This is the conventional approach to the estimation of the selection model

except that we estimate one equation for each qualification level and correct for selectivity

into that qualification level. That is, Table 7 does not impose separability but it does assume

that there are no cohort effects. The important finding is that the coefficient of the IMR,

λ, is always significant for females, and significant for NVQ0, NVQ3 and NVQ4 for males.

This means that our exclusion restrictions are detecting, and correcting for, the presence of

selection bias.

17We also tested the model using cubic age effects. However, this effect is mostly insignificant and an F
test of the significance of the cubic in all NVQ levels rejects this extension.
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Table 8 presents the estimates of the wage growth equation (2). The time difference

between our wage observations is five quarters.18 We have therefore multiplied the coefficient

of age in this equation by 5/2 to generate an annual age effect. Again we allow for non-

separability and find that we are able to reject the null of separability.

We then impose the estimated age effects in Table 9 by adjusting the dependent variable

by subtracting the estimated age effect from Table 8. That is, the dependent variable in

Table 9 is that shown in equation (4), which we estimate separately by qualification level,

correcting for selection into qualification. We again find that selection is jointly significant,

for both males and females. In this case, we can include additive cohort effects (not reported)

since the age effects are imposed from the first step estimates. We find that these cohort

effects are always jointly significant.19

In Table 10 we compare the average predicted wages obtained from the two estimated

selection models. In the top panel of Table 10 we report the average predicted wages (from

the estimates in Table 7), which include age effects but no cohort effects. In the bottom

panel we show the predicted wages (from the estimates in Table 9) which do not include

age effects, since the log wages have been explicitly corrected for them, but allow for cohort

effects. We notice that the predicted wages are higher in the conventional model, and their

fall in the new model is of the same magnitude for both males and females. The college

premium (NVQ4 minus NVQ3) is line with the UK literature: females get a higher premium

of around 43%, while for males the premium is around 38% in the conventional model, and

the premia are substantially unchanged in the new model. The returns to NVQ3 versus

NVQ2 are much higher for males than females, in both models. This is consistent with our

raw data, since we have more males with vocational qualifications than females.

As we stated above, in the selection model we are estimating the effect of education on

earnings across the whole distribution of unobservables - in particular, at the mean. In fact,

18Figure A3 in the Appendix shows how the wage growth varies by nvq levels and by sex. It is interesting
to observe that more educated females have higher growth rates than males.

19We tested these effects both by and across NVQ levels.
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if we add back to the fitted wages in the new model the age effects estimated in equation (2),

we obtain returns to education for the two selection models that are practically the same.

However, the fact that, at the mean, the predicted earnings are similar does not imply the

absence of differences across the entire distribution. Indeed, to highlight these differences we

compute the age-earnings profiles.

Figure 4 shows the profiles obtained from the raw pooled data, that is from the OLS

estimation using quadratic age with discrete schooling groups and no cohort effects (see

Table 6). These profiles are identical, and we do not report them, to those obtained from

the estimation of the conventional selection model with age effects only (see Table 7). In

Figure 4, we observe the well-known convex shape of the profiles, where the peak for males

is at age 45 with a college premium of around 40%, whilst for females the peak is at 46

years old with a college premium higher than 40%. It is evident that the age-earnings profile

for NVQ4 is higher than NVQ3 at all ages, and steeper than NVQ3 at early ages for both

males and females. Notice that we find that women with low qualification levels have flatter

lifecycle wage profiles.

Figure 5 shows the profiles obtained from the estimation in Table 9 when controlling for

life cycle effects but assuming no cohort differences. We observe increasing profiles, which

implies strong age effects throughout lifecycle for all educational levels. This clearly contrasts

with Figure 4, because now we have profiles where age effects are immune from cohort effects.

Finally, in Figure 6 we show our last set of profiles which combine all our extensions

to the simple workhorse specification used in the literature. We consider discrete groups of

educational qualifications, we control for lifecycle effects and we separately allow for cohort

differences. We find two clear results: the age earnings profiles are now flat and younger

cohorts have lower returns to education compared to older cohorts, for both males and

females. However, although the college premiums are decreasing in magnitude they are still

evident for younger cohorts; on the other hand, the returns to high school, for the same

cohorts, appear to be very marginal. 20

20Selection into employment could be a possible cause of the differences across lifecycles between men
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We investigate further these differences, by focusing in Figure 7 on the returns to educa-

tion for high school (NVQ3 minus NVQ2) and higher education (NVQ4 minus NVQ3), for

the age groups in the overlapping cohorts showed in Figure 6.

For example, a 44-year-old graduate male (female) from the cohort 1950-55 has a college

premium of around 34% (39%) while at the same age a graduate male (female) from the

cohort 1960-65 has a premium of 26% (36%). Whereas a 36-year-old graduate male (female)

from the cohort 1960-65 has a college premium of around 25% (35%) while at the same age

a graduate male (female) from the cohort 1970-75 has a premium of 12% (24%). Looking

at the gender differences, females from any cohort have higher college premiums than males;

whereas high school returns are much bigger for males than females, because there are more

males with vocational qualifications. Overall the lower college premiums for younger cohorts

may be due to the higher education expansion in the last decades in the UK, which has

increased the supply of college graduates; and recently younger graduates may have suffered

more the effects of the Great Recession compared to older cohorts.

5 Conclusion

This paper has proposed and implemented a simple methodology, to estimate the returns

to education, that is sufficiently tractable that it could be used with many datasets, and

yet provides a significant generalisation of the usual additively separable and linear human

capital earnings function. We separately estimated lifecycle and cohort effects, and identifi-

cation was achieved through exploiting two education reforms and month of birth. All have

significant effects on educational attainment. Our results amount to a strong rejection of

and women. For example, in a lifecycle model people with a lower taste for leisure, and therefore work
longer hours, will invest in more education. So education is endogenous and the non-workers will have least
education, and would have low wages if they were to work. There are other possible reasons for observing
different lifetime patterns between males and females. Female participation in the labor market may be
discontinuous (women devote time to the household sector) and this may lower their human capital returns.
Women also may tend to choose occupations that maximize their lifetime earnings where their skills do not
depreciate during the years spent in the household sector.
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the simple workhorse specification that is commonly used in this literature. Compared to

the conventional models, the returns to schooling are almost unchanged for both genders,

and we still find that females have higher college premia than males. Age earnings profiles

have the traditional bell shape if we do not control for cohort effects, whereas they become

flat when we allow for cohort differences. We also observe substantial earnings inequality

between younger and older cohorts. Younger cohorts have lower returns to higher education,

for both males and females.
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Table 1: NVQ Equivalent Qualifications
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Table 2: Summary statistics

Males
Mean Std. Dev. Min. Max. N

log hourly wage (Sept14 prices) 2.571 0.512 0.935 4.187 199509
RoSLA 0.724 0.447 0 1 204,735
age 41.364 9.577 18 65 204,735
year of birth 1963 11.616 1940 1990 204,735
month of birth dobm 6.403 3.411 1 12 204,735
non white 0.973 0.027 0 1 204,735

Females
Mean Std. Dev. Min. Max. N

log hourly wage (Sept14 prices) 2.349 0.489 0.926 4.184 214,462
RoSLA 0.728 0.445 0 1 218,302
age 39.671 11.696 18 65 218,302
date of birth year 1965 11.996 1940 1990 218,302
date of birth month 6.394 3.415 1 12 218,302
non white 0.971 0.030 0 1 218,302

log hourly wage and NVQ percentage
Males

Mean Std. Dev. Perc. N

NVQ0 2.221 0.371 8.25 15,180
NVQ1 2.257 0.380 5.24 9,651
NVQ2 2.400 0.446 21.19 38,995
NVQ3 2.524 0.441 30.85 56,779
NVQ4 2.900 0.501 34.48 63,458

Females
Mean Std. Dev. Perc. N

NVQ0 1.995 0.329 10.21 20,620
NVQ1 2.076 0.347 6.04 12,198
NVQ2 2.204 0.394 29.63 59,852
NVQ3 2.275 0.414 19.25 38,881
NVQ4 2.701 0.468 34.87 70,434
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Table 3: Ordered probit first step selection model

Dep var: NVQ levels
Males Females

RoSLA -0.12032*** -0.09978***
(0.00921) (0.00865)

ELR Sep-Jan 0.06361*** 0.12227***
(0.01064) (0.01031)

ELR Feb-Aug 0.07407*** 0.14125***
(0.00995) (0.00968)

month of birth -0.00263*** -0.00348***
(0.00059) (0.00057)

year of birth 0.02127*** 0.03269***
(0.00198) (0.00197)

(year of birth)2 -0.00020*** 0.00006
(0.00008) (0.00007)

(year of birth)3 -0.00000** -0.00001***
(0.00000) (0.00000)

nonwhite 0.19518*** 0.26581***
(0.01327) (0.01223)

cut1 -1.14075*** -0.59129***
(0.01136) (0.01139)

cut2 -0.84974*** -0.26528***
(0.01129) (0.01137)

cut3 -0.15266*** 0.65697***
(0.01119) (0.01140)

cut4 0.65647*** 1.14289***
(0.01119) (0.01142)

N 328109 360534
Significance levels : ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1%

std. err. in brackets.

Ho: yob=yob2=yob3=0, rej at 1%

LR χ2(3)=535.66 for males

LR χ2(3)=3365.56 females. 32
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Table 6: Basic OLS model with no cohort effects
Males

NVQ0 NVQ1 NVQ2 NVQ3 NVQ4 NVQ tot
Dep var: log hourly earnings - QLFS

age 0.04524*** 0.06704*** 0.07988*** 0.08188*** 0.11051*** 0.08381***
(0.00132) (0.00162) (0.00088) (0.00075) (0.00096) (0.00045)

age2 -0.00047*** -0.00074*** -0.00086*** -0.00091*** -0.00119*** -0.00091***
(0.00002) (0.00002) (0.00001) (0.00001) (0.00001) (0.00001)

NVQ1 0.09978***
(0.00417)

NVQ2 0.24485***
(0.00310)

NVQ3 0.33226***
(0.00292)

NVQ4 0.69677***
(0.00290)

constant 1.22677*** 0.90171*** 0.76020*** 0.85428*** 0.53550*** 0.43504***
(0.02695) (0.02962) (0.01644) (0.01469) (0.01906) (0.00901)

N 25440 16655 65354 100724 111991 320164

Females
NVQ0 NVQ1 NVQ2 NVQ3 NVQ4 NVQ tot

age 0.00838*** 0.01639*** 0.03478*** 0.05073*** 0.07249*** 0.08381***
(0.00124) (0.00143) (0.00071) (0.00093) (0.00092) (0.00045)

age2 -0.00006*** -0.00012*** -0.00037*** -0.00058*** -0.00079*** -0.00091***
(0.00001) (0.00002) (0.00001) (0.00001) (0.00001) (0.00001)

NVQ1 0.09978***
(0.00417)

NVQ2 0.24485***
(0.00310)

NVQ3 0.33226***
(0.00292)

NVQ4 0.69677***
(0.00290)

constant 1.73349*** 1.62589*** 1.45690*** 1.28111*** 1.18130*** 0.43504***
(0.02687) (0.02864) (0.01374) (0.01709) (0.01794) (0.00901)

N 36387 23057 106656 65956 122835 320164
Significance levels : ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1% Std. err. in brackets. Dependent Variable in 2014 prices.

Test on separability for males rej. Ho at 5%, Fstat=453.3; for females rej. Ho at 5%, Fstat=389.5

NVQ tot is a categorical variable for each NVQ level.
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Table 7: Estimates Heckman model - no cohort effects
Dep var: log earnings

Males
NVQ0 NVQ1 NVQ2 NVQ3 NVQ4

λ -0.16874*** -0.09386 0.01438 -0.36992*** -0.56753***
(0.04931) -0.06502 -0.03511 -0.03554 -0.05635

non white -0.10317*** -0.03995* -0.02405* -0.10762*** -0.10636***
(0.02101) -0.02418 -0.01394 -0.01577 -0.01425

age 0.04012*** 0.06522*** 0.07809*** 0.07462*** 0.10544***
(0.00164) -0.00225 -0.00114 -0.00126 -0.00144

age2 -0.00041*** -0.00071*** -0.00084*** -0.00081*** -0.00110***
-0.00002 -0.00003 -0.00002 -0.00002 -0.00002

constant 0.99839*** 0.80377*** 0.79363*** 0.95523*** 1.19035***
-0.09016 -0.07734 -0.02499 -0.02235 -0.07347

N 199509

Females
NVQ0 NVQ1 NVQ2 NVQ3 NVQ4

λ -0.34536*** -0.12989*** -0.08962*** -0.15321*** -0.11483***
(0.02007) (0.02413) (0.01471) (0.01882) (0.02341)

non white -0.04025 0.04425* 0.05787*** 0.02057* 0.02060**
(0.02773) (0.02511) (0.01035) (0.01235) (0.00966)

age 0.01293*** 0.01551*** 0.03473*** 0.04885*** 0.07400***
(0.00146) (0.00178) (0.00087) (0.00115) (0.00119)

age2 -0.00003** -0.00007*** -0.00034*** -0.00051*** -0.00078***
(0.00002) (0.00002) (0.00001) (0.00002) (0.00002)

constant 0.91329*** 1.42723*** 1.36408*** 1.25830*** 1.22388***
(0.05933) (0.05092) (0.02012) (0.01982) (0.03233)

N 214462

Significance levels : ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1% Bootstrapped Std. err. (200 reps) in brackets.

Dependent Variable in 2014 prices.

Ho: λ0 = · · · = λ5 = 0 χ2
5 = 176.6 for males; χ2

5 = 508.80 for females;
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Table 8: First difference model from LLFS
Males

NVQ0 NVQ1 NVQ2 NVQ3 NVQ4 NVQ tot
Dep var: first difference log hourly earnings - LLFS

5/2×age -0.00084*** -0.00060*** -0.00096*** -0.00094*** -0.00106*** -0.00096***
(0.00012) (0.00015) (0.00007) (0.00006) (0.00006) (0.00003)

NVQ1 -0.00522
(0.00401)

NVQ2 -0.00418
(0.00302)

NVQ3 -0.00050
(0.00282)

NVQ4 0.00532*
(0.00280)

constant 0.12245*** 0.10100*** 0.12883*** 0.13060*** 0.14653*** 0.13300***
(0.01153) (0.01165) (0.00582) (0.00489) (0.00499) (0.00399)

N 10097 6898 25888 43305 47789 133977

Females
NVQ0 NVQ1 NVQ2 NVQ3 NVQ4 NVQ tot

5/2×age -0.00024* -0.00034*** -0.00059*** -0.00070*** -0.00076*** -0.00062***
(0.00012) (0.00013) (0.00006) (0.00007) (0.00006) (0.00003)

NVQ1 0.01014***
(0.00329)

NVQ2 0.00592**
(0.00247)

NVQ3 0.00529**
(0.00270)

NVQ4 0.01339***
(0.00243)

constant 0.06163*** 0.08384*** 0.10119*** 0.10925*** 0.12257*** 0.09818***
(0.01195) (0.01099) (0.00498) (0.00598) (0.00504) (0.00385)

N 15565 10674 46098 26575 51585 150497
Significance levels : ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1% Std. err. in brackets. Dependent Variable in 2014 prices.

LLFS: Test on separability for males rej. Ho at 5%, Fstat=9.083; for females rej. Ho at 5%, Fstat=21.361

NVQ tot is a categorical variable for each NVQ level.
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Table 9: Estimates Heckman model - with cohort effects
Dep var: log earnings corrected for lifecycle effects

Males
NVQ0 NVQ1 NVQ2 NVQ3 NVQ4

λ 0.01207 0.08630 -0.00995 0.21145*** 0.36755***
(0.10411) (0.11318) (0.06704) (0.05906) (0.09100)

non white -0.02144 0.02209 0.02114 0.02098 0.05106***
(0.02944) (0.03462) (0.02223) (0.01898) (0.01716)

constant 2.73713*** 2.45484*** 2.83214*** 2.89805*** 2.89863***
(0.16343) (0.12431) (0.03675) (0.02289) (0.12046)

N 163082

Females
NVQ0 NVQ1 NVQ2 NVQ3 NVQ4

λ -0.03122 -0.32632*** -0.26709*** -0.26823*** -0.29991***
(0.05125) (0.07665) (0.04073) (0.05488) (0.06416)

non white -0.00345 -0.03479 0.01358 0.00099 -0.02929*
(0.02612) (0.03414) (0.01705) (0.02194) (0.01643)

constant 1.93785*** 2.13229*** 2.59946*** 2.93491*** 3.58021***
(0.05275) (0.02467) (0.01684) (0.05855) (0.11416)

N 178827
Significance levels : ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1% Bootstrapped Std. err. (200 reps) in brackets.

Dependent Variable in 2014 prices. All equations include cubic year of births that capture

additive cohort effects. Age effects are imposed from Table 8, according to equation 4.

Ho: λ0 = · · · = λ5 = 0 χ2
5 = 34.36 for males; χ2

5 = 88.43 for females;
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Table 10: Predicted wages

Selection Model a with age effects and no cohort effects
Males Females

Mean Std. dev Mean Std. dev
NVQ0 2.231 0.086 1.992 0.052
NVQ1 2.274 0.145 2.081 0.076
NVQ2 2.422 0.185 2.212 0.081
NVQ3 2.542 0.154 2.284 0.104
NVQ4 2.927 0.195 2.718 0.130

Selection Model b with cohort effects and lifecycle correction
Males Females

Mean Std. dev Mean Std. dev
NVQ0 2.190 0.431 1.968 0.240
NVQ1 2.234 0.405 2.058 0.336
NVQ2 2.358 0.494 2.164 0.402
NVQ3 2.483 0.480 2.228 0.427
NVQ4 2.860 0.543 2.658 0.471
a Predicted wages from Table 7.
b Predicted wages from Table 9.

Note: If we add the age effects to the predictions in model b

we obtain average wage predictions similar to model a.

39



Figure 1: Distribution of Highest Qualifications across Birth Cohorts
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Figure 2: Effects of Month of Birth, RoSLA and ELR: Males

0
.2

.4
.6

.8
1

1 2 3 4 5 6 7 8 9 10 11 12

1940-45 - No ELR pre-RoSLA

0
.2

.4
.6

.8
1

1 2 3 4 5 6 7 8 9 10 11 12

1950-55 - ELR pre-RoSLA
0

.2
.4

.6
.8

1

1 2 3 4 5 6 7 8 9 10 11 12

1960-65 - ELR post-RoSLA

0
.2

.4
.6

.8
1

1 2 3 4 5 6 7 8 9 10 11 12

1980-85 - No ELR post-RoSLA

nvq0 nvq1 nvq2 nvq3 nvq4

Figure 3: Effects of Month of Birth, RoSLA and ELR: Females
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Figure 4: Raw LFS pooled data - OLS quadratics with discrete S groups and no cohort
effects
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Figure 5: Lifecycle effects - Quadratic in age, assuming no cohort differences
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Figure 6: Lifecycle effects - Allowing for cohort differences
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Figure 7: Returns to education by cohort - High school and Higher education
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Table A1: Summary statistics unrestricted QLFS

Males
Mean Std. Dev. N

log hourly wage unadjusted 2.295 0.616 466,384
age 18− 65 40.467 11.940 473,130

Females
Mean Std. Dev. N

log hourly wage unadjusted 2.064 0.576 498,917
age 18− 65 40.281 11.667 504,911

log hourly wage and NVQ qualifications
Males

Mean Std. Dev. N

NVQ0 1.895 0.497 37,059
NVQ1 1.970 0.495 19,974
NVQ2 2.128 0.561 81,112
NVQ3 2.218 0.546 132,766
NVQ4 2.638 0.585 127,675

Females
Mean Std. Dev. Perc. N

NVQ 0 1.656 0.429 49,252
NVQ1 1.767 0.447 27,985
NVQ2 1.912 0.479 128,549
NVQ3 1.976 0.511 89,002
NVQ4 2.427 0.544 137,375
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Figure A1: McCrary tests of month of birth, Males
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Figure A2: McCrary tests of month of birth, Females
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Figure A3: Log real wage differences by NVQ and sex
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